
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Bachelor’s thesis

Improving Web Server Content Caching

Performance

Tomas Kvasnicka

Supervisor: Ing. Jiri Smitka

11th May 2015

Acknowledgements

I would like to thank my whole family for overall life-time support, without
them my studies would not be possible. I should also thank my friend Kristian
Smith who helped correcting my English. Another important group of people
are colleagues from work who added their comments to some of presented ideas
- thank you guys. A great thanks also goes to Ing. Dana Vynikarová, Ph.D.
for reading and correcting my whole thesis, for doing that in a very limited
amount of time and for fast and comprehensive responding. In the end of
course and obviously my supervisor. By this I sincerely thank you all.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have concluded an agreement with the Czech Technical
University in Prague, on the basis of which the Czech Technical University in
Prague has waived its right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.
This fact shall not affect the provisions of Article 47b of the Act No. 111/1998
Coll., the Higher Education Act, as amended.

In Prague on 11th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Tomas Kvasnicka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kvasnicka, Tomas. Improving Web Server Content Caching Performance.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2015.

Abstrakt

Hlavńım ćılem této práce je výzkum a vylepšeńı webového serveru nginx. Tyto
vylepšeńı přinášej́ı lepš́ı výkon a vyšš́ı použitelnost. Opravdovým př́ınosem
této práce je vylepšená verze daného serveru nasazená v produkčńım prostřed́ı
odbavuj́ıćı tiśıce požadavk̊u za sekundu.

Kĺıčová slova nginx, webový server, cacheováńı obsahu, výkonnost cache,
HTTP protokol, C, Python

Abstract

The aim of this work is research of web server nginx and implementation of
several improvements to this web server. These improvements present per-
formance and usability increase. The real benefit of this work is patched
version of nginx successfully deployed in production environment handling
thousands of requests every second.

Keywords nginx, web server, content caching, cache performance, HTTP
protocol, C, Python

ix

Contents

Listings xv

Introduction 1

1 About this thesis 3
1.1 Exact problem formulation . 3
1.2 Expected results . 6
1.3 Thesis structure . 6

2 Research of chosen web server 9
2.1 Modular architecture and design patterns 9
2.2 Data structures and algorithms 16
2.3 Caching mechanism . 23

3 Improvements implementation 29
3.1 Ideas to discuss . 29
3.2 Chosen improvement(s) . 38
3.3 Realization . 42

4 Testing, comparison, documentation 49
4.1 Testing and production environment deployment 49
4.2 Comparison of original and patched version 52
4.3 Documentation and code maintenance 54

5 Outro 57
5.1 Successes and failures until today 57
5.2 Plans for the near future . 57

Conclusion 59

Bibliography 61

xi

A Acronyms 63

B Contents of enclosed CD 65

xii

List of Figures

1.1 nginx reverse proxy setup scenario 4

2.1 epoll-based event driven cycle . 11

3.1 nginx cache file system layout . 34

4.1 git repository layout . 55

xiii

Listings

2.1 nginx.conf . 13
2.2 ngx http foo loc conf t . 14
2.3 ngx http foo srv conf t . 14
2.4 ngx http foo commands . 15
2.5 ngx http module t . 15
2.6 ngx module t . 16
3.1 ngx http proxy help store info from header 46
3.2 ngx http upstream proxy t . 47

xv

Introduction

First of all, thank you all for being interested in this topic and for choosing
my bachelor thesis as a source of information. I will try to provide you with
the most relevant, accurate and up-to-date data.

This bachelor thesis focuses on improving content caching mechanisms in
today’s popular web server nginx (name always written in lowercase). The aim
of the thesis is to show some important internals of nginx, design an improve-
ment of the caching mechanism, implementing this improvement and properly
testing it afterwards. This particularly means studying the data structures
and algorithms nginx uses, then using this information for finding out how
exactly the caching works and trying to improve it.

What we want to achieve here is at least one successfully implemented im-
provement to the caching mechanism. Successfully means it will be working,
well documented & tested and improvement to the caching mechanism rep-
resents a piece of code that will improve the performance of the server. This
improvement will make nginx deliver data faster in certain situations. It
is also possible to develop additional usability/stability/scalability patches if
valid reasons for such patches are found.

The major reason for creating these improvements is nginx research from
the programmers point of view. We will also deploy our application on a world-
wide content caching network and let it serve thousands of requests per second.
Therefore every person in this world might benefit from using it by saving some
precious seconds of their life every time they visit a website powered by this
network.

1

Chapter 1

About this thesis

The first chapter of this thesis introduces the thesis itself. We are going to
explain the nature of the problem, describe used configuration & possible im-
provements and also introduce the structure of the thesis. This is an extension
to the introduction to make sure we all understand the situation and what
will be happening in the following chapters.

1.1 Exact problem formulation

In this thesis we will focus on an important part of our overall Internet research
- improving content caching mechanism of web server nginx. The reason for
being interested in content caching is that a significant amount of data we
see in our web browsers got there from some cache on the way to the origin
web server and not from the server itself. Therefore it is only reasonable
to make sure these caches respond quickly and with up-to-date data. nginx
was chosen because it is second to none when it comes to performance and
content caching. This is mostly because of the architecture and programming
techniques it uses.

nginx is suitable for many different deployment scenarios including stand alone
web server with support for dynamic content, mail proxy server and so on but
what we are interested in is a reverse proxy configuration. When nginx is
configured as a reverse proxy it stands in front of origin web servers and
passes requests to them. During that it also caches the responses, so when
another client requests the same URL nginx does not contact the origin web
server anymore but answers directly from its cache.

1.1.1 Reverse proxy configuration

What this exactly means and how this really works is explained using a de-
scribed example and a diagram below it.

3

1. About this thesis

Consider the following scenario: a client computer wants to download a HTML
file howto-be-rich.html located at www.awesomeweb.com/be/happy/ using
the HTTP protocol. Its web browser therefore creates a HTTP request for
http://www.awesomeweb.com/be/happy/howto-be-rich.html and then is-
sues a DNS request for the domain www.awesomeweb.com. Now the DNS server
containing records for this domain must be configured to respond with the IP
address of the nginx server configured as a reverse proxy (ngx-rp) instead of
the IP address of the origin web server serving files for www.awesomeweb.com.
Based on the reply from the DNS server the client computer obviously sends
its request to ngx-rp instead of sending it to the origin web server. ngx-rp
listens for such requests and after receiving one of them it searches its cache
for the response to that request. If such response is found and is still valid
(note that the validity of records in cache is affected by various aspects such
as time, type of response and so on) it is immediately returned to the client.
If the cache does not contain the response or the response is no longer valid
ngx-rp has to pass the request to the origin web server. To achieve this it
knows this server’s real IP address and so it simply re-issues the HTTP request
from the client asking the origin web server for the response. This web server
must always be capable of creating such response and therefore it sends it
back to ngx-rp. ngx-rp now begins to save the response to the cache while
simultaneously it forwards it back to the client. After this is done the re-
sponse is cached & valid and the client has also received it. Now every other
client asking for the same file will receive the answer much faster and without
contacting the origin web server. [1]

Figure 1.1: nginx reverse proxy setup scenario

4

1.1. Exact problem formulation

1.1.2 Space for improvements

From the programmers point of view we can see that this is a very complic-
ated & advanced process involving handling multiple network connections,
disk operations, cache record’s validity and a lot of other important things.
Getting this all to effectively work together is definitely an interesting chal-
lenge. Although nginx is written with performance maximization in mind it
does strictly stick to all related RFC’s, tries to save a lot of system resources
and was designed to work in all kinds of configurations, not just as reverse
proxy cache. This offers us several improvement opportunities.

1.1.2.1 Network I/O

First thing that comes to our mind is reducing the number of network opera-
tions. We might achieve this by several techniques discussed later in this thesis
but this is generally a very hard thing to do. Most of the methods described
later are either already implemented or the opposite of that - too difficult to
add. Generally we can say this involves modifying the served content on-the-
fly which requires the modification to be very fast and very efficient to make
it worth it.

1.1.2.2 Disk I/O

Disk operations are of course the slowest thing that happens in computer even
when the machine is equipped with fast and powerful SSD drives. There is
however at least some space for improvement although nginx already uses all
advanced drive access methods like aio(7) or sendfile(2). Ideas discussed later
are dividing the cache between multiple drives without using LVM/RAID/ZFS,
buffering temporary files only to memory and lowering the number of created
temporary cache files. All of these ideas improve the performance of the server.

1.1.2.3 Cache manager

Cache manager algorithms are generally absolutely stable and well perform-
ing. Nevertheless, they might still offer a few places which can get upgraded.
Instead of improving data structures or the algorithms themselves we could
add some usability patches - in later parts of this thesis we will take a look at
adding cache usage statistics and making the cache deanonymized. We will
also talk about upgrades of the cache by presenting the stale-while-revalidate
idea.

1.1.2.4 Others

This section includes ideas that do not fit anywhere else but are still considered
interesting. There are a lot of ways how to improve nginx and most of them
depend on used setup and needs. We will present some additional logging

5

1. About this thesis

options plus describe & modify HTTP range requests processing algorithm.
nginx is not by default capable of logging communication with upstream ori-
gin web servers while it contains important information. Range requests are
widely used by download managers or when watching videos and the way they
are handled now is not ideal from reverse caching proxy setup point of view.

1.2 Expected results

The big picture end of this thesis is represented by patched, working, tested
and deployed production ready version of nginx. This version is also better
performing then the original implementation at least in one real life scenario
and might present numerous usability and/or stability improvements.

When described in greater detail this obviously includes researching nginx
source code at many places, getting familiar with its architecture and design,
gathering all missing knowledge in the field of web server programming and
several other prerequisities required to be able to start coding. After getting
deeper into the application the process of the implementation itself starts.
This usually comes in hand with a lot of unexpected and previously unseen
problems which immediately require finding correct solutions in order to con-
tinue with solving the main problem. The part which follows consists of test-
ing, debugging, fixing the mistakes and testing again. That is a structured,
long-term process involving development of custom testing environment, de-
bugging & tracing scripts and using numerous 3rd party tools. This part
also includes the comparison of the patched version with the original one in
a undoubtful way.

Starting with the analysis, the goal of that chapter is to understand the im-
portant parts of the code in nginx and being able to use this knowledge to
develop our own upgrade. The implementation part will bring us one or more
well designed patches which allow us to create a version that is better per-
forming and preferably also more stable/usable/scalable. Last part of this
thesis is expected to discover bugs created during the implementation part,
resolve & fix them and provide a proof that the improvements are successful.
All of this is expected to take several months of hard work to achieve.

1.3 Thesis structure

Here we will briefly describe the structure of this thesis. It is going to consist
of three main parts: Analysis, Implementation and Testing. Each one of these
parts is dedicated one full chapter with several subsections. Also each one
of these parts could be covered in a separate thesis therefore we sometimes
reduce the level of provided information only to the essentials.

6

1.3. Thesis structure

1.3.1 Analysis

This will be the first part of this thesis coming right after this introduction.
In this chapter we are going to cover analyzing nginx from the programmers
point of view. Its content will provide us with information regarding detailed
behavior of nginx in several situations. We have to focus on global modular
architecture, the description of data structures & important algorithms and
cache management. We might also take a look at some general information
like source code structure, event-driven model and process separation. After
finishing this part we are going to be able to understand major internal mech-
anisms, we will have a detailed idea of how nginx works and we will also be
able to imagine what it might take to implement a working improvement.

1.3.2 Implementation

We will continue with part dedicated to the implementation. This is the core
of this thesis as the most important parts regarding the implementation itself
will be contained here. At the beginning of this part we are going to start
with interesting upgrade ideas. Afterwards comes choosing one or more of
these ideas along with suggestions of their design. And then we continue with
the implementation itself along with the description of arising problems.

1.3.3 Testing

In the last part of this thesis we are going to focus on testing and comparison
with the original implementation. Those are two necessary steps of every pro-
gram development even though they do not actually bring any real usage to
the user of the application. We will focus on creating an advanced script called
AMAST for parallel requests launching. This script will in combination with
memory usage checking tool valgrind give us relevant results about perform-
ance and stability of the patch. After making sure everything works exactly
as expected we will manually compare the results obtained by AMAST and
other testing tools to make conclusions about developed upgrade.

7

Chapter 2

Research of chosen web server

In the second chapter of this thesis we are going to focus at analysis of existing
code. This is the research part of this thesis.

In the first section we are going to take a look at the overall design and
structure of the sources. The description of nginx as a whole belongs here.
Then we focus on used data structures and algorithms. In the end we will
take a look at several important facts regarding the cache.

2.1 Modular architecture and design patterns

2.1.1 Design

First we are going to describe nginx from the programmers point of view to
get some general understanding about what is it composed of. Then we focus
on the most important design pattern it uses and try to explain its principles.
This gets followed by the types of processes nginx forks and their functionality.
In the end we also describe the structure of a simple configuration file.

2.1.1.1 General info

Information contained in this paragraph rephrases [2]. This program’s num-
bers look very interesting even to an experienced programmer. nginx consists
of approximately 2000 functions which manipulate the values of circa 140 cus-
tom structures and type definitions. All of this is happening in 280 source code
files which together have just under 170 000 lines of C[3] code. It has been de-
veloped for more then 13 years and during that time it has been well tested on
12 operating systems using 9 different processor architectures. During March
2015 nginx was used in 21.22% cases someone visited one of the top million
busiest sites. It is statically linked, uses numerous pre-processor conditions
to avoid compilation of unnecessary code, inlines cpu specific assembly and

9

2. Research of chosen web server

uses OS specific APIs. It also has almost no comments but keeps a very read-
able and clear coding style. On the other hand, the orientation in the code is
very complicated due to the fact that everything is based on calling particular
handlers at particular places of the code. This makes it almost impossible
for IDEs to be able to navigate through the execution flow. nginx can also
brag with requiring only about 250 bytes of memory per non-active keep-alive
connection and 140 bytes per file in cache. Here we end our nginx summary
and show some more of nginx’s design.

2.1.1.2 Event-driven model

As the parallelism in computer science is getting more and more natural we
are looking for more ways to make programs do something in the background
while doing something else in the foreground. This can be achieved by many
ways and a lot of applications usually stick to forking multiple processes or
at least creating multiple threads. While this can be an easy and quick way
to achieve our goal, in extreme conditions it reveals its drawbacks. Context
switching and unnecessary scheduling can slow down the whole application
when being under heavy load even with today’s hardware.

nginx handles this problem differently. Instead of creating enormous amount
of processes or threads it uses event-driven programming techniques. This
means nginx parametrizes most system calls to be non-blocking and thanks
to that it almost never waits for any hardware operations that actually take
some time. It also gets notified by the kernel when there is data ready to be
processed, quickly processes it and returns to waiting for more data. This gets
best described on a example. As a event driven mechanism we will use Linux
epoll(7) but this can be easily replaced by kqueue(2), select(2), eventports or
any other method[4] supported by nginx.

The master process described in section below first calls the typical combina-
tion of socket(2) - bind(2) - listen(2) in order to create a socket, bind to a spe-
cific address:port combination and make the socket listening for incoming con-
nections. The only difference is that the socket is marked as O NONBLOCK.
This pattern usually continues with fork(2) or pthread create(3) followed by
accept(2) where the caller gets blocked until new connection gets accepted.
Event-driven pattern however dictates something else. Forking stays the same,
at least one worker process gets created but instead of getting blocked in
accept(2) it calls epoll create(2) followed by epoll ctl(2). This way it adds
the listening socket to a list of sockets which should be watched. Then it
calls epoll wait(2) which blocks the caller until an event happens on one of
the watched sockets. As soon as the first event on this socket happens it
calls accept(2), marks the newly returned socket as O NONBLOCK and adds
this socket to be watched by epoll(7) . Then it handles part of this commu-

10

2.1. Modular architecture and design patterns

nication but only until some read(2) or write(2) operation returns EAGAIN
or EWOULDBLOCK. These return values signalize the kernel buffer for this
socket is empty and the call would block. When this happens the worker
returns to calling epoll wait(2) until some data is ready for processing again.

This process then gets repeated over and over again until the program is
terminated. It should be noted that accept(2) is still called only once for each
connection - nginx knows the listening socket number therefore accept(2) gets
called only when data on this socket is received. Other sockets are unaffected
by this as nginx keeps communication context for every socket so that it knows
which data it has already received/sent from/to this client. We should also
mention that the word ”socket” can be at most places interchanged for ”file
descriptor” as epoll(7) works well with any kind of underlying device. [5], [6]

Figure 2.1: epoll-based event driven cycle

2.1.1.3 Processes

nginx consists of four main process types - master, worker, cache manager
and cache loader. The instances of master and manager run for the whole life
of the program and only as one process. Workers also run for the whole life
but several instances get executed. Loader is a special case and it terminates
itself after it is done with its job. Now we will describe them in greater detail.

• Master This is the process that gets executed first when you run nginx.
It takes care about parsing the configuration and listening for incoming

11

2. Research of chosen web server

connections. It also sets signal handlers and then forks the other pro-
cesses and waits. This process must not die in any case as all its children
depend on it. When a worker dies for whatever reason it gets restarted
by master and only the connections handled by that worker are lost.
The same goes for cache manager except for connection handling. But
when a master gets killed or suffers from programming error nginx will
not survive that.

• Worker Second most important process as without worker the HTTP
server does not fulfill its function. Worker is the process responsible for
accepting new connections and handling the whole communication with
client. The number of workers is configurable and usually depends on
the number of processor cores. The event driven loop inside each worker
is extremely efficient thus one worker is capable of handling numerous
connections without the need for context switching.

• Cache manager This is the process that only gets started in case
we use nginx as a caching proxy. Generally we can say it takes care
of managing the cache structure and keeping the cache in a state as
requested by the configuration. It gets described later in greater detail
so take a look at section 2.3 for more information.

• Cache loader Same as cache manager this process is also started only
when we need content caching capabilities. Cache loader is different from
other processes as it only runs for a limited amount of time. To stay
brief we can say that it loads the content of the cache into the memory.
This process is also described later in a more detailed way so do not
forget to take a look at section 2.3.

2.1.1.4 Configuration file

To be able to understand algorithms parsing this file we need to see what it
looks like. Configuration is divided into parts called blocks which are denoted
by a keyword and curly brackets. Most important blocks are main, http, events,
server and location. Block main is different as it does not have any keyword
- anything put into the configuration file which is not inside any other block
will be considered as being in main block. Each configuration directive has
to specify in which blocks it is allowed to be and its handler. Handler then
serves for parsing such a directive. Also, we are omitting configuration related
to mail capabilities as that is not the subject of this thesis.

Block server can only appear in block http and block location can only ap-
pear in block server. Options configured in http and main blocks are then
inherited by all server and location blocks unless overwritten in them. In http
we specify general HTTP options, in server we define a virtual server and

12

2.1. Modular architecture and design patterns

location represents context specific to a particular part of request’s URI. To
make sure we all understand what this means we will show a piece of real
configuration file. With this configuration, all virtual servers and all their loc-
ations will use sendfile(2) system call when copying data, but virtual server
awesome.server.top will have this feature disabled when serving requests con-
taining /videos/mp4/ in their URL.

worke r p roce s s e s 1 ; # th i s d i r e c t i v e i s in the ˜main block

events { use e p o l l ; } # events block

http # http block
{

proxy cache path / cache /data l e v e l s =2:1 keys zone=z1 :2000m . . . ;
s e n d f i l e on ;

s e r v e r # se rv e r block
{

server name awesome . s e r v e r . top ;
l i s t e n 443 d e f a u l t s e r v e r s s l spdy ;
l i s t e n 80 d e f a u l t s e r v e r ;

l o c a t i o n / v ideos /mp4/
{

s e n d f i l e o f f ; # ove rwr i t e s c on f i g from http block
proxy pass www. o r i g i n . com ;

}
}

}

Listing 2.1: nginx.conf

2.1.2 Modules

nginx does not use objects as it is written in pure C[3]. It partially by-
passes this disadvantage by using structures with function pointers and based
on these structures it creates its own architecture of modules. Information
provided in following paragraphs was acquired by reading [7].

Modules can do basically anything when it comes to handling a request but
they are totally powerless when we need to change the core of nginx. To have
a better understanding of what this means - teaching nginx how to seek in
mp4 files can be done using a module, changing whether a file in cache is still
valid or not has to be done in a different way. Modules are great when we
need to add a new feature, but when we need to change current behavior of
something essential they will not really help us. Now, we are going to take
a look at their types and then their structures.

2.1.2.1 Types of modules

The main advantage of a module is that if you preserve its structure correctly
and you do not call anything blocking you will not harm the event-driven
pattern and thus everything will still be working as fast as possible. There
exist 3 main types of modules - handlers, filters and load-balancers.

13

2. Research of chosen web server

Handlers are the most important type of modules as generally they handle
processing of a request. That means they for example handle connections to
upstream servers, process CGI scripts or serve static files from drive. Typically
one handler gets activated per request.

Filters on the other hand are a special case of modules - they get activated
only when sending response to the client. Whenever nginx has data ready
to be sent to a client it is passed to filters which have the possibility to alter
it as required. They work in a chain thus all of them are activated for each
response being sent, but typically a filter looks at the data it received and
decides whether to process it or not. The order of their execution is defined
at compile time with the filter which is actually sending the data to the client
being always last. At the end of its execution the filter always calls the next
filter in chain and returns its return value.

Load-Balancers are modules used only in certain situations. Basically only
when nginx is talking to a upstream server (although not necessarily HTTP
server) and it has more then one of those servers configured, those modules
will get activated. Their main purpose is therefore to choose the appropriate
upstream server. nginx implements two of those modules - round robin and
hashing module. Round robin works as expected - distributes requests equally
between upstream servers, hashing module assigns one particular upstream
server to a set of IP addresses therefore the same client gets always connected
to the same upstream server.

2.1.2.2 Module structure

Structure of a module is predefined by several structures. The first three
hold the configuration of a module. These are called ngx http <module

name> (main|srv|loc) conf t based on whether they are for main, server or
location blocks. The elements contained in those structures can be whatever
the author of the module chooses and if the module does not require any con-
figuration variables they do not need to exist at all. Here we show a simple
location & server configuration of module foo.

typede f s t r u c t {
ngx s t r t l o c a t i o n p r e f i x ;
ngx u in t t l o c a t i o n i d ;

} ngx h t t p f o o l o c c o n f t ;

Listing 2.2: ngx http foo loc conf t

typede f s t r u c t {
ngx s t r t s e r v e r p r e f i x ;
ngx u in t t s e r v e r i d ;

} ngx h t t p f o o s r v c on f t ;

Listing 2.3: ngx http foo srv conf t

14

2.1. Modular architecture and design patterns

Next we will show an example of structure ngx command t referring to pre-
viously showed configuration structures. This structure is described later in
greater detail in section 2.2.1. We are going to take a look at the first element
of the array. First is the name of the command, then its type, after that is
the pointer to the handler of that command, then the two elements defining
its memory position. Last is the pointer to custom data the command might
need - NULL in our case. The handler is usually defined by the type of con-
figuration variable - strings need to be set in a different way then integers.
ngx null command is a special command which consists of all zeroes and by
that nginx recognizes the end of this array.
s t a t i c ngx command t ngx http foo commands [] = {

{ ngx s t r i ng (” l o c a t i o n p r e f i x ”) ,
NGX HTTP LOC CONF |NGX CONF TAKE1,
n g x c o n f s e t s t r s l o t ,
NGX HTTP LOC CONF OFFSET,
o f f s e t o f (n g x h t t p f o o l o c c on f t , l o c a t i o n p r e f i x) ,
NULL } ,

{ ngx s t r i ng (” l o c a t i o n i d ”) ,
NGX HTTP LOC CONF |NGX CONF TAKE1,
ngx con f s e t num s lo t ,
NGX HTTP LOC CONF OFFSET,
o f f s e t o f (n g x h t t p f o o l o c c on f t , l o c a t i o n i d) ,
NULL } ,

{ ngx s t r i ng (” s e r v e r p r e f i x ”) ,
NGX HTTP SRV CONF |NGX CONF TAKE1,
n g x c o n f s e t s t r s l o t ,
NGX HTTP SRV CONF OFFSET,
o f f s e t o f (n gx h t t p f o o s r v c on f t , s e r v e r p r e f i x) ,
NULL } ,
. . .
ngx null command

} ;

Listing 2.4: ngx http foo commands

After we define commands and have structures to store their values, we need
to connect our module with the rest of nginx. This has to be partially done
by altering external configuration scripts and partially by specifying other
important data types defining the structure of a module. Those two struc-
tures are called ngx http module t and ngx module t and are also described
in section 2.2.1. Therefore, the same as with commands, we will go directly
to examples. These four functions will be called at appropriate places to
create and merge configurations. Functions which create configurations usu-
ally allocate memory for configuration structures (ngx http foo loc conf t

& ngx http foo srv conf t) and set default values in those structures. Func-
tions for merging then mainly merge default values with those from a partic-
ular block.
s t a t i c ngx http module t ngx http foo modu le c tx = {

NULL, /∗ p r e c on f i gu r a t i on ∗/
NULL, /∗ po s t c on f i gu r a t i on ∗/

NULL, /∗ c r e a t e main con f i gu r a t i on ∗/
NULL, /∗ i n i t main c on f i gu r a t i on ∗/

ngx h t t p f o o c r e a t e s r v c on f , /∗ c r e a t e s e r v e r c on f i gu r a t i on ∗/
ngx ht tp foo merge s rv con f , /∗ merge s e r v e r c on f i gu r a t i on ∗/

15

2. Research of chosen web server

ngx h t t p f o o c r e a t e l o c c on f , /∗ c r e a t e l o c a t i o n con f i gu r a t i on ∗/
ngx h t tp f oo me rg e l o c con f /∗ merge l o c a t i o n con f i gu r a t i on ∗/

} ;

Listing 2.5: ngx http module t

Last described structure will be ngx module t. This structure only holds all
the previously defined functions & structures and makes the module cooperate
with the rest of nginx. It also defines the type and version of the module and
then leaves some space for padding - in the current implementation padding
consists of zeroes. Version is used to reflect changes in this structure.

ngx module t ngx http foo module = {
NGX MODULE V1,
&ngx http foo module ctx , /∗ module context ∗/
ngx http foo commands , /∗ module d i r e c t i v e s ∗/
NGXHTTPMODULE, /∗ module type ∗/
NULL, /∗ i n i t master ∗/
NULL, /∗ i n i t module ∗/
NULL, /∗ i n i t p roce s s ∗/
NULL, /∗ i n i t thread ∗/
NULL, /∗ e x i t thread ∗/
NULL, /∗ e x i t p roce s s ∗/
NULL, /∗ e x i t master ∗/
NGX MODULE V1 PADDING

} ;

Listing 2.6: ngx module t

2.2 Data structures and algorithms

2.2.1 Data structures

Next thing to look at is important data structures. As we have seen there exist
more then a hundred of them and therefore we cannot focus on every single
one. We will reduce the amount of gathered knowledge and describe only
the most significant ones. All the sizes are reported from x64 architecture.
All following knowledge was gained by studying [8].

2.2.1.1 Request related

The first group of data structures is the one related to every request. This
introduces a set of structures which gets usually allocated with an incoming
request and also gets freed when the request is finalized. Now we are going to
take a look at some of them.

• ngx connection t (ngx connection.h) Main structures providing in-
formation about particular connection. These structures are 216 bytes
big and they are reusable which means they do not get physically al-
located and freed with every connection. They get created per network
event. They have pointers to read/write events associated with this

16

2.2. Data structures and algorithms

connection, socket number connected with this connection, pool for al-
located memory, log file, the IP address of the client, TCP parameters
of the connection and many other items.

• ngx event t (ngx event.h) One of the most low-level structures used in
nginx. One of these exists per event known to the program. It has main
flags symbolizing the properties of the associated event, void pointer to
anything this event relates to and its handler. This structure has 104
bytes.

• ngx http request t (ngx http request.h) These structures are HTTP
connection specific and get created based on according ngx connection t

structure. The size of this structure is 1320 bytes. Almost every func-
tion processing a request has access to this structure. Its items include
arrays of configurations, the underlying connection, cache, several event
handlers, pool for allocated memory, HTTP parameters of the request
and various flags defining the properties of the request.

• ngx http upstream t (ngx http upstream.h) A structure associated
with every upstream server connection has the size of 1024 bytes. nginx
uses these structures to fade out the differences between multiple up-
stream server types. The most important parts of this structure are
pointers to functions which get called at predefined times during the com-
munication with an upstream server. Also a very important flag which
disables or enables caching gets stored here.

2.2.1.2 Configuration related

Another important group of data structures is the one related to parsing and
afterwards storing the configuration. Those structures are either statically
allocated or get stored during the initialization of nginx. In both cases, they
stay in the memory for the entire time nginx is running. The most important
ones will be described below.

• ngx cycle t (ngx cycle.h) This is probably the most important data
structure of all of them as it holds the whole configuration. Everything
that is in the configuration file is represented here. Furthermore all
the events are stored here, all the connections, all the opened files, shared
memory and others. Generally we can say that functions having access
to this structure have access to everything nginx currently has in its
memory. This structure has 480 bytes.

• ngx command t (ngx conf file.h) As mentioned above, configuration
file contains directives - now also known as commands. Every direct-
ive which is valid in nginx configuration file has its command struc-
ture somewhere. This structure consists of only 6 elements - name of

17

2. Research of chosen web server

the command (configuration files are basically just command names from
nginx’s point of view), type of the command (this specifies blocks in
which the command is valid and how many arguments it has), handler
for the command (function that gets called by parsing algorithm when
this command is found in config file), offset of main/http/server/location
configuration structure that contains this command’s variable, offset of
this variable from the beginning of this structure, void pointer to ar-
bitrary data if the command needs them (usually NULL). Its size is 56
bytes.

• ngx http module t (ngx http config.h) This structure defines the or-
ganization of a HTTP module in nginx. It has 8 elements and all of
them are function pointers. It enables the module to create and merge
its configuration structures and to do whatever the module needs in the
pre-configuration & post-configuration phase. These phases happen in
the master process when parsing configuration of the http block and
usually serve for allocating module variables. It has 64 bytes.

• ngx module t (ngx conf file.h) Another module defining structure,
but this time it is not HTTP related. It consists of more general elements
as even non-HTTP modules have to define this structure. This structure
has several function pointers so that the module can call functions at
several places of nginx’s execution - in particular init/exit of a worker
process/thread, init/exit of the master process and initialization of this
module. Besides these pointers it holds the array of commands for this
module, its configuration structures and several other things. As a proof
of well designed application it has several allocated spare pointers and
integers to be used in the future. This structure requires 200 bytes of
memory.

2.2.1.3 Helper structures

As every other program nginx is also based on common data structures and
algorithms. Therefore it uses many well known structures such as arrays, hash
maps, red-black trees, heaps and so on. A brief description of some of these
structures follows.

• ngx pool t (ngx palloc.h) Default memory management structure. Ba-
sically every major structure has its own pool which it uses for allocating
memory. These structures only hold pointers to allocated/free memory
and to other pools because they work as a chained list. They also con-
tain a handler for cleaning of the pool if the creator of the pool wishes
to do so. Their size is 80 bytes.

• ngx array t (ngx array.h) Arrays are used to store values next to each
other at one location in the memory. This structure provides this for

18

2.2. Data structures and algorithms

any data type we choose. It only holds the number of allocated/total
elements and the size of each element. It also has a pointer to the
memory pool where the values will be stored. Its size is 40 bytes.

• ngx list t (ngx list.h) Lists same as arrays have their memory pool
and a few values. nginx implements a single linked list where all values
have the same size. This helper structure requires 56 bytes of memory.

• ngx str t (ngx str.h) This is the most simple structure we will describe,
but it is still very useful. nginx stores strings as not null-terminated char
arrays and their size. This is done to save repeated strlen(3) calls. This
structure is used almost everywhere and uses 16 bytes.

2.2.2 Algorithms

Because not only data structures create programs, we have to take a look at
used algorithms as well. It is obvious that nginx implements several hundreds
of them and therefore as with data structures we can only focus at some of
these. We will describe two of the most important ones in greater detail and
then we will also briefly look at some of the more common ones. As a source
of following information was used [8].

2.2.2.1 Main functionality

Algorithms listed here are very specific to nginx only and create the core of
its functionality. They consists of calling numerous functions and interacting
with all kinds of data structures. Knowledge of these algorithms will give us
the possibility to alter nginx’s behavior at many important places.

• Configuration parsing First we are going to take a look at con-
figuration parsing. Please take a look at section 2.1.1.4 to make sure
you understand how the configuration file is structured. This algorithm
is implemented in the master process and takes place right after pars-
ing command line options, accessing CPU info and after the initializ-
ation of log files, the SSL engine, the time engine and several other
support mechanisms. The most important function is ngx init cycle

as that calls all the other parsing functions. Inside of it is a recurs-
ive function ngx conf parse which repeats the following process: call
ngx read token, call handler for this token using ngx conf handler, if
the token is a new block marked by curly brackets, call ngx conf parse

again on this block. This results in reading a line, parsing that line
and calling a handler for the directive at this line (if it is not a direct-
ive, nginx throws an error and exits). Special handlers we mention are
those for http and server blocks - they lead to allocating configuration
structures for each module in nginx as well as several other actions.

19

2. Research of chosen web server

After parsing it continues with merging main/http/server/location con-
figurations. This means directives specified in main get overwritten by
directives in http, those get overwritten in server and those get overwrit-
ten in location block. This way we are able to specify a default setting
of a directive at the http level and then change it per server/location
as we need while settings for other servers/locations remain intact. We
also have to mention that if a directive is not in the configuration file at
all, it has its default value as specified by nginx documentation.

• Request processing Firstly, this is the core of every HTTP server
and it is also the most complicated algorithm in nginx. It can behave in
many different ways based on the progress of network communication,
disk speed, configuration and several other important factors. Generally
we can say that after parsing the configuration, nginx’s workers just keep
repeating this algorithm until they are terminated. Because of the fact
that this algorithm is so variable, we will only describe one of its forms -
with a file already in cache and with the sendfile(2) system call turned
on. Also, we will have only one worker process and we will receive all
the request data in just one recv(2) call .

In the initialization phase of a worker process all listening sockets get
registered to be watched by epoll(7). They also get marked as listening
so that accept(2) gets called when they are ready to be processed. After
the worker finishes its initialization it jumps into a never ending loop.
Here it does several checks to make sure it is not in the middle of exiting
and if it passes them it calls the most important function of all of nginx
- ngx process events and timers. This is the only function that uses
blocking call on purpose. That call is epoll wait(2) and it returns num-
bers of file descriptors that can be processed without blocking. Each
of these file descriptors is encapsulated into ngx connection t struc-
ture and has its handler. ngx process events and timers then does
several other checks and if they are passed it calls these handlers. We
will now describe the function of the two most important handlers -
ngx event accept and ngx http request handler.

– ngx event accept This handler gets called in case of a listen-
ing socket. That means a new connection has been initiated so
accept(2) has to be called. After that the newly returned file
descriptor by accept(2) is added to the list of file descriptors be-
ing watched by epoll(7). Then a handler from ngx listening t

structure is called - it was set to ngx http init connection dur-
ing configuration parsing. Initializing the connection sets a hand-
ler for related read event to ngx http wait request handler and
then it also calls it. ngx http wait request handler is the func-

20

2.2. Data structures and algorithms

tion which calls recv(2) and stores received data in a buffer. If all
the data gets received it also calls ngx http create request which
creates the ngx http request t structure itself. In the end it also
changes the handler of related read event and immediately calls it.
The event handler is changed to ngx http process request line

which tries to parse request’s URI and if that is successful it con-
tinues with parsing the headers - each header also has its handler
to parse it. At its end it calls ngx http process request which
sets handlers in read/write events to ngx http request handler,
then it sets several other handlers and then calls ngx http handler.
ngx http handler changes previously set event’s read handler to
ngx http core run phases and calls it. This calls several func-
tions each one representing one phase of processing a request.

These phases are responsible for handling the authentication, set-
ting values to variables and most importantly responding to the re-
quest with correct content. The phase responsible for this is repres-
ented by ngx http core content phase which firstly calls function
from added 3rd party module - purge. Unless the HTTP method of
this request is the same as configured in the configuration of purge
module it calls original handler. The value of this function has
been set to ngx http proxy handler. ngx http proxy handler

represents the beginning of the proxy module as it tries to allocate
ngx http upstream t structure and sets all important upstream
communication related handlers to functions from this module.
First handler is ngx http upstream init which adds connection’s
write event to be watched by epoll(7) and calls a function for ini-
tialization of request to origin - ngx http upstream init request.
This function uses ngx http upstream cache to find out the status
of the file in cache - in our case this status will be hit. Based
on the hit status ngx http upstream cache send will be called.
This function starts sending out the requested data. First it uses
ngx http send header to send the headers of the response and
then it calls ngx http output filter to start processing the body
by output filters. The chain of output filters depends on installed &
compiled modules. The last one of them is ngx http write filter

which executes the actual writing function - sendfile(2), send(2),
write(2) or writev(2). With that the handler exits and nginx re-
turns to waiting for new ready events.

– ngx http request handler This handler on the other hand is
only called on already accepted connections that require more data
to be transferred. This is simpler then accepting the connection
as the data only has to be read, processed by output filters and

21

2. Research of chosen web server

send to the client. Because of this fact, this handler directly calls
ngx http output filter and the rest is the same as in the pre-
vious handler - all the filters get called with the last one writing
the data to the output file descriptor. Thanks to sendfile(2) we only
have to supply four things to do the sending - input file descriptor,
output file descriptor, offset at which to start reading from input
file descriptor and the number of bytes we want to send.

2.2.2.2 Helper algorithms

Apart from the two most important algorithms a series of those helping them
must also exist in nginx. Some of those which we consider interesting will be
described, but a significant number of others stay undocumented as they are
out of this thesis’s scope.

• String parsing library nginx can brag with wrappers for almost
all standard string functions from libc(7). Because it stores strings in
ngx str t this is a very reasonable solution. All wrapping functions do
not expect NULL-terminated strings and on the other hand require their
sizes. This library is stored in ngx string.h & ngx string.c and implemen-
ted functions include wrappers for: sprintf(3), strstr(3) or strcasecmp(3)
and many others. There are also functions specific to nginx which can
be used for parsing DNS names or printing contents of memory as hexa-
decimal strings.

• Memory management library To make it simple for upper level
functions to work with memory, nginx uses a completely custom pool-
based memory management. Provided functions are of course wrappers
for malloc(3), calloc(3) and other system functions but these are never
called directly. This pool based memory management allows nginx to
be able to allocate memory at almost any place in its code without
worrying about freeing any of it. It also provides a small speed-up
as it saves several system calls. Generally we can say nginx allocates
pools of memory and then distributes memory from these pools by it-
self. When the whole pool is no longer needed it gets freed. This lib-
rary lies in ngx palloc.h & ngx palloc.c and implements functions like:
ngx create pool, ngx palloc, ngx pcalloc and many others. We must
not forget to note that nginx also has its own implementation of the Slab
algorithm used by Linux kernel.

• Common data structures manipulators As there are no objects in
C[3], data structures are separated from algorithms altering them. This
however does not mean these algorithms do not exist. nginx implements
functions for all its basic data structures and access to these structures
is done only by using these functions. These functions are always in

22

2.3. Caching mechanism

a separate source file which is related to a header file containing defin-
itions of the particular data type. Typically these algorithms represent
a function for initializing the structure and adding/removing/fetching
an element.

2.3 Caching mechanism

2.3.1 Data structures and algorithms

Here we are going to describe several data structures and algorithms closely re-
lated to the caching mechanism. In structures we focus on the most important
ones which describe the cache and its records. We will also take a look at two
important algorithms realized by two special processes managing the cache.
Knowledge presented in following sections was obtained from [8].

2.3.1.1 Cache related structures

All data structures related to cache are stored in ngx http cache.h file. Apart
from the data structures, non-parametric macros defining cache lookup status
codes are stored here.

• ngx http file cache node t This structure represents one cache re-
cord loaded into memory. These nodes are stored using a red black tree
which provides effective access to them. Nodes are defining the status
of the record - if a file related to this record exists in cache, if the record
is still valid, key for this record and several other. Memory for these
structures is allocated using the Slab algorithm. Their size is 136 bytes.

• ngx http cache t This structure represents the cache in the context of
one request. That means it stores cache related information according to
what is being served by this request. Therefore information from headers
which might influence caching like Vary or Etag are here, the md5 hash
of this request related cache file is here and also many flags defining
several properties can be found here. Size of this structure is 584 bytes.

• ngx http file cache header t Headers are structures which are phys-
ically written to the disk at the beginning of every regular file stored in
cache. They are loaded back when the file is being read into memory.
Therefore they contain data which are persistent and must be recovered
after restarting nginx. This specifically means version of the header,
how long is the file valid, when was it last modified and several other
elements. These structures have 144 bytes.

• ngx http file cache t This structure represents the cache itself. It
gets allocated when parsing configuration and contains among other

23

2. Research of chosen web server

things shared memory for cache nodes, path to the root of the cache,
number of files in it and important settings for cache loader. More then
one of these structures can exist therefore they are stored in an array of
every module providing caching capabilities. Size of these structures is
96 bytes.

2.3.1.2 Cache related algorithms

Now we are going to describe two main algorithms executed by processes
taking care of cache management - cache manager and cache loader. First we
will examine the algorithm which makes sure the cache has limited size and
then we are going to take a look at loading files from drive to memory.

• Limit cache size Limitation for cache size is done using the max size
parameter of the proxy cache path directive. This value gets stored
in the max size variable of ngx http file cache t. This value gets
periodically checked by cache manager process which is represented
by the ngx http file cache manager function. This function gets ex-
ecuted based on timers expiration and processed as regular event. It
does necessary synchronization and checks if the current size of cache
is lower then configured maximum. If that is not the case it calls
ngx http file cache forced expire which does some checks and tries
to delete the file. ngx cache manager process handler then adds a new
timer to be processed later when it is expired with handler of this event
set to itself.

• Loading files into cache This algorithm is always run only once per
one instance of nginx. At its beginning it sleeps for 60 seconds be-
fore it starts - therefore the first minute of its life nginx is blind and
does not know what it has in cache. On the other hand at the end of
this algorithm funtion exit(3) is called terminating the process. Now to
the algorithm itself. It checks the cache against being already loaded
into memory or being in the middle of it. If this check is passed it
the algorithm atomically swaps two values to indicate the cache is in
the process of being loaded into memory. No other cache loading process
can therefore touch it now. Handlers for files and directories are then
set and function ngx walk tree is called to recursively walk through
the cache and load files into memory. After this si done the function
ngx http file cache loader returns and the cache loader process ter-
minates.

2.3.2 Processes interacting with cache

In this section we will focus on processes interacting with cache, their spawning
and functionality. First we are going to take a look at two managing processes

24

2.3. Caching mechanism

which make sure the cache has valid data & is in the right state and then we
will take a look at process which is actually using the cache to store and load
files. Those are the only processes accessing cache. Please refer to [8] for
more information.

2.3.2.1 Cache manager & loader

Both these processes are started by calling the spawning function which is
called inside of ngx start cache manager processes. This spawning func-
tion (ngx spawn process) uses system call fork(2) to spawn new processes and
ten executes a function inside them. The function executed in both of these
processes is the same, but the parameters of this function differs. That is also
the only difference between loader and manager because one of these para-
meters is another function to be executed later and this function is different
for these processes.

ngx cache manager process cycle is the first function called in the newly
created processes. This function takes one argument - a structure, which is dif-
ferent for manager and loader. Both these processes then create a timer event
but one of them sets its handler to ngx cache manager process handler

while the other sets it to ngx cache loader process handler. Then both
of them call the function ngx process events and timers which processes
previously created timer events. This leads to calling their handlers which
point to those two previously mentioned handler functions. This is the part
where the function of loader and manager starts to differ.

Manager implements the previously mentioned limit cache size algorithm - it
checks the current size of cache against its configured maximum and if its too
big it deletes least recently used files. Loader on the other hand implements
the loading files into cache algorithm and recursively walks through the cache
from its root to its files creating cache nodes from the information found in
cache headers and then exits.

2.3.2.2 Worker

Workers touch cache basically in two general cases - when they want to send
response to client and when they want to save content received from upstream
origin server. Both of these situations are happening when processing events
in the main function ngx process events and timers.

First we can take a look at the situation when worker saves content received
from upstream server. This happens when the file is not already in cache and
caching is enabled by configuration. In that case nginx initializes the commu-
nication with upstream by calling ngx http upstream init request which

25

2. Research of chosen web server

tries to search for the file in cache using ngx http upstream cache. This func-
tion uses ngx http file cache new to create new ngx http cache t struc-
ture specific for this request. ngx http file cache open then return miss
status when looking for file related to this request. This sets various handlers
and initiates a series of actions. Most notably after initiating communication
with upstream it makes nginx to call ngx write chain to temp file which
saves data received from upstream to a newly created temporary file. This
function is then called every time new read event from origin server is ready
and writes data to drive.

What happens when the request is being served from cache is already described
in section 2.2.2.1 in great detail. Here we therefore only summarize this al-
gorithm. After calling ngx http file cache open a hit status is returned.
This causes a totally different behavior as no communication with upstream
server is initiated therefore no temporary file is created and on data received.
Instead of it ngx http upstream cache send gets called and the response gets
send to client. Again, for detailed information regarding this please refer to
section 2.2.2.1.

2.3.3 File system layout

Here we will describe the hierarchy of directories and files in nginx cache.
These descriptions fit for the actual version of nginx as this might get easily
changed in the future.

As it is very hard to simultaneously read/write from/to file when the file is
opened by multiple processes nginx presents the concept of multiple file types
in cache. This is to avoid hidden synchronization issues. Also, to be able to
quickly search for a file in cache nginx uses various techniques. One of them
is renaming the file as its md5 hash and then using this hash when accessing
various data structures. As a matter of fact, nginx creates file system structure
based on these hashes. Now we are going to take a look at those two themes.

2.3.3.1 File types

First we are going to examine different file types existing in nginx cache. There
are two main types of files in cache and one sub-type.

• Regular file These files represent standard files in cache. They get
created from temporary files and their name is the md5 hash calculated
from a user configurable string. At the beginning of these files a spe-
cial nginx header exists which contains important internal data like file
validity. After that the whole response from upstream server even with
its headers is stored.

26

2.3. Caching mechanism

• Temporary file Temporary files get created every time a download
from origin is started. They represent files which do not get read and
exist only during the download. As soon as the download is finished they
are moved/renamed to a regular file. Naming convention for temporary
files is simple - their file names are increasing numbers. In case a file
with such name already exists when trying to open it nginx simply
generates new number which it thinks is free. Their purpose is to prevent
processes from reading a file which is not completely downloaded yet.
For performance reasons they must be at the same partition as regular
files otherwise instead of just renaming/moving the file its content would
have to be copied.

• Non-persistent temporary file These files on the other hand serve
just as buffers. They balance the differences of client downloading speed
and origin uploading speed, but this gets more described in section 3.1.2.
They use the same naming scheme as normal temporary files but right
after calling open(2) with flags signalizing to create the file a call to
unlink(2) is made effectively deleting the file from the file system. How-
ever, as long as the file stays open data gets written to the disk and it
serves as a normal file for the opening process. The difference is that
after calling unlink(2) the file is inaccessible for the rest of the system
- no standard system utilities are able to see the file (only lsof) and no
other process is able to call open(2) on it therefore manipulate it in any
way. This is also the way most programs create secured temporary files.
After the connection for which this file was created is over the file gets
closed and the system deletes it automatically.

2.3.3.2 Directory hierarchy

Directories created in cache have partially configurable structure. They are
created inside cache root specified in the proxy cache path directive. Their
purpose is to avoid a situation with too much files in one directory. Their
name is always made of last 2 - 4 characters of the file name which is going to
be stored inside them.

Therefore considering that a file name for a regular file in cache is always
a md5 hash, last 2 - 4 characters of this hash are going to be candidates for
names of directories leading to this file. Now how is this going to be done ex-
actly defines the parameter levels of configuration directive proxy cache path.
This parameter can have values 1:1, 1:2, 2:1 and 2:2. The first number rep-
resents the number of characters used for a name of a first level directory
and the second does the same for the second level directory. This gets best
described by a example so we will show all 4 variants with one file. [9]

• levels=1:1

27

2. Research of chosen web server

– filename: 068e03ec35d91fa1a1689a92a7b8

– directories: $CACHE ROOT/8/b/$FILENAME

• levels=1:2

– filename: 068e03ec35d91fa1a1689a92a7b8

– directories: $CACHE ROOT/8/7b/$FILENAME

• levels=2:1

– filename: 068e03ec35d91fa1a1689a92a7b8

– directories: $CACHE ROOT/b8/7/$FILENAME

• levels=2:2

– filename: 068e03ec35d91fa1a1689a92a7b8

– directories: $CACHE ROOT/b8/a7/$FILENAME

28

Chapter 3

Improvements implementation

In this chapter we are going to focus on the actual improvements. We will
follow the structure of chapter 1 and elaborate on ideas presented in that
chapter.

Some of the ideas presented in chapter 1 will then get chosen and implemented,
some will be marked as not so important/relevant and some of them will be
discarded as not necessary. After the description of these ideas we are going
to choose some of them for implementation. Their design along with major
reasons for choosing them follows. In the end of this chapter we take a look
at implementation details and arising unexpected problems.

3.1 Ideas to discuss

3.1.1 Network I/O

As stated before, reducing the number of network operations is not a trivia
problem. Right at the start of this section we have to admit that we will
unfortunately not be able to implement most of the ideas presented here.
Some of them for the reason that they got already implemented while creating
this thesis and some of them for the reason that they are already implemented
although not in a ideal way and we do not have time possibilities to rewrite
them.

We will however present one very important thought which is not necessarily
impossible to add. Apart from lowering the number of transmitted packets this
technique also reduces the number of write operations to the disk which is its
main purpose (as disk write operations do actually really damage SSD drives,
while transmission of packets does not do any harm to network controllers) -
therefore we will take a closer look at this later in section 3.1.2 and here just
briefly present the draft. Now lets take a look at the list of these thoughts.

29

3. Improvements implementation

• Conditional revalidation request When our research in this field
of Internet traffic started the situation around nginx was different from
today. Current stable version was approximately 1.4.7 at that time,
nowadays version 1.7.12 has been released. One of the things that has
changed since then is the support for conditional revalidation of files in
cache. What this exactly means will be explained below.

From chapter 2 we know that when nginx searches for a record in cache
it then evaluates its validity. If this record is not valid anymore it crafts
an HTTP request, sends that to the origin web server and forwards
the response to the client while storing it to the drive. The question
that comes to our minds is: Do we always need to rewrite the expired
file with the fresh one? What if the content of the expired file is exactly
the same as the content of the fresh file and it has just expired because
of our default setting in configuration or some other reason? In that case
it is obviously absolutely unnecessary to download the file again but we
need a decision mechanism that will tell us if these two versions of the file
are the same. Luckily HTTP provides such mechanism using conditional
requests. As the server knows when the file was last modified it may
include this information in a HTTP header when sending a response to
a client. The client (whether it is a cache, another web server or web
browser) may then cache this content and when the file is requested
again it will only ask the web server if it has changed since the last time
using the headers previously sent by the server. This means much less
traffic then transferring the whole file therefore besides it saves resources
it is also much faster.

Prior version 1.5.7 nginx always downloaded the whole file after it has
expired. This seemed as a potential space for upgrade as conditional re-
quests were already known. We started with creating a simple prototype
which only passed the headers necessary to do conditional requests and
renewed the validity of the record. This showed up as not being ideal
as renewing the validity required an additional field in the structure
ngx http file cache header t and also the client was required to sent
the headers necessary to do conditional request. After these findings
it also showed up that since version 1.5.7 nginx can handle conditional
revalidation on its own without those drawbacks. Therefore we have
decided only to upgrade nginx and cancel the research & development
in this area.

• Minify JavaScript/HTML/CSS While transmitting source code
files it is very common that they contain unnecessary characters like
spaces, comments and so on. Those characters might get removed to

30

3.1. Ideas to discuss

lower the number of bytes transmitted over the network. This idea is
very simple but also very effective in case of large source files.

After quick search on the Internet we were able to find a module called
pagespeed which can do exactly this. Unfortunately not in our setup.
This module optimizes only files served directly by nginx when used as
a web server. Files from cache however do not get manipulated and
the size of nginx binary gets increased approximately 10 times when
compiled with this module. Using pagespeed in such circumstances ob-
viously does not bring any real benefits. An option is to re-implement
the module and make it work with cached files. However, after reading
its documentation and going through the source code the decision was
made to abandon this. It is much bigger problem then expected and
solving it too quickly will most definitely lead to a lot of potential bugs.
Bugs are decreasing the stability and that is absolutely undesirable so we
will to postpone the development of this patch because of limited time
resources & knowledge. We might revert to it in the future after our
knowledge of nginx gets even better then today and we are not pushed
by forthcoming deadlines.

• Unique download from upstream The way nginx handles down-
loads from upstream servers might seem like resource wasting. When
a request for a file not in cache is made its download gets started. How-
ever if another request for the same file is made while the download is in
progress, nginx starts another download of the same file from the same
server. This is logical as it still does not have the whole file in cache
therefore it cannot send the data to the client immediately. But what
nginx might do is skipping the part where it saves the data to the disk
if it detects a download which is already in progress.

As previously stated in chapter 2 nginx keeps two kinds of cache files
- regular and temporary. When a download from upstream server is
started the incoming data are stored in a temporary file before being
moved to the cache itself. However, when there is a concurrent request
for the same file which is initiated while the download of the first file
is still in progress nginx creates another temporary file and starts to
store the same data for the second time although it will discard this
file as soon as the first one gets downloaded and moved to the cache.
This naturally implies two negative factors - multiplying the amount of
transferred bytes over the network and increasing the number of bytes
written to disk. Unfortunately rapidly decreasing the amount of trans-
mitted bytes is still very difficult to implement correctly as this requires
reading/writing from/to the same file at the same time plus moving

31

3. Improvements implementation

the file while it is still being read. Those operations are not very safe
especially in event-driven environment. Therefore we will mainly focus
on reducing the number of bytes written to disk which will also the-
oretically decrease the number of transmitted packets as a side effect.
As this is more related to the disk I/O we are going to focus on this in
the next section.

3.1.2 Disk I/O

We are going to present three ideas which reduce the number of disk opera-
tions. One of these ideas will get solved by fine-tuning the configuration and
therefore does not require any implementation. The rest of them are going
to be ideas which are possible candidates for implementing although they will
require some cooperation with other OS tools to be fully functional. Here is
the list of them.

• Disabling temporary files As nginx is designed to be extremely re-
source saving it does not try to allocate a lot of memory in its default
configuration. This behavior is required if our memory resources are lim-
ited but in case we have real-life production servers providing hundreds
of gigabytes of memory available it seems only reasonable to override
those settings.

When nginx is forwarding files to the client it often creates special tem-
porary files invisible to the administrator using common OS utilities (for
example ls). These files are only serving as memory buffers for balan-
cing differences between the upload speed of the upstream server and
the download speed of the client. This might introduce a bottleneck of
the communication if all participating computers have very fast Internet
connection. Computers available for testing our improvements are very
powerful servers which means we can try to disable this feature and use
only RAM. After careful studying of nginx configuration we are going
to find out that the directive proxy max temp file size is capable of doing
exactly what we need when set to 0. As a result temporary files which
will be moved to cache after the download is finished are still created
but these special temporary files serving only for speed balancing are al-
ways only in memory thus saving numerous disk operations. Upgrading
the configuration was enough in this case to get this idea to work.

• Splitting cache between multiple drives Sooner or later every
administrator of a system running nginx as a proxy cache will be facing
this problem: How do we split the cache among all available drives we
have? The reasons for this are:

– Running out of space and the need to make the cache bigger

32

3.1. Ideas to discuss

– Disk being slow and network traffic being too high - the disk can
not handle so much I/O operations at a time

– Not loosing all the data in case of disk failure

– Other

Apparently the first and naive solution is to add a layer of abstraction
using LVM, add the drives to a volume group and then create one giant
volume from this whole volume group and mount it as a cache. The ob-
vious problem coming with LVM is disk failure - thing that very usually
happens in production environment. In case we will use only LVM for
this, the failure of one drive will necessarily mean loss of all the data
in cache. This is certainly something we have to avoid. This can be
done by adding some kind of RAID that will prevent these situations
from happening. However, this is also not a preferred solution. Major
argument against RAID is that cache does not have to be 100% replic-
ated as the data still exist somewhere even in case of drive failure while
the expenses of doubling every drive are significant (especially when us-
ing SSD). Also investing a lot of money into hardware RAID controllers
so powerful to perform well in extreme conditions is also not desired and
therefore we will focus on a different idea.

Although all known solutions for disk management have fallen us so far,
we are still able to come up with a workaround which will not need
anything more complicated from the OS then several mount-points.
The way nginx organizes its cache (take a look at chapter 2 section
2.3.3.2) when configured with proxy cache path /var/ngx/cache levels=1:2
creates a file-system layout which is partially shown on figure 3.1. Sev-
eral missing directories are marked by * and cache files are used just as
examples.

We can easily see that we have 16 directories (0 - f) and that we have
256 directories (00 - ff) in each one of them. Therefore we have 16 * 256
= 4096 directories which will contain files stored in cache. As the hash
function distributes files into these directories relatively equally we are
able to divide the cache between max 4096 drives also equally. We will
probably have less then 4096 drives in which case we will simply use
symbolic links to make more directories refer to one which will be our
mount point.

The problem that comes with this is moving temporary files after the down-
load is completed. In normal setup temporary files are on the same file-
system as the cache so after downloading the file it is simply moved to
the cache - moving is an inexpensive operation for OS. But if the file-
systems (or drives) differ then the file gets copied which introduces extra

33

3. Improvements implementation

Figure 3.1: nginx cache file system layout

/...OS root
var.............................files that change their size over time

ngx....................................only files related to nginx
cache.......................................nginx cache root

0.........................cache files with hash ending by 0
00...................cache files with hash ending by 000

70cba97a131eda14f04cbf3726b3f000...... cache file
068e03ec35d91fa1a1689a92b8b8000 cache file

*.........................missing 254 directories 01 - fe
ff cache files with hash ending by ff0

c10983ac405badfb6f62da52a8785ff0...... cache file
5471ca2fb11ec1d0b0be857a143d3ff0...... cache file

*...............................missing 14 directories 1 - e
f.....................................hashes ending with f

00...................cache files with hash ending by 00f
422aaf190036cbb80d7a6e1be2e1300f...... cache file
69af86a4e580b41cb6b979916148300f...... cache file

*.........................missing 254 directories 01 - fe
ff....................cache files with hash ending by fff

f0f323751ab5b63196467d991a042fff...... cache file
5fc73fc961fa47db560f091af07fffff...... cache file

drive operations. Solving this problem will be the core of this idea if
chosen for implementation.

• Unique download from upstream We already started presenting
this idea in previous section. As write operations physically harm SSD
drives we want to keep them at minimum - SSD drives, especially large
ones, are still very expensive. Also, writing to drives is very slow there-
fore handling of such a request requires more time than handling request
which does not need to write to disk. Therefore by eliminating disk
writes during one request we effectively speed up all other requests hap-
pening at the same time. Downloading a file which content gets always
discarded is therefore obviously unwanted. This is even more important
in a situation of content caching network as cache misses are happen-
ing all the time as new origin servers cannot have their files in cache.
Therefore with every new origin there is going to be a situation when
the DNS servers already point to content caching network servers and
those servers do not have a single file in cache.

Unfortunately there is no 100% reliable way in nginx how to tell if a file
is already being downloaded. Thanks to the event-driven architecture

34

3.1. Ideas to discuss

and multiple worker processes it is possible that one worker will initiate
the download and some other will receive request for the same file -
therefore such sign representing download in progress must be located
in a shared memory zone and access to it must be protected using some
synchronization primitive. Synchronization is as usually painful task to
do but if we choose to implement this there is no way to avoid it.

3.1.3 Cache manager

Cache management is a complicated part of code in nginx. It includes syn-
chronization, access to disk, validity checks, LRU algorithm and a several
other problems. It is however the core of nginx when used as a caching reverse
proxy. Therefore every patch introduced by us must not break its stability
nor usability. We will now take a look at three ideas which might lead to such
a patch.

• Cache statistics First presented thought are cache statistics. As previ-
ously indicated we will be testing nginx in real production environment.
Such an environment introduces conditions for which nginx might not
be fully prepared. This includes the size of cache in tens of TB and
the number of virtual servers in hundreds. Now imagine the following
situation: You run a worldwide content caching network and use nginx
as a caching reverse proxy. Each virtual server in nginx represents one
of your customers. These customers pay you based on how much traffic
their visitors generate and based on how much data they have at your
drives. Therefore you want to know which file in cache belongs to which
virtual server to be able to determine the amount of money each cus-
tomer owns you.

Cache statistics are a solution to this problem. It is an improvement
providing an easy way to access important information (server name,
number of files in cache & their total size) per virtual server. If we choose
to implement this we will be dealing with altering the storing mechanism.
But considering the previously stated situation this is a essential patch
to run such business.

• Deanonymize cache This is basically an advanced version of the cache
statistics idea. Information provided by that improvement is definitely
necessary but very likely it is not everything we might want to know
about our cache. A lot of other useful information can be logged some-
where for later manipulation. Such examples might include - virtual
server to which the file belongs to, HTTP request string, validity of
the file, when it got stored (we also have to consider the possibility of
being notified when file is about to get deleted), mapping between virtual

35

3. Improvements implementation

servers and some other entity (it might be clients as previously sugges-
ted) and so on. Lets presume we have patched nginx to provide all this
info. Now we have to decide how and where to store it. Also presume
we have cache of size 80 TB, approximately 25 servers and traffic on our
servers does not drop below 50 Gbit/s which means frequent changes in
cached files. As it is going to be a lot of data and we want to search
them very quickly, be able to sort them by several criteria and probably
something else a relational database seems to be the only reasonable
solution.

Interacting with a database brings a lot of joy when everything is work-
ing, well tuned a excellently performing. But it also brings a lot of
pain if something decides to stop working and such moments happen.
As we do not want to decrease the stability of nginx in any way there-
fore making it dependant on a database is not considered safe. There
are situations when this will be unavoidable (file deduplication between
servers in the same datacenter for example) but for now we will not make
nginx rely on an external application. We are also going to be able to
gather a lot of useful information by using the upstream log patch - this
is presented in the next section.

• Stale-While-Revalidate This idea was presented in [10] by Mark
Nottingham during December 2007 and published as Internet-Draft in
May 2008. The point is to always answer the client from the cache,
even if the record is no longer valid while asynchronously updating it.
This obviously brings a speed-up at the price of possibly seeing stalled
content for a very low number of clients. After carefully studying nginx
internals there are three ideas how to implement this improvement.

– Subrequest Always mark the validity lookup as hit unless a re-
quest carrying special flag is detected, then connect to the origin
and update the file. The special request is manually enforced us-
ing sub-request mechanism in nginx after all the data are send to
the client. This works and is considerably easy to implement but
has one important drawback - the connection with the client is not
closed until the file is updated.

– External application Also always mark the validity lookup as
hit but if we know it was supposed to be stale, tell this to a external
application which will reissue this request from local loopback inter-
face. Obviously, requests coming from this interface never consider
as hit. This is also quite easy to implement as it requires minimum
changes in nginx itself and developing a simple TCP client/daemon
application but it also has major drawbacks. Undesired overhead,

36

3.1. Ideas to discuss

inter-process communication and making nginx dependant on ex-
ternal application.

– Caching-only request Create a special type of request that is
handled in a different way then usually - it does not require a con-
nected client, but only contacts the upstream server and saves
the data to the cache. This request is to be issued every time
a stalled answer is marked as hit and returned. Sounds like the op-
timal way to do it but thanks to nginx architecture (it creates
request structures based on connection structures which are cre-
ated based on epoll(7) event which is hardly to be faked) this is
close to impossible to implement without much deeper knowledge
of nginx then we currently have. Implementing this now represents
a significant space for programming mistakes and that is absolutely
undesirable.

As we can see, all those ideas have their disadvantages. Also there is
a possibility in nginx to use stale record in case it is already updating.
This with the combination of conditional revalidation led us to the de-
cision that this idea will not get implemented.

3.1.4 Other

Last section of ideas will contain those that do not fit anywhere else. However
they still bring important features.

• Range request processing Range requests are widely used by popular
browsers even for fetching regular HTML files. nginx normally removes
the HTTP range header and passes the request as a regular one. This
causes the origin upstream server to return whole file instead of the re-
quired part which has two effects: nginx is able to cache the response
and the client might be waiting for the response very long time in some
cases. In a situation where the client requested only a small part of a file
from its end and the file is very large it will have to wait until the whole
file has been transmitted between the origin and nginx. In such cases
having a proxy can be even slowing the connection down because sending
the request directly to the origin would be handled properly as a range
request.

The idea is to alter this behavior in such a way that range requests
will still be handled as range requests and if possible they also get
cached. That means only the requested part is going to be transferred
between the origin and the proxy but we will try to store the whole file
to the drive. This provides a performance boost in several situations.

37

3. Improvements implementation

• Upstream log This idea is fairly straightforward but presents a very
powerful feature. nginx is by default unable to log any communication
with origin upstream servers. However such a communication contains
a lot of important information we want to know (values of particular
headers sent to origin, time it took to process the communication with
origin, ...). We might therefore try to add a possibility to log this com-
munication and then process these logs using external tools to gather
required info.

3.2 Chosen improvement(s)

3.2.1 Range request processing

First chosen idea is to change the algorithm processing range requests. It
is clearly a problem which needs to be solved in every setup using nginx as
reverse cache. This is the first improvement of the performance of nginx.

3.2.1.1 Reason for improvement

As previously stated, the way nginx processes range request is not ideal in our
setup. Reverse proxy cache always speeds up the communication. Maybe in
several cases it might be transparent and do not adjust the speed at all but
no way it can slow it down. Unfortunately, in cases where a client sends for
example a header like Range: bytes=-1024 by which is it asking for the last
1024 bytes of a file the client will encounter significant waiting. As range
requests are also used by web browsers when watching videos this happens
every time the client seeks to the end of the video. This leads to a scenario we
want to eliminate and therefore we will try to design and implement a patch
solving this problem.

3.2.1.2 Design

We want to keep the design of this simple and easy to make sure nothing
breaks up. First, we want to make sure range requests are handled as range
requests and therefore the origin knows about them and treats them that way.
This ensures the client will not be waiting longer then it really has to. Second,
if possible, we want to cache the data as if it was a normal request. That way
we can still benefit from range request which caused a cache miss.

One way to implement this is to do a previously mentioned so called caching-
only type of request. We will then issue one of those requests for each range
request that is not in cache and handle the range request in a proper way. That
gives us a way of quickly transmitting only required bytes and asynchronously
downloading the whole file and storing it to the cache. It is obviously a source

38

3.2. Chosen improvement(s)

of downloading some data twice but that is acceptable as the client is not
waiting for them and it happens in the background. But as also previously
mentioned implementing such a type of request is very complicated due to
the architecture of nginx so we will try to find another solution.

We lower the condition for caching the data and admit that ranges into
the middle of the file are impossible to cause proper caching without some
drawbacks. Therefore we focus on ranges from the beginning of the file.
We can easily recognize them as the header will have either this syntax
Range: bytes=0-* (where * represents any valid integer number) or this
syntax Range: bytes=0 (where the client asks only for the first byte). Those
ranges are going to cause downloading of the file from its beginning and simul-
taneously responding to the client with the downloaded content as it has also
requested it from its beginning. So these requests cause proper caching and
proper handling of range requests at the same time. An obvious drawback
of this idea is that other requests then those starting with 0 will not lead to
caching. This is however acceptable as popular browsers send such requests
at the beginning of the communication using range requests - if we get back
to previously mentioned video watching, Google Chrome sends request with
range starting from zero every time we open a video even though we instantly
seek to its end. Therefore this disadvantage can be ignored as it only has
impact in a very limited amount of scenarios.

3.2.2 Unique download from upstream

Second thing to implement will be a patch ensuring we are downloading only
one copy of a file from the upstream server at a time. This is also a performance
upgrade.

3.2.2.1 Reason for improvement

Besides the obvious drawback of slowing down the communication between
origin and nginx thus slowing down the communication between nginx and
client the most important issue are write operations to SSD drives. Extreme
amounts of write operations happening constantly for a significant period of
time might physically damage the drives. Although this happens only in
special scenarios we have to try to avoid it. When we are a content delivery
provider we are in a situation where we have nonstop drive throughput in
hundreds of megabytes. Here we want to decrease writing as much as we can.

3.2.2.2 Design

Our goal is to achieve a mechanism indicating that a file is currently being
downloaded. Such a mechanism will help us in preventing situations where
multiple clients request the same file which is not yet in cache and each of

39

3. Improvements implementation

these requests initiates a fresh download. Fortunately indication of download
in progress is a YES/NO question and thus can be saved in just one bit. Such
a bit must be stored in a memory zone which is accessible by all nginx worker
processes and therefore access to it must be protected by some synchronization
primitive. When synchronization is used we might easily end up in a situation
where all workers think that the download is in progress while the only worker
which was actually downloading it died for whatever reason. Because of that
we need a mechanism to indicate that the download is not receiving any more
data. That leads us to adding a timestamp indicating the last time this re-
quest received some data. Those two values obviously and inevitably increase
memory usage but we have to accept that.

As for the algorithm itself, we will try to be as simple and effective as pos-
sible. Every time a request wants to access a resource which is not yet in
cache we make a check if a download of this resource is already in progress.
In case it is we disable caching and only forward the data from the origin
to the client. That means only the first request of this resource will cause
caching and the others will simply get served by the origin. We also have to
update the timestamp every time the downloading request receives some data
to signalize the download is still in progress. Although this might probably
be bypassed and left upon some nginx timeout we want to be precise.

3.2.3 Cache statistics

Another chosen upgrade will be to the cache manager. We add a feature
providing us with information about files in cache per virtual server.

3.2.3.1 Reason for improvement

Previously mentioned scenario where a customer is represented by its virtual
server in nginx configuration is not so far away from a real life situation.
Considering we are providing caching capabilities worldwide to everybody
we will very likely have multiple customers having files in one server. Their
caches need to be separated and their origin servers will differ so this is only
reasonable. Also the idea of payments based (besides traffic) on the amount
of used disk space is very natural in real life conditions. The outcome is that
having such capability is a must in production environment.

3.2.3.2 Design

Requirements on this patch were following:

• if possible display the information in a human readable way without
additional processing

40

3.2. Chosen improvement(s)

• if possible display enough information to be able to determine which
customer owns which virtual server without additional processing

• in case something goes wrong and we are unable to display what we
want to, do not make this situation affect anything else

Two main problems were how to show the data to the user and how to store
the data in case of loosing RAM content (which will inevitably happen). Web
servers usually only display generated web pages and loosing RAM content
means we will have to store our data to the hard drive which must be done
carefully to do not break the event-driven architecture.

Fortunately nginx contains built-in stub status module which is normally used
for displaying information about processed requests in real time. The module
loads values of several variables and generates a HTML page containing these
values. This HTML page is then returned upon request of a predefined URL.
We will therefore alter this module to load values of additional variables in
which we will store information about cache. Also, we are going to provide
nginx with a binary file containing descriptions about particular virtual servers
and display those descriptions as well.

As for accessing the drive, we mainly want to be sure we will not break the sav-
ing and loading scheme nginx uses. We can therefore change the naming con-
vention and alter the names of files in cache to contain an ID of the virtual
server to which they belong to. The ID is going to be specified as a value of
a variable in nginx configuration file so nginx will know it when saving the file.
This variable obviously has to be set per virtual host and loaded back into
memory by cache loader process.

3.2.4 Upstream log

Last but not least implemented improvement is logging communication with
upstream origin servers. nginx is totally missing this functionality while it is
very useful when debugging problems or gathering information.

3.2.4.1 Reason for improvement

When talking to origin server we will mainly want to know if the commu-
nication was successful, how much data was transferred & how long did it
take, what was the host name of the virtual server & the origin server and
several other things. This info is going to help us when searching for major
error causes as it easily shows if we received corrupted/bad data already from
upstream. We can also generate usage statistics of origin servers.

41

3. Improvements implementation

3.2.4.2 Design

Due to the fact that logging capabilities are already in nginx the algorithm
for this patch was not difficult to design. It was more about choosing what
do we need to log and when then how exactly to do it. Therefore here we will
just quickly describe the logic behind upstream log.

We add a configuration directive with its handler. The configuration direct-
ive has one argument and that is the path to the log file. If this directive
is not specified there is no default value and no logging happens. To keep
things simple we then just write the required information into this file when
the processing is at the proper place - in this case it is at the end of commu-
nication with the upstream server. Required information was carefully chosen
to include these values:

• HTTP method used for communication with the upstream server

• Host header value received from the client

• Requested URI

• HTTP status code received from the upstream server

• IP address & port of the upstream server

• Host header value being sent to the upstream server

• Content-Type header value received from the upstream server

• Timestamps of start/end of the communication with the upstream server

• Name of file in cache if the response is stored there

3.3 Realization

3.3.1 Range request processing

First we take a brief look about what we had to do to alter the behavior of
range requests processing algorithm.

3.3.1.1 Implementation details

To be able to implement the design described in section 3.2.1.1 we have
to mark those special range requests which are suitable for caching. We
can add one bit flag into the ngx http request t structure (see chapter
2, section 2.2.1.1) to mark such requests. Then we will focus at function
ngx http proxy create request which is responsible for allocating and cre-
ating ngx http request t structure of request being sent to the origin web

42

3.3. Realization

server. At the beginning of this function we are going to decide if we set
the flag to on or off. This is done by checking that this is a range request,
then checking that this request is cacheable and then comparing the content
of the Range header against a predefined string. If all those checks are positive
the flag is set to on. A set of conditions based on this flag follows. It turns
off buffering & caching and also passes the Range header to the origin web
server follows. Due to the license terms we are unfortunately unable to show
the actual code here as it is currently being used and thus is a part of a trade
secret.

3.3.1.2 Problems and complications

Although first analysis of nginx code did not show anything else which might
require additional editing careful testing uncovered one hidden mistake. nginx
by default processes range request using its own module for requests of this
type and this was causing problems. Our testing environment compares md5
hashes of received data against the md5 hashes of data that were actually sent
by nginx and those two values did not match. That led us to the conclusion
that something must be seriously broken and launched a series of debugging.
After we were successful in finding this mistake we released a patch fixing it.

3.3.2 Unique download from upstream

Now we will take a look at the implementation of another patch - unique
download from upstream.

3.3.2.1 Implementation details

The first thing that must be altered is the ngx http file cache node t struc-
ture where we add a one bit flag indicating download in progress and we also
add a timestamp indicating last time the request received some data. Next we
have to develop a function for checking if the download is in progress and if it
has not died (ngx http file cache downloading start check), then a func-
tion for timestamp updates (ngx http file cache downloading update) and
finally a function to reset the flag in case the download has already ended
(ngx http file cache downloading ended). The first function has a series
of conditions checking the one bit flag and comparing the timestamp plus some
predefined time offset against actual time. Based on those values it either sets
the downloading flag to 1 and returns that the download was just started
or does not change the flag and its return value indicates the download is
already in progress. Second function only updates the timestamp if it can be
updated or resets the flag to 0 if the download has timeouted. The same goes
for the last function except it does not update the timestamp and just checks
if the download is not in progress anymore and resets the downloading flag
accordingly.

43

3. Improvements implementation

The updating function then gets called every time this request receives some
data as it is called inside of ngx http upstream process request which is
the core of request processing. The checks are in ngx http file cache open

which gets called for every accepted request, therefore in case of receiving
two requests with the same URL the second one will be correctly detected
as already in progress and caching will not get initialized. The function for
resetting the flag is then called when the request is over.

3.3.2.2 Problems and complications

This patch was luckily implemented without any unexpected situations. This
was because it was well designed and carefully implemented.

3.3.3 Cache statistics

As previously stated next implemented improvement are cache statistics. Be-
low are the details of this patch and problems arising during its development.

3.3.3.1 Implementation details

We are facing multiple problems we need to solve in a correct way. First we
take a look at changes in the stub status module. We will add a pointer to
a initialization function of this module which will load the previously men-
tioned binary file containing descriptions. This file is organized as a map and
the position of the description determines the ID to which that description
belongs to. This is done to avoid parsing. Next in this module we change
the way ngx http stub status handler behaves so that it allocates more
memory and displays more information. The information to display will be
loaded from added variables stored in ngx http file cache sh t structure
and also from previously loaded file. Added variables are two arrays, one for
file sizes and one for the number of files in cache. The virtual server ID set in
configuration file serves as an index into these arrays.

After editing stub status module we have to alter the naming scheme. This
is done by changing ngx http file cache name to add a hash sign (#) into
the file name as a separator between md5 hash and virtual server ID. Minor
changes in ngx http file cache add file and ngx http file cache read

are also required to make them compatible with this new naming convention.
Basically we just parse the file name and save the part after the separator
into a variable. Finally, when a file gets added, updated or deleted we use
ID assigned to this particular virtual server and alter the values in those two
previously mentioned arrays.

44

3.3. Realization

3.3.3.2 Problems and complications

The first problem we encountered was just a little misunderstanding. ls shows
different file sizes then those calculated in nginx. This caused repeating some
tests more times then necessary but after we realized this it was quickly fixed
by using df instead of ls. The only real trouble was with purging the files from
cache. Purging uses a special purge module and it had no idea about our cache
statistics patch so it did not update the stats correctly. This was revealed by
AMAST testing and fixed by altering the purge module appropriately.

3.3.4 Upstream log

Finally we focus on upstream log patch development and the details regarding
it. Problems and complications are mentioned as well.

3.3.4.1 Implementation details

As previously mentioned there is nothing really difficult about the logging
algorithm and mainly it was already invented by original nginx developers.
So we will just the same what they did only at different place with different
values.

We add a logging function ngx log upstream which does the actual writ-
ing into log file. It also checks for variadic macros and behaves based on
their presence but its outcome is always the same. Next we add a function
ngx http upstream log entry which will be preparing the string to be writ-
ten to log file. This function will do several checks against values that do not
always have to be available and also some time calculations. Then it creates
the line to be written and passes it to ngx log upstream. This is the function
that we call when finalizing the communication with upstream server.

We also create ngx http proxy help store info from header function to
save the value of the Host header being sent to upstream. This function will be
called from ngx http proxy create request because that is the place where
we have easy access to buffer containing the value of this header. The value of
the header will be later read by ngx http upstream log entry when creating
the log line.

To be able to log all of this to a file we need a handler of upstream log
configuration directive. This handler is called ngx http core upstream log

and it opens the file passed to the configuration directive. If this operation is
unsuccessful nginx dies while parsing its configuration.

45

3. Improvements implementation

3.3.4.2 Problems and complications

This patch was created without any serious issues but it was not done in a op-
timal way. In the function ngx http proxy help store info from header

we were parsing the buffer containing outgoing headers and storing the info
from those headers into added help structure ngx http upstream proxy t.
By doing so we have wasted memory and also processor time. The informa-
tion has already been processed as it has been copied to the buffer contain-
ing outgoing headers and it has also been already stored somewhere. After
deeper analysis of the algorithm evaluating variables from nginx configuration
we were able to find out how to get values of these variables at the moment
of processing the request using internal nginx functions. This brought us to
the decision of refactoring this patch by removing no longer needed parts of
code and using these internal functions instead. The performance benefit of
this refactoring is debatable but the real benefit is that we are using already
debugged functions which are used at several other places in the code and
also that we keep the code clean a readable. Those factors are very important
when working with a project as large as nginx. Code examples of removed
parts follow.

stat ic ngx i n t t
ngx h t tp p r oxy he l p s t o r e i n f o f r om heade r (

ngx h t tp r eque s t t ∗r ,
s i z e t len ,
u char ∗data)

{
char ∗ s t r , ∗ substr , ∗cr , ∗ l f ;
s i z e t sublen ;
char ∗ ho s t s t r = ”Host : ” ;

s t r = ngx pa l l o c (r−>pool , l en + 1) ;
i f (! s t r) {

return NGXERROR;
}

ngx memcpy (s t r , data , l en) ;
s t r [l en] = ’ \0 ’ ;
subs t r = s t r s t r (s t r , h o s t s t r) ;

i f (subs t r) {
subs t r += s t r l e n (h o s t s t r) ;
c r = s t r ch r (substr , CR) ;
l f = s t r ch r (substr , LF) ;
sublen = (cr < l f ? c r : l f) − subs t r ;
r−>upstream−>proxy in f o . host . l en = sublen ;
r−>upstream−>proxy in f o . host . data =

ngx pa l l o c (r−>pool , sublen) ;

i f (! r−>upstream−>proxy in f o . host . data) {
return NGXERROR;

}

ngx memcpy (r−>upstream−>proxy in f o . host . data ,
substr ,
sublen) ;

}

subs t r = s t r ;
c r = s t r ch r (substr , ’ ’) ;

i f (cr) {
sublen = cr − subs t r ;

46

3.3. Realization

r−>upstream−>proxy in f o . method . l en = sublen ;
r−>upstream−>proxy in f o . method . data =

ngx pa l l o c (r−>pool , sublen) ;

i f (! r−>upstream−>proxy in f o . host . data) {
return NGXERROR;

}

ngx memcpy (r−>upstream−>proxy in f o . method . data ,
substr ,
sublen) ;

}

return NGXOK;
}

Listing 3.1: ngx http proxy help store info from header

typedef struct {
ngx s t r t host ;
n g x s t r t method ;

} ngx http upstream proxy t ;

Listing 3.2: ngx http upstream proxy t

47

Chapter 4

Testing, comparison,
documentation

This chapter focuses on work that is necessarily connected with every soft-
ware development although this work is not visible to anyone else then the
developer. By this we mean testing, documentation and measuring.

Here we will take a look at the development of our testing environment and
shortly describe the process the application has to go through to make it to the
production. Then we focus on comparing the performance of our improved
version with the original one and make a note about stability testing. In
the end of this chapter we are going to take a look at the documentation and
briefly describe code maintenance pattern we were using.

4.1 Testing and production environment
deployment

4.1.1 AMAST - Advanced Measuring and Stress Testing

First we want to take a look at our newly created testing environment AMAST.
It was developed just for the testing our nginx patches therefore its source
stays closed and remains covered by the license agreement. We will however
describe its functionality and it will provide us with testing results which we
will later take a look at.

AMAST is written in Python 3 and it uses modular architecture, just like
nginx . It consists of client side and server side scripts. It gets launched at
the client side while nginx is being run on the server side. Its core ensures
running requested version of nginx’s binary at the server side. This means it
cleans the cache directories before the tests are started, launches nginx with

49

4. Testing, comparison, documentation

requested configuration and measures performance parameters during tests.
After that it parallelly starts the modules which represent the actual tests. At
the end of the testing it terminates nginx, wipes temporary files and presents
results to the user.

4.1.1.1 Parallelism

AMAST simulates multiple users by forking a process for each one of them.
The number of users is given as a command line argument. These processes
then launch chosen testing modules and run the tests. At its current imple-
mentation modules have to be written in Python but this is going to change.
Modules need to be prepared for being launched in parallel but have the option
to alter this behavior and run sequentially.

4.1.1.2 Modules

Modules represent the actual tests that a user can launch. Each module needs
to follow a predefined structure which gives it the possibility of modifying
the environment on tested server, running the test itself and then manipulating
the results to make them human readable. We are now going to describe the
implemented modules and what do they test.

• Range request module This module tests the functionality of the range
request patch. Each user creates approximately 100 range requests and
sequentially sends them to the tested server. After sending the first
request which was supposed to cause caching, it checks if the file is ac-
tually in cache. It does this by configuring nginx to insert a special
header containing the cache status of the requested file and comparing
this value with predefined strings. It also checks the md5 hash of the re-
ceived data to see if everything arrived as it was supposed to. This
module has returned zero errors when run against the final implementa-
tion of our patch and therefore we can say our patch is fully functional.
This has been checked by capturing network traffic between client, nginx
and origin using Wireshark. This has confirmed the results of AMAST.
Therefore we have deployed the patched version of nginx into production
where it is currently running without any issues.

• Cache statistics module This module runs a set of sub-tests as there
are more things to test. At first it checks that nginx is correctly reporting
the number of files and their size on the disk. Then it restarts nginx and
checks that the statistics have been correctly loaded into the memory.
After that it fills the cache with random files, sets their lifetime in cache
to a very low number and repeatedly sends requests to some of them.
Those which are not requested during their lifetime get deleted and
this sub-test checks that our patch gets informed about this and keeps

50

4.1. Testing and production environment deployment

displaying correct data. Another sub-test sends special purge requests
to nginx which delete the file from cache without taking its lifetime or
validity into account. It then checks that cache statistics reflect this
situation. Finally, our last sub-test fills the cache with more data then
its size and checks that even if files were deleted this way our patch still
behaves correctly. As expected, all tests returned zero errors and this
patch got included into the code which runs in production. Today, we
are successfully parsing this data and then create reports for customers
and set their billing plans based on it.

• Simple request module This module is only supposed to confirm that
a file got cached and that nginx returns correct data. Therefore it checks
md5 hashes of received data and also the values of previously specified
headers containing cache status of requested file. It is not a surprise
that this module as well as others does not return any errors when run
against our patched version.

There is no module for testing the unique upstream download patch as this gets
tested by the simple request module and also by the range request module as
they request the same file multiple times. Checking the number of concurrent
connections from nginx to origin has been done by running nginx inside of
a tool called strace and looking for connect(2) calls. This has verified our
presumptions that the patch is performing correctly.

4.1.2 Real life everyday usage

Although this part is not required we will take a brief look at it as not every
application has the possibility to be deployed to production servers and used
in real life. Our patched version of nginx runs on several powerful servers
and provides worldwide service. We will shortly mention a few things behind
the scene that are required apart from patching and developing nginx.

4.1.2.1 Deployment system

As we are constantly developing new patches we deploy new versions very of-
ten. This has created a need for a deployment system. This system is currently
in development and expected to be done before the end of July 2015. What
we want to achieve is full automation of the process of compiling the sources,
testing the binary, building a package and installing this package to a chosen
group of servers. Our deployment system will be connected with our git repos-
itory and in the event of pushing to particular branch it will download a copy
of this branch’s last commit, compile the sources with predefined compiling
options and run AMAST to test compiled binary. A result of these tests will
be displayed to the user and the user will choose between running the tests

51

4. Testing, comparison, documentation

again, creating a package or discarding this version. When a choice to create
a package will be made the user will have the option to specify the servers this
package will be deployed to. Then the package will be deployed and nginx’s
binary reloaded.

4.1.2.2 Monitoring

Our advanced monitoring system is a must when we want to be able to react
appropriately to unexpected situations. It uses some third party applica-
tions but mostly it was written from the scratch. It uses small scripts called
”sensors” that run on our production servers. These scripts do all kinds of
checks like parsing log files, pinging, measuring latency, checking DNS records
and so on. They also periodically send data to our database servers where
they get processed. Data from those databases are then processed by our no-
tification system and if an error occurs we receive numerous emails, messages
and sometimes even calls. In case something stops working we usually know
about this situation within seconds and are able to start solving it.

4.2 Comparison of original and patched version

4.2.1 Performance and stability measuring

When we were designing AMAST we already had in mind that we will not only
need to test the functionality of our patches but also to measure the overall
performance of patched nginx. Therefore, we have developed it in a way that
it is able to measure important connection times. As a result we were able
to use a single tool to test that our patches are working and that there was
a performance increase. For measuring stability we have also implemented
an option to run nginx through valgrind - a powerful tool which provides
features for detecting memory issues in programs.

4.2.1.1 Using AMAST and valgrind together

In the early stages of the testing our patches we were always manually checking
nginx error logs to see if any errors arise. When developing more patches at
once and during the testing of many nginx versions we have realized this
activity has to be automatized.

Therefore, we added an option to run nginx inside of valgrind and then copy
its output over the network. This required slight changes in AMAST but
gave us the possibility to test functionality & stability at the same time. It
is possible that our patches are working but also contain programming bugs
which result in stability decrease. Such bugs are usually difficult to find as
we are not able to run nginx inside of a debugger or memory checking tool in

52

4.2. Comparison of original and patched version

the production environment. By connecting AMAST and valgrind together
we have created a possibility to simulate user behavior and see if that reveals
any programming failures.

As a result we have fixed numerous hidden bugs before bringing the application
to the production and now we have an absolutely stable and patched version
of nginx. We also created a tool which can be quickly used to test newly
compiled binaries with just one command. When the binary passes the tests
we can be sure that after deploying such a binary our network will be fully
functional.

4.2.2 Comparing important performance markers

After making sure that our version is functional with our patches and we have
done everything we could to eliminate hidden bugs we also had to make sure
there was a performance increase after applying those patches. This was also
obvious at the time of designing AMAST therefore we will also use it for this.

4.2.2.1 Connection times

The most important connection marker is time. Whenever the newly patched
version replies faster then the original one we have successfully increased
the performance of nginx. The time the client will have to wait for its data
is the only real thing the client can see and so it is also the priority to focus
at. To make sure this is happening we have designed AMAST to be able
to measure two important times: Time-To-First-Byte (ttfb) and the overall
time of the connection. ttfb will probably be the most important figure for
the client as that is the time it took to receive first byte of response from
nginx. Also, the lower this time is going to be the greater is the probability
this connection will have its overall time as low as possible. The overall time
is there to make sure this is not just a presumption. It is used for revealing
bugs during the processing of the request after it has been accepted.

After doing multiple tests and calculating averages of both of these times we
can say that our patched version is in several situations faster. When testing
normal requests by the simple request module we have discovered that the
average ttfb of the unpatched version was 0.1698397 seconds, while with the
patched version nginx was able to respond in 0.1228479 - this is approxim-
ately 1.4 times faster. The overall times were then 1.5392757 and 0.8487641-
1.8 times faster. This is only thanks to the unique upstream download patch.
With the range request module, the difference was even greater. Average
ttfbs were 0.0932075 and 0.0071537 - our patched implementation is there-
fore approximately 14 times faster then the original one. Overall time was
approximately 9 times faster - 0.3148339 versus 0.0352955. This is the per-

53

4. Testing, comparison, documentation

formance increase provided by the combination of unique upstream download
patch and the range request patch. We can say that we have not noticed
a single situation where these times are worse than times of the original im-
plementation. This proves success of our improvements.

4.3 Documentation and code maintenance

4.3.1 Documentation

As required, we have created a documentation for all parts of this thesis. Doc-
umentation of implemented improvements consists of main idea description,
algorithm description and changes in files. It also includes important warnings
for patches that might require refactoring. Documentation of tests consists of
their description and usage examples. Documentation of comparison results
consists of AMAST outputs and their description.

4.3.1.1 Implemented improvements

All implemented patches are successfully working and deployed in produc-
tion. Documentation of improvements is covered by the license agreement
and therefore is not publicly available.

4.3.1.2 Tests

Our newly created testing environment has successfully tested all our patches.
Documentation of tests is covered by the license agreement and therefore is
not publicly available.

4.3.1.3 Comparison results

Comparison of important connection times has shown our implementation is
performing better then the original one. Comparison results can be found on
the enclosed CD in the directory results, their documentation is however
covered by the license agreement and therefore is not publicly available.

4.3.2 Code maintenance

Also a short note on code maintenance is going to have its place here. As
a version control system we use git, with our repositories being stored in cloud
storage www.bitbucket.com. We maintain 3 permanent branches - one master
branch for a stable code which runs on production servers, one development
branch for adding new features and one branch with original sources of nginx.

If a serious bug is found in a stable version we checkout a new branch from
master, develop a hotfix and then merge these two branches back together.

54

4.3. Documentation and code maintenance

Features are usually added by checking out a branch based on development
branch and then merging them back into it. When a new version of nginx gets
released we commit that to the originals branch and then merge this branch
into development. That way we do not have to apply our patches every time
new nginx version gets out. And once the version from development branch
gets tested it is merged into master branch and a package is created.

Figure 4.1: git repository layout

55

Chapter 5

Outro

5.1 Successes and failures until today

So far we have implemented several improvements into nginx, developed a work-
ing testing environment and successfully deployed our nginx version. This
version now runs at approximately 25 servers worldwide and powers the net-
work of one content caching network provider who wished to stay anonymous.
At the time of writing this thesis our servers handle more then 50 gigabits
of traffic per second and all of this is processed using our patched version of
nginx. As for our failures, we have not encountered a single problem we were
not able to solve during the design & development of these patches. However,
our network had a short outage recently but fortunately it was not the fault
of nginx.

5.2 Plans for the near future

Currently we are at the end of development of another patch which will provide
us with the ability to split the cache among multiple drives. The idea behind
this patch as well as the benefits coming from it are both well described in
chapter 3, section 3.1.2. The patch is now implemented and it is in the last
part of testing - it has been deployed to production servers with lower then
average traffic. In addition, we are currently preparing a first version of In-
ternet Draft document describing the range request patch. We plan to send
this document to IETF and see if it becomes an RFC.

As for the live development, we are now working on the implementation of
speed parameter for mp4 video files, nginx deployment system, refactoring of
AMAST and other ideas. The speed parameter will allow customers to set
maximum transfer rate, deployment system is going to prevent mistakes &
save time and we have discovered unnecessarily repeated parts of AMAST.

57

Conclusion

At the end of our work we can state that we have successfully achieved the aim
of this thesis and not only that. As well as implementing a performance up-
grade to the caching mechanism which is represented by the range request
patch and a unique upstream download patch, we have also added several us-
ability patches. In particular the cache statistics patch which added a feature
to see information about files in cache per virtual server and then the up-
stream log patch which allowed us to log the communication between nginx
and upstream origin server.

Before the implementation of these patches we managed to get advanced level
understanding of used algorithms & data structures by studying the source
code. This helped us with the implementation and also unified gathered know-
ledge into one document. After the implementation we were able to create
a testing environment called AMAST which has proven that our patches are
working, stable and well performing. Thanks to the way we implemented
AMAST we were able to use it in cooperation with a memory checking tool
valgrind. Therefore we used one single tool for testing functionality, stability
and performance. Even though that was enough to fulfill the requirements of
this thesis, we also deployed our application in real production environment
and let it serve thousands of requests per second. It is currently still running
without anyone’s intentions to be replaced. In the end we have also created
the documentation of our improvements, tests and comparison results. This
can be partially found on the enclosed CD.

Everything summed together obviously means we have fulfilled the goal of
this thesis beyond the point we were able to imagine at its beginning. During
the time of creating this thesis we gained significant knowledge, improved our
programming skills and deployed our application into production.

59

Bibliography

[1] V., J. Forward Proxy vs Reverse Proxy [online]. JSCAPE, Aug 2012, [cit.
2015-04-26]. Available from: http://www.jscape.com/blog/bid/87783/
Forward-Proxy-vs-Reverse-Proxy

[2] nginx about [online]. [cit. 2015-04-26]. Available from: http://

nginx.org/en/

[3] Kernighan, B. W.; Ritchie, D. M. The C Programming Language. Prentice
Hall PTR, second edition, 1988, ISBN 978-0131103627.

[4] Connection processing methods [online]. [cit. 2015-04-26]. Available from:
http://nginx.org/en/docs/events.html

[5] Linux man-pages project. Linux manual section 2 [online]. [cit.
2015-04-26]. Available from: http://man7.org/linux/man-pages/
dir section 2.html

[6] Linux man-pages project. Linux manual section 3 [online]. [cit.
2015-04-26]. Available from: http://man7.org/linux/man-pages/
dir section 3.html

[7] Miller, E. Emiller’s Guide To Nginx Module Development [online]. Apr
2007, [cit. 2015-04-26]. Available from: http://www.evanmiller.org/
nginx-modules-guide.html

[8] nginx source code [online]. [cit. 2015-04-26]. Available from: http://

nginx.org/download/nginx-1.7.12.tar.gz

[9] Proxy cache path [online]. [cit. 2015-04-26]. Available from: http://

nginx.org/en/docs/http/ngx http proxy module.html

[10] Nottingham, M. Two Http Caching Extensions [online]. Dec 2007, [cit.
2015-04-26]. Available from: https://www.mnot.net/blog/2007/12/12/
stale

61

http://www.jscape.com/blog/bid/87783/Forward-Proxy-vs-Reverse-Proxy
http://www.jscape.com/blog/bid/87783/Forward-Proxy-vs-Reverse-Proxy
http://nginx.org/en/
http://nginx.org/en/
http://nginx.org/en/docs/events.html
http://man7.org/linux/man-pages/dir_section_2.html
http://man7.org/linux/man-pages/dir_section_2.html
http://man7.org/linux/man-pages/dir_section_3.html
http://man7.org/linux/man-pages/dir_section_3.html
http://www.evanmiller.org/nginx-modules-guide.html
http://www.evanmiller.org/nginx-modules-guide.html
http://nginx.org/download/nginx-1.7.12.tar.gz
http://nginx.org/download/nginx-1.7.12.tar.gz
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
https://www.mnot.net/blog/2007/12/12/stale
https://www.mnot.net/blog/2007/12/12/stale

Appendix A

Acronyms

URL Uniform Resource Locator

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

DNS Domain Name System

IP Internet Protocol

RFC Request For Comments

SSD Solid-state drive

AIO Asynchronous I/O

LVM Logical Volume Manager

RAID Redundant Array of Inexpensive Disks

ZFS Z File System

AMAST Advanced Measuring and Stress Testing

OS Operating System

API Application Programming Interface

IDE Integrated Development Environment

URI Uniform Resource Identifier

CGI Common Gateway Interface

TCP Transmission Control Protocol

CPU Central Processing Unit

63

A. Acronyms

SSL Secure Sockets Layer

CSS Cascading Style Sheets

RAM Random Access Memory

I/O Input/Output

LRU Least Recently Used

TB Terabyte

CD Compact Disc

64

Appendix B

Contents of enclosed CD

src the thesis LATEX source codes directory
BP kvasnicka tomas 2014.tex........ the thesis text in TEX format

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

results the directory of comparison results
normal request the directory of normal request results
normal request................the directory of range request results
readme.txt description of computers used for benchmarks

65

	Listings
	Introduction
	About this thesis
	Exact problem formulation
	Expected results
	Thesis structure

	Research of chosen web server
	Modular architecture and design patterns
	Data structures and algorithms
	Caching mechanism

	Improvements implementation
	Ideas to discuss
	Chosen improvement(s)
	Realization

	Testing, comparison, documentation
	Testing and production environment deployment
	Comparison of original and patched version
	Documentation and code maintenance

	Outro
	Successes and failures until today
	Plans for the near future

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

