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A thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfillment of the requirements for the degree of Doctor.

Prague, December 2015

PhD programme: Electrical Engineering and Information Technology
Branch of study: Telecommunication Engineering

Thesis Supervisor: Dr. Michal Lucki



ii

Thesis Supervisor:
Dr. Michal Lucki
Department of Telecommunication Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
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Abstract

Photonic crystal fibers are optical waveguides based on a periodic air-glass structure offer-
ing higher design flexibility compared to that of standard single-mode fibers. On one hand,
such fibers allow for extremely tight mode confinement related to increased nonlinearity
and better chromatic dispersion controllability. On the other hand, photonic crystal fibers
enable light guiding in very large cores keeping the single-mode regime of operation and
low loss.

This doctoral thesis deals with scientific problems related to control of light propagation
within photonic crystal fibers and it contributes mainly to the areas of optics, photonics,
telecommunication and sensing. The objective is to describe main design principles, find
their limitations and consequently optimize fiber geometries. Until now, these limitations
have not been investigated thoroughly and therefore became the central point for the
doctoral thesis.

The goal is not to present fiber structures with novel geometries, but to investigate new
limits in designing photonic crystal fibers. One of the presented designs is a photonic crystal
fiber with a dispersion parameter as close as possible to zero value. Further effort is applied
on a hexagonal fiber structure that is optimized to operate as a dispersion compensator of
standard single-mode fibers. The author predicts that the negative dispersion parameter
cannot be higher in this structure operating over a bandwidth larger than that considered
in this thesis.

Another important part of the thesis aims to control of confinement loss, which is used
to design a narrowband fiber filter as well as an effectively single-mode photonic crystal
fiber with large effective mode area and chalcogenide background.

Fiber designs were carried out by varying key geometrical parameters such as hole-
to-hole spacing, airhole diameters in selected rings and number of rings around the fiber
core. The influence of each structural parameter on modal properties is examined and
described in detail. Understanding the mechanism governing chromatic dispersion as well
as confinement loss is necessary not only for the fiber design, but also to predict the
potential manufacturing tolerances.

Last but not least, supercontinuum generation is investigated in the designed chalco-
genide fiber using the split-step Fourier method. The modal properties are calculated by
the full-vectorial finite difference frequency domain method. The simulation models of
presented fibers are verified by convergence testing.

Keywords:
Chromatic dispersion, Confinement loss, Large mode area, Fiber design, Photonic

crystal fiber, Supercontinuum generation.
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Abstrakt

Fotonická vlákna založená na periodickém uspořádáńı mikrostruktur v okoĺı jádra nab́ıźı
nové optické vlastnosti v porovnáńı s klasickými jednovidovými vlákny. Jednou z těchto
vlastnost́ı je možnost extrémně silného uvězněńı vidu v malém jádře, což má za následek
zvýšenou nelinearitu a nové možnosti laděńı parametru chromatické disperze. Na druhou
stranu je také možné pomoćı fotonických vláken udržet ńızké ztráty při jednovidovém š́ı̌reńı
optického pulsu velkými jádry.

Tato práce řeš́ı vědecké problémy týkaj́ıćı se š́ı̌reńı světla fotonickými vlákny a přisṕıvá
zejména do oblast́ı optiky, fotoniky, telekomunikaćı a senzor̊u. Dizertačńı práce popisuje
základńı principy návrh̊u fotonických vláken, hledá jejich limity a na tomto základě opti-
malizuje geometrie vláken. Tyty limity nebyly doposud zkoumány do hloubky a tedy jsou
hlavńım bodem této práce.

Ćılem této práce tedy neńı ukázat nové vláknové struktury, ale zkoumat limity již exis-
tuj́ıćıch struktur. Jedńım z prezentovaných návrh̊u je mikrostrukturńı vlákno s disperzńım
parametrem bĺıž́ıćım se nule, jak jen to je možné. Daľśı návrh se zabývá hexagonálńım
uspořádáńım mikrostruktur v plášti vlákna. Geometrické parametry těchto mikrostruk-
tur jsou optimalizovány pro kompenzaci chromatické disperze standardńıch jednovidových
vláken. Autor práce předpokládá, že disperzńı parametr kompenzačńıho vlákna nemůže
být nižš́ı při zachováńı š́ı̌rky pásma.

Daľśım ćılem této práce je zkoumáńı vlivu geometrických parametr̊u vlákna na útlumové
charakteristiky. Takto źıskané poznatky jsou využity pro návrh uzkopásmového vláknového
filtru. Dále pak pro návrh jednovidového chalkogenidového vlákna s velkou vidovou plo-
chou.

Vlákna jsou navržena laděńım kĺıčových geometrických parametr̊u, jako je rozteč
mikrostruktur, pr̊uměry mikrostruktur ve vybraných prstenćıch a počet prstenc̊u obklopuj́ıćı
jádro vlákna. Vliv každého z parametr̊u je vyhodnocen a následně detailně popsán.
Pochopeńı těchto mechanismů je nezbytné nejen pro návrh vlákna, ale také pro odhad
výrobńı tolerance.

V neposledńı řadě jsou vlastnosti chalkogenidového vlákna s velkou vidovou plochou
použity jako vstup pro zkoumáńı generace superkontinua pomoćı split-step Fourierovi
metody. Vidové vlastnosti vláken jsou źıskány pomoćı plně vektorové metody konečných
diferenćı ve frekvenčńı doméně. U všech simulaćı vláken je správné nastaveńı simulace
ověřeno konvergenčńım testem.

Kĺıčová slova:
Chromatická disperze, Útlum vláken, Velká vidová plocha, Návrh vláken, Mikrostruk-

turńı optická vlákna, Generace superkontinua.



v

Acknowledgements

First of all, I would like to express my gratitude to my dissertation thesis supervisor,
Dr. Micha l  Lucki. He has been a constant source of encouragement and insight during my
research and helped me with numerous problems and professional advancements.

My sincere thanks go to the staff of the Department of Telecommunication Engineering
that maintained flexible environment for my research. Special thanks to the department
management for providing most of the funding for my research.

Finally, my greatest thanks go to my family, for their infinite patience and care.



vi



Contents

List of Figures xi

List of Tables xiii

Abbreviations xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aims and Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Doping the Fiber Core . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Airholes Close to the Fiber Center . . . . . . . . . . . . . . . . . . 7
2.2.3 Dual Concentric Cores . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Suspended Core Fibers and Exposed Core Fibers . . . . . . . . . . 9
2.2.5 Leakage Channel Fibers . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.6 Supercontinuum Generation . . . . . . . . . . . . . . . . . . . . . . 11

3 Methods and Design Principles 15
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Finite Difference Frequency Domain Method . . . . . . . . . . . . . 15
3.1.1.1 Chromatic Dispersion in a PCF . . . . . . . . . . . . . . . 16
3.1.1.2 Loss and Effective Mode Area in a PCF . . . . . . . . . . 18

3.2 Convergence Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Near Zero and Dispersion Compensating Designs . . . . . . . . . . 22
3.3.2 Large Mode Area Designs . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Basic Mechanisms of Supercontinuum Generation . . . . . . . . . . . . . . 24
3.4.1 Pulse Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



viii CONTENTS

3.4.2 Supercontinuum Generation in the Subpicosecond Regime . . . . . 25

4 Results 27
4.1 Near Zero Dispersion Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Large Negative Dispersion Fiber . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Narrowband Optical Fiber Filter . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Large Mode Area Fiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Supercontinuum Generation . . . . . . . . . . . . . . . . . . . . . . 49
4.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 57

Bibliography 59

Publications of the Author 71

A Materials 73
A.1 Refractive Indices and Material Dispersions . . . . . . . . . . . . . . . . . 73

A.1.1 Silica Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.1.2 Heavy Fluoride Materials . . . . . . . . . . . . . . . . . . . . . . . . 77
A.1.3 Tellurite and Chalcogenide Materials . . . . . . . . . . . . . . . . . 79

B Simulation Setup and Convergence testing 81
B.1 Near Zero Dispersion Fiber - Convergence Test . . . . . . . . . . . . . . . . 82
B.2 Large Negative Dispersion Fiber - Convergence Test . . . . . . . . . . . . . 83
B.3 Narrowband Optical Fiber Filter - Convergence Test . . . . . . . . . . . . 85
B.4 Large Mode Area Fiber - Convergence Test . . . . . . . . . . . . . . . . . . 86



List of Figures

3.1 Flow diagram of the fiber design process . . . . . . . . . . . . . . . . . . . 21

4.1 Cross-section and normalized fundamental mode field distribution at 1550
nm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Nearly zero dispersion with deviations in diameter of airholes in the first (a)
and the second ring (b) starting from the fiber center. . . . . . . . . . . . . 29

4.3 Nearly zero dispersion with deviations in diameter of airholes in the third
innermost ring (a) and low-index doped regions (b). . . . . . . . . . . . . . 30

4.4 Nearly zero ultra-flattened dispersion with different dopants in the fiber
cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Designed fiber structure with the fundamental mode distribution for 1550 nm.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Dispersion parameter as a function of wavelength (a) and dispersion slope
as a function of wavelength (b) for varied airhole diameter d1 and d2,3. . . . 33

4.7 Relative dispersion slope of NDSF and designed DC-PCF (a) and residual
dispersion after the dispersion compensation of NDSF by 1 km long DC-PCF
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.8 Modified fiber structure with the fundamental mode distribution for 1550 nm.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Dispersion parameter as a function of wavelength (a) and dispersion slope
as a function of wavelength (b) for varied airhole diameter d1 and d2,3. . . . 36

4.10 Relative dispersion slope of NDSF and designed DC-PCF (a) and residual
dispersion after the dispersion compensation of NDSF by 1 km long modified
DC-PCF (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Proposed fiber structure with the normalized mode field distribution at the
wavelength of 1 µm (a) and 1.55 µm (b) with strong coupling. . . . . . . . 40

4.12 Effective refractive index (dash-dot line) and confinement loss (solid line)
wavelength dependence of the designed fiber with stop-band near the wave-
length of 1.55 µm. The fiber doped by GeO2 is considered. . . . . . . . . . 41

4.13 Effective refractive index (dash-dot line) and confinement loss (solid line)
wavelength dependence of the designed fiber with stop-band near the wave-
length of 1.4 µm. The nondoped fiber is considered. . . . . . . . . . . . . . 42

ix



x LIST OF FIGURES

4.14 Confinement loss wavelength dependance, where GeO2 core size dr (a) and
diameter of the innermost airholes d1 (b) is an investigated parameter. . . 43

4.15 Confinement loss wavelength dependance, diameter d2 (a) and diameter
d3 (b) is an investigated parameter. . . . . . . . . . . . . . . . . . . . . . . 43

4.16 Fundamental mode field distribution inside the designed fiber with bending
radius rb =∞ (a) and 20 cm (b). The fundamental (c), the second- (d) and
the third- (e) order mode field distribution in the straight fiber. . . . . . . 45

4.17 Dispersion parameter of the chromatic and material dispersion (a). Confine-
ment loss as a function of the wavelength for the fundamental, the second-
and the third-order mode, respectively (b). In (b), the number of the outer
rings with diameter d is considered as a parameter. The solid line is for the
2 outer rings, the dash-dot line for the 1 outer ring and the dashed line for
the structure having the only one ring with diameter d1. . . . . . . . . . . 46

4.18 Confinement loss as a function of the wavelength for the fundamental, the
second and the third-order mode, respectively. In (a), d1 is considered as a
parameter. The solid line represents the designed fiber with d1, the dash-
dot line is for d1 − 10 % and the dashed line for d1 + 10 %. In (b), d is
considered as a parameter. The solid line represents the designed fiber with
d, the dash-dot line is for d− 10 % and the dashed line for d+ 10 %. . . . 47

4.19 Confinement loss as a function of bending radius rb for the fundamental, the
second- and the third-order mode, respectively at the wavelengths of 1.5 µm
(a), 2 µm (b), 4 µm (c) and 9.5 µm (d). . . . . . . . . . . . . . . . . . . . 48

4.20 Supercontinuum generation inside the LMA fiber pumped at 3.5 µm. It should
be noticed that 40 dB scale is applied to all density plots. . . . . . . . . . . 50

4.21 Supercontinuum generation inside the LMA fiber pumped at 4.5 µm. . . . 51

4.22 Supercontinuum generation inside the LMA fiber pumped at 4.9 µm. . . . 52

4.23 Supercontinuum generation inside the LMA fiber pumped at 6.5 µm. . . . 52

4.24 Supercontinuum generation inside the LMA fiber, the pulse duration of the
pump pulse is decreased to 50 fs. . . . . . . . . . . . . . . . . . . . . . . . 54

4.25 Supercontinuum generation inside the LMA fiber, the pulse duration of the
pump pulse is increased to 200 fs. . . . . . . . . . . . . . . . . . . . . . . . 54

4.26 Supercontinuum generation inside the LMA fiber, the peak power of the
pump pulse is reduced to 25 kW. . . . . . . . . . . . . . . . . . . . . . . . 55

4.27 Supercontinuum generation inside the LMA fiber, the peak power of the
pump pulse is raised to 100 kW. . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Refractive index wavelength dependence of selected silica materials doped
by GeO2 and P2O5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 Material dispersion upon wavelength for selected silica materials doped by
GeO2 and P2O5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.3 Refractive index wavelength dependence of selected silica materials doped
by B2O3 and F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



LIST OF FIGURES xi

A.4 Material dispersion upon wavelength for selected silica materials doped by
B2O3 and F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.5 Refractive index wavelength dependence of selected fluoride materials. . . . 77
A.6 Material dispersion upon wavelength for selected fluoride materials. . . . . 78
A.7 Refractive index wavelength dependence of selected tellurite and chalco-

genide materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.8 Material dispersion upon wavelength for selected tellurite and chalcogenide

materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.1 Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The near zero dispersion fiber is considered. 82

B.2 Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The large negative dispersion DC-PCF is
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.3 Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The modified large negative dispersion DC-
PCF is considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4 Convergence testing the number of the mesh cells on x axis (a) and the num-
ber of the PML layers (b). The narrowband optical fiber filter is considered. 85

B.5 Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The large mode area fiber is considered. . . 86



xii LIST OF FIGURES



List of Tables

A.1 Sellmeier coefficients of selected silica materials doped by GeO2 and P2O5. 76
A.2 Sellmeier coefficients of selected silica materials doped by B2O3 and F. . . 76
A.3 Sellmeier coefficients of selected fluorides materials. . . . . . . . . . . . . . 77
A.4 Sellmeier coefficients of selected tellurite and chalcogenide materials. . . . . 79

xiii



xiv LIST OF TABLES



Abbreviations

Mathematical Terminology

A Electric field envelope
Aeff Effective mode area
B Birefringence
Bj, Cj Sellmeier coefficients
c Light velocity
d Diameter of the outer airholes
d1 Diameter of the innermost airholes
d2 Diameter of the airholes in the second ring starting from the fiber center
d3 Diameter of the airholes in the third ring starting from the fiber center
dd Diameter of the low-index doped regions
dr Diameter of the doped core by GeO2

D Chromatic dispersion parameter
DDCF Chromatic dispersion parameter of a DCF
Dm Material dispersion parameter
DNDSF Chromatic dispersion parameter of a NDSF
Dr Residual dispersion parameter
Dw Waveguide dispersion parameter
Et Transverse electric field vector
fr Fractional contribution of the Raman response
hr Delayed Raman contribution
i Simulation step
In Normalized intensity
k Order of Taylor expansion
lD Dispersion length
lfiss Soliton fission length
lN Nonlinear length
L Confinement loss
Ls Splice loss
m Soliton order
MPML Number of perfectly match layers
Mx Number of mesh cells in x direction

xv



xvi LIST OF TABLES

n Linear refractive index
n2 Nonlinear refractive index
neff Effective refractive index
neff,x Effective refractive index of x polarized mode
neff,y Effective refractive index of y polarized mode
neq Refractive index of an equivalent straight fiber
N Number of simulation steps
NA Numerical aperture
P0 Peak power
r Core radius
R Nonlinear Raman response function
rb Bending radius
reff Effective bending radius
s Order in which solitons are ejected
S Dispersion slope
SDCF Dispersion slope of a DCF
SNDSF Dispersion slope of a NDSF
t Time
T Retarded time
T0 Pulse Duration
vf Phase velocity
vg Group velocity
w Spot size
wPCF Spot size of a PCF
wSMF Spot size of a SMF
x, y Coordinates
z Distance
zsol Soliton period
β Phase constant
βk Phase constant coefficient of Taylor expansion
λ Wavelength
λ0 Carrier or pump wavelength
Λ Hole-to-hole spacing
γ Nonlinear coefficient
Γ Confinement factor
θ Divergence angle
σi Result of a simulation at step i
σN Result of a simulation at step N
τ1 Photon oscillation period
τ2 Damping time of the vibrating atoms
τg Group delay
ω Angular frequency
ω0 Carrier angular frequency



LIST OF TABLES xvii

Miscellaneous Abbreviations

Appx Appendix
Chap Chapter
DC-PCF Dispersion Compensating Photonic Crystal Fiber
DCF Dispersion Compensating Fiber
ECF Exposed Core Fiber
Eq Equation
FD-TSC Fluorine-Doped Three-fold Symmetry Core
FDFD Finite Difference Frequency Domain
Fig Figure
FM Fundamental Mode
FEM Finite Element Method
FWM Four Wave Mixing
HM Higher-Order Mode
IG-PCF Index-Guiding Photonic Crystal Fiber
LCF Leakage Channel Fiber
LMA Large Mode Area
M-TIR Modified Total Internal Reflection
NDSF Non-Dispersion Shifted Fiber
PBG Photonic Bang Gap
PCF Photonic Crystal Fiber
PML Perfectly Match Layer
RDS Relative Dispersion Slope
Ref Reference
SC Supercontinuum
SCF Suspended Core Fiber
Sec Section
SMA Small Mode Area
SMF Single-Mode Fiber
SM Second-Order Mode
SPM Self Phase Modulation
Tab Table
TM Third-Order Mode
TSC Three-fold Symmetry Core
ZDW Zero Dispersion Wavelength



Chapter 1

Introduction

1.1 Motivation

This doctoral thesis summarizes the author’s research work undertaken during the time
from 2011 to 2015 as part of Grant Agency of the Czech Republic project: GP102/09/P143,
and Czech Technical University internal grant projects: SGS10/275/OHK3/3T/13 and
SGS13/201/OHK3/3T/13. The projects were aimed at investigating new photonic trans-
mission media for optical networks. Regarding the projects, the author’s efforts were to
deepen and increase knowledge in the field of fiber optic, to design novel fiber structures,
and to find design limitations of current structures not only for telecommunication, but
also for high-power laser delivery, supercontinuum generation and compression of optical
pulses.

Conventional optical fibers with a core surrounded by lower refractive index dielectric
cladding usually operate well in telecommunication, medicine, optical sensing, and interfer-
ometry among others. However, they pose significant limitation related to their structure
and used materials: minimum attenuation, modal cut-off wavelength, usable bandwidth,
polarization and dispersion properties. Future optical systems can have challenges rarely
satisfied by using conventional single-mode fibers (SMFs). The demands that will be met
on that fibers can be of a nature that lead to difficult implementation, because of their
limited number of design freedom.

Photonic crystal fibers (PCFs) also known as holey fibers or microstructured optical
fibers are more flexible, due to a better manipulability of their geometry and therefore
offer more design tools. A special interest of the thesis is focused on the unique properties
of PCFs with small effective mode areas (SMAs) that in general allow designing suitable
dispersion and loss properties. On the other hand, large mode area (LMA) fibers for the
high-power laser delivery are designed to be effectively single-mode, and, concurrently to
be reasonably bendable. Broad supercontinuum (SC) can be generated not only in small,
but also in large mode area fibers by enhancing the fiber nonlinearity using the novel highly
nonlinear glasses as a fiber background that is investigated in this doctoral thesis.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problem Statement

Chromatic dispersion of standard SMFs is one of the major issues in optical networks, it
limits transmission of information, which puts dispersion requirements on a transmission
medium. In an optical domain of a communication network, there are efforts to design
an optical fiber with an opposite dispersion that can be connected to the path in order to
nullify accumulated dispersion and finally prevent the transmitted signal temporally. On
the other hand, recent studies aim to achieve broadening of optical pulses through a fiber
with dispersion close to zero.

Nowadays, development in the field of photonic crystal fibers changes the area of interest
from telecommunication to the high-power delivery, sensing, and optical signal processing.
One of the challenges is to develop transmission medium with effective mode area as large
as possible, keeping the single-mode regime of operation and low bending loss.

Highly desired are fibers that pose concurrently as a sensor as well as a transmission
medium. Such a distributed sensor can measure especially stress, strain, temperature,
electromagnetic field, and refractive index. The demands that are placed on fiber sensors
shifts the investigated area from near to middle and far infrared having the requirements
on development of novel glasses and laser light sources that can operate in these spectral
regions.

In the field of PCFs, there are still many unsolved and actual milestones that can be
labeled as a ”hot topic”.

1.3 Aims and Contributions of the Thesis

This doctoral thesis deals with scientific problems related to control of light propagation
within a photonic crystal fiber and it contributes mainly to the areas of optics, photonics,
telecommunication and sensing. The aim of the doctoral thesis is three-fold.

Firstly, it is aimed at acquiring knowledge of basic light control and design principles
to provide distinctions among main design methods. Secondly, the design methods are
investigated to find their limitations as well as the best possible fiber geometry for a
particular purpose. Until now, these limitations have not been investigated thoroughly
and therefore became the central point for the doctoral thesis. Thirdly, in the simulation
model, highly nonlinear glasses are used as the fiber background to calculate and investigate
supercontinuum generation in the designed media.

The principal contributions of the thesis are as follows:

1. Novel photonic crystal fibers are designed based on the principles and methods
discussed in the state of the art.

2. Design limitations of photonic structures are investigated to find optimal
geometries.

3. Optimization steps are described in details giving the reference baseline for a
reader and a potential designer.
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4. The simulation model is verified by convergence testing to provide results suffi-
ciently correct while keeping the time effective calculations.

5. The fabrication tolerances of designed fibers are estimated by dispersion- or
loss-based sensitivity analysis.

1.4 Structure of the Thesis

Firstly, the core research problem is stated and then the fibers are designed based on the
methods discussed. The research itself is described in chapters 2 to 4. Some parts of the
doctoral thesis are based on two author’s impact factor papers and conference articles.
These parts are properly cited.

Basic mathematics in the thesis body is presented. The rest of the used mathematical
apparatus can be found in the references.

The thesis is organized into five chapters as follows:

1. Introduction: describes the motivation and author’s efforts together with the goals.
Description of contribution of the doctoral thesis is included.

2. State of the Art : introduces the reader to the brief theoretical background and surveys
a current state of the art and related works.

3. Method : presents the used numerical methods, by which the key modal properties of
the investigated transverse fiber structures are solved. The steps to verify the correct
setting of a simulation model are outlined. Basic design principles are described in
details in this chapter.

4. Results : the main results are presented and discussed in this chapter. The chapter
is dived into the sections, where selected fibers are designed employing the described
principles. In first two sections, the fiber designs based on tuning the dispersion char-
acteristics are proposed and the other two sections aim to the designs with optimized
loss characteristics.

5. Conclusion: an overall summary of the thesis and suggestions of possible topics for
further investigation concludes the thesis.

6. Appendices : in Appx. A, the material refractive indices are specified. In Appx. B,
the convergence tests are presented.
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Chapter 2

State of the Art

2.1 Basic Properties

Photonic crystal fibers typically consist of an array of micro-sized airholes embedded within
a pure silica background. Optical pulses are propagated through a PCF by the defect in
the array caused either by missing airhole in the central region in the case of modified
total internal reflection (M-TIR) [1] or by increasing diameter of the central airhole in the
case of a photonic band gap (PBG) [1, 2]. This doctoral thesis aims to control of modal
properties in an index-guiding PCF (IG-PCF) that rely on the M-TIR.

IG-PCFs are easier to fabricate than PBG fibers, because of the guidance mechanism
that does not require a near perfect periodicity of the fiber geometry. [3] The IG-PCFs are
also more suitable for chromatic dispersion tailoring for their variability in the solid core
having a significant effect on material dispersion. It should be noticed that PBG fibers can
guide light through a solid core, but having the core refractive index lower than that of
cladding oppositely to the the M-TIR. [4] However, to ensure the PBG guidance, the core
is usually much larger compared to IG-PCF, which limits the dispersion controllability.

An IG-PCF is characterized by airhole diameter d, hole-to-hole spacing Λ, the airhole
geometry, the number of airholes typically represented as the number of rings around the
fiber core and last but not least by used background material.

In general, the solid core can be doped by an appropriate material typically by ger-
manium dioxide to increase refractive index or by fluorine for refractive index decreasing.
Further, using advanced chemical compounds as the background material can be more
advantageous than using silica especially at the wavelengths longer than 2 µm. [A.1].

Middle-infrared (∼ 2–8 µm) light beam delivery in conventional silica fibers is practi-
cally impossible due to the vibration frequency of the atomic bonds, of which significant
interaction with electromagnetic waves beyond the wavelength about 1.8 µm makes the
glass nontransparent.

Heavy metal fluoride glasses were firstly discovered in 1974 [5] and some of them are
transparent up to 9.5 µm [6]. Moreover, their theoretical losses were predicted to be of
10−2 dB·km−1 at 2.5 µm [7]. So far, it still seems to be a challenge in practice; nowa-

5
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days, their attenuation is higher than attenuation of silica fibers. Although, ZBLAN glass
(53 ZrF4 − 20 BaF2 − 4 LaF3 − 3 AlF3 − 20 NaF) is transparent only up to 6.9 µm [8],
it is the most favored glass for its stable composition suitable for fiber drawing. It is also
an excellent host for doping by rare earth ions that is broadly applied in fiber lasers and
amplifiers [9]. Complete investigation of the heavy metal fluoride glass can be found in
Ref. 10.

The soft glasses transparent up to 5 µm [3] with the melting point less than 1000 ◦C
offer new possibilities of the dispersion control in PCFs. Many types of the soft glasses
can be combined both in the core and the cladding, due to the similar value of the melting
point and viscosity. However, today’s fabrication technologies of the soft glasses fibers are
not at the same stage as for the silica fibers. Therefore, the soft glasses fibers exhibit losses
about a few dB·m−1 [3]. Although, the fiber length should not exceed a few meters to
keep low loss, combination of good dispersion controllabitily and the higher nonlinearity
compared to that of silica promises soft glasses fibers to be suitable for supercontinuum
generation [11]. [A.1]

Chalcogenide and tellurite glasses are sufficiently transparent over the middle-infrared
spectral window [12, 13], chemically stable [14], and their fiber drawing technology is well
matured [15]. Chalcogenide glasses are usually based on one or more chalcogen elements
of the periodic table group 16: sulfur, selenium, tellurium with the combination of other
elements such as arsenic, germanium, antimony, gallium [13, 16]. Contrary, tellurite glasses
contain TeO2 as the main component. Both glasses pose high nonlinear refractive index
and as well they suffer high material loss. Nevertheless, they are suitable to generate near-,
middle- and far-infrared supercontinuum in a short nonlinear fiber segment [A.4]

2.2 Related Works

Over the years, one of the most investigated fiber designs is a PCF that can be either
a chromatic dispersion compensator or an optical transmission medium with nearly zero
dispersion.

Manufacturing technologies, as well as simulation tools, allow achieving an exact zero
dispersion even at a broad spectrum of wavelengths. However, zero dispersion is undesirable
in terms of nonlinear effects, as in four wave mixing (FWM) that can occur, since zero
dispersion results in phase-matching of signals [17]. For that reason, research rather focuses
on flat and nearly zero dispersion evolution, where dispersion value does not result in
significant pulse broadening and concurrently nonlinear effects are negligible. Similarly, it
is highly recommended to remain small dispersion after using a dispersion compensating
fiber.

One of the first concepts of dispersion control was proposed by R. Dyott et al. in
Ref. 18. In the concept, the waveguide dispersion is controlled changing the difference in
core and cladding indices and by choosing an operating point according to the higher-order
mode cut-off. The higher-order mode cut-off is strongly dependent on the core dimension.
In this way, the waveguide dispersion can counteract the effect of material dispersion and
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achieve total zero dispersion in the restricted wavelength range.

The mechanisms of dispersion control are similar for both PCF designs: near zero
dispersion fibers and dispersion compensating fibers. Nevertheless, a PCF with a dual
core, where the greater core is created by removing or reducing the airhole diameter in
selected rings, is primarily used to achieve a large negative dispersion parameter. It is
therefore the modes of both cores matches at a specific wavelength that results in high
dispersion that can be used for the compensation. [A.3]

2.2.1 Doping the Fiber Core

The inclusion of a small doped region to a PCF core causes the index contrast between pure
silica and the doped region that increases mode confinement. Since waveguide dispersion is
strongly dependent on mode confinement and because the effective core is so small that its
diameter is of the range of the propagating wave, the inclusion can decrease the waveguide
dispersion.

On the other hand, doped regions affect material dispersion that can balance waveguide
dispersion. Y. Hoo et al. in their study [19] showed that by proper controlling the size of the
core with concentration of 3% GeO2 dopant, the material dispersion is well balanced by the
waveguide dispersion and the chromatic dispersion can be less than 0.06 ps·nm−1·km−1 [19].

The technique of inserting a high-index rod in the PCF core has been proposed
by V. Rodriguez-Esquerre et al. [20] to achieve a near-flat dispersion parameter about
−200 ps·nm−1·km−1 in the spectral range of 1390 to 1700 nm. It allows for dispersion
compensation in one transmission channel making it being unsuitable for current trans-
mission systems using wavelength-division multiplexing.

The high-index doped rod can be surrounded by three low-index doped regions with
three airholes [A.7]. The presence of different dopants in the fiber core provides new
possibilities to control light. The PCF exhibits flat and negative dispersion parameter
lower than −430 ps·nm−1·km−1 from 1300 to 1700 nm. Moreover, the use of fluoride
compounds in the selected regions as well as in the background is studied in the doctoral
thesis. Such a fiber structure was originally developed by K. Hansen to fabricate highly
nonlinear fiber with near zero dispersion [21]. [A.2]

2.2.2 Airholes Close to the Fiber Center

A fundamental mode can be confined within the core by the index contrast between pure
silica and airholes located close to the fiber center, resulting in effective mode diameter
small enough to control dispersion in the desired way. A nine-ring fiber design [22] with an
effective mode area of 4.24 µm2 can be one of the solutions. The minimum of dispersion
parameter, −435 ps·nm−1·km−1 is numerically obtained as well as the residual dispersion
±64 ps·nm−1 from 1460 to 1630 nm.

A conventional hexagonal PCF with a small effective mode area about 1.6 µm2 was
designed and investigated in another paper [23]. The PCF has the same airhole diameter
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in all airhole rings of the structure and only two parameters: airhole diameter and hole-to-
hole spacing are optimized in order to find the best achievable match of dispersion slopes
between the designed fiber and NDSF. The designed fiber has a suitable dispersion slope in
the 236-nm broad range as well as a normal chromatic dispersion of −474.4 ps·nm−1·km−1

at the wavelength of 1550 nm.
Tighter mode confinement than in hexagonal lattice, and thereby the possibility to

control dispersion more can be achieved by a PCF based on octagonal, decagonal or circular
(i.e. having holes located at the concentric circles) structure for its lower refractive index
around the core that is caused by the presence of higher amount of airholes in the fiber
cladding. It has been shown by M. Habib et al. through the simulation results that an
octagonal PCF design [24] can exhibit the negative dispersion parameter about −418 to
−775 ps·nm−1·km−1 over the S -, C -, and L-bands and an RDS close to that of the NDSF.

An alternative way to control the mode confinement is to introduce a defect into the
fiber center [25]. The central defect is usually obtained by an airhole spreading the mode
toward the cladding, where it is strongly confined, and thus the effective mode area is
smaller. The negative and flat chromatic dispersion parameter about −230 ps·nm−1·km−1

has been numerically achieved in Ref. [25] due to the small effective mode area of 5 µm2

controlled by an elliptical airhole in the fiber center. Moreover, the asymmetry can main-
tain single polarization of radiation. The fiber can be used for dispersion compensation
eliminating polarization mode coupling and polarization mode dispersion. [A.2]

2.2.3 Dual Concentric Cores

The negative chromatic dispersion parameter can be achieved in PCFs with dual concentric
cores. The both cores act as parallel waveguides with different effective indices. Coupling
between both modes occurs and is maximal at a phase matching wavelength, where the
difference between effective indices is minimal. For the wavelengths shorter than the phase
matching wavelength, the field is confined mainly in the inner core. The phase and loss
matching conditions around the phase matching wavelength are satisfied and the field of
one mode transfer to the other mode. The field at the wavelengths longer than the phase
matching wavelength spreads to the outer core, where the outer defect mode is propagated.
The couple mode theory is described in detail in Ref. 26.

The phase matching is dependent on a fiber geometry and yields high dispersion [27]. As
far as dispersion achievable by this technique is concerned, the value of−39, 500 ps·nm−1·km−1

is presented in Ref. 28, where one of the cores is created by filling the airholes in one ring
with hydrogen dioxide. However, the high negative dispersion parameter is achieved in the
narrowband of wavelengths of 7.4 nm, not sufficient for broadband dispersion compensa-
tion.

Over the last few years, designers aim to extend the operating bandwidth of dual-
core fibers. It is worth to notice one in Ref. 29, where a dual-core PCF with two cladding
layers [29] having different hole-to-hole spacing and airhole diameter is designed. Although
the fiber chromatic dispersion parameter is not less than −100 ps·nm−1·km−1, the fiber can
compensate dispersion of the NDSF over all the telecommunication bands. The PCF is
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designed to match dispersion slope of the NDSF at 1550 nm and, concurrently, to achieve
the same zero dispersion wavelength as the NDSF. Moreover, the phase matching is set
beyond 1650 nm to decrease the influence of the outer defect mode which yields a large
positive dispersion parameter.

Integration of amplification into a DCF would be advantageous. It can be done by rare-
earth doping the fiber and by adding the appropriate laser pump. Recently, the possibility
of erbium doping in a dual-core PCF has been considered [27].

A particularly important property of a dual-core PCF as identified by S. K. Varshney
et al. is its ability to form the outer core sufficiently leaky and design a photonic crystal
fiber filter [30]. Since the outer core is responsible for the leaky defect mode at longer
wavelengths (stop-band), the inner core is doped by fluorine to obtain the other stop-band
concurrently at short wavelengths. The fluorine doped core is responsible for the strong
energy transfer between the inner and outer core at the short wavelengths. It is therefore,
the doping decreases the effective refractive index and its value is similar to that of cladding
region. The achieved pass-band can be wide: from a few nanometers to about 500 nm in
the wavelength band from 1250 to 1750 nm. [A.2, A.11]

2.2.4 Suspended Core Fibers and Exposed Core Fibers

An innovative type of a PCF for evanescent field sensing dates back to 2001, when M. Monro
et al. proposed so-called ”suspended core fiber (SCF)” [31]. The typical SCF cladding
consists essentially of air and the core is suspended via few tin silica struts. The high air-
filling fraction, (the fiber cladding is almost air), lets to design SCFs with small cores and
high numerical apertures (NAs) that are difficult to make in conventional PCFs. Moreover
their fiber drawing technology is matured, one of the novel fabrication techniques for SCFs
was developed by A. Webb et al. [32].

In the technique, the airholes are predefined by mechanical drilling of the fiber preform,
and further they are manipulated during the fiber draw. The technique is much quicker
and more straightforward compared to the conventional stack-and-draw technique [33], in
which the glass rods must be stacked together to create the preform. On one hand, an SCF
offers ease of fabrication comparable to that of a PCF. [34] On the other hand, designs
are limited by much simpler geometry with the following design parameters: core size,
number and width of the solid struts. This is enough to design the SCF with one or two
zero dispersion wavelengths (ZDWs) [35]. However, it can be a challenge to design an SCF
with the flattened dispersion property or for the dispersion compensation.

Since the SCFs can be designed with sub-wavelength core sizes (< 1 µm), the propa-
gated light is no longer primarily confined to the core and spreads out to the surroundings
medium (usually represented by liquid or gas). The strong light interaction with that
medium allows achieving high modal sensitivity and this approach is of a particular inter-
est for applications in biological and chemical sensing [36, 37]. The SCF filling process by
gas species has been theoretically studied in Ref. 38 for different fiber length and airhole
size. The study was experimentally validated filling the SCF samples with low-pressure
acetylene gas. Once the fiber is filled, the transmission spectrum can be analyzed.
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The gas filling process can be complicated in real-time sensing, due to the necessity of
the gas refiling process of which duration can be longer than the measurement period. The
time needed to fill SCFs can be as long as 7 hours for gas diffusion or ∼ 100 minutes for
water, depending on interaction length and size of the holes. [39]. Research continued in
order to overcome this problem.

The first exposed core fiber (ECF) was proposed by Y. Hoo et al. for high sensitivity
gas detection. [40] The fabrication of the ECFs allows only minimal deviation from the
conventional drawing process; the only additional step is lateral holes drilling into the
preform to expose the core before the drawing [41]. Some details of other fabrication
processes for the ECFs are outlined in Ref. 42.

2.2.5 Leakage Channel Fibers

One of glass properties is nonlinearity [13, 43] associated with significant nonlinear effects
as stimulated Raman and Brillouin scattering that occurs in a fiber. The generally accepted
view is that the scattering can reduce the quality of the delivered beam and decreases the
maximum allowable input power [44, 45]. Limiting nonlinear effects are usually reduced by
increasing fiber effective mode area [44]. However, the maximal size of the effective mode
area in a step index fiber has two fundamental limitations.

Firstly, to keep the high beam quality, the LMA fibers should be single-mode guided. To
maintain the single-mode operation for specific core radius r, the required fiber numerical
aperture is given from Eq. (2.1):

NA <
2.405 · λ
2 · π · r

. (2.1)

Owing to the limited fabrication technology it is usually difficult to obtain the NA lower
than 0.05 in an optical fiber [46]. It is obvious that the core radius cannot be lower than
about 11.5 µm for the fiber to be single-mode at the wavelength of 1.5 µm.

Since PCFs exhibit higher design flexibility than conventional single-mode fibers, the
presence of airholes or doped rods in the PCF structures allows for fabricating single-mode
PCFs with the greater cores [47, 48]. The effective mode area can be as large as 75, 000 µm2

in the chalcogenide PCF, where the single-mode condition is confirmed in an equivalent
step index fiber by approximating the PCF [47]. The single-mode operation can be further
comprehended owing to the differential leakage loss induced between the fundamental mode
(FM) and higher-order modes (HMs) [48]. In this context, the fiber structure is tailored
to make all the propagation modes effectively leaky, but not the fundamental one that
is confined enough in the core. Such a fiber is known as a leakage channel fiber (LCF)
and typically consists of a small amount of large airholes or doped rods ensuring that the
leakage loss of the FM is usually lower than 0.1 dB·m−1, whereas the HMs suffer the losses
from few to tens of dB·m−1 depending on a design and application [44, 49, 50, 51].

Secondly, a reduction of the NA causes that the modes become leakier, if a fiber is
bent [45, 52]. Further, an attention must be paid owing to the HMs that can be confined
more than the FM inside the core, when the fiber is bent. For example, a single-mode
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tellurite fiber with effective mode area of 3000 µm2 should be kept straight for generating
supercontinuum from 0.9 to 2.5 µm as reported in Ref. 53. Fiber bend is usually described
as increased attenuation, however, as summarized in Ref. 54, bending a fiber can yield the
negative dispersion parameter as high as −185, 420 ps·nm−1·km−1.

Over the last few years various attempts have been made to reduce loss of bent LMA
fibers. The moderate bending radii are usually acceptable for LCFs and the much lower
radii are possible at modified LCFs with an asymmetric refractive index distribution [49,
50, 51, 55]. Such a fiber has recently been presented by M. Chen et al., the fiber comprises
of two regions with different airhole diameter on the opposite sides of the fiber cross-
section [49]. If the fiber is bent in the proper plane, the FM is confined enough by larger
airholes, whereas the HMs are effectively leaky. Instead of larger airholes M. Napierala et
al designed and fabricated a LCF with larger amount of airholes on one side of the fiber,
the fiber allow bending around 10 cm radius and have effective mode area over 1000 µm2

at 1.064 µm [50]. Due to the asymmetry, the fiber bend should be oriented only in the
specific range of angles that requires microscope control and fixation, for example on a
precise fiber rotator [51].

However, the nonlinearity of chalcogenide [56] and tellurite [57] glasses is two or three
orders of silica glass that cannot be suppressed enough by larger mode area [58, 59]. Chalco-
genide glasses has a larger refractive index in comparison with tellurite glasses and a higher
nonlinear index. The larger refractive index leads to a greater modal confinement and a
higher nonlinearity. In general, their nonlinearity is key for supercontinuum generation [60].
LMA of chalcogenide fibers is rather suitable to enhance limit for the optical power induced
damage [61], due to the low melting point of the chalcogenide and tellurite glasses. The
low melting point about 310 and 850 ◦C, respectively causes that the high pump power
required to generate SC can damage chalcogenide or tellurite fibers especially for the pi-
cosecond and longer pump pulses [62, 63, 64]. On one hand, nonlinearity is decreasing with
large effective mode area, but, on the other hand, the limit for power induced damage is
significantly increased.

2.2.6 Supercontinuum Generation

A supercontinuum is coherent light that expands from a pump laser source through a non-
linear medium to a broad wavelength spectrum. Supercontinuum sources found their way
in many applications including telecommunication [65], optical coherence tomography [66],
fluorescence microscopy [67] and spectroscopy [68] among others.

SC was firstly observed in borosilicate glass sample as proposed by R. Alfano et al. in
1970 [69] and later in a conventional single-mode fiber by P. Baldec et al. [70]. Since the
pioneering work of J. Ranka et al. [71], there has been considerable interest in supercon-
tinuum generation in photonic crystal fibers, because of their good tunability especially of
the zero dispersion wavelength. Spectral position of a ZDW is one of the key parameters
for SC generation. ZDW should not be far from the pump wavelength, otherwise only
a low amount of the pump power leaks from normal to anomalous dispersion regime. A
large mismatch of group velocities decreases SC bandwidth. In conventional SMFs it is
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too challenging to shift the ZDW bellow their material zero dispersion wavelengths and
to generate strong SC in the visible region. Pumping the silica photonic crystal fiber in
the anomalous dispersion regime at 820 nm as reported by J. Price et al. in Ref. 72, the
supercontinuum can extend from 1600 up to 300 nm in the ultraviolet.

SC was experimentally demonstrated for pumping a silica PCF in both normal [73]
and anomalous [74] dispersion regimes. It should be noticed that if power level of the
SC reaches infrared loss edge of the material, the bandwidth becomes independent on the
ZDW [75].

Since the transparent spectrum of silica is strongly limited, suitable host materials have
been used to extend the edge beyond the limit. Several materials have been proposed in
this context as fluoride [76], tellurite [77] and chalcogenide [62] glasses. On one hand, the
nonlinearity of fluoride glasses is comparable to that of silica, but, on the other hand, zero
material dispersion wavelength of the most fluoride glasses is in the C and L-bands [76],
where most of commercially available lasers operate. G. Quin et al. demonstrated wide
SC generation up to 6.28 µm in the 2-cm fluoride fiber pumped by a 1450 nm femtosecond
laser [8]. They predicted that a fluoride fiber can be a promising candidate to generate
wide SC up to 8 µm.

Contrary to silica and fluoride glasses, the material dispersion of tellurite and chalco-
genide glasses is zero at much longer wavelengths, as shown in Appx A and at these
wavelengths it can be difficult to find a proper laser pump. Therefore, significant efforts
are placed on a fiber optimization to shift the ZDW onto the C -band.

For this reason, the small effective mode area is required to increase the waveguide
dispersion in the desired spectral region. Moreover, the SMA promises higher nonlinear
effect that are key for SC generation. Concerning the fabrication efforts of SMA fibers,
suspended core fibers are preferred over conventional PCFs [32]. Varying the core size
and the width of the solid struts in an SCF, the ZDW can be shifted toward the injected
pump wavelength. Moreover, if the mode area is small enough, it is possible to obtain two
ZDWs. This approach was adopted in Ref. [78]. ZDWs experience a shift towards each
other increasing the width of the solid strut and decreasing the core size, which can lead to
near zero dispersion in 1-µm wide wavelength range. However, attention should be paid,
when the core size is decreasing, due to the confinement loss that can be too high at longer
wavelengths [79]. A number of experiments were performed in order to investigate SC
generation by pumping near the ZDWs. One of them was carried out by simultaneous dual-
wavelength nanosecond pumping near both ZDWs of a PCF [80]. Recently, the broadest
SC ever reported from 1.4 to 13.3 µm was presented by Ch. Petersen et al. in Ref. 81.
The SC is generated by pumping an 85-mm long step index chalcogenide fiber by 100 fs
pulses with a repetition rate of 1 kHz and peak power more than 7 MW.

Supercontinuum can also be generated in LMA fibers especially if the highly nonlinear
glass is used as the fiber background. As identified by X. Feng et al. in Ref. 53, the SC can
be generated in the fiber with effective mode area about 3000 µm2 that is one of the largest.
The SC is as broad as 1.6 µm if 12 fs laser at 15.2 mW is being pumped inside a 9-cm
long piece of the tellurite fiber. SC can also be observed in silica LMA fibers as observed
by R. Cherif et al. They used a PCF with effective mode area of 180 µm2 to generate
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SC extending from 600 to 1700 nm [82]. Pumping the PCF by Ti:Sapphire amplifying
system, the spectral flatness variation less than 12 dB is obtained over the bandwidth. SC
generation in a highly nonlinear PCF is one of the parts of this doctoral thesis presented
in Sec. 4.4.1.
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Chapter 3

Methods and Design Principles

3.1 Methods

Since there is no analytical tool to predict the key properties of optical waveguides, e.g.
chromatic dispersion, confinement loss and effective mode area, numerical tools are required
to investigate high design flexibility of photonic crystal fibers. In general, the mainly used
numerical methods are the modal expansion method [83], multipole method [84], finite
element [85], and finite difference method [86]. The methods also perform well for PCF
designs. Each of the methods has its pros and cons as summarized in Ref. 87.

3.1.1 Finite Difference Frequency Domain Method

In this doctoral thesis, the modal properties of designed fibers are numerically calculated
using a commercially available software. Full-vectorial finite difference frequency domain
(FDFD) method implemented in the software is similar to that described by Z. Zhu and
T. Brown [83]. FDFD method is widely used for electromagnetic computations for its
verified validity and effectiveness that was demonstrated in standard fibers as well as in
PCFs [83].

In the simulation environment, the computing domain is dived by uniform mesh and
covers the investigated area. The mesh size is set to be small enough to obtain reasonably
accurate results, while ensuring good time efficiency. Perfectly matched layers (PMLs) are
used at the edge of the domain as a boundary condition in order to accurately account
for the confinement loss. The layers absorb the incident radiation without any reflections
back to the computing domain. Thus, it is considered that the fiber edges are far enough
from the fiber center and the back reflection is negligible.

In the computing domain, the Maxwell’s equations are discretized into the matrices
of linear equations that are solved using the sparse matrix technique with the unknowns
being the electromagnetic field values on the mesh. With the PMLs, the system matrix
becomes complex valued. Effective refractive index neff is obtained through this technique
as well as the modal fields of the investigated waveguide at each mesh point.

15
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The finite difference method employed in the solver uses Yee’s mesh algorithm [88]
to form Maxwell’s equations as the matrix of eigenvalue problems. The equations near
interfaces between a background material and airholes are described by Lumerical’s con-
formal mesh method, which is an extension of a method described by Yu and Mit-
tra [89]. [A.2, A.11]

3.1.1.1 Chromatic Dispersion in a PCF

An optical pulse with mean carrier angular frequency ω0 and with electric field envelope
A(t) that represents a slowly varying function of time as compared to ejw0t propagates
through a single-mode fiber under absence of loss, nonlinearity and birefringence according
to Eq. (3.1):

E(z, t) = A(t) · ejω0t · e−jωβ(ω)z, (3.1)

where E(z, t) is electric field intensity as a function of time t and spatial position z, ω is
angular wave frequency and β is phase constant.

An effect of chromatic dispersion is illustrated in Eq. (3.1) as a nonlinear relation
between phase constant and angular frequency that can be defined as in Eq. (3.2) via
Taylor expansion around ω0 if the envelope changes are slow enough.

β(ω) = β0(ω0) +
∂β0
∂ω

(ω − ω0) +
1

2!

∂2β0
∂2ω

(ω − ω0)
2 +

1

3!

∂3β0
∂3ω

(ω − ω0)
3 + ..., (3.2)

where the first term, β0, does not cause any effect on the pulse envelope, it describes a
certain phase shift. Phase velocity vf of the optical carrier at angular frequency ω0 is
established by β0 as in Eq. (3.3):

vf =
ω0

β0
=

c

neff
, (3.3)

where c is light velocity in vacuum. The second term leads to overall time delay, group delay
τg of the envelope per unit length, but without modifying the envelope. The phase velocity
is not unique along the spectral width. The carrier at angular frequency ω0 propagates with
velocity associated with the β0, while the envelope propagates with velocity of all spectral
components called group velocity vg. The inverse group velocity is given in Eq. (3.4):

∂β0
∂ω

= β1 =
1

vg
. (3.4)

The group delay cen be defined as in Eq. (3.5):

τg =
z

vg
. (3.5)

The third term (quadratic) represented as β2 known as chromatic group velocity dispersion
is responsible for spreading the envelope and amplitude reduction. The pulse form is
modified, while the energy is constant. In optical waveguides, the chromatic dispersion is
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usually presented by chromatic dispersion parameter D in Eq. (3.6). It directly refers to
the pulse spreading per unit of wavelength per unit of waveguide length.

D = −2πc

λ2
· ∂

2β0
∂ω0

2
= −2πc

λ2
· β2 (3.6)

that can be rewritten as in Eq. (3.7)

D = −λ
c
· ∂

2<[neff ]

∂λ2
, (3.7)

where λ is wavelength and neff is obtained by the FDFD. The fourth and higher terms
are responsible for higher-order dispersion. The third-order dispersion is related to the
dispersion slope.

Chromatic dispersion parameter D, Eq. (3.7), is the sum of waveguide dispersion pa-
rameter Dw and material dispersion parameter Dm, Eq. (3.8):

D(λ) = Dw(λ) + Γ(λ) ·Dm(λ), (3.8)

where Γ is confinement factor that for silica is close to unity.
The waveguide dispersion can be obtained by Eq. (3.7), where neff is calculated through

FDFD for constant refractive index of the used background material n. The waveguide
dispersion is related to the used fiber profile, which has a significant effect on the group
velocity. In general, contradictory to the material dispersion, the waveguide dispersion
cannot be predicted by any analytical approach and the only way to determine its de-
pendence on the wavelength is by numerical calculation through the one of the methods.
However, the mode properties can be evaluated for simple PCFs that is designed only by
hole-to-hole spacing Λ and airhole diameter d omitting the numerical methods as presented
by K. Saitoh et al. in Ref. 90. They provide empirical relations based on the parameters
for normalized frequency and transverse attenuation constant of which knowledge enables
straightforward calculation of neff .

The material dispersion occurs due to the interaction between an electromagnetic wave
and the bound electrons of a material resulting in a frequency dependent refractive index.
The material dispersion is obtained straightforward by substituting neff in Eq. (3.7) by
refractive index n. Refractive index of a given glass is widely expressed in an analytical
form by Sellmeier [91], Eq. (3.9), or by another approximating formula for example by
Cauchy formula. [92] that is valid in the visible region, but it significantly deviates outside
this region.

n(λ) =

√
1 +

∑
j

Bj · λ2
λ2 − Cj

, (3.9)

where Bj (-) and Cj (µm2) are Sellmeier coefficients quoted for wavelength in micrometers.
For doped silica by boron trioxide B2O3 and fluorine F for refractive index decreasing,

or by germanium dioxide GeO2 and phosphorus pentoxide P2O5 for its increasing; empiric
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formulas [93], Eqs. (3.10), (3.11), (3.12), and (3.13), respectively, offer good agreement
with the measured values of the refractive indices from 0.9 to 1.7 µm.

nB2O3(λ) = nSi(λ) + 3.7640 · 10−4 · dB2O3 , (3.10)

nF (λ) = nSi(λ) + 4.665 · 10−3 · dF , (3.11)

nGeO2(λ) = nSi(λ) + 1.4145 · 10−3 · dGeO2 , (3.12)

nP2O5(λ) = nSi(λ) + 1.652 · 10−3 · dP2O5 , (3.13)

where nP2O5 , nF , nGeO2 , and nB2O3 are refractive indices of P2O5, F, GeO2, and B2O3,
respectively; dP2O5 , dF , dGeO2 , and dB2O3 are their dopant concentrations in Mol.%.

Appx. A provides Sellmeier coefficients for the materials used in this doctoral thesis.
Based on the coefficients, the refractive index wavelength dependence as well as the material
dispersion is figured in Appx. A.

3.1.1.2 Loss and Effective Mode Area in a PCF

Loss in a PCF occurs similarly as for the conventional single-mode fibers and the minimum
attenuation in a PCF is of a similar value around 0.2 dB·km−1 at 1550 nm [94]. Total
loss comprises the structural imperfection loss, Rayleigh scattering, hydroxyl and infrared
absorption, among others.

On the contrary to conventional SMFs, PCFs have leaky cladding. In theory, no leak-
age or so-called confinement loss L occurs in a PCF with ideal cladding of an infinite
number of airholes. In a real fiber, the guided modes are leaky due to core refractive index
being the same as the refractive index of cladding beyond airholes. The confinement loss
is wavelength dependent and can be controlled by fiber geometry. Generally speaking,
increasing a number of airhole rings surrounding the core exponentially reduces confine-
ment loss. Similarly, the modes are more confined for larger diameters of airholes. On the
other hand, a designed fiber should have the minimum number of airholes to ease potential
fabrication. Moreover, it is not possible to fabricate a fiber with diameters of similar sizes
as hole-to-hole spacings. Thus, a tradeoff should be found. Generally accepted view is that
confinement loss should be kept below the Rayley scattering.

Since large air-filling fraction d/Λ is usually required to remain low confinement loss, the
single-mode condition, Eq. (3.14), is not satisfied in a PCF and not only the fundamental
mode can propagate in [95].

d/Λ < 0.406, (3.14)

The confinement loss can be calculated from the imaginary part of the effective index,
according to Eq. (3.15):

L =
20

ln 10
· 2π

λ
· =[neff ], (3.15)
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Effective mode area Aeff is key for calculating nonlinear coefficient γ, Eq. (3.16), splic-
ing loss Ls, Eq. (3.17), and numerical aperture, Eq. (3.18).

γ =
2πn2

λ · Aeff
, (3.16)

Ls = −20 · log
2 · wSMF · wPCF
w2
SMF + w2

PCF

, (3.17)

NA = sin θ, (3.18)

where n2 is nonlinear refractive index, wSMF and wPCF is spot size of the single-mode and
photonic crystal fiber, respectively. Spot size w and half divergence angle θ are derived as
in Eq. (3.19) and in Eq. (3.20), respectively:

w =

√
Aeff
π

, (3.19)

θ ' arctan
λ

π · w
(3.20)

The effective mode area is obtained from the mode field distribution as in Eq. (3.21).

Aeff =
(
∫∫
|Et|2 dxdy)2∫∫
|Et|4 dxdy

, (3.21)

where Et is transverse electric field vector and the integrals are over the simulation region
whose coordinates are x and y. The effective mode area is wavelength dependent and
is increasing for waves with longer wavelengths. The mode area is reduced increasing
the airhole diameter especially in the innermost rings or by decreasing the hole-to-hole
spacings. Contradictory, the mode area is almost independent of the number of airhole
rings.

Modes in fibers with large effective mode area are usually leaky too much with bending.
In this case, the confinement loss for the bent fibers should be evaluated. It can be done by
conformal mapping [96] in which the straight fiber coordinates of refractive index profile
n(x, y) are mapped to its equivalent straight fiber neq(x, y) as in Eq. (3.22):

neq(x, y) = n(x, y) · (1 +
x

reff
), (3.22)

where the fiber is bent in x direction and reff is effective bending radius taking into account
elasto-optic effect [96] that occurs due to an additional change in the refractive index with
bending.
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3.2 Convergence Testing

The FDFD method as well as other numerical methods that solve light modes cannot give
exact answer; they always exhibit numerical errors. The numerical errors should be reduced
to an acceptable level, of course, considering the simulation time and memory requirements.
The accuracy of the FDFD is affected by many parameters of the simulation model, for
example, by the mesh size, number of perfectly match layers (PMLs), their reflections, and
the size of the computational cell. [A.2]

In general, Z. Zhu et al. verified that results fairly accurate can be get by keeping the
mesh size at ∼ λ/15 [86]. However, a fiber design with extremely small mode area usually
require more accurate setting mainly due to the small hole regions near the fiber center.
On the other hand, in most cases of LMA fiber modeling, the mesh size can be larger than
to that recommended by Z. Zhu et al. Convergence testing of all the simulation parameters
can find the optimal set of environment in which the simulation model is created. Z. Zhu
et al. verified the proper grid size by comparing the modal characteristics using different
mode solvers together with convergence of modal birefringence of the fundamental modes.
It is clear from the numerical study by Steel et al. [97] that in symmetric waveguide
structures, the two-fold degenerate fundamental modes are presented. Birefringence of the
fundamental modes is as in Eq. (3.23):

B = |neff,x − neff,y| , (3.23)

where neff,x, and neff,y are the effective indices of the x and y polarized modes, respectively.
The simulation model is verified because of the dependent birefringence of the symmetric
waveguides to the model discretization. A fiber perfectly symmetrical eliminates birefrin-
gence and for ideal simulation set-up the calculated birefringence of two modes should be
zero.

In a convergence test presented in this doctoral thesis, one of the parameters is varied in
N simulation steps, for example, the size of mesh cell dx can be considered as a parameter.
Result σi of each simulation step i is observed and saved. A finer mesh result can be σi that
is then compared with result σi−1 of the previous step i− 1. If the results’ difference ∆σ is
nearly zero, it means that results stop changing, then the mesh size of i−1 simulation test
is probably suitable for the design. The results’ difference ∆σ is defined in the following
equation (3.24):

∆σ(i) =

√∫
(σi − σi−1)2dλ∫

(σi)2dλ
. (3.24)

In the absence of an exact solution, the error estimation of a simulation parameter at the
step i is given by Eq. (3.25), taking into account that the result at step N is much closer
to the exact solution than the result at step i:

∆σN(i) =

√∫
(σi − σN)2dλ∫

(σi)2dλ
. (3.25)
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Figure 3.1: Flow diagram of the fiber design process

The best estimation of the error is for i << N .

The convergence test is used as the important part of the proposed fiber design process;
the flow diagram is show in Fig. 3.1. In the first simulation run of the design process,
the simulation model of a PCF is set for the fast calculation of neff . Then the results
are examined and geometrical parameters optimized. Optimization process is discussed
thoroughly in Sec. 3.3. In the optimization, the diameters of the innermost rings are
usually varied as first; pitch is kept fixed in this step. It is therefore, the mode properties
depend on d/Λ and it is not suitable to tune both parameters concurrently. Once the best
possible properties with the specific pitch are found, the pitch is varied and the airhole
diameters are optimized in a similar way. Results are compared and the best solution
is selected and used for the convergence test of the simulation model of which error is
examined.

On this basis, the simulation model is updated to minimize numerical errors. Especially
the mesh size dx is usually reduced during this step.

Since the convergence is tested after the geometrical optimization, the simulation can
run as fast as possible and the total design time is effectively shortened. Usually final
optimization do not require major geometrical changes. At the end of the design process
it is necessary to verify that simulation model is correct by convergence testing and, if it
is appropriate, adapt the simulation model and the geometry of the fiber. In some cases
the mesh size is not fine enough or the computing region can be too small for optimized
geometry. [A.2]

A similar concept of convergence testing can be found in Lumerical simulation guide-
lines [98]. Convergence tests of the designed fibers in this doctoral thesis are presented in
Appx. B.
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3.3 Design Principles

3.3.1 Near Zero and Dispersion Compensating Designs

Let the author consider a conventional PCF with hexagonal cladding and a finite number of
airholes. The main and sole background material of the PCF is silica whose refractive index
is specified by using Sellmeier formula with the coefficients defined in Ref. 99, Appx. A.
Using silica as the background can be still labeled as best for transmission of optical pulses
in terms of transparency, attenuation, fabrication technology, price, and compatibility
among others. [A.2]

The material dispersion of silica can be tuned by doping. However, the disper-
sion control possibilities are limited, the maximal concentration of dopants is of about
' 20 Mol.% [93] and especially only small changes of the dispersion slope occurs with
doping. The material dispersion of silica with different dopants is shown in Appx. A. The
dispersion curves have nearly same shapes and they are shifted according to the dopant
concentration.

The design power is stored in the waveguide dispersion and it is higher if the effective
mode area is smaller. To obtain a small effective mode area, the spacing between airholes
should be set to be similar size as the considered wavelength. In the proposed PCFs
the chromatic dispersion is controlled mainly by structural parameters, such as airhole
diameter and the spacing between airholes. The airholes of the three innermost rings have
the main contribution to the dispersion control, whereas the airholes of the outer rings
ensure low confinement loss. [A.2]

Generally, the waves at shorter lengths are predominantly confined in the core and
longer waves extend more to the cladding. As a result, the waveguide dispersion decreases
with tighter confinement of the fundamental mode, which is more significant at longer
waves. Since the mode confinement and the effective mode area are mainly controlled
by the dimension of the innermost ring, the desired slope of chromatic dispersion can be
obtained by adjusting the first ring airhole diameter. In the small effective mode area
PCF, the waveguide dispersion strongly depends on refractive index profile, and, as it has
been observed in Ref. 100, the larger airholes in all the other rings increase the waveguide
dispersion. This property is key in the fiber design process.

The influence of more distant airholes from the fiber center is limited. Since the airhole
variation in the second innermost ring is responsible for the opposite effect on the dispersion
slope than the variation in the third ring starting from the fiber center, one can concurrently
tune both the second and the third ring, making the dispersion parameter higher or lower
at all wavelengths. The second ring is closer to the core than the third one. It affects
the properties of the propagated mode more, which is expected, therefore, the concurrent
tuning is responsible for the slight changes in the dispersion slope. [A.2]

In near zero dispersion designs, the chromatic dispersion should be properly set to avoid
nonlinear effects considering mainly the channel spacing, the fiber nonlinear coefficient
and the input power. The effective mode area small enough is usually required to have
the sufficiently strong waveguide dispersion in order to balance material dispersion of the
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fiber.
As discussed in Sec. 3.4.1 the smaller mode area implies higher fiber nonlinearity and

stronger nonlinear effects that can be undesirable for telecommunication links; however,
the higher nonlinearity is key for the supercontinuum generation.

To balance chromatic dispersion penalty in a telecommunication line, a dispersion
compensating fiber (DCF) should be designed to have a negative dispersion parameter
as large as possible and, concurrently, to match its relative dispersion slope (RDS) to
that of non-dispersion shifted fiber (NDSF) with the chromatic dispersion being typically
17 ps·nm−1·km−1 and RDS of about 0.0034 nm−1 at the wavelength of 1550 nm [101].
However, the full dispersion compensation of NDSFs can be undesirable, if the channel
spacing causes nonlinear effects that are limiting factors of transmission capacity. This
issue is similar as for near zero dispersion fibers. In particular, systems using wavelength
division multiplexing must have small residual dispersion Dr, represented as:

Dr = DNDSF · lNDSF +DDCF · lDCF , (3.26)

where lNDSF and lDCF is length of the NDSF and the DCF, respectively. Further, DNDSF

and DDCF are the dispersion parameters of NDSF and DCF, respectively. To utilize large
bandwidth of the optical link, the dispersion slope of the single-mode fiber SNDSF must
be compensated by the dispersion slope of the compensating fiber SDCF , while considering
the residual dispersion. The absolute value of relative dispersion slope (RDS) for both:
the single-mode fiber and DCF is equal:

RDS =

∣∣∣∣DNDSF

SNDSF

∣∣∣∣ =

∣∣∣∣DDCF

SDCF

∣∣∣∣ . (3.27)

The aim is to optimize the geometry to have a proper relative dispersion slope around the
central wavelength of the compensated spectral region and also to have zero dispersion of
the dispersion compensating photonic crystal fiber (DC-PCF) near the zero dispersion of
NDSF to obtain a usable spectrum as broad as possible. [29] It can be done by tuning the
diameters of the three innermost rings, as described in Sec. 4.2.

The chromatic dispersion wavelength dependence for NDSF has been derived by the
study by Nielsen et al. [101]. For designed fibers, chromatic dispersion parameter D and
confinement loss L can be calculated from neff by Eqs. (3.7) and (3.15), respectively.

A fiber with the near zero and large negative dispersion is designed and investigated in
Sec. 4.1 and 4.2, respectively.

3.3.2 Large Mode Area Designs

PCFs with effective mode areas larger than of about 50 µm2 have limited possibilities
to control chromatic dispersion by changing the structure of the investigated fiber; the
waveguide dispersion is lower with larger core sizes and becomes negligible [53]. The goal
for a LMA fiber design is being single-mode guided and bendable with low confinement
loss.
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It is too challenging to design a LCF with LMA that is reasonable bendable satisfying
single-mode condition in Eq. (3.14). Therefore, the single-mode operation in the fiber
is obtained by differential confinement loss for the fundamental and higher-order modes.
Since the fiber length usually used in practical applications is around 3–10 m, the maximum
loss value for the FM and the minimum loss value for the HMs is generally taken as
1 dB·m−1 and 10 dB·m−1, respectively [51]. It should be noticed that these conditions
should be satisfied also for the bent fiber up to at least 10 cm radius.

A typical LMA leakage channel fiber uses six airholes around the fiber center to confine
the fundamental mode [44]. Increase in the airhole diameter reduces confinement loss of the
modes for the both: straight and bent fiber. Applying this, not only the fundamental mode
reduces its confinement loss, but also the higher-order modes, which may be undesirable.
Instead of increasing the airhole diameter, it is rather suitable to add one or more airhole
rings, thereby the loss difference between the fundamental and higher-order modes can
be increased. However, to eliminate HMs, the airhole diameter of the additional rings is
needed to be small. In such an improved structure, the first ring starting from the fiber
center ensures low loss for the fundamental mode in the bent fiber, whereas the remaining
rings make higher-order modes extremely leaky and concurrently confine sufficiently the
fundamental mode as presented in details in Sec 4.2.

The proper setting of the airholes in a LCF structure is one of the particular interests
of the doctoral thesis.

3.4 Basic Mechanisms of Supercontinuum Generation

3.4.1 Pulse Propagation Model

The supercontinuum generation in Sec. 4.4.1 is modeled by using the generalized nonlinear
Schrödinger equation [60] that is expressed in Eq. (3.28). The equation describes both:
linear and nonlinear pulse propagation.

∂A(z, T )

∂z
= −(

∑
k≥2

ik+1

k!
βk
∂kA

T k
+
α

2
)A(z, T )+iγ(1+

i

ω0

∂

∂T
)(A(z, T )

∫ +∞

−∞
R(t′) |A(z, T − t′)|2 dt′),

(3.28)
where A(z, t) is the slowly varying pump light electric field envelope in time T = t − β1z
of co-moving frame at group velocity β−11 , βk are dispersion coefficients expanded by the
Taylor series at carrier angular frequency ω0 as in Eq. (3.2), γ is nonlinear coefficient,
Eq. (3.16), and α represents the waveguide loss. Nonlinear Raman response function R(t),
Eq. (3.29), includes both instantaneous electronic and delayed Raman contributions.

R(t) = (1− fR)δ(t) + fRhR(t), (3.29)

where fR is fractional contribution of the Raman response and delayed Raman contribution
hR(t) is as in Eq. (3.30):

hR(t) =
τ 21 + τ 22
τ1τ 22

e
− t
τ2 · sin(

t

τ1
), (3.30)
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where τ1 defines the photon oscillation frequency and τ2 is related to the characteristic
damping time of the vibrating atoms. A reader can obtain further information about the
pulse modeling via the generalized nonlinear Schrödinger equation in Refs. 60, 102, 103, 104,

In most cases, Eq. (3.28) is numerically solved by split-step Fourier method that solves
the pulse propagation via nonlinear dispersive media. It offers an approximate solution
that takes into account that dispersive and nonlinear effects can be solved independently
for optical pulses propagating over the small steps from segment to segment along distance
z with a small numerical error.

Firstly, in the initial segment the nonlinear effects of the propagating pulse are evalu-
ated, while the dispersive effects are equal to zero. This is done at the step midpoint in the
time domain. Next, the nonlinear effects are equal to zero and the dispersion and fiber loss
are calculated over the step distance in the frequency domain. This is due to the reduction
of the computational time, because the derivative in the time domain is transformed to
the multiplication in the frequency domain. The field solution of the one step is calculated
involving the dispersive and nonlinear effects, now both in the frequency domain and after
that the solution is transformed back to the time domain. The resultant pulse shape is then
used as the input for the next waveguide segment. Thus, the iterations are repeated for
the entire fiber length to obtain final solution. The split-step Fourier method is described
in details in Refs. 60, 103, 104, 105.

A solver used in the doctoral thesis for supercontinuum generation is based on the
Matlab code presented in Ref. 60. The code provides a starting point practical enough for
investigating basic principles of SC generation inside photonic crystal fibers.

3.4.2 Supercontinuum Generation in the Subpicosecond Regime

In Sec. 4.4.1, supercontinuum generation is investigated for the fiber pumped by sub-
pisecond (≤ 100 fs) soliton laser pulses (hyperbolic secant) with an envelope given from
Eq. (3.31):

A(0, T ) =
√
P0 · sech(

T

T0
), (3.31)

The subpicosend pumping is chosen, because many effects related to soliton dynamics can
dominate and generate broader SC spectrum contrary to the picosecond or longer pulse
pumping [106], where Raman scattering and four-wave mixing are considered as main
effects.

In the normal dispersion pumping regime (D < 0), the pulse spectrum initially broaden
symmetrically due to self-phase modulation. On the other hand, in the anomalous disper-
sion regime (D > 0), a soliton of order m is excited if the input parameters satisfy the
condition in Eq. (3.32):

m =

√
lD
lNL

, (3.32)

where lD and lNL is characteristic dispersion and nonlinear length, expressed in Eq. (3.33)



26 CHAPTER 3. METHODS AND DESIGN PRINCIPLES

and Eq. (3.34), respectively:

lD =
T 2
0

|β2|
, (3.33)

lNL =
1

γ · P0

, (3.34)

where P0 is peak power and T0 is pulse duration.
Neglecting the high-order dispersion and Raman scattering, an ideal higher-order soli-

ton periodically varies its temporal and spectral shape and recovers its initial state after
distance zsol = π

2
·LD [60]. However, considering these effects and subpicosecond pumping,

the periodic pulse evolution is broken up through the soliton fission [102] at distance lfiss,
Eq. (3.35), where attains its maximum bandwidth.

lfiss ∼
lD
m

=

√
T 2
0

β2 · γ · P0

. (3.35)

At the fission length, the pulse is split into the m solitons, where each of them experience a
shift to longer wavelengths, due to Raman amplification (soliton self-frequency shift) [107].
Peak powers Ps of m solitons are as in Eq. (3.36):

Ps = P0 ·
(2 ·m− 2 · s+ 1)

m
, (3.36)

where s represents an order in which the solitons are split from the higher-order soliton [60].
The most powerful of the solitons is the first one that mostly experience soliton self-

frequency shift and emits nonsolitonic dispersive waves in the normal dispersion region,
(another wavelengths components also stated as Cherenkov radiation [108]). The energy
from the soliton is transferred, due to the presence of higher-order dispersion to a narrow-
band resonance in the normal dispersion regime. Therefore, the higher-order dispersion af-
fects evolution of the propagating solitons and reduces the magnitude of the self-frequency
shift. The position of the resonance can be determined based on the phase matching
condition [60]. Another significant effect of higher-order dispersion is that conserve the
number of propagating solitons through the fiber [60]. As described in Ref. 109, the pulses
in anomalous and normal dispersion regime can interact via cross-phase modulation and
broaden the SC bandwidth.

A reader can found more information about subpicosecond SC generation in Refs. 60,
102, 103, 104, and 109.



Chapter 4

Results

4.1 Near Zero Dispersion Fiber

Fibers with near zero dispersion cover two fundamental applications. Firstly, they can
substitute the combination of standard single-mode fibers with dispersion compensating
fibers in telecommunication links. Secondly, the zero dispersion and close to zero dispersion
are desirable for supercontinuum generation.

The efforts are made to design a fiber with chromatic dispersion as close as possible to
zero at broad spectral range and to remain confinement loss well below Rayleigh scattering.
It should be noticed that for practical applications in telecommunication, a fiber design
should be performed with chromatic dispersion increased at all wavelengths by the nearly
similar value to reduce nonlinear effects and to keep the flatness of the curve. In order to
set the minimal value of the chromatic dispersion properly, the knowledge on transmission
rate, channel spacing, modulation, power level and length of the fiber is required. (This
investigation is not a part of this doctoral thesis).

To design the near zero chromatic dispersion, the three-fold symmetry [21] is improved
by avoiding GeO2 additives in the fiber core. Such a hexagonal PCF structure with fluorine-
doped three-fold symmetry core (FD-TSC) is depicted in Fig. 4.1. The low-index doped
regions enlarge the mode area and enhance dispersion properties. Contrary to other near
zero dispersion designs presented mainly in Chap. 2, there is one parameter more (the
doped regions) around the core that can control the chromatic dispersion; the chromatic
dispersion can be controlled more precisely.

In the structure, only the fundamental mode is evaluated, since the higher-order modes
suffer from high confinement loss exceeding few dB·m−1. The core consists of a nondoped
silica area surrounded by three fluorine-doped regions and three airholes. Further, the
remaining six rings of airholes and silica core ensure very low confinement loss not exceeding
2.2 · 10−3 dB·km−1 that is even more than adequate for the application. The pure silica
with refractive index nSi = 1.4439 at the wavelength of 1550 nm is used. The low-index
regions with nF = 1.4351 at 1550 nm are obtained by doping silica with 6.1 mol.% of
the fluorine dopant. The Sellmeier coefficients can be found in Appx. A. The low-index
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Figure 4.1: Cross-section and normalized fundamental mode field distribution at 1550 nm.

doped regions guide light as shown in Fig. 4.1, and therefore the effective mode area is
larger in comparison to the same pitch designs, where the airholes of the innermost rings
are reduced, similarly, but omitting the doped regions near the core. Furthermore, the
same pitch designs suffer much larger confinement loss, because of the fundamental mode
that cannot be confined in the core with such a low hole-to-hole spacing. In general, lower
hole-to-hole spacing is desirable for better dispersion control.

The ultra-flattened nearly zero dispersion is obtained by fine tuning the diameter of
the low-index regions, as well as the diameters of the three innermost rings. The airholes
belonging to other rings are larger to ensure very low leakage loss. The variations in
dispersion for each of the mentioned parameters are shown in Fig. 4.2 . The optimum fiber
design exhibits dispersion varied between 〈−0.12; 0.44〉 ps·nm−1·km−1 over the considered
wavelength range 〈1250; 1700〉 nm. Parameters for the optimal fiber design are: diameter
of doped region dd = 0.91 µm, diameter of the innermost airholes d1 = 0.384 µm, second
ring airhole diameter starting from the fiber center d2 = 0.511 µm, third ring airhole
diameter d3 = 0.74 µm, diameter of outer airholes d = 0.75 µm and hole-to-hole spacing
Λ = 0.85 µm.

Ultra-flattened dispersion curves are not restricted by the specific hole-to-hole spacing.
Nevertheless, it has been verified throughout numerical simulations that the best results
are achieved with the hole-to-hole spacing Λ = 0.85 µm. The larger values of Λ reduces
the chromatic dispersion design options and smaller values of Λ increases the confinement
loss.

The simulation model has been verified by the convergence testing to find a tradeoff
between the simulation time and accuracy. The convergence tests of the mesh size and the
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Figure 4.2: Nearly zero dispersion with deviations in diameter of airholes in the first (a)
and the second ring (b) starting from the fiber center.

number of the perfectly match layers are shown in Fig. B.1, Appx. B.

Fig. 4.2 illustrates the wavelength dependence of the chromatic dispersion parameter
for the nearly zero PCF, where diameter of airholes in the first and second rings starting
from the fiber center is a studied parameter. The increase in d1 or dd causes the value of the
dispersion parameter to decrease, which is contrary to the dispersion evolution observed
for the adjustments of all the remaining rings. In such a case, the light is more confined
in the core, if the innermost airholes and the low-index doped regions are made larger. In
other words, more light is reflected back to the core and the effective mode area is smaller.
The waveguide dispersion is increasing with the smaller innermost airholes, especially at
longer wavelengths. This shift can be used to avoid nonlinear effects with small normal or
anomalous-flattened dispersion over a wide range of wavelengths.

On the other hand, the dispersion parameter is increased with larger airholes in the
remaining rings, as depicted in Fig. 4.2(b) and 4.3. In this case, the effective mode area
becomes smaller, but the effective index of cladding is modified significantly and acts
against the contribution of the decreased effective mode area to the waveguide dispersion.
Nevertheless, the contribution of airholes in the third ring to the effective mode area is very
low, and therefore the shifts of the waveguide dispersion are larger at longer wavelengths.
The nearly opposite effect on the dispersion is found for airholes in the second ring.

The changes caused by the variation of airhole diameter in the third ring exhibit an
opposite curve evolution found for the second ring, as shown in Fig. 4.3. Therefore, by



30 CHAPTER 4. RESULTS

Wavelength λ (nm)
1250 1350 1450 1550 1650 1750

D
is

pe
rs

io
n 

pa
ra

m
et

er
 D

 (
ps

·
nm

-1
·
km

-1
)

-4

-3

-2

-1

0

1

2

3

4

Wavelength λ (nm)
1250 1350 1450 1550 1650 1750

D
is

pe
rs

io
n 

pa
ra

m
et

er
 D

 (
ps

·
nm

-1
·
km

-1
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)
Wavelength λ (nm)

1250 1350 1450 1550 1650 1750

D
is

pe
rs

io
n 

pa
ra

m
et

er
 D

 (
ps

·
nm

-1
·
km

-1
)

-4

-3

-2

-1

0

1

2

3

4

d
3
-2% d

3
-1% FD-TSC d

3
+1% d

3
+2%(a)

Wavelength λ (nm)
1250 1350 1450 1550 1650 1750

D
is

pe
rs

io
n 

pa
ra

m
et

er
 D

 (
ps

·
nm

-1
·
km

-1
)

-4

-3

-2

-1

0

1

2

3

4

d
d
-2% d

d
-1% FD-TSC d

d
+1% d

d
+2%(b)

Figure 4.3: Nearly zero dispersion with deviations in diameter of airholes in the third
innermost ring (a) and low-index doped regions (b).

properly combining the variation of airhole diameter in the second and third ring, the
flattened regime of operation can be achieved.

The amount of light reflected from the low-index doped region to the core is low com-
pared to the airholes belonging to the first ring. This is due to the smaller refractive index
contrast. Furthermore, the fundamental mode is spread in the low-index doped regions,
and therefore enlarging the low-index regions shifts the material dispersion curve towards
shorter wavelengths.

An optimal evolution of the dispersion curve can be set by varying the airhole diameter
in the low-index doped region, as shown in Fig. 4.3(b). In addition, attention should be
paid to the fabrication process, especially to the diameter of airholes of the innermost rings.
Here, the position of the dispersion curve is shifted by more than 1 ps·nm−1·km−1, since
deviation is larger than 1 % for the hole diameter. Simultaneously, the curve character is
changed, as well.

The diameter of airholes in the fourth to the seventh ring has little impact on the final
dispersion curve. These airholes, enlarged by 2 %, cause the increase in chromatic disper-
sion parameter about 0.1 ps·nm−1·km−1, thus they are not dispersion tuning parameters
and ensure low confinement loss. The change in hole-to-hole spacing is mainly responsible
for the shift of the optimal curve. In other words, the shift about 1 ps·nm−1·km−1 is caused
by a +2% enlarging pitch. Finally, the fiber dispersion with different dopants around the
core is modeled in Fig. 4.4. The waves with shorter lengths are more sensitive to the dopant
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Figure 4.4: Nearly zero ultra-flattened dispersion with different dopants in the fiber cross-
section

change. Therefore, the ratio between the refractive indices of silica and doped region is
lower at the shorter wavelengths, which results in weaker light confinement. Further, the
dopant change affects the material dispersion. Due to the possibility of controlling the
waveguide dispersion of the three-fold symmetry core (TSC) structure, the nearly zero
dispersion can be achieved with the both: refractive index decreasing or refractive index
increasing dopant.

The satisfactory results can be obtained although doping is avoided, which imply fewer
requirements on the fiber fabrication. Fig. 4.4 shows that the nearly zero dispersion can
be achieved without doping by decreasing diameter of airholes of the second ring by 2 %.
However, doping the regions allow more precisely tuning the dispersion. The optimal
results are achieved by doping the silica with the 6.1.% mol of fluorine dopant. [A.1, A.3]

4.1.1 Summary

The nearly zero ultra-flattened PCF is investigated and designed. The presented fiber
comprises the improved three-fold symmetry core doped by fluorine. It has been shown
that the nearly zero dispersion can be achieved without high-index doping the fiber core.
Required dispersion is achieved for larger operating bandwidth. The effective mode area is
enlarged compared to existing studies. The designed fiber is not immune to deviations in
geometry. The 1% change in diameter of the innermost rings causes the dispersion shift by
more than 1 ps·nm−1·km−1. The slope and inflexion points of the initial curve are affected,
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too.
This investigation demonstrates that the three-fold symmetry core can be composed

without a high-index doped core, and thus doping can be significantly reduced. It is
expected that doping the fiber core can be reduced in other structures aiming at dispersion
optimization, too. [A.3]

4.2 Large Negative Dispersion Fiber

In this section, a PCF is designed by placing the airholes close to the fiber center without
the inclusion of a doped region, which makes the fabrication easier. The goal is not to
present a PCF structure with a novel geometry, but to investigate new limits in designing
a hexagonal PCF as a dispersion compensator for NDSFs. A suitable design technique
is chosen to find the largest negative dispersion parameter in a dispersion compensating
photonic crystal fiber with hexagonal geometry, while keeping a wide operating bandwidth
as well as a low confinement loss.

The designed structural parameters for the proposed DC-PCF to be used for dispersion
compensation as broad as possible are found as: airhole diameter of the innermost ring
d1 = 0.66 µm, of the second and the third rings d2,3 = 0.84 µm, of the remaining rings
d = 2.3 µm, and hole-to-hole spacing Λ = 1 µm between d1 and d2,3. The cross-section of
the PCF is shown in Fig. 4.5.

To obtain almost negligible confinement loss and to minimize the number of airholes
for easier fabrication, two rings with airhole diameter d and with hole-to-hole spacing 2 ·Λ
are used instead of four additional rings with airhole diameter d2,3. Since large air-filling
fraction d/Λ is required to remain confinement loss below the Rayley scattering, the single-
mode condition, d/Λ <∼ 0.4, is not satisfied in the PCF and not only the fundamental
mode can propagate [95]. In particular, the use of small airholes surrounded by larger
airholes is responsible for the multi-mode guidance in the small-hole region. Since the
considered fiber length is about hundreds of meters, the higher-order modes may not be
further investigated owing to their confinement loss higher than 2 db·m−1, and therefore
the proposed fiber is effectively single-mode.

The simulation model that is used to fix these geometrical parameters has been verified
by the convergence test. The reasonably accurate results can be obtained for the proposed
DC-PCF by the simulation model presented in Appx. B. Two of the convergence tests
applied, the test of the mesh size and the test of the number of PLM layers, are shown in
Fig. B.2, Appx. B.

It can be seen in Fig. B.2 that for Mx = 400, which is equivalent to the mesh size
dx = 0.05 µm, the results difference ∆σ is less than 1 · 10−5 and the estimated error ∆σN
is extremely low. For this and finer mesh, the results difference becomes flat and only
slightly differs from the zero value.

Although it is sufficient to control three geometrical parameters to obtain the desired
chromatic dispersion. The requirements are to minimize the number of the design parame-
ters; it facilitates the design process. The achieved chromatic dispersion parameter for the
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Figure 4.5: Designed fiber structure with the fundamental mode distribution for 1550 nm.
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Figure 4.6: Dispersion parameter as a function of wavelength (a) and dispersion slope as
a function of wavelength (b) for varied airhole diameter d1 and d2,3.
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Figure 4.7: Relative dispersion slope of NDSF and designed DC-PCF (a) and residual
dispersion after the dispersion compensation of NDSF by 1 km long DC-PCF (b).

fundamental mode is negative from the wavelength of 1273 nm as depicted in Fig. 4.6(a),
and the relative dispersion slope is in an agreement with that of NDSF over the spectral
range of 1470 to 1700 nm. The range is one of the broadest ever reported and much higher
than in Refs.: 20, 22, 23, 24, 25, 26, 27, 28, 46, A.7. In Ref. 29 four design parameters are
used to design a PCF with the suitable dispersion slope in the spectral range broader than
300 nm. In addition, the chromatic dispersion is about two times less than the one that is
exhibited for the fiber with the structure depicted in Fig. 4.5.

The wavelength dependence of the RDS for both: NDSF and DC-PCF is shown in
Fig. 4.7(a). The negative chromatic dispersion parameter in 1 km long DC-PCF allows to
compensate dispersion in a 7.8 km long NDSF with the residual dispersion varying from
−2.3 to 3.5 ps·nm−1 over the range of 1410 to 1700 nm, as shown in Fig. 4.7(b). By
proper setting d1 and d2,3 parameters it is possible to match the relative dispersion slope
of NDSF in other wavelength bands, while keeping the bandwidth broader than 200 nm.
The author focuses on finding the results for the central wavelength of 1550 nm, broadly
used in telecommunications.

In order to show how chromatic dispersion is affected by the structural parameters,
the chromatic dispersion and the dispersion slope wavelength dependence is depicted in
Fig. 4.6(a) and Fig. 4.6(b), respectively, where d1 and d2,3 are varied and Λ fixed. From
Fig. 4.6(b) it can be written that the dispersion slope is affected mainly by the airhole
diameter of the innermost ring. Airhole diameter d2,3 has also the influence on dispersion
slope, as depicted in Fig. 4.6(b). The desired slope around 1550 nm is found by proper
setting both d1 and d2,3. The influence of each structural parameter on chromatic dispersion
is described in more details in Chap. 3. Scaling the structure down decreases the dispersion
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parameter to be lower at all the wavelengths. In a fiber drawing process, it is difficult
to achieve diameters precisely and some deviation usually occurs. Since the chromatic
dispersion is the most sensitive to deviation of the three innermost rings, the effect of 1%,
2% and 5% variation of d1 and d2,3 is investigated on the fiber performance.

If d1 and d2,3 is changed by ±1 % (it is the estimated deviation to occur during the
potential fabrication), the residual dispersion is numerically found to be between −12 and
18 ps·nm−1 by using the 1 km long DC-PCF within the considered range. The chromatic
dispersion can remain unbalanced from −26 to 34 ps·nm−1 for 2% variation of the parame-
ters and from −63 to 90 ps·nm−1 for 5%. The dispersion deviation caused by imperfection
during the fabrication ought to be larger at longer wavelengths, due to the differences in
mode confinement for different wavelengths.

In spite of the fact that the relative dispersion slope is in agreement over the large
range of operating wavelengths with the relative dispersion slope of standard SMFs, the
negative dispersion parameter is not higher than that in commercially available dispersion
compensating fibers. Therefore the structural parameters are optimized to increase the
confinement of the fundamental mode in the core, which, in fact, leads to smaller effective
mode area and lower chromatic dispersion. However, if the effective mode area is extremely
small and the mode is not confined enough in the core by cladding airholes, electric and
magnetic fields extend outside the core into the cladding and modes become too leaky.
Since the waveguide dispersion is dependent on the mode confinement, the minimal value
of the chromatic dispersion parameter is limited by the allowable area of the effective mode.

The airholes are proposed to be closer to the fiber center by changing hole-to-hole
spacing Λ from 1 µm to 0.85 µm and the innermost airholes are enlarged to the maximum
value d1 = 0.83 µm. The diameter cannot be enlarged more because of the confinement
loss, which significantly grows if the innermost airholes are made larger. The confinement
loss is about 10 times higher if d1 is enlarged by 5%. In fact, the core diameter is comparable
to length of the wave and the mode cannot be confined enough in the core and extends
outside to the cladding resulting in the outer defect mode, which propagates through
the airholes with diameter d2,3 = 0.7 µm, but with high confinement loss. It can be
observed especially at longer wavelengths, where the confinement loss wavelength function
is exponential. Coupling between the fundamental and the defected mode occurs if and only
if the phase and loss matching conditions are met concurrently. Near the phase matching
wavelength, the propagation characteristics of the one mode transfer to the other mode
and the minimal value of the chromatic dispersion parameter is found at this wavelength.
The phase matching wavelength can be set by adjusting d1 and d2,3 parameters. In the
fiber design, it has been found through the numerical simulations that by changing d2,3 the
desired dispersion slope around 1550 nm can be set, whereas d1 should be fixed for obtaining
the minimal value of the chromatic dispersion parameter. Thus, fixing d1 (minimal value of
the chromatic dispersion is obtained) and varying d2,3 parameter, the suitable dispersion
slope can be set. It should be noticed that Λ is the same as for the near zero design
presented in Sec. 4.1, but the modified DC-PCF exhibits much higher confinement loss.
This is because of larger airhole diameters of the innermost ring and furthermore the doped
region, in which the FM can propagate, is missing.
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Figure 4.8: Modified fiber structure with the fundamental mode distribution for 1550 nm.
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Figure 4.9: Dispersion parameter as a function of wavelength (a) and dispersion slope as
a function of wavelength (b) for varied airhole diameter d1 and d2,3.
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Since using two outer rings of airholes in Fig. 4.5 is not sufficient to keep confinement
loss below 1 dB·m−1 at 1550 nm, the modified structure has five outer airhole rings with
diameter d = 0.8 µm. Also the higher-order modes exhibit lower confinement loss than the
fundamental mode in this case. The modified structure of the designed DC-PCF is shown
in Fig. 4.8. Since the airholes are close to the fiber center as well as due to the outer defect
mode, which is propagated through the airholes with diameter d2,3, the large negative
dispersion parameter is more less −1600 ps·nm−1·km−1 at the wavelength of 1550 nm in
the modified DC-PCF. This is the limit value of the design. The author predicts that
the negative dispersion parameter cannot be further minimized in the small effective mode
area photonic crystal fibers, while keeping the operating bandwidth larger than 120 nm
and low confinement loss. It should be noticed that it is redundant to tune the diameters
on three or more decimal places to achieve lower dispersion parameter, because the effect
is comparable to the small numerical error that the simulation model exhibits.

The simulation model has been updated based on the structure in Fig. 4.8. The size of
the computing cell in x and y direction, respectively, and the mesh size dx are the updated
parameters. The convergence tests are shown in Appx. B in Fig. B.3.

The lower diameter d2,3 facilitates the outer mode enlargement and the both modes are
matched at shorter wavelengths. The wavelength dependence of chromatic dispersion for
the variation of its structural parameters is shown in Fig. 4.9(a). The change in diameter,
which allows extending the mode to the outer core (increasing d1, decreasing d2,3) causes
more significant dispersion changes. In modified DC-PCF it is undesirable to achieve
phase matching wavelength close to the 1550 nm for the high confinement loss. The
dispersion parameter grows upon the phase matching wavelength due to the more energy,
which is in the outer defect mode than in the fundamental mode. The light waves upon
the phase matching wavelength are unsuitable for dispersion compensation owing to the
opposite dispersion slope and high confinement loss exceeding few dB·cm−1. The calculated
confinement loss of the modified structure is about 0.05 dB·km−1 and 128.6 dB·km−1 at
1550 nm and 1700 nm, respectively.

The length of the modified fiber can be more than ten times shorter than in the case of
the fiber with the structure shown in Fig. 4.5. On the other hand, the relative dispersion
slope matches the RDS of NDSF in approximately three times shorter wavelength range.
The RDS for the modified fiber structure is shown in Fig. 4.10(a).

The residual dispersion is about ±6 ps·nm−1 from 1496 to 1615 nm, if the dispersion
in 90.8 km NDSF is compensated by the 1-km long modified DC-PCF, as depicted in
Fig. 4.10(b). Thus, the length of the modified fiber can be more than ten times shorter,
while the residual dispersion is doubled in contrast to the fiber, of which cross-section is
shown in Fig. 4.5. However, for broader range of wavelengths the residual dispersion is
much higher, for example at 1700 nm, the residual dispersion is about −200 ps·nm−1. The
modified DC-PCF is the most vulnerable if d1 is made larger and d2,3 smaller leading to
the shorter wavelength of the phase matching that results in the higher influence of the
outer defect mode.

The modified fiber is less immune to deviations originated during the potential fabri-
cation process. The 2% deviation in diameter d1 and d2,3 increases the residual chromatic
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Figure 4.10: Relative dispersion slope of NDSF and designed DC-PCF (a) and residual
dispersion after the dispersion compensation of NDSF by 1 km long modified DC-PCF (b).

dispersion up to 105 ps·nm−1 considering 1 km long compensating fiber and the assumed
bandwidth.

Both DC-PCFs have similar small effective mode area being 1.92 µm2 and 1.87 µm2,
respectively (at 1550 nm). It is therefore, the modified fiber has the outer core, where
the outer defect mode is propagated. It is worth mentioning that the difference between
the mode areas of the NDSF and the compensating fibers is high and the splice loss is
significant. The splice loss of the both proposed fibers is 15.3± 0.5 dB over the considered
range and increases as wavelength decreases, due to the mode area, which is smaller at the
waves with longer wavelengths. The splice losses are not considered in the fiber designs,
because there are technology processes that allow their reduction to the negligible level.
The splice loss can be significantly reduced for example by tapering and fattening [110].
Such small mode area fibers are also highly nonlinear, therefore an attention should be paid
to telecommunication links, where channel spacing, power of lasers, and residual chromatic
dispersion should be set to reduce nonlinear effects. This doctoral thesis is focused on the
fiber design and the influence of such a high nonlinearity on the telecommunication link
is not investigated. The designed fibers have much smaller effective mode areas than
photonic crystal fibers introduced in Chap. 2 except one in Ref. 23. On the other hand,
the designed fibers have unique dispersion properties, not achievable in the previously
published papers. [A.2]

4.2.1 Summary

In this section, the fiber structural parameters have been verified from the perspective of
the dispersion limitations in the design of the small effective mode area photonic crystal
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fiber.
The main contribution of the section is the proposed fiber with one of the best matching

of the relative dispersion slope as the referred to the standard fiber to be compensated.
Beyond this, the fiber has been modified to find the tradeoff between the minimal value of
the chromatic dispersion parameter and the operating bandwidth. It has been confirmed
through the numerical simulations that the chromatic dispersion parameter cannot be
further reduced, below −1600 ps·nm−1·km−1 at 1550 nm, while keeping the high operating
bandwidth, and low confinement loss. The structure contains small amount of airholes
compared to other designs. Further, three different design parameters are used, which can
ease a potential fabrication. The achieved results cannot be found in similar paper on this
topic.

The designed fibers are sensitive to deviations caused during the potential fabrication
and diameters of the innermost airholes should be maintained within the 1% tolerance.
The mechanisms of the control of chromatic dispersion in the proposed fibers are described
in details. In a similar way, the desired chromatic dispersion wavelength dependence can
be obtained to compensate dispersion in other single-mode fibers broadly used in telecom-
munication, among others. [A.2]

4.3 Narrowband Optical Fiber Filter

This section presents a novel design of a narrowband photonic crystal fiber filter based on
the phase matching between the inner fundamental mode and leaky outer defect mode. The
proposed dual-core PCF-based filter with the germanium dioxide doped region is designed
by investigating the influences of the fiber geometry on filtering characteristics.

A structure under investigation is a conventional photonic crystal fiber with silica back-
ground, doped core and hexagonal cladding. PCFs have usually exponential leakage loss
wavelength dependence, and their filtering possibilities are limited.

In the structure, germanium dioxide is preferred for doping, because, to the best of the
author’s knowledge, no efforts have been made to design a dual-core PCF filter with a doped
core by GeO2, although it is very promising in terms of transparency and manufacturability.

The fundamental mode within a pass-band is confined enough in the core by the in-
nermost ring of airholes with large airhole diameter d1. The significant coupling between
the fundamental and outer defect mode can occur, if the inner core is similar size as the
wavelength. The larger core fibers have usually high effective index difference between the
inner and outer mode and the outer core feel negligible effect from the inner core. Gener-
ally speaking, the airholes should be close to the core and hole-to-hole spacing Λ should
be lower than 2 µm taking into account 2 µm as the maximal wavelength that can be used
in silica fibers, due to the absorption loss.

The outer core, where the defect mode is guided, can be formed by removing the
airholes of selected rings or by reducing their diameters. The reduced diameters are more
suitable, because these airholes confine the fundamental mode and keep the low loss within
the pass-band with the minimal number of airhole rings. On the other hand, the airholes
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Figure 4.11: Proposed fiber structure with the normalized mode field distribution at the
wavelength of 1 µm (a) and 1.55 µm (b) with strong coupling.

should be small enough to allow guidance of the outer defect mode.
Dual-core fibers for dispersion compensation contain frequently more additional airhole

rings with proper size of airhole diameter to have adequate confinement of the both modes.
However, to filter wavelengths, the outer defect mode remains leaky.

The designed fiber yields high chromatic dispersion at the wavelengths, where strong
coupling occurs. In dual-core fibers the value of chromatic dispersion is of the order of
thousands of ps·nm−1·km−1. Since the fiber length necessary for the wavelength filtering is
one meter, maximal, the chromatic dispersion may not be calculated especially for its low
value around the filter cut-offs. The wavelengths that suffer the most on high dispersion,
are filtered.

The filter properties are investigated on the optimized fiber with the stop-band from
1.54 to 1.56 µm. In optimization, the hole-to-hole spacing has been verified to be Λ =
1.75 µm as the most suitable. The spacing is large enough to allow a fabrication, and
concurrently, the sufficiently high coupling between the both modes occurs.

The suitable fiber structure that can be used as the filter has been predicted and
its cross-section is shown in Fig. 4.11. To cover the large part of the core area by higher
refractive index material, the diameter of the doped region dr is fixed as dr = Λ = 1.75 µm.
Through the simulations, it has been confirmed that the minimal number of airhole rings
should be N = 5. The obtained stop-band can be achieved by diameter of the innermost
airholes d1 = 1.53 µm, of the cladding airholes d2 = 0.9 µm, and of the outermost airholes
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Figure 4.12: Effective refractive index (dash-dot line) and confinement loss (solid line)
wavelength dependence of the designed fiber with stop-band near the wavelength of
1.55 µm. The fiber doped by GeO2 is considered.

d3 = 1.05 µm. The one of the contributions of this structure is that the geometrical
parameters are as large as possible. Only one parameter, cladding airholes diameter d2, is
less than 1 µm. This makes fabrication as simple as possible. For example, most of the
photonic crystal fibers presented in the state of the art have airhole diameters much smaller.
The final simulation parameters are summarized and their correct setting is verified in
Appx. B.

As for the designed filter, the fundamental mode is guided in the outer core upon the
phase matching wavelength, but the sufficiently large amount of energy remains in the
inner core, where the higher-order mode is guided. This mechanism is on the contrary to
the mechanisms of the conventional dual-core PCF; the field of the inner mode transfers
to the outer core, where is confined and guided. The leakage loss of the designed fiber for
the inner core mode are not higher than 0.1 dB·cm−1 up to the wavelength of 1.75 µm.

The loss of the inner core mode upon the phase matching wavelength is much higher
than for the same mode below this wavelength. It is due to the energy transfer to the outer
core. However, the remaining optical field is still high enough and the loss are much lower
than for the fundamental mode guided in the outer core. This is the main idea of this
paper that it is possible to keep sufficiently low loss upon the phase matching wavelength.
The 10 cm long fiber can work as a stop-band filter with 1 dB maximal leakage loss in the
longer wavelength pass-band.

The mode coupling within the narrow spectrum occurs due to the high mode confine-
ment by the innermost airhole ring and by the doped core, concurrently. The high-index
doped core significantly changes the effective index and strongly confines the inner mode
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Figure 4.13: Effective refractive index (dash-dot line) and confinement loss (solid line)
wavelength dependence of the designed fiber with stop-band near the wavelength of 1.4 µm.
The nondoped fiber is considered.

in the core. The main difference between the designed dual-core PCF doped by germa-
nium and the nondoped dual-core PCF can be observed comparing Fig. 4.12 and Fig. 4.13,
respectively. If the designed fiber is doped, the refractive index of the inner core increases.
The effective index difference is much higher for the shorter wavelengths than for the non-
doped fiber, where the phase matching occurs at 1.4 µm and vice versa. It can be seen that
the modes guided through the nondoped outer cores of the both fibers have nearly similar
effective index. The inner core doping has the negligible effect on the effective index of the
outer core.

The influence of size of GeO2 doped region is depicted in Fig. 4.14(a). The fiber has
low sensitivity on the GeO2 core size. It can used to tune the desirable position of the
stop-band, precisely. The 10% increasing of the size shifts the phase matching wavelength
by 0.01 µm to the longer wavelengths. The filter full width at half maximum remains
similar for the different sizes of the doped region. The larger doped region confines more
the mode in the core, and therefore the confinement loss are lower at the pass-band. On
the other hand, the negligible effect on the outer core mode can be observed.

Similarly, the outer core mode is affected by increasing or decreasing the innermost
airholes, as depicted in Fig. 4.14(b). The larger innermost airholes shift the phase matching
to the shorter wavelengths. It facilities the energy transfer from the inner to outer core
for shorter wavelengths. The effective index difference is nearly zero at a narrower band
of wavelengths which decreases the full width at half maximum. The fiber sensitivity on
the size of the innermost airholes is high, their enlargement of 2.5 % changes the phase
matching wavelength by 0.1 µm.
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Figure 4.14: Confinement loss wavelength dependance, where GeO2 core size dr (a) and
diameter of the innermost airholes d1 (b) is an investigated parameter.
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Figure 4.15: Confinement loss wavelength dependance, diameter d2 (a) and diameter
d3 (b) is an investigated parameter.
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The opposite shift of the phase matching wavelength is found for the 2.5% enlargement
of cladding airhole diameter d2, as shown in Fig. 4.15(a). The larger airholes confines
the inner core mode more and the phase matching is observed for the longer wavelengths.
However, the outer core mode is guided with higher confinement loss. The outer core mode
cannot be propagated through the airholes and higher amount of the energy is reflected
from them and leaks out.

The larger outermost airholes with diameter d3 decrease confinement loss for the inves-
tigated spectrum. Therefore, if d3 is properly set, sufficiently low loss for the pass-bands
is ensured. Varying d3 by 5 % has negligible effect on phase matching, as can be observed
in Fig. 4.15(b), but the confinement loss is significantly affected.

The designed fiber has small effective mode area of the inner mode about 2.5 µm
within the investigated spectrum. Conventional optical fibers have usually mode areas
about 70 µm2. The high difference between the mode areas can cause high splice loss, if
for example the tapering and fattening is not employed. On the other hand, the designed
filter can eliminate coupling problems of small effective mode area fibers, where one need
to filter narrow spectrum of wavelengths. [A.11]

4.3.1 Summary

The proposed dual-core photonic crystal fiber-based filter with the germanium dioxide
doped region is designed by investigating the influences of the fiber geometry on filtering
characteristics. It has been found that the sufficiently high transparency of the pass-
bands is set by the outermost airhole ring. On the other hand, by increasing the airhole
diameter of the innermost ring, the phase matching wavelength experiences a shift to
shorter wavelengths. The phase matching is similarly affected by the larger airhole diameter
of the remaining airholes. These diameters are the most responsible for the confinement
loss of the investigated spectrum.

Understanding the mechanisms, the fiber parameters have been optimized to obtain
the stop-band from 1.54 to 1.56 µm with the confinement loss higher than 20 dB·cm−1.
On the other hand, the loss in the pass-band are kept well below 1 dB for the 10 cm long
fiber. The coupling between the inner and outer core has been found in the narrowband
of wavelengths. Such a property is due to the strong mode confinement caused by the
sufficiently large diameter of the innermost airholes and by the presence of the doped
region, concurrently.

The position of the stop-band is very sensitive to any geometrical deviations. The
author predicts that the high sensitivity can be used to design a distributed fiber sen-
sor. [A.11]

4.4 Large Mode Area Fiber

A symmetric large mode area leakage channel fiber reported in this section is designed to
be reasonably bendable and to guide effectively single-mode from 2 to 9.5 µm. For this
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Figure 4.16: Fundamental mode field distribution inside the designed fiber with bending
radius rb =∞ (a) and 20 cm (b). The fundamental (c), the second- (d) and the third- (e)
order mode field distribution in the straight fiber.
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Figure 4.17: Dispersion parameter of the chromatic and material dispersion (a). Con-
finement loss as a function of the wavelength for the fundamental, the second- and the
third-order mode, respectively (b). In (b), the number of the outer rings with diameter
d is considered as a parameter. The solid line is for the 2 outer rings, the dash-dot line
for the 1 outer ring and the dashed line for the structure having the only one ring with
diameter d1.

purpose, As2S3 chalcogenide glass transparent from 0.57 to 11.8 µm is used as the fiber
background for its transparency and high nonlinearity. The mode properties obtained via
the FDFD are used as an input for a numerical investigation of supercontinuum generation
inside the designed fiber. The simulation is carried out with the parameters described and
verified in Appx. B.

Let the author consider a conventional leakage channel fiber as an initial structure
as the one presented in the study by L. Dong et al. [44]. The fiber consists of 6 airholes
surrounding the fiber core. The fiber is effectively single-mode and bendable with negligible
confinement loss that are kept for bending radius up to rb = 10 cm.

Although the fiber operates well, a design goal is to improve the fiber modal properties.
The author confirmed through the numerical simulations that the confinement for the
straight and bent fiber can be significantly improved by adding two airholes rings with
sufficiently small airhole diameter. Such a modified fiber structure is shown in Fig. 4.16,
where hole-to-hole spacing Λ = 35 µm, airhole diameter of the inner ring d1 = 20.5 µm
and of the outer rings d2 = 4 µm. Due to the large hole-to-hole spacing, the fiber effective
mode area is as large as Aeff ' 683 µm2 at the wavelength of 2 µm and increases for longer
wavelengths. At the maximal wavelength of the considered band (9.5 µm) is Aeff equal to
741 µm2. The material properties such as linear and nonlinear refractive index of As2S3

chalcogenide glass are taken from Ref. 111.
The waveguide dispersion is nearly zero and the material dispersion is roughly equal to
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Figure 4.18: Confinement loss as a function of the wavelength for the fundamental, the
second and the third-order mode, respectively. In (a), d1 is considered as a parameter. The
solid line represents the designed fiber with d1, the dash-dot line is for d1 − 10 % and the
dashed line for d1 + 10 %. In (b), d is considered as a parameter. The solid line represents
the designed fiber with d, the dash-dot line is for d−10 % and the dashed line for d+10 %.

the chromatic dispersion, as depicted in Fig. 4.17(a). The zero dispersion wavelength of
the fiber is about 4.7 µm and it can be tuned only within the narrow wavelength spectrum,
while keeping the LMA and avoiding doping.

It can be seen in Fig. 4.17(b), the confinement loss of the FM decreases, if one or more
rings with diameter d are placed around the fiber center, and moreover as an advantage, the
confinement loss of the HMs increases. The effective single-modeness is improved. Since
the loss difference between the structures with one and two rings with diameter d is not
so significant, it is redundant to add another airhole ring and it can be stated that the
number of the airhole rings is optimized.

Contrary to this mechanism, increased diameter d1 reduces the confinement loss for
both the FM and HMs, moreover the large difference is kept between the loss of the FM
and HMs, Fig. 4.18(a). The aim is to set the loss of the FM by d1 bellow the given level
within the considered spectrum. Similarly, as expected, the confinement loss are reduced
if diameter d is larger, Fig. 4.18(b). This works perfectly, the confinement losses decreases
with the larger diameters. However, an attention should be paid, if the fiber is bent. In
this case, diameter d should be sufficiently small in order to make the HMs leaky as much
as possible.

Since the larger airhole dimensions allow for better control of the airholes during the
fabrication process, it is a particular advantage of large mode area fibers, the airhole
diameters are kept during the optimization to be at least 4 µm in diameter. Thus, in the
first step, d is fixed to be 4 µm and after that d1 is found by increasing or decreasing
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Figure 4.19: Confinement loss as a function of bending radius rb for the fundamental, the
second- and the third-order mode, respectively at the wavelengths of 1.5 µm (a), 2 µm (b),
4 µm (c) and 9.5 µm (d).
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its diameter with regards to the confinement losses of the modes for the straight and bent
fiber. However, a designer can found that is limited. In some cases there is no possibility of
obtaining the desired losses by tuning d1. This occurs if and only if the hole-to-hole spacing
is too high causing that the HMs are strong especially for the bent fiber. Generally accepted
view is that higher-order modes are always stronger for the larger cores. In particular, this
occurs for shorter wavelengths. To optimize the fiber, the goal is to find maximal Λ for
which the desired loss for the FM and HMs can be set by tuning d1. For the considered
fiber, the maximal hole-to-hole spacing is equal to 35 µm.

The effective mode area can be further enlarged, if d is decreased below this value.
It allows increasing the hole-to-hole spacing and first airhole diameter that is desirable,
because of the HMs being leaky enough, while the FM is well confined. However, the
benefit of the larger mode area is strongly compensated by increased fabrication efforts.

The fiber is effectively single-mode in the spectral region from 1.5 to 9.5 µm, as shown
in Fig. 4.17(b). The wavelength of 9.5 µm is the maximal that can be used, because of the
limit given by confinement loss of the fundamental mode that is higher than 0.25 dB·m−1
at longer wavelengths. The maximal considered length of the designed fiber is 3 m. In
such a case, the confinement loss is lower than 1 dB and lower than 1.5 dB for the bent
fiber at rb = 10 cm considering the wavelength of 9.5 µm It should be noticed that the
material loss of chalcogenide fibers are usually higher than 1 dB·m−1 [56].

As shown in Fig. 4.19(a), the designed fiber is not effectively single-mode at the wave-
length of 1.5 µm for the bending radius lower than 60 cm. The loss ratio between funda-
mental and second- or third-order mode is not high enough. For the wavelengths longer
than 2 µm, the confinement loss of SM and TM are higher than 5 dB·m−1 for all the
bending radius up to rb = 10 cm, as can be seen in Fig. 4.19(b), (c), and (d). It can be
stated that the loss value 5 dB·m−1 is high enough to guide light effectively single-mode.

4.4.1 Supercontinuum Generation

Supercontinuum generation is numerically investigated inside the designed fiber using the
generalized nonlinear Schrodinger equation solved by split step Fourier method that is
described in Sec. 3.4.1 considering the first k = 1–10 Taylor series coefficients βk of phase
constant β(ω). As shown in Fig. 4.17(a), the fiber chromatic dispersion is nearly similar
to the material dispersion, especially at short wavelengths. Since the material dispersion
can be obtained analytically by the second derivative of the Sellmeier equation, Appx. A,
there is a possibility of varying the Sellmeier coefficients to find the Sellmeier equation for
the effective refractive index associated with the chromatic dispersion.

In principle, this can be considered as an advantage, because ∂kβ0
∂ωk

is calculated as
a derivative of the function and not as a derivative of the discrete-value vector, which
is obtained through the FDFD. Thus, the discrete-value vector is approximated by the
Sellmeier equation to reduce the noise during the calculation of the higher-order derivatives.
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Figure 4.20: Supercontinuum generation inside the LMA fiber pumped at 3.5 µm.
It should be noticed that 40 dB scale is applied to all density plots.

The effective refractive index is approximated by Eq. (4.1):

n2
eff (λ) = 1+

1.898368 · λ2

λ2 − 0.0225
+

1.922298 · λ2

λ2 − 0.0625
+

0.8765138 · λ2

λ2 − 0.1225
+

0.118808 · λ2

λ2 − 0.1764
+

0.977798 · λ2

λ2 − 641.6342
.

(4.1)
It should be noticed that Eq. (4.1) is valid only for the designed fiber with the structure
presented in Fig. 4.16.

Nonlinear coefficient γ = 0.0088 W−1·m−1 is obtained from Eq. (3.16), where nonlinear
refractive index n2 is 4.8 · 10−18 W2·m−1 and effective mode area Aeff is 697 · 10−12 m2 for
pump wavelength λ0 of 4.9·10−6 m. As2S3 glass coefficients of the Raman response function,
Eq. (3.29), are fR = 0.0031, τ1 = 15.2 fs, and τ2 = 230.5 fs. The nonlinear coefficient can
be further enhanced by decreasing the effective mode area or by using another background
material with the higher nonlinear refractive index. For example n2 of As2Se3 chalcogenide
glass is about 7 times higher than that of As2S3 used in the fiber design.

The numerical model of the fiber is not related to the specific fiber manufacturer.
Therefore, the fiber loss is not considered exactly in the SC simulation; it is considered
to be 1 dB·m−1 at all wavelengths of the range. The value is equal to the minimal loss
value, which can be achieved by the chalcogenide material. As compared with this value
the confinement loss are negligible. Manufacturers use various technologies, materials and
before the fabrication, the fiber loss should be modeled more precisely.

To generate supercontinuum, the soliton laser pulse with an envelope given from
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Figure 4.21: Supercontinuum generation inside the LMA fiber pumped at 4.5 µm.

Eq. (3.31) of width T0 = 100 fs and peak power P0 = 50 kW is considered to be injected
inside the 10 cm long designed fiber segment. It should be noticed that these parameters
are fixed throughout simulations in the both dispersion regimes. The variation of SC is
investigated for different pump wavelengths in Figs. 4.20, 4.21, 4.22, and 4.23.

In Fig. 4.20, the supercontinuum is depicted for the normal dispersion pumping regime
at the wavelength of 3.5 µm, which is far from the ZDW. The SC generation as narrow
as 1.923 µm (from 2.824 to 4.747 µm) is dominated by self-phase modulation that can be
observed as nearly symmetrical pulse broadening.

Increasing pump wavelength λ0 to 4.5 µm close to the ZDW, but still lying in the
normal dispersion pumping regime, the SC generation in Fig. 4.21 is initiated by SPM.
With further propagation, the light passes the ZDW into the anomalous dispersion regime,
where initiates soliton dynamics and consequently the soliton fission. Combining with
Raman amplification, increased spectral broadening in the long wavelength side is resulted.
The generated SC spans from 3.272 to 8.658 µm that is about 2.8 times broader than for
pumping the fiber far from the ZDW in the normal dispersion regime.

As shown in Fig. 4.22, pumping the fiber in the anomalous dispersion regime at the
wavelength of 4.9 µm near the ZDW, SPM initiates the pulse broadening, before the
fission of the higher-order soliton occurs at lfiss ' 0.026 m. Although the soliton of order
m ' 11.5 is broken up through the fission, the only one soliton (red shifted by Raman
amplification) is apparent in the spectrum. Remaining solitons are concentrated around
the pump wavelength creating a relatively uniform spectrum. Generally speaking, the local
value of β2 is low near the ZDW, so distance (∼ 5 · lD ' 1.5 m) at which the solitons begin
to separate is much longer with respect to the fiber length [60].

Dispersive wave generation and cross-phase modulation are expected to occur between
the solitons and normal dispersion wavelength components, but they are difficult to isolate
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Figure 4.22: Supercontinuum generation inside the LMA fiber pumped at 4.9 µm.
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Figure 4.23: Supercontinuum generation inside the LMA fiber pumped at 6.5 µm.



4.4. LARGE MODE AREA FIBER 53

in the spectrum. However, a low power dispersive wave at the wavelength of 2.26 µm can
be observed in Fig. 4.22(b). At the end of the fiber segment, the generated supercontinuum
yields -20 dB bandwidth within the spectral range from 3.270 to 8.9 µm.

Spectral evolution of the SC is illustrated in Fig. 4.23 by pumping the fiber at 6.5 µm
in the anomalous dispersion regime located far from the ZDW. The SC evolution is gov-
erned by soliton dynamics, in which propagating soliton of order m ' 3.043 is temporally
compressed and spectrally broadened. At fission length lfiss ' 0.0091 m, the soliton is per-
turbed into the 3 fundamental solitons responsible for the spectral broadening. Since local
value of β2 ' −359.4 ps2 · km−1 is high, soliton separation distance (∼ 5 · lD ' 0.139 m)
is of a similar size as the investigated fiber segment and all ejected solitons through the
fission that experience a shift to the long-wavelength side can be observed in the spectrum.

A dispersive wave is generated at the wavelength of 3.087 µm, but its peak power is
extremely low. The supercontinuum spectrum spans from 5.539 to 8.3 µm if the -20 dB
bandwidth is considered.

In the next set of simulations with varying pulse duration T0, the pump wavelength
and peak power are kept fixed at λ0 = 4.9 µm and P 0 = 50 kW, respectively. The shorter
pulse duration is associated with lower soliton order m, shorter fission length lfiss and
quadratically shorter soliton separation length (∼ 5 · lD). The differences in the soliton
order and fission length are apparent interpreting the results for the pumping by pulses
with duration T0 = 50 fs and T0 = 200 fs shown in Figs. 4.24 and 4.25, respectively.
More specifically, 50 fs pulse pumping is related to: m ' 5.747, lfiss ' 0.013 m and
∼ 5 · lD ' 0.374 m, whereas for 200 fs pulses to: m ' 22.989, lfiss ' 0.0521 m and
∼ 5 · lD ' 5.985 m.

One of the key differences between the Fig. 4.24 and Fig. 4.25 is the initial spectral
propagation, where for 200 fs pumping the spectral broadening is significantly reduced and
governed by different dynamics. In this case, not only SPM is responsible for the initial
soliton evolution of 200 fs pulse, but also FWM and modulation instability [60]. These
effects causes the fast modulation of the pulse envelope responsible for the soliton break up
rather than soliton fission process, as can be seen in Fig. 4.25, where the soliton is broken
up into the train of pulses earlier than at fission length lfiss ' 0.0521 m. However, the
soliton self-frequency shift and dispersive wave generation occurs also for the modulation
instability induced break up as observed in Fig. 4.25. Thus, the dynamics for 50 fs, 100 fs,
and 200 fs pulse pumping is similar as well as the achieved spectral bandwidth.

In the final set of simulations different pump peak powers are applied on the SC gener-
ation, whereas all other pulse parameters are fixed. The SC evolution for the pump pulse
with peak power P0 of 25 kW yields the soliton of order 8.128 that is broken up through the
fission at 0.0368 m, as shown in Fig. 4.26. In Fig. 4.27, with the peak power increasing to
100 kW order m of the soliton increases to 16.256 and soliton fission length lfiss decreases
to 0.0184 m. Soliton separation length ∼ 5 · lD is independent on the peak power. As
expected, the higher pulse peak power broaden the spectral evolution. For the 100 kW
pulse peak pumping the SC is as broad as 5.955 µm from 3.217 to 9.172 µm. As well as
for other simulations with pulse duration T0 ≤ 100 fs, the pulse broadening is initiated by
self-phase modulation followed by soliton-related dynamics.
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Figure 4.24: Supercontinuum generation inside the LMA fiber, the pulse duration of the
pump pulse is decreased to 50 fs.
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Figure 4.25: Supercontinuum generation inside the LMA fiber, the pulse duration of the
pump pulse is increased to 200 fs.
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Figure 4.26: Supercontinuum generation inside the LMA fiber, the peak power of the
pump pulse is reduced to 25 kW.
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Figure 4.27: Supercontinuum generation inside the LMA fiber, the peak power of the
pump pulse is raised to 100 kW.
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4.4.2 Summary

The large mode area fiber is designed to improve modal properties of the typical leakage
channel fiber by adding two rings of sufficiently small airholes. This allows enlarging
of modal area keeping the single-mode regime of operation, because the additional rings
decreases confinement loss of the fundamental mode and concurrently increases confinement
loss of the higher-order modes.

Supercontinuum is numerically obtained in the designed highly nonlinear chalcogenide
fiber with large effective mode area. The fiber can be bent up to 10 cm radius and it is ef-
fectively single-mode over the investigated spectral region. The generated supercontinuum
spans from about 3.217 to 9.172 µm, if the fiber is pumped at the wavelength of 4.9 µm
by 100 fs pulses with peak power of 100 kW. The fiber should be pumped near the ZDW
to involve soliton-related dynamics and consequently to generate supercontinuum as broad
as possible.

Although bending is not necessary for the short fiber segment considered in the super-
continuum simulations, the fiber is designed to be pumped by much higher energies (higher
peak powers and pulse durations) allowing using the longer fiber segment that can be bent.

The author recommends the designed fiber length from 5 cm to 5 m, because of the
material and confinement loss that decreases output power of generated supercontinuum
for longer fibers.



Chapter 5

Conclusion

Design methods described in this doctoral thesis are used as a tool to find limitations of
photonic crystal fibers and consequently to optimize their geometries for telecommunication
and other purposes.

On this basis the near zero dispersion photonic crystal fiber is designed to demonstrate
that the three-fold symmetry can be composed without a high-index doped core, and thus
doping can be significantly reduced. The author expects that doping the fiber core can be
omitted in other structures aiming at dispersion optimization, too.

One of the main contributions of the doctoral thesis is the fiber design with one of the
best matching of the relative dispersion slope as the referred to the standard fiber to be
compensated. The author predicts that using the hexagonal fiber structure, the negative
dispersion cannot be higher over the considered bandwidth.

The dual-core photonic crystal fiber is designed to operate as an optical filter. The
author found that doping the inner core by germanium dioxide shifts the phase matching
wavelength to C -band, where a narrow spectrum of wavelengths can be filtered.

Modal properties of a conventional leakage channel fiber are improved by adding two
airholes rings with sufficiently small airhole diameter. The fiber can be bent around 10 cm
radius keeping the single-mode regime of operation.

Numerical simulations carried out for femtosecond pulse propagation in the designed
leakage channel fiber show that the generated supercontinuum generation is one of the
broadest achieved in a large mode area fiber.

The doctoral thesis can be used as a guide for a potential designer of photonic crystal
fibers. The mechanisms of the control of chromatic dispersion and confinement loss are
described in details. In a similar way, different optical properties can be obtained in
photonic crystal fibers to operate in telecommunication, high-power delivery and sensing.

In the field of photonic crystal fibers, there are still many unsolved and actual mile-
stones. One of them is electric field or temperature sensing by holey fibers with high spatial
resolution. Another one is to improve fabrication process of photonic crystal fibers for the
middle- and far-infrared in order to reduce material loss. Supercontinuum generation in
deep-ultraviolet also still seems to be a challenge.
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Appendix A

Materials

In this appendix, refractive indices are specified not only for the materials used in the
doctoral thesis, but also for other materials that are broadly used during a PCF fabrication
process, such as silica, fluoride, tellurite and chalcogenide glasses.

A.1 Refractive Indices and Material Dispersions

The material refractive indices are specified by Sellmeier approximating formula, Eq. (A.1).

n2(λ) = 1 +
∑
j

Bj · λ2

λ2 − Cj
. (A.1)

The material dispersions are calculated as presented in Sec. 3.1.1.1 in Eq. (3.7) substi-
tuting neff by n.

A.1.1 Silica Materials

Refractive indices of selected silica materials are summarized in Tab. A.1 and A.2. The
coefficients for silica, silica doped by germanium dioxide, phosphorus pentoxide, boron
trioxide, and fluorine are given from Refs. 112, 93, and 99, respectively. The spectral
range, to which they relate, is from 400 to 1700 nm. The refractive index wavelength
dependence for high-index and low-index doped silica is depicted in Fig. A.1 and A.3,
respectively. The material dispersion wavelength dependence is shown in Fig. A.2 and A.4
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Figure A.1: Refractive index wavelength dependence of selected silica materials doped by
GeO2 and P2O5.
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Figure A.2: Material dispersion upon wavelength for selected silica materials doped by
GeO2 and P2O5.
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Figure A.3: Refractive index wavelength dependence of selected silica materials doped by
B2O3 and F.
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Figure A.4: Material dispersion upon wavelength for selected silica materials doped by
B2O3 and F.
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Table A.1: Sellmeier coefficients of selected silica materials doped by GeO2 and P2O5.

Chemical composition (Mol.%) B1 (-) B2 (-) B3 (-)

100 GeO2 [112] 0.8068664 0.0689726 0.7181585

80.7 SiO2–19.3 GeO2 [93] 0.7347008 0.4461191 0.8081698

86.5 SiO2–13.5 GeO2 [93] 0.7345440 0.4271083 0.8210340

93.7 SiO2–6.3 GeO2 [93] 0.7083925 0.4203993 0.8663412

96.5 SiO2–3.5 GeO2 [93] 0.7042038 0.4160032 0.9074049

90.9 SiO2–9.1 P2O5 [93] 0.6957900 0.4524970 0.7125130

100 SiO2 [93] 0.6961663 0.4079426 0.8974994

Mol.% C1 (µm2) C2 (µm2) C3 (µm2)

100 GeO2 [112] 0.00475722 0.02370556 140.23132981

80.7 SiO2–19.3 GeO2 [93] 0.00584734 0.01552718 97.93483382

86.5 SiO2–13.5 GeO2 [93] 0.00756498 0.01253323 109.96752117

93.7 SiO2–6.3 GeO2 [93] 0.00729046 0.01050295 97.93427963

96.5 SiO2–3.5 GeO2 [93] 0.00264623 0.01668231 97.93390358

90.9 SiO2–9.1 P2O5 [93] 0.00379062 0.01438104 74.93743340

100 SiO2 [93] 0.00467915 0.01351206 97.93400254

Table A.2: Sellmeier coefficients of selected silica materials doped by B2O3 and F.

Chemical composition (Mol.%) B1 (-) B2 (-) B3 (-)

97 SiO2–3 B2O3 [99] 0.6935408 0.4052977 0.9111432

86.7 SiO2–13.3 B2O3 [99] 0.6906180 0.4019960 0.8988170

96.9 SiO2–3.1 F [99] 0.6932500 0.3972000 0.8600800

93.9 SiO2–6.1 F [99] 0.6774400 0.4010100 0.8719300

Mol.% C1 (µm2) C2 (µm2) C3 (µm2)

97 SiO2–3 B2O3 [99] 0.0051412 0.0157853 97.9338700

86.7 SiO2–13.3 B2O3 [99] 0.0058473 0.0155272 82.7910731

96.9 SiO2–3.1 F [99] 0.0045212 0.0137218 95.5721312

93.9 SiO2–6.1 F [99] 0.0037638 0.0144721 97.1466497
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A.1.2 Heavy Fluoride Materials

ZBLAN glass (53 ZrF4−20 BaF2−4 LaF3−3 AlF3−20 NaF) is one of the most promising
fluoride materials that is transparent from about 0.25 to 6.9 µm. Its refractive index
can be specified by the Sellmeier formula with the coefficients as in Ref. 113. Another
fluorides AYR (40 AlF3 − 15 YF3 − 10 MgF2 − 20 CaF2 − 10 SrF2 − 5 BaF2) and IZBS
(40 InF3− 20 ZnF2− 20 BaF2− 20 SrF2) are given from this reference, too. The refractive
index and material dispersion wavelength dependence is for the fluorides materials shown
in Fig. A.5 and A.6, respectively The Sellmeier coefficients are summarized in Tab. A.3.
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Figure A.5: Refractive index wavelength dependence of selected fluoride materials.

Table A.3: Sellmeier coefficients of selected fluorides materials.
Glass B1 (-) B2 (-)

ZBLAN [113] 1.22514 1.52898

IZBS [113] 1.19200 1.20869

AYR [113] 1.01675 1.04228

Glass C1 (µm2) C2 (µm2)

ZLBAN [113] 0.0080442961 457.21130625

IZBS [113] 0.0084015556 629.67370489

AYR [113] 0.0056851600 297.79369489
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Figure A.6: Material dispersion upon wavelength for selected fluoride materials.
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A.1.3 Tellurite and Chalcogenide Materials

The material properties such as linear and nonlinear refractive index of As2S3 chalcogenide
glass used as the fiber background in Sec. 4.4 have been taken from Ref. 111. The glass is
transparent from 0.57 to 11.8 µm.

Refractive indices of other chalcogenide glasses as As2Se3 transparent within 2 and
14 µm and As2S5 within 0.5 and 9.9 µm are given in the works Ref. [43] and [114], respec-
tively. Tellurite glasses as 78 TeO2 − 5 ZnO−12 Li2O−5 Bi2O3 (TZLB), transparent from
0.4 to 6 µm and 60 TeO2 − 20PbO−20 PbCl2 (TLX) with the coefficients valid from 0.3
to 5 µm are specified in the works Ref. 115 and 116, respectively.

The refractive index wavelength dependence for tellurite and chalcogenide glasses is
shown in Fig. A.7. The material dispersion wavelength dependence for the glasses is shown
in Fig. A.8. The Sellmeier coefficients are summarized in Table A.4

Table A.4: Sellmeier coefficients of selected tellurite and chalcogenide materials.

Glass B1 (-) B2 (-) B3 (-) B4 (-) B5 (-)

As2S3 [111] 1.89838 1.92230 0.87651 0.11887 0.95699

As2Se3 [43] 4.99487 0.12072 1.71237 - -

As2S5 [114] 2.13610 0.06930 1.76370 - -

TLX [116] 1.21200 2.15700 0.18910 - -

TZLB [115] 1.67189 1.34862 0.62180 - -

Glass C1 (µm2) C2 (µm2) C3 (µm2) C4 (µm2) C5 (µm2)

As2S3 [111] 0.022500 0.06250 0.12250 0.20250 750.00000

As2Se3 [43] 0.058390 361.00000 2.1783 · 10−7 - -

As2S5 [114] 0.095400 225.00010 97.93428 - -

TLX [116] 0.060680 0.0007068 45.19000 - -

TZLB [115] 0.000467 0.0574608 46.72543 - -
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Figure A.7: Refractive index wavelength dependence of selected tellurite and chalcogenide
materials.
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Figure A.8: Material dispersion upon wavelength for selected tellurite and chalcogenide
materials.



Appendix B

Simulation Setup and Convergence
testing

In the appendix, the most important convergence tests applied on the designed structures
are shown. These include convergence test of size of the mesh cell (mesh size) dx and
convergence test of number of perfectly match layers MPML. It has been found that the
influence of other simulation parameters is not so significant in terms of the accuracy on
the calculated results. Since the inaccuracy is larger at the shorter wavelengths, most of
the convergence tests are executed for the shortest wavelength of the investigated spectra.
The fundamental modes are tested.

Effective refractive index is an investigated parameter for convergence tests. If the
chromatic dispersion is the main studied parameter in a design (near zero dispersion and
dispersion compensating fiber), the real part of neff is used for testing the mesh size and
the imaginary part for testing the number of PMLs. For designs of optical filters and large
mode area fibers, the imaginary part of neff is used for testing both the mesh size and
the number of PLMs. Since the PMLs are used mainly to calculate confinement loss, the
convergence test of the number of PMLs is not necessary if only the chromatic dispersion
is an investigated parameter.

For clarity, number of the mesh cells Mx in x direction is used as the investigated
parameter instead of size of the mesh cell dx. The number of the mesh cells differs in x
and y direction, but the size of the cell is equal or nearly similar dx ' dy. PML distances
from the edge of a PCF structure specify the dimensions of a simulation region. In this
doctoral thesis, these distances are set to be same in x and y direction.

Convergence testing is described in Sec. (3.2).

81
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B.1 Near Zero Dispersion Fiber - Convergence Test

The near zero dispersion fiber presented in Sec. 4.1 is simulated inside the computing
domain of 15.3x13.71 µm with 28 PMLs. The region is divided by uniform mesh having size
of the mesh cell dx = dy = 0.034 µm. This value is proportional to the number of the mesh
cells in x direction Mx = 450. The distance between the edge of the investigated structure
and the computational region is 1.325 µm for both, x and y direction. Convergence tests
are plotted in Fig. B.1. In Fig. B.1(b), the convergence test has larger inaccuracy than
other convergence tests presented in the appendix. It is therefore, the mode of the near
zero fiber is well confined in the core and only few amount of the optical field extends
outside to the PMLs resulting in the larger relative error.

However, the calculated loss difference between this (28 PMLs) and the next (32 PMLs)
setting is negligible, less than 2.5 · 10−16 dB·m at 1.7 µm. This wavelength is the longest
within the investigated spectral range and the loss are maximal there. High accuracy is
more important for calculating the chromatic dispersion especially if its value is desired
to be close to zero. The result difference of this (450 mesh cells) and the next (500 mesh
cells) simulation setup does not exceed the value of 0.018 ps·nm−1·km−1 at the wavelength
of 1.55 µm.
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Figure B.1: Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The near zero dispersion fiber is considered.
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B.2 Large Negative Dispersion Fiber - Convergence

Test

The reasonably accurate results can be obtained for the large negative dispersion DC-PCF
presented in Sec. 4.2 by the simulation model with the size of the computational region
20x17.3 µm bounded by 12 PMLs and having the uniform mesh size dx = 0.05 µm in x
and y direction. The PML distance from the edge of the PCF structure is nearly similar
in x and y direction and its value is ' 1.35 µm. The convergence test of the mesh size and
convergence test of the number of the PLMs, are shown in Fig. B.2.
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Figure B.2: Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The large negative dispersion DC-PCF is considered.
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An updated simulation model according to the DC-PCF structure modified in Sec. 4.2
has the size of the computation cell 16x13.84 µm in x and y direction, respectively, and the
mesh size dx = dy = 0.04 µm. Number of PML layers MPML is kept same. Convergence
tests are shown in Fig. B.3.
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Figure B.3: Convergence testing the number of the mesh cells on x axis (a) and the number
of the PML layers (b). The modified large negative dispersion DC-PCF is considered.
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B.3 Narrowband Optical Fiber Filter - Convergence

Test

For the narrowband optical fiber filter designed in Sec. 4.3 is the simulation region with
the size of 21x18.664 µm dived by the uniform mesh with cell size dx = dy = 0.035 µm.
The region boundaries consists of 20 PMLs. The result difference between this (Mx = 600)
and the next mesh (Mx = 650) setup is less than 0.5 dB·m−1 at the wavelength of 1.55 µm,
where the coupling of the modes occurs. The confinement loss of the designed fiber filter
is at this wavelength about 18 dB·cm−1 that is much higher than the result difference.
Moreover, the contribution of the PML setting to the overall inaccuracy is much lower
than that of the mesh setting. Convergence testings are shown in Fig. B.4.
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Figure B.4: Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The narrowband optical fiber filter is considered.
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B.4 Large Mode Area Fiber - Convergence Test

The structure of the large mode are fiber described in Sec. 4.4 is numerically investigated
inside the computing region of size 240x208.923 µm in x and y direction, respectively.
Number of the mesh cells over the region in x direction is Mx = 800 that is equivalent to
dx = dy = 0.3 µm. The confinement loss calculated by this setting differs from the setting
with Mx = 850 by about 0.015 dB·m−1. Number of PMLs MPML = 16 was verified by
convergence testing shown in Fig. B.5(b). Comparing Fig. B.5(a) and B.5(b), the result
difference for the PML setting is much lower than those of the mesh cell number. The
number of the PMLs has a low impact on the overall accuracy.
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Figure B.5: Convergence testing the number of the mesh cells on x axis (a) and the
number of the PML layers (b). The large mode area fiber is considered.
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