
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Migration of relational databases using

CodiScent’s Projective Technologies

Christián Golian

Supervisor: Mgr. Ondřej Dvořák

5th May 2015

Acknowledgements

I would like to express my deepest thanks to my supervisor Mgr. Ondřej
Dvořák for his valuable advice and frequent consultations. I would also like
to thank my parents for their continuous support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 5th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Christián Golian. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Golian, Christián. Migration of relational databases using CodiScent’s Pro-
jective Technologies. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2015.

Abstrakt

Tato práce se zabývá vývojem a implementaćı nové metody migrace schematu
relačńı databáze. Nová metoda migrace a nový migračńı nástroj jsou založeny
na Projektivńıch Technologíıch, které jsou vyv́ıjeny společnost́ı Codiscent.
V teoretické části jsou definovány pojmy jako migrace schematu a migračńı
nástroje. Praktická část se zabývá analýzou, návrhem a implementaćı nového
migračńıho nástroje MigrationGen. V závěru jsou vyslověny závěry o efek-
tivitě této metody a o vhodnosti použ́ıvańı generováńı kódu k migraci databáze.

Kĺıčová slova migrace schématu, relačńı databáze, Projektivńı Technolo-
gie, reverzńı inženýrstv́ı, generativńı programováńı

ix

Abstract

This thesis deals with development and implementation of a new method of
schema migration. The new migration method and the new migration tool
are based on Projective Technologies which are developed by the company
Codiscent. The theoretical part defines terms such as schema migration and
schema migration tools. The practical part deals with analysis, design and
implementation of the new migration tool MigrationGen. Finally, conclusions
are drawn about the effectiveness of this method and about the suitability of
using code generation for database migration.

Keywords schema migration, relational databases, Projective Technologies,
reverse engineering, generative programming

x

Contents

Introduction 1

Motivation . 1

Goals . 2

Text structure . 2

1 Domain Introduction 5

1.1 Database . 5

1.2 Relational model . 6

1.3 Query languages . 7

1.4 Schema migration . 8

1.5 Migration tools . 8

1.6 Projective Technologies . 9

1.7 XML . 9

1.8 XSD . 9

1.9 Summary . 10

2 Goals Revisited 11

3 Projective Technologies 13

3.1 CodiScent . 13

3.2 Projective Technologies . 14

3.3 Generative Programming . 14

3.4 Generative Engineering Studio 15

3.5 Reverse Engineering . 16

3.6 Reverse Engineering Studio . 17

3.7 Summary . 17

4 Existing Solutions 19

4.1 Open DBDiff . 19

4.2 Flyway . 19

xi

4.3 Liquibase . 21
4.4 migrate4j . 22
4.5 Ruby on Rails . 23
4.6 Django . 24
4.7 Summary . 25

5 Analysis and Design 27
5.1 Analysis . 27
5.2 Design . 28
5.3 Summary . 32

6 Implementation 35
6.1 Multitier architecture . 35
6.2 Data layer . 36
6.3 Business layer . 37
6.4 Presentation layer . 39
6.5 Testing . 40
6.6 Summary . 41

7 Evaluation 45
7.1 Review . 45

Conclusion 47

Bibliography 49

A Acronyms 51

B Practical examples 53

C Contents of enclosed CD 59

xii

List of Figures

1.1 DDL statement . 7

1.2 DML statement . 8

1.3 A simple transformation written in XML 10

3.1 Template for adding column . 16

3.2 One of the possible outputs generated from Figure 3.1 16

4.1 Liquibase: ChangeSet creating table from Table 1.1. 21

4.2 migrate4j: Migration creating table from Table 1.1 22

5.1 transformation set element . 30

5.2 transformation element . 30

5.3 field element . 30

5.4 Schema migration using Projective Technologies 33

6.1 Important classes and their interaction in MigrationGen 36

6.2 Updating table migrations table 37

6.3 Code snippet from method applyMigrations 38

6.4 Presentation layer . 39

6.5 A screenshot of MigrationGen . 40

6.6 Running times of transformation CREATE TABLE in milliseconds 41

6.7 MigrationGen workflow . 42

B.1 Structure of a directory passed to MigrationGen 53

B.2 JDBC connection string to a PostgreSQL database 53

B.3 Single transformation creating a table 54

B.4 SQL script which GES produces from Figure B.3 54

B.5 Single transformation creating a table with a foreign key 55

B.6 SQL script which GES produces from Figure B.5 56

B.7 Transformations dropping and adding columns to the table 56

B.8 SQL output which GES produces from Figure B.7 56

xiii

B.9 Running times . 57

xiv

List of Tables

1.1 people . 6

4.1 Flyway: schema version . 20

xv

Introduction

Motivation

Today, source code version control is an integral part of every project. The
question is not whether to use a software tool for version control, but which
one to use. Its benefits are acknowledged and it is considered to be a standard
in an enterprise world.

Database versioning brings all the advantages which source code version
control has. It tracks evolution of the project. It backs up code. It enables
simpler sharing between developers. It visualizes changes between different
versions easier. It allows restoring a database at a given point in time. It is not
as common and widespread as source code versioning, yet equally important.

Schema migration tools deal with relational database versioning. When
relational database needs to be updated to a newer, or reverted to an older
version, schema migration (or database migration) is performed. This consists
of applying a sequence of scripts.

These scripts can be written manually or generated by another application.
The second option is better because it saves time and cost and raises quality
by reducing the possibility of a human error. There are different approaches to
source code generation: from reverse engineering to generative programming.
CodiScent1 is a company which is developing tools for generative engineering.
These tools are known as Projective Technologies and they include Generative
Engineering Studio (GES) and Reverse Engineering Studio (RES).

The motivation for this thesis is to investigate if tools for schema migra-
tions developed on top of Projective Technologies can benefit from advantages
brought by code generation.

1http://codiscent.com/

1

http://codiscent.com/

Introduction

Goals

The ultimate goal of this thesis is to propose a new method for database
migration and to develop a new database migration tool based on it.

MigrationGen should be better (at least in some regards) than similar
migration tools. Because of that, other migration tools are also examined and
compared.

There are multiple measurements that can be used to compare migration
tools, and that can be improved. I decided to decrease the effort needed to
write the migrations. Adding a certain degree of automation to the migration
tool decreases the effort needed. The complete automation is not achievable.
A discussion why is a next goal of this thesis.

As a consequence, MigrationGen tends to be automated as much as pos-
sible. It is based on code generation. Code generation is implemented using
Projective Technologies tools developed by company CodiScent. Given a data
source and a template, these tools generate a migration script which can be
then applied to the database. Thus an important goal is to introduce how
Projective Technologies are applied on MigrationGen.

The last goal is to explain the reasons behind the key design decisions of
MigrationGen (e.g. a suitable file format consumed by MigrationGen).

Text structure

This thesis can be split into two parts - theoretical and practical. In the
theoretical part of my thesis I deal with three main topics - database migration,
existing solutions and CodiScent’s tools.

I start with clarifying terms. In Chapter Domain Introduction I intro-
duce the fundamental concepts which are needed later, among others schema
migration and schema migration tools.

Chapter Projective Technologies deals with tools developed by company
CodiScent and their approach to software development. I introduce RES
(Reverse Engineering Studio) and GES (Generative Engineering Studio), also
called Projective Technologies. These will be used in the practical part of
my thesis. Because the technologies are based on reverse engineering and
generative programming respectively, I examine these processes.

Practical part of my thesis deals also with three topics - design of the migra-
tion tool, implementation and extensibility. The practical part consists mainly
of Chapter Analysis and Design and Chapter Implementation. I explain how I
decided to encode the information about schema changes in Chapter Analysis
and Design. I show the design of MigrationGen and present the whole process
starting with schema change and ending with applying script which modifies
the schema. Finally I propose a method for schema migrations and implement
it in Chapter Implementation.

2

Text structure

Chapter Existing Solutions gives a brief overview of existing migration
tools. In this chapter the migration tools are analyzed, and a review of ex-
isting methods for migration is performed. I divide the migration tools into
categories and I also categorize the migration tool I developed.

The result of the practical part of my bachelor thesis is a migration tool.
However, it still is a Combined Bachelor’s Thesis - specifically a combination
of a Design Bachelor’s Thesis and an Implementation Bachelor’s Thesis. I
revisit and review the developed tool in Chapter Conclusion.

3

Chapter 1

Domain Introduction

In this chapter I introduce the fundamental concepts like database, relational
database, database migration and database migration tools.

1.1 Database

Database is a collection of organized data. Database management system
(DBMS) is a computer program providing the user and other applications
with an interface they can use to communicate with the database. Popu-
lar DBMS include Oracle Database, Microsoft SQL Server or PostgreSQL.
Change performed in the database using DBMS is called database transac-
tion. DBMS should guarantee that during a database transaction a set of
properties called ACID will be applied. ACID stands for:

• Atomicity, stating in an “all or nothing” way that if one database oper-
ation fails, entire transaction fails

• Consistency, asserting that no constraints will be violated, while moving
database from one state to another

• Isolation, expressing that concurrency control should be ensured for mul-
tiple transactions

• Durability, declaring that all changes should be stored permanently after
completing transaction

Database is organized using the database model. Database model is a
collection of conceptual tools for describing data, data relationships, data
semantics and consistency constraints [1]. Examples of database models are
hierarchical database model, network model, entity-relationship model or rela-
tional model. In relational database the data is organized using the relational
model of data.

5

1. Domain Introduction

1.2 Relational model

Relational model was proposed by Edgar F. Codd in 1970 in his paper A
relational model of data for large shared data banks [2].

Relational database usually consists of one or multiple tables. Consider
Table 1.1 Table people has four columns (id, first name, surname, age) and

Table 1.1: people

id first name surname age

1 Steven Morrissey 24

2 John Marr 19

3 Andrew Rourke 18

4 Michael Joyce 19

four rows. Each row can be thought of as a relationship between id and values
of first name, surname and age. This sequence of values (id, first name,
surname, age) is called tuple in relational model (specifically n-tuple for n
values). Set of these tuples is a relation which corresponds to a table in a
relational database. Element of a tuple is an attribute and it corresponds to
a column in a table. To represent information which is missing, three-valued
logic is used. Attribute can take three possible values - TRUE, FALSE and
UNDEFINED.

To distinguish between tuples in a relation, keys are used. Superkey allows
us to uniquely identify a tuple in a relation and it is a set of attributes.
Candidate key is a minimal superkey. Primary key is a candidate key which
was chosen to identify a tuple in the relation. Finally, foreign key is a primary
key of another relation. Using Table 1.1 as an example, superkey could be a
triplet (id, first name, surname), candidate key could be one of the columns
id, first name or surname, and column id could serve as a primary key.

Attributes, tuples and relations describe how data should be stored. To
operate upon data, relational algebra and relational calculus are used.

Relational algebra is a collection of operators that take relations as their
operands and return a relation as their result [3]. The fundamental operations
are:

• selection (denoted by σ), which selects tuples satisfying selection condi-
tion

• projection (Π), which returns a relation containing only the set of at-
tributes passed to it, leaving others out

• union (∪), which is a union between two relations

6

1.3. Query languages

• set difference (−), which returns relation containing tuples which are in
one of the original relations, but not in the other

• Cartesian product (×), which returns a Cartesian product of two rela-
tions

• rename (ρ), which renames attributes in a relation

Using these six operations, another operations like set intersection (∩) or
natural join (./) can be defined.

Relational calculus is an alternative to relational algebra, forming queries
in a declarative way, instead of a procedural one. Codd’s theorem states that
relational algebra and relational calculus are equivalent in expressive power.
Structured Query Language (SQL) is based on relational algebra and relational
calculus and is discussed in the next section.

1.3 Query languages

SQL (originally called Sequel) was developed in the 1970s by Donald D. Cham-
berlin and Raymond F. Boyce [4]. SQL is a query language used to access,
define and manipulate data, and it is the most commercially influential one
[1].

Syntax of the language resembles natural language and it is a case insen-
sitive language. It is a declarative language, however it has extensions adding
procedural language functionality.

The language contains Data Definition Language (or Data Description
Language), Data Manipulation Language (DML) and Data Control Language
(DCL) statements. DDL is a language used to define data structures. In SQL
CREATE, DROP and ALTER statements are used to create a table, destroy
a table and add or delete a column. Example of a DDL statement is given in
Figure 1.1.

Figure 1.1: DDL statement

CREATE TABLE people (

id INTEGER PRIMARY KEY,

first_name VARCHAR(50) NOT NULL,

surname VARCHAR(50) NOT NULL,

age INTEGER NOT NULL

);

DML is a language used to manipulate data. In SQL statements like
SELECT or INSERT are used to retrieve values from the database, or insert
values into the database. Example of a DML statement is given in Figure 1.2.

7

1. Domain Introduction

Figure 1.2: DML statement

INSERT INTO people (id, first_name, surname, age)

VALUES (5, ’Craig’, ’Gannon’, 16);

In addition to DDL and DML SQL contains commands to add integrity
constraints, define views, begin and end transactions. It also contains com-
mands to add and remove access rights which constitute the DCL.

1.4 Schema migration

Database schema describes structure or a logical design of a database. It con-
tains definitions of tables, fields, relationships and other elements. Database
schema does not generally change, tables in database change more often, as
they are updated with new records [1]. However, in some environments - like
developing software, we have to consider the possibility of change.

Series of changes (like creating a table, adding a column, renaming a col-
umn) brings database schema from one version to another. We have two
possibilities how to migrate from the one version to the other. The first con-
sists of deleting the old database and creating a new one. This option is not
used often, because it is associated with data loss. We have to insert data
from the old database to the new one. In case that data in the old database
was generated, we have to regenerate it and regenerating takes time. Second
option is used much more in software development and it is the migration of
the database.

The process of updating or reverting database schema from older version
to newer (or newer version to older) is called schema migration (also database
migration or database change management)

There are another definitions of database migration - one is migrating
from one type of database to another. This definition is used in paper by
Maatuk, Ali and Rossiter[5]. Their paper proposes method for migration of
relational database to an object-based/XML database. Another definition
defines schema migration as moving database from one physical location to
another.

In this thesis I deal only with the first definition which is transforming
relational database schema from one version to another.

1.5 Migration tools

In an effort to automatize the whole process, schema migration tools are de-
veloped. These tools vary in their functionality. Some of them just store the

8

1.6. Projective Technologies

migration scripts and a number identifying last applied SQL script. Some
of them connect to the database and enable to apply these scripts. Some
tools are integrated into web application frameworks like Django2 or Ruby on
Rails3. Schema migration tools are the main topic of Chapter 4.

1.6 Projective Technologies

Projective Technologies is a term used by company CodiScent to describe their
tools Generative Engineering Studio (or GES) and Reverse Engineering Studio
(RES). GES and RES are based on the principles of generative programming
and reverse engineering. CodiScent uses these tools in their generative engi-
neering approach. In this approach the majority of the application code is
generated using templates. This approach saves time and effort and improves
quality of the code.

This topic is dealt with in more detail in Chapter 3.

1.7 XML

Extended Markup Language (XML) is a markup language which is used to
describe XML documents. The language was designed to be usable, easy to
write and easily readable by humans. The specifications for this language are
provided by World Wide Web Consortium4.

The constructs which XML uses are similar to another markup language
- HTML. The key ones are tags, elements and attributes. Figure 1.3 contains
some of these constructs. It depicts a transformation which adds column
first name to the table people.

The elements such as transformation or table name are discussed in
detail in Section 5.2.1.1.

1.8 XSD

XML schema is a formal description of the elements an XML file should con-
tain. This description can be used then to verify if the actual XML file contains
these elements. The process of verification is called validation.

The description includes specifications dictating what types of data can
the elements contain, what order should the elements be in or which elements
are optional and which are mandatory.

The description can be written in several languages. Schema specification
for my migration tool was written in XML Schema Definition (XSD). XSD is
a standard also developed by World Wide Web Consortium.

2https://www.djangoproject.com/
3http://rubyonrails.org/
4www.w3.org

9

https://www.djangoproject.com/
http://rubyonrails.org/
www.w3.org

1. Domain Introduction

Figure 1.3: A simple transformation written in XML

<transformation>

<id>1</id>

<transformation_type>ADD_COLUMN</transformation_type>

<table_name>people</table_name>

<field>

<field_name>first_name</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

</field>

</transformation>

There are several advantages which XSD has over other XML schema
languages. They include support for namespaces and data types.

1.9 Summary

In this chapter fundamental concepts were explained and defined. The most
important one is probably database schema migration, as this is the main
subject of this thesis. But other important concepts were mentioned too like
database, database management system or relational model. It was essen-
tial that I explained them here, as they are mentioned in the next chapters
extensively.

10

Chapter 2

Goals Revisited

In my bachelor thesis I want to explore the topic of schema migration and to
develop a new migration tool. Goals of this thesis are:

• G1: Examine Projective Technologies

• G2: Develop a method for schema migration based on Projective Tech-
nologies

• G3: Using this method, implement MigrationGen - a new migration tool

• G4: Compare MigrationGen with the others

• G5: Demonstrate the possibility of extending MigrationGen

Requirements for the tool developed in G3 can be split into functional and
non-functional. The functional requirements for this tool are:

• F1: The system should be able to apply a migration directly in a con-
nected database

• F2: The system should be able to revert a migration (if it is possible)

• F3: The system should be able to generate a migration script automati-
cally

The non-functional requirements for this tool are:

• N1: The system should support multiple databases

• N2: In future, it should be easy to add a plugin which would bring support
to another database

11

2. Goals Revisited

The realization of the goals begins with Chapter Projective Technologies,
where goal G1 is accomplished. Chapter Analysis and Design deals with goals
G2 and G5.

Chapter Implementation deals with G3 and of course with all the func-
tional (F1, F2, F3) and the non-functional requirements (N1, N2).

Migration tools are compared in Chapter Existing Solutions and goal G4
is fulfilled.

12

Chapter 3

Projective Technologies

Generating code saves time and cost and raises quality by reducing the possi-
bility of a human error. Company CodiScent is developing tools enabling code
generation. Currently, CodiScent stands behind Reverse Engineering Studio
and Generative Engineering Studio, also called Projective Technologies. I used
Projective Technologies in MigrationGen and they make the schema migration
tool unique. Projective Technologies are covered in this chapter. These tools
are based on principles of reverse engineering and generative programming
and that is the reason why these principles are explained in this chapter too.

3.1 CodiScent

CodiScent is a consulting and software development company. The company
has been evolving for the last 15 years and within last two years started to
offer their services. The founder, CEO and chief scientist of CodiScent is
software entrepreneur Zeev Chared. Leaders of the company have experience
in delivering software solutions to different branches of business.

CodiScent approaches software development in a non-traditional way. The
approach is generative software engineering and reverse engineering. Genera-
tive software engineering is based on generating code. Generating code is used
extensively today, from web pages to plug-ins in different integrated develop-
ment environments (IDE). To generate code we need input data, template and
finally generator. According to CodiScent, one of the problems is the use of
imperative code. This directs the process of reading the data with format-
ting and outputting the resulting text in their templates[6]. Imperative code
makes the templates unnecessarily complex, and most importantly, it has to
be written manually.

Another problem is the lack of modularity. The generating tools are usu-
ally coupled with one particular language or integrated into IDE and their
applicability is narrow. Problem also lies in the fact that usually only a small

13

3. Projective Technologies

percentage of code is generated which does not make generating worth the
effort.

The approach used by CodiScent does not encounter these problems. Im-
perative code is not used in the templates. The applicability of the tools is
not narrow, they serve from generating C# code to generating SQL scripts.
Often 80% of the application code is generated in half the time[6].

3.2 Projective Technologies

As mentioned earlier, Projective Technologies consist of Reverse Engineering
Studio and Generative Engineering Studio. Both RES and GES are still being
developed.

CodiScent presents several possible use cases for Projective Technologies
on their website5, including:

• Accelerated software development

• Reengineering

• Modernization of an application

• Data transformation and data management

• Infrastructure development

I am going to start by explaining the concept of generative programming.
Then GES is going to be introduced. Before describing RES, reverse engi-
neering is discussed.

3.3 Generative Programming

Generative programming is defined as “a software development paradigm based
on modeling software system families such that, given a particular require-
ments specification, a highly customized and optimized intermediate or end-
product can be automatically manufactured on demand from elementary, re-
usable implementation components by means of configuration knowledge. The
generated products may also contain non-software artifacts, such as test plans,
manuals, tutorials, maintenance and troubleshooting guidelines, and so on”
[7].

In other words, the goal of generative programming is to replace the man-
ual work in software development with automated generation.

Other definitions of generative programming mention thinking in terms of
software systems families. This means that components from similar systems
and processes which were used in developing similar systems should be reused.

5http://codiscent.com/?page id=335

14

http://codiscent.com/?page_id=335

3.4. Generative Engineering Studio

Another important concept interrelated to generative programming is do-
main engineering. Domain describes the functionality program should have
and the requirements program should meet. Domain engineering is about
producing new programs using knowledge about the domain. In other words,
domain engineering is the process of producing new software systems using
knowledge about similar computer systems from the same application domain.

There are three phases in domain engineering: domain analysis, domain
design and domain implementation. In domain analysis information about the
domain is extracted, domain requirements are gathered and domain model
is produced. In the domain design phase the architecture of the system is
produced using the domain model. Finally, in domain implementation the
tools for generating the system are produced.

Important part of domain engineering is the choice of domain-specific lan-
guage. The formal definition of a domain-specific language is “A domain-
specific language (DSL) is a programming or executable specification language
that offers, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular problem domain”[8]. Ex-
ample of well-known DSL is HyperText Markup Language (HTML) and its
domain are web pages.

Another example of a DSL would be the templating language CodiScent
created. Among other tools, it is used in GES, and GES is discussed in the
next section.

3.4 Generative Engineering Studio

Generative Engineering Studio serves as an Integrated Development Environ-
ment for CodiScent’s generative engineering approach. GES was designed for
developing and managing projects - models, templates and source files in-
cluded. It consists of several components. I am going to introduce them one
by one in this section.

Projector Template Generator (PTG) is the fundamental part of GES.
Given a source file and a template, it can generate code, data or text. Different
types of files can be passed as a source - XML, Excel, UML, SQL or plain text
files.

The templates are written in a language developed by CodiScent. Example
of one template is given in Figure 3.1. This template was used to generate
SQL script which added column to a table. The template has only two lines,
other templates I created are also similarly short. This can be seen as a sign
that less code than normally was needed. Furthermore, one can notice that
the imperative code is missing - this is the responsibility of GES.

Data source for this template was an XML file containing elements such
as table name or field name. GES then parsed this file and created a model
- hierarchy tree, similar to the structure of the XML.

15

3. Projective Technologies

Variables in the template start and end with a dollar sign. The square
brackets are used to create loops. The language also includes certain special
characters for formatting output. The values of the variables are assigned
from the data source and projected through the template. One of the possible
outputs generated from the template can be seen in Figure 3.2.

Figure 3.1: Template for adding column

[[ALTER TABLE $table_name$ ADD]

[$field_name$ $field_type$[($field_dimension$)]^, \n]];

Figure 3.2: One of the possible outputs generated from Figure 3.1

ALTER TABLE people ADD

city VARCHAR(50);

Relational Metadata Inference Transformer (RMIT) and Configurable Gr-
aphical Interface Factory (CGIF) are tools which are used to map the data
source to the model.

A command-line version of GES was released recently. There are two ways
of running it. The interface can be run with name of the solution and names
of the templates to be generated. The other option is to run it with name of
the source file and text of the template. This command-line interface lies at
the heart of MigrationGen, and this topic is discussed more in Chapter 5.

3.5 Reverse Engineering

Usually, reverse engineering is defined as “the process of extracting the knowl-
edge or design blueprints from anything man-made”[9].

The term reverse engineering of software has multiple meanings. Firstly,
reverse engineering is used in security. It is used by both parties - attackers
and defenders. Creators of malicious software use reverse engineering to locate
weak points in programs and operating systems. Developers of anti-virus
software reverse engineer viruses and try to extract information about them.

Secondly, reverse engineering is used in software development. Reverse
engineering is used to explore the system to compensate for the lack of doc-
umentation. It is used to review third-party code and it is used to analyze
product developed by competition.

Another definition which is still abstract, but more applicable to software,
is “reverse engineering is the process of analyzing a subject system to

16

3.6. Reverse Engineering Studio

• identify the system’s components and their interrelationships

• create representations of the system in another form or at a higher level
of abstraction

”[10]. CodiScent’s reverse engineering approach fits this description.

3.6 Reverse Engineering Studio

Reverse Engineering Studio is another IDE developed by CodiScent. There
are many similarities with GES. It is also a commercial software and it is still
under development.

The advantage GES has over RES is the command-line version. RES does
not have one yet and this makes it very uncomfortable to use from an external
program.

The workflow of RES is also similar to that of GES. However, RES uses
templates not to generate code, but to extract information and save it to a
model. The syntax used in the templates is similar to the one Projective
Template Generator uses.

One of the typical uses for RES is detecting changes made to the database
schema. The template is used to extract information about tables and columns
the schema contains. The database schema is then represented as a model.
The extracted information can be then easily compared to the older versions
of the schema.

This way MigrationGen which I developed in the practical part of this
thesis, could be extended. This possibility is discussed in Chapter 7.1.

3.7 Summary

In this chapter Projective Technologies, developed by company CodiScent,
were introduced and goal G1 from Chapter 2 was resolved. They consist of
Reverse Engineering Studio and Generative Engineering Studio.

GES serves as an IDE for CodiScent’s generative engineering approach. In
this approach most of the code is generated using templates. Using templates
for code generation is not new, but CodiScent’s approach is different. The
main difference is the lack of imperative code. This makes the templates
easier to read, develop and maintain. RES is also an IDE, similarly to GES,
but it uses the templates to extract information from the data source and save
it to a model.

Both RES and GES are still under development, with the command-line
version of GES appearing only recently6. Both of these tools are Windows-
only.

6December 2014

17

3. Projective Technologies

RES and GES are based on the principles of reverse engineering and gen-
erative programming respectively. These principles were also explained in this
chapter.

18

Chapter 4

Existing Solutions

I defined schema migration tools at the end of Section 1.5 in Chapter 1. This
chapter focuses entirely on them. Firstly, I am going to start with analyzing
the simpler ones and progress later to the more complex ones. Secondly, I want
to compare them with my own application and to compare the functionality
of these applications with my own.

4.1 Open DBDiff

Open DBDiff is an open-source database schema comparison tool for SQL
Server 2005/2008[11]. The project is still in Beta phase, with the latest version
(0.9) released on 26th March 2014.

Open DBDiff compares two database schemas and provides a script to
transform one schema into another. The script can be then applied and
schema updated. One of the disadvantages is that it supports only SQL Server.
Nonetheless, the main disadvantage is that it does not manage these scripts.

Multiple alternatives to Open DBDiff exist. They range from open-source
ones like CompareZilla7 to commercial ones like Redgate SQL Compare8. The
full list can be found on Open DBDiff web site[11].

To sum up, Open DBDiff is suitable for one time schema migration, but
not for more complex schema evolution.

4.2 Flyway

Flyway is an open-source database migration tool, favoring simplicity and
convention over configuration[12]. Creator and project lead is Axel Fontaine.

The most important term here is probably metadata table. Flyway creates
one metadata table for the database. Every time a change is made to the

7http://sourceforge.net/projects/comparezilla/
8http://www.red-gate.com/products/sql-development/sql-compare/

19

http://sourceforge.net/projects/comparezilla/
http://www.red-gate.com/products/sql-development/sql-compare/

4. Existing Solutions

database schema, an SQL script is applied. Information about this migration
is added to the metadata table as a new record. Every row of the table
contains information, such as name of the script, version number, when was
it applied and by whom it was applied. Example of a similar table is given in
Table 4.1.9

Table 4.1: Flyway: schema version

version description script date author

1 Initial Setup initial setup.sql 25.02.2015 axel

2 First Changes first changes.sql 26.02.2015 axel

3 Minor Refactoring minor refactor.sql 27.02.2015 axel

After running Flyway, it will try to locate the metadata table first. If it
does not exist, it will create it. Then, classpath of the application we want to
migrate is scanned for migrations. These are then divided into two categories:

• applied migrations are migrations with their version number lower or
equal to current migration

• pending migrations are migrations which are available, but were not
applied

Flyway can be configured either from command line, or by editing a con-
figuration file. It can be run using a command-line interface. It can also
be integrated into a project using Maven10, or its alternatives Gradle11 and
Sbt12. An Application Programming Interface (API), written in Java, is also
available. Using one of the options mentioned above, pending migrations can
be applied. The metadata table will be updated accordingly. Migrations are
usually inputted as SQL scripts, but they can also be written as Java classes
implementing JdbcMigration interface from Flyway API.

Flyway is a simple and easy-to-use tool, supporting multiple DBMS in-
cluding Oracle, SQL Server, PostgreSQL, MySQL or SQLite. It does bring
order into the management of the migrations and applying of them. The pos-
sibility of writing migrations in Java can be thought of as an advantage. It
does not bring any abstraction, given that the statements are still in SQL, but
it brings integration. Another advantage over Open DBDiff is support of mul-
tiple DBMS. However, it does not provide a solution for detecting changes and
this means that the whole process of schema evolution is hard to automate.

9Table inspired by http://flywaydb.org/getstarted/how.html
10http://maven.apache.org/
11https://gradle.org/
12http://www.scala-sbt.org/

20

http://flywaydb.org/getstarted/how.html
http://maven.apache.org/
https://gradle.org/
http://www.scala-sbt.org/

4.3. Liquibase

Figure 4.1: Liquibase: ChangeSet creating table from Table 1.1.

<changeSet id="1" author="chgolian">

<createTable tableName="people">

<column name="id" type="integer">

<constraints primaryKey="true" nullable="false"/>

</column>

<column name="first_name" type="varchar(50)"/>

<column name="surname" type="varchar(50)"/>

<column name="age" type="integer"/>

</createTable>

<rollback>

drop table people

</rollback>

</changeSet>

4.3 Liquibase

Liquibase is an open-source tool similar to Flyway. The main developer is
Nathan Voxland.

While Flyway uses a metadata table, the root of all changes in Liquibase
is databaseChangeLog file.This file contains information about changes to be
done to the database encoded in changeSets. Every changeSet is identified
by combination of attributes author, filename and id. Into these change-
Sets preconditions can be inserted which are checked before executing every
changeSet. These preconditions serve multiple purposes such as enforcing as-
sumptions or documenting them. Example of such precondition could be a
check if the change is being run on a specific DBMS or if the change is being
run as a specific user.

DatabaseChangeLog supports XML, JSON, YAML data serialization stan-
dard and even SQL. Example of a changeSet written in XML is given in Figure
4.1.

There exists a commercial version of Liquibase, called Datical13. It pro-
vides additional functionality such as support for stored procedures and trig-
gers. Liquibase also supports most of the popular RDBMS, less common ones
have been moved into extensions and these have to be installed additionally.

The advantage that Liquibase has over Flyway is that it enables to de-
fine rollback of a change. However, the migrations cannot be written in Java,
unlike Flyway. Because they are written in XML, the developer does not
have to care about specific SQL dialect, although they can also be written
in SQL. Similarly to Flyway, the application does not provide a solution to

13http://www.datical.com/

21

http://www.datical.com/

4. Existing Solutions

Figure 4.2: migrate4j: Migration creating table from Table 1.1

public class Migration_1 implements Migration {

public void up() {

createTable(

table("people",

column("id", INTEGER, primarykey(), notnull()),

column("first_name", VARCHAR, length(50)),

column("surname", VARCHAR, length(50)),

column("age", INTEGER)));

}

public void down() {

dropTable("people");

}

}

detect changes and generate changeSets, and because of this schema evolu-
tion is hard to automate. Possible solution would be to use Open DBDiff to
generate a synchronization script each time schema is changed, and to use
Flyway/Liquibase to manage, store and apply these scripts.

4.4 migrate4j

Migrate4j is an open-source database migration tool. The initial intent of mi-
grate4j was to make a Java version of Ruby’s db:migrate.Database migration
in Ruby is discussed in Section 4.5.

Migrations in migrate4j are written in Java. Every migration is repre-
sented by a class implementing com.eroi.migrate.Migration interface. The
interface defines two methods: up and down. First of the mentioned methods
represents applying a change, second represents rollback. The migrations are
named Migration 1, Migration 2 and so forth. Example of one such migra-
tion is given in Figure 4.2. When using migrate4j for a specific database,
table called version with a single column version has to be created. This
table is then used to set database to a state after specific migration.

Unfortunately, migrate4j supports only Derby, H2, MySQL and Sybase.
Authors of the documentation admit that this is a very small number of sup-
ported DBMS. Migrate4j, similarly to Liquibase, brings developer abstraction.
Migrations are written in Java, similarly to Flyway. In contrast to Flyway,
they provide methods and objects like createTable() and table() like in

22

version

4.5. Ruby on Rails

Figure 4.2. However, the small number of supported DBMS does not make
it a serious competition for other migration tools.

4.5 Ruby on Rails

4.5.1 Ruby

Ruby is a programming language which presents itself as a language of care-
ful balance[13]. It is a language which is multi-paradigm, with features like
dynamic and duck typing, garbage collection and exception handling. Ruby
appeared in 1995 and its author is Yukihiro Matsumoto.

4.5.2 Rails

Ruby on Rails is a web application development framework and it is writ-
ten in Ruby. Initially released in 2005, it became a popular tool to build
web applications even for companies like Github14 or Scribd15. The reason
for its popularity is that Rails philosophy is based on two principles: Don’t
Repeat Yourself (DRY) and Convention Over Configuration (COC). DRY is
a principle which states that: “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system”. COC is self-
explanatory. Set of conventions should be preferred over complicated editing
of configuration files.

4.5.3 ActiveRecord

Relevant for this thesis is one library of Ruby on Rails: ActiveRecord. Ac-
tiveRecord is named after Active Record design pattern described by Martin
Fowler in his book Patterns of Enterprise Application Architecture[14]. Ac-
tive Record design pattern provides a solution for object-relational mapping
(ORM). Object-relational mapping is a technique used in object-oriented pro-
gramming to access relational database records comfortably. In Active Record
design pattern one database table corresponds to one class, one object instance
corresponds to one row in a table. The class provides methods enabling CRUD
(Create, Retrieve, Update, Delete) operations on a database. Class Base in
module ActiveRecord presents an API implementing these methods.

Migration in ActiveRecord (and in Ruby on Rails) is represented as a class
inheriting from ActiveRecord::Migration class. Then method change has
to be overridden. The change method currently supports limited number of
migration definitions such as add column, add foreign key or create table.
The reason for this limited support is that ActiveRecord knows how to re-
verse this transformations. Reversal for migrations that ActiveRecord does

14https://github.com/
15https://www.scribd.com/

23

https://github.com/
https://www.scribd.com/

4. Existing Solutions

not know how to reverse is possible using the reversible method. In the
old version of ActiveRecord the methods in ActiveRecord::Migration were
called up and down and this is where migrate4j developers got its idea from.

Migrations are run from command line using tool called rake which is
similar to Unix utility Make. After each migration schema is dumped into an
SQL file or a Ruby file called schema.rb. ActiveRecord::Migration supports
PostgreSQL, SQLite, Oracle, Microsoft SQL Server and MySQL.

Overall, migrations in Ruby on Rails are well-thought out. The abstraction
is supplied by ActiveRecord API, so there is no need for knowledge of SQL.
The management of migrations is made simple with the command-line utility
and schema dump serving as a reference.

4.6 Django

4.6.1 Python

Python is, similarly to Ruby, a high-level multi-paradigm language. Its many
features include dynamic typing, garbage collection and support for functional
programming. It appeared in 1991 with Guido Van Rossum as its author.

4.6.2 Django

Django is an open-source web development framework written in Python.
Initially released in 2005, and originally named after jazz guitarist Django
Reinhardt, its motto is: “The web framework for perfectionists with dead-
lines”. Its design philosophy includes DRY, an addition is a core Python
“Explicit is better than implicit” principle. Another reason for its popularity
is that Django documentation counts among the best ones from open-source
projects. Mozilla16 uses Django for its web site.

4.6.3 Migrations in Django

Initially, a schema migration tool South17 was used for migrations in Django.
Project South is now end of lifed. However, the integrated version of Django
migrations is created by people from the original South project and is close
to the original project. Due to this, I decided to analyze both migrations in
South and integrated migrations.

South was a tool which was installed using one of package management
systems like pip. Migrations were ran using command line. The tool had two
ways of migrating: automatic and manual. The manual way was very similar
to other migration tools. Migrations were just classes with two methods:
forwards and backwards. One can see that this is very similar to up and

16https://www.mozilla.org
17http://south.aeracode.org/

24

https://www.mozilla.org
http://south.aeracode.org/

4.7. Summary

down in Ruby on Rails (or migrate4j). From these methods methods from
database API were called to interact with the database.

The automatic way was more interesting. Every time South was ran, it
detected changes being made to the model and created the migration. To
elaborate the migration workflow:

1. If a field was added to the model, migration script (in Python) was
created (either automatically by South or manually by developer)

2. This script contained a class with methods forwards and backwards

3. From method forwards method from database API (db.add column)
was called with specific parameters

4. Migration then could be applied using Django command line utility
manage.py

South supported PostgreSQL, MySQL, SQLite, Microsoft SQL Server and
Oracle. There was also beta support for Firebird.

From version 1.7 migrations are firmly integrated into Django. There are
still two ways of migrating. Migration is still represented as a Python class,
but methods forwards and backwards disappeared. Instead the class has two
lists now: dependencies and operations. List dependencies contains other
apps on which our migration could depend. Project in Django is divided into
separate apps which can communicate with each other. operations is a list of
Operation classes. These classes define single transformations to the model
like migrations.addField. All DBMS which Django supports are supported.

To sum up, migrations can be done automatically in Django, but there
is a possibility to write them manually. I consider the automatic way to be
a big advantage, although it does not seem to give Django an edge against
Rails. All the popular DBMS are supported. Django even offers a solution
for migration of data, but that is not the topic of this thesis.

4.7 Summary

In this chapter I introduced and analyzed several migration tools - goal G4
from Chapter 2 is resolved here.

I started with relatively simple Open DBDiff and ended with migration
tools integrated into web frameworks Rails and Django. I decided to divide
them into these categories:

• Category 1: Tools only generating migration scripts automatically

• Category 2: Tools only managing migration scripts

• Category 3: Tools both generating migration scripts automatically and
managing them

25

4. Existing Solutions

Generating migration scripts is a harder task than managing them. The
reason is that changes in the database schema have to be somehow detected.
The advantage of these tools which generate scripts, is that they save effort.
However, the most important quality to software developers seems to be sim-
plicity. For this reason Flyway is more popular than Liquibase.

There are two methods how migration scripts can be generated. The first
one is comparing two versions of schema and producing resulting script. The
second involves some sort of a model which represents the schema. When
original schema is changed, changes are stored in the model. This model is
then used for generating the migration script.

Open DBDiff takes two versions of database schema compares them and
provides a synchronization script. Because of that, it belongs to Category
1. Flyway, Liquibase and migrate4j are very useful for managing scripts and
applying them. The migrations have to be written manually (either in SQL,
Java or XML) and because of that, they belong to Category 2. Django detects
changes in the model part of the MVC (Model-View-Controller) architectural
pattern automatically. It generates migrations and provides a solution to
managing them. This makes it a representative of Category 3.

MigrationGen, my own application, currently belongs to Category 1. The
advantage other migration tools have over MigrationGen is that MigrationGen
is Windows-only. Migrations in MigrationGen have to be defined in XML files.
It enables to apply a few of them or all of them. MigrationGen could belong
to Category 3 - the reason why is explained in the next chapter.

26

Chapter 5

Analysis and Design

The main topic of this chapter is the design of my own migration tool - Mi-
grationGen. In this chapter I want to explain the reasons behind the key
decisions made during this phase.

One of the major decisions was to consider what types of schema changes
should be supported by MigrationGen. It is very hard to encompass more
complex changes like defining views or triggers. The problem lies in deciding
which changes should be categorized as simple and which ones as complex.

The next major question was how the migration itself should be repre-
sented. Multiple formats are available, all of them have pros and cons.

Finally, I want to present the overall process of migrating using Migra-
tionGen.

5.1 Analysis

The functional and non-functional requirements for MigrationGen are de-
scribed in Chapter 2. Obviously, the new migration method should meet
these requirements.

The requirement F1 can be met easily. Most of the programming lan-
guages used today have some sort of API which can be used to communicate
with the database. I decided to write the migration tool using Java and Java
uses java.sql package to do this.

The requirement F2 is a bit harder to fulfill. The previous requirement
can be summed up as applying an SQL script to the database. A problem
is encountered here - only a few types of changes are reversible. One of the
reasons behind this problem is that sometimes information needed for the
reversal is missing. An example of this would be an attempt to create a
database table after it was dropped. However, this can be solved by storing
the information.

Another reason is that a revert of a certain change could violate certain
database constraints. This is much more serious and makes some changes

27

5. Analysis and Design

irreversible. Hence, reversal is possible only for a few types of the changes.

To satisfy requirement F3 several decisions have to be made. Firstly, for
the migrations to be generated automatically, there has to be a generator.
I used one part of GES, Projective Template Generator (PTG), to do this.
Secondly, the given generator must be instructed to create migrations. In a
context of PTG, these instructions are contained in so called templates. Thus,
the necessary templates for PTG must be written. The templates are written
using the templating language CodiScent developed. Thirdly, the migrations
have to be structured in a reasonable way, so the generator can cope with
them. Because of this, I decided that the XML format is going to be used,
and I created an XML Schema using which they can be written.

The non-functional requirement N1 is fulfilled easily. To fulfill it, more
templates have to be written in different SQL dialects.

Finally, when all the previous functional and non-functional requirements
are met, N2 is met automatically. All of the decisions behind the design and
the technical aspect of the design is discussed in the next few sections.

5.2 Design

5.2.1 XML Schema of a migration

I decided to use the XML format to describe the migrations. An introduction
to this format was given in Chapter 1. The following subsection describes the
structure of the XML migrations in detail.

5.2.1.1 XML structure

The XSD should serve as a blueprint for a migration written by developer.
In other words every migration written by developer should contain at least
all the mandatory elements specified in the XSD and it should contain them
in the right order. Structure of the XML Schema I defined can be seen in
Figures 5.1, 5.2 and 5.3.

Every migration consists of a series of transformations. These transfor-
mations are changes that were made to the database schema. An XML el-
ement transformation set, depicted in Figure 5.1, contains one or more
transformation elements.

A transformation element contains information about the type of trans-
formation. This is used later when MigrationGen matches it with a correct
template. It also contains name of the table, and it contains an id, so it can be
later sorted. The id element is also important in case the migration consists
of multiple XML files. Diagram can be seen in Figure 5.2.

Every transformation can also contain a field element. This element is
not mandatory, because there exist transformations which operate only on
tables e.g. DELETE TABLE or CLEAR TABLE statements. Every field

28

5.2. Design

must contain the name of a column which is to be changed. Other optional
elements include information if the field is a primary key or not or if the field
is mandatory or not. All of these elements can be seen in Figure 5.3.

Only certain types of transformations are supported, but that is discussed
in Section 5.2.2.

29

5. Analysis and Design

Figure 5.1: transformation set element

Figure 5.2: transformation element

Figure 5.3: field element

30

5.2. Design

5.2.2 Schema changes

Schema migration was defined in Chapter 1. The incentive to the process of
migration was a series of changes that were made to the database schema.
When designing MigrationGen I encountered a problem - which types of
changes should my tool support? The changes made to the database schema
vary from adding a column to defining a view. Obviously, with every new type
of change the migration tool would support, it would become more and more
harder to make the tool automated. I decided to look into the taxonomy of
schema changes in this section.

Marks and Steritt in their paper A metadata driven approach to perform-
ing complex heterogeneous database schema migrations identified 11 kinds of
change to the database schema[15]. They divide these changes into two cate-
gories: simple and complex. Difference between these two lies in the fact that
simple changes can be performed using a single SQL statement. The simple
changes consist of adding a table, deleting a table, renaming a table, adding a
column, removing a column and renaming a column. According to the criteria
mentioned earlier, there are the five types of complex change: manipulating
data in place, changing type of columns, updating foreign keys, manipulating
with large objects and merging and splitting tables.

After consideration, I decided that my migration tool will support these
types of changes to the database schema:

• Adding a column

• Altering a column

• Dropping a column

• Renaming a column

• Creating a table

• Clearing a table

• Deleting a table

Another types of changes could be added, but it would have two negative
consequences. Firstly, a new template would have had to be written for every
new type of a change. Secondly, the XML Schema Definition would have had
to be extended. New elements would have had to be defined. This would
result in the XSD becoming more and more complex. Furthermore, I believe
that these seven changes are more than enough to demonstrate the basic
functionality of the migration tool.

31

5. Analysis and Design

5.2.3 Templates

The developer writes the migration using the XSD and the migration is passed
to MigrationGen. Every migration contains one or more changes, which are
represented by transformation elements.

For every type of change defined in Section 5.2.2 a template was written.
Most of these templates were small, about 2-3 lines in length.

The largest template is for creating a table. This template consists of three
SQL statements - one CREATE TABLE and two ALTER TABLE statements.
The CREATE TABLE statement creates all the necessary columns. The two
ALTER TABLE statements add all the necessary primary and foreign keys.
Nevertheless, 11 lines of code still makes it reasonably sized.

The templates are stored in one of the MigrationGen subdirectories. Then,
MigrationGen parses the XML file containing the migration and every time a
transformation element would be encountered, it is matched with a correct
template. Both the element and the template are passed to the GES and using
the template the resulting script is generated.

5.3 Summary

This chapter covered the design of MigrationGen. A new method of migration
based on Projective Technologies was designed here - goal G2 from Chapter 2
was resolved.

Several functional and non-functional requirements were put on this tool
- they can be found in Chapter 2. One by one, I tried to fulfill them and I
discuss this process in Section 5.1.

To automatize the migration process, the migrations are written by devel-
oper in one or multiple XML files. These files can be created from an XML
schema file I designed. This is examined in Section 5.2.1.

Not all types of changes to the database schema are supported. I picked
only seven types of them and I discuss the reason why in Section 5.2.2.

The migration files are then along with a connection string passed to Mi-
grationGen. When applying or reverting a migration, the application always
matches the individual change with a correct template. The templates are
discussed in Section 5.2.3.

Both of these are then passed to the GES command-line tool which gen-
erates the SQL script. This script can be then applied to the database.

The migration method is depicted in Figure 5.4. Four main phases are
depicted in the figure. Firstly, a DDL script is generated from the database.
Secondly, RES extracts information from this script about the schema and
saves it into a model Thirdly, GES is used to produce the migration script
Finally, the migration script is applied to the database.

The big advantage of this method is that all of these four steps can be
automated. A multitude of tools enables to generate the DDL of a database

32

5.3. Summary

DB

DB

1. Generate DDL

3. GES

DDL script (SQL)

Migration script (SQL)Model (XML, Excel...)

Figure 5.4: Schema migration using Projective Technologies

schema. Extracting information and projecting output can be automated
using Projective Technologies. Finally, applying of migration script can be
done using various APIs - one of them for example is JDBC for Java.

As mentioned in Chapter 3, RES is still under development. I discussed
only the last two steps of this method in this chapter because of this. However,
it is possible to extend this application - this was defined in Chapter 2 as goal
G5.

In the next chapter, this migration method is implemented.

33

Chapter 6

Implementation

This chapter describes the process of implementing MigrationGen.

I decided to implement it using three-layered architecture. Therefore, I
start with a brief theoretical introduction where I introduce the multitier
architecture. Then, using UML diagrams I show how it was implemented
during the development of MigrationGen.

All three layers - data, business and presentation are described in detail
in individual sections. The underlying technologies under each of these layers
are also discussed.

Finally, the workflow of the application which was introduced in Chapter 5
is restated again. However, this time it is done more explicitly.

6.1 Multitier architecture

6.1.1 Theory

The multitier architecture (also known as the n-tier architecture) is a type of
architecture in which the individual tiers are separated. Usually, the number
of tiers is three - a presentation tier, a logic (also called business or application)
tier and a data tier.

The presentation tier presents information to the user. It also provides an
interface which the user can use to communicate with other layers.

The business tier contains functionality of the application. It processes
the input passed from presentation tier and performs various evaluations and
calculations.

The data tier should provide an API to store and retrieve the information.
There are multiple ways how this can be done - one of them is storing the
information in a database.

The terms tier and layer are often used as synonyms. However, the general
consensus seems to be that tier is used for a physical separation, while layer

35

6. Implementation

Figure 6.1: Important classes and their interaction in MigrationGen

for a logical one. In my application the separation of layers is a logical one,
thus the term multi-layered architecture is correct.

6.1.2 Implementation

The three layers of three-layered architecture in MigrationGen are represented
by three packages - data, logic and presentation.

The important classes in these packages are respectively MigrationsDB,
App and MainFrame. Their class diagram can be seen in Figure 6.1.

The MigrationsDB class provides the interaction with the H2 embed-
ded database using JDBC, the MainFrame class provides the GUI for Mi-
grationGen. The App class serves in a sense as a controller from the MVC
design pattern. It processes the input from the user and connects the model
and the view. The process of generating the migration scripts is also done
here.

6.2 Data layer

The main function of the data layer in MigrationGen is to perform CRUD op-
erations on an embedded database. The data layer is represented by package
data which contains one class - MigrationsDB. Methods of this class commu-
nicate with the database. The embedded database contains one table which
stores information about the migrations that were added to the application.

The table migrations table contains five columns - id, migration name,
migration folder, connection string and latest transformation id.

Most of these names are self-explanatory, the only interesting one is the
last one. This column contains id of the latest transformation successfully
applied. Because of this, when the migration is updated with a new set of
XML files, only the latest ones are applied. When the migration is reverted
the id is adequately updated.

This table is similar to the one which is used by the migration tool Flyway.
Flyway is analyzed in Section 4.2 in Chapter Existing Solutions.

6.2.1 JDBC

Java Database Connectivity is a technology developed by Oracle Corporation
and it is an API providing access to relational databases. The connection

36

presentation

6.3. Business layer

Figure 6.2: Updating table migrations table

Statement updateStmt = connection.createStatement();

String updateSql = "UPDATE " + DB_TABLE_NAME

+ " SET migration_name=’" + migration_name

+ "’, migration_folder=’" + folder

+ "’, connection_string=’" + connectionString

+ "’, latest_transformation_id=" + latestTransformationId

+ " WHERE migration_id=" + id;

updateStmt.execute(updateSql);

to the database is made using a JDBC Driver. Then, SQL statements can
be created and executed and any results they return can be retrieved. One
important thing is that the connection is in auto-commit mode by default.

The code snippet from Figure 6.2 comes from the method executeUpdate

and this method is called whenever a migration is applied and the id of the
latest transformation needs to be updated. It shows the typical workflow
using JDBC. A java.sql.Statement object is created and one of its methods
is called. What this snippet does not show is that a java.sql.Connection

object has to be created first and closed later.

6.2.2 H2

H2 is a fast open-source Java SQL DBMS and it complies with the JDBC API.
However, its most important feature is the embedded mode of operation.

The first version of MigrationGen used serialization to store all the infor-
mation needed about the migrations. However, this was only a temporary
solution that needed to be replaced as soon as possible. The advantage that
the embedded database has is the availability. It was for this reason that H2
was chosen to store the migrations.

6.3 Business layer

The business layer is represented in MigrationGen by a multitude of classes
contained in package logic. As mentioned before, the class App serves as a
controller between the data and the presentation layer. Another important
class is Migrations which calls GES.

However, it is different from the controller from the MVC design pattern. It
contains the object representation of a migration - class Migration. According
to the MVC, this should be stored in the model part. Another rule of the
MVC which it breaks is that in the MVC the controller should be “thin” and

37

6. Implementation

Figure 6.3: Code snippet from method applyMigrations

writeTransformation(newFilename, node);

String templateText = readTemplateText(node, false);

String ges_output = runGES(newFilename, templateText);

try {

applyToDB(ges_output, connection);

} catch (SQLException e) {

handleError(e.toString());

cleanUp(newFilename);

return id;

}

cleanUp(newFilename);

return id;

the model “fat”. Actually, the package logic contains both the model and
controller from the MVC.

The class Migrations is basically an API which I created for reading from
and writing to XML files and running the GES command-line interface.

applyTransformations and revertTransformations are method from
this class essential to the whole application.

These methods are similar to each other. The parameters to the both
of them are a Migration object and an id of a transformation to be ap-
plied/reverted last. Both of them return id of the last successfully applied or
reverted transformation.

From all the XML files which are passed along with the migration an
ArrayList from java.util package is created. This list contains XML nodes
which are the individual transformations. This list is then iterated over in a
for loop and code snippet from Figure 6.3 is executed each time.

In this snippet, every XML node is written into a separate temporary file.
Then, a correct template is found which matches the transformation type

element. The file and the template are then passed to the command-line in-
terface which produces the SQL script. This script is then applied to the
database, the temporary file is deleted and the id of the latest applied trans-
formation is returned.

6.3.1 GES

There are two possibilities how the GES command-line interface can be run.
The first is running the whole solution with a list of templates. The second
is running one source file with one template. In MigrationGen the second
possibility is used because I generate the scripts on the fly.

38

6.4. Presentation layer

Figure 6.4: Presentation layer

The interface is run as a separate process from the method runGES. The
output is then collected and returned from this method as a String object.

The fact that GES is Windows-only, restricted my application to this plat-
form.

6.4 Presentation layer

The presentation layer of MigrationGen is contained in package presentati-

on. The Swing toolkit was used to create the GUI.
The most important class in presentation package is MainFrame which

extends the JFrame class.
The button panel for adding, removing and updating migrations is con-

tained in class AddButtonPanel. Similarly, the panel containing buttons for
applying and reverting migrations is contained in class ApplyButtonPanel.
Both of these class extend the JPanel class from Swing.

Finally, the table which shows the individual migrations is contained in
class TablePanel.

The class diagram of classes contained in this package is depicted in Fig-
ure 6.4. The picture of MigrationGen’s GUI can be seen in Figure 6.5.

6.4.1 User Interface Description

The button Add Migration enables to add a folder containing the migration.
The folder should contain a JDBC connection string to the database and XMLs

39

String

6. Implementation

Figure 6.5: A screenshot of MigrationGen

containing the transformations. The specific structure which is required is
presented in Appendix B. It also adds a new record to the H2 database.

Update Migration button should be used if new XMLs were added to
an existing migrations. It reloads the folder and scans for new XMLs.

Remove Migration button is used to remove the selected migration. It
deletes the migration from the table and from the H2 database.

Apply and Revert buttons enable to apply or revert the selected migra-
tion. By default, the last transformation applied is the transformation with
the highest id. This can be changed by specifying the id in the id field.

6.5 Testing

MigrationGen was tested on different levels and in different phases of the
development.

Firstly, there was unit testing JUnit framework was used to write unit
tests to verify the behavior of MigrationGen. The behavior is contained in
package logic and data and classes from these packages were tested. These
tests can be found in package cz.cvut.fit.migrationgen.test.

Secondly, there was usability testing. UX testing was done by the Centre
for Conceptual Modeling team. However, MigrationGen serves mostly as a
proof of concept and not as an application which is to be deployed instantly.

40

6.6. Summary

Figure 6.6: Running times of transformation CREATE TABLE in milliseconds

transformation type I. II. III.

CREATE TABLE (1 row) 1176 667 631

CREATE TABLE (10 rows) 648 730 705

CREATE TABLE (50 rows) 772 808 768

CREATE TABLE (100 rows) 957 943 942

Thirdly, there was stress testing. I wanted to verify if the size of the
transformation influences running time of GES. I decide to go for CREATE
TABLE transformation. The results can be seen in Figure 6.6.

The table depicted there shows running times of the transformation CRE-
ATE TABLE in milliseconds. The purpose of this experiment was to find
out if size of the specification has any influence on running time. Four dif-
ferent XMLs were created. They created tables with 1, 10, 50 and 100 rows
respectively. Each transformation ran three times.

6.6 Summary

In Chapter 5 a new method for migrating databases was designed. The imple-
mentation of this method and implementation of the application MigrationGen
was described in this chapter. Thus, G3 from Chapter 2 was resolved.

The migration method this application uses is:

1. The developer writes the migration in an XML file complying with the
XSD from Chapter 5

2. The migration is then passed along with a connection string to the
database in a folder to MigrationGen

3. Every transformation contained in the XML MigrationGen is matched
with a correct template

4. The transformation is then written to a temporary file which is along
with the template passed to the GES command-line interface.

5. The command-line interface generates an SQL script

6. The script is then applied to the database

The workflow of MigrationGen is depicted in Figure 6.7.

The migration tool MigrationGen was implemented using three-layered
architecture. The three layers of this architecture are data, business and
presentation. In MigrationGen the separation of layers is done using three
packages.

41

6. Implementation

Migration (XML)

The user
writes the

migration in
an XML

document

migrationGen

GES

Embedded DB

Templates

Th
e

XM
L

is
 p

as
se

d
 w

it
h

a

m
at

ch
in

g
te

m
p

la
te

to

 G
ES

Migration script (SQL)

DB

G
ES

 p
ro

d
u

ce
s

an
 S

Q
L

sc
ri

p
t

The script is
applied to the database

Figure 6.7: MigrationGen workflow

42

6.6. Summary

The data layer in MigrationGen provides interaction with the embedded
database H2. The database is used to store information about migrations such
as the id of the latest transformation applied.

Probably the most important method applyMigrations (and its equiva-
lent for reverting migrations revertMigrations is contained in the business
layer. They do the actual work of MigrationGen, as described in the numbered
list above.

The presentation layer provides an graphical interface the user can use to
add or remove migrations and to apply or revert them.

43

Chapter 7

Evaluation

In this chapter I want to revisit and review goals which were set in Chapter 2.

7.1 Review

The goals defined were:

• G1: Examine Projective Technologies

Both RES and GES are described in Chapter Projective Technolo-
gies. RES is still under development and because of this only GES was
used in the implementation. The workflow of GES makes generating
code easy. Both of these tools are for Windows which restricts them
and the tools that use them.

• G2: Develop a method for schema migration based on Projective Tech-
nologies

The process is described in detail in Chapter Analysis and Design.
The advantage of this method lies in the fact the user does not have to
know SQL to write the scripts. SQL is contained in the templates and
the scripts can be generated by GES from XML files. Because of this,
some effort is saved. However, the XML format is verbose and thus the
XMLs containing the migrations can easily get large.

• G3: Using this method, implement MigrationGen - a new migration tool

The implementation is described in Chapter Implementation. Only
a part of the migration method was implemented due to the fact that
RES is still under development. Thus, migrations have to be written
manually and this makes the process of migrating using MigrationGen
clumsy.

45

7. Evaluation

• G4: Compare MigrationGen with the others

This was done in Chapter Existing Solutions. MigrationGen is more
automated, however currently it supports only two DBMS. It surpasses
some migration tools but it is not as powerful as the migration tool
which is integrated into Django.

• G5: Demonstrate the possibility of extending MigrationGen

This was demonstrated in Section 5.3 at the end of Chapter Analysis
and Design. If the migration method was implemented fully, it would
make MigrationGen a substantial tool.

The functional requirements for MigrationGen were:

• F1: The system should be able to apply a migration directly to a con-
nected database

MigrationGen enables to do this.

• F2: The system should be able to revert a migration (if it is possible)

In present version of MigrationGen it is possible for some types
of transformations. It could be possible for more transformations if
there was some form of model which would store information about the
schema. However, not even the best migration tools are able to do this
because some transformations are irreversible.

• F3: The system should be able to generate a migration script automati-
cally

The script is generated using GES which is provided with an XML
and a template. This feature sets MigrationGen apart from other mi-
gration tools.

The non-functional requirements for this tool are:

• N1: The system should support multiple databases

MigrationGen supports SQL Server and PostgreSQL. It can be ex-
tended to support other DBMS as discussed in the next point.

• N2: In future, it should be easy to add a plugin which would bring support
to another database

This can be done. However, new templates would have to be prob-
ably written, given that SQL dialects differ.

46

Conclusion

The ultimate goal of this thesis was to develop a new method of schema
migration and to implement it. The migration method and the new migration
tool - MigrationGen are the main contributions of this thesis.

Before designing this method (and implementing it) I had to spend some
time on the terminology. I had to define precisely the term schema migration
which has multiple meanings and they vary greatly.

The method was based on Projective Technologies supplied by the com-
pany CodiScent and implemented as MigrationGen. Projective Technologies
consist of two parts: RES and GES. I introduced them along with the prin-
ciples which they are based on - reverse engineering and generative program-
ming.

Only one half of the migration method was implemented. This was caused
by the fact that RES is still under development and unstable. Thus it was
only evaluated how it can be integrated into MigrationGen in the future. The
implemented half enables to generate the migration script from an XML file
and apply it to the database. The XML format was chosen to represent the
migrations for the reason that multiple files can be easily produced using one
XML schema definition.

Only a limited number of schema changes is supported. More schema
changes could be added, but that would increase the complexity of the XSD I
wrote. New templates would also have to be written. However, the seven types
of changes supported suffice to demonstrate the possibilities MigrationGen
offers.

The migration tool MigrationGen was written in the Java programming
language and the Java API JDBC is used to communicate with the database
and apply the migration scripts.

Several non-standard requirements were put on MigrationGen. One of
them was that it should be automated as much as possible. Another require-
ment demanded that MigrationGen should be open to extensibility. One by
one, I solved or showed that it is possible to solve these requirements.

47

Conclusion

Finally, I researched other existing migration tools and compared them
with MigrationGen.

MigrationGen differs from other migration tools. It is not bound to a
specific DBMS and more importantly, it generates the scripts.

However, the necessity to write the migration files manually and their
verbosity makes migrating using MigrationGen clumsy. The benefits which
code generation brings do not outweigh these disadvantages. Generation of
code is more suitable for tasks where a larger amount of heterogeneous code
is generated.

48

Bibliography

[1] Silberschatz, A.; Korth, H. F.; Sudarshan, S. Database System Concepts.
New York: McGraw-Hill, 2011.

[2] Codd, E. F. A relational model of data for large shared data banks.
Communications of the ACM, volume 13, no. 6, 1970.

[3] Date, C. An Introduction to Database Systems. Reading, Mass.: Addison-
Wesley, 2003.

[4] Chamberlin, D. D.; Boyce, R. F. SEQUEL: A structured English query
language. SIGFIDET ’74 Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control, , no. 1,
1974.

[5] Maatuk, A.; Ali, A.; Rossiter, N. Relational Database Migration: A Per-
spective. In Database and Expert Systems Applications, Lecture Notes
in Computer Science, volume 5181, edited by S. Bhowmick; J. Kng;
R. Wagner, Springer Berlin Heidelberg, 2008, ISBN 978-3-540-85653-5,
pp. 676–683, doi:10.1007/978-3-540-85654-2 58. Available from: http:

//dx.doi.org/10.1007/978-3-540-85654-2 58

[6] About Generative Software Engineering. 2014. Available from: http:

//codiscent.com/?page id=325

[7] Czarnecki, K.; Eisenecker, U. W. Generative Programming: Methods,
Tools, and Applications. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 2000, ISBN 0-201-30977-7.

[8] van Deursen, A.; Klint, P.; Visser, J. Domain-specific Languages: An
Annotated Bibliography. SIGPLAN Not., volume 35, no. 6, June 2000:
pp. 26–36, ISSN 0362-1340, doi:10.1145/352029.352035. Available from:
http://doi.acm.org/10.1145/352029.352035

49

http://dx.doi.org/10.1007/978-3-540-85654-2_58
http://dx.doi.org/10.1007/978-3-540-85654-2_58
http://codiscent.com/?page_id=325
http://codiscent.com/?page_id=325
http://doi.acm.org/10.1145/352029.352035

Bibliography

[9] Eilam, E. Reversing: Secrets of Reserve Engineering. Indianapolis: Wiley
Publishing, 2005.

[10] Chikofsky, E. J.; Cross, J. H. Reverse engineering and design recovery: a
taxonomy. IEEE Software, volume 7, no. 1, 1990.

[11] Open DBDiff. 2008. Available from: https://opendbiff.codeplex.com/

[12] Documentation - Flyway: Database Migrations Made Easy. 2010. Avail-
able from: http://flywaydb.org/documentation/

[13] About Ruby. 2001. Available from: https://www.ruby-lang.org/en/
about/

[14] Fowler, M. Patterns of Enterprise Application Architecture. Boston:
Addison-Wesley, 2003.

[15] Marks, R. M.; Sterritt, R. A Metadata Driven Approach to Perform-
ing Complex Heterogeneous Database Schema Migrations. Innov. Syst.
Softw. Eng., volume 9, no. 3, 2013.

50

https://opendbiff.codeplex.com/
http://flywaydb.org/documentation/
https://www.ruby-lang.org/en/about/
https://www.ruby-lang.org/en/about/

Appendix A

Acronyms

API Application Programming Interface

CRUD Create, retrieve, update and delete

DBMS Database Management System

GUI Graphical user interface

GES Generative Engineering Studio

HTML HyperText Markup Language

JDBC Java Database Connectivity

MVC Model-view-controller

RES Reverse Engineering Studio

SQL Structured Query Language

UML Unified Modeling Language

XML Extensible Markup Language

XSD XML Schema Definition

51

Appendix B

Practical examples

MigrationGen supports at the moment PostgreSQL and SQLServer. I decided
to give some practical examples here.

The directory which is passed to MigrationGen must have a structure
similar to the one in Figure B.1.

Figure B.1: Structure of a directory passed to MigrationGen

Migration

conn.txt

migration1.xml

migration2.xml

The conn.txt file contains a JDBC connection string to the database.
The XML files contain the individual transformations and should follow one
after another.

Creating a table

This example creates a table in the PostgreSQL database migrations test.
The conn.txt file looks similarly to Figure B.2:

Figure B.2: JDBC connection string to a PostgreSQL database

jdbc:postgresql://localhost:5432/migrations?user=admin&password=

admin

The table people contains three columns: first name, last name and
id. The XML containing this transformation is shown in Figure B.3. The
CDATA section between elements field fk table name and field fk name

is mandatory in this case because it would cause an error in GES.

The SQL script which GES produces is shown in Figure B.4.

53

B. Practical examples

Figure B.3: Single transformation creating a table

<?xml version="1.0" encoding="UTF-8"?>

<tset>

<transformation>

<id>1</id>

<transformation_type>create_table</transformation_type>

<table_name>people</table_name>

<field>

<field_name>first_name</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

</field>

<field>

<field_name>last_name</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

<field_mandatory>YES</field_mandatory>

<field_fk_table_name><![CDATA[]]></field_fk_table_name>

<field_fk_name><![CDATA[]]></field_fk_name>

</field>

<field>

<field_name>id</field_name>

<field_type>INTEGER</field_type>

<field_mandatory>YES</field_mandatory>

<field_pk>YES</field_pk>

</field>

</transformation>

</tset>

Figure B.4: SQL script which GES produces from Figure B.3

CREATE TABLE people(first_name VARCHAR(50),

id integer NOT NULL,

last_name VARCHAR(50) NOT NULL);

ALTER TABLE people ADD CONSTRAINT pk_id_people PRIMARY KEY (id);

54

Creating a table with a foreign key

This migration creates two tables: addresses and people. The table people

contains a foreign key from addresses. One transformation from this migra-
tion is shown in Figure B.5. The output is presented in Figure B.6.

Figure B.5: Single transformation creating a table with a foreign key

<transformation>

<id>2</id>

<transformation_type>create_table</transformation_type>

<table_name>people</table_name>

<field>

<field_name>first_name</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

</field>

<field>

<field_name>last_name</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

</field>

<field>

<field_name>address_id</field_name>

<field_type>INTEGER</field_type>

<field_mandatory>YES</field_mandatory>

<field_fk_name>id</field_fk_name>

<field_fk_table_name>addresses</field_fk_table_name>

</field>

<field>

<field_name>id</field_name>

<field_type>integer</field_type>

<field_mandatory>YES</field_mandatory>

<field_pk>YES</field_pk>

</field>

</transformation>

Altering a table

The last example shows how deleting and adding a column is done. Both of
the transformations can be seen in Figure B.7 and the resulting SQL script is
shown in Figure B.8.

55

B. Practical examples

Figure B.6: SQL script which GES produces from Figure B.5

CREATE TABLE people(address_id INTEGER NOT NULL,

first_name VARCHAR(50),

id integer NOT NULL,

last_name VARCHAR(50));

ALTER TABLE people ADD CONSTRAINT pk_id_people PRIMARY KEY (id);

ALTER TABLE people ADD CONSTRAINT fk_address_id FOREIGN KEY

(address_id) REFERENCES addresses(id);

Figure B.7: Transformations dropping and adding columns to the table

<transformation>

<id>2</id>

<transformation_type>drop_column</transformation_type>

<table_name>people</table_name>

<field>

<field_name>to_be_removed</field_name>

</field>

</transformation>

<transformation>

<id>3</id>

<transformation_type>add_column</transformation_type>

<table_name>people</table_name>

<field>

<field_name>city</field_name>

<field_type>VARCHAR</field_type>

<field_dimension>50</field_dimension>

</field>

</transformation>

Figure B.8: SQL output which GES produces from Figure B.7

ALTER TABLE people DROP COLUMN to_be_removed;

ALTER TABLE people ADD city VARCHAR(50);

56

Figure B.9: Running times

transformation type running time (ms)

creating a table 900

creating two tables 1831

altering a table 1450

adding a column 919

altering a column 1135

dropping a column 911

Performance

The running times of the three migrations mentioned and of other types of
transformations, are shown in Figure B.9.

57

Appendix C

Contents of enclosed CD

readme.txt the file with CD contents description
migrationGen...........................the directory with executables
src.......................................the directory of source codes

migrationGen src.......................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
BP Golian Christian.pdf.............the thesis text in PDF format

59

	Introduction
	Motivation
	Goals
	Text structure

	Domain Introduction
	Database
	Relational model
	Query languages
	Schema migration
	Migration tools
	Projective Technologies
	XML
	XSD
	Summary

	Goals Revisited
	Projective Technologies
	CodiScent
	Projective Technologies
	Generative Programming
	Generative Engineering Studio
	Reverse Engineering
	Reverse Engineering Studio
	Summary

	Existing Solutions
	Open DBDiff
	Flyway
	Liquibase
	migrate4j
	Ruby on Rails
	Django
	Summary

	Analysis and Design
	Analysis
	Design
	Summary

	Implementation
	Multitier architecture
	Data layer
	Business layer
	Presentation layer
	Testing
	Summary

	Evaluation
	Review

	Conclusion
	Bibliography
	Acronyms
	Practical examples
	Contents of enclosed CD

