
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Solution for Management and

Visualization of Complex Search Queries

Daniel Chabr

Supervisor: RNDr. Jǐrina Scholtzová, Ph.D.

11th May 2015

Acknowledgements

I wish to express my sincere thanks to RNDr. Jǐrina Scholtzová, Ph.D.,
for providing me with her professional advice and support throughout the
revisions of the thesis. I take this opportunity to express my gratitude to
Ing. et Ing. Martin Šv́ık, Ph.D., for helping me choose and specify the topic
of the thesis. I also place on record my sincere thank you to Ing. Milena
Rothbauerová for her kind help with proofreading. I also thank my parents
for their unceasing encouragement and support. Finally, I am very grateful to
my partner who has supported me through this venture.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 11th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Daniel Chabr. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Chabr, Daniel. Solution for Management and Visualization of Complex Search
Queries. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2015.

Abstrakt

Tato práce se zabývá možnostmi usnadněńı procesu vytvářeńı komplexńıch
vyhledávaćıch dotaz̊u pro podnikové vyhledávaćı platformy. Analytická část
práce objevila společné rysy současných vyhledávaćıch jazyk̊u. Tyto společné
rysy byly poté použity k návrhu řešeńı pro vizualizaci dotaz̊u v přehlédné stro-
mové struktuře a pro správu vyhledávaćıch dotaz̊u. Poté byl implementován
a otestován prototyp navrhnutého řešeńı. Implementovaný prototyp úspěšně
demonstroval možné řešeńı zadaného problému.

Kĺıčová slova vizualizace dotaz̊u, správa dotaz̊u, vyhledávaćı dotaz, dotazo-
vaćı jazyk, podnikové vyhledáváńı

Abstract

This thesis concerns the possibilities of facilitating the process of creating
complex search queries for enterprise search platforms. The analysis part
of the thesis discovered common patterns in contemporary query languages.
These patterns were then used to design a solution for visualizing the queries
in a lucid tree structure and for the management of the queries. Then, I imple-
mented a prototype of the designed solution and tested it. The implemented
prototype resulted in a successful proof of concept.

ix

Keywords query visualization, query management, search query, query lan-
guage, enterprise search

x

Contents

Introduction 1

Aim of the thesis . 1

1 State-of-the-art 3

1.1 Enterprise search platforms . 3

1.2 Enterprise search query languages 4

2 Analysis 5

2.1 Requirements . 5

2.2 Query languages . 6

2.3 Existing solutions . 10

3 Design 13

3.1 Architecture . 13

3.2 Parser . 17

3.3 Visualization . 18

3.4 User interface . 19

3.5 Technology and implementation language 20

4 Implementation 23

4.1 Version management . 23

4.2 Project generator . 23

4.3 Parser . 24

4.4 Dependency management . 24

4.5 User interface . 24

4.6 Backend integration . 26

4.7 Frontend integration and configuration 26

5 Testing 29

5.1 Technology . 30

xi

6 Adaptation for other platforms 31
6.1 Parser . 31
6.2 Query building . 31
6.3 Styling . 31

Conclusion 33

Bibliography 35

A Programmer’s manual 39
A.1 Frontend . 39
A.2 Backend . 40

B Acronyms 43

C Contents of enclosed CD 45

xii

List of Figures

2.1 Gartner 2014 Magic Quadrant Report [1]. The quadrant is divided
into four parts, the top right quadrant identifies leaders, that ex-
ecute well against their current vision and are well positioned for
the future. The bottom right quadrant identifies visionaries who
understand where the market is headed but lack in execution. The
top left quadrant identifies challengers that execute well today but
are not prepared for future market changes. Finally the bottom left
quadrant sees niche players that are successful in a small segment
but do not out-innovate or outperform others. [2] 7

2.2 dbForge Query Builder’s graphical user interface (GUI) is tailored
to the needs of the SQL. The diagram shows a visual way of creating
a query with three joined tables and three selected columns. 10

2.3 GUI of the jQuery Query Builder 11

3.1 Deployment diagram . 14
3.2 Backend Class diagram . 15
3.3 Frontend Class diagram . 16

4.1 Seach Query Builder’s GUI final version 27
4.2 Force-based label placement . 28
4.3 Final version of label placement. The overview of the query is at

the top part of the figure. The zoomed in view is shown at the
bottom part. 28

xiii

List of Tables

2.1 Comparison of the supported features by vendors. All information
in the table is based on publicly available documentation and may
not be fully accurate. Only the out of the box functionality is
considered. Symbol Xmeans that the enterprise search platform
(ESP) supports that feature, symbol × means it does not. 9

3.1 A Representational State Transfer (REST) application program
interface (API) for query persistence operations. The string {ID}
would be replaced by an actual identification number of a query. . 21

xv

Introduction

Enterprises have an abundance of data from various sources. To make use
of the data, they utilize enterprise search platforms (ESPs) that enable the
users to perform searches across all the sources and provide the results in the
same user interface. The ultimate goal of an ESP is to respond to the user’s
search query with the most relevant results. There are many tools that help
understand the obtained results of a query and there has been great focus
on improving underlying algorithms and the infrastructure of ESPs, but very
little has been done to examine the possibilities of facilitating the user to build
more accurate queries. All the major ESPs on the market offer extensive query
languages for performing accurate searches. But the syntax of these languages
is too difficult for common users.

Aim of the thesis

The aim of this thesis is to design a solution that would let even non-expert
users to perform advanced queries for greater result relevancy. This is to be
achieved via the visualization and the management of queries. But first, the
analysis of query languages (QLs) needs to be done in order to prove that QLs
have a common structure that can be visualized. These patterns will be then
used to design a solution for visualizing the queries in a lucid tree structure
and for the management of the queries. Based on the designed solution, I
will describe the process of implementing and testing the prototype for IBM
Watson Content Analytics (IWCA) ESP. At last, I will describe necessary
steps for adapting the prototype for other ESPs.

1

Chapter 1

State-of-the-art

1.1 Enterprise search platforms

Anyone with access to the internet has to use some form of a web search
technology to access the desired data. If I had to browse through websites
one by one to find what I need, it would take ages. Web search makes any
website accessible within seconds provided I know keywords that are specific
enough. In these terms the enterprise search is very similar to web search but
there are also key differences.

The main difference is that the enterprise search makes accessible primarily
data coming from intranet, that is, data stored on a network not directly
connected to the internet [3].

Next is that the enterprise search (ES) supports the so-called hybrid search
which lets users perform searches not only across various documents but also
across database records because any differences are abstracted away by the
platform [3].

Another difference is the number of sources of data. The enterprise data
is often stored at multiple repositories with various underlying architecture.
The user’s search goes through all the sources without the user even noticing
because the ESP can connect to each source’s interface [4]. This is achieved
by the use of connectors and it is called a federated search.

These are the principal differences from the web search but there are other
like the high security standards or the incremental search, that enables a
partial update of the index without the need to rebuild the whole index from
the start when the data changes. Actually there is one more difference that
is of interest for the purpose of this thesis. The Google web search engine
uses PageRank, an algorithm for objectively rating web pages largely based
on the number of referring web pages. This algorithm has proved to be very
accurate in estimating the web page’s relevancy and it is a big reason of
Google’s success [5]. Other web search engines are likely to use very similar
methods. But this method cannot be used in the ES because company data

3

1. State-of-the-art

is not browsed by users randomly creating links between documents based on
their personal opinion [3]. The search engine’s ability to presume what the
user is looking for is thus limited. This poses bigger demands on the user’s
queries.

One way of aiding the user to make more precise queries is a faceted search.
The faceted search interface allows the user to progressively narrow down the
choices by choosing from a list of suggested query refinements [6]. This is
a useful tool when searching through structured data. Title, author, date or
even Global Positioning System (GPS) coordinates are good search criteria if I
can identify them within each document. But what if the search engine cannot
identify these fields in each document? What if the data is unstructured and
only the end user can make assumptions about the contents of the desired
document?

The main goal of ESPs is to take user’s simple query and return results
sorted by relevancy [7]. This would be the perfect case, but often a simple
query is not enough and in that case the user is expected to specify the search
query more accurately to narrow down the results. This is the very purpose
for which the ESPs provide QL support.

1.2 Enterprise search query languages

Creating a search query in an ESP can be as easy as entering a keyword or as
complex as using several specific types of constraints on tens or even hundreds
of keywords. The latter option would be available to advanced analysts only.
Let’s take a look at an example of a complex search query for Apache Solr
platform.

(title:oak^1.5 OR title:birch*) (body:tree OR body:log) AND

"mine wood"~3 mod_date:[20020101 TO 20030101]

I might guess the meaning of some parts of the query but other remain
almost cryptic without further knowledge. This example follows the syntax of
a QL of an open source Apache Solr platform. The query would likely return
results with the title field containing the word oak or a word beginning with
birch while the results with oak in the title would take priority in the order of
results. The body of the results would have to contain at least one occurrence
of the word tree or log. Anywhere in each result would have to be words
mine and wood with the maximum of three other words in between them. All
the results would also have to be modified for the last time in the year of
2002. All of that of course is dependent on whether such results even exist in
the searched sources and the behaviour of the query can also be changed by
configuration of the platform. This query only scratches the surface of what
some QLs allow. Every ESP has its own characteristic query language, but
even though the syntax may vary greatly, the meaning is usually very similar.

4

Chapter 2

Analysis

In this chapter I will explore requirements of the implemented solution, do a
deeper research of QLs and finally I will point out any existing solutions.

2.1 Requirements

Requirements of the solution, that is the subject of this thesis, have been con-
tinually discussed with the IBM experts specializing in the enterprise search
technology so that the results of this work have practical benefits.

Functional requirements

• graphical user interface (GUI) for building queries

• visualize query in an understandable way

• save any query or self-contained part of the query under alias for later
reuse

• edit or delete saved queries

• export built queries in a valid enterprise search query syntax

• import queries written in an enterprise search query syntax

• save and provide history of queries

• support a view of arbitrarily long queries

Non-functional requirements

• web interface

• ESP independence

5

2. Analysis

2.2 Query languages

To understand the enterprise search QLs and the possibilities of working with
them, first, I had to research their functionalities and common structures.
Unfortunately there are no general guidelines for QLs and their syntax. The
best source of knowledge in this topic is the documentation of the QL for each
specific ESP.

2.2.1 Enterprise search market leaders

To narrow down the field of research I have made a selection of market leaders
that would make up a representative sample for my further research. I have
found out that Gartner, Inc., the technology research and advisory company,
makes an annual report on the enterprise search industry in the form of a
graph (see figure 2.1) [1]. Based on this report, the availability of public QL
documentation and the professional advice given to me, I have chosen several
ESPs whose documentation would serve as a source for my QL research.

Selected ESPs:

• open source – here, the choice was easy, as the two platforms are clear
leaders in the open source market

– Apache Solr [8], [9] is a traditional choice and it has a big de-
veloper community

– Elasticsearch [10] is a very popular enterprise search platform for
its ease of use

• commercial

– Coveo Enterprise Search [11] was chosen based on the figure 2.1

– Google Search Appliance (GSA) [12] was chosen based on the
figure 2.1

– HP Autonomy [13] was chosen based on the figure 2.1

– IWCA [14] was chosen for its strong analytic capabilities and for
being a traditional enterprise choice. Furthermore, the implemen-
ted prototype will be deployed and tested on IWCA thanks to IBM,
that provided me with their advice and with the access to their
software.

– Microsoft SharePoint [15] was chosen because it is deployed in
many businesses and even though it serves primarily as a cloud
solution, it supports a rich query language

6

http://lucene.apache.org/solr/
http://www.elasticsearch.org/
http://www.coveo.com/en/solutions/enterprise-search
https://www.google.com/work/search/products/gsa.html
http://www.autonomy.com/
http://www-03.ibm.com/software/products/en/watson-content-analytics
http://products.office.com/en-us/SharePoint

2.2. Query languages

Figure 2.1: Gartner 2014 Magic Quadrant Report [1]. The quadrant is di-
vided into four parts, the top right quadrant identifies leaders, that execute
well against their current vision and are well positioned for the future. The
bottom right quadrant identifies visionaries who understand where the market
is headed but lack in execution. The top left quadrant identifies challengers
that execute well today but are not prepared for future market changes. Fi-
nally the bottom left quadrant sees niche players that are successful in a small
segment but do not out-innovate or outperform others. [2]

7

2. Analysis

2.2.2 Features

Following the review of documentation of my sample of ESPs, I was able
to extract the common syntax features. Here are the features with their
explanation and an example. Query examples are modified to demonstrate
the described features and will not function in some ESPs in the stated form.
Most of the syntax is taken from the Apache Solr platform.

wildcard search matches documents containing a word matching the wild-
card expression (the wildcard character matches arbitrary string), e.g.
app* would match ”apple” as well as ”appendix”

fuzzy search matches documents with the same or similar term to the searched
term, e.g. man~ would match ”man”, ”men” but also ”manly”

exact phrase search matches only documents containing exactly the same
phrase, e.g. "red apple" would not match ”apple red” or ”red apples”

proximity search matches documents with stated terms within a specified
distance from each other, e.g. (apple pear) NEAR 3 would match do-
cuments where terms ”apple” and ”pear” are at most 3 words apart

field search matches documents containing a field that matches the specified
expression, e.g. author:John would match documents where the author
field contains ”John”

range search matches documents with the field value within a specified
range, e.g. modified_data:(-week TO now) would match documents
modified in the last week

boolean search lets the user connect multiple search terms with opera-
tors, AND (this is the usual default implicit value which means that
when I input a query like apple pear the engine understands it as
apple AND pear) and OR operators are usually available, e.g. apple OR

pear matches documents containing at least one of the two terms

term boosting is used with multiple search terms and lets the user boost
relevancy of some terms, e.g. title:apple^2 body:apple^1 would fa-
vour results where ”apple” is in the title field over those where it is only
in the body field

exclude term search matches documents that do not contain the specified
term, e.g. apple NOT pear would match documents with ”apple” and
without ”pear”

grouping enables the user to group expressions to form subqueries for more
complex querying, e.g. apple OR (pear AND cherry) would match
anything containing either ”apple” or ”pear” as well as ”cherry”

8

2.2. Query languages

regexp search matches documents where a string of characters matches a
regular expression1, RegExp([a-dx]zz) would match documents con-
taining any of the following strings: ”azz”, ”bzz”, ”czz”, ”dzz”, ”xzz”

2.2.3 Research of feature support

My research of the documentation yielded the table 2.1 of a feature support
by each ESP vendor. I can see that six out of eleven features are supported
by all of the researched ESPs. I will use this knowledge later when designing
the solution.

Features S
ol

r

E
la

st
ic

S
ea

rc
h

C
ov

eo

G
S
A

A
u
to

n
om

y

IW
C

A

S
h
ar

eP
oi

nt

Wildcard s. X X X X X X X
Fuzzy s. X X X × X X ×

Exact phrase s. X X X X X X X
Proximity s. X X X × X X X

Field s. X X X X X X X
Range s. X X × X X X X

Boolean s. X X X X X X X
Term boosting X X × × X X X
Exclude term s. X X X X X X X

Grouping X X X X X X X
RegEx s. × X X × × × ×

Table 2.1: Comparison of the supported features by vendors. All information
in the table is based on publicly available documentation and may not be fully
accurate. Only the out of the box functionality is considered. Symbol Xmeans
that the ESP supports that feature, symbol × means it does not.

1Regular expressions let the user define complex rules for matching character strings.
Regular expressions may vary based on implementation and feature support.

9

2. Analysis

2.3 Existing solutions

After investigating any query building tools, I have discovered that there are
quite a few of them focused on building SQL queries, such as the following:
Microsoft SQL Server Query Builder [16], DbVis Software Query Builder [17],
SQLeo Visual Query Builder [18], dbForge Query Builder for SQL Server
[19], Easy Query Builder [20] and Active Query Builder [21]. These tools are
very advanced for their purpose, however, their narrow specialization on SQL
queries makes them unusable for enterprise search queries.

Figure 2.2: dbForge Query Builder’s GUI is tailored to the needs of the SQL.
The diagram shows a visual way of creating a query with three joined tables
and three selected columns.

2.3.1 jQuery Query Builder

In April 2014, a developer named Damien Sorel started developing a jQuery
Query Builder [22], a tool for building complex queries. I find it the best
solution of its kind so far. The GUI of the tool is on figure 2.3. The code
is easily extensible, so a custom export into arbitrary QL can be developed.
However, for the purpose of this thesis, it meets only part of the requirements.
It is missing a server part which would provide persistency of the queries. It
lacks any way of importing queries, thus it cannot be used for modification of
previously built queries, but only to build new ones from the very beginning.
Furthermore, while it provides good query building options, I can imagine a
cleaner GUI that would also help a user to understand the queries better, for
example through visualization.

10

2.3. Existing solutions

I started the implementation part of the module designed in chapter 3 at
the end of September 2014. When I was doing research of existing solutions,
the jQuery Query Builder was not yet publicly available. Even though I have
chosen a different approach, it is interesting to see a similar solution arise at
the same time. I believe that I might have taken some inspiration from jQuery
Query Builder had I known about it at the time of designing the solution.

Figure 2.3: GUI of the jQuery Query Builder

11

Chapter 3

Design

In this chapter I will design a query building module that will meet all the
previously stated requirements.

3.1 Architecture

As stated in the non-functional requirements, the module should provide a web
interface for interaction. This is a sensible requirement which will make the
module independent of ESP and of any operating system. Both previously
analyzed open source ESPs, as well as for example IWCA, provide a web
interface and ways of adding plug-ins to it. The web interface of the module
will be integrated as such a plug-in.

The greatest advantage of web applications is that they are accessible from
any device with a web browser independent of the operating system running
on the device. All modern browsers provide at least three ways of storing the
data. These are the session storage, the local storage and cookies. Cookies are
intended for only small amounts of data up to 4 kilobytes and are transmitted
with every request to the server. That could easily become insufficient for
the purpose of storing tens of complex queries. The session storage in most
browsers provides space for 5 megabytes of data, which would be satisfactory,
but as its name suggests, the session storage lasts only as long as the session is
valid. This means that any stored data gets deleted when a user navigates to a
different domain, closes the tab or the browser itself. The last one mentioned,
the local storage, can hold the same amount of data as the session storage and
it does not have any expiration date. But even local storage is bound to the
concrete browser and does not allow the user to continue his work for example
when he comes home. This means that the requirement of saving queries for
later reuse has to be solved by persisting the queries on the server part. On

13

3. Design

the other hand the history of queries is more intended to avoid losing the
progress by accidentally closing the browser or to step back from unsuccessful
attempt at modifying a query. For this purpose the local storage is perfect as
it also restricts the history to the current user.

Figure 3.1: Deployment diagram

Enterprise software usually runs on application servers that take care of
the efficient use of resources and provide the security and configuration ma-
nagement. Out of the seven previously analyzed ESPs, four are implemented
in Java, two are implemented in .NET and the GSA is sold and deployed on
its own hardware, so the implementation language is unknown.

There is no need to install and maintain another environment for the
module. Instead, I can deploy it on an application server right next to the
ESP. This will also avoid any problems with the browser’s built-in same origin
policy which restricts data to be loaded from a different domain or port. This
and all the previous conclusions result in the deployment diagram 3.1.

14

3.1. Architecture

3.1.1 Backend

For the remainder of this thesis, I will refer to the code run in a browser as
the frontend and to code run on a server as the backend. The backend part of
the module will provide the management of queries. The query entities will
be accessed over the Hypertext Transfer Protocol (HTTP) and persisted to a
database. The class diagram 3.2 shows a basic backend that should meet all
basic persistence requirements. One thing worth explaining is the difference
between the queryString and queryParsed attributes of the Query class. The
queryString will save an unchanged query string in the same form as it is
sent to the ESP. In this state, the query would not be understandable by the
module. For this purpose, it needs to be parsed to understand the meaning
of each part of the query. This parsed query can be then modified by the user
and maybe even enriched by additional data that would be lost in the plain
query string otherwise. So, not to lose the user’s progress while building a
query, I will also persist the parsed form.

Figure 3.2: Backend Class diagram

The backend will perform the basic create, read, update and delete (CRUD)
operations. I have decided to use the two layer architectural pattern that splits
the application logic into a presentation and a data layer, as there was no need
to use three layer pattern that adds a business layer for data manipulation.

15

3. Design

The database will persist query objects with attributes identical to those
of the Query entity in the diagram 3.2.

3.1.2 Frontend

As decided above, the frontend part will run in a browser, which means the
code will have to be in the JavaScript programming language. The JavaScript
code tends to get very chaotic if it is not taken care of and if it is not refactored
periodically. To avoid this problem as much as possible, I have decided to
use the Model-View-Controller (MVC) software architectural pattern, which
divides responsibility into three separate parts. The model handles the data
and notifies the view when the data changes. The view presents the data to a
user and notifies the controller when a user’s interaction takes place. Lastly,
the controller decides what to do with the user’s action and notifies the model
to change the data, if necessary. This is a simple explanation and there are
many variations to the MVC pattern.

In the diagram 3.3 the API package serves as a model, the PersistenceUI
package as a view and the SQB package as a controller. Strictly speaking,
JavaScript does not have a system of packages, but this diagram is for demon-
strative and design purposes.

Figure 3.3: Frontend Class diagram

16

3.2. Parser

3.2 Parser

The module needs to understand the syntax of a chosen ESP to be able to
visualize and modify the query. This is done by parsing the query and re-
turning a structured object. The ESP has to do this too, but unfortunately it
is done on the backend, so the plug-in cannot access the parsed object. This
means that the module needs to have its own parser specific to the ESP’s
query syntax. Fortunately, there are open source parser generators available
that, when given a grammar, return an optimized parser that can then be
used to parse any query.

There are very many parser generators and the first criterion was the
programming language that the output parser would be in. I wanted the plug-
in to be fast and responsive to user’s actions and modifications, so I decided
to choose a JavaScript parser generator, which will eliminate the delay of a
request to the server and response from the server, where the parser would have
to be placed otherwise. The potential traffic delay outweighs any performance
gains of running the parser in a compiled code on the backend mostly thanks
to the JavaScript engine optimizations in the recent years.

As of this day, there are two mature parser generators for JavaScript, the
Jison [23] and the PEG.js [24]. When I tried to write a simple query parsing
grammar for each of them, it became clear that Jison would suit my needs
much better thanks to its grammar’s support for definition of an operator
precedence and even for definition of an implicit operator.

Jison is mostly a JavaScript port of GNU Bison [25] which is a successful
parser generator for C, C++ and Java programming languages. The grammar
for Jison is very similar to Bison, which makes it very easy to find a good
documentation and resources, because Jison is lacking in this area for now.
Next, I had to decide on a form and structure of the parsed object. In case
of JavaScript the form is very easy to decide on, as the JavaScript Object
Notation (JSON) is natively supported by JavaScript, which makes easy to
work with further on.

The most important language feature that will determine the form of the
parsed object are the operators, which are present in all ESPs as discovered
above. Each operator constitutes a connection between what is to the left and
what is to the right of it. From now on, I will refer to such self-contained part
of a query that can lie on either side of an operator as the node. I also know
that all ESPs support grouping, which can cause that an operator with its
nodes can become itself a node to another operator. All this is beginning to
appear like a tree structure and I do intend to form the returned object into
a tree structure. Additionally, each node that is not an operator, can have
other properties that will store additional syntax information. Following is a
query string in IWCA query language and the final parsed object in JSON.

The JSON separates the key from the value by a semicolon and nested
objects are identified by curly braces.

17

3. Design

title:((credit debit card) ANY 2) IN agent AND

(NOT account::((not interested) WITHIN 3 INORDER)

IN client OR leave)

{

"operator": "AND",

"left" : {

"term" : "credit debit card",

"any" : "2",

"context": "agent",

"field" : "title"

},

"right" : {

"operator": "OR",

"left" : {

"proximity": "3",

"inorder" : true,

"term" : "not interested",

"context" : "client",

"facet" : "account",

"not" : true

},

"right" : {

"term" : "leave"

}

}

}

3.3 Visualization

To be able to build complex queries, the user needs to understand the meaning
of it, so that he can foresee what documents might be returned and then
optionally fine-tune the query later. The usual representation in a form of a
plain text quickly becomes unsatisfactory when a few operators and a grouping
takes place. As previously discussed, the structure of a parsed query forms a
tree, more specifically a binary tree, as each node will always have either zero
or two children. Tree data structures can be visualized in an expressive way,
that is my goal with queries as well.

There are three main approaches at visualizing data in a browser. Firstly,
the data can be visualized on the backend, where there is abundance of avail-
able tools, and a rendered image would be sent to the browser. Secondly,
the visualization could take place in a Java applet or an Adobe Flash, both of
which require a plug-in to be installed in a browser, and many mobile browsers
do not support that altogether. The last option and the one I have chosen,

18

3.4. User interface

is to depend solely on what technology the browsers provide me with. For-
tunately all up-to-date browsers support both JavaScript and Scalable Vector
Graphics (SVG), which gave rise to several good visualization libraries that
abstract away most of the differences between browsers and provide elegant
application program interfaces (APIs) to visualize and manipulate data.

When deciding which library to use, I found a very nice example of a tree
visualization [26] in the D3.js [27] library that suited my needs. Additionally,
I was already familiar with using the D3.js library which made the decision
easy.

3.4 User interface

Indispensable part of each ESP’s GUI is a query input field. When a user
writes a query in the input field and clicks the ”Search” button, the query gets
sent to a corresponding API on the ESP’s backend. As the API in various
ESPs may differ greatly, both in their payload structure and the uniform
resource identifier (URI), I do not intend to replace the input field by the query
builder’s GUI, because there would have to be done too much configuration
to make the query builder self-contained in executing the queries. Instead,
the query builder plug-in can connect to the original input field and modify
its contents when the user changes the query in the builder. It can also load
any query modified in the input field and visualize it in the builder for further
modification.

The dominant part of the query builder will certainly be the visualization.
There are two main options for programmatically creating graphics in a web
browser. There is the HTML5 canvas element and the browser SVG imple-
mentation. D3.js can visualize data in both of them, but SVG allows easier
interaction with individual displayed objects, which I want to utilize for the
query building purposes. The idea is that when a user clicks on any node, a
context menu would be displayed to let the user add new nodes, modify the
existing one or delete it. By this interaction the user would simultaneously
modify the query string in the query input field. I have discovered a small
D3.js extension that supports the context menu creation called d3-context-
menu [28], which I will also make use of.

The last thing that requires a user interface is the query management. It
will consist of two sections, one for the saved queries and one for the history.
Both will provide a simple list of queries with the difference that the saved
queries will be labeled with their assigned title, it will be possible to delete
them and also there needs to be a way to name and save the queries.

19

3. Design

3.5 Technology and implementation language

3.5.1 Backend

As the implementation language for the backend I have chosen Java, because
as mentioned above, it is the most common implementation language for the
ESPs and it is also platform independent, which means that even in case the
module was to be integrated with Coveo or SharePoint, which both run on
.NET framework, it would still be possible to install the Java query building
module on the same server. For the module to be able to listen to requests
from the web browser, it has to be either deployed on an application server
that runs a web server or it would have to listen to the requests on its own.
The second option could cause several problems with security, due to listening
on the same port as the ESP or with the same origin policy. To make the
solution as modular as possible, it will implement the Java Enterprise Edition
(Java EE) standards, which will enable it to be deployed to any Java EE
compliant application server.

3.5.2 Database

The next step was to decide how to persist the data on the server side. The
usual way would be to install a database and configure Java database con-
nector to connect to it. I did not like this option because it meant yet another
unnecessary dependency, which would raise the maintenance costs. The per-
fect solution was to use an embedded database that gets packaged inside an
application and does not need to be installed or maintained. The Apache
Derby database management system offers just that, it is open source and
well documented.

3.5.3 Frontend

On the frontend, I am limited by technologies that are supported by the web
browsers. The basis forms the common trio of HyperText Markup Language
(HTML) for defining elements, Cascading Style Sheets (CSS) for styling them
and JavaScript for interacting with them and for the overall frontend applica-
tion logic.

When sending requests from the frontend to the backend, I want to avoid
reloading the whole page. For this purpose, I will use asynchronous JavaScript
and JSON (AJAJ), a variant of the more commonly known asynchronous
JavaScript and XML (AJAX). AJAJ allows the requests with JSON payload
to be sent asynchronously without distracting the user and when a response
comes back, the remaining necessary code gets executed, still notifying the
user only when necessary.

20

3.5. Technology and implementation language

To define understandable interface for communication between the front-
end and the backend, I decided to use a set of architectural guidelines called
Representational State Transfer (REST). Its main use is to design common
interface for CRUD operations by defining a set of URI patterns and the cor-
responding HTTP methods. An API that follows these guidelines is usually
referred to as RESTful API.

Operation HTTP method URI examples Payload

Get all GET example.com/queries no

Create POST example.com/queries yes

Update PUT example.com/queries/{ID} yes

Delete DELETE example.com/queries/{ID} no

Table 3.1: A REST API for query persistence operations. The string {ID}
would be replaced by an actual identification number of a query.

When the module receives a list of user’s saved queries, it needs to present
them to the user. For this purpose, there is a Document Object Model (DOM),
a programming interface for modifying contents of a web page without reload-
ing it. For creating AJAJ requests and to modify the browser’s DOM, I will
make use of a JavaScript utility library called jQuery [29], which defines many
useful methods that will not only simplify my code but also make it less prone
to errors.

Contrary to saving favorite queries, it is desirable that the history of quer-
ies is persisted in the browser. I have already described differences between
the local storage, the session storage and the cookies in the section about ar-
chitecture. I have decided to use basil.js [30], a minimal persistence layer that
provides convenient methods for storing data. It provides me with a useful
feature allowing to set my preferences for storing data and if the first option,
for example the local storage, fails for some reason, basil.js still tries to persist
the data to the session storage or as a cookie.

The reasons for using D3.js library and its d3-context-menu extension are
described in the sections on visualization and user interface.

21

Chapter 4

Implementation

The aim of the implementation was to develop a functional prototype that
would prove the benefit of the query building module. The prototype was
developed and iterated over in cooperation with the IBM experts in the en-
terprise search field. The target platform for the implementation was the
IWCA. In this chapter, I will discuss the undergone process of the imple-
mentation and I will pinpoint interesting or difficult to solve problems that I
encountered. The implemented solution will be referred to as the search query
builder or simply, the query builder.

The steps for setting up a development environment are described in the
Programmer’s manual (see Appendix A). The frontend is intended to be served
from a web server, while the backend is intended to be deployed on an app-
lication server. This means that the enclosed implemented prototype cannot
be run without installing the necessary tools.

4.1 Version management

To track the progress and any changes in the project, I used Git [31]. It
allowed me to discard code experiments with ease, which I used at several
occasions.

4.2 Project generator

Since there are several things to set up before one can begin developing for
the frontend, I used Yeoman [32]. It offers a number of web project generators
for various purposes. Each generator usually creates a sensible file structure,
sets up a web server, installs necessary dependencies and creates a testing
environment. There are currently over a thousand available generators for
various purposes, but I could have also developed my own generator, if I did
not like any of the existing ones.

23

4. Implementation

4.3 Parser

The foremost thing that had to be developed, was the parser. If there was
no parser, there would be no way to visualize or modify a query. Based
on the design, I created a grammar for parsing IWCA’s query language and
then used Jison parser generator to create the parser. The most difficult
thing was not to define the grammar, but to understand all possible syntax
combinations. The documentation for IWCA’s query language was good in
terms of describing the syntax for various features, but it lacked examples of
combining these features. For example, there is a way to define a field search
with a semicolon like this <field>:<term> and there is also a way to define a
facet search with two semicolons like this <facet>::<term>. So if I define a
query like title:bank::credit, it is hard to estimate how the engine would
understand it. In this case, only the last semicolons are interpreted as a syntax
so it would search for a credit in a facet title:bank. Some of these conflicts
were resolved by testing the queries and examining the results, while other
conflicts were solved following the advice of experts with the knowledge of
how the engine works.

4.4 Dependency management

The IWCA’s frontend uses Dojo [33] framework to organize the code, manage
plug-ins and a lot more. It uses efficient dependency management to define
what each part of the code needs for its own execution. Because Dojo’s de-
pendency management uses the same API as a separate JavaScript tool called
RequireJS [34], it can be used separately from Dojo as well. Since the query
builder itself has several dependencies, I implemented the dependency ma-
nagement in the solution to avoid loading some dependencies multiple times
which could very well happen with some popular libraries like jQuery.

4.5 User interface

The final user interface is in figure 4.1. It meets all the requirements set up
in the design chapter. On startup, it can be configured to connect to other
query input field already present in the ESP’s GUI. In that case the query
input field at the top of figure 4.1 would be hidden.

I have implemented four different ways for modifying a query. The first one
is to modify the original query input. Any change to the query input field is
propagated and the changed query is immediately visualized. Secondly, when
a user selects any node of a visualized query by clicking on it, the query string
of that part of the query is displayed in an input box labeled the ”Active
node”. This string can be then modified as necessary and when a user presses
the associated ”Update” button, the active node is replaced by anything the

24

4.5. User interface

user input. This option can also be used to either delete the active node by
deleting the contents of the input field or to add new nodes by filling in a
query that contains new operators. The third option for modifying queries
I added, is to click on any visualized node with a right mouse button. A
contextual menu is displayed with options to add new operators, negate the
node or to delete it. The last way of modification is to drag any node to a
different position. When a user starts dragging a node, it is removed from
the tree and when the node is dropped on an existing node, the user is asked
what operator to use for the new connection.

The lists of saved queries and of the history are hidden by default and show
only when the user moves a mouse over the title for that section. This is also
visible in figure 4.1, as the saved queries are visible but the history is hidden.
This assures the lists do not take up too much space when not needed.

4.5.1 Label placement

Because IWCA has its interface for adding many terms to the query with a
simple AND operator, I was required that the visualization handles well queries
with tens or even hundreds of queries. But the problem was that when I tried
to visualize such query, the node labels often overreached each other and thus
became unreadable. While trying to find a solution to this problem, I tried
two approaches before settling on the third one.

Force-based label placement

The first approach was based on the possibility to apply forces to nodes in
D3.js [35]. The theory was that if I apply repulsive forces on text labels and
set a maximum distance from their nodes, the forces would get applied until
the model would come to a balanced state of forces. Unfortunately, when I
implemented it into the solution, it became clear that I would have to try a
different approach. Firstly, it took about twenty seconds for thirty nodes to
reach a balanced state, which was unacceptable, and secondly, even then the
result was not satisfactory (see figure 4.2).

Constraint relaxing

The second approach I tried was to place the labels as usual and then check
if they overlap. If they did, I would move them away from each other a
little and check again until no labels overlap [36]. This approach is called the
constraint relaxing. Even though this approach yielded slightly better results
than the previous one, it required even more computational power and was
more dependent on the number of nodes.

25

4. Implementation

Tree size adaptation and zoom

The final solution to this problem was to compute the width of the longest
label and set the distance between each level to be at least the same (see
the top part of figure 4.3). This alone would not be enough, as large trees
would not fit into the view or would be too small to effectively work with.
Fortunately, D3.js supports zoom feature that allows not only to zoom in and
zoom out the view, but also to drag it. A user can center any part of the tree
that needs to be inspected in detail by dragging the view (see the bottom part
of figure 4.3).

4.6 Backend integration

I developed the query builder separately and deployed only the major versions,
because IWCA is a large application, which brings about high hardware re-
quirements. To make the environment as similar as possible I used the IBM
WebSphere Liberty Profile application server to run the query builder back-
end on my computer before deploying it to IWCA that runs on the same
application server.

4.7 Frontend integration and configuration

The last step was to integrate the developed frontend plug-in into IWCA. Even
though this step is not as straightforward as I presumed, the documentation
[37] is very detailed and after several attempts everything started working
seamlessly.

26

4.7. Frontend integration and configuration

Figure 4.1: Seach Query Builder’s GUI final version

27

4. Implementation

Figure 4.2: Force-based label placement

Figure 4.3: Final version of label placement. The overview of the query is at
the top part of the figure. The zoomed in view is shown at the bottom part.

28

Chapter 5

Testing

To prove that a software does what it was designed for and to eliminate errors
before its delivery to end users, it should be tested and the search query
builder module is no exception. There are several types of tests and each of
them focuses on a different aspect of the tested software.

The unit testing is the first type of testing I did. It verifies that small
units of the module work as is expected of them. An important part of the
query builder is the parser, so I focused mainly on that. The principle of
testing the parser was simply to provide it with a query string and then check
if it returned the expected parsed object. This proved to be very useful when
developing the parser as it quickly discovered any changes in functionality.

After testing the individual parts, I needed to make sure the integration
of the backend with the frontend worked. For this purpose, I wrote several
integration tests that performed actions on the frontend that required the
cooperation of backend. Very simple example of such a test is to program-
matically save a query on the frontend and check that the returned object
from the backend has an identification number that should be automatically
generated by a database.

Another type of testing I had access to, was the user testing. The module
was tested by the IBM experts and I also received a feedback from the IBM
customers who the module was presented to and who would potentially use
it in production environment. This is how the problem with label placement,
discussed in chapter 4, arose. It also led to discovering several types of queries
that were being parsed incorrectly. Later, I added those queries into unit tests
to make sure the parsing errors do not repeat.

29

5. Testing

5.1 Technology

I used two additional tools for unit and integration testing purposes. Mocha
is a JavaScript test framework that automates testing and provides tools for
understandable error reporting [38]. I also used an assertion library Chai
[39], because Mocha itself does not have any built-in assertion language. The
assertion language is a way of defining what value the variables should be and
what functions they should have.

30

Chapter 6

Adaptation for other platforms

Even though the solution was designed to be as platform independent as pos-
sible, some measures still need to be taken to integrate the prototype with a
different ESP.

6.1 Parser

Every ESP has a different syntax for expressing often similar features. This
means that a new grammar has to be created for the Jison parser generator.
The newly created parser can be then loaded very simply with the use of
RequireJS dependency loader.

6.2 Query building

After the query has been modified, it has to be reassembled back into the
query string form. This is the opposite process to the parsing and also it is
specific to every ESP. This process happens in the buildString method of the
SQB package (see figure 3.3) and its output needs to be adapted to correspond
to the target syntax.

6.3 Styling

The last step is to modify the looks of the GUI by creating and adding custom
CSS to make the module go with the style of the ESP. This step is optional
and it does not in any way alter the behaviour of the module.

31

Conclusion

The hypothesis for this thesis is that queries can be visualized. In the ana-
lysis, I have proved there are common patterns among the QLs of various
ESPs. Later, I have designed and implemented a prototype, that utilizes
these common patterns for visualization of the queries. The prototype also
contains the management of queries via persistence of the favorite queries and
history of the last performed queries. I have also proposed necessary steps for
adapting the prototype for other ESPs, because it is bound to work only with
IWCA’s QL as it is. Thereby I have accomplished all the tasks set up in the
assignment.

To make the implemented prototype ready for production use, I will con-
tinue the development process in cooperation with IBM. There are two areas
I want to focus on. Firstly, I want to add the user management to the back-
end. It would ensure that users could not see each other’s favorite queries, if
they do not choose to. For security reasons, the user management is expected
to depend on other professional system for managing user identities such as
the Lightweight Directory Access Protocol (LDAP). Secondly, inspired by the
jQuery Query Builder, I would like to develop ways for inputting specific fields
such as dates and numbers, when building a query. This would potentially
eliminate many syntax errors when building a query.

33

Bibliography

[1] Gartner 2014 Magic Quadrant Report. [Cited 2015-3-7]. Available from:
http://www.coveo.com/en/resources/ebooks-white-papers/

[2] Gartner Magic Quadrant [online]. [Cited 2015-3-25]. Available from:
http://www.gartner.com/technology/research/methodologies/
research_mq.jsp

[3] Bennett, M. 20+ Differences Between Internet vs. Enterprise Search -
And Why You Should Care [online]. 2008, [Cited 2015-2-25]. Available
from: http://www.ideaeng.com/inet-enterprise-search-p1-0502

[4] White, M. Enterprise Search. Enhancing business performance, Oreilly
& Associates Incorporated, first edition, 2012, ISBN 9781449330446.

[5] Page, L.; Brin, S.; Motwani, R.; et al. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-66, Stanford
InfoLab, November 1999, previous number = SIDL-WP-1999-0120.
Available from: http://ilpubs.stanford.edu:8090/422/

[6] Koren, J.; Zhang, Y.; Liu, X. Personalized Interactive Faceted Search.
In Proceedings of the 17th International Conference on World Wide
Web, WWW ’08, New York, NY, USA: ACM, 2008, ISBN
978-1-60558-085-2, pp. 477–486, doi:10.1145/1367497.1367562. Available
from: http://doi.acm.org/10.1145/1367497.1367562

[7] Gincel, R. Focusing Enterprise Search. InfoWorld, volume 26, no. 42,
2004: pp. 36 – 41, ISSN 01996649. Available from:
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=
14744937&site=ehost-live&scope=site

[8] Solr Query Syntax [online]. [Cited 2015-3-25]. Available from:
http://wiki.apache.org/solr/SolrQuerySyntax

35

http://www.coveo.com/en/resources/ebooks-white-papers/
http://www.gartner.com/technology/research/methodologies/research_mq.jsp
http://www.gartner.com/technology/research/methodologies/research_mq.jsp
http://www.ideaeng.com/inet-enterprise-search-p1-0502
http://ilpubs.stanford.edu:8090/422/
http://doi.acm.org/10.1145/1367497.1367562
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=14744937&site=ehost-live&scope=site
http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=14744937&site=ehost-live&scope=site
http://wiki.apache.org/solr/SolrQuerySyntax

Bibliography

[9] Apache Lucene – Query Parser Syntax [online]. [Cited 2015-3-25].
Available from:
http://lucene.apache.org/core/3_5_0/queryparsersyntax.html

[10] ElasticSearch reference: Queries [online]. [Cited 2015-3-25]. Available
from: http://www.elastic.co/guide/en/elasticsearch/reference/
current/query-dsl-queries.html

[11] Coveo Platform 7.0: Search Prefixes and Operators [online]. [Cited
2015-3-25]. Available from: http://onlinehelp.coveo.com/en/ces/
7.0/user/search_prefix_and_operators.htm

[12] Google Search Appliance Documentation: Request Format [online].
[Cited 2015-3-25]. Available from:
http://www.google.com/support/enterprise/static/gsa/docs/
admin/72/gsa_doc_set/xml_reference/request_format.html

[13] HP Idol OnDemand: APIs [online]. [Cited 2015-3-25]. Available from:
https://www.idolondemand.com/developer/apis

[14] Content Analytics with Enterprise Search 2.2.0: Search Syntax [online].
[Cited 2015-3-25]. Available from:
http://www-01.ibm.com/support/knowledgecenter/SS5RWK_2.2.0/
com.ibm.discovery.es.ap.doc/iiyspqysyntx.htm

[15] Building search queries in SharePoint 2013 [online]. [Cited 2015-3-25].
Available from:
https://msdn.microsoft.com/en-us/library/office/jj163973.aspx

[16] Microsoft SQL Server Query Builder. [Cited 2015-3-25]. Available from:
https://technet.microsoft.com/en-us/library/ms186906(v=
sql.105).aspx

[17] DbVis Software Query Builder. [Cited 2015-3-25]. Available from:
https://www.dbvis.com/features/tour/query-builder/

[18] SQLeo Visual Query Builder. [Cited 2015-3-25]. Available from:
http://sourceforge.net/projects/sqleo/

[19] dbForge Query Builder for SQL Server. [Cited 2015-3-25]. Available
from: https://www.devart.com/dbforge/sql/querybuilder/

[20] Easy Query Builder. [Cited 2015-3-25]. Available from:
http://easyquerybuilder.com/

[21] Active Query Builder. [Cited 2015-3-25]. Available from:
http://www.activequerybuilder.com/

36

http://lucene.apache.org/core/3_5_0/queryparsersyntax.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-queries.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-queries.html
http://onlinehelp.coveo.com/en/ces/7.0/user/search_prefix_and_operators.htm
http://onlinehelp.coveo.com/en/ces/7.0/user/search_prefix_and_operators.htm
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/xml_reference/request_format.html
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/xml_reference/request_format.html
https://www.idolondemand.com/developer/apis
http://www-01.ibm.com/support/knowledgecenter/SS5RWK_2.2.0/com.ibm.discovery.es.ap.doc/iiyspqysyntx.htm
http://www-01.ibm.com/support/knowledgecenter/SS5RWK_2.2.0/com.ibm.discovery.es.ap.doc/iiyspqysyntx.htm
https://msdn.microsoft.com/en-us/library/office/jj163973.aspx
https://technet.microsoft.com/en-us/library/ms186906(v=sql.105).aspx
https://technet.microsoft.com/en-us/library/ms186906(v=sql.105).aspx
https://www.dbvis.com/features/tour/query-builder/
http://sourceforge.net/projects/sqleo/
https://www.devart.com/dbforge/sql/querybuilder/
http://easyquerybuilder.com/
http://www.activequerybuilder.com/

Bibliography

[22] jQuery QueryBuilder. [Cited 2015-3-25]. Available from:
http://mistic100.github.io/jQuery-QueryBuilder/

[23] Carter, Z. Jison. [Cited 2015-4-29]. Available from:
http://zaach.github.io/jison/

[24] Majda, D. PEG.js [online]. [Cited 2015-4-29]. Available from:
http://pegjs.org/

[25] Demaille, A.; Eggert, P. GNU Bison [online]. [Cited 2015-4-29].
Available from: https://www.gnu.org/software/bison/

[26] Bostock, M. Reingold–Tilford Tree [online]. [Cited 2015-5-1]. Available
from: http://bl.ocks.org/mbostock/4339184

[27] D3.js [online]. [Cited 2015-4-30]. Available from: http://d3js.org/

[28] Gillespie, P. d3-context-menu [online]. [Cited 2015-5-2]. Available from:
https://github.com/patorjk/d3-context-menu

[29] jQuery [online]. [Cited 2015-5-2]. Available from: https://jquery.com/

[30] basil.js [online]. [Cited 2015-5-2]. Available from:
http://wisembly.github.io/basil.js/

[31] Git [online]. Available from: https://git-scm.com/

[32] Yeoman [online]. [Cited 2015-4-30]. Available from: http://yeoman.io/

[33] Dojo Toolkit [online]. [Cited 2015-4-30]. Available from:
https://dojotoolkit.org/

[34] RequireJS: A JavaScript Module Loader [online]. [Cited 2015-4-30].
Available from: http://requirejs.org/

[35] Stefaner, M. Force-based label placement [online]. [Cited 2015-4-30].
Available from: http://bl.ocks.org/MoritzStefaner/1377729

[36] Williams, J. Solving D3 Label Placement with Constraint Relaxing
[online]. [Cited 2015-4-30]. Available from:
https://blog.safaribooksonline.com/2014/03/11/solving-d3-
label-placement-constraint-relaxing/

[37] IBM Knowledge Center: Creating and deploying a plug-in to add
custom widgets for user applications [online]. [Cited 2015-4-30].
Available from: http://www-01.ibm.com/support/knowledgecenter/
SS5RWK_3.5.0/com.ibm.discovery.es.ap.doc/iiyspplugschviews.htm

[38] Mocha [online]. [Cited 2015-4-30]. Available from:
http://mochajs.org/

37

http://mistic100.github.io/jQuery-QueryBuilder/
http://zaach.github.io/jison/
http://pegjs.org/
https://www.gnu.org/software/bison/
http://bl.ocks.org/mbostock/4339184
http://d3js.org/
https://github.com/patorjk/d3-context-menu
https://jquery.com/
http://wisembly.github.io/basil.js/
https://git-scm.com/
http://yeoman.io/
https://dojotoolkit.org/
http://requirejs.org/
http://bl.ocks.org/MoritzStefaner/1377729
https://blog.safaribooksonline.com/2014/03/11/solving-d3-label-placement-constraint-relaxing/
https://blog.safaribooksonline.com/2014/03/11/solving-d3-label-placement-constraint-relaxing/
http://www-01.ibm.com/support/knowledgecenter/SS5RWK_3.5.0/com.ibm.discovery.es.ap.doc/iiyspplugschviews.htm
http://www-01.ibm.com/support/knowledgecenter/SS5RWK_3.5.0/com.ibm.discovery.es.ap.doc/iiyspplugschviews.htm
http://mochajs.org/

Bibliography

[39] Chai Assertion Library [online]. [Cited 2015-4-30]. Available from:
http://chaijs.com/

38

http://chaijs.com/

Appendix A

Programmer’s manual

A.1 Frontend

The frontend project structure was generated with the use of Yeoman. The
tools used for further development and their installation are described at
http://yeoman.io/learning/. These are:

Bower.io (http://bower.io/) – a dependency manager for the frontend
development

GruntJS (http://gruntjs.com/) – a task runner, that can automate
various repetitive tasks like running a server, testing or building the
plugin

NodeJS (http://nodejs.org/) – a JavaScript runtime

After installing these tools, it is necessary to run npm install and
bower install commands from the root folder of the frontend. These
commands will install all the remaining defined dependencies. Now, starting
the web server and serving frontend files is done with the grunt serve

command. The structure of the project follows the conventions of the
Yeoman’s generator called generator-webapp
(https://github.com/yeoman/generator-webapp).
The JavaScript code follows the conventions described at
http://javascript.crockford.com/code.html.

A.1.1 Testing

I used two tools for testing purposes. Both of them should be installed after
running the bower install command. These are:

Mocha (http://mochajs.org/) – a testing framework

Chai (http://chaijs.com/) – an assertion library

39

http://yeoman.io/learning/
http://bower.io/
http://gruntjs.com/
http://nodejs.org/
https://github.com/yeoman/generator-webapp
http://javascript.crockford.com/code.html
http://mochajs.org/
http://chaijs.com/

A. Programmer’s manual

The necessary documentation for writing further tests is available at their
websites.

A.2 Backend

The backend is implemented in Java EE and requires a Java EE compliant
application server for running. I used the IBM WebSphere Liberty Profile
application server (IBMWebSphereLibertyProfile). I also used the IntelliJ
IDEA development environment, which allows fast deployment to the
application server, but any other should suffice. For configuration of the
application server, consult the documentation. I include the configuration of
my server.xml file for reference. It also contains the configuration of the
Derby database.

<?xml version="1.0" encoding="UTF-8"?>

<server description="new server">

<featureManager>

<feature>jsp-2.2</feature>

<feature>localConnector-1.0</feature>

<feature>jaxrs-1.1</feature>

<feature>servlet-3.0</feature>

<feature>jdbc-4.0</feature>

<feature>jndi-1.0</feature>

<feature>jpa-2.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" httpPort="9080"

httpsPort="9443" />

<applicationMonitor updateTrigger="mbean" />

<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib" />

<library id="DerbyLib" filesetRef="DerbyFileset" />

<fileset id="DerbyFileset"

dir="${shared.resource.dir}/derby/lib" includes="derby.jar" />

<dataSource id="jdbc/sqb" jndiName="jdbc/sqb"

jdbcDriverRef="DerbyEmbedded">

<properties.derby.embedded databaseName="sqbDerby"

createDatabase="create" />

</dataSource>

<dataSource id="jdbc/sqbnonjta" jndiName="jdbc/sqbnonjta"

jdbcDriverRef="DerbyEmbedded" transactional="false">

<properties.derby.embedded databaseName="sqbDerby"

createDatabase="create" />

</dataSource>

<application id="SearchQueryBuilder_war_exploded"

location="{{ path to artifact }}"

40

IBM WebSphere Liberty Profile

A.2. Backend

name="SearchQueryBuilder_war_exploded"

type="war" context-root="/sqb" />

</server>

41

Appendix B

Acronyms

AJAJ asynchronous JavaScript and JSON.

AJAX asynchronous JavaScript and XML.

API application program interface.

CRUD create, read, update and delete.

CSS Cascading Style Sheets.

DOM Document Object Model.

ES enterprise search.

ESP enterprise search platform.

GPS Global Positioning System.

GSA Google Search Appliance.

GUI graphical user interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IWCA IBM Watson Content Analytics.

Java EE Java Enterprise Edition.

JSON JavaScript Object Notation.

LDAP Lightweight Directory Access Protocol.

43

Acronyms

MVC Model-View-Controller.

QL query language.

REST Representational State Transfer.

SVG Scalable Vector Graphics.

URI uniform resource identifier.

44

Appendix C

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables

SearchQueryBuilder.war...............the backend in WAR format
src.......................................the directory of source codes

searchQueryBuilder........................implementation sources
backend.........................backend implementation sources
frontend frontend implementation sources

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

45

	Introduction
	Aim of the thesis

	State-of-the-art
	Enterprise search platforms
	Enterprise search query languages

	Analysis
	Requirements
	Query languages
	Existing solutions

	Design
	Architecture
	Parser
	Visualization
	User interface
	Technology and implementation language

	Implementation
	Version management
	Project generator
	Parser
	Dependency management
	User interface
	Backend integration
	Frontend integration and configuration

	Testing
	Technology

	Adaptation for other platforms
	Parser
	Query building
	Styling

	Conclusion
	Bibliography
	Programmer's manual
	Frontend
	Backend

	Acronyms
	Contents of enclosed CD

