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ABSTRAKT 

Tato práce si klade za cíl vytvořit spolehlivý model poptávky po letecké přepravě a následně 

ohodnotit přiměřenost implementované metody. Vzhledem ke stochastické povaze dané 

problematiky jsou pro řešení využity metody teorie pravděpodobnosti; konkrétně se jedná 

o odhad směsového modelu a následnou aplikaci lineární a logistické regresní analýzy. Pro 

účely objektivního zhodnocení navržené metody jsou získané výsledky porovnány s metodou 

jednoduché lineární a logistické regrese. 

Klíčová slova: směsový model, regresní analýza, letecká doprava, poptávka, stochastická síť 

 

ABSTRACT 

The aim of the thesis is to create a reliable mathematical model of air traffic demand and 

subsequently evaluate the reasonability of the implemented method. Considering the 

stochastic nature of the issue, the probabilistic approach is utilized; particularly, the estimate 

of a mixture model and the subsequent linear and logistic regression analysis is exploited. To 

objectively evaluate the suggested method, results are compared to the simple linear and 

logistic regression method. 

Keywords: mixture model, regression analysis, air traffic, demand, stochastic network  
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1 INTRODUCTION 

For more than one hundred years, aviation has increasingly been making its way into our 

everyday lives. Because of its significant international character, air transport has always 

played an important role in social, economic and political development, at a global as well as 

at a local level. Furthermore, as has been indicated in many research works, existing    

socio-economic conditions can be reverse engineered to estimate air traffic demand. This 

presumption creates a fundamental keystone for all calculations which proceed in this thesis. 

In order to estimate such a random variable as air traffic demand, it is necessary to fully 

understand the historical circumstances and conditions under which this demand was 

created.  

 

The significant impact of aviation on the global economy, as well as on the world political and 

social situation, was fully evident from the very beginning of its history. Due to its strong 

international character, air transport has always played an important role in global trade, 

tourism, investment, labour supply, consumer welfare, and market efficiency 

development [1]. However, this is not the picture which the general public has perceived 

during the last century. Aviation development, as with development of many other fields, was 

primarily accelerated by the military conflicts of the twentieth century. One of the regrettable 

examples of military activity carried out via air was the dropping of nuclear bombs on the 

cities of Hiroshima and Nagasaki. Over time the scenarios have changed, but the stigma with 

which this field was marked has never disappeared. The threats resulting from the 

international character of aviation survive to this day, for instance in the form of international 

terrorism.  

 

In 1944 the international importance of air transport’s future development was distinctly 

communicated in the preamble of the Convention on International Civil Aviation, the essential 

document of aviation law.  The direct impact of international civil aviation on “creation and 

preservation of friendship and understanding among the nations and people of the world” is 

strongly emphasized here, together with a threat to general security in the case of its abuse. 

The Convention also set cornerstones for market regulation restrictions. Based on 

The Freedoms of the Air, flight frequencies and capacity control were established, as well as 

price tariffs in civil and cargo transportation [2]. 

 

All aspects mentioned above have significantly influenced the overall market conditions and 

consequently the ability to satisfy air traffic demand. The post war economic situation 

in airline transportation was comprehensively described by Irston R. Barnes, Professor 
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of Economics at Yale University, in 1946. In his publication he highlighted three general 

factors crucial for the development of future demand. From an economic point of view he 

considered the general level of national income as most important, which is closely related to 

a high level of production, and the overall utilization of resources. The second factor is the 

public acceptance of air transport from a non-economic standpoint. Both of these factors had 

been significantly suppressed by the First and Second World Wars. The competitive position 

of air transportation in relation to competing surface transportation is the third aspect, and 

one which dominates in more detailed assessments of air traffic demand. Barnes saw the 

major political threat to full development of commercial aviation in market regulation, which 

was absolutely irrespective of any basic economic principles of free market environment and 

often led to cartel agreements, financing and capital investment issues, reduction 

of incentives to service, and last but not least to problems with aggressive taxation. As will be 

comprehensively described in the upcoming chapters, all of these factors remain essential 

for the estimation of air traffic demand today [3]. 

 

Barnes' vision of a free market came to pass more than 30 years after his study had been 

published. The so-called “Open Skies” policy was firstly implemented in the United States 

in the eighties; in the nineties it spread into Europe and changed the field forever. 

Deregulation meant a rapid increase in competition in the market and forced air carriers to 

radically change their business and network strategies. The majority of 'full-service' airlines 

have adopted the so-called “hub-and-spoke strategy”, which enables them to maximize 

connection opportunities and discourages other competitors from entering the market 

because of their strengthened bureaucratic control over the hub airport. Low-cost, no frills 

airlines have followed a completely different strategy. They found the implementation of 

point-to-point networks serving only high volume routes and the execution of low price policy 

to be the most effective strategies [4].  

 

Deregulation practices influenced not just air carriers within Europe and the United States, 

but also external airlines which had to adapt to the changing business environment. For 

these purposes the phenomenon of airline alliances was established. This represented the 

possibility to enhance business cooperation and at the same time to create better conditions 

for negotiation. Thus, it is reasonable to say that overall, deregulation promoted globalization 

initiatives [4].  

 

Deregulation of air transport has not only changed the structure of airline networks but also 

the overall concept of air traffic demand estimation. Due to increased competition and 

greater effectiveness of provided services, traffic volumes became much more uncertain and 



9 
 

volatile. The system became stochastic, i.e. a system involving random variables, which can 

be described by probability distribution. 

 

All of the historical events mentioned above have helped to create, step by step, air transport 

as we experience it nowadays. Military conflicts and threats resulting from aviation abuse 

forced the industry to reach technological perfection, which is not obviously the case for most 

other transportation systems. Furthermore, due to deregulation, air transport became 

a liberalized field respecting the basic laws of economics. These can be utilized in order to 

mathematically model and estimate variables, such as air traffic demand, which are present 

in transportation processes. 

Objectives of the Thesis 

The aim of the thesis is to create a reliable mathematical model of air traffic demand and 

subsequently evaluate the reasonability of the implemented method. Considering the 

stochastic nature of air transportation system, the probabilistic approach is utilized.  

 

This thesis thematically follows the content of the previously elaborated bachelor thesis. 

A consistent element of both works is the fundamental presumption that air traffic demand 

can be expressed as a function of socio-economic parameters. The parameters selection 

process is a subject of detailed discussion in the upcoming chapter. 

 

In the bachelor thesis, linear regression was utilized for the purposes of air traffic demand 

estimation. However, as has been demonstrated, presumption of linearity and stationarity 

of the modelled system was not sufficient for this purpose. As was suggested in the 

conclusion of the thesis, the mixture model, which is the main subject of this work, promises 

the possibility of minimizing errors resulting from the inappropriate presumptions.  

 

The method was chosen because the modelled system is believed to exist in several 

behaviour modes. Furthermore, these modes are assumed to differ so much that each 

of them needs to be characterized by a special model.  

  

In order to minimize the uncertainty associated with continuous system modelling, and thus 

fundamentally improve the model reliability, the dependent variable is considered not only 

continuous, but also discrete. For these purposes the linear regression analysis as well as 

the logistic regression analysis is exploited after the mixture estimation.  
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To objectively evaluate the suggested method, results will be compared to more basic 

mathematical tools such as simple linear and simple logistic regression. 

 

The data support provided by Prague Airport enabled elaboration on the thesis. Because of 

the close cooperation between Prague Airport and Czech Airlines, both belonging to the 

Czech Aeroholding Group, task concretization is tailored to the business strategy of that 

company. Therefore, air traffic demand between Middle Europe and the Russian Federation 

market is the main subject of mathematical modelling and estimation. 
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2 TASK MOTIVATION 

Air traffic modelling and estimation are an inseparable part of the overall aviation planning 

processes. Long-term planning is often associated with strategic planning, which includes 

a time span more than five-years into the future, and determines critical milestones together 

with capital expenditures of a company. The estimation supports airlines in defining their 

network and business strategy, assists in developing airspace and airport infrastructure, and 

last but not least contributes to manufacturer's strategies of new aircraft production. The 

medium-term horizon involves looking forward over a one-year to five-year time span and 

takes into account long-term trends as well as cyclical components of demand. It comprises 

activities such as budgeting and resource allocation, for instance assignment of aircraft to 

particular routes. In terms of short-term planning, seasonal factors are considered the most 

important; for example flight schedule creation, maintenance and catering planning are all 

incorporated [5]. 

 

The majority of participants in air transportation processes have to face extremely high 

financial risks caused by enormous initial investments, with paybacks only coming in the long 

term. Exploitation of mathematical modelling techniques can rapidly decrease financial risks 

and enhance the efficiency of processes, especially in the case of strategic planning. The 

European market environment is characterized by an extreme level of competition and thus, 

effective planning methods are crucial for economically sustainable development. 

 

The main purpose of the mathematical model created in the thesis is to enhance processes 

of long-term planning, particularly of the network strategy of Czech Airlines in the context of 

the Russian market. 

2.1 Czech Airlines, a.s. 

Czech Airlines is the flagship carrier of the Czech Republic and was founded in 1923, making 

it one of the five oldest airlines in the world. With the hub airport located in Prague, the 

company provides scheduled air carriage to 89 destinations in 45 countries within Europe 

and Asia [6] while transporting approximately 3 million passengers per year [7]. 

 

Since deregulation, Czech Airlines has been adapting its business model in order to deal 

with strong competition, primarily induced by the expansion of low cost carriers. In the 

interest of cost reduction, a hub-and-spoke network strategy was implemented. Furthermore, 

the company launched a hybrid business strategy which utilizes cost reduction mechanisms, 
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which is comparable to the no-frills policy of low cost airlines while maintaining the codeshare 

cooperation and corporate clientele. Despite all efforts, Czech Airlines was not able to resist 

the financial crash and in 2013 was urged to strengthen its position on the market through 

consolidation with Korean Air, the current owner of 44% of the company's share [8].  

 

Figure 1: Connections from the Czech Republic to Russia provided by Czech Airlines nowadays [6] 

 

The Russian Federation market has always played an important role in Czech Airlines’ 

network development, specifically in terms of air traffic demand and revenue generation. The 

company’s good reputation on the Russian market, as well as strong economic relations, can 

be documented in the long term cooperation. The first connection from Prague to Moscow 

was established in 1936, making it the oldest connection of the carrier. Five connections from 

the Czech Republic, to Moscow, Saint Petersburg, Ekaterinburg, Samara and Rostov on 

Don, are provided nowadays, carrying almost a quarter of a million passengers (Figure 1). 

Despite financial risks resulting from the current unstable political situation, unlike many other 

carriers Czech Airlines does not plan to back away from the Russian market. On the 

contrary, the market is predicted to consolidate and grow, thus new activities are the subject 

of continual planning [9].  

 

Czech Airlines activities on the Russian market are further enhanced by Aeroflot's 

membership in Skyteam Alliance, which came into effect in 2004. Czech Airlines cooperates 

with Aeroflot on many air routes via code-sharing agreements [10]. 
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3 FACTORS AFFECTING AIR TRAFFIC DEMAND  

As was indicated above, air traffic demand can be defined as a variable dependent on two 

main types of drivers. These are the geo-economic and service dependent factors [11].  

 

Economic factors refer to commercial, industrial and cultural activities in the respective 

transportation area. Considering the complex nature and broad span of these activities, 

selecting variables sufficiently describing the overall economic situation is quite problematic. 

In the majority of mathematical models, population and income are usually utilized as 

explanatory variables. However, these variables themselves can be often substituted by 

many other economic indicators, because of some strong correlations existing between 

them. Therefore, some studies have also considered other variables, such as the percentage 

of degree holders and employment composition structure. Nevertheless, their utilization has 

never been put into a coherent framework [11]. 

 

Another important geo-economic aspect in the process of air traffic estimation is 

transportation distance. As the distance between destinations increases, the relative 

competitiveness in terms of travel time improves. As a result, smaller players in the market 

can also reach better economic conditions for operating long-haul connections. On the other 

hand, with the increase in distance the social and commercial interactions between 

destinations are narrowing. The negative effects of closely placed competing airports cannot 

be neglected either. In this case demand is critically determined by the frequency 

of departures, even at the cost of extra travel times [11]. 

 

In micro-economic theory, demand is viewed as a variable directly dependent on price. In the 

specific context of air traffic, price is perceived as the charge for provided services, and thus 

modelling often requires utilization of both factors, i.e. the price charged as well as the quality 

of the product. In terms of quality, frequency of departures and load factor were observed to 

have the most significant effect. The decrease in load factor is assumed to lower 

the probability of delay. Together with the increase in frequency, these two factors 

perceptibly improve the level of the service provided. Furthermore, aircraft size and 

technology can also be taken into account as dummy variables for the purposes of defining 

the boundary conditions of the model [11].  
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3.1 Input Data 

Processing of the input data selection was executed with respect to the empirical findings 

described in Chapter 3. Moreover, the requirement of variables independency was also taken 

into account. 

 

The geo-economic factors influencing air traffic demand development are captured in 

variables: population density, gross domestic product per capita, unemployment rate, 

average monthly nominal wage and distance between the respective destinations. 

Conversely, variables such as revenue and average fare represent the service dependent 

aspects. 

 

It is important to stress the fact that the possibilities of choice of variables were significantly 

limited by the structure of databases used. For that reason, only indicators capturing the 

situation on a regional level were collected. Data concerning the area of the European Union 

were, in most cases, obtained from the Eurostat database. In this case, indicators following 

the NUTS 2 and NUTS 3 methodology were selected. The Russian Federal State Statistics 

Service was used as a source of information for data regarding Russian Federation regions. 

The origin-destination data were provided by Prague Airport, as was emphasized earlier.  

 

Generally speaking, the origin-destination data describe demand regarding more than 4,000 

different air routes, including 60 destinations in Middle Europe and 125 destinations in 

Russian Federation. The selected socio-economic data comprise seven different indicators 

about the particular air connections. In total, the matrix is made up of almost fifty thousand 

data samples. 
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4 MODELLING APPROACHES 

Modelling approaches vary extensively in terms of intended use and the particular application 

concerned. The techniques available for air traffic estimation purposes can be divided into 

three main categories: quantitative, qualitative and decision analysis [5].  

 

One of the methods represented by the quantitative approach is time-series analysis. It is 

based on the presumption that historical patterns and conditions of an operating environment 

will continue into the future; thus, this method heavily relies on stability in past development 

as well as on the availability and reliability of historical data. Widely used mathematical tools 

in this category include trend projection, i.e. a graphical extrapolation of dataset using 

various types of trend curves for establishing the best fit possible, and decomposition 

methods sensitive not only to the trend factor but also to seasonal and cyclical changes. For 

short and medium term prognoses, time-series methods seem to be an adequate 

mathematical tool. However, these often cannot reasonably describe significant disturbances 

appearing in the long-term period. Causal methods offer a suitable alternative for this case. 

They investigate a cause-and-effect relationship between variables, and when utilized wisely 

have a huge potential to estimate the ups and downs of a market. Regression analysis is one 

of the most popular causal methods of forecasting civil aviation demand, often used in the 

form of multiple regression or econometric analysis. Causal methods also comprise 

simultaneous equations models and spatial equilibrium models. Simultaneous equations 

models, as the name suggests, involve more than one equation and all parameters of the 

model are solved concurrently. Spatial equilibrium models assume air traffic directly 

proportional to the size characteristic of a particular region, and inversely proportional to the 

distance [5]. 

 

Qualitative methods are best suited to situations where data are not applicable, highly limited 

or unavailable, and where expert judgement is the most valuable consideration. Delphi 

technique, for example, as well as technological forecasting, belongs to this category. 

Generally speaking, their function lies mainly in bringing together information from many 

experts and using this as the basis for making a final decision [5]. 

 

A combination of both quantitative and qualitative approaches is considered in decision 

analysis. This discipline involves a wide range of techniques such as market research, 

industry surveys, probabilistic analysis, Bayesian analysis, as well as system dynamics. 

Decision analysis has proved its undisputed qualities in the assessment of uncertainty and 

in risk analysis [5]. From the above description it is apparent that the utilization of a combined 
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approach can provide a significant advantage in terms of model complexity and reliability. 

Therefore, it is intended to apply this combined approach. For the purposes of mathematical 

modelling, causal analysis, particularly estimation of a mixture model, linear regression 

analysis and logistic regression analysis, is exploited as part of a quantitative approach. 

Within qualitative technique, initial modelling parameters as well as initial variables are 

chosen with respect to expert knowledge and further evaluated by applying probabilistic 

methods. 
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5 MODEL PRESENTATION 

The solution provided in the bachelor thesis presumed the linearity and stationarity of the 

modelled system, and therefore linear regression was used for the purposes of air traffic 

demand estimation. As was demonstrated, this approach did not provide a sufficiently 

reliable level of results. Based on the elaborated calculations, the use of a mixture model 

was suggested as a more suitable approach in the conclusion of the thesis. This is 

the method which promises the possibility to minimize errors resulting from the inappropriate 

presumptions of the modelled system. 

 

Mixture models provide a convenient solution in cases where the observed system exists in 

different behaviour modes [12]. The air traffic demand model is believed to work in such 

modes. Components of the mixture model, represented by these particular modes, are 

estimated in the classification task.  

 

Classification is a statistical method used in order to build a predicative model to separate 

and classify new data points. The classification procedure consists of two phases. Firstly, 

a classification model is created on the basis of the observed features of a training data set; 

this step is called supervised learning. After that, the classification model is utilized in order 

to assign new data points into predefined classes [13].  

 

Before initiation of the classification procedure, it is often essential to adjust the input data 

appropriately. This includes for instance noise reduction, generalization and standardization 

of the dataset [14]. 

 

It is fully evident that attitudes toward air traffic demand modelling vary in terms of model 

structures as well as the input variables. To ensure the best choice of explanatory variables, 

four different scenarios are examined and subsequently compared and evaluated during the 

process of data classification. The scenario which is found to be the most appropriate is 

further utilized for the modelling purposes. 

 

The first scenario includes the exploitation of all the available data, i.e. of all variables listed 

in Subchapter 3.1. This setting allows us to generally evaluate the mathematical approach.  

 

The second scenario is based on the practices presented in the Manual for Air Traffic 

Forecasting, which was published by the International Civil Aviation Organization in 2006; 
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see [5]. The suggested model structure includes only four variables: revenue, distance and 

GDP per capita of the origin and destination. 

 

A purely economic approach is presented in the third scenario, where demand is expressed 

as a function of the average fare only.  

 

The last scenario comprises the variables, which were found to be the most important based 

on our research and experience with previously computed calculations. The scenario 

comprises eight indicators; namely fare, distance and the population density, GDP per capita 

and wage of the respective origin and destination. 

 

After the estimation of mixture model and classification of the data, the components’ models 

are defined. As was emphasized earlier, the behaviour modes of the modelled system are 

assumed to differ so much that it is necessary to create an independent model for each 

of the determined components [12]. For these purposes the linear regression analysis is 

exploited. Moreover, discretization of the dependent variable is assumed to minimize the 

uncertainty associated with continuous system modelling and significantly improve the model 

reliability. Thus the logistic regression analysis is also utilized.   

 

Furthermore, the suggested method is compared to more basic mathematical tools such as 

the simple linear and simple logistic regression. In this way the objective evaluation of 

the method is enabled.  

 

The mixture model is an extremely complex method requiring knowledge of several 

mathematical techniques for successful implementation. Firstly, fundamental modelling 

methods such as simple linear regression, discrete model and simple logistic regression are 

described in detail. The mixture model is presented afterwards in relation to these methods.  

5.1 Pre-modelling Data Adjustment 

Data standardization is an easy pre-modelling data adjustment method, which enables the 

comparability of regression coefficients.  

 

Let   be a random variable with the probability distribution         . Then, the standardized 

variable    from the variable   is 
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The mean value of    equals zero and the variance is equal to one as follows from the 

definition. 

5.2 Linear Regression Model 

The linear regression model can be generally described by the equation 

     
                                                                               

    is the dependent variable 

         is the model parameter carrying the information about the vector of 

regression coefficients                  and the noise variance   

                         is the vector of regression 

    is noise with normal probability distribution, mean value equal to one and constant 

variance   

 

According to the noise definition, the system model can be expressed in a form of normal pfd 

as follows  

           
 

   
          

 

  
      

                                            

5.2.1 Statistics Recursion 

For the purposes of further calculations, it is convenient to formally rewrite the model into the 

form 

           
 

   
          

 

  
          

  
 

                                     

     
  

  
       

   is the information matrix 

 

To enable the use of the Bayes rule for the purposes of statistics recursion, it is necessary to 

choose the prior pdf in a specific analytical form, so that by multiplying it with the model 

structure, the analytical form will reproduce itself. Such a prior pdf is called conjugated 

distribution [15]. 
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Conjugated distribution to the normal is the inverse Gauss-Wishart distribution. It is obtained 

as the distribution of likelihood function of the model.  

                       
 

  
          

  
 

                                       

     is the distribution statistics defining the number of data vectors, which have been 

utilized. It holds           . 

    is a symmetrical and positive definite matrix, so called the information matrix. It 

holds             
  and can be further break down into submatrices                 

    
     

 

     
  

 

After adding the above expressions into the Bayes formula, we obtain the statistics recursion 

             
 

  
          

  
 

  
                     

              

      

           
 

  
          

  
 

  
                     

     

               
 

  
            

  
 

  
                         

          

                      

                                                                                       

                                                                                        

5.2.2 Point Estimate of Parameters 

In order to estimate the maximum of the likelihood function and consequently the 

parameter   , the Equation 5 is differentiated with respect to   and equated to zero 

  
                

  
              

 

  
          

  
 

    
 

  
                               

It follows 

     
                                                                                       

After adding the point estimate    into the Equation 5 we get 
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In the next step the Equation 11 is differentiated with respect to   and equated to zero 

          

  
     

 

  
 

      
   

     

  
                                                  

It follows 

    
      

   
     

   
                                                                       

5.2.3 Point Estimate of Output 

The point estimate of output, i.e. the mean value of    , is derived directly by substituting the 

point estimate of parameters into model. 

                        
           

                                              

5.3 Discrete Model 

In the case of all the input variables acquiring a finite number of values, we are talking about 

a discrete model. A discrete system can be characterized by conditional probabilities, which 

are assigned to every configuration of values taken by explanatory variables. Such a model 

of discrete system is described by categorical probability distribution [15] 

                
     

                                                                  

              
    

      
  is the vector of regression 

  
     

   is the vector of probabilities 

5.3.1 Statistics Recursion 

For the purposes of further calculations, it is convenient to formally rewrite the model into the 

multiplication form 

            
   

                                                                     

            

 

              is the Kronecker function, which is equal to one when            

and equal to zero otherwise 

       are sets of dependent and explanatory variables 
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Point estimate of model parameters can be defined as a conditional mean value of 

parameter  
   

 . To be able to mathematically express this value, distribution function of 

parameter  
   

 has to be conjugated to the categorical distribution. An example of such a 

conjugated distribution is the Dirichlet distribution (Equation 17, 18, 19 and 20) [15].  

          
 

     
   

   

 
     

            

                                                         

      is the generalized beta function 

      
    

   
       

    
          

 

      

                                                                

      is the gama function defined as 

                   
 

 

                                                                 

                                                                                   

After adding the above expressions into the Bayes formula, the statistics recursion is 

obtained in a form 

            
   

             

                     
     

  
   

 
       

                   
          

  

   
   

               
       

                           
              

   
   

 
     

   
              

                                     

        

 

 
     

                
       

                                                         

5.3.2 Point Estimate of Parameters 

Point estimate of model parameters is defined as a conditional mean value of 

parameter   
   

 [15]. Detailed calculation of the conditional mean value of parameter  
   

 is 

presented below. 
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Expression of the parameters point estimate (Equation 23) can be viewed as a mere 

normalization of   statistics, so that sum of probabilities is equal to one. 

5.3.1 Point Estimate of Output 

As a point estimate of output   is considered    corresponding to the maximal   
   

 of the 

particular value of    

5.4 Logistic Model 

Logistic regression is a method with an extremely wide range of uses, especially popular in 

traffic demand modelling. Contrary to the discrete model, logistic regression can be utilized in 

cases where the modelled variable is dependent on discrete, as well as continuous 

explanatory variables. Furthermore, the use of this method is favourable when all variables 

are discrete; however, they take a large number of values, and thus a purely discrete model 

would obtain an excessively high dimension [15]. 

 

Logistic model can be defined as follows 

                                                                                      

   is the probability           

         
    

      
  is the vector of regression 

         is the model parameter carrying the information about the vector of 

regression coefficients                  and the noise variance   

    is noise the white noise 
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As can be observed from Equation 24, probabilities acquiring values on interval (0, 1) are 

transformed by       function on a real axis. The real values are further expressed by linear 

regression which utilizes vector of regression  . The meaning of       function is graphically 

presented in Figure 2. On the contrary, inverse       function is utilized in order to transform 

real numbers into probabilities (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graphical presentation of the inverse logit function: 

p = exp(z)/(1+exp(z)) 

Figure 2: Graphical presentation of the logit function: z = ln p/(1-p) 
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The inverse       function provides the possibility of other model interpretation. Considering 

  can take on any of discrete values          , then the form of              for 

                   is 

             
                 

 
   

                    
 
   

   
   

                                             

When     , it is  

             
 

                    
 
   

   
   

                                             

5.4.1 Point Estimate of Parameters 

Unfortunately, sufficient conjugated distribution to the logistic model does not exist. 

Therefore, point estimate of model parameters is executed by the maximum likelihood 

method; specifically the conditional log likelihood        is utilized (Equation 27). Because it 

is a concave function, the gradient converges to a global maximum [16].  

                                                                                

 

 

 

After substitution and minor adjustments we obtain 

          
                   

 
   

                 
 
   

 

 

  

                                      

 

   

 

   

     

 

 

                             

In order to find the global maximum of Equation 27, the Newton method is used [16].  For 

more than one dimension, solution of the Newton method is defined as 

                                                                               

   is the Hessian matrix 

   represents each iteration, which converges the function to the global maximum 
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5.4.2 Point Estimate of Output 

Point estimate of output            is obtained by adding the point estimate of parameters     

in the model (Equation 25 and 26). For each regression vector   we obtain 

              
                

   
   

                   
   

   
   
   

                                       

              
 

                   
   

   
   
   

                                      

5.5 Mixture Model  

As was mentioned earlier, mixture model consists of a set of ordinary models and a pointer 

model, which at each time instant differentiates the active component.  

 

In Bayesian statistics component model can be expressed as 

                                                                                   

    are the modelled data  

   defines the particular component 

    are parameters of the     component 

    is the regression vector 

 

Pointer model is defined as a discrete model  

                                                                              

          
             

   
        

    

                                    

   is the parameter of pointer 
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5.5.1 Derivation of Mixture Estimation 

The estimation of mixture model is derived from the posterior probability density function of 

all unknown parameters conditioned on data, i.e. from 

                     

                                                            

                         
 

            
  

                    
   

                       
  

                                 

   is the model of the     component 

    is the model of pointer 

     is the prior for the component model estimation 

    is the prior for the pointer model estimation 

 

Notice that the model of the     component is not dependent on the parameter   and the 

historical data, and the pointer model does not depend on data at all (Equation 35). 

Furthermore, the parameters   and   are mutually independent [17].  

 

In order to update the Equation 35, i.e. to calculate                from               

and             , marginalization of the pdf                   is computed as 

                              

  

                                                    

As shown in Equation 36, the posterior pdf has a form of a sum. When repetitively multiplying 

it with the model according to the Bayes rule, the computation became unfeasible. Hence the 

appropriate approximation has to be applied [17]. 

 

For this purpose the active component is considered as known and thus the pdf of pointer 

model can be approximated by Kronecker function 

                                                                                       

    is the active component at the time instant   

 

In fact, the assumption of the knowledge of active component is not fulfilled, which is why the 

expectation of         is used instead using its value [17]. 
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Denote 

                                                                                     

                          is the weighting vector defining the probability of particular 

component being active at time   

It holds 

                                                                                     

     

     

                                                                              

It is important to emphasize that the task of pdf            computation is closely related to 

the estimation of pointer model and component model parameters. 

 

The estimation of weights      is possible when all the aprior pdfs are known as follows 

                                     
  

 
  

 

                                                

   
 

  
  

                         

   
 

                          
   

 

  
  

                 
   

 

                               

    
  is the posterior pdf for the estimation of   

    
  represents the prediction from the component    

    
  is the posterior pdf for the estimation of   

    
  represents the prediction from the pointer model 

5.5.2 Estimation of Parameter    

As was suggested before, parameter   can be estimated from the component model as  

                                        
                                                 

The model is characterized by normal probability distribution. As was comprehensively 

explained in Subchapter 5.2.1, to enable the numerable solution of the task, pdf of the model 

is considered in a form of the inverse Gauss-Wishart distribution [17]. Then the model is 

expressed in a multiplication form  

                              
                          

  

   

  

   

  

   

                            



Note: All of the above presented formulas were obtained from the sources [12], [15], [16] and [17]  
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After approximation             , the statistics   and   are defined as follows 

                    
                                                                      

                                                                                         

The point estimate of parameter   as well as the aposterior pdf can be derived directly from 

these statistics. 

5.5.3 Estimation of Parameter    

The estimation of parameter   is analogical to the previously described procedure. 

Parameter   is estimated from the pointer model as 

                            
                                                         

The pdf of parameter      is considered in a form of conjugated Dirichler function (see 

Subchapter 5.3.1). The model is expressed in a multiplication form as 

   
        

       

  

   

  

   

   
                                                               

  

   

 

After approximation             , the statistics   is defined as  

                                                                                         

5.5.4 Estimation of Weighting Vector   

The estimation of weighting vector      has already been discussed in Subchapter 5.5.1 (see 

Equations 42). The vector is expressed as 

        
    

                                                                              

Because computation of the component likelihood      
  is quite problematic, the task is being 

simplified by utilizing the point estimate of parameter  .  

   
                                                                                   

The integral    
  is being expressed as the point estimate of parameter   .  

   
                  

  

 
      

             
                                                

From the above mentioned we obtain 
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6 SOFTWARE PROCESSING 

All the programmes presented in this chapter were created in cooperation with the thesis' 

supervisor doc. Ing. Ivan Nagy, CSc. They stem from the theoretical background described in 

Chapter 5 and were computed in the Scilab programming environment version 5.4.1. 

6.1 Estimation of Mixture Model 

The following program is used for the purposes of mixture model estimation, i.e. the 

estimation of static components as well as the pointer model, and consequently for the 

purposes of data classification. 

 

exec("ScIntro.sce",-1),mode(0),funcprot(0); 
getd('func'); 
 
nd=4075;                                                       // NUMBER OF DATA  
nc=3;                    // NUMBER OF COMPONENTS 
nv=14;                       // NUMBER OF VARIABLES 
t_est=5000;               // ESTIMATION OF NOISE COVARIANCES  
 
// REGRESSION COEFFICIENTS =========================================================== 
Sim.nc=nc; 
for i=1:nc 
  Sim.Cy(i).th=rand(nv,1);      // INITIAL COMPONENTS´ CENTERS 
  Sim.Cy(i).sd=0.1*eye(nv,nv);                   // COMPONENTS´ COVARIANCES 
end 
 
// SIMULATED NOISE COVARIANCES ======================================================= 
Sim.Cp.th=fnorm(rand(1,nc,'u')+.1,2); 
Sim.ct(1)=1;                       // INITIAL POINTER 
 
// INITIAL PARAMETERS ================================================================== 
a=.8;                                                                                           // STANDARD DEVIATION OF INITIAL   
for j=1:nc                            PARAMETERS SCATTERING 
  [mr,mc]=size(Sim.Cy(j).th); 
  Ps=[Sim.Cy(j).th;1];             // INITIAL PARAMETERS 
  Est.Cy(j).V=Ps*Ps';                           // STATISTICS 
  Est.Cy(j).th=Sim.Cy(j).th+a*rand(nv,1,'n');    // ESTIMATE OF REGRESSION COEFFICIENT 
  Est.Cy(j).sd=.1*eye(nv,nv);                     // STANDARD DEVIATION 
end 
Est.ka=ones(1,nc);                 // COUNTER 
Est.Cp.V=ones(1,nc);                 // POINTER STATISTICS 
Est.Cp.th=fnorm(ones(1,nc));         // POINTER PARAMETER 
w=fnorm(ones(1,nc));              // WEIGHTS 
 
// DATA =============================================================================== 
load data.dat                        // DATA LOADING 
//nd=size(data,1); 
dt=data(1:nd, 3:14)';    
ddt=data(1:nd, 3:14)';           
for i=1:size(dt,1)       
  dt(i,:)=(dt(i,:)-mean(dt(i,:)))/stdev(dt(i,:));               // DATA STANDARDIZATION 
end 
Sim.yt=dt; 
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// ESTIMATION ========================================================================= 
printf('running ............|\n '),itime=0; 
for t=1:nd  
  itime=itime+1; if itime>(nd-1)/20, mprintf('.'), itime=0; end 
   
  for j=1:nc 
    [xxx,G(j)]=GaussN(Sim.yt(:,t),Est.Cy(j).th,Est.Cy(j).sd);       // LIKELIHOOD 
  end 
  Lq=G-max(G); 
  q=exp(Lq); 
 
  ww=q'.*Est.Cp.th;  
  w=ww/sum(ww);          // GENERATION OF WEIGHTS 
  wt(:,t)=w'; 
 
// UPDATE OF STATISTICS ================================================================ 
  Ps=[Sim.yt(:,t)' 1];                                      // EXTENDED REGRESSION VECTOR 
  for i=1:nc 
    Est.Cy(i).V=Est.Cy(i).V+w(i)*Ps'*Ps;                     // INFORMATION MATRIX 
    Est.ka(i)=Est.ka(i)+w(i);                              // COUNTER 
    Est.Cp.V(i)=Est.Cp.V(i)+w(i);                          // POINTER STATISTICS 
 
    Vyy=Est.Cy(i).V(1:nv,1:nv);               
    Vy=Est.Cy(i).V($,1:nv);                   
    V1=Est.Cy(i).V($,$);                      
    Est.Cy(i).th=inv(V1+1e-8*eye(V1))*Vy;     
    Est.Cy(i).tht(:,t)=Est.Cy(i).th';         
    if t>t_est 
       Est.Cy(i).cv=(Vyy-Vy'*inv(V1+1e-8*eye(V1))*Vy)/Est.ka(i);  
    end 
  end 
  Est.Cp.th=fnorm(Est.Cp.V,2);                    // POINT ESTIMATE OF POINTER PARAMETERS 
end 
[sss,ct]=max(wt,'r');       
 
// RESULTS ============================================================================ 
disp(Est.Cp.th,'pt.pars_est') 
 
s=2:nd; 
set(scf(2),'position',[550 50 400 800]) 
for i=1:nc 
  subplot(1,nc,i) 
  plot(Est.Cy(i).tht') 
  title('Component '+string(i)) 
ylabel('theta'); 
xlabel('d(t)'); 
end 
 
dd=list(); 
jj=list(); 
ddd=list(); 
for i=1:max(ct) 
  j=find(ct==i); 
  jj(i)=j; 
  dd(i)=dt(:,j); 
  ddd(i)=ddt(:,j); 
end 
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6.2 Linear Regression Model 

The programme presented below is used for the purposes of the linear regression model 

estimation. 

 
exec("ScIntro.sce",-1),mode(0) 
getd("func") 
 
// DATA =============================================================================== 
load data.dat                  // DATA LOADING 
 
for i=1:2 
  data(:,i)=((data(:,i)-mean(data(:,i))))./stdev(data(:,i));             // DATA STANDARDIZATION 
end 
 
s=1:max(size(data)); 
y= data (s,1)'; 
u1= data (s,2)'; 
u2= data (s,3)'; 
u3= data (s,4)'; 
u4= data (s,5)'; 
u5= data (s,6)'; 
u6= data (s,7)'; 
u7= data (s,8)'; 
u8= data (s,9)'; 
u9= data (s,10)'; 
u10= data (s,11)'; 
u11= data (s,12)'; 
 
nd=length(y); 
V=1e-8*eye(13); 
 
// ESTIMATION ========================================================================= 
for t=1:nd 
  Ps=[y(t)' u1(t)' u2(t)' u3(t)' u4(t)' u5(t)' u6(t)' u7(t)' u8(t)' u9(t)' u10(t)' u11(t)' 1];  

           // EXTENDED REGRESSION VECTOR 
  V=V+Ps'*Ps;                 // UPDATE OF STATISTICS 
  Vy=V(1,1);                                                              // PARTITIONING OF 
  Vyp=V(2:$,1);                   INFORMATION MATRIX 
  Vp=V(2:$,2:$); 
  Eth=inv(Vp+1e-8*eye(Vp))*Vyp;                                           // POINT ESTIMATE OF REGRESSION  
End                    COEFFICIENTS 
 
// SIMULATION ========================================================================= 
t=1:nd; 
X=[u1(t)' u2(t)' u3(t)' u4(t)' u5(t)' u6(t)' u7(t)' u8(t)' u9(t)' u10(t)' u11(t)' ones(t)']; 
                         // REGRESSION VECTOR 
Esty=X*Eth;                        // OUTPUT 
Ep=y'-Esty;                           // PREDICTION ERROR 
SE=sqrt(Ep'*Ep)/length(Ep);                       // SUM OF SQUARES OF PREDICTION ERROR 
 
// RESULTS ============================================================================ 
disp('Estimated parameters') 
Et=disp(Eth') 
 
scf(1) 
s=1:length(y); 
plot(s,y(s),s,Esty(s)'); 
set(gcf(),'position',[50 50 800 500]); 
title('Linear Regression'); 
legend('Demand','Estimated Demand'); 
xlabel('d(t)'); 
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6.3 Logistic Regression Model 

The following programme is used for the purposes of the logistic regression model 

estimation. 

 

exec("ScIntro.sce",-1),mode(0)    
getd("func") 
 
// DATA =============================================================================== 
load data.dat                // DATA LOADING 
 
nd=size(data,1); 
y=data(1:nd,1)'; 
n=zeros(1,5); 
z=ones(y);                // DISCRETIZATION 
j=find(y>3);                  
n(2)=length(j); 
z(j)=2; 
j=find(y>12);  
n(3)=length(j); 
z(j)=3; 
j=find(y>64);  
n(4)=length(j); 
z(j)=4; 
j=find(y>313);  
n(5)=length(j); 
z(j)=5; 
n(1)=nd-sum(n(2:5)); 
x=data(1:nd,2:12)'; 
 
// ESTIMATION ========================================================================= 
[Est,al]=lrLearn(z,x,2);                            // SUPERVISED LEARNING  
 
al=n/sum(n); 
ct=lrTest(x,Est,al,2);                                                                // CLASSIFICATION 
 
printf(' Wrong %d from %d\n',sum(z~=ct),nd) 
 
scf(1) 
s=1:length(nd); 
plot(s,z(s),'o:',s,ct(s)','o:'); 
set(gcf(),'position',[50 50 800 500]); 
set(gca(),'data_bounds',[0 18 1 6]) 
title('Logistic Regression'); 
legend('Demand','Estimated Demand'); 
xlabel('d(t)'); 
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6.4 Predefined Functions 

To enable the execution of algorithms above, the knowledge of the inserted functions is 

necessary. The most important functions are presented in the following subchapters. 

6.4.1 Likelihood Function 

To define the value of multivariate Gaussian probability density function, i.e. the likelihood 

function, the following algorithm was created. 

 
function [p, Lp]=GaussN(x, m, R)              // p - PROBABILITY 
                   // Lp - LOGARITHM OF PROBABILITY 
  x=x(:);                          // REALIZATION 
  m=m(:);                            // EXPECTATION   
  n=max(size(R));                // R - COVARIANCE MATRIX 
  Lp=-.5*(n*log(2*%pi)+log(det(R))); 
  ex=(x-m)'*inv(R+1e-8*eye(n,n))*(x-m); 
  Lp=Lp-.5*ex; 
  p=exp(Lp); 
 
endfunction 

6.4.2 Supervised Learning 

Learning process of the logistic regression model was executed as follows 

 
function [Est, al]=lrLearn(y, x, typ)         
                         
  if argn(2)<3, 
    typ='c'; 
  end 
  if typ==1, typ='r'; end 
  if typ==2, typ='c'; end 
 
  nc=max(y); n1=min(y); 
  if n1~=1,  
    disp('Error: y must start with 1');  
    return 
  end 
  for i=1:nc 
    c=find(y==i);      
    Y=y(c);                            // y – CLASS LABEL 
    if typ=='r'      
      X=x(c,:);                          // x – DATA VECTOR 
    else 
      X=x(:,c); 
    end     
    th=mean(X,typ);         // MEAN VALUE 
    cv=cov(X,typ);        // COVARIANCES 
    if det(cv)<1e-5,  
      cv=.1*eye(cv)+cv;  
    end 
    Est(i).th=th; 
    Est(i).cv=cv; 
  end 
  ga=vals(y); 
  al=ga(2,:)/sum(ga(2,:));       // STATIONARY PROBABILITIES 
 
endfunction 
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6.4.3 Data Testing 

During the classification task, data are tested with the model created in the process of 

supervised learning, which was described in Subchapter 6.4.2. 

 

function ct=lrTest(x, Est, al, typ) 
 
  if argn(2)<4, 
    typ='c'; 
  end 
  if typ==1, typ='r'; end 
  if typ==2, typ='c'; end 
  if typ=='r', x=x'; end 
 
  nc=max(size(Est)); 
  nd=size(x,2); 
  md=zeros(nc,nd); 
  for t=1:nd 
    xt=x(:,t);            // x – TESTED DATA 
    dL=zeros(1,nc); 
    for i=1:nc 
      [xxx dL(1,i)]=GaussN(xt,Est(i).th,Est(i).cv);      // LIKELIHOOD 
    end 
    dL=dL-max(dL); 
    d=exp(dL); 
    mm=d.*al; 
    md(:,t)=mm'/sum(mm);         // STATIONARY PROBABILITIES 
  end 
  [xxx ct]=max(md,'r');          // ct – ESTIMATED CLASS LABELS 
 
endfunction 
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7 RESULTS 

In this chapter, results obtained from the application of simple modelling methods, namely 

the simple linear and simple logistic regression analysis as well as results of the mixture 

model estimation, are presented.  

7.1 Simple Linear Regression 

Process of the regression model formulation consists of two phases. Firstly, it is necessary to 

define the relevant variables of the model. In order to do so, the dataset needs to be 

standardized as was described in Subchapter 5.1. In the second phase, where only relevant 

variables and non-standardized data are involved, a particular regression model is estimated. 

7.1.1 Estimation of Relevant Variables 

Coefficients obtained from the regression analysis, which was performed on the standardized 

dataset, are presented in Table 1.  As can be observed here, except for one variable, all of 

the regression coefficients take on insignificant values. Thus, only revenue can be 

determined as the relevant variable. 

 

Table 1: Regression coefficients obtained from the linear regression performed on the standardized data 

Variable 

     
Revenue Fare Distance 

Origin Region 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

Regression 
Coefficient 

0.908169 0.000096 - 0.007543 0.054078 - 0.056003 - 0.017053 0.010485 

 

 

 

 

 

 

 

 

 

 

Destination 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

0.051433 - 0.048633 - 0.014097 -0.00512 
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7.1.2 Estimation of Linear Regression Model 

Considering that only revenue has the major impact on air traffic demand development, the 

model was computed as follows 

                                                                                       

                                                                                       

    is the sum of squares of prediction error 

 

 

The real demand as well as the demand estimated by the simple linear regression is 

presented in Figure 4.  

7.2 Simple Logistic Regression 

For the purposes of logistic regression, the output is discretized into five categories. The first 

category, i.e. extremely low demand, includes demand lower or equal to three passengers 

carried per year. The second one, i.e. low demand, contains values higher than three and 

lower or equal to twelve passengers per year. Demand higher than twelve and lower or equal 

to 64 passengers per year is considered in the third category, i.e. medium demand. 

The fourth category, i.e. high demand, includes demand between 64 and 313 
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Figure 4: Comparison of the real demand and the demand estimated by the simple linear regression 
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passengers per year, whilst the rest of the data belongs to the fifth category, i.e. extremely 

high demand. 

7.2.1 Estimation of Relevant Variables 

In order to estimate the logistic regression model, the relevant variables already defined by 

regression analysis in Subchapter 7.1.1 are utilized. 

7.2.2 Estimation of Logistic Regression Model 

Figure 5 presents the real and the predicted demand. 1532 predictions from the dataset 

consisting of 4075 values do not match with the real demand. 
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Figure 5: Comparison of the real demand and the demand estimated by the simple logistic regression 
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7.3 Mixture Model 

As was explained in Subchapter 5.5, mixture model distinguishes the modes of the system 

and classifies data accordingly into particular components. Each component is further 

characterized by an independent model. 

 

The formulation of initial parameters setting of the mixture model is a very complex task, 

which is crucial in the process of solution derivation. The mathematical procedure is not 

a subject of further discussion in the thesis. For the purposes of this work, initial parameters 

were defined according to expert knowledge. The estimation of noise covariance is defined 

as bigger than the number of data samples. In this way components are not getting larger 

during the statistics recursion, they are only allowed to move in the multidimensional space. 

Component covariance, representing the width of components, equals to 0.1. Standard 

deviation of scattering initial parameters is defined as 0.8. Furthermore, the initial position of 

components' centres is determined randomly, thus the repetitive computation provides more 

objective viewpoint of the solution variability. 

7.3.1 Solution Variability 

In order to investigate the solution variability, three different computations of pointer 

parameters were executed. In each of the calculations components' centres were determined 

randomly and thus the solutions are not identical. 

 

Figures 6, 7 and 8 show the varying development of components’ parameters during the 

three different computations in case all of the available variables are utilized. Table 2 

presents the pointer parameters obtained from each of the calculations. 

 

Table 2: Estimation of pointer parameters in three different calculations 

 Pointer Parameter 1 Pointer Parameter 2 Pointer Parameter 3 

1
st

 Estimation 0.9040425     0.0046591     0.0912984 

2
nd

 Estimation 0.0046591     0.3724607     0.6228802 

3
rd

 Estimation 0.1186070     0.0046591     0.8767339 
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From the three different computations can be deduced that initial location of components' 

centres has a fundamental importance for the solution derivation. The results differ 

significantly, thus for an objective evaluation of a mixture estimate it is reasonable to conduct 

repetitive computations and to compare the results.  

 

As presented in figures below, the appropriate estimation of noise covariance positively 

influenced the process of components’ parameters derivation. Development of parameters is 

no longer dependent on the sequence of data samples, thus it is more effective.  

 

 

 

 

Figure 6: Development of the components’ parameters during the statistics recursion in the first computation 

Figure 7: Development of the components’ parameters during the statistics recursion in the second computation 
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7.3.2 Data Classification 

As was mentioned in Chapter 5, during the process of data classification four different 

scenarios, all following different modelling approaches, were considered. Because the 

classification into three components did not always provide a sufficient level of estimate, data 

were further classified into five components. It is important to point out that the values of 

pointer parameter represent the percentages of data contained in the particular component. 

Table 3: Data classification obtained from the utilization of a mixture model 

 
Number of 

Components 
Pointer 

Parameter 1 
Pointer 

Parameter 2 
Pointer 

Parameter 3 
Pointer 

Parameter 4 
Pointer 

Parameter 5 

Number of 
Relevant 

Components 

1
st
 Scenario 

3 0.6208572 0.3744837 0.0046591 - - 2 

5 0.1216452 0.2272309 0.0328380 0.6136290 0.0046569 3 

2
nd

 Scenario 

3 0.9281506 0.0046635 0.0671859 - - 1 

5 0.6987580 0.0046569 0.0216115 0.0730678 0.2019059 2 

3
rd

 Scenario 

3 0.0620495 0.9324365 0.0055141 - - 1 

5 0.4181858 0.0046513 0.5081731 0.0092148 0.0597749 2 

4
th

 Scenario 

3 0.3809840 0.6138733 0.0051427 - - 2 

5 0.3040073 0.4884203 0.0051451 0.1049064 0.0975209 3 

 

 

Figure 8: Development of the components’ parameters during the statistics recursion in the third computation 

th
et

a 
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As can be observed from Table 3, the first scenario, where all available variables are utilized, 

provides a sufficient level of classification in the case of three as well as five components 

involved. It implies that diffraction of the system into the estimated components can be 

beneficial for the purposes of mathematical modelling. 

 

The second scenario, representing the modelling approach of the International Civil Aviation 

Organization, shows a higher level of system consistency, especially in the case of only three 

components being considered. However, in the case of classification into five components, 

the estimate did discover deeper system structures, and thus the one equation modelling 

approach proposed by The Manual for Air Traffic Forecasting is questionable.  

 

A purely economic approach is presented in the third scenario, where only two variables, 

i.e. demand and price, are incorporated. This scenario like the previous one is characterized 

by a higher level of system consistency. However, in the case of favourable parameters 

setting, the system can also be divided into several components as can be observed in the 

Table 3. 

 

The last scenario is based on our expert knowledge and experience with previously 

computed calculations. In this case diffraction of the system also seems to be highly 

beneficial.  

Parameters of the first scenario with three components involved were evaluated as the most 

convenient and thus this scenario is used for the purposes of further calculations. The 

development of the components’ parameters during the statistics recursion is presented in 

Figures 9, 10 and 11. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9: Development of the first component parameters 

during the statistics recursion of the first scenario 
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7.3.3 Linear Regression Analysis 

Procedure of the regression analysis is similar to the one already presented in 

Subchapter 7.1. Firstly, the relevant variables are distinguished, thereafter the particular 

linear regression model is estimated.  

Figure 10:   Development of the second component parameters 

during the statistics recursion of the first scenario 

 

Figure 11:   Development of the third component parameters 

during the statistics recursion of the first scenario 
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7.3.3.1. Estimation of Relevant Variables 

Table 4: Regression coefficients obtained from the standardized data of the first component 

Variable 

     
Revenue Fare Distance 

Origin 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

Regression 
Coefficient 

0.922236 - 0.005790 0.017992 0.059426 - 0.074614 - 0.035038 0.019238 

 
 

 

 

 

 

In the first and second component models air traffic demand was found to be dependent only 

on one variable, which is revenue (Table 4 and 5). The same result was also obtained in the 

case of the simple linear regression; see Subchapter 7.1.1.  

 

Table 5: Regression coefficients obtained from the standardized data of the second component 

Variable 

     
Revenue Fare Distance 

Origin 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

Regression 
Coefficient 

0.875542 0.000631 - 0.003235 0.102362 0.075775 0.011891 -0.08072 

 

 

 

 

 

 

On the contrary, the third component model shows a well-balanced relevance of all the utilized 

variables (Table 6). 

 

 

 

 

 

Destination 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

0.009872 - 0.004163 - 0.007290 -0.01820 

Destination 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

0.022569 - 0.016106 0.001492 -0.01694 
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Table 6: Regression coefficients obtained from the standardized data of the third component 

Variable 

     
Revenue Fare Distance 

Origin 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

Regression 
Coefficient 1.226056 - 0.804571 - 1.234123 - 2.303143 1.126370 1.552037 -0.80478 

 

   

 

 

7.3.3.2. Estimation of Linear Regression Models 

Regression models of the first (Equation 56) and the second component (Equation 58), 

where demand is considered to be dependent only on revenue, as well as the model of the 

third component (Equation 60), where all the variables are included, were estimated as 

follows 

                                                                                

                                                                                 

 

                                                                                

                                                                                 

 

                                                              

                                                     

                           
                                                                                                                                          

                                                                                

 

In Figures 12, 13 and 14, the real and the estimated demand are presented for each of the 

defined components.  

 

 

 

 

Destination 

Population 
Density 

GDP per 
Capita 

Unemployment 
Rate 

Monthly 
Nominal 

Wage 

- 1.948942 1.597787 1.599510 -0.91473 
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Figure 12: Comparison of the real demand and the demand estimated by the first component linear regression 

model 

 

Figure 13: Comparison of the real demand and the demand estimated by the second component linear 

regression model 
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0 500 1000 1500 



47 
 

 

 

7.3.4 Logistic Regression Analysis 

Procedure of the logistic regression model estimation is comparable to the one already 

described in Subchapter 7.2. Also in this case the values taken on by the dependent variable 

are discretized into five categories, i.e. extremely low, low, medium, high and extremely high. 

7.3.4.1. Estimation of Relevant Variables 

In order to estimate the logistic regression models of particular components, the relevant 

variables already determined in Subchapter 7.3.3.1 are exploited. Namely, in the first and the 

second component model demand is expressed as dependent only on one relevant variable, 

i.e. revenue. Within the third component, demand is modelled as a function of all the 

available variables. 
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Figure 14: Comparison of the real demand and the demand estimated by the third component linear regression 

model 
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7.3.4.2. Estimation of Logistic Regression Models 

In Figures 15, 16 and 17 the real and the estimated demand are presented for each of the 

defined components.  

 

 

 

 

The first component model shows a perfect match of the estimated and the real demand in 

1563 from 2533 cases and the second component in 538 from 1524 cases. The third 

component model consists of extremely high demand value in all cases, thus the match of 

the predicted and real demand is perfect. 
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Figure 15: Comparison of the real demand and the demand estimated by the first component logistic regression 

model  
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Figure 16: Comparison of the real demand and the demand estimated by the second component logistic 

regression model  

 

Figure 17: Comparison of the real demand and the demand estimated by the third component logistic regression 

model  
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8 DISCUSSION 

The results presented in Figure 4 show that at a limited scale, simple linear regression has 

the potential to satisfactorily estimate air traffic demand. Its limitations were described in 

detail in the bachelor thesis, as well as in the introduction of this work.  

 

As can be observed from Figures 12, 13 and 14, the estimate of the mixture of linear 

regression models seems to be very accurate. From the results it was determined that 92 % 

of estimates obtained from the first component model and 89 % of estimates obtained from 

the third component model show higher precision than the simple linear regression. 

However, only 35 % of estimates acquired from the second component model shows the 

higher precision. Generally speaking, a remarkable 71 % of mixture model estimates is more 

accurate than those obtained from the simple linear regression. 

 

The extraordinary reliability of the suggested method can also be documented on the sum of 

squares of prediction error, whose value is relatively small when compared to the values 

taken on by the modelled variable (see Equation 57, 59 and 61). 

 

Furthermore, as presented in Figure 18, prediction error of the mixture model is one order of 

magnitude lower than the error of the simple linear regression model.  

 

For the purposes of easier understanding, some concrete samples of the estimated demand 

were randomly chosen and compared to the real data in Table 7. Even in the cases where 

the proposed solution does not offer a more accurate result compared to the simple linear 

regression (see the highlighted rows), the differences between estimates are mostly 

insignificant.  
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Figure 18: Absolute value of prediction error of the linear regression analyses 

 

 

Figure 19: Absolute value of prediction error of the logistic regression analyses 
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Table 7: Samples of the estimated demand obtained from the simple linear regression as well as the mixture 

model 

Origin Destination 
Explicitly 
Measured 
Demand 

Simple Linear 
Regression Estimate 

Mixture Model Estimate / 
Component 

Berlin Moscow 194 039 131 642,1 198 327 3 

Prague Krasnodar 9 873 7 683,15 7 014,33 1 

Altenrhein Rostov 4 99,45 -12,3917 1 

Budapest Barnaul 78 247,46 124,74 1 

Duesseldorf Kazan 3 178 3 015,88 2 689,84 1 

Hamburg Barnaul 853 1 210,25 1 016,82 1 

Ostrava Rostov 13 117,42 4,25 1 

Arkhangelsk Vienna 121 370,34 228,10 2 

Samara Munich 6 846 5 859,90 7 389,33 2 

Bremen Ekaterinburg 83 191,85 73,21 1 

Bratislava Nizhnevartovsk 37 134,65 20,22 1 

Dresden Ulan-Ude 13 116,92 3,79 1 

Frankfurt Magas 12 108,09 -4,39 1 

Graz Novyj Urengoj 8 116,08 3,01 1 

Hamburg Omsk 2 522 2 454,76 2 169,93 1 

Innsbruck Barnaul 99 211,59 91,51 1 

Klagenfurt 
Nizhniy 

Novgorod 11 114,95 1,97 1 

Karlovy Vary Ekaterinburg 4 632 5 208,37 4 721,31 1 

Stuttgart Orenburg 683 766,18 605,37 1 

Moscow Geneva 114 489 236 192,40 116 719,90 3 

Zurich Moscow 99 289 168 010,4 93 276,88 3 

Dresden Moscow 17 962 12 295,05 15 784,09 2 

Brno Nizhnekamsk 146 210,07 90,10 1 

Sochi Karlovy Vary 13 120,90 7,48 1 

Friedrichshafen Moscow 487 517,79 420,46 2 
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Logistic regression was assumed to smooth these little nuances through the output 

discretization and to further improve the reliability of the estimate. Nevertheless, the opposite 

was verified. Due to the simplification of the task, i.e. discretization of the output, a lot of 

information is supposed to have been lost, and the estimate becomes even more imprecise. 

Moreover, the simplification entirely cancelled out the mentioned advantages of the mixture 

model utilization. The simple logistic regression provided an accurate estimate in 62.5 % of 

cases, while when the mixture model was utilized, logistic regression provided a precise 

prediction in 63 % of all cases. In total, the prediction of the simple logistic model was similar 

to the prediction of the mixture model in 97.5 % of cases. Only 1.5 % of the mixture model 

estimates were more accurate than the simple logistic model estimates. 

 

Figure 19 shows that in the overwhelming majority of all cases, the prediction error was not 

higher than one class difference only. Specifically, in case of the simple logistic model as well 

as the mixture model, 99 % of prediction errors was equal to one class difference only and 

1 % corresponded to two class difference.  

 

Some of the concrete samples of the results are presented in Table 8. Only one of these 

samples shows the mixture model estimate as worse than the simple logistic model estimate 

(see the highlighted row). All of the other mixture model estimates are the same or better 

than the simple logistic model estimates.  
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Table 8: Samples of the estimated demand obtained from the simple logistic regression as well as the mixture 

model 

Origin Destination 
Explicitly 
Measured 
Demand 

Simple Logistic 
Regression Estimate 

Mixture Model Estimate / 
Component 

Berlin Moscow 5 5 5 3 

Prague Krasnodar 5 5 5 1 

Altenrhein Rostov 2 1 1 1 

Budapest Barnaul 4 4 4 1 

Duesseldorf Kazan 5 5 5 1 

Hamburg Barnaul 5 5 5 1 

Ostrava Rostov 3 2 2 1 

Arkhangelsk Vienna 4 4 4 2 

Samara Munich 5 5 5 2 

Bremen Ekaterinburg 4 3 3 1 

Bratislava Nizhnevartovsk 3 3 3 1 

Dresden Ulan-Ude 3 2 2 1 

Frankfurt Magas 2 2 1 1 

Graz Novyj Urengoj 2 2 2 1 

Hamburg Omsk 5 5 5 1 

Innsbruck Barnaul 4 3 3 1 

Klagenfurt 
Nizhniy 

Novgorod 2 2 2 1 

Karlovy Vary Ekaterinburg 5 5 5 1 

Stuttgart Orenburg 5 4 5 1 

Moscow Geneva 5 5 5 3 

Zurich Moscow 5 5 5 3 

Dresden Moscow 5 5 5 2 

Brno Nizhnekamsk 4 3 3 1 

Sochi Karlovy Vary 3 2 2 1 

Friedrichshafen Moscow 5 4 4 2 
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8.1 Model Criticism 

Generally applicable doubts relate to the issue of the appropriate model formulation, the 

choice of variables, and furthermore the initial parameters setting. 

8.1.1 Model Formulation 

The weaknesses of the simple linear regression model, such as the misleading presumption 

of system linearity and stationarity, have already been comprehensively discussed in the 

bachelor thesis as well as in the introduction of this work. In the mixture of the linear 

regression models, the system idealization is still present. However, as was verified, the data 

classification enabled to discover deeper system structures and prominently improve the 

estimate reliability. 

 

The output discretization, which is essential for the logistic regression analysis, causes 

a significant information loss. As a result, the precision of the estimate decreases and the 

advantages, which mixture model provides in the case of continuous model, are significantly 

suppressed.  

 

The criticism of the mixture model lies mostly in the approximation             . The active 

component    at the time instant   is considered as known and thus pdf of the pointer model 

is approximated by the Kronecker function. However, practical experience shows that the 

simplification does not have a significant impact on the reliability of the results. 

8.1.2 Choice of Variables 

Another important factor in deciding the model’s reliability is the appropriate choice of 

independent variables. For the purposes of this work, the initial set of variables was selected 

according to the various types of methodologies as well as expert knowledge; see Chapter 3. 

Variables relevant to the particular model were further selected from this set by performing 

the regression analysis on the standardized data.  

 

Even though the selection of variables was undertaken with respect to all the significant 

aspects referred in the literature, concerns regarding this issue can never be neglected, 

because of the complexity of the task. Variables, which were not included into the modelling 

process due to the databases insufficiencies, or due to the specific focus of the task, are the 

secondary variables such as percentage of degree holders and employment composition 
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structure. Thus, for the purposes of further studies an examination of these secondary 

variables in the context of air traffic demand modelling is strongly suggested. 

8.1.3 Initial Parameters Setting 

Setting of the initial parameters has a crucial impact on the overall process of solution 

derivation. For the purposes of this work, the parameters were determined according to the 

expert knowledge. The noise covariance was defined as bigger than the number of data 

samples, and thus the size of components was assured to remain unchanged. In this way the 

components were only allowed to move in the multidimensional space. The setting is thought 

to provide an objective result, independent on the sequence of data samples. Other 

parameters were determined according to the expert knowledge.  

 

Even though the expert approach provided a sufficient level of the mixture estimate, 

a missing analysis of the initial parameters setting is still perceived as a weak point of the 

thesis. For the purposes of further studies, closer examination in this field is strongly 

encouraged. 

8.2 Data Criticism 

Another aspect essentially influencing the reliability of modelling results is the accuracy of 

input data. In the upcoming subchapters the problems regarding the origin and destination 

data are discussed, along with socio-economic data insufficiencies. 

8.2.1 Origin and Destination Data 

Because of the deficient interconnections between airline reservation systems, the absolute 

completeness of origin and destination data cannot be guaranteed. According to unofficial 

sources, the error of origin-destination data can reach up to 30 %.  

8.2.2 Socio-economic Data 

The socio-economic data were drawn from two electronic databases, the Eurostat database 

and the Russian Federal State Statistics Service. It is important to emphasize that the 

reliability and range of the socio-economic data were significantly limited by the structure of 

the databases used.  
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Unfortunately, it was not possible to ensure the time consistency of the input data; data from 

the years 2011 to 2014 were collected. Taking into account the data standardization as well 

as the presumption of the linear development of the indicators in time, the mentioned 

insufficiency can be neglected. 

 

The databases also do not provide complex information about cities, thus only indicators 

capturing the situation on the regional level were collected. As was presented in 

Subchapter 7.3, the mixture model has discovered deeper system structures based on this 

information. That is why it is believed that regional indicators are a sufficient alternative for 

the purposes of air traffic demand estimation. 

 

Another inconvenience related to the use of information from several databases is that 

information is collected and processed according to different methodologies. Therefore, the 

comparability of such information can be strongly limited.  

 

The last but not least important critique is the absence of a great deal of information in the 

electronic databases, which negatively influenced the coherency and range of the input data.  

 

Despite all the insufficiencies stated, it is reasonable to say that on the overall level the 

collected data provided a satisfactory framework for the proceeded calculations. 

8.3 Comparison with ICAO Methodology 

Even though mixture models are used in a variety of applications, their exploitation for the 

purposes of air traffic demand estimation is only very marginally mentioned in scientific 

articles or in International Civil Aviation methodology. Most air traffic forecasting methods 

utilize only one equation model. 

 

According to ICAO methodology, for most long-term air traffic demand forecasts the one 

equation model is utilized in the following form 

                                                                                      

As can be observed, the model considers the log linear dependency of the variables involved 

instead of the purely linear one.  
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The results presented in Subchapter 7.3.2 emphasize that while considering only GDP and 

yield as relevant variables, the system shows a higher level of coherency. However, as was 

verified, the coherency can be easily disrupted by the use of a mixture model with an 

appropriate initial parameters setting. Therefore, the one equation approach is considered 

questionable and it is believed that the mixture model exploitation can mean a significant 

improvement even in the case of the modelling technique presented by ICAO.  

 

The process of relevant variables estimation revealed the importance of variables other than 

those given by the ICAO model. Thus, for the purposes of further studies it is suggested the 

combined utilization of a mixture model and the log linear regression analysis be examined; 

furthermore a review of the composition of variables involved is also strongly recommended. 
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9 CONCLUSION 

The computations executed in the thesis verified that the use of the mixture model offers the 

possibility to significantly improve the reliability of air traffic demand estimation.  

 

The system was proved to exist in several behaviour modes, which is the main precondition 

for successful implementation of the suggested method. As presented in Subchapter 7.3.2, 

while utilizing all the available variables, the mixture model provides a sufficient level of data 

classification. In the cases where variables are selected according to the ICAO methodology 

as well as according to the economic theory, the results show a higher level of system 

coherency. However, in both cases the coherency can be easily disrupted by an appropriate 

initial parameters setting. 

 

The utilization of mixture of linear regression models proved to be especially beneficial. In the 

elaborated task it provided a significant improvement of estimates in 71 % of all cases when 

compared to the simple linear regression model. Thus, this method credibly verified its 

qualities in the area of air traffic demand modelling.  

 

The logistic regression model was assumed to provide even more accurate estimates due to 

the output discretization. However, the discretization caused a significant loss of information 

and limited the previously observed advantage of mixture model implementation. 

Nevertheless, due to the relatively small prediction error observed, for special types of 

applications, where the discretized output is considered sufficient, this approach can also be 

recommended. 

 

For the purposes of further studies, it is suggested the utilization of a mixture model and the 

log linear regression analysis be merged. The solution is believed to combine the 

advantages of the system decomposition presented by the mixture model as well as the 

exceptional properties of the log linear regression model, which is abundantly applied by the 

International Civil Aviation Organization.  
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logistic regression 

Figure 6  Development of the components’ parameters during the statistics recursion 

in the first computation 

Figure 7  Development of the components’ parameters during the statistics recursion 

in the second computation 

Figure 8  Development of the components’ parameters during the statistics recursion 

in the third computation 

Figure 9  Development of the first component parameters during the statistics 

recursion of the first scenario 

Figure 10  Development of the second component parameters during the statistics 

recursion of the first scenario 

Figure 11  Development of the third component parameters during the statistics 

recursion of the first scenario 

Figure 12  Comparison of the real demand and the demand estimated by the first 

component linear regression model 

Figure 13  Comparison of the real demand and the demand estimated by the second 

component linear regression model 

Figure 14  Comparison of the real demand and the demand estimated by the third 

component linear regression model 

Figure 15 Comparison of the real demand and the demand estimated by the first 

component logistic regression model 

Figure 16  Comparison of the real demand and the demand estimated by the second 

component logistic regression model 
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Figure 17  Comparison of the real demand and the demand estimated by the third 

component logistic regression model 

Figure 18  Absolute value of prediction error of the linear regression analyses 

Figure 19  Absolute value of prediction error of the logistic regression analyses 
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12 LIST OF TABLES 

Table 1  Regression coefficients obtained from the linear regression performed on 

the standardized data 

Table 2 Estimation of pointer parameters in three different calculations 

Table 3  Data classification obtained from the utilization of mixture model 

Table 4  Regression coefficients obtained from the standardized data of the first 

component 

Table 5  Regression coefficients obtained from the standardized data of the second 

component 

Table 6 Regression coefficients obtained from the standardized data of the third 

component 

Table 7 Samples of the estimated demand obtained by the simple linear regression 

as well as the mixture model 

Table 8  Samples of the estimated demand obtained by the simple logistic regression 

as well as the mixture model 

 

 


