
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Layouting of Diagrams in the DynaCASE

Tool

Peter Uhnák

Supervisor: Ing. Robert Pergl, Ph.D.

January 12, 2016

Acknowledgements

Foremost I must thank my supervisor Ing. Robert Pergl, Ph.D., for providing
me with an ongoing amazing and supportive environment not just during
my work on this thesis, but ever since we have begun the development of
DynaCASE. Without his dedicated support and involvement I wouldn’t have
been able to achieve what I have achieved.

I would like to also thank the whole Pharo Community that supplied me
with constant motivation and a real sense of belonging.

Finally I want to express my thanks to my family, Andy and Elisa in
particular, for supporting me and helping me stay sane during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on January 12, 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Peter Uhnák. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Uhnák, Peter. Layouting of Diagrams in the DynaCASE Tool. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2016.

Abstrakt

V této práci se věnujeme problematice automatického grafického rozvrhováńı
diagramů běžných v softwarovém a business inženýrstv́ı, specificky UML di-
agramům tř́ıd a BORM OR diagramům. Představujeme nejmoderněǰśı tech-
niky rozvrhováńı UML diagramů tř́ıd, které ačkoliv jsou často studovány,
tak stále představuj́ı značnou výzvu. Pro BORM OR diagramy analyzujeme
rozvrhové potřeby BORM notace a představujeme jednoduchý algoritmus pro
rozvrhováńı.

V rámci této práce implementujeme obě diagramové notace spolu s vhodným
automatickým rozvrhovačem jako součást DynaCASE modelovaćı platformy.

Protože implementace plně automatických rozvrhovaćıch algoritmů před-
stavuje složitou problematiku, zaměřujeme se a implementujeme rovněž sadu
polo-automatických a interaktivńıch řešeńı, které zjednoduš́ı ručńı rozvrhováńı.

Nakonec zhodnocujeme dosažené výsledky a komentujeme budoućı plány
jak DynaCASE platformy, tak i automatického rozvrhováńı.

Kĺıčová slova DynaCASE, layouting, automatic layouting, UML, BORM,
Class Diagram, Pharo, Smalltalk, Roassal, modeling, CASE

ix

Abstract

In this thesis we explore the problematics of automatic diagram layouting
of common software and business engineering notations, namely UML Class
Diagrams and BORM Object Relation Diagrams. We evaluate the current
state-of-the-art of UML Class Diagrams layouting, which although well stud-
ied still poses a special challenge. For BORM Object Relation Diagrams we
analyze the layouting needs of the notation and propose a simple algorithmic
solution.

As part of this thesis we also implement both notations, together with
fitting automatic layouts in the DynaCASE modeling platform.

Because implementation of fully automated layouting algorithms posses a
special challenge, we also explore and implement more cost-effective solutions
in the area of interactive and semi-automatic layouting.

Finally we evaluate achieved results and discuss the future work for both
the DynaCASE platform and it’s automatic layouting.

Keywords DynaCASE, layouting, automatic layouting, UML, BORM, Class
Diagram, Pharo, Smalltalk, Roassal, modeling, CASE

x

Contents

Introduction 1

Motivation . 1

Problem Statements . 1

Structure of the Thesis . 2

1 Formal Foundations 3

1.1 Graphs . 3

1.2 Drawings . 4

2 Visual Aesthetics 7

2.1 Aesthetic Criteria . 7

2.2 Graph Layouts . 10

3 Layouting 15

3.1 Topology-Shape-Metrics . 16

3.2 Planarization . 17

3.3 Mixed Upward Planarization 18

3.4 Edge Labeling Problem . 21

3.5 Interfacing with GraphViz . 24

4 Polylines 27

4.1 Managing waypoints . 28

5 Interactive Layouting 31

5.1 Grid . 31

5.2 Snap To Grid . 32

5.3 Alignment Snapping . 33

5.4 Snap And Go . 33

5.5 Constraint Snapping . 34

5.6 Edge Label Constraint . 35

xi

5.7 Rail Constraint . 37

6 UML Class Diagrams Layouting 39
6.1 Diagram, Subject, Model, Meta-model 39
6.2 UML Class Diagram Notation 41
6.3 UML Class Diagram Layouting 43

7 BORM Object Relation Diagrams Layouting 47
7.1 BORM ORD Model . 47
7.2 Diagram overview . 49
7.3 Participant’s finite state automaton 50
7.4 Communications and data flows 53
7.5 Layouting Algorithm . 54
7.6 Conclusion . 57

8 Testing 59
8.1 SUnit Tests . 59
8.2 Continuous Integration . 60
8.3 Visual Debugging . 61

Conclusion 63
Faced Challenges . 63
Achieved Results . 63
Future Work . 64

Bibliography 65

A Acronyms 69

B Contents of enclosed CD 71

xii

List of Figures

1.1 A graph with simple (c) edge, directed edge (a), loop (b) and mul-
tiedge (d,e) . 4

1.2 Planar graph with non-planar (left), and planar (right) drawing . . 5

1.3 Kuratowski graphs K3,3 and K5 do not have any planar drawings . 5

1.4 Same graph with two different embeddings (edge ordering is counted
clockwise) . 6

1.5 Dual graph of 1.4b . 6

2.1 (a) creates an impression that b is connected to a and c, while in
fact it is not (b) . 8

2.2 An orthogonal edge crossing with a bridge 8

2.3 Haphazardly organized graph . 11

2.4 An expression tree . 11

2.5 Fig: Layouting collection of elements in a single line 11

2.6 A multiline layout . 12

2.7 Examples of an alignment . 12

2.8 Horizontal, vertical, and radial tree layout 12

2.9 Force-directed layout applied on a hierarchy of classes 13

2.10 An example of improvements of a drawing 14

3.1 Edge insertion and the routing graph[20] 20

3.3 All considered label positions (a), and after removing overlaps (b) 24

3.4 A diagram layouted through GraphViz 25

4.1 Polyline with activated handles . 27

4.2 Diagram of classes which provide polyline connection 28

4.3 . 28

4.4 Dragging the midpoint down (a) will create a new waypoint and
two new midpoints (b) . 29

4.5 Dragging handle (a) to position (b), after which the handle is re-
moved (c) . 29

xiii

5.1 RTGridView . 32
5.2 A simple graph created without (a) and with (b) snap-to-grid . . . 33
5.3 yEd editor utilizing alignment snapping (top line) 34
5.4 Examples of automatic distance constraints between objects in the

yEd graphical editor . 34
5.5 UML Association with five different labels 35
5.6 Properties of the constraint . 35
5.7 (a) initial placement of the label, (b) nudging from line orthogo-

nally to it, (c) nudging from source element in the direction of the
line . 36

5.8 UML Class Diagram utilizing the edge label constraint 36
5.9 BORM DataFlow “pizza description” placed on a Communication

line . 37
5.10 Rail constraint with visualized rail anchor and rod 37

6.1 Roles of the subjects . 40
6.2 Model of a FAMIX metamodel including DynaCASE extensions . . 41
6.3 UMLEdge with various diagram settings 42
6.4 Portion of DD/DI implemented in this thesis 42
6.5 Notation and diagram elements used to visualize an Association

element[29, B.2] . 42
6.6 Relations between model and its visualization 43
6.7 Inheritance drawn without (a), and with (b) arc joining 44

7.1 ORD diagram depicting various elements 48
7.2 Metamodel of BORM Object Relation Diagram 48
7.3 Comparison of participants organization 49
7.4 Participant placed to the left of the primary one 50
7.6 A participant with a back edge . 52
7.7 Possible visualizations of a service-oriented participant 53
7.8 Communication with two data flows 54
7.9 Addition of a line bend point to maintain line symmetry 55
7.10 Back edge with a crossing . 56
7.11 Multiple participants with communications and data flows 57

8.1 Hapao test coverage visualization applied on our FAMIX extensions 60
8.2 Considered positions during edge labeling 62

xiv

Introduction

Motivation

Dissatisfied with the current level of modeling tools for software and business
engineering alike, we have recently begun the development of a new open-
source modeling platform named DynaCASE. The aim of the platform is to
provide a moldable modeling environment for students, researches, and indus-
try experts.

One of the problems modeling experts have to regularly deal with is the
visual organization of model diagrams. As the visual organization has a major
impact on both fast and accurate understanding, it is vital for the modeler
to produce a good one. Such task is however very tedious and the result-
ing organization — layout is brittle. Even small change to the model may
require complete redo, which a modeler may skip at the expense of letting
the diagram’s visual quality deteriorate. Likewise an automatic generation of
diagrams from source code is more and more common, for such diagrams we
do not have any layout at all.

To solve this problem, the art of automatic layouting has been of high
interested and study. An automatic layout should be able to quickly turn
diagram of arbitrary quality into a an aesthetically pleasing one, all while
emphasizing aspects particular to the visualized domain.

As we consider it valuable, we would like to offer such automatic layouting
in our DynaCASE platform.

We have chosen UML Class Diagrams and BORM Object Relation Dia-
grams as a representative diagram notations of software and business engi-
neering.

Problem Statements

The objective of this thesis is to analyze, design, and implement a set of
automatic layouting algorithms for representative conceptual models for both

1

Introduction

software and business engineering in the DynaCASE modeling platform.
As the platform is still in its early stages, the necessary models and no-

tations are also to be implemented. Additional modifications and additions
to DynaCASE may be required to accommodate the implementation. Finally
tests should be performed of the achieved results.

DynaCASE[1] is implemented in the Pharo Smalltalk live environment[2]
and uses the Roassal visualization library[3]; we therefore expect the imple-
mentation to be in this environment.

To summarize, in this thesis we:

• Review state-of-the-art of automatic diagram layouting with focus on
UML Class Diagrams and BORM ORD

• Implement UML Class Diagram and BORM Object Relation Diagram
model and graphical notations

• Extend the DynaCASE platform and its graphical framework to make
the implementation of notations and layouting possible

• Design and implement a set of layouting algorithms for the implemented
notations

• Test the software, and evaluate the results

Structure of the Thesis

The structure of this thesis is as follows:
In chapter 1 we introduce basic vocabulary and definitions of graph theory

and graph drawings necessary for understanding of layouting.
In chapter 2 we explore aesthetic requirements of graph and diagram lay-

outing and the benefits of several basic layouts.
In chapter 3 we describe in detail two major layouting techniques — the

topology-shape-metrics and edge label placement. We also briefly explore
interfacing with external layouting libraries.

In chapter 4 and 5 we focus on layouting and other auxiliary utilities that
help user achieve better layouts.

In chapter 6 we discuss the architecture behind the implementation of
model and notation of UML Class Diagrams. Based on existing literature we
present an overview of layouting requirements and algorithms of UML Class
Diagrams layouting.

In chapter 7 we study the layouting needs of BORM OR Diagrams, based
on our analysis we propose a simple layouting algorithm.

In chapter 8 we briefly explore some ways of testing used during imple-
mentation.

Finally in Conclusion we summarize achieved results and discuss future
roadmap.

2

Chapter 1

Formal Foundations

As most of layouting rests on graph theory it is necessary to introduce some
of its concepts that will be used throughout this work. Many introductions to
graph theory should also cover this topic, such as [4].

1.1 Graphs

Definition 1.1.1 (Graph). A graph is an ordered triple G = (V,E, ψ), where
V is a set of vertices, E set of edges, and ψ incidence function between V and
E — ψ(E) ⊆ V × V .

Examples of incidences:

• ψ(e1) = (v1, v2) — edge e1 is between vertex v1 and v2

• ψ(e1) = (v1, v1) — edge e1 is a loop (self-edge) from vertex v1 to itself

• ψ(e1) = ψ(e2) ∧ e1 6= e2 — two different edges have same incidences (a
multigraph)

Definition 1.1.2 (Graph (alternative)). A graph is an ordered pair G =
(V,E), where V is a set of vertices, and E is a set of pairs of incident vertices
E ⊆ V × V .

Digraph (Directed graph) is a directed graph if the incidence pair is
ordered. In such case the first vertex of the pair is the edge’s source and the
second its target.

Undirected graph is a graph whose incidence pairs are unordered.

Multigraph can contain multiple edges with same incidences.

Simple graph has no loops and no two edges connect the same (un-
ordered) pair of vertices.

Loop (self-loop) is an edge that connects a vertex with itself.

3

1. Formal Foundations

Figure 1.1: A graph with simple (c) edge, directed edge (a), loop (b) and
multiedge (d,e)

Degree is the number of edges incident with a vertex. For digraphs we
are also interested in indegree (number of incoming edges), and outdegree
(number of outgoing edges).

Walk is a finite sequence of vertices and edges W = v0e1v1 . . . ekvk.
Trail is a walk, where all edges ei are distinct. (No edge is visited twice.)
Path is a trail, where also all vertices vi are distinct. (Thus every vertex

and edge in the sequence is only once.)
Cycle is closed trail (closed if v0 = vk) with at least three edges (two for

directed graphs).
Tree is an acyclic graph (no cycles are present) where any two vertices

are connected by exactly one path.
Root is a selected vertex in a tree which in drawing acts as a topmost

element.
Leaf is a tree vertex with degree of 1.
Connected component
A connected component in a graph is a subset of it’s vertices and edges,

where there is a path between any two vertices.

Definition 1.1.3 (Subgraph). A graph H = (VH , EH) is a subgraph of
G = (VG, EG) (written H ⊆ G) if VH ⊆ VG and EH ⊆ VG.

Definition 1.1.4 (Vertex-induced subgraph). Graph GI = (VI , EI) is
vertex-induced subgraph on graph G = (VG, EG) if VI ⊆ VG and EI =
e|e = (a, b) ∈ EG ∧ a, b ∈ VI — all edges from the original graph whose both
endpoints are in the new vertex set VI .

Definition 1.1.5 (Edge-induced subgraph). Graph GI = (VI , EI) is edge-
induced subgraph on graph G = (VG, EG) if EI ⊆ EG and VI =

⋃
(a,b)∈EI

{a, b}
— vertex set of EI endpoints.

1.2 Drawings

Definition 1.2.1 (Curve). Curve is a continuous mapping γ : [0, 1] → R2,
where γ(0), γ(1) are endpoints.

4

1.2. Drawings

A curve is closed if γ(0) = γ(1); open otherwise.
A Jordan curve is a curve that has no repeated points (i.e. does not cross

itself), except for the endpoints for closed curve.

Definition 1.2.2 (Graph drawing). A graph drawing ΓG of a graph G =
(V,E) is a mapping of each vertex v ∈ V to a point in a plane R2, and mapping
of each edge e ∈ E to a curve with endpoints at the vertices incident to e.

Definition 1.2.3 (Planar drawing). A planar drawing is a drawing where
each vertex v ∈ V is mapped to a distinct point, and each edge e ∈ E is
mapped to an open Jordan curve. Additionally the following properties must
be true:

• Drawings of any two distinct edges have no common points, except at
common endpoints

• The drawing of an edge must not contain the drawing of a vertex

Figure 1.2: Planar graph with non-planar (left), and planar (right) drawing

Definition 1.2.4 (Planar Graph). A graph G is planar if and only if it has
a planar drawing ΓG.

It is easily observed that there is an infinite number of planar drawings for
a planar graph (and drawings for any graph).

Figure 1.3: Kuratowski graphs K3,3 and K5 do not have any planar drawings

Definition 1.2.5 (Planar Embedding). A planar embedding of a graph G
is a fixed ordering of edges incident to each vertex.

5

1. Formal Foundations

(a) (b)

Figure 1.4: Same graph with two different embeddings (edge ordering is
counted clockwise)

Definition 1.2.6 (Face). A face is a cycle in a planar embedding that has
no edges going from the cycle into the region that is surrounded by the cycle.
A face is adjacent to another edge if they share a common edge. The area not
bounded by the embedding is called outer face (external face).

Definition 1.2.7 (Upward Drawing). A drawing of a directed graph is
upward if the drawing of each edge e = (u, v) is monotonically nondecreasing
in the y-direction from u to v.

Definition 1.2.8 (Dual Graph). Dual graph G of a planar embedding of a
planar graph G has a vertex for each face in G, and an edge for for every edge
in G that separates two edges. For every bridge in G the dual graph contains
a self-loop.

We can also observe that two embeddings of the same graph will have
different dual graphs.

Figure 1.5: Dual graph of 1.4b

6

Chapter 2

Visual Aesthetics

Visual aesthetics is an important factor in the context of graphical layouting.
The objective of achieving good visual aesthetics is to amplify human’s natural
cognitive abilities, while minimizing and mitigating factors that would impede
them.

Good aesthetics can lead to a more understandable, concise, and perhaps
even visually pleasing presentation, all while emphasizing valuable specifics of
the particular domain. Bad aesthetics on the other hand can be confusing and
even outright misleading.

In this chapter we will introduce the most commonly agreed and studied
aesthetical criteria in the context of graph and diagram layouting[5] with spe-
cial focus on criteria applying to UML diagrams[6][7], and especially UML
class diagrams[8][9][10].

Still, aesthetics is a very vague term, and subjectivity to a certain extent is
unavoidable. So although all the described criteria have objectively measurable
metrics associated with them (such as measuring the total length of an edge),
the applied value of any particular metric or combination of them is subjective
and highly context-sensitive (“How long is long edge?”); all that in addition
to the fact, that some criteria are directly competing with each other. For this
reason the objective is often simplified to minimizing or maximizing particular
metrics instead of reaching some specific targets.

2.1 Aesthetic Criteria

2.1.1 Area

The area of the drawing should be kept small enough, that it is possible to
see the full drawing. The available area is determined mostly by the target
medium. If UML diagrams are viewed mostly on computer screens, they
should fit on the screen without the need of scrolling or zooming. If it is

7

2. Visual Aesthetics

common for other diagrams to be printed on paper, the diagram should fit
there fully while being readable without any aids (magnifying glass).

2.1.2 Overlapping

No two elements in the drawing should overlap each other. Breaking this rule
in many diagrams results in completely misleading visualization. For example
if one vertex is hidden behind another or is visually connected to an edge,
even though no actual actual connection exists in the graph.

(a) (b)

Figure 2.1: (a) creates an impression that b is connected to a and c, while in
fact it is not (b)

2.1.3 Edge Crossing

Similarly, edge crossings should be avoided, as it may not be obvious which
way the edge continues. If a crossing is unavoidable, orthogonal crossings are
preferred. Edges should never overlap each other as it makes them indistin-
guishable; in some special cases this however could be beneficially exploited,
such as joint inheritance arcs6.3.1. Some tools even add small visual bridge
to further distinguish the lines.

Figure 2.2: An orthogonal edge crossing with a bridge

2.1.4 Edge Bends and Angles

Some notations permits the usage of polylines — edges composed of multiple
straight segments. The number of such segments (edge bends between them)
should be minimal as it breaks the natural flow of the line; it forces the user
to manually trace the edge instead of judging the target by the line’s initial
direction. However, if edge bends are present, the angles between the segments
should be uniform throughout the whole diagram. Most commonly used are
right angles (orthogonal/rectilinear) and 45◦ (octilinear).

’

8

2.1. Aesthetic Criteria

2.1.5 Orthogonal Drawing

Orthogonal drawings is the most commonly utilized and studied specialization
of Edge Bends and Angles2.1.4, where all the polylines in the diagram have
orthogonal segments. As wide range of diagrams utilize this format it is also
familiar to the reader. Furthermore vertical and horizontal lines are easier to
trace visually than arbitrarily sloped ones.

2.1.6 Edge length

The overall length of edges should be kept small (cf. proximity2.1.7). As edges
in many diagrams represent secondary information (with vertices the primary
one), the edge length tends to be the most often sacrificed criterion so other
criteria (mainly edge crossings, bends, and overlapping) can be improved.
Edge lengths also impact separation of objects.

2.1.7 Grouping and Proximity

Elements that are in close proximity or grouped together are perceived as
related to each other. Therefore elements should be placed close to each other
if they are related , especially if they are not visually connected, and unrelated
elements in a group should be separated.

2.1.8 Similarity

Elements that are similar in some visual aspect are also considered related or
similar. For example one can color related elements to add another dimension
of relation between them.

2.1.9 Shape

Shapes are the heart of diagram visualizations. They allow to express proper-
ties and concepts of the underlying model visually without the need to resort
to textual explanation. Generally the objective is to represent as much infor-
mation as possible through pure visuals, although this is usually given by a
diagram notation. Therefore this criterion should be achieved at the level of
the diagram’s notation rather than during layouting.

2.1.10 Symmetry

Symmetry produces a more visually pleasing drawing and tends to evenly
distribute elements throughout the drawing.

9

2. Visual Aesthetics

2.1.11 Hierarchy

Elements visually placed higher are considered more important, therefore hi-
erarchies should be represented as such. E.g. in UML class diagrams super-
classes should be placed above their subclasses. In some cases the hierarchy
can be expressed sideways, with the most important element on the left and
spreading to the right. The left-to-right rule stems at least partially from our1

left-to-right reading.

2.1.12 Mental Map

If new elements are added or removed from the drawing, application of the
layout shouldn’t diversify greatly the whole drawing. The user has already
created a mental map of the diagram in his mind and can usually remember
where a particular element is. Therefore after making a change and applying
a layout, the user will expected previous elements at the same place as before.
However, if the mental map is violated, the user is required to search for the
elements, slowing the user down and increasing cognitive load.

2.1.13 Direction of flow

Many diagram notations benefit from uniform flow of edges.

Notably generalizations in UML class diagram are oriented upwards (cf. Hi-
erarchy2.1.11). This allows for easier identification when multiple types of
edges are present.

A particular diagram notation can employ additional rules or ignore some;
as such the criteria must be considered for each notation separately.

2.2 Graph Layouts

In this section we will explore several layouts available in the Roassal library
from their visual perspective and value. The details of implementing Lay-
outing algorithms are presented in the Layouting chapter3. For a complete
overview of all Roassal layouts refer to the Layouting chapter of the AgileVi-
sualization book[3].

We will start with random layout of a graph as an arbitrary layout. The
vertices (nodes) are placed haphazardly and no sense can be gained from it.

10

2.2. Graph Layouts

Figure 2.3: Haphazardly organized graph

Figure 2.4: An expression tree

But by applying a tree layout to the graph in 2.3 the following structure
emerges:

While the first figure left us clueless, from the second one we can infer
that we are dealing with an expression tree. This is the main objective of
layouting; to present information in useful, visually pleasing, and human-
cognition friendly format.

2.2.1 Vertex-based Layouts

More sparsely used, but still useful are vertex-based layouts. Such layouts do
not use any information about edges (whether edges are present or not), and
instead are focused on properties of the vertices themselves, such as their size,
shape, or number.

The simplest example is line (column) layout. A line layout organizes all
elements in a singular line (ditto for columns).

Figure 2.5: Fig: Layouting collection of elements in a single line

More advanced version is multiline (multicolumn) layout. In this layout
the total width of the drawing is limited, either by the absolute width (in
screen pixels), or by the number of elements. By default the layout will try
to distribute the elements evenly in both (x, y) directions.

The last option is a grid based layout. All elements are placed in a grid of
fixed size.

Good interface of such layouts should also provide the option to specify
certain aspects such as the gap size between elements, overall size constraints,
alignment of non-uniform elements, and other.

1Western; how are cultures reading right-to-left or top-to-bottom affected is unclear.

11

2. Visual Aesthetics

Figure 2.6: A multiline layout

Figure 2.7: Examples of an alignment

2.2.2 Graph Layouts

Graph layouts take both the vertices and the edges into consideration.

2.2.2.1 Tree layout

For obvious reasons this is mostly used to visualize graph trees. The root is
placed at the top of the drawing with children expanding downwards. It is
useful for visualizing trees, hierarchies, and other acyclic structure. Roassal
offers several variations of the layouting — top-down, left-to-right, and radial.
Radial tree places the root in the center with children around in concentric
circles. Radial tree is also the most space conservative.

Figure 2.8: Horizontal, vertical, and radial tree layout

12

2.2. Graph Layouts

Sometimes even regular graphs can be visualized with tree. In such cases
a cycle removal must be performed first. After the cycles are removed the
layouting can be applied. After that the edges removed earlier are added back.
This can be used for example for visualizing software dependencies, using
Dominance tree layout [11]. As good dependencies are all uniformly oriented,
any violation (dependency cycle) will be immediately visible by arrows (edges)
going in the opposite direction.

2.2.3 Force-directed Layout

Force-directed layout is based on physics model of repulsion and attraction of
particles. Each vertex is negatively charged and thus repulsing other nearby
vertices. Edge between vertices works as a bond, an attractor. This method
is especially effective for large and dense diagrams. The result is an aestheti-
cally pleasing visualization that emphasizes clustering of elements. Note that
since each vertex affects every other vertex, layouting for large graphs can
be computationally demanding; thus it is often performed in multiple steps
where each step gets closer and closer to force equilibrium. Also additional
heuristics can be employed that limit the applied forces only to immediate
vicinity[5][12].

Figure 2.9: Force-directed layout applied on a hierarchy of classes

2.2.4 Sugiyama Layout

The Sugiyama layout[13] is an approach to visualizing hierarchies. It focuses
on improving many aesthetical criteria such as edge crossing minimization,
edges lengths, uniform flow and other.

The layouting algorithm assigns each node a layer based on their hierarchy
within the graph. If a hierarchy spans several layers, dummy vertices are added
to avoid overlapping. Then nodes in each layers are permuted to minimize
edge crossings; finally, if possible, nodes are adjusted so dummy vertices are
no longer needed.

13

2. Visual Aesthetics

Figure 2.10: An example of improvements of a drawing

14

Chapter 3

Layouting

Three concepts will be discussed in this chapter:

1. Layouting of directed and undirected graphs using the topology-shape-
metrics approach, and

2. Edge Labeling Problem

3. Integration with third-party layouting tools

Those choices were made to represent two distinct problems in the area of
layouting and by no means attempt to cover everything, and in fact we have
achieved our objectives only with limited success.

As Spönemann writes in his recent (2015) thesis [14]: “There is a strik-
ing contrast between the abundance of research results in the field of graph
layouting methods and the current state of graphical modeling tools, where
only a tiny fraction of the results are adopted.”, the author then follow with
several explanations, quoted in full (our own notes are in italics):

• P1 Users are skeptical about the quality of automatically generated
layouts [. . .]

– We note that for static layouts the situation is often “make or
break”; either the layout is fully self-sufficient or not useful at all.

• P2 Domain-specific layout constraints are not adequately addressed by
the established methods. In particular, constraints on the positioning of
ports (connection points of edges) are hardly considered.

– Researched layout algorithms often solve only parts of the associated
problem, such as planarization and orthogonalization for graphs
with vertices of degree 4 without addressing the real need of ver-
tices or arbitrary degrees, ignoring needed requirements such as la-
bel placement, etc.

15

3. Layouting

• P3 Graph layout algorithms are complex and thus their implementation
requires considerable effort. For the same reason, commercial graph
layout libraries are quite expensive.

• P4 The integration of graph layout libraries written in C or C++,
e.g. Graphviz [15] or OGDF2 [16], into other platforms such as Eclipse
is an intricate task.

– We will briefly elaborate on integration with the tools later.

• P5 Users are quickly overwhelmed by the multitude of graph layout
methods and their configuration parameters. The usage of many pa-
rameters requires a detailed understanding of the underlying methods.

We fully agree with all the points as we were majorly impeded by the
underlying problems, as stated in the introduction. Despite the limited success
of the implementation we have gained deeper insight into the problems and
can better accommodate and address them in the future.

For an extensive overview of layouting problems and algorithms refer to
[17]. For a gentle introduction to the problematic of drawing graphs we rec-
ommend [18].

3.1 Topology-Shape-Metrics

The topology-shape-metrics approach[19] layouts a graph in three distinct
phases, where each phase addresses a specific problem and set of aesthetic
criteria.

Topology (Planarization)
The objective of the topology phase is to determine where the graph nodes

should be positioned in relation to each other. This step is therefore respon-
sible for creating a planar embedding of the graph. An algorithm performing
this step will attempt to minimize edge crossings.

Shape (Orthogonalization)
Shape phase will determine the overall shape of the individual elements,

edges and the diagram. Therefore edge orthogonalization is performed dur-
ing this step. As the number of edge bends affect the shape, the algorithm
performing the orthogonalization will attempt to minimize them.

Metrics (Compaction)
The final phase focuses on the overall metrics of the drawing — length

of edges, size of nodes, and the overall area required for the drawing. The
associated algorithm will attempt to minimize them. Furthermore dummy
edges introduced in the planarization phase are removed.

All three steps are NP-hard problems[19], and therefore heuristics must be
used.

2http://ogdf.net

16

http://ogdf.net

3.2. Planarization

3.2 Planarization

The objective of planarization is to transform a graph G = (V,E) into a graph
G′ = (V ′, E′), V ′ ⊆ V , E′ ⊆ E that has a planar drawing.

As many graphs do not have planar drawings (e.g. K5) the planarization
is usually performed as follows:

1. finding maximum planar subgraph of G by removing some edges F from
E

2. adding the edges F back into the graph and adding new vertices at
crosspoints (Edge Insertion)

Finding maximum planar subgraph — a graph with maximum amount of
retained edges (minimum amount of removed edges) is a NP-hard problem,
however heuristics exist that solve similar problem — maximal planar sub-
graph.

A maximal planar subgraph is a planar subgraph G = (V,E′ ⊆ E), where
adding any edge e ∈ E − E′ would destroy the planarity. It follows that any
maximum planar subgraph must be also maximal.

We will describe a planarization technique by Goldschmidt and Takvo-
rian as described in [20] as it will be later used as a basis for mixed upward
planarization. For more on planarization heuristics refer to [17] or [21].

3.2.1 Goldschmidt Takvorian two-phase planarization

The Goldschmidt Takvorian (GT) heuristic follows two phases; in the first
phase an ordering Π of the vertex set of the input graph G = (V,E) is found.
The vertices are then placed on a line according to the ordering. The ordering
should maximize the number of edges between adjacent edges, as the choice
of ordering impacts the quality of the planarization. The remaining edges are
then drawn as arcs on one side of the line or another.

To describe the second phase, we first need to introduce crossing with
respect to Π.

Definition 3.2.1 (Crossing with respect to Π). Let π(v) denote the posi-
tion of vertex v ∈ V within the ordering Π. Then let e1 = (a, b) and e2 = (c, d)
be two edges of G, such that, without loss of generality, π(a) < π(b) and
π(c) < π(d). The edges cross with respect to Π if π(a) < π(c) < π(b) < π(d)
or π(c) < π(a) < π(d) < π(b).

The second phase partitions the edge set E of G into subsets L, R and B
in such way that |L + R| is large (ideally maximum) and that no two edges
both present in either L or R cross with respect to the ordering Π obtained
from the first phase.

17

3. Layouting

To partition the edges we create an overlap graph that has a vertex for
every edge in G. If two edges cross with respect to Π we add an edge between
the corresponding vertices.

To find the best assignments for L,R,B we would need maximal induced
bipartite subgraph. As finding such subgraph is NP-complete, we rely on a
simple heuristic: successively find two disjoint independent sets of the overlap
graph, where the first set will be L, and second R.

After the second step we now have a graph G = (V,L ∪R) that is planar,
and a set of edges B = E \ L \ R that would destroy the planarity. Adding
the edge set B back into the graph will be discussed in Edge Insertion.

3.3 Mixed Upward Planarization

For oriented graphs where we are interested in keeping uniform edge orienta-
tion, the GT planarization method is insufficient, as it doesn’t consider the
orientation.

We will describe An Approach for Mixed Upward Planarization[20] that
specifically addresses the problem in three parts:

1. Construct an upward planar subgraph

2. Determine an upward embedding of the subgraph

3. Insert the edges not contained in the subgraph, one by one

3.3.1 Directed Upward Planarization

The algorithm extends GT planarization described earlier to work also for
directed graphs (Directed GT, DGT).

The original version of GT in the first phase created a vertex ordering
Π that attempted to maximize number of edges between adjacent edges. In
DGT we have additional constraint — maintaining proper topological order-
ing. Firstly we will address only purely directed graphs, and later we will
discuss the mixed case.

The algorithm assumes the input graph does not contain cycles, otherwise

18

3.3. Mixed Upward Planarization

achieving uniform orientation is not possible.

Data: A directed graph G = (GV , EG)
Result: A vertex ordering Π
Select v1 from G with zero indegree and minimal outdegree;
V = V \ {v1};
G1 = directed graph induced on G by V ;
for k = 2, . . . , |V | do

U = {v ∈ GV |indegree(v) = 0 in G1};
if vk−1 is connected to a vertex in U then

select vk as vertex in U adjacent to vk−1 with minimal degree in
Gk−1;

else
select vk as vertex in U with minimal degree in Gk−1;

end
V = V \ {vk} G1 = directed graph induced on G by V ;

end
return Π = (v1, . . . , v|VG|)

Algorithm 1: Vertex order[20]

The algorithm starts with vertex vk−1 = v1 with no incoming edge (for
acyclic graph there will be always one) and minimal outdegree. Then in each
step it chooses a vertex vk adjacent to vk−1 which is not the successor of an
unchosen vertex. If that is not possible, it takes a vertex of minimal degree,
which is also not the successor of an unchosen vertex. The result will be
ordering Π.

The DGT algorithm’s second phase remains principally unchanged from
GT’s second phase, only the line is drawn vertically (for regular GT the ori-
entation doesn’t matter).

From the sets L, R (obtained from GT’s second phase) and the new or-
dering Π we obtain upward planar embedding:

For each vertex v ∈ V we sort the edges with source v in L decreasing
according to Π and the edges with source v in R increasing according to Π
and concatenate these two ordered lists to one. For edges with target v we do
the opposite (decreasing in R and increasing in L) and append to the list.

3.3.2 Edge Insertion

Edge insertion in upward drawings is more complex than for regular drawings
because we cannot add edges independently of each other, as adding dummy
nodes can create unexpected cycles[20].

To properly insert directed edges we create routing graph GR. A layering
l for a directed graph G = (V,E) is a mapping V → N such that l(v) > l(u)
for each edge (u, v) ∈ E. Then a routing graph GR is constructed as follows:

19

3. Layouting

• We split the outer face into two faces fl and fr that are respectively to
the left and to the right of the vertex embedding

• For each face f and each layer l that it spans add a vertex

• Every two vertices in neighboring layers and in the same face f are
connected by an directed edge (in increasing layer order) of a weight 0

• Every two vertices of adjacent faces and at the same layer i are con-
nected by an edge of weight if the source vertex u of the edge e = (u, v)
separating those faces is at the layer i or below it (l(u) ≤ i) and the
target vertex v is above the layer (l(v) ≥ i).

Each edge of weight 1 represents a single edge crossing, thus choosing the
shortest path will result in minimal amount of edge crossings.

To insert a single edge e = (u, v) into the planar graph G:

1. Find find the shortest path from u to v in the routing graph GR

2. For each crossing i we split the crossed edge ec = (a, b) into (a,wi) and
(wi, b) by introducing a dummy vertex wi

3. Finally instead of adding edge e we add it’s route

• e = (u, v)→ (u,w1, . . . , (wi, wi+1), . . . , (wk, v) to the planar graph G

It has to be noted that although this algorithm produces correct result (in
terms of upward planarization), it doesn’t necessarily produce optimal result,
as each edge insertion degrades the graph (more crossings may be required for
the edges added later). To find the optimal result we would need to test all
options. [20] describes a heuristic that after each edge insertion chooses some
edges and tries to reinsert them with potentially fewer edge crossings.

Figure 3.1: Edge insertion and the routing graph[20]

3.3.3 Mixed Upward Planarization

To solve the mixed upward planarization the authors of [20] directly use the
Directed GT algorithm as described above by orienting the undirected edges in
both ways. Although this produces correct result we note that it may degrade

20

3.4. Edge Labeling Problem

the quality of the drawing as the choice of undirected edges still restricts
the following choices. The authors suggest assigning weights to directed and
undirected edges, but they note that this is still subject of further research.

Finally to insert edges in the mixed case the same edge insertion algorithm
is used with undirected edges having same direction as in the GT vertex
ordering.

3.4 Edge Labeling Problem

Edge Labeling Problem is concerned with the placement of labels associated
with edges. The objective is to find an optimal placement such that the
relation with the edge is obvious and other aesthetic criteria (overlapping)
are upheld. As associations in UML class diagrams can have large number of
labels, this problem is of great interested to us.

We will describe a Multiple Label Placement algorithm introduced by
Kakoulis & Tollis in their work “Algorithms for the multiple label placement
problem”[22]. This work expands their previous works [23][24] and presents a
solution for multiple labels.

3.4.1 Label Placement

The placement of a single label is seldom arbitrary. Usually the label describes
a feature in relation to other objects, therefore the freedom of placement is
restricted.

The basic rules for edge label placement[ELP] are[23]:

1. No overlaps of any kind

2. Each label must be easily identified with exactly one graphical feature

3. Each label must be placed in the best available position

The second rule ensures that we do not produce confusing layout that
would label wrong objects, while the third ensures we select the best layout
among all available.

3.4.2 Terminology

We introduce terminology specific to the Multiple Label Placement (MLP)
problem.

Let Γ be a drawing and F a set of edges3 to be labeled in Γ:

• M : F → N is a mapping that returns the number of labels associated
with an edge.

3[22] uses the term graphical feature as their approach can be applied to arbitrary objects,
we will however avoid introducing extra terminology.

21

3. Layouting

• Λ is the set of all label positions for all edges

• Λf is the set of all label positions for f (its solution space).

• Γi
f is the set of all label positions for the ith label of f .

• λ : F ×K→ Λ is a function that assigns to edge f in F a label position
from Γ; λ(f, i) = λif ∈ Γi

f , K ⊆ N.

• COST : F ×K×K→ N is the cost for assigning label k as ith label of
edge f .

The cost itself is typically a linear combination of subcosts and permits
modularity. [22] defines the cost broadly, therefore for our needs we have
settled on these requirements:

• edge proximity — based on the distance between the label and other
edges (i.e. to avoid ambiguity)

• element proximity — based on the distance between the label and ele-
ments

• ranking — how far is the label from its most desired position

• orientation — whether the label is above or below line

We have implemented the last two requirements as pluggable behavior,
therefore it is possible to specify the needs for each label individually.

Since we have assigned a cost to each combination of label positions, we
can solve the MLP problem as an optimization one:

∑
f∈F

M(f)∑
i=1

∑
k∈Γi

f

COST (f, i, k)P (f, i, k),

where

P (f, i, k) = 1 iff λ(f, i) = k, 0 otherwise

and ∑
k∈Γi

f

P (f, i, k) = 1, f ∈ F ∧ 1 ≤ i ≤M(f)

The P function guarantees that only labels that will be in the final assign-
ment are considered.

To transform the geometric problem into a combinatorial one, we construct
overlap graph of label positions in Λ. We then reduce and partition Λ into
clusters of overlapping positions, such that each position is member of exactly
one cluster. Finally we find the optimal matching of labels to the clusters.

For brevity we do not include the precise definitions, and we use only sim-
plified descriptions. For the full definitions refer to the used literature[23][24][22].

22

3.4. Edge Labeling Problem

An overlap graph has a vertex for every edge and every label position, edge
for every relation between position and it’s edge, and an edge for every two
positions that overlap each other.

A cluster is a set of label positions, where each position in the cluster
overlaps every other.

A matching graph has a vertex for each edge and every cluster, and an
edge for every edge’

3.4.3 Algorithm

Given a set of edges F to be labeled and a set of labels L, we solve the MLP
problem as follows:

1. Find label positions Λ for each edge in F and each label in L
2. Construct an overlap graph Go from edges in F and label positions Λ

3. Partition the positions Λ into overlapping clusters

4. Construct a matching graph Gm

5. Solve maximum cardinality minimum weight matching problem

6. Make the final assignment

To find the initial label positions we have to consider a solution space. A
solution space is the set of all points that we can consider to place the label in.
Usually such solution can be either expressed as an area (continuous solution
space) or a set of discrete points.

(a) Continuous solution space[23] (b) Discrete solution space

The size of the solution space directly impacts both the quality (positively)
and performance (negatively) of the final assignment.

We have created a configurable discrete heuristic for the initial label posi-
tions:

1. Select equally spaced4 points on the line.

4The spacing is configurable.

23

3. Layouting

• The positions start (resp. end) slightly off the start (resp. end) of the
line to avoid unnecessary overlapping later between the label and the
element, and penalty for proximity to element.

2. For each of those points consider four corner rectangles, the rectangle
has the size of the label we are trying to place.

3. Remove all rectangles that overlap some feature in the diagram (feature
is an edge or element, but not another label position rectangle).

4. Use the centers of the remaining rectangles as the initial label placement
set.

(a) (b)

Figure 3.3: All considered label positions (a), and after removing overlaps (b)

The remaining steps of the algorithm, from creating the overlap graph all
the way to the final assignment are straightforward and well described in their
respective papers.

The main hurdle we have encountered is the fifth step — solving maximum
cardinality, minimum weight matching graph. Although algorithms that can
solve the assignment problem quickly have been invented, we are not aware of
any free and open-source (or in fact any at all) library in Pharo that would
implement them. Because the implementation is rather complex, and we
do not even have graph library available, we have opted for implementing
Munkres assignment algorithm[25]. The algorithm was simple to implement
and enabled us to complete the Edge Label Placement, but unfortunately it
has polynomial performance, therefore the whole solution is not usable for
anything but the most trivial graphs.

When in the future a more performant algorithm will be implemented, the
placement algorithm can make use of it. As a workaround we have imple-
mented a fast localized labeling constraint in the upcoming chapter5.6.

3.5 Interfacing with GraphViz

As we found it not possible to achieve meaningfully satisfiable layout without
strong graph and layouting library, we have implemented a prototype inter-

24

3.5. Interfacing with GraphViz

face with the GraphViz library. GraphViz5 is a popular library for visualizing
graphs and software and has implemented several interesting layouting al-
gorithms. The library uses its DSL format called dot to describe the graph
structure. We use an existing Pharo library6 that can generate a file in the dot
syntax based on our programmable description. The dot file is then passed to
graphviz executable that performs the layout. GraphViz offers a range of out-
put formats, among other XML and SVG. We use the SVG output and extract
the layouting information. Despite the implementation was trivial compared
to attempting to implement proper layouting algorithms, the results are much
better. Therefore we would recommend to further expand the interface before
proper layouting library is developed. Interface with the OGDF7 library was
also considered, unfortunately the library is offered under the GPL license
which is not compatible with the MIT license used by DynaCASE.

Figure 3.4: A diagram layouted through GraphViz

5[http://graphviz.org/](http://graphviz.org/
6http://smalltalkhub.com/#!/~hernan/GraphViz
7http://ogdf.net/doku.php

25

http://smalltalkhub.com/#!/~hernan/GraphViz
http://ogdf.net/doku.php

Chapter 4

Polylines

The used graphical library Roassal offers basic line shapes: straight lines,
bezier lines, and multilines with a fixed pathing8. But to produce orthogo-
nal drawings, or more complex drawings in general we need a more powerful
solution. One with the option to arbitrarily add and remove bends, both
programatically and interactively; none of which is provided by Roassal.

Figure 4.1: Polyline with activated handles

Polyline is a segmented line going through points on canvas defined by an
ordered collection of points known as waypoints or bends. Each waypoint may
introduce a new change in direction of the line. The purpose of such bent line
is to navigate around existing objects on a canvas (so the line doesn’t need
to overlap them), or enabling orthogonal visualization, which is one of the
aesthetic criterions2.1.4.

We have introduced a new polyline shape DCRTConnection that is capable
of handling our requirements, along with several other classes that separate
specific concerns of the implementation.

8Once the multiline is created the number of bends/segments is fixed

27

4. Polylines

Figure 4.2: Diagram of classes which provide polyline connection

In 4.2 we see the following classes:

• DCRTConnection is a dynamic Roassal shape that is capable of adding
and removing new line segments to the canvas

• DCRTStyledConnection is an extension that will properly manage line
ends (arrows, diamonds, . . .) and line styles (solid, dashed, . . .)

• InteractiveRouter holds references to the used waypoints in a DoubleLinkedList.
Using DoubleLInkedList simplifies addition and removal of waypoints
at arbitrary positions

• ConnectionHandles manages Handles and user interaction

• Handle enables waypoint manipulation, such as dragging and removal

4.1 Managing waypoints

The handles management is separated from the polyline and waypoints. That
way an automatic layouter can route the polyline as needed, and user inter-
action can be added later on need basis.

(a) Polyline (b) Polyline with draggable handles

Figure 4.3

In 4.3 we can see two types of handles:

28

4.1. Managing waypoints

• larger red circles, which are managed by Handle instances

• smaller red circles, which are managed by MidpointHandle instances

Handle manages a waypoint, however we want to be able to add simply
new waypoints. For this purpose we have MidpointHandle.

MidpointHandle is always placed between every pair of real handles, but
by itself doesn’t participate in the routing, nor is referenced from the waypoint
list. However when user attempts to drag the midpoint, it is automatically
converted into a real Handle. Since the waypoints are stored in a linked
list, we can easily add the newly created waypoint at the correct position in
list. Finally two new midpoint handles are added in the middle of the new
segments.

(a) (b)

Figure 4.4: Dragging the midpoint down (a) will create a new waypoint and
two new midpoints (b)

In an alternative approach (used e.g. by UMLet9) one can create new
waypoints by dragging on any portion of the polyline.

Removal works in a similar manner. When two proper handles are aligned
within certain margin the dragged handle will be removed together with it’s
neighboring midpoints. New midpoint will be placed at the appropriate place
instead. Note that the real ends of the connection act as proper handles for
the purposes of addition and removal.

(a) (b) (c)

Figure 4.5: Dragging handle (a) to position (b), after which the handle is
removed (c)

9http://www.umlet.com

29

http://www.umlet.com

Chapter 5

Interactive Layouting

In the absence of a fully self-sufficient automatic layouting for a particular
notation, or when no automatic layouting has been yet implemented, a user
will always end up manually adjusting the layout. In fact a tool permitting
arbitrary placement is more appropriate than a modeling tool enforcing only
basic guidelines[8].

For this reason we deem it necessary to introduce collection of utilities
that will assist the user in the manual layouting; their primary objectives are:

• real-time performance — the user must receive immediate feedback
at all times

• maintain mental map — the user is already familiar with the diagram,
breaking the mental map to achieve marginally better layout would be
detrimental

• increase precision — create more precise drawings despite the less
precise movement of the user

• decrease effort — the utilities should aid the user, thus the effort to
use them should be minimal

5.1 Grid

Grid is a commonly used component not just in diagramming tools, but in
drawing tools in general (cf. GIMP or Inkscape10). It gives the user a ba-
sic visual feedback on sizes and proportions, as well as visual step-stone for
automatic snapping.

The grid is implemented under the name of RTGridView directly in Roassal
and allows the user to manually specify the grid size.

10GIMP is a raster graphics editor, Inkscape is a vector graphics editor

31

5. Interactive Layouting

Figure 5.1: RTGridView

5.1.1 Principle

As the canvas the grid is drawn upon is potentially infinite, we cannot simply
draw infinite lines. Instead, we focus only on the visible area:

1. Fill the visible area with equally spaced (RTGridView>>gridSize:)
vertical and horizontal segments, with one additional line outside the
visible area

2. Register mouse events that will move the grid upon canvas movement
only by gridSize modulo

3. Register zoom events that will redraw the shape so the lines will always
fully populate the visible area

The second step creates the illusion of an infinite grid: when the canvas
is moved by a vector n · gridSize + k (where k < gridSize), we position the
grid only by k and ignore the rest.

5.2 Snap To Grid

The purpose of a snap-to-grid functionality is to aid the user in creating better
and more precise drawing with less precise user movement and in shorter
amount of time.

Snap-To-Grid is the most basic utilization of a grid. Upon dragging a
movable element, the element will move only in the multiplications of the
grid size. Such movement can be further configured based on the needs of
a particular element, that is: we may want to align the element’s center on
grid intersections, or the element’s top left corner (or some other distinguished
part of the element).

Finally, the Snap-To-Grid, implemented as RTDraggableSnapToGrid is in-
dependent of RTGridView and therefore can be configured differently, e.g. the
movement being half of the grid, etc. By default Snap-To-Grid will use grid’s
configuration so one can specify it globally.

32

5.3. Alignment Snapping

(a) (b)

Figure 5.2: A simple graph created without (a) and with (b) snap-to-grid

5.2.1 Principle

When moving an element with snap-to-grid property, the normal (i.e. without
movement restrictions) target destination is first computed based on the mouse
movement, this position is then rounded to the nearest grid intersection point,
where finally the element is visually positioned by it’s center or top left corner
(based on the configuration).

5.3 Alignment Snapping

Alignment snapping is an advanced form of snapping that relies on positions
of other elements rather than on a grid. The objective is to give the user more
degrees of freedom while maintaining consistent alignment between objects —
in contrast grid will always force the user to adhere to the grid, whether it
makes sense or not.

The most basic form of alignment is alignment between object edges in an
orthogonal space.

5.3.1 Principle

Lines are projected from all hot11 objects’ edges, centers and possibly other
points along the size of the canvas, when another object is being moved and
approaches such projected line within certain distance, the moved object will
automatically snap to the line, thusly being aligned with the projecting object.

5.4 Snap And Go

Snap And Go [26] addresses the problem of moving elements in close proximity
to each other without the need of temporarily disabling the grid snapping.

11objects we are interested to be aligned with

33

5. Interactive Layouting

Figure 5.3: yEd editor utilizing alignment snapping (top line)

Especially interesting in situations where we want different precisions based
on the surrounding context.

5.5 Constraint Snapping

The most advanced version of snapping discussed here is constraint snapping.
In addition to aligning elements (like Alignment Snapping) a constraint engine
would evaluate additional constraints applied to the drawing. Such constraints
could ensure that elements are spaced equally, or they maintain some minimal
distance.

(a) Object 1 is being placed in an equal
distance in x and y distance from 2

(b) Object 4 is placed in an equal dis-
tance from 3, as is 3 from 2

Figure 5.4: Examples of automatic distance constraints between objects in
the yEd graphical editor

Usually such constraints are either hard-coded in the implementation, or
a special constraint language is used to describe them.

Finally, especially graphical editors can benefit from even more advanced
snapping in any directions while utilizing rotation anchors, skewing, etc. How-
ever as such complex behavior is of no use in currently implemented models
(BORM, UML), they were not explored further.

For an extensive study on snap-dragging see [27].

34

5.6. Edge Label Constraint

5.6 Edge Label Constraint

Edge Label Layouting discussed earlier3.4 is attempting to produce a globally
suboptimal solution to the problem. The solution there however has major
drawbacks from interactive perspective. Due to complexity of the problem and
performance of the implementation, even for smaller diagrams it is insufficient
for any real-time recomputing. For this reason a more performant alternative
was created.

Figure 5.5: UML Association with five different labels

5.6.1 Basic Requirements

5.5 shows several different labels on a single edge. From this we can observe
the first requirement: we must be able to programatically define the most
preferred position — whether at the beginning, middle, or end of the line,
whether above or below, and the minimum distance between the label and
nearby objects.

Figure 5.6: Properties of the constraint

We define the distance along the line from a to b as balance. This position
(x ∈ R) can be defined either relatively x ∈ [0, 1], where 0 is the source, 1 the
target, and 0.5 the middle, or absolutely x ∈ (−∞; 0) ∪ (1,∞) with positive
numbers measured from the source, and negative numbers measured from the
target.

Distance d ∈ R specifies the minimal orthogonal distance that should be
maintained between the label and the anchor point. If the distance is positive
(d ≥ 0) the label will be above the line or right of the line (depending on the
slope of the line), while negative distance positions the label below or to the
left of the line.

35

5. Interactive Layouting

5.6.2 Additional Requirements

Foremost the constraint must be able to handle polylines, which is something
that none of Roassal’s constraints are capable of as they’ve been introduced
only as a part of this thesis.

Secondly a user must be able to move the element by hand if needed, even
if such adjustment will reset when the edge moves. Reset after edge movement
is to be expected as repositioning of objects in the diagram will likely change
the optimal placements.

Finally an automatic repulsion is required that will nudge the label in
an appropriate direction so it won’t overlap neither it’s edge, nor the edge’s
endpoints.

(a) (b) (c)

Figure 5.7: (a) initial placement of the label, (b) nudging from line orthogo-
nally to it, (c) nudging from source element in the direction of the line

5.6.3 Results

The results show that the constraint works well for orthogonal drawings de-
spite the label being nudged only from the associated edge and it’s endpoints,
while ignoring other elements and edges in the diagram. This is possible be-
cause a good overall layout, namely orthogonal planarized drawing, will leave
enough space for the label placement.

Figure 5.8: UML Class Diagram utilizing the edge label constraint

36

5.7. Rail Constraint

5.7 Rail Constraint

In some situations we may want to give the user (or semi-automatic layouting)
more control over the placement of an edge label. Such example may be a
BORM DataFlow.

Figure 5.9: BORM DataFlow “pizza description” placed on a Communication
line

For the DataFlow we are not interested in any particular position on the
line (cf. UML association role names must be at the appropriate ends). Thus
we can allow the user to freely move the label along the line after which we
will remember and maintain the user-chosen position (both the balance and
distance as described in 5.6.

Additionally the user may want to visualize both the current rail anchor
and the joining rod between the rail anchor and the label. The rod will always
be orthogonal to the current polyline segment.

Figure 5.10: Rail constraint with visualized rail anchor and rod

37

Chapter 6

UML Class Diagrams Layouting

According to a study[28] UML Class Diagrams are with a large margin the
most popular notation used for software visualization (used by 85% of re-
spondents of the study, compared to activity diagrams at second place with
less than 60%). Therefore implementing such notation, together with semi-
automatic layouting would provide the highest potential benefit for users.

As part of this thesis we have implemented basic UML Class Diagram no-
tation in the DynaCASE tool, performed review state-of-the art of UML Class
Diagram layouting and implemented prototype layouting algorithms applica-
ble to them.

6.1 Diagram, Subject, Model, Meta-model

As the terms diagram, model, meta-model (metamodel), etc. are often used
interchangeably to a great confusion of the reader, we follow this terminology:

Subject is something we are interested in, whether it is a piece of software
code, network topology, or even a meta-model.

Model is a representation of a subject that captures some specific prop-
erties of it, while ignores or simplifies other ones. A subject can have many,
often overlapping, models each with a specific purpose.

Meta-model provides a description of a terminology that gives semantic
meaning to elements of a model. E.g. a meta-model of a graph would describe
concepts such as vertex, edge, etc.

Meta-. . . -meta-model describes a level below itself. There is no limit
to how many meta-* layers we can add, however it is not uncommon for a
meta-meta-model to be self-described — it acts as its own meta-model.

Diagram is a visual representation of a model. It applies a diagram
notation to a model.

Diagram model (Diagram notation) A diagram can have it’s own
meta-model that describes how a particular subject’s meta-model element

39

6. UML Class Diagrams Layouting

should look. E.g. graph diagram model would say that a vertex (meta-model
element) should be visualized as a circle with a label inside.

Figure 6.1: Roles of the subjects

40

6.2. UML Class Diagram Notation

6.2 UML Class Diagram Notation

Implementation of the UML metamodel[29] is daunting task given its sheer
complexity. Even if we focus only on the subset of elements used for Class
Diagram models we would require implementation of the core of UML infras-
tructure, which is still very extensive. For this reason as a temporary solution
we have chosen to use the FAMIX meta-model[30] and FAME meta-meta-
model[31]. Both libraries are part of the Moose Platform12.

The FAMIX metamodel is used by Moose to reengineer source code; the
core is very similar to UML infrastructure, therefore we deemed it a sufficient
basis for our own UML metamodel. The model is also well tested with both
tests and in practice. However to model our needs we had to extend to model
with binary associations, multiplicities, aggregations, value specifications, de-
fault values and additional UML features.

Figure 6.2: Model of a FAMIX metamodel including DynaCASE extensions

Having UML metamodel is not sufficient to visualize diagrams, for that
purpose UML utilizes Diagram Definition[32] and Diagram Interchange[29].

“The Diagram Definition (DD) specification provides a basis for modeling
and interchanging graphical notations, specifically node and arc style diagrams
as found in UML [. . .]”[32].

Practically speaking DD/DI describes how UML model elements should
look (diagram model), e.g. instead of a Method with isAbstract = true we
would work with UMLLabel with UMLStyle having fontItalic = true. Ad-
ditionally it describes properties specific to UML drawings. For example a
UMLEdge representing a UML Association may have a cross at the endpoint
to represent non-navigability, or when the association is navigable in both
ways it is common to not draw arrows at all. As this information is purely

12http://www.moosetechnology.org

41

http://www.moosetechnology.org

6. UML Class Diagrams Layouting

visual it is not expressed in the UML model, instead it is represented in the
DD model.

(a)
navigabilityNotation

= oneWay

(b)
isAssociationDotShown

= true

(c)
nonNavigabilityNotation

= always

Figure 6.3: UMLEdge with various diagram settings

DD also describes mechanism for managing styles of shapes such as colors,
font styles, etc.

Apart from implementing parts of DD necessary to visualize class dia-
grams we have also extended the DD element classes, so they are able to draw
themselves on Roassal using Roassal shapes.

Figure 6.4: Portion of DD/DI implemented in this thesis

Figure 6.5: Notation and diagram elements used to visualize an Association
element[29, B.2]

Introducing DI as an intermediate representation between controllers and
Roassal provided a great aid in both simplified implementation and mental
management of the architecture as it allowed us to focus in controllers only at
conceptual problems associated with the manipulation of UML shapes, while
in the DI elements we had to worry only about mapping simple shapes onto
the Roassal view without worrying about what the shapes represent.

42

6.3. UML Class Diagram Layouting

Figure 6.6: Relations between model and its visualization

6.3 UML Class Diagram Layouting

Although Class Diagram layouting has been a well studied problem for some
time, the practical impact on the tools used in the industry is limited, as
the many tools do not adhere to any aesthetic principles, or only very basic
ones[9]. The reasons for this are discussed in greater detail in the Layouting
chapter.

In this section we will briefly explore the various needs and improvements
specific to class diagrams, however majority of the work of both the description
and implementation of algorithms used for class diagram layouting is in the
Layouting chapter.

6.3.1 Aesthetic Requirements

Earlier we have explored a variety of aesthetic criteria2; in this section we will
select the most important to class diagrams, and introduce some more.

Eichelberger, et al.[33] lists the following aesthetic criteria:

1. Enforce hierarchy as the most appropriate ordering criterion for edges
in a class diagram.

2. Respect spatial relationships to encode coupling, cohesion and impor-
tance of parts of the diagram.

43

6. UML Class Diagrams Layouting

3. Visualize the natural clustering of nodes according to semantical reasons
like containment, n-ary associations and patterns.

4. Avoid crossings and overlappings of model elements.

5. Center position of selected nodes (n-ary associations, pattern nodes).

6. Respect the vicinity of association classes, notes and constraints.

7. Clearly assign adornments to edges and reflective associations to the
connected classes.

8. With the minimum priority respect other graph drawing criteria.

Many other sources[19][8][34][10] also agree, based on several empirical
studies, on the following additional criteria:

• crossing minimization

• bend minimization

• orthogonality

• horizontal labels

• joined inheritance arcs

• drawing generalizations in the same class hierarchy always in the same
direction

• avoiding nesting of class hierarchies

The lists also include aesthetics not discussed earlier:

Joint inheritance arcs are an important aesthetic rule that joins gener-
alization arcs of several classes that are a specialization of the same class.
Joining them together creates an impression of close relatedness. Doing so
is also essential for generalization sets as it makes it obvious visually what
elements are in the set.

(a) (b)

Figure 6.7: Inheritance drawn without (a), and with (b) arc joining

Horizontal labels rule requires labels to be always drawn horizontally ir-
respectively of the line they are on. Doing so makes it easier to read them,
however it imposes a new constraint on the layout. The layouting of edge la-
bels has been discussed in previous chapters in both the static global variant
as Edge Labeling Problem, and as interactive one in Edge Label Constraint
section.

44

6.3. UML Class Diagram Layouting

6.3.2 Algorithm

Devising an algorithm that would be capable of dealing with all the crite-
ria poses a special challenge as it is not clear what is the most appropriate
relation between the criteria and their relative value. Some authors may cir-
cumvent this problem by introducing parameterizable algorithms. However
such solution doesn’t solve the problem, instead it delegates the problem to
the person using the algorithm, who is in turn required to understand deep
implementation details to be able to properly assign criteria values.

Algorithms proposed by various authors can be generally split into two
categories:

• hierarchy-based approach

• topology-shape-metrics approach

The first approach always considers the hierarchy as the most important
factor of all, which in many instances is indeed true. As the hierarchy is
always acyclic13 creating a layout is a relatively simple task. Either simple
tree layout, or a more advanced Sugiyama[13] layout created specifically for
visualizing hierarchical systems can be used. An extension of Sugiyama layout
specifically for class diagrams was also proposed[35].

Hierarchy-based approach is however inherently flawed as it places too
much importance on the hierarchy. This becomes problematic in situations
where the modeler is interested in studying relations between objects, or there
is a lack of hierarchies, additionally programmers should generally prefer com-
position over inheritance[36]. Therefore the disadvantage of using hierarchy-
based approach is major.

The second approach — topology-shape-metrics is the current state-of-the-
art of UML Class Diagrams visualizations[34][19][33]. The approach is three
phased, where each phase is tasked with solving a specific problem. Topology
with topological organization of nodes, shape with general shape of nodes,
edges, and the diagram, and metrics with sizes of objects (edges, diagram
area, . . .). As the topology shape doesn’t place any conceptual restrictions,
this approach can be even used as direct hierarchy-based approach replacement
given appropriate topology heuristics, but unlike hierarchy it is not constrained
by it. To our knowledge the most extensive work focused on UML class
diagrams is the dissertation “Automatic layout of UML class diagrams: a
topology-shape-metrics approach”[37].

The discussion and implementation of topology-shape-metrics algorithm
has been presented in the previous Layouting chapter.

13In some meta-instances a cycle may exist, such as Pharo’s ProtoObject subclasses itself;
however this is a single case as normal hierarchy doesn’t permit cycles.

45

Chapter 7

BORM Object Relation
Diagrams Layouting

In this chapter we will explore BORM diagrams. Unlike UML Class Dia-
grams6 where we already have a wealth of research into the layouting, to our
knowledge there is no prior research assessing the layouting needs of BORM
diagrams; therefore our primary objective will be such assessment.

7.1 BORM ORD Model

Business Object Relation Modelling (BORM) is a complex method for systems
analysis and design that utilizes an object oriented paradigm in combination
with business process modelling.[38][39]

Although the BORM method encompasses several different model nota-
tions, we will focus only on the most used one — Object Relation Diagrams
(ORD).

Object Relation Diagram is an object-oriented approach with semantics
based on finite state automata (FSA) augmented with communications be-
tween them.

The topmost view available in ORD is a diagram. It represents an arti-
fact of the modeled domain, usually focused on a specific bounded problem.
Diagram itself is further composed of participants.

Participant is a representation of a software or business process of a spe-
cific entity that can have a state and is capable of engaging in communication
with other participants. For example user (Person participant) requesting
information about her bank account (System participant). Internally each
participant has its own FSA that tells us in what state the participant cur-
rently is, as well as any activity or communication engaged by the participant.
Each participant has an initial state, at least one final state, and any number
of intermediate states. Transitions between the states are enabled by input-

47

7. BORM Object Relation Diagrams Layouting

Figure 7.1: ORD diagram depicting various elements

output conditions and guarded by constraints. During transitions additional
behavior — activity — can be performed.

Figure 7.2: Metamodel of BORM Object Relation Diagram

48

7.2. Diagram overview

7.2 Diagram overview

Diagram is the topmost view currently available.14 The diagram itself is vi-
sually only a blank canvas that contains participants, and partially communi-
cations.

Participants from diagram’s perspective are an ordered collection of con-
nected rectangles. It is customary to organize those boxes in such manner that
the most important participant — usually the initiator of the diagram — is
the leftmost one. This convention allows the reader of such diagram to locate
the diagram’s beginning point without searching. Furthermore, participants
can then be positioned accordingly to their relation to the primary (secondary,
. . .) participant; those relations are represented by communications, and par-
ticularities of communications will be discussed later.

The leftmost rule dictates the overall left-to-right organization of the par-
ticipants, however there are other factors that can be leveraged to further
improve the layout. Foremost the size of each participant is given by the
number of states and activities it contains, therefore it will vary in size. Ad-
ditionally the connections (communications) between participants will often
originate from different places on the sides of the participant, allowing us in
some cases to place secondary participants on top of each other. Such vertical
stacking has multiple benefits from aesthetical perspective: the overall area is
smaller, edges are shorter, and there are fewer edge bends.

(a) Left-to-right rule (b) Vertical stacking

Figure 7.3: Comparison of participants organization

Yet another option is to place a participant to the left of the initiating
one. However one needs to exercise caution when doing so in order to avoid
confusion about which participant is the primary one. This can be resolved by
placing the participant in question distinctly below the starting horizontal line
of the primary one. Also being smaller in size will help with visual distinction.

As this violates the left-to-right rule it should be done only if it provides
significant benefits to the overall diagram, such as freeing valuable space and
removing larger number of line crossings or bends. This is up to the judgment
of the modeler.

Finally, an automatic layout generally shouldn’t change user-defined or-
dering of participants. Often the ordering is context-sensitive and user would

14In the future we would like to enable expanded diagram overview.

49

7. BORM Object Relation Diagrams Layouting

Figure 7.4: Participant placed to the left of the primary one

prefer to keep it that way — the proximity aesthetic criterion takes precedence
over any other.

Automatic layouting of participants is however still valuable in situations
where the layout is not yet available, such as when the diagram is generated
from a DSL.

7.3 Participant’s finite state automaton

Problem of participant’s content will be split into three parts: layouting of
FSA without back edges, layouting of back edges, and service-oriented partic-
ipants.

The non-FSA parts of participants have fixed position — name in the top
left corner, and icon of a type in the top right corner.

7.3.1 Layouting without back edges

Participant’s FSA is composed from states and activities. Each state is rep-
resented by a rectangle (which contains the state’s name). Transitions be-
tween states are then accommodated with directed polylines. Additionally
each transition has an associated activity. An activity is a rectangle with
rounded corners. Visually the transition leads from the source state to the
activity as a undirected edge, and then from activity to the target state as
a directed edge. From the perspective of the layouting we can however treat
both activities and states equally with the exception that an activity is associ-
ated with a single transition, and therefore it can contain only single incoming
and outgoing edge.

Process represented by FSA is traditionally flowing from top to the bottom.
This complements the left-to-right flow of participants and therefore they
together evenly populate the area of the diagram.

To layout the automaton we can take advantage of several factors. Because
we are representing process, we know that it will contain a beginning and an
end with flow generally going in single direction (down). This direct flow
should be in fact enforced, as it enables the modeler or reader at a glance
determine the relative position within the process or the overall state of it.
Thus even if vertical space could by saved by creating upward transition, such

50

7.3. Participant’s finite state automaton

compromise would impede the overall readability as it would create confusion
with real back edges.

So if we for the moment ignore back edges, the whole process is a directed
acyclic graph and can be organized with topological ordering.

From analyzed set of ORD diagrams15 it was also observed that the average
vertex degree is very low – usually two to four. The main reason is that
most modeled business decisions are of boolean character — accepted/refused,
available/unavailable, etc. Outgoing degree higher that two is mostly found
in enumeration of several different equal cases (buying a family car, a truck,
an SUV, . . .), however such situations are relatively uncommon. With such
low vertex degree and directed acyclic graph the automaton can be organized
with topological ordering without any edge crossings at all and with minimal
edge lengths and bends.

Finally it is noteworthy to determine the appearance of edges that span
several layers in the flow, or they present fork/join situations.

(a) Symmetrical fork (b) Side-track fork

In figures 7.5a and 7.5b are applied two competing rules — symmetry
versus minimal edge length and bends. However each of those cases can tell a
different story.

By maintaining symmetry in figure 7.5a we make both paths visually equal.
This is beneficial if the choices are indeed of equal importance.

The figure 7.5b on the other hand shows one direct path and one side-
track. Such layout could be used if the side-track is a marginal case that is
taken only occasionally or under special circumstances, and which most of the
time the reader is not interested in. Example could be an employee asking
a receptionist in a building to open turnstile. This would be an edge case if
every employee is expected to have entrance card that allows him to pass the
turnstile directly, without the need to ask the receptionist (and proving his
identity to him).

Unfortunately choosing one option over another in automatic layouting is
problematic, as the weight of the choices is not semantically defined in the
represented model. Thus we feel that user should have the option to choose
the appropriate case and the layouting algorithm should honor and remember
the choice. If not specified, the equality choice should be the default one as a
safer option — choosing unnecessary evaluation of minor case over accidental
undervaluing of an important one.

15Mostly student works from Process engineering university class.

51

7. BORM Object Relation Diagrams Layouting

7.3.2 Layouting of back edges

As mentioned before, back edges often represent exceptional behavior resulting
in a rollback of the process’ progress; this is visualized by an upward flow of
the transition.

Semantically back edges can only end in one of the previous state nodes. If
the endpoint was an activity node, it would result in incorrect behavior — an
activity node can be connected only to one and only one incoming edge. Thus
if we have back edge into an activity node, there would have to be already
an incoming edge, otherwise this wouldn’t be an back edge situation. There
is visually one possible exception, it will however be dismissed in the next
section7.3.3.

The back edge itself is visualized as an orthogonal polyline; unlike regular
transition which always starts from the bottom of one node and ends in top
of another, the back edge can freely start on an appropriate side of both the
source and target nodes. The side should be chosen based on surrounding
elements to minimize possible edge crossings. Given that most processes are
planar, we can route the back edge alongside the border of the participant’s
container box, where the only possible crossing would be with communications
or other back edges.

Figure 7.6: A participant with a back edge

7.3.3 Service-oriented participants

Service-oriented participants are a visual shortcut useful for representing a
service with several independent use case scenarios. For example an ATM
could provide the option to both withdraw, and to deposit money. Instead of
creating full automaton with initial and final state, transitions, and possible
constraints, all unnecessary parts are hidden, which results in simpler and
more readable diagram. This is however purely visual change and doesn’t
affect the model itself (cf. diagram settings of UML diagrams6.3).

As mentioned in previous section, this simplification could create the im-
pression that it is possible to create back edge into an activity node since there
is no visible incoming edge. Such impression would be incorrect as there is
incoming edge already present, only hidden from the visualization.

From layouting perspective, service-oriented participants give the layout-
ing more freedom, as the activity nodes could be moved around freely without

52

7.4. Communications and data flows

(a) Full automaton (b) Simplification

Figure 7.7: Possible visualizations of a service-oriented participant

worrying much about the rest of the participant’s content.

7.4 Communications and data flows

Communication in ORD model is a communication scenario between two par-
ticipants. Because communication is an active action, it is always performed
between an activity node of the initiating participant and an activity of the
target participant.

Communication within a participant is not permitted, because such situ-
ation would lead to a deadlock; participant has to be in such state that it can
both send a receive this transmission. Thus it would require it to be in two
states at the same time, which is not possible.

The notation for communication is a directed line from the initiating activ-
ity to the target one. The communication itself however can be bidirectional,
thus one participant can ask a question and receive an answer within the same
communication frame. If such question or answer, or more generally any ob-
ject is of significance exchanged during the communication, it can be modeled
with data flows.

Data flow is an object exchanged during communication, it can be any
meaningful material or conceptual object such as confirmation request, money
payment, restaurant order, meal, etc. The graphical notation is a box with
label describing the content and an arrow denoting its type. This arrow can
be either oriented in the same direction as the communication line — an input
data flow sent from the initiator, or in the opposite direction which is an
output data flow sent from the target and received by the initiator.

Because participants can be moved freely around, the orientation of a
communication can change (i.e. swapping position of two communicating par-
ticipants). Therefore the data flow arrows must also dynamically update to
correctly preserve their meaning.

The exact position of data flows on the communication line is not defined,
however we recommend placing them close their source participants (input

53

7. BORM Object Relation Diagrams Layouting

close to the source participant and output close to the target one). This en-
ables the reader to quickly determine what the participant has to send without
the need to trace the whole communication, which is especially important for
communications that spans larger portions of the graph or route around other
objects (such as 7.11).

Figure 7.8: Communication with two data flows

7.5 Layouting Algorithm

As we have described the layouting needs and visual representation, we can
now propose a layouting procedure for the diagram.

From previous sections we can summarize that there are several distinct
areas — layouting of participant’s content, organization of participants in the
diagram, and routing of communications.

Thus the most natural option is application of multistage layouting al-
gorithm. Each stage should act as an independent algorithm working on the
result of the previous one. This in principle follows the topology-shape-metrics
technique, including all it’s benefits and limitations.

7.5.1 Participant’s content

The first stage is layouting of the automaton. The reason for selecting this as
first is simple; the layout of the automaton changes the size of the participant’s
container and thus affects diagram organization and communications routing.

As stated earlier, the automaton can be in most cases drawn as planar
downward directed acyclic16 graph. Two possible candidates to layout such
graph emerge here: Sugiyama hierarchical layout and dominance tree layout,
both already available in the Roassal library. Even though there are no direct
disadvantages to either of them, we assert that dominance tree would be a
more appropriate choice as it maintains node layers.

The dominance tree layout is already provided by Roassal, however there
are extra steps required. Firstly the data fed to the layouter needs to be
prepared by removing back edges from the graph. After the application of the
layout bending of some lines might be required.

16Acyclic assuming back edges are ignored.

54

7.5. Layouting Algorithm

As Roassal’s layouts do not understand the notion of polylines, we need to
add bends explicitly. The bend points should be introduced in such a way that
symmetry is preserved. If there is a fork/join scenario with uneven number of
elements, the lines should still maintain symmetry by adding additional bend
points.

(a) (b)

Figure 7.9: Addition of a line bend point to maintain line symmetry

7.5.1.1 Back-edges

In all analyzed cases a back edge can be created with exactly three bend
points. The goal is to route the back-edge to the side of the participant,
up towards the target, and finally to the side of the target. The first and
last step can result in edge crossing with other transitions. However this
is not of major concern as such situations are rare17 and the back edge is
horizontally oriented whilst regular transition is oriented downwards, so there
is no confusion. Repositioning of nodes could be considered in the future to
further improve the layout. The crossing between several back edges is not
addressed as such situations are rare, but the main concern should be avoiding
complete overlapping of the lines.

The last step of participant’s layouting is adjusting the size of the container
box so all elements fit in. Thus includes also the label and type, and an extra
inner margin.

7.5.2 Organization of participants

The second stage of the overall layout is organization of participants. The
default chosen layout, as discussed earlier is left-to-right flow. The order of
participants is based on the order of communications — the target of the

17As we’ve pointed out earlier, the automaton’s graph is usually very simple and allows
for planar drawings.

55

7. BORM Object Relation Diagrams Layouting

Figure 7.10: Back edge with a crossing

primary participant’s first communication is also the next participant, and so
forth. If the layout was manually altered we do not recommend reorganization
of the participants, as it would break user’s mental map and the ordering is
context-sensitive.

7.5.3 Layouting of communications

Firstly we define the position of data flows. Generally we place data flows next
to their respective source. Thus input data flows are next to the sender/initiator
of the communication and output data flows next to the receiver. The verti-
cal position (above or below) is not important, however crossing with the line
should be avoided.

With data flow’s positions determined, the participants should be nudged
apart so there is enough space between them for both the data flows and
communication routing.

Finally the connections are routed with an orthogonal router and data
flows are placed accordingly.

7.5.4 Summary

To summarize all steps of the layout:

1. Participant’s automaton layouting

• Layouting of the graph without back edges with dominance tree layout

• Adding line bends to achieve symmetry

• Routing the back edges

• Adjusting container size

56

7.6. Conclusion

Figure 7.11: Multiple participants with communications and data flows

2. Ordering participants (optional)

3. Layouting communications

• Determining data flow positions

• Increasing spacing between participants

• Routing communications

• Placing data flows

As with topology-shape-metrics approach, this phasing enables us to solve
one problem at a time without worrying about the rest, however just like
with TSM we may deprive ourselves of the best layouts as we would need to
consider all properties at once, not in sequence, to achieve them.

7.6 Conclusion

In this chapter we have introduced the notation of BORM Object Relation
Diagrams, assessed the needs of layouting such diagrams and proposed al-
gorithmic solution. As the quality of the algorithm’s steps rests on quality
achieved in the Layouting3 chapter, we have achieved only partial success
and more work is required. Furthermore we have implemented the necessary
notation and BORM ORD model, none of which were discussed here in de-
tail, as they would be of little value to the reader, and the model is already
described in previous literature[39][38]. Finally we recommend considering
devising a specification of the diagram notation in the likes of UML DI/DD
in the future, as the current implementation is ad-hoc.

57

Chapter 8

Testing

To ensure certain level of quality several techniques were employed. Although
hard metrics such as number of tests, code coverage , etc. exists, their inter-
pretation is often very subjective. Furthermore there are many other hardly
measurable ways to further improve and ensure quality such as alpha/beta
testing, eating your own dogfood18, etc. Finally this is all is amplified by the
fact that not all code produced requires the same level of quality. As the
DynaCASE tool is of experimental nature with many parts unexplored, ex-
ploratory coding and prototyping is commonplace. For this reason we had no
specific quality level that we would aim for.

That being said, we have written 127 unit tests to test the implementation.
At the time of writing, all tests are passing.

We will also briefly explore several tools and concepts that were used
during the implementation to achieve higher level of product quality, especially
in the instance of testing layouting, which is by its very nature hard to unit
test.

8.1 SUnit Tests

Unit tests have a long tradition in Smalltalk as the SUnit framework19 is
the “mother of all unit testing frameworks”. Therefore large portion of code
written is covered by tests (both unit and integration tests).

Additionally we are currently exploring the Hapao Test Coverage Tool20.
Hapao is capable of both calculating code coverage as well as visualizing it
(using the Roassal library). Although we have discovered this tool relatively
late in the implementation, we consider it a valuable tool for future works as

18Directly using your own product for its intended purpose (contrasted by producing
software for third party without ever having the pleasure or horror of actually using it).

19http://sunit.sourceforge.net/
20http://objectprofile.com/Hapao.html

59

http://sunit.sourceforge.net/
http://objectprofile.com/Hapao.html

8. Testing

it gives us better insight into overall test coverage and guides us to parts that
are poorly covered.

Figure 8.1: Hapao test coverage visualization applied on our FAMIX exten-
sions

Figure 8.1 shows an example Hapao visualization applied on one of the
packages implemented here. Each colored box represents a method (the big
container is a class), the height is lines of code of the method, width the
number of senders and color coverage (red = not tested, black = well tested,
gray = tested). From the visualization we can also see that some classes
(e.g. ValueSpecification) would require more tests (as it has been tested only
by use or integration tests of other packages depending on it).

8.2 Continuous Integration

One of the tasks of continuous integration (CI) is running the complete test
suite of the whole DynaCASE package. As running the whole suite may be
time and resources demanding a programmer wouldn’t usually do it after
each modification. Using another system to run the tests also adds another
environment on which the tool is tested (and thus partially mitigating “works
on my machine” problem). The CI is also capable of creating builds which
can be downloaded with a single click and used by users without the need to
perform complex building/package loading operations.

60

8.3. Visual Debugging

DynaCASE is using Jenkins CI hosted on Inria21 servers. This hosted CI is
also used by Pharo itself, the Moose platform, as well as large portion of Pharo
Community. Although it serves its purpose, we are finding it increasingly
tedious to use for building many components of DynaCASE separately (as
we have only one job available). Furthermore it relies on availability of the
servers (which stop working from time to time). If however one is building a
Pharo project we would recommend it.

An alternative solution is currently emerging — Travis CI22. As the Dy-
naCASE project is a composition of several independent projects (DynaCASE
core, BORM model, BORM editor, UML model, UML editor, UML DSL, . . .)
we found it not possible to test each project in isolation with Jenkins. For
this reason we have opted to also use Travis in addition to Jenkins. In this
way we can have a separate CI job for each of the projects. As the project,
named smalltalkCI23 is still in early development there are things to be de-
sired, however even in this stage we found it very beneficial.

8.3 Visual Debugging

Although many parts of DynaCASE were written in the test driven develop-
ment (TDD) style, when implementing layouting we have very quickly dis-
covered that unit testing, although important and used, is not of much help
for understanding the core of the problem, as even small scale graphs were
producing large amount of data. This is a result of inherent complexity of the
layouting problems, as large solution spaces have to be evaluated. To solve
this problem we were prototyping the layouting algorithms with visual debug-
ging in mind — at each step we considered a good way to visually represent
the data.

Figure 8.2 shows us the striking difference between simply presenting list of
data (which would be the main produce of unit testing) and a visualization of
the same. Such visualization is priceless during development and debugging,
and can even be used later to better communicate the purpose of each step of
complex layouts.

21https://www.inria.fr/
22https://travis-ci.org/
23https://github.com/hpi-swa/smalltalkCI/

61

https://www.inria.fr/
https://travis-ci.org/
https://github.com/hpi-swa/smalltalkCI/

8. Testing

(a) List of all considered label posi-
tions

(b) Visualization of the considered po-
sitions

Figure 8.2: Considered positions during edge labeling

62

Conclusion

Faced Challenges

During the literature exploration, and specially during attempts to properly
implement usable layouting algorithms we have realized the sheer complexity
of the task. For example the dissertation [37] focuses only on the topology-
shape-metrics approach. Similarly a bachelor thesis “Implementing an Algo-
rithm for Orthogonal Graph Layout” [40] also focuses solely on researching
and implementing the same algorithm, while already having a strong support
of its underlying platform and libraries (Eclipse, KIELER24 respectively).

But the focus of this thesis was much broader — implementing two dif-
ferent notations (BORM ORD, UML Class Diagram), researching and imple-
menting associated layouting (for BORM ORD there is no prior literature);
and that all in an experimental platform DynaCASE on non-mainstream tech-
nologies Pharo and Roassal without any preexisting graph or layouting li-
braries to start from.

Considering all these factors — the complexity of layouting combined,
breadth of the assignment, use of non-standard technologies (or complete lack
thereof) we consider it not possible to achieve usable layouts in the extent laid
out in the beginning, therefore we were forced to reach for compromises.

Achieved Results

Although the implementation of layouting algorithms was met with less than
mixed success, we cannot completely dismiss the achieved results.

Firstly, we have explored the broad area of layouting. This gives us much
better standing in the future as we can now better estimate the amount of
work required to implement a particular layouting, we have obtained deeper
understanding of many of the concepts in the area of layouting, and we have

24Kiel Integrated Environment for Layout Eclipse Rich Client

63

Conclusion

better insight into what foundations will be required to implement good lay-
outing — namely the development of an extensive graph library.

Secondly, we have analyzed the layouting needs of BORM Object Relation
Diagrams. Unlike Class Diagrams, where a large amount of existing literature
already exists, to our knowledge there was no prior analysis of ORD, and thus
we can consider our findings new.

Thirdly, we have implemented a variety of utilities that support interactive
layouting, such as grid, grid snapping, local edge labeling, or polylines. So
although we haven’t achieved fully self-sufficient automatic layouting, imple-
mentation of those auxiliary utilities will provide great aid in speeding up and
improving manual layouting.

And lastly, we have successfully implemented all the necessary models
and notations for both UML Class Diagrams, and BORM Object Relation
Diagrams.

Future Work

As we actively continue the development of the DynaCASE platform, having
automatic layouting to the extent we were initially hoping for remains of high
interest to us. To achieve this, we will begin work on a dedicated graph library
that would provide us with a systematic way of graph manipulation, a wide
variety of common graph algorithms (finding shortest paths, set partitioning,
vertex cover, . . .), and a set of performant advanced algorithms such as as-
signment solvers, minimum cost maximum flow algorithms, etc. Using one of
Pharo’s FFIs25 and interfacing with some existing C or C++ library is also a
solution that could be considered.

Among other common notations, we originally planned to also include
DEMO (Design & Engineering Methodology for Organizations), however af-
ter a consultation with my supervisor we have concluded that the implemen-
tation of DEMO model, notation and layouting would be far more complex.
We believe that such task would even exceed the extent of bachelor studies
altogether, as the implementation would require a lot of programming experi-
ence, as well as lot of experience with DEMO modeling, which is part only of
master’s curriculum. Currently we have master students that are interested
in implementing the DEMO methodology.

Finally, other work is being done around DynaCASE platform. For both
BORM ORD and UML Class Diagrams we have developed textual DSLs. As
the platform is capable of generating models (and diagrams) from those DSLs,
having good layouting would be even more valuable. And lastly a source-code
generator from UML Class Diagrams to Pharo Smalltalk was developed as
part of external contract aimed at support of agent-based modeling.

25Foreign Function Interface

64

Bibliography

[1] Uhnák, P. DynaCASE modeling platform. [online; cit. 2016-01-11]. Avail-
able from: https://dynacase.github.io

[2] Black, A.; Ducasse, S.; Nierstrasz, O.; et al. Pharo by Example.
Square Bracket Associates, 2009, ISBN 978-3-9523341-4-0. Available
from: http://pharobyexample.org

[3] Bergel, A. Agile Visualization, [To be published est. mid 2016.]. Available
from: http://agilevisualization.com/

[4] Wilson, R. J. Introduction to graph theory. Prentice Hall, fourth edition,
1996, ISBN 978-0-582-24993-6.

[5] Dubé, D. Graph layout for domain-specific modeling. Mas-
ter’s thesis, McGill University, 2006. Available from: http://

digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_
id=97943

[6] Fuhrmann, H.; Spönemann, M.; Matzen, M.; et al. Automatic Layout
and Structure-Based Editing of UML Diagrams. In Proceedings of the 1st
Workshop on Model Based Engineering for Embedded Systems Design
(M-BED’10), Dresden, March 2010.

[7] Galapov, A.; Nikiforova, O. UML Diagram Layouting: the State of the
Art. J. Riga Technical University, volume 44, 2011: pp. 101–108. Avail-
able from: http://dx.doi.org/10.2478/v10143-011-0027-0

[8] Eichelberger, H.; Schmid, K. Guidelines on the aesthetic quality of UML
class diagrams. Information & Software Technology, volume 51, no. 12,
2009: pp. 1686–1698. Available from: http://dx.doi.org/10.1016/
j.infsof.2009.04.008

65

https://dynacase.github.io
http://pharobyexample.org
http://agilevisualization.com/
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97943
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97943
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97943
http://dx.doi.org/10.2478/v10143-011-0027-0
http://dx.doi.org/10.1016/j.infsof.2009.04.008
http://dx.doi.org/10.1016/j.infsof.2009.04.008

Bibliography

[9] Eichelberger, H. UML class diagrams – state of the art in layout tech-
niques. In Proc. VISSOFT 2003 – 2. Int. Workshop on Visualizing Soft-
ware for Understanding and Analysis, IEEE, 2003, pp. 30–34.

[10] Sun, D.; Wong, K. On Evaluating the Layout of UML Class
Diagrams for Program Comprehension. In IWPC, IEEE Com-
puter Society, 2005, ISBN 0-7695-2254-8, pp. 317–326. Avail-
able from: http://dx.doi.org/10.1109/WPC.2005.26;http:
//doi.ieeecomputersociety.org/10.1109/WPC.2005.26

[11] Falke, R.; Klein, R.; Koschke, R.; et al. The Dominance Tree in Visualiz-
ing Software Dependencies. In Proceedings of the 3rd International Work-
shop on Visualizing Software for Understanding and Analysis, VISSOFT
2005, September 25, 2005, Budapest, Hungary, edited by S. Ducasse;
M. Lanza; A. Marcus; J. I. Maletic; M.-A. D. Storey, IEEE Computer
Society, 2005, ISBN 0-7803-9540-9, pp. 83–88.

[12] Tamassia, R. Handbook of Graph Drawing and Visualization (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC, 2007, ISBN
1584884126.

[13] Sugiyama, K.; Tagawa, S.; Toda, M. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man,
and Cybernetics, volume 11, no. 2, 1981: pp. 109–125.

[14] Spönemann, M. Graph layout support for model-driven engineering. Num-
ber 2015/2 in Kiel Computer Science Series, Department of Computer
Science, 2015, ISBN 9783734772689, dissertation, Faculty of Engineer-
ing, Christian-Albrechts-Universität zu Kiel.

[15] Gansner, E. R.; North, S. C. An open graph visualization system and its
applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, volume 30, no. 11, 2000: pp. 1203–1233. Available from:
http://www.graphviz.org

[16] Chimani, M.; Gutwenger, C.; Jünger, M.; et al. The Open Graph Drawing
Framework (OGDF). CRC Press, 2012, to appear.

[17] Di Battista, G.; Eades, P.; Tamassia, R.; et al. Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry, volume 4,
no. 5, 1994: p. 235–282.

[18] Kaufmann, M.; Wagner, D. (editors). Drawing Graphs: Methods and
Models. London, UK, UK: Springer-Verlag, 2001, ISBN 3-540-42062-2.

[19] Eiglsperger, M.; Gutwenger, C.; Kaufmann, M.; et al. Automatic layout
of UML class diagrams in orthogonal style. Information Visualization,

66

http://dx.doi.org/10.1109/WPC.2005.26; http://doi.ieeecomputersociety.org/10.1109/WPC.2005.26
http://dx.doi.org/10.1109/WPC.2005.26; http://doi.ieeecomputersociety.org/10.1109/WPC.2005.26
http://www.graphviz.org

Bibliography

volume 3, no. 3, 2004: p. 189–208, ISSN 1473-8716, 1473-8724, doi:10.1
20057/palgrave.ivs.9500078.

[20] Kaufmann, M.; Eiglsperger, F.; Eppinger, M. An Approach for Mixed
Upward Planarization. Graph Algorithms and Applications 4, volume 4,
2006: p. 203.

[21] Resende, M. G.; Ribeiro, C. C. A GRASP for graph planarization. Net-
works, volume 29, no. 3, 1997: p. 173–189.

[22] Kakoulis, K. G.; Tollis, I. G. Algorithms for the multiple label place-
ment problem. Computational Geometry, volume 35, no. 3, Oct 2006: p.
143–161, ISSN 09257721, doi:10.1016/j.comgeo.2006.03.005.

[23] An Algorithm for Labeling Edges of Hierarchical Drawings. Lecture notes
in computer science, 1997.

[24] Kakoulis, K. G.; Tollis, I. G. A UNIFIED APPROACH TO AUTO-
MATIC LABEL PLACEMENT. International Journal of Computational
Geometry & Applications, volume 13, no. 01, Feb 2003: p. 23–59, ISSN
0218-1959, 1793-6357, doi:10.1142/S0218195903001062.

[25] Munkres, J. Algorithms for the Assignment and Transportation Prob-
lems. Journal of the Society of Industrial and Applied Mathematics, vol-
ume 5, no. 1, March 1957: pp. 32–38.

[26] Baudisch, P.; Cutrell, E.; Hinckley, K.; et al. Snap-and-go: helping users
align objects without the modality of traditional snapping. In Proceed-
ings of the SIGCHI conference on Human Factors in Computing Sys-
tems, ACM, 2005, pp. 301–310. Available from: http://dl.acm.org/
citation.cfm?id=1055014

[27] Bier, E. A.; Stone, M. C. Snap-dragging. In Proceedings of the 13th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’86, New York, NY, USA: ACM, 1986, ISBN 0-89791-
196-2, pp. 233–240, doi:10.1145/15922.15912. Available from: http:

//doi.acm.org/10.1145/15922.15912

[28] Hutchinson, J.; Whittle, J.; Rouncefield, M.; et al. Empirical assessment
of MDE in industry. ACM, 2011, p. 471–480. Available from: http:

//dl.acm.org/citation.cfm?id=1985858

[29] OMG. OMG Unified Modeling Language 2.5. Technical report, Mar 2015.
Available from: http://www.omg.org/spec/UML/2.5

[30] Ducasse, S.; Anquetil, N.; Bhatti, M. U.; et al. MSE and FAMIX 3.0: an
Interexchange Format and Source Code Model Family. Nov 2011. Avail-
able from: https://hal.inria.fr/hal-00646884

67

http://dl.acm.org/citation.cfm?id=1055014
http://dl.acm.org/citation.cfm?id=1055014
http://doi.acm.org/10.1145/15922.15912
http://doi.acm.org/10.1145/15922.15912
http://dl.acm.org/citation.cfm?id=1985858
http://dl.acm.org/citation.cfm?id=1985858
http://www.omg.org/spec/UML/2.5
https://hal.inria.fr/hal-00646884

Bibliography

[31] Kuhn, A.; Verwaest, T. FAME, a polyglot library for metamodeling at
runtime. 2008, p. 57–66. Available from: http://core.ac.uk/download/
pdf/1549752.pdf#page=57

[32] OMG. Diagram Definition (DD) 1.1. Technical report, Jun 2015. Avail-
able from: http://www.omg.org/spec/DD/1.1

[33] Eichelberger, H.; von Gudenberg, J. W. Uml class diagrams-state
of the art in layout techniques. Citeseer, 2003, p. 30–34. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.220.8667&rep=rep1&type=pdf#page=36

[34] Gutwenger, C.; Jünger, M.; Klein, K.; et al. A new approach for vi-
sualizing UML class diagrams. ACM, 2003, p. 179–188. Available from:
http://dl.acm.org/citation.cfm?id=774859

[35] Seemann, J. Extending the Sugiyama algorithm for drawing UML class
diagrams: Towards automatic layout of object-oriented software diagrams.
Springer, 1997, p. 415–424. Available from: http://link.springer.com/
chapter/10.1007/3-540-63938-1_86

[36] Gamma, E.; Helm, R.; Johnson, R.; et al. Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995, ISBN 0-201-63361-2.

[37] Eiglsperger, M. Automatic layout of UML class diagrams: a topology-
shape-metrics approach. Dissertation thesis, Universität Tübingen, Nov
2003.

[38] Podloucký, M.; Pergl, R. Towards Formal Foundations for BORM
ORD Validation and Simulation. In ICEIS (2), edited by S. Ham-
moudi; L. A. Maciaszek; J. Cordeiro, SciTePress, 2014, ISBN 978-989-
758-028-4, pp. 315–322. Available from: http://dx.doi.org/10.5220/
0004897603150322

[39] Knott, R. P.; Merunka, V.; Polák, J. Process Modeling for Object Ori-
ented Analysis Using BORM Object Behavioral Analysis. In ICRE, IEEE
Computer Society, 2000, ISBN 0-7695-0565-1, pp. 7–16. Available from:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
6907;http://www.computer.org/csdl/proceedings/icre/2000/0565/
00/index.html

[40] Claussen, O. Implementing an Algorithm for Orthogonal Graph Layout.
Bachelor thesis. Christian-Albrechts-Universität zu Kiel, Sep 2010.

68

http://core.ac.uk/download/pdf/1549752.pdf##page=57
http://core.ac.uk/download/pdf/1549752.pdf##page=57
http://www.omg.org/spec/DD/1.1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.8667&rep=rep1&type=pdf##page=36
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.8667&rep=rep1&type=pdf##page=36
http://dl.acm.org/citation.cfm?id=774859
http://link.springer.com/chapter/10.1007/3-540-63938-1_86
http://link.springer.com/chapter/10.1007/3-540-63938-1_86
http://dx.doi.org/10.5220/0004897603150322
http://dx.doi.org/10.5220/0004897603150322
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6907; http://www.computer.org/csdl/proceedings/icre/2000/0565/00/index.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6907; http://www.computer.org/csdl/proceedings/icre/2000/0565/00/index.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6907; http://www.computer.org/csdl/proceedings/icre/2000/0565/00/index.html

Appendix A

Acronyms

BORM Business Object Relation Modeling

BORM ORD BORM Object Relation Diagram

UML Unified Modeling Language

DEMO Design & Engineering Methodology for Organizations

DC DynaCASE

DynaCASE Dynamic Computer-aided Software Engineering

DD Diagram Definition

DI Diagram Interchange

ORD BORM Object Relation Diagram

FSA Finite State Automat(on/a)

DSL Domain Specific Language

69

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables

pharo-vm.....directory containing pharo virtual machine executables
dynacase.image......pharo image file containing the implementation
dynacase.changes..pharo changes file containing the implementation
dynacase.sh................................dynacase shell launcher

src.......................................the directory of source codes
repository...........export of the source code in the filetree format
thesis.... the directory of LATEX source and build codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

71

	Introduction
	Motivation
	Problem Statements
	Structure of the Thesis

	Formal Foundations
	Graphs
	Drawings

	Visual Aesthetics
	Aesthetic Criteria
	Graph Layouts

	Layouting
	Topology-Shape-Metrics
	Planarization
	Mixed Upward Planarization
	Edge Labeling Problem
	Interfacing with GraphViz

	Polylines
	Managing waypoints

	Interactive Layouting
	Grid
	Snap To Grid
	Alignment Snapping
	Snap And Go
	Constraint Snapping
	Edge Label Constraint
	Rail Constraint

	UML Class Diagrams Layouting
	Diagram, Subject, Model, Meta-model
	UML Class Diagram Notation
	UML Class Diagram Layouting

	BORM Object Relation Diagrams Layouting
	BORM ORD Model
	Diagram overview
	Participant's finite state automaton
	Communications and data flows
	Layouting Algorithm
	Conclusion

	Testing
	SUnit Tests
	Continuous Integration
	Visual Debugging

	Conclusion
	Faced Challenges
	Achieved Results
	Future Work

	Bibliography
	Acronyms
	Contents of enclosed CD

