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Introduction

In public transportation, the main goals are to use the network e�ciently and to
meet the passenger demand. The schedule-based transportation network unlike
road network has many more aspects to be taken into account such as a timetable,
vehicle capacity and class, transfers, etc. The passenger demand is to reach the
�nal destination as early and comfortably as possible in the desired time or time
interval with a minimum number of transfers. For that purpose, algorithms for
the shortest-path search in the time domain had to be developed.

The problem studied in this master's thesis deals with the shortest-path search
in time-dependent network where the passenger need is to �nd the shortest route
between two stations within the network. The thesis aims to evaluate the current
state in the �eld of transit assignment, and to propose a new algorithm for the
shortest-path search in time-dependent networks which can improve the passen-
ger convenience and save time.

The thesis is divided into two main parts. The �rst part includes chapters 1,
2, 3 and 4, is mostly theoretical and describes the prerequisites for routing on
time-dependent networks. It consists of a basic description of the transit net-
works and network modeling approaches, states problems that need be solved,
examines and compares previously introduced algorithms, and describes speedup
and search space reduction techniques for such algorithms. The goal is to provide
a theoretical foundation for the following algorithm implementation including ex-
amples and discussion of the e�ectiveness of the particular approaches.

The second part of the thesis represented by chapter 5 deals with the imple-
mentation of a shortest path algorithm using the Prague Integrated Transport
System data and providing an e�cient way for the best route selection. The
algorithm development consists of two parts - the data preparation part and the
application part which can be deployed on a web server in order to achieve a
convenient usage and testing environment.
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1. Motivation and Previous Work

In my previous work, in my bachelor thesis, I focused on the issue of shortest
path searching algorithms for road networks. A road network is a set of edges
interconnecting nodes with a number of properties where some of them are used
for the shortest path search. A shortest path in a road network is a route from
point A to point B with the minimum length, traveling time, or the combination
of both. The road network can be denoted as G = (N,E) where N is a set of
nodes and E is a set of edges interconnecting nodes. All edges e from the set E
represent actual physical road segments with the following set of basic properties
which are required for the shortest path search 1.1.

property data type example
edge ID integer 855456
start node ID integer 9548521
end node ID integer 5865415
length km �oat 1.125
length s integer 62
max speed integer 90
reverse length km �oat 1.125
reverse length s integer 62
reverse max speed integer 90

Table 1.1: Road network edge properties

Additional properties can be required by more advanced algorithms. Network
nodes N are points interconnecting edges or terminal points. A node can be for
example an intersection or a road division, and its properties are listed in 1.2.

property data type example
node ID integer 5565845
delay s integer 3
latitude �oat 52.156
longitude �oat 14.456

Table 1.2: Road network node properties

The most common road networks where no additional data inputs are present
are called time independent. It means that properties of the edges or nodes
are not changing in time and search at any time of the day, week, etc. will
therefore lead to the same shortest path. A shortest path query can be denoted
as Q = (n1, n2) where n1 is the route origin and n2 is the route destination. A
shortest path search can be done in many di�erent ways by carrying out di�erent
searches throughout the network. The result of the query (shortest path) is
usually denoted as an ordered list of edges representing the resulting path. A
shortest path can look like as pictured in the �gure 1.1.
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Figure 1.1: An example of a shortest path on a road network

In some cases, properties of nodes and edges can vary in time. In dynamic
networks, changes can be caused by congestion, accidents, etc.

Properties of route segments can depend on the day of the week (Monday, Fri-
day, Sunday) or time of the day (morning peak, afternoon peak). Edge properties
can be statistically evaluated based on the historical data.

In this thesis I deal with time− dependent networks (also called schedule−
based or transit networks) for public transportation systems. The main di�erence
in comparison with the road networks is the time-dependency where every edge
can be accessed only at a certain point of time. The network can be described as
a set of nodes and edges with a time dependency.

In time-dependent networks an edge does not necessarily have to match the
physical route as in the road networks. A set of edges from point A to point C
can be considered as one physical edge.
Figure 1.2 denotes a physical model of a time-dependent network.

Figure 1.2: Di�erence between the physical network and the network model
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Transit network consists of a large amount of information because the pas-
sage through an edge is possible in multiple time points. The information about
connections is stored in a timetable database.

For example, a bus line operates from point A to point B on the average 6
times per hour which is 144 times per day. In case of this particular edge, the
graph size would be therefore 144 times larger than in the case of road networks.
The basic ideas for shortest path searching algorithms in time-dependent net-
works are based on algorithms for road networks. However, there is a higher
demand for data preprocessing and a time-dependent property in case of a search
in time-dependent networks which is also the main di�erence.

Input into the time-dependent shortest-path algorithm consist of several com-
ponents. It includes transit nodes (stations), edges (connections between nodes),
trips (sets of elementary connection resulting from one vehicle trip), routes (sets
of trips within the same route but at di�erent times), calendar (restrictions in
terms of weekdays, holidays, etc.), and may include another information such
as fares and so on. All required datasets are described in more detail in the
implementation part of this thesis.
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2. Schedule-based transit network

speci�cation

In order to be able to �nd shortest paths in schedule-based networks, main focus
has to be on the network description. Well understood and precisely modeled
network can signi�cantly increase the shortest-path algorithm e�ciency. The
main input to the network model is a timetable of transportation means moving
along the network. Timetable gives times where certain edges can be accessed.
It means that passing through an edge is possible only at a certain time and by
a speci�c transportation mean. It is the main di�erence in comparison to road
networks.

A transit network consist of stops (bus stops, railway stations, ports, airports,
etc.), transit lines (bus lines, train lines), and trips (the movement of vehicles
along transit lines) [2]. All the data are stored in timetables.

Transportation network is a directed graph denoted as G = (N,E) where N
is a set of nodes and E is a set of graph edges which are ordered pairs of nodes
E ⊆ N × N [6] . After a time-restricted criterion is added, the graph model is
expanded to G = (N,E,L) where L are transit trips performed by transportation
means along the edge at certain times. The main source of information for the
following section is [2].

2.1 Timetable

A periodic timetable according to [6] is de�ned as:

(C, S, Z,Π, T ) (2.1)

where C is a set of elementary connections, S is a set of stations, Z is a set of
transportation means, and Π := (0, ..., φ−1) is a �nite set of discrete time points
(seconds, minutes). The periodicity of a timetable is denoted by T .

An elementary connection c contained in a set C can be denoted as:

c = (z, s1, s2, td, ta) (2.2)

where z ∈ Z is one transportation mean (a bus leaving from a station at a
certain time), s1 ∈ S departure station, s2 ∈ S arrival station, td ∈ Π departure
time, and ta ∈ Π arrival time. [3] It means that a certain vehicle z leaves the
departure station s1 at the time of departure td and arrives at the arrival station
s2 at the time of arrival ta. The variables ta and td are integers in minutes counted
from midnight on, or times in 24 hours format. The function length(c) denotes
the cost of an elementary connection which is the time passing between the de-
parture and arrival (i.e. traveling time). Due to the periodicity of a timetable
T , duration can be calculated as 4(t1, t2) between two time points t1 and t2 as
t2 − t1 if t2 ≥ t1, and as π + t2 − t1 in the case of traveling over midnight[6].

Elementary connections are valid for each z only at speci�c days of the week
D and can also be dependent on the time of the year as are for example holiday
services. Trip validity is speci�ed in a timetable and restricted by timetable con-
straints.
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Each station is assigned with a minimum transfer time [6] which does not
have to be constant between all platforms within a station. Transfer is possible
only at a station s where the condition of minimum
transfer time is smaller than the time from the time of arrival to the time of
the next departure. It is also possible to set up speci�c transfer rules based on
speci�c properties of a particular station (transfer on a single platform, transfer
between di�erent platforms, multimodal transfer, etc.).

Station nodes can be connected by foot− edges in such a case when the sta-
tions are close to each other and the walking distance between them is reasonable.
Foot− edges can be treated as usual elementary connections without set depar-
ture and arrival times. They have a lower preference than vehicle connections.
They can be accessed at any time without restrictions.

2.2 Connections

A set of elementary connections can be denoted as

C = (c1, c2, ..., ck) (2.3)

together with departure times td(c) and arrival times ta(c) for each elementary
connection ci where 1 ≤ i ≤ k. It denotes a possible movement from one station
to the next station along one edge. We also assume that the time of departure
td(c) and the time of arrival ta(c) can be written in the form of time in minutes
from the beginning of the validity of timetable t = a · 1440 + b where a ∈ [0, 364]
and b ∈ [0, 1439] [6]. In order to evaluate the elementary connection set C as
consistent [3], several conditions have to be satis�ed.

A connection is valid only at a certain day speci�ed by the timetable 2.4.
An arrival station of one elementary connection is the departure station of the
following connection 2.5. Departure times are periodical 2.6. Arrival time to the
next station is the departure time from the previous station plus the connection
length 2.7. Departure time in the following station cannot be earlier than the
arrival time to that station plus transfer restrictions applied to that particular
station 2.8.

ci is valid on day [depi(C)/1440] (2.4)

s2(ci) = si(ci+1) (2.5)

depi(C) = td(ci)mod(1440) (2.6)

arri(C) = depi(C) + length(ci) (2.7)

depi+1(P )− arri(P )) ≥
{

0 Z(ci + 1) = Z(ci) or foot− edge
transfer(s2(ci)) otherwise

(2.8)
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2.3 Transit Network Modeling

Transit network models describe the transit network in such a way that a net-
work graph can be used as an input for a shortest-path algorithm. The model
describes all relationships within the network in more detail and focuses also on
the relationships within a node such as waiting, transfers, etc. A network model
is a way of representation of a network graph. The two main approaches, the
time expanded and time dependent approach, have been both developed and
started to be used only recently. The main di�erence between these two ap-
proaches is how they deal with multiple connection possibilities for each edge.
Queries are solved by the application of appropriate shortest path algorithms on
a network model. [3]

2.3.1 Time-Expanded Approach

The time-expanded model is based on the fact that timetables consist of sched-
uled events which occur at a discrete time (train departure, train arrival). Using
this assumption, we are able to create a time-space graph in order to connect
all possible following discrete events in time. Edges represent a connection of
subsequent events in the time �ow. In a basic model, an arrival event has its own
node as well as its own departure event. It results in a large and usually sparse
graph.

Pyrga et al. [9][13] and Müller-Hannemann and Schnee [12] extended the
time-expanded model to incorporate minimum change times (given by the input
data) that are required as a bu�er when changing means of transport at a sta-
tion. Their so-called realistic model introduces an additional transfer node per
departure event and connects each arrival node to the �rst transfer node that
obeys the minimum change time constraints.

The model consist of three di�erent kinds of edges. The �rst kind are
connection − edges (sometimes called transport − edges) which are elementary
connections denoted by (z, s1, s2, td, ta) connecting the departure and arrival sta-
tions. In other words, they interconnect di�erent graph nodes. The second kind
of edges are transfer − edges (sometimes called as stay − edges) which repre-
sent the waiting time at the station. They are interconnecting connectiont edges
within the station according to the time sequence. The length of the edge(u, v)
is tv − tu while the length for the edges passing the midnight is 1440 + tv − tu [3]
as shown in �gure 2.1.

2.3.2 Time-Dependent Approach

In comparison with the time-expanded model, the size of the time-dependent
model is signi�cantly smaller. The main di�erence is the fact that for each sta-
tion only one node is present, and between two nodes only one edge is present.
Saving large numbers of nodes and edges is done by unrolling of the timetable in
time (only edge attributes present after possible edge accessing time are consid-
ered). The basic idea is that travel time is evaluated by travel time functions
which map departure times to travel times [2]. A cost of passage through a cer-
tain edge is evaluated based on the time of traversing. Pyrga et al. [9] extended
this model by adding route nodes interconnected with the station node in order
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to enable transfers. Those can also mean some minimum transfer time between
the vehicles in cases when no more speci�c information is present.

If the elementary connection exists, then there is only one connection e be-
tween points A and B for one speci�c time of the accessing node A. The length
of the connection then varies in time. It changes according to the time when the
particular edge is used by the algorithm. The model assumes that overtaking on
a particular edge is not allowed. However, in case of a scenario when two alterna-
tive routes between two nodes exist, they can be modeled as independent edges.
Usually it is not necessary because we can examine only the arrival time to node
B from the set of feasible elementary connections from node A, and choose the
best one without considering the actual physical route.

A modi�cation of Dijkstra's algorithm can solve the problem of the earliest
arrival in this kind of model[15] by determining the edges cost based on actual
time and labeling of nodes.

In a timetable with three stations A, B, C, there are three trains that connect
A with B (elementary connections u,v,w), one train from C via B to A (x,y), and
one train from C to B (z) as shown in �gure 2.1. Time-expanded approach is
displayed on the left side and time-dependent is on the right side. More detailed
example is discussed in section 2.3.3.

Figure 2.1: The time-expanded model (left) and the time-dependent model
(right). Source: [3]

For my implementation I will use the time-dependent approach because the
model complexity is signi�cantly lower compared to the time-expanded approach,
and data manipulation will be also easier. By using the appropriate SQL queries,
the e�ciency of proposed algorithm should be much better than in the case of
the time-expanded model.
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2.3.3 Examples of Time-Expanded and Time-Dependent

Approach

The example network consists of three stations A,B and C which are intercon-
nected by three bus lines 1, 2 and 3. For illustration purposes, only a small
number of bus trips is present, only in one direction from A to C, and each bus
trip has a di�erent color. Bus line 1 is interconnecting only stations B and C.

Figure 2.2: Network

Timetables for bus lines are listed in tables 2.1, 2.2 and 2.3.

LINE 1
A B C

8:02 8:05
8:07 8:10
8:12 8:15
8:17 8:20

Table 2.1: Timetable for line 1

LINE 2
A B C
8:03 8:05 8:08
8:13 8:15 8:18
8:23 8:25 8:28
8:33 8:35 8:38

Table 2.2: Timetable for line 2

LINE 3
A B C
8:04 8:06 8:09
8:08 8:10 8:13
8:12 8:14 8:17
8:16 8:18 8:21

Table 2.3: Timetable for line 3
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The time distance between stations A and B is two minutes, and between
stations B and C is 3 minutes. Times of arrival and departure in a single station
are equal because the waiting time in a station is not taken into account.

The time expanded model consists of a large number of edges. There is one
edge for each vehicle trip denoted by a colored arrow. Transfers are made possible
by the black arrows which represent transfer (waiting) edges. For a transfer,
passenger has to stay in a station for a minimum transfer time given by the
station. The model expands in time according to the arrow direction. Each edge
has only one departure and arrival time for each stop. In a large network with a
large amount of nodes, such a model can be extremely complex.

Figure 2.3: Example of time-expanded network model
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The time-dependent network model consists of a smaller number of edges
where only one edge is present between two stations. The length and waiting
time are evaluated based on the time when the edge is accessed. Each edge has
a large number of elementary connections. The picture below shows a list of
accessible times.

Figure 2.4: Example of time-dependent network model

As can be clearly seen from �gures 2.3 and 2.4, the time-dependent approach
has a lower complexity and is therefore recommended for vast networks.
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3. Problems in Transit Networks

Most of the road networks research has focused on computing the shortest path
according to a given cost function (typically travel times). However, in the case
of public transit networks, the variety of natural problem formulations is wider[2].
The most common and fundamental query is the so called earliest arrival problem
where the goal is to �nd a route with the lowest cost and the earliest arrival to a
destination, and a departure after the given minimum departure time.

Related to the earliest arrival problem is the range problem in which the
exact earliest departure time td is replaced by the time range. Both problems
take into account only the time as a single optimization criterion. In the re-
al transit network, additional criteria have to be considered (number of trans-
fers, price, vehicle class, etc.). This leads to a more complicated problem called
multicriteria problem. In the set of solutions to the problem, some solutions can
be omitted in case they do not satisfy the given criteria.

The main problem is to �nd an optimal path or a set of optimal paths (for
di�erent times) which represent the optimal solution on the given set of elemen-
tary connections and criteria.

Other less common possibilities are: traveling in a certain class of a transporta-
tion mean, transportation for people with disabilities, tickets for local trains only
with the exclusion of express trains, passage through a certain station required,
stop-over of a certain length along the route required, and so on. Problems are
listed in table 3.1.

Problem Problem includes Reference
Earliest arrival problem 3.1
Range problem 3.2
Multicriteria problem 3.3

Transfer rules 3.1
Foot-edges 3.3.2
Tra�c days 3.3.3
Minimum number of
transfers

3.3.4

Extended queries 3.4
Latest departure 3.4.1
Excluding vehicles 3.4.2
Via stations 3.4.3
Cheapest connection 3.4.4

Table 3.1: Problems in transit networks
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3.1 The Earliest Arrival Problem

The earliest arrival problem is the basic optimization problem in time-dependent
networks. The query consists of a departure station, an arrival station and a de-
parture time. The goal is to �nd a path with the minimum di�erence between the
departure from the origin station and the arrival time to the destination station
where the departure time from the origin is at or after the given earliest depar-
ture time. Notation of such query has a form of (A,B, t0) where A is the origin
station, B is the arrival station and t0 is the required earliest departure time.

A modi�cation of the earliest arrival problem is called latest departure problem
where the query is de�ned by the latest time of arrival to the destination. This
problem is discussed later in section 3.4.1.

3.2 Range Problem

The range problem is a modi�cation of the earliest arrival problem where single
departure or arrival time is substituted for a range of departure or arrival times. It
can be hours in a day, whole day, or a number of days. For example, the problem
can be stated as �nding all shortest paths between 8am and 11am between two
stations A and B. A result of the query is a set of shortest paths. Routes in this
case can follow the same routes at di�erent times. Such query can be written as
(A,B,∆t) where ∆t is the time range. This problem can be solved by multiple
search. A departure node is added to priory queue and departure time is set
to all possible departure times from the given destination within the interval
∆t = [t0, t1] [3].

3.3 Multicriteria Problem

The multicriteria problem involves several transit rules such as transfers (trans-
fer rules, minimum number of transfers problem), foot−edges, traffic days, and
also involves extensions to the queries such as latest departure, time− intervals
(range problem), excluded vehicles, via− stations or cheapest connection (fare
criterion). This section uses [3] as the main source of information.

3.3.1 Transfer Rules

In the realistic modeling, the basic problems are extended into a more compli-
cated scenario by the addition of a certain new criterion. The transfer-rules
can be incorporated to both time-expanded and time-dependent models. In a
time-expanded graph, each transfer node has two outgoing edges. One is for the
departure on the same vehicle with no additional transfer time, the second leads
to the next transfer node with the closest time that is providing the opportunity
to transfer to another vehicle, as shown in �gure 3.1. The time di�erence be-
tween those two nodes is greater or equal to the minimum transfer time rule in
the particular station [3].

A time-dependent model is extended by route information [16]. We can es-
tablish the vehicle network based on the timetable and a set of stations
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(s0, s1, ..., sk−1) for k > 0 which form a route if there is a vehicle starting at s0 and
is consecutively visiting all stations in the set. If there are more vehicles following
the same set of stations, we can assign the vehicle to the same route. The model
contains three di�erent kinds of edges: the transfer edges from the station node
to the route node which is already part of the vehicle route, transfer edges from
the route node to the station node, and route−edges interconnecting route nodes
belonging to the consecutive stations in the route. For the modeling purposes,
the cost of the edges representing the getting o� a train is set to zero. The cost
of the edges representing the boarding on a vehicle is set to the station transfer
time gs = transfer(s). Finally, the length of the edges interconnecting two con-
secutive stations is given by a timetable [3]. These rules are represented in �gure
3.1.

Transfer times may also vary based on the arriving of the vehicle and station
restrictions (transfer between platforms, transfer from bus to train, etc.). Those
transfer rules have to be speci�ed for all possible transfers within the station by
station transfer rules.

Figure 3.1: Modeling transfer times in the time-expanded approach using the
realistic time-expand graph (left), and in the time-dependent approach using the
train-route graph (right). Source: [3]

3.3.2 Foot-Edges

In both, time-extended as well as time-dependent models, the implementation of
foot − edges is not di�cult. An edge connecting two nodes A and B is called
the food − edge when it does not have any time restrictions (the edge can be
accessed at any time) and its length is a walking time between nodes A and B.

3.3.3 Tra�c Days

On di�erent days such as weekdays, weekends, holidays and so on, edges of a
graph can be valid or invalid. In case of the time-extended model, edges can be
simply removed from the network graph. In case of the time-dependent model,
the length of an edge has to be determined excluding the invalid edges. The
validity of an edge can be determined by the veri�cation of validity in a lookup
table by a boolean decision. Problems can be encountered in such cases when
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an optimal path includes one day stay in a station, or in the case when speedup
techniques with data preprocessing are used [3].

3.3.4 Minimum Number of Transfers

A route with the minimum number of transfers can be found in both time-
dependent and time-expanded models by the method of zero length paths[12].
At �rst, the length of all transfer edges is set to zero and all edges interconnect-
ing route stations are set to zero. The calculation of the route itself is done in a
usual manner and the resulting route is the route with the minimum transfers.
After that, the length of routes can be set back according to the timetable, and
the real traveling time can be calculated.

3.4 Extended Queries

The path search can be restricted by several other conditions according to the
passenger demand. Common constrains are dealing with departure and arrival
times in both origin and destination stations. From the passenger's economical
point of view, the cheapest route search is a quite common problem as well as is
the problem of excluding trains (�rst class, high-speed rail). The possibility of
selection of via station or stations which need to be passed along the way also
has to be considered. This might not be a required restriction but it might make
a route search more comfortable.

3.4.1 Latest Departure

The latest departure problem is usually solved by the reverse time search. The
search begins at the time td which is the required latest departure time, and
more routes can be found earlier before the actual departure time td. In case of
the time-dependent model, the earliest arrival time is found, and the search is
performed backwards from a destination to an origin station as well as reverse in
time until the departure station is found[3].

3.4.2 Excluding Vehicles

In principle, the excluding of vehicles (train of a certain class, bus of a certain
company) can be treated the same way as the traffic days 3.3.3. Elementary
connections operated by the excluded vehicles are simply removed from the model
[3]. The decision is based on the boolean query during the search.

3.4.3 Via Stations

The via station query [3] takes as an input one or more stations which has to be
visited along the way, and the minimum time, maximum time or both spent in
the via stations. If we have a query (A = s0, B = sk, t0) and the via stations are
(s1, s2, ..., sk) then the corresponding set of the minimum duration spent in each
of them is (d1, d2, ..., dk). This problem can be solved by the division of the query
into a set of simpler queries where the search of routes is done subsequently. The

17



�rst query can be written as (A, s1, t0), the second one as (s1, s2, ta,1 + d1) where
the time ta,1 is the arrival time to the via station one and d1 is the length of the
stay in the node one. The search is performed subsequently until the �nal
destination is reached. The general formula can be written as (si, si+1, ta,i + di)
where i = 1, ..., k−1. The last step is to interconnect all partial query results into
one route that solves the overall problem. Another complexity could be added
by the selection of a via station without order. The problem then would be to
�nd the closest destination �rst, and then follow until the �nal destination would
be reached. This problem is much more di�cult to solve and is similar to the
traveling salesman problem.

3.4.4 Cheapest Connection

It can be a passenger's desire to �nd the cheapest connection between two stations
and in a given interval of time. This problem is very di�cult to be solved because
the given cost of an edge expressed in money is usually not proportional to the
length of an edge expressed in km (longer trip usually means a cheaper price
per km). There can also be di�erent tari�s applied on the route for di�erent
passengers, traveling time, or for each particular company operating on the same
route.

3.5 Multi-Criteria Optimization

Problems can be combined because in the real life operation, queries usually
consists of multiple criteria (departure at certain time with the minimum transfer,
the arrival before another certain time, minimum cost, convenience requirement,
class of vehicle, on-board services, seat reservation, etc.).

The query consisting of multiple criteria is called the multi − criteria or
multi − objective shortest path (MOSP ) query, and is a fundamental problem
in the real life transit networks [3]. An instance of a solution to the MOSP is
associated with a set of feasible solutionsQ and a d vector function f = [f1, ..., fd]

T

associating each feasible solution q ∈ Q with a d-vector f(q) [3]. The goal of the
problem solution is to minimize the vector f(q). In a multi-criteria scenario we
are usually unable to �nd the best solution for each criterion. However, we are
looking for a trade-o� solution where the overall solution is as good as possible
for all the criteria. The trade-o� among all criteria is called the Pareto set or
Pareto curve. It is a set of feasible solutions Q, where none of the solutions is
dominated by another solution.

In my implementation I deal mostly with the Earliest arrival problem as the
fundamental problem which can be used as a foundation for solving di�erent
problems.
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4. Shortest-Path Algorithms for

Time-Dependent Networks

The main goal of this chapter is to identify and compare di�erent kinds of shortest-
path searching algorithms, and to �nd the best approach for the implementation.
The sources of information for this section are [5], [1], and [4].

The �eld of the path-searching algorithms in time dependent networks started
to develop early after the �rst Dijsktra's label setting algorithm for road networks
in 1959. The label setting property means an assignment of a label with the
minimum distance to each of the previously explored nodes. The terminal label
is at the destination node and its value is the minimal path length.

In the past �fty years a lot of progress has been done especially by focusing
on real human behavior, and the addition of operational planning elements to the
schedule-based network models.

The early methods were proposed by Dial in 1967 [29] and Le Clercq in 1972
[30] who were the �rst to use heuristic methods considering traveling and waiting
times. Passengers were expected to take the �rst vehicle to arrive and the transfer
penalty was considered equal to the waiting time.

For the purpose of public transportation networks, Tong and Richardson in
1984 [39] improved Dijkstra's algorithm for the use in time-dependent networks.
They proposed a solution for �nding of the shortest or cheapest path based on
the de�ned cost function. [5] [1] [4]
The following section describes the evolution and progress of time-dependent
shortest-path searching algorithms.

4.1 Basic Algorithms Without Preprocessing

Algorithms without preproprocessing are algorithms which use the input data in
a raw form. The preprocessing is a preparation and adjustment of data in a way
that makes the algorithm and its computation faster and more e�cient. The
preprocessing is done separately and algorithms use already preprocessed data.
The most basic algorithms are based on Dijkstra's algorithm.

4.1.1 Time-Expanded Dijkstra's Algorithm

The Dijkstra's algorithm for the minimum path search on an oriented graph can
be extended for the computation of the minimum path in the time-extended net-
works. The algorithm is called Time−Expanded Dijkstra′s Algorithm [14][3][2].
The general principle of the algorithm is such: a computation is initialized at the
departing station (origin) sd by the �rst possible event which would happen after
the required time of departure td. The computation continues by scanning all
accessible events along the expanding graph until the arrival station sa is found.
This path is the shortest path. All edges belonging to the path can be labeled on
the reverse transverse of the path from the destination to the origin.
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Evaluation

The Time − Expanded Dijkstra′s Algorithm is simple to understand and im-
plement. The computed shortest path is always the optimal one because the
algorithm is deterministic and driven by the earliest event.

The main disadvantage is a signi�cant expansion of the search space during
the computation, and a large memory consumption. Also, a signi�cant compu-
tation performance is required when the explored graph is large.

4.1.2 Time-Dependent Dijkstra's Algorithm

The Time − Dependent Dijkstra′s Algorithm [3][15] can solve the problem as
long as the edge costs are non-negative and FIFO (�rst in �rst out; generally
speaking vehicles are not overtaking each other on one edge). If sd is the departure
station and td the earliest departure time, the time di�erence τ (di�erence between
arrival and departure from the same station) is added to the edge length and
the best option is chosen as the algorithm goes. In the time-dependent model
the Dijkstra's algorithm is a label-setting algorithm so that whenever an edge
e = (A,B), the considered distance label δ(A) of a node is optimal. The label
δ(A) denotes the earliest possible arrival to the node A.

The main modi�cation is that the edge e(A,B) is evaluated at the time δ(A)
where A is the preceding station. Every edge is evaluated only once to hold
the time-dependent property. The algorithm can run from both the station of
departure and the station of arrival in a reverse manner. Parallel computation
is also possible but more complicated as will be discussed later. The search
terminates at the moment when the sets of explored nodes from each start have
an intersection, and transfers are feasible.

Evaluation

The main advantage of the Time − Dependent Dijkstra′s Algorithm is that
the cost of an edge is computed only once according to τ + length(td, ta). The
performance and memory demands are lower than in the case of a time-expanded
approach. The algorithm is again deterministic and the solution is always an
optimal path.
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4.2 Algorithm Optimization

In the schedule-based networks, size of a database is usually large. Algorithms
therefore have to be capable of working with a large amount of data. The evolu-
tion of computer technology has made the task more feasible recently.

The following section describes design methods and techniques of how to make
the shortest path searches in the schedule-based network models more e�cient.
In case of the naive Dijkstra's algorithm, the search space can be described as
a funnel which expands as more nodes are being explored. Then, once the des-
tination node is found, the shortest path is being explored backwards from the
destination node to the origin node. The search space expands rapidly.

The goal of the search space optimization is to make the funnel steeper (i.e.
to decrease the search space). For example, to examine only a �xed number of
departing vehicles or even consider departures before the desired departure time.
Therefore, the goal of the graph search optimization is to reduce the size of the
funnel to a minimum, to decrease the search space, and still reach an optimal or
close to optimal solution. The smaller amount of nodes is being examined, the
lower is computation complexity. [19]
In general, complexity can be denoted as:

O[C ∗N ∗ log(N)] (4.1)

Where C is the set of elementary connections explored, and N is the number of
nodes explored.

Figure 4.1: Illustration of the path-searching in time-space networks. Source:
[19]

Stochastic shortest-path searching algorithms use a choice function in order
to reduce search space.
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4.3 Reduction of Search Space

The following section describes methods and approaches to the optimization of
search space by restriction rules before nodes are inserted into the heap. This
saves memory and computation time because unnecessary nodes and edges are
removed �rst.
The main approaches are:

• Event Dominance

• Granularity

• Hidden Waiting Times as Pseudolinks

• Transit Network Hierarchy

4.3.1 Event Dominance

According to R. D. Frederiksen., O. A. Nielsen [19] :

The idea of event dominance is that the arriving path at a given
stop is only entered into the heap if the utility of the time-distance is
better than the utility of earlier arrivals plus a function of the time
di�erence. When boarding the �rst line 4.2, the A instances may be
removed from the search space due to the event dominance. All later
departures are hereby implicitly removed without any calculation. At
this point the D departure is still relevant.
When arriving at the second stop, the B departure is removed, whilst
the D line is still relevant. But transfer at the second stop from the
F line to the D line is removed (transfer B). At the third stop, the
choice set consists of the D line ant the found solution (F line). Which
one to choose at this stage depends on the coe�cients in the utility
function: F has a higher early penalty, D larger waiting time at stop
2. With a su�cient relaxed event dominance function, the principle
will almost always contain the optimal path for journeys with only
one transfer. This approach often fails in case of multiple transfers.
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Figure 4.2: Event dominance for 2-transfer trip. Source: [19]

4.3.2 Granularity

In many time-dependent network models, properties of the search space allow
division of the search space into segments where the solution can be optimal. It
mostly depends on the network properties. The granularity also decreases the
search space.

Figure 4.3: Example of a granularity approach. Source: [19]

4.3.3 Hidden Waiting Times as Pseudolinks

According to R. D. Frederiksen., O. A. Nielsen [19] :

idea is to build such links back in time from each departure time
instance. Whilst the granularity approach may overlook optimal so-
lutions, the pseudo-link approach guarantees optimality with regard
to the �rst boarding instance. The computational complexity char-
acteristics of this method are: The number of pseudo-links is equal
to the number of departing runs. However logical interrelationship
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between multiple lines serving the same stop may reduce the number
of pseud-links (avoid equal time-space pointers to the same stop).

Figure 4.4: Example of a pseudolink approach. Source: [19]

4.4 Transit Network Hierarchy

Stations in a transit network can be divided into two categories. In case that two
lines have an intersection in a node, or two parallel lines split in a node, they are
called transfer nodes. From the passenger's point of view, transfer from one to
another parallel lines at the inner nodes following the same physical route makes
no sense.

Transfer nodes can be detected by a simple criterion. If a number of neighbor
nodes that are directly accessible by any line from the starting node is more than
two, then the transfer is possible and the node is a transfer node.

Figure 4.5: Example of a network hierarchy. Source: [5]
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4.5 Speedup Techniques

The following chapter describes methods that should improve computation time
and overall algorithm e�ciency. Many of them were originally used in the shortest-
path algorithms for road networks which proved their e�ciency. Due to the di�er-
ences in data model structure between public transportation networks and road
networks, speedup techniques are less e�cient for public transportation networks.
The main problems are a time-dependency and a large number of possible inter-
connections and possibilities. Many algorithms also use a combination of speedup
techniques[2]. Bauer et al. [18] evaluated e�ciency of bidirectional search, Arc
Flags, ALT, and of more advanced techniques such as Reach, Real, Highway Hier-
archies and SHARC on the time dependent public transportation networks. This
chapter uses [18] as the main source of information.

4.5.1 Bidirectional Search

Bidirectional search is one of the most fundamental and straightforward speedup
techniques. The algorithm search is performed from both origin and arrival sta-
tions until the two search spaces meet. The searched area of such graph is smaller
than in the case of a unidirectional search. A visualization of the bidirectional
search is shown in �gure 4.6. This approach is rather complicated in the time-
dependent networks as it might be easy to meet in space but more di�cult to
meet in time.

Figure 4.6: Bidirectional search on transportation network. Source: [20]

4.5.2 A* and ALT search

A goal directed search A* assigns a potential to each node in a set of explored
nodes. The nodes where the sum of a potential and its own arrival time is the
highest are summed, and the search continues in the node with the highest prob-
ability of being on the optimal path.

In the ALT algorithm, a node potential is obtained from certain landmarks
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in the network model. This approach requires preprocessing but in general it is a
more e�ective approach than A*. The main disadvantage of ALT is a �uctuation
of query times.

Figure 4.7: A* best-�rst search. Source: [11]

White in 1991 [44] developed a modi�cation of the A* algorithm for time-
dependent networks originally proposed by Hart et al. in 1968 [45]. The algo-
rithm was called IA*. The algorithm itself was faster than the usual label-setting
algorithms thanks to the use of islands (nodes with higher probability of oc-
currence on optimal path). This algorithm was using the usual Euclidean A*
property for the estimation of traveling time.

Gao and Chabini in 2002 [46] based their research of the A* algorithm on the
�rst proposal of Hart et al. in 1968 [45]. They developed a heuristic minimum
cost static function for dynamic networks. Since then, the A* search has not been
used much, and other methods were developed. [5] [1] [4]

4.5.3 Arc-Flag

In this method, additional information is being attached to the edges, and the
algorithm subsequently checks if the edge can be a part of the shortest path or
not. The whole graph is divided into cells and each edge is assigned with a label.
The label contains information whether the shortest path starting from this cell
to a corresponding cell exists[18]. For this setup the modi�ed Arc-Flags Dijkstra's
algorithm visits only the edges with the shortest path label in an inter-cell query.

This approach does not work for queries inside one cell as the preprocessing
e�ort and memory demand would be too high in such a case..
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Figure 4.8: The example graph with correct arc-�ags provided that the edge
weights are uniform. Source: [10]
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4.6 Advanced Algorithms

The following section explains approaches for the shortest-path search in time-
dependent networks, and operation of non-basic algorithms. Some sections in-
clude algorithm pseudocodes that are structures of algorithms written in a human
readable form to demonstrate algorithm operation.

4.6.1 Notation Used in Algorithms

PATi Preferred arrival time to stop i
dt The time window in which the alternative trips are determined

meaning that the arrival time to the destination in this time window
is acceptable

seqpi Sequence number of stop i on trip p
dip Departure time of trip p at stop i (usually the same as the arrival

time in the schedule and/or in GTFS data)
vpij In-vehicle time from stop i to stop j using trip p
tji Transfer time from stop i to stop j
ai Transfer time from stop i to stop j
wp

i Waiting time at stop i for trip p
pi Predecessor of stop i
mi The mode (a trip number of the transfer link) used to reach stop i

in forward algorithms, or to leave stop in a backward manner
ei Lower bound of minimum time (cost) from stop i to the destination

stop
Fi Minimum travel time (cost) of the path from the origin to the des-

tination through the stop i
cpi The utility (a function of travel time and cost) of trip p at stop i

to reach the destination
pri(p) The probability of taking trip p at stop i
T (i) The set of transfer links at stop i

R(i) The set of routes at stop i
p(i) The set of vehicle trips at stop i
pa(i) The attractive set of trips at stop i
SE Scan eligible list containing the stops with temporary labels in the

algorithm

Table 4.1: A notation of variables used in algorithms. Source: [5]
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4.6.2 Trip-Based Shortest Path Algorithm

According to [5] a trip-based shortest path algorithm is based on Dijkstra's short-
est path algorithm introduced by Tong and Richardson in 1984 [39]. The number
of transfer points is not limited so that the passenger can transfer whenever it
is necessary until the destination is reached. In the model the passenger can-
not transfer at any station because it is inconvenient for him, nevertheless the
vehicles can access any station. As long as the vehicle is getting closer to the
destination, the passenger is expected to remain on board of that vehicle. The
search is performed on hierarchical transit network.

The hierarchical network is a network where the passenger can transfer only at
certain stations because transfers in every station along the way would be ine�-
cient, as well as there might not be other vehicles coming. On the top of the node
hierarchy are transfer stops where transfer to a di�erent line is possible. Instead
of visiting each stop along a non-transfer part of a path, it can be considered as
a one path segment.

The TBSP algorithm is a forward labeling algorithm starting at the origin at
time τ . With a simple modi�cation, a backward search can be performed from
the required time of arrival.

Algorithm 1 Trip Based Shortest Path TBSP. Source [5]

Initialization:
Get origin (O) and the departure time (τ)
i = O, li = 0, pi = Φ, ai = τ, mi = Φ, SE = {i}
lj =∞, pj = ∅, aj =∞, mi = Φ, ∀j 6= i
Termination criterion:
If SE = Φ
Stop Selection:
Select i = Argminj{lj|j ∈ SE}, if Label Setting
Select i = the first stop in SE, if Label Correcting
SE = SE|{i}
Updating the Labels:
∀t ∈ T (i) :
if (li + tij < lj) then

lj = ii + tij, aj = ai + tij, pj = i, mj = T
SE = SE ∪ {j}

end if
∀r ∈ R(i) :
Select p = Argminq{wiq|dqi ≥ ai}
∀j ∈ S(p) with seqj > seqi :
if li + wip + vijp < lj then

lj = li + wip + vijp, aj = djp, pj = i,mj = p
if j ∈ Nt then

SE = SE ∪ {j}
break

end if
end if
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4.6.3 Trip-Based Hyperpath Algorithm

Nguyen and Palatino in 1988-1989 [33] proposed a model in the hyperpath net-
work using the optional cost function. The main concept of hyperpath (a set of
prioritized alternatives at a stop) [5] is important for networks where the capacity
of vehicles is limited, and thus passengers might not be able to board a vehicle. In
such case they need to �nd an alternative path with the highest possible attrac-
tiveness. The trip based hyperpath model is a subnetwork where at each stop s a
set of attractive routes pa(s) is de�ned, and each trip has a probability to be cho-
sen by the passenger. The combination of the cost between stations results in the
overall cost of the selected attractive path. Another case might be a connection
missed due to the delay of a previous connection at a transfer station. In other
words, Nguyen and Pallatino [33] de�ne a hyperpath as an acyclic sub-network
with at least one path connecting the origin and destination where at each node
there is a possibility of choosing alternative ways.

Wu et al. in 1994 [36] used this principle and introduced a network model
consisting of road and transit arcs. The model assumed that the time needed to
board a vehicle was directly proportional to the vehicle �ow. The later models
worked frequently with the utility functions. Passengers were expected to assign
each feasible path with a utility index and then choose the path with the max-
imum index. The utility value can be individual for passengers based on their
requirements and chosen criteria.

A requirement for a hyperpath generation to a destination is a boundary
time of arrival which cannot be exceeded. By extension of this boundaries to
all stations, a set of alternative routes is de�ned. Each route has a combined
cost function representing passenger's choice behavior. There are many proposed
ways of calculating the cost by the passenger's choice.

Nuzzolo et al. in 2001 [42] improved Nguyen's and Palatino's [4] hyperpath
approach for the schedule-based transit modeling. They based the path search
on the calculation of probabilities of usage of each particular edge, and on the
setting of a label for each edge.
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Algorithm 2 Trip Based Hyperpath TBHP. Source [5]

Initialization:
Get the destination (D) and preffered arrival time (τ)
i = D, li = 0, pa(i) = Φ, ai = τ, SE = {i}
lj =∞, ai = −∞, pa(j) = Φ, ∀j 6= i
Termination criterion:
If SE = Φ
Stop Selection:
Select i = Argminj{lj|∀j ∈ SE}
SE = SE|{i}
Updating the Labels:
∀t ∈ T (i) :
if (li + αt · tji < lj) then

lj = li + αt · tij, aj = ai − tji, pa(j) = pa(j) ∪ {t}
SE = SE ∪ {j}

end if
∀r ∈ R(i) :
∀p ∈ r and {ai − dt ≤ dpi ≤ ai}
∀j ∈ S(p) with seqj < seqi :
pa(j) ∪ {p}
lj = −ln[exp(−Θlj) + exp(−Θ(li + αw(ai − dpi) + αvvjip))], aj = max(dpj|∀p ∈
pa(j))
if j ∈ Nt then

SE = SE ∪ {j}
break

end if
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4.6.4 Trip-Based A* Algorithm

The TBA* (Trip Based A Star) algorithm is an extension of the TBSP (Trip
Based Shortest Path) algorithm. The main di�erence between the TBSP and
TBA* is that in most cases TBA* requires less time for computation because of
the pruning of the edges that are not expected to be used. Each considered node
is labeled by the estimated travel time to the destination known as the potential.
The labeling is done by a heuristic function. Nodes with a higher potential are
expected to be part of the optimal path and are explored earlier than nodes with
a lower potential. Due to this, the computation is performed in a lower amount of
steps which decreases the computation time and memory demand. The optimum
is reached by the selection of a suitable heuristic function and by satisfaction of
the optimum condition.

The criterion for the estimation of travel time to the destination given by the
Euclidean distance is not a good choice because in public transportation net-
works the distances are not given in the units of length but in the units of time.
It is possible that the shortest trip in terms of time is long in terms of distance.
Also, a longer route may o�er transfer to a line which would take the passenger
to the destination faster.

A lower bound is de�ned on the travel time based on the components of a net-
work. The only di�erence along one path is the di�erent waiting time at transfer
points and before the boarding of a vehicle. The low bound value is the travel
time with zero waiting time. The travel time from origin to destination can be
denoted as [5]:

t = Σi∈W t
w
i + Σi∈Dt

d
i + Σi∈V t

v
i

where:
twi is the waiting time at station i where W is the set of waiting times in the
path, tdi is the walking time at edge i where D is the set of walking edges in the
path, tvi is the in-vehicle time at edge i where V is the set of in-vehicle edges in
the path. Thus the lower bound which guarantees optimum of the algorithm is a
sum of the in-vehicle and the walking time in the path t̂.

t̂ = Σi∈Dt
d
i + Σi∈V t

v
i

The optimum holds due to the fact that it is impossible to travel faster than
the lower boundary of the path.
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Algorithm 3 Trip Based A* TBA*. Source: [5]

Initialization:
Get the origin (O), the destination (D) and the departure time (τ)
i = O, li = 0, Fj = eiD, pi = Φ, ai = τ, mi = Φ, SE = {i}
lj =∞, Fj =∞, aj =∞, pj = Φ, mi = Φ, ∀j 6= i
Termination criterion:
If i = D stop
Stop Selection:
IfSE = Φ, stop
Select i = ArgFi = minj{Fj|∀j ∈ SE}
SE = SE|{i}
Updating the Labels:
∀t ∈ T (i) :
if (li + tij + ejd < Fj then

lj = li + tij, Fj = li + tij + ejD, aj = ai + tij, pj = i,mj = ”T”
SE = SE ∪ {j}

end if
∀r ∈ R(i) :
Select p = argminq{wiq|dqi ≥ ai}
∀j ∈ S(p) with seqj > seqi :
if li + wip + vijp + ejD < lj then

lj = li + wip + vijp, Ff = li + wip + ejD, aj = djp, pj = i, mj = p
if SE = SE ∪ {j} then

break
end if

end if
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4.6.5 Di�erent Approaches

The sources of information for this section are [5], [1], and [4].
Chriqui and Robillard in 1975 [31] introduced the passenger behavior concept

for the �rst time. They assumed that a passenger will determine a set of possible
routes and choose the �rst arriving vehicle for the selected set of feasible routes.
They named the set attractive routes and de�ned it as a set of routes attractive
to the passenger based on the prior knowledge.

Spiess and Florian in 1989 [34] introduced the concept of strategies in the
frequency-based networks and transit assignment. They assumed that a user
takes the �rst possible connection to the destination and is not considering wait-
ing for a possibly better connection. They used the transportation line frequency
to determine most attractive routes. The algorithm has two parts. The �rst
one computes total traveling time including elementary connections and transfer
time, and the second part assigns the demand according to the proposed strategy
in order to �nd the set of attractive routes.

de Cea and Fernandez in 1993 [35] inspired by the work of Spiess and Florian
[34] based their research also on the transit assignment using the frequency-based
transit with capacity constrains. They distributed the excess demand along alter-
native routes by de�ning congestion functions on passengers who would board the
�rst vehicle. This heuristic function assumed passenger's discomfort at crowded
stations or in crowded vehicles, and estimated their behavior based on their con-
venience.

Hickman and Bernstein in 1997 [37] used the utility function in their determin-
istic sequential path-search algorithm. The utility function consisted of stochastic
travel time and of attributes concerning passenger information. They applied and
tested the algorithm also in a congested network with high-frequency service.

Lam et al. in 1999 [40] introduced a frequency based model for transit assign-
ment process. They worked with a vehicle capacity and proposed principles for
the alternative path selection in case of crowded vehicles. This model was used
also in the case of seat-reservations and high-fare models (more expensive tickets
during peak hours).

Tong and Wong in 1999 [38] examined the main di�erences between schedule-
based and frequency-based approaches, and built models using simulations. They
used the branch-and-bound method considering a large number of transit network
properties.

Cominetti and Correa in 2001 [41] and Bouzaene-Ayari et al. in 2001 [48]
introduced more realistic functions for the waiting time at stops and vehicle ca-
pacity restrictions. Their network model takes into account queuing of vehicles
in stations in best path consideration. However, no search algorithm has been
proposed.

Hamdouch and Lawphongpanich in 2008 [47] proposed a time-expanded model
for schedule-based network and developed a hyperpath search algorithm. Cepeda
et al. in 2006 [43] introduced frequency-based model for large scale networks and
tested it on real networks.

34



4.6.6 Comparison of Algorithms

The following table contains a basic description and lists the main features of the
selected most common shortest-path algorithms discussed earlier in this chapter.
Algorithms are sorted chronologically based on the year of proposal.

Advance in
transit assign-
ment research

Frequency-based
features

Schedule
(timetable)-
based features

Route-choice
features

Dial, 1967 [29]
Le Clercq, 1972
[30]

Heuristic consid-
eration of waiting
time (and travel
time) in shortest-path
approach

Boarding the
�rst transit
vehicle to arrive

Chriqui and Ro-
billard, 1975 [31]

Probabilistic selection
of a subset of routes
minimize the expected
sum of [wait + travel]
time

Boarding the
�rst vehicle
from a set of
attractive routes

Tong and
Richardson,
1984 [39]

Deterministic se-
lection of routes.
Minimum number of
transfers

Transfer at cer-
tain transfer sta-
tions. Unlimited
number of trans-
fers. Transfer
rules

Nguyen and Pal-
lotino, 1988 [33]

Origin to destination
is interpreted on an
acyclic directed graph
(called hyperpath)

Boarding the
�rst vehicle
(from a set of
routes) with a
planned strat-
egy of path
movement

Spiess and Flori-
an, 1989 [34]

Choosing a set of
routes to minimize the
expected sum of [ac-
cess + wait + travel]
time, using equilibri-
um model with linear
programming

Boarding the
�rst vehicle
using a strate-
gy of choosing
only among the
attractive routes

De Cea and
Fernández, 1993
[35]

Incorporating a limit-
ed capacity for each
route (of an attractive
set) at stops in which
waiting time depends
on the passenger �ow;
using asymmetric
equilibrium model
with Jacobi method

Boarding the
�rst vehicle
(from a set of
routes) given
that the passen-
ger �ow does
not exceed the
route's capacity
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Advance in
transit assign-
ment research

Frequency-based
features

Schedule
(timetable)-
based features

Route-choice
features

Wu et al. 1994
[36]

Hyperpaths are used
for walk, wait, board,
in-vehicle, transfer
and alight time ele-
ments; boarding time
increases with �ow,
using equilibrium
model with Jacobi
method

Boarding the
�rst vehicle
using a strate-
gy of choosing
only among
attractive routes

Hickman and
Bernstein, 1997
[37]

Model for
high- frequency
service using
sequential choice
approach

Deterministic
utility path-
choice model
with passenger
information

Tong and Wong,
1999 [38]

Simulation mod-
el consisting of
a network of
routes with a
given number
of departure
times; using
the shortest
path of weighted
[walk + wait +
travel] time and
route-change
penalty

Random utili-
ty path-choice
model for fre-
quent service

Lam et al. 1999
[40]

Stochastic user equi-
librium with explic-
it route-capacity con-
straints

Boarding the
�rst vehicle;
for overcrowded
service, some
passengers may
choose alterna-
tive services

Cominetti and
Correa, 2001
[41]

Congestion functions
at stops obtained from
queuing theory to in-
crease waiting time
and a�ect passenger-
�ow share

Boarding the
�rst vehicle
(from a set of
routes) with
available capaci-
ty
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Advance in
transit assign-
ment research

Frequency-based
features

Schedule
(timetable)-
based features

Route-choice
features

Nuzzolo et al.
2001 [42]

Introducing a
set of departure-
time choices
and a set of
stop choices for
a given access
distance

Random utili-
ty path-choice
model for fre-
quent service
with possi-
ble passenger
information

Cepeda et al.
2006 [43]

Congestion functions
at stops with formu-
lation for large- scale
networks

Boarding the
�rst vehicle
(from a set of
routes) with
available capaci-
ty

Table 4.2: Comparison of the most common shortest-path searching algorithm
for time-dependent networks. Partially adopted from: [4].
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5. Algorithm Implementation

The goal of the second part of this thesis is to use the knowledge gathered in the
research part and to implement a particular shortest-path searching algorithm
for schedule-based networks. This part contains description of the technologies
used such as programming languages and database server, sources of the data and
their format, description of implementation steps, and implementation results.

The implementation itself is divided into two main parts. The �rst part (called
data part) deals with data selection and adjustment that lead to a database
suitable for the shortest-path search. The second part (called application part)
focuses on the development of the algorithm itself. The main aim of the impe-
mentation part is to deploy the application to the web including a graphical user
interface.

The algorithm was tested on the Prague Integrated Transport System network
which is the largest public transportation network in the Czech Republic. The
target search query time when using my personal laptop (Lenovo U330-20268,
i7-4500U , 8Gb RAM) was below one second.

The algorithm is based on the Trip Based Shortest-Path (TBSP) algorithm
originally proposed by Nguyen and Palatino in 1988-1989 [33] ?? but improved
in order to achieve a more e�cient shortest-path search on large networks.

5.1 Technologies

A fundamental problem was the selection of technologies suitable for the imple-
mentation. A slow database server or programming language can signi�cantly
a�ect the overall e�ciency of the algorithm.

As a database server was selected PostgreSQL 5.1.2 because it is easy to im-
plement and use. Data part of the implementation was done in Java 8 5.1.1 which
o�ers good database interface for PostgreSQL and is fast and also easy to use.
The web application was developed in PHP 5.1.4 which also o�ers a reasonable
PostgreSQL interface and the development with the use of PHP is fast. The PHP
itself is used mainly as a control structure for SQL queries because the search on
PostgreSQL server is faster than computation in PHP code.

All �gures representing the algorithm computation are stored in PostGIS 5.1.3
enabled PostgreSQL database which allows to store geospatial objects. This
database can be imported into QGIS 5.1.5 application and data can be presented
as a map layer.

5.1.1 Java

Java is a computer programming language that is concurrent, class-based, object-
oriented, and speci�cally designed to have as few implementation dependencies as
possible. It is intended to let application developers "write once, run anywhere"
meaning that code that runs on one platform does not need to be recompiled to
run on another. Java applications are typically compiled to bytecode that can
run on any Java virtual machine regardless of the computer architecture. Java is,
as of 2014, one of the most popular programming languages in use particularly
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for client-server web applications with reported 9 million developers. [22]

5.1.2 PostgreSQL

PostgreSQL is a powerful, open source, object-relational database system. It has
more than 15 years of active development and a proven architecture that has
earned it a strong reputation for reliability, data integrity, and correctness. It
runs on all major operating systems, including Linux, UNIX, and Windows. [24]

5.1.3 PostGIS

PostGIS is a spatial database extender for PostgreSQL object-relational database.
It adds support for geographic objects and allows location queries to be run in
SQL. [25]

5.1.4 PHP

PHP is a server-side scripting language designed for web development but also
used as a general-purpose programming language. As of January 2013, PHP was
installed on more than 240 million websites and 2.1 million web servers. Originally
created by Rasmus Lerdorf in 1994, the reference implementation of PHP is now
produced by The PHP Group.[23]

5.1.5 QGIS

QGIS is a cross-platform, free, and open-source desktop geographic information
systems application that provides data viewing, editing, and analysis capabilities.
[26]
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5.2 GTFS data

The General Transit Feed Speci�cation (GTFS)[21] is a widely accepted format
for an exchange of the public transportation schedule and network information
associated with geographical information. It de�nes a common format for public
transportation schedules and can be widely used by developers and other parties.
GTFS feeds are published in the form of text documents with a prede�ned struc-
ture. There are six mandatory �les and seven optional �les providing detailed
information about the network. Each text �le contains a number of attributes
some of which are in the similar manner required while some are optional. GTFS
feeds are published worldwide by public transportation agencies, mainly in the
USA.

The transit network consists of stops and a set of agencies which operate tran-
sit lines between them. Every agency has its set of transit lines. Each transit line
of the network has its set of trips. For each trip there is a list of stops contained
in the particular line with arrival and departure times. Trips and times can vary
according to a calendar. Coordinates of stops and a shape of routes are not re-
quired but can be used for network or route visualization.

The list of public feeds from transportation agencies can be accessed at[27]
Another website for GTFS data exchange is [28] which contains GTFS feeds
uploaded by users.
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Filename Necessity De�nes
agency.txt Required One or more transit agencies that provide

the data in this feed.
stops.txt Required Individual locations where vehicles pick

up or drop o� passengers.
routes.txt Required Transit routes. A route is a group of trips

that are displayed to riders as a single ser-
vice.

trips.txt Required Trips for each route. A trip is a sequence
of two or more stops that occurs at speci�c
time.

stop_times.txt Required Times that a vehicle arrives at and departs
from individual stops for each trip.

calendar.txt Required Dates for service IDs using a weekly sched-
ule. Specify when service starts and ends
as well as days of the week when service
is available.

calendar_dates.txt Optional Exceptions for the service IDs de�ned
in the calendar.txt �le. If calen-
dar_dates.txt includes ALL dates of ser-
vice, this �le may be speci�ed instead of
calendar.txt.

fare_attributes.txt Optional Fare information for a transit organiza-
tion's routes.

fare_rules.txt Optional Rules for applying fare information for a
transit organization's routes.

shapes.txt Optional Rules for drawing lines on a map to rep-
resent a transit organization's routes.

frequencies.txt Optional Headway (time between trips) for routes
with variable frequency of service.

transfers.txt Optional Rules for making connections at transfer
points between routes.

feed_info.txt Optional Additional information about the feed it-
self including publisher, version, and expi-
ration information.

Table 5.1: Required and optional tables in GTFS. Source: [21]
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5.2.1 Required Data

The following section contains descriptions of the required components of GTFS
data where text �les are already imported into the PostgreSQL database.

Agency

The �le agencies.txt contains basic information about agencies operating within
the transit network and basic information about them.

Figure 5.1: Database of agencies in GTFS data

Stops

The �le stops.txt contains a list of stops within the transit network and their
basic properties. Stop id is the unique identi�er. More stops can have the same
attribute stop name (for example stops in the opposite direction).

Figure 5.2: Database of agencies in GTFS data

Routes

The �le routes.txt contains a list of routes where each of them is a set of trips for
the same route.

Figure 5.3: Database of agencies in GTFS data
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Trips

The �le trips.txt contains a list of trips for each route. Trip is a sequence of
following stops.

Figure 5.4: Database of agencies in GTFS data

Stop Times

The �le stop_times.txt contains arrival and departure times to every station for
every trip.

Figure 5.5: Database of agencies in GTFS data

Calendar

The �le calendar.txt contains schedule for each trip based on the service_id
property.

Figure 5.6: Database of agencies in GTFS data
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5.3 Database Import

The �rst implementation step is to import the GTFS data consisting of .txt
�les into a routable PostgreSQL database. The database is an ordered set of
elementary connections in groups by trip_id. The database example is shown in
�gure 5.7. For the purpose of the database import, I made a Java application that
creates the required set of tables, reads GTFS data in the text form and imports
them into the database. Once text �les are imported into the tables, several
queries are performed and the result is one table of all elementary connections
in the network. Following queries split the table of elementary connections into
tables for each calendar day, order all trips in time, and assign them with a
new trip id in such a way that an earlier trip of the same route has a lower
trip id. For the purpose of this thesis, I used the database of Prague Integrated
Transport System where the number of elementary connections is approximately
two millions.

Figure 5.7: Example of a routable database consisting of elementary connections

For each elementary connection, id is an unique identi�er, ordered_trip_id
is an ordered set of elementary connections for one trip of one vehicle along one
line, and route_short_name is a single line on the network.

5.4 Database Segmentation

At the beginning of the algorithm development, it was di�cult to reach satis-
factory computation times when working with a large database. Therefore some
search space reduction techniques had to be applied.

It is a generally known fact that within the Prague Integrated Transport Sys-
tem, a connection duration cannot exceed three hours. Therefore in order to
decrease the size of the table used for routing, the original table was divided into
three-hour time windows with two-hour overlaps. Any trip which has at least
one elementary connection interfering with a speci�c hour in the time window
therefore belongs to the time window. This approach increased the size of the
whole database approximately three times but decreased the computation time
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approximately eight times. The same approach was used for all calendar days.
Monday timetable is the same as Tuesday, Wednesday and Thursday timetable
so only one table set is present. Due to this approach, the result was 96 tables.

5.5 Overnight Timetable

Night routing and especially routing over midnight are probably the most di�-
cult to be implemented due to the fact that connections before midnight (earlier
connections) have times stated in larger numbers (such as 23:52) while the con-
nections after midnight (later connections) have times stated in the form of lower
numbers (such as 00:10). This fact makes it impossible for the algorithm to search
for the shortest path because later connection cannot be found. Another prop-
erty of the routing over midnight is that a whole timetable can change due to
the change of a calendar day (for example routing from Friday night to Sunday
early morning). Because of this two problems, a set of overnight tables had to be
created.

• Monday to Thursday

• Thursday to Friday

• Friday to Saturday

• Saturday to Sunday

• Sunday to Monday

All the elementary connections with times over midnight had their departure
and arrival times converted into the form of hh : mm : ss where hh ≥ 24 (for
example 25:20:00). In this case, the early morning connection will be later then
the late night connection. Example of the overnight table is in �gure 5.8.

Figure 5.8: Example of an overnight routable database

These databases can be further segmented into smaller intervals like in the
case of day timetables. Given that the frequency of a connection over night is
low, time intervals can be wider.
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5.6 Algorithm Operation

The shortest-path searching algorithm has three inputs values, therefore a search
query looks as follows Q(sd, sa, td) where sd is the origin (departure station), sa
is the destination (arrival station), and td is the departure time and date. Date
determines a day of the week and timetable validity.

The algorithm operation starts with a selection of the right routable table.
Then search is expanded along all lines departing from the origin after the td,
and the earliest arrivals to all possible destinations without transfer are stored.
Search continues from all explored stations by another exploration of all accessible
lines departing from already explored stations at the earliest time of the arrival
of those stations.

5.6.1 Table Selection

The right table is selected by the evaluation of the departure time, current date,
and weekday respectively. The table contains a three to eight-hour window of
connections such as 5.4. The demanded departure time is contained in the �rst
hour of the time window. The table contains all trips that will occur in the
network in the following three hours in case of the day routing, and eight hours
in case of the night routing.

5.6.2 Search

The search space expansion is transfer-driven which means that one algorithm
iteration explores all possible trips along the network without a transfer from the
set of explored stations at a given time.

At the beginning of the �rst iteration the only known station is the departure
station sd. The algorithm searches for all transit lines which depart from the
origin to all directions (one transit line can have two directions), and identify the
ids of transit trips where the time is minimal, greater or equal to the departure
time td and the route name and direction are unique.

All explored nodes are stored in a result table with the earliest arrivals possible
to each destination. The table has the following properties 5.2. Properties station
name and arrival time are used as an input to the second iteration.

In the second iteration, all earliest transit trip ids from all previously explored
stations are found. The earliest departure time is the arrival time to the explored
station plus minimum transfer time which can vary according to the transfer
type (tram to tram, metro to tram, etc.). The second result table has the same
properties as the result table from the �rst iteration. The main di�erence is that
the value of the first_origin is not the same everywhere but contains all explored
stations from the previous iteration, and all previously explored stations from all
iterations are excluded from possible destinations. The algorithm iterates until a
stopping criterion is reached, this issue is discussed in more detail in chapter ??.
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Column name Example Description
�rst_origin_dep_time 08:33:45 Departure time from the �rst ori-

gin where passenger accessed giv-
en transit trip

�rst_origin "Hrad£anská" Name of a station where passen-
ger accessed given transit trip

�rst_destination "Dejvická" Name of the �rst explored station
by the transit trip. Denotes trip
direction

id 60 Unique elementary connection
identi�er

ordered_trip_id 25342 Unique transit trip identi�er
departure_time 08:33:45 Departure time of the last el-

ementary connection leading to
the explored station

arrival_time 08:35:05 Arrival time to the explored sta-
tion

origin_name "Malostranská" Name of the departure station of
the elementary connection lead-
ing to the explored station

destination_name "Hrad£anská" Name of the explored station
route_short_name A Name of the transit line

Table 5.2: Properties of algorithm operation result table

5.6.3 Stopping Criterion

Stopping criterion is an important aspect of the algorithm and several are pos-
sible to be implemented. Selection of the best one can decrease the algorithm
computation time. The most basic one is to terminate at the point where the
whole network is explored and no additional search is possible. In such case the
optimal solution must be found but computation time can be unsatisfactory in
large networks.

Another option is to terminate the calculation after a certain number of trans-
fers (iterations). It is expected that in many cases the shortest path can contain
more transfers than the minimum number of transfers to reach the destination
(a path with one transfer can take less time than a path with no transfers). A
limited number of transfers can be demanded by passenger, or can be �xed or
variable (for example two more transfers after a solution was found). In this
case, optimal solution might be omitted but optimal or close to optimal solution
is expected to be found.
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5.6.4 Route Backtracking

The destination is reached once it can be found in the column destination_name
in any result table. Then backtracking can be applied to obtain the information
about a route.

In the case of backtracking in a result table after the �rst iteration, we only
need to �nd a table row where the destination_name is our desired destination
and the arrival time is minimal. The column first_origin is our origin. This
solution is an optimal solution for routes with no transfer. Although this solution
can be optimal, routes with more transfers have to be explored as well because
such a route can be shorter than a route without transfers.

The result of a backtracking query is a table of routes ordered by the minimum
arrival time where parts of the result tables from each iteration are interconnected
to complete the shortest route. The result tables are connected in such manner
that the arrival station of one transit line is the departure station of the follow-
ing line and the departure time is greater or equal to the arrival time plus the
minimum transfer time.
In general the backtracking query result consists of a joined table where number
of tables is n + 1 and where n is the number of transfers. Each table looks as
shown in 5.3.

Column name Example Description
�rst_origin_dep_time 08:30:00 Departure time from the �rst ori-

gin where the passenger accessed
a given transit trip

�rst_origin "Kamenická" Name of a station where the pas-
senger accessed a given transit
trip

destination_name "Vltavá" Name of the explored station
route_short_name A Name of the transit line
arrival_time 08:03:00 Arrival time to the explored sta-

tion

Table 5.3: Properties of a backtracking table
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5.7 Example of a Shortest-Path Search

Having the departure time td = 8:00 on Monday and the origin sd = "Kamenická",
we need to �nd the shortest path to the destination sa ="Kobylisy". Number of
transfers is limited to two which is also our stopping criterion. The selected table
for routing is Monday 8-11am.

5.7.1 First Iteration

The result table 5.9 from the �rst iteration lists all possible destinations and
their earliest arrivals where departure station is "Kamenická", departure time is
greater or equal to 8:00, and no transfers are present. The trip always starts at
first origin "Kamenická" and the earliest arrival to destination_name at time
destiantion_arrival by route route_short_name is on one row of the table for
every destination_name. The destination sd was not discovered in this iteration,
so the algorithm goes on. Explored nodes together with the origin are in �gure
5.10.

Figure 5.9: The result table for �rst algorithm iteration
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Figure 5.10: The explored stations in the �rst algorithm iteration

5.7.2 Second Iteration

In the second iteration all explored stations from the �rst iteration are selected
and lines from such stations after the known arrival time plus the minimum
transfer time are explored. The result table for such query 5.11 contains all
explored stations from the �rst iteration in first_origin column and all possible
destinations and arrival times in columns destination_name and arrival_time.

Destination "Kobylisy" was discovered but the stopping criterion was not
reached yet. So the algorithm continues with the third iteration. The explored
stations are in �gure 5.12
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Figure 5.11: The result table for the second algorithm iteration

Figure 5.12: The explored stations in the second algorithm iteration

5.7.3 Third Iteration

The third iteration works in a similar manner as the second iteration. Stations
found in the �rst and second iteration are excluded from the possible destina-
tions and the result table has the same structure as the result table from the
second iteration 5.11. The explored stations are shown in �gure 5.13. The des-
tination "Kobylisy" was found again and the stopping criterion was reached, the
algorithm therefore terminates the searching phase and continues with the route
backtracking.
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Figure 5.13: The explored stations in the third algorithm iteration

5.7.4 Backtracking

In this example, the algorithm has performed three iterations before the termi-
nation. For di�erent networks, the number of iterations can vary. At �rst, the
algorithm checked whether the destination was found in every result table. If it
was not found, this table was skipped. The result tables are examined succes-
sively.

The destination was not reached in the �rst result table so the algorithm im-
mediately started searching in the second result table. The destination was found
in the second result table, a database query searched through both the �rst and
second result tables and found the shortest path. Similar scenario was repeated
for the third result table. A search through all three result tables was performed
and a list of the shortest paths with two transfers was returned by the query.

Shortest Routes

In the second backtracking step, the query result over two result tables looks as
5.14

Figure 5.14: The result table for the �rst algorithm iteration
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In the third backtracking step the query result over three result tables looks
as 5.15

Figure 5.15: The result table for the �rst algorithm iteration

From both query results 5.14 and 5.15 it is obvious that the shortest path
consist of two trips by the tram number 12 and the metro line C with a transfer
at the station "Vltavská". The computation time was 0.6 seconds.
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5.8 Web-Based Implementation

The shortest-path algorithm and its functions can be tested in a web application.
It consists of user inputs (origin, destination, earliest departure time, departure
day) and space for discovered routes. They are sorted according to the number
of transfers where the shortest path with a certain number of transfers is listed
as �rst. A graphical user interface of the application is shown in �gure 5.16.

Figure 5.16: GUI of the web-based shortest-path �nder
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5.9 Algorithm Performance

The algorithm performance was tested in several scenarios where the shortest-
path search was performed between random stations in the Prague Integrated
Transit System at random times and weekdays. For this purpose I have developed
a Java application that randomly selects the origin, destination, departure time
and a weekday. The algorithm was tested with those inputs and the results were
statistically evaluated.

Origin Destination Departure day
and time

Query time
[ms]

Bolevecká Krystalová Su 22:02 513
Vozovna �iºkov Klí£ov Mo 1:29 507
Lib¥chovská Královský

letohrádek
Sa 21:46 341

Loty²ská Kudrnova Fr 18:45 623
Nemocnice
Bubene£

Ková°ova Pa 0:27 364

Geologická Dobratická Tu 8:29 677
P°ívozní Holoubkovská Tu 8:51 440
Krakov Strossmayerovo

nám¥stí
Tu 12:16 629

Za Mototechnou Ciolkovského Th 12:55 459
Jenerálka U Lípy Tu 13:00 444
Mi²kovice Kolonie We 19:18 383
Svatoplukova Nemocnice Kr£ Su 15:47 373
Lochkov Pod peka°kou Su 22:11 296
Sídli²t¥ Na Gro²i Ka£erov Mo 16:48 617
Pod Vinicí Michelangelova Tu 3:39 517
Ol²anské nám¥stí K°iºíkova We 1:14 588

Table 5.4: The test results of the algorithm

Average query time in the test sample 5.4 when using laptop Lenovo U330-
20268, i7-4500U , 8Gb RAM was 486 ms with a standard deviation of 117 ms.
The goal was to reach query time below one second which means that the query
time satis�es this goal.
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Conclusion

The main aim of this master's thesis was to gather all relevant information from
the �eld of the shortest-path searching algorithms on time-dependent networks
and implement such an algorithm for large transit networks.

In the �rst part of the thesis including chapters 1, 2, 3 and 4, all theoreti-
cal prerequisites were stated and discussed. This chapter includes an overview
of the previous research on the topic of routing on road networks, description
of transit networks and timetable information, and deals with di�erent transit
network modeling approaches. As each transit network includes a lot of routing
problems, the most frequent problems had to be stated and possible solutions
were proposed. The most attention was paid to the issue of the earliest arrival
problem which is the fundamental problem in transit networks.

The theoretical part also provides description of di�erent shortest-path search-
ing algorithms developed and proposed since the mid-20th century. The most
signi�cant algorithms including pseudocodes are described in more detail. Select-
ed techniques for the algorithm speedup and reduction of search space are also
discussed in this section as they can signi�cantly improve the algorithm overall
e�ciency. Selected algorithms of the highest importance are listed and compared
in one table together with their main features.

The second part of the master's thesis represented by chapter 5 is focused on
the implementation of one shortest-path algorithm for time-dependent networks.
This algorithm is based on the Trip Based Shortest-Path algorithm (TBSP) and
improved for a search on large transit networks. The implementation is divided in-
to a data and application part. The data part of the implementation is developed
in Java using PostgreSQL database and PostGIS extension for data visualization.
A routable database was created from the GTFS text �les by database import
and several SQL queries. The goal of the application part was to develop a web
application written in PHP which would allow the shortest path search using a
simple user interface, and can be deployed on a server. Average query time of 486
ms when routing on the Prague Integrated Transport System network exceeded
the original goal by more than 500 ms. The application performs the calculation
and displays a list of the possible routes ordered by the minimum trip time.

The proposed algorithm is currently adjusted for a shortest-path search in
transit network within a city because the maximum connection length is limit-
ed. It is because of the computation speed optimization where the size of the
routable table had to be minimized. The intercity routing would be also possible
with several adjustments. The main di�erence in such case would be the necessity
to deal with the range problem. For an intercity transit it is usually not su�cient
to �nd only the �rst shortest connection and it requires to search for all possible
connections within a time interval such as one day or several days. Also, the
maximum connection length would have to be extended.

In the future, the algorithm performance should be tested by a high number
of requests in a short time interval. The algorithm and database can be further
optimized especially by the application of di�erent speedup and search space
reduction techniques.
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