
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master’s thesis

Garbage Collector for Multi-threaded

Scheme using Native Threads

Bc. Oleg Gul

Supervisor: Ing. Jan Vraný, Ph.D.

9th May 2015

Acknowledgements

I would like to thank my family and friends for support during writing this
thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 9th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Oleg Gul. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Gul, Oleg. Garbage Collector for Multi-threaded Scheme using Native Threads.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2015.

Abstrakt

Tento práce popisuje návrh, implementaci a testováńı paralelńı stlačováńı
garbage collector s implementace bariéry zápisu založené na hardwarové ochraně
paměti. Realizace část této práce obsahuje integrace vytvořených Garbage
Collector (GC) do existuj́ıćı implementace programovaćıho jazyka Scheme –
TinyScheme

Kĺıčová slova Parallel Garbage Collector, Parallel Garbage Collection, Auto-
matic Memory Management, Write Barrier, Scheme, TinyScheme.

Abstract

This thesis describes design, implementation and testing of parallel compact-
ing garbage collector with the implementation of write barrier based on hard-
ware memory protection. Implementation part of this thesis includes integra-
tion of created GC into existing implementation of the Scheme programming
language – TinyScheme.

Keywords Parallel Garbage Collector, Parallel Garbage Collection, Auto-
matic Memory Management, Write Barrier, Scheme, TinyScheme.

ix

Contents

Introduction 1

1 Existing Implementations 5

1.1 Java . 5

1.2 .NET . 11

1.3 Ruby . 12

2 High Level Design 15

2.1 GC Algorithm . 15

2.2 Object Representation . 18

2.3 Marking Process . 18

2.4 Compaction Process . 21

2.5 GC and VM Synchronization 22

3 Implementation Details 25

3.1 Object Memory Layout . 25

3.2 Marking Process . 27

3.3 Compaction Process . 29

3.4 GC Thread . 31

3.5 GC Interface . 32

3.6 TinyScheme Integration . 38

3.7 Implementation of Write Barrier 41

3.8 Description of Selected GC Internals 43

3.9 New TinyScheme Functions . 43

4 Testing 47

4.1 Functional Testing . 47

4.2 Performance Testing . 48

5 Possible Enhancements 57

xi

5.1 Reimplementation of Write Barrier 57
5.2 Dynamic Heap Size . 57
5.3 Immediate Values . 58
5.4 Delayed Finalization . 58
5.5 Reducing Number of Passes over Heap 58
5.6 Better Vectors Implementation 58

Conclusion 59

Bibliography 61

A Glossary 63

B Acronyms 65

C Contents of Enclosed CD 67

xii

List of Figures

1.1 Comparison between serial and parallel young generation collection 7
1.2 Comparison between serial and CMS old generation collection . . . 9

2.1 State of heap after tracing . 16
2.2 State of heap before compaction 17
2.3 State of heap after compaction . 17
2.4 Violation of Tri Color Invariant . 20
2.5 Process of parallel marking . 20

3.1 Object memory layout . 25
3.2 Example of marking process . 27
3.3 Memory protection of scanned objects during parallel marking . . 27
3.4 Temporary unprotection of the memory page 28
3.5 Protection of new memory page . 28
3.6 Defragmentation of garbage objects 29
3.7 Example of compaction . 30

xiii

List of Tables

3.1 Object header fields . 26
3.2 Information about moved blocks 30
3.3 Kinds of external references . 34

4.1 Benchmark results for different configurations 53
4.2 Benchmark memory usage . 53
4.3 Benchmark results for different pool and problem sizes 54

xv

Introduction

Garbage collection is the automatic reclamation of computer storage. While
in many systems programmers must explicitly reclaim heap memory at some
point in the program, by using a “free” or “dispose” statement; garbage col-
lected systems free the programmer from this burden. The GC function is
to find data objects that are no longer in use and make their space available
for reuse by the the running program. An object is considered garbage (and
subject to reclamation) if it is not reachable by the running program via any
path of pointer traversals. Live (potentially reachable) objects are preserved
by the collector, ensuring that the program can never traverse a “dangling”
pointer into a deallocated object.

Garbage collection is necessary for fully modular programming, to avoid
introducing unnecessary intermodule dependencies. A software routine op-
erating on a data structure should not have to depend what other routines
may be operating on the same structure, unless there is some good reason
to coordinate their activities. If objects must be deallocated explicitly, some
module must be responsible for knowing when other modules are not inter-
ested in a particular object.

Since liveness is a global property, this introduces nonlocal bookkeeping
into routines that might otherwise be locally understandable and flexibly com-
posable. This bookkeeping inhibits abstraction and reduces extensibility, be-
cause when new functionality is implemented, the bookkeeping code must be
updated. The runtime cost of the bookkeeping itself may be significant, and
in some cases it may introduce the need for additional synchronization in
concurrent applications.

The unnecessary complications and subtle interactions created by explicit
storage allocation are especially troublesome because programming mistakes
often break the basic abstractions of the programming language, making errors
hard to diagnose. Failing to reclaim memory at the proper point may lead to
slow memory leaks, with unreclaimed memory gradually accumulating until
the process terminates or swap space is exhausted. Reclaiming memory too

1

Introduction

soon can lead to very strange behavior, because an object’s space maybe reused
to store a completely different object while an old pointer still exists. The same
memory may therefore be interpreted as two different objects simultaneously
with updates to one causing unpredictable mutations of the other.

These programming errors are particularly dangerous because they often
fail to show up repeatably, making debugging very difficult – they may never
show up at all until the program is stressed in an unusual way. If the alloc-
ator happens not to reuse a particular object’s space, a dangling pointer may
not cause a problem. Later, after delivery, the application may crash when it
makes a different set of memory demands, or is linked with a different alloca-
tion routine. A slow leak may not be noticeable while a program is being used
in normal ways – perhaps for many years – because the program terminates
before too much extra space is used. But if the code is incorporated into a
long-running server program, the server will eventually exhaust the available
memory and crash.

These problems lead many applications programmers to implement some
form of application-specific garbage collection within a large software system,
to avoid most of the headaches of explicit storage management. Many large
programs have their own data types that implement reference counting, for
example. Because they are coded up for a one-shot application, these collectors
are often both incomplete and buggy. The garbage collectors themselves are
therefore often unreliable, as well as being hard to use because they are not
integrated into the programming language. The fact that such kludges exist
despite these problems is a testimony to the value of garbage collection, and
it suggests that garbage collection should be part of programming language
implementations [1].

Taking into account all benefits connected with usage of GC instead of
manual memory management, the task of design and implementation of effi-
cient GC becomes very actual and important. In some cases using GC can
speedup program execution because the whole application architecture be-
comes more elegant and less copy operations of same objects between different
modules are performed. Also, some implementations allow faster allocations
of new objects. But still, GC introduces generally unpredictable stalls to the
execution of main program. During these pauses GC does those parts of its
job which can’t be done simultaneously with the application.

The goal of this thesis is to design and implement GC which would minim-
ize these stalls allowing Virtual Machine (VM) to run as smoothly as possible.
Also, it should be possible to use designed GC multithreaded environment,
which seems to be quite natural and obvious nowadays.

The structure of thesis is following:
Chapter 1 gives a quick overview of some existing GC implementations

which work in multithreaded environments.
Chapter 2 describes the process of garbage collection in more detail. Also,

the design of implemented GC is given there.

2

Chapter 3 provides detailed technical description of implemented GC.
Chapter 4 contains results of testing of implemented GC integrated into

TinyScheme.
Chapter 5 lists some possible enhancements for the GC which don’t belong

to the core functionality but are very convenient for VM implementers and
end users.

3

Chapter 1

Existing Implementations

This chapter gives a quick overview of some existing GC implementations with
focus on parallel collection.

1.1 Java

The Java HotSpot virtual machine includes four garbage collectors as of J2SE
5.0 update 6. All the collectors are generational. This section describes the
generations and the types of collections, and discusses why object allocations
are often fast and efficient. It then provides detailed information about each
collector [2].

1.1.1 HotSpot Generations

Memory in the Java HotSpot virtual machine is organized into three gener-
ations: a young generation, an old generation, and a permanent generation.
Most objects are initially allocated in the young generation. The old gener-
ation contains objects that have survived some number of young generation
collections, as well as some large objects that may be allocated directly in the
old generation. The permanent generation holds objects that the Java Virtual
Machine (JVM) finds convenient to have the garbage collector manage, such
as objects describing classes and methods, as well as the classes and methods
themselves.

The young generation consists of an area called Eden plus two smaller
survivor spaces. Most objects are initially allocated in Eden. (As mentioned,
a few large objects may be allocated directly in the old generation.) The
survivor spaces hold objects that have survived at least one young generation
collection and have thus been given additional chances to die before being
considered “old enough” to be promoted to the old generation. At any given
time, one of the survivor spaces holds such objects, while the other is empty
and remains unused until the next collection [2].

5

1. Existing Implementations

1.1.2 Fast Allocation

As you will see from the garbage collector descriptions below, in many cases
there are large contiguous blocks of memory available from which to allocate
objects. Allocations from such blocks are efficient, using a simple bump-the-
pointer technique. That is, the end of the previously allocated object is always
kept track of. When a new allocation request needs to be satisfied, all that
needs to be done is to check whether the object will fit in the remaining part
of the generation and, if so, to update the pointer and initialize the object.

For multithreaded applications, allocation operations need to be multithread-
safe. If global locks were used to ensure this, then allocation into a genera-
tion would become a bottleneck and degrade performance. Instead, the Hot-
Spot JVM has adopted a technique called Thread-Local Allocation Buffers
(TLABs). This improves multithreaded allocation throughput by giving each
thread its own buffer (i.e., a small portion of the generation) from which to
allocate. Since only one thread can be allocating into each TLAB, allocation
can take place quickly by utilizing the bump-the-pointer technique, without
requiring any locking. Only infrequently, when a thread fills up its TLAB and
needs to get a new one, must synchronization be utilized. Several techniques
to minimize space wastage due to the use of TLABs are employed. For ex-
ample, TLABs are sized by the allocator to waste less than 1% of Eden, on
average. The combination of the use of TLABs and linear allocations using
the bump-the-pointer technique enables each allocation to be efficient, only
requiring around 10 native instructions [2].

1.1.3 Serial Collector

With the serial collector, both young and old collections are done serially (us-
ing a single CPU), in a stop-the-world fashion. That is, application execution
is halted while collection is taking place.

The serial collector is the collector of choice for most applications that are
run on client-style machines and that do not have a requirement for low pause
times. On today’s hardware, the serial collector can efficiently manage a lot
of nontrivial applications with 64MB heaps and relatively short worst-case
pauses of less than half a second for full collections [2].

1.1.4 Parallel Collector

These days, many Java applications run on machines with a lot of physical
memory and multiple CPUs. The parallel collector, also known as the through-
put collector, was developed in order to take advantage of available CPUs
rather than leaving most of them idle while only one does garbage collection
work.

The parallel collector uses a parallel version of the young generation collec-
tion algorithm utilized by the serial collector. It is still a stop-the-world and

6

1.1. Java

copying collector, but performing the young generation collection in parallel,
using many CPUs, decreases garbage collection overhead and hence increases
application throughput. Figure 1.1: illustrates the differences between the
serial collector and the parallel collector for the young generation.

Figure 1.1: Comparison between serial and parallel young generation collec-
tion

Old generation garbage collection for the parallel collector is done using the
same serial mark-sweep-compact collection algorithm as the serial collector.

Applications that can benefit from the parallel collector are those that run
on machines with more than one CPU and do not have pause time constraints,
since infrequent, but potentially long, old generation collections will still occur.
Examples of applications for which the parallel collector is often appropriate
include those that do batch processing, billing, payroll, scientific computing,
and so on.

Choosing the parallel compacting collector (described next) over the par-
allel collector can be considered, since the former performs parallel collections
of all generations, not just the young generation [2].

1.1.5 Parallel Compacting Collector

The parallel compacting collector was introduced in J2SE 5.0 update 6. The
difference between it and the parallel collector is that it uses a new algorithm
for old generation garbage collection.

Young generation garbage collection for the parallel compacting collector
is done using the same algorithm as that for young generation collection using
the parallel collector.

With the parallel compacting collector, the old and permanent generations
are collected in a stop-the-world, mostly parallel fashion with sliding compac-
tion. The collector utilizes three phases. First, each generation is logically

7

1. Existing Implementations

divided into fixed-sized regions. In the marking phase, the initial set of live
objects directly reachable from the application code is divided among garbage
collection threads, and then all live objects are marked in parallel. As an
object is identified as live, the data for the region it is in is updated with
information about the size and location of the object.

The summary phase operates on regions, not objects. Due to compactions
from previous collections, it is typical that some portion of the left side of
each generation will be dense, containing mostly live objects. The amount of
space that could be recovered from such dense regions is not worth the cost
of compacting them. So the first thing the summary phase does is examine
the density of the regions, starting with the leftmost one, until it reaches a
point where the space that could be recovered from a region and those to the
right of it is worth the cost of compacting those regions. The regions to the
left of that point are referred to as the dense prefix, and no objects are moved
in those regions. The regions to the right of that point will be compacted,
eliminating all dead space. The summary phase calculates and stores the new
location of the first byte of live data for each compacted region.

In the compaction phase, the garbage collection threads use the summary
data to identify regions that need to be filled, and the threads can independ-
ently copy data into the regions. This produces a heap that is densely packed
on one end, with a single large empty block at the other end.

As with the parallel collector, the parallel compacting collector is beneficial
for applications that are run on machines with more than one CPU. In addi-
tion, the parallel operation of old generation collections reduces pause times
and makes the parallel compacting collector more suitable than the parallel
collector for applications that have pause time constraints. The parallel com-
pacting collector might not be suitable for applications run on large shared
machines (such as SunRays), where no single application should monopolize
several CPUs for extended periods of time. On such machines, number of
threads used for garbage collection should be decreased or different collector
should be selected [2].

1.1.6 Concurrent Mark-Sweep (CMS) Collector

For many applications, end-to-end throughput is not as important as fast re-
sponse time. Young generation collections do not typically cause long pauses.
However, old generation collections, though infrequent, can impose long pauses,
especially when large heaps are involved. To address this issue, the HotSpot
JVM includes a collector called the concurrent mark-sweep (CMS) collector,
also known as the low-latency collector.

The CMS collector collects the young generation in the same manner as
the parallel collector.

Most of the collection of the old generation using the CMS collector is
done concurrently with the execution of the application.

8

1.1. Java

Figure 1.2: Comparison between serial and CMS old generation collection

A collection cycle for the CMS collector starts with a short pause, called
the initial mark, that identifies the initial set of live objects directly reachable
from the application code. Then, during the concurrent marking phase, the
collector marks all live objects that are transitively reachable from this set.
Because the application is running and updating reference fields while the
marking phase is taking place, not all live objects are guaranteed to be marked
at the end of the concurrent marking phase. To handle this, the application
stops again for a second pause, called remark, which finalizes marking by
revisiting any objects that were modified during the concurrent marking phase.
Because the remark pause is more substantial than the initial mark, multiple
threads are run in parallel to increase its efficiency.

At the end of the remark phase, all live objects in the heap are guaran-
teed to have been marked, so the subsequent concurrent sweep phase reclaims
all the garbage that has been identified. Figure 1.2 illustrates the differences
between old generation collection using the serial mark-sweep-compact col-
lector and the CMS collector.

Since some tasks, such as revisiting objects during the remark phase, in-
crease the amount of work the collector has to do, its overhead increases as
well. This is a typical trade-off for most collectors that attempt to reduce
pause times.

9

1. Existing Implementations

The CMS collector is the only collector that is non-compacting. That is,
after it frees the space that was occupied by dead objects, it does not move
the live objects to one end of the old generation.

This saves time, but since the free space is not contiguous, the collector
can no longer use a simple pointer indicating the next free location into which
the next object can be allocated. Instead, it now needs to employ free lists.
That is, it creates some number of lists linking together unallocated regions
of memory, and each time an object needs to be allocated, the appropriate
list (based on the amount of memory needed) must be searched for a region
large enough to hold the object As a result, allocations into the old generation
are more expensive than they are with a simple bump-the-pointer technique.
This also imposes extra overhead to young generation collections, as most
allocations in the old generation occur when objects are promoted during
young generation collections.

Another disadvantage the CMS collector has is a requirement for larger
heap sizes than the other collectors. Given that the application is allowed to
run during the marking phase, it can continue to allocate memory, thereby
potentially continuing to grow the old generation. Additionally, although the
collector guarantees to identify all live objects during a marking phase, some
objects may become garbage during that phase and they will not be reclaimed
until the next old generation collection. Such objects are referred to as floating
garbage.

Finally, fragmentation may occur due to lack of compaction. To deal with
fragmentation, the CMS collector tracks popular object sizes, estimates future
demand, and may split or join free blocks to meet demand.

Unlike the other collectors, the CMS collector does not start an old gener-
ation collection when the old generation becomes full. Instead, it attempts to
start a collection early enough so that it can complete before that happens.
Otherwise, the CMS collector reverts to the more time-consuming stop-the-
world mark-sweep-compact algorithm used by the parallel and serial collectors.
To avoid this, the CMS collector starts at a time based on statistics regarding
previous collection times and how quickly the old generation becomes occu-
pied. The CMS collector will also start a collection if the occupancy of the
old generation exceeds something called the initiating occupancy.

In summary, compared to the parallel collector, the CMS collector de-
creases old generation pauses – sometimes dramatically – at the expense of
slightly longer young generation pauses, some reduction in throughput, and
extra heap size requirements [2].

The CMS collector can be used in a mode in which the concurrent phases
are done incrementally. This mode is meant to lessen the impact of long con-
current phases by periodically stopping the concurrent phase to yield back
processing to the application. The work done by the collector is divided into
small chunks of time that are scheduled between young generation collec-
tions. This feature is useful when applications that need the low pause times

10

1.2. .NET

provided by the concurrent collector are run on machines with small numbers
of processors (e.g., 1 or 2).

CMS collector should be used if an application needs shorter garbage col-
lection pauses and can afford to share processor resources with the garbage col-
lector when the application is running. (Due to its concurrency, the CMS col-
lector takes CPU cycles away from the application during a collection cycle.)
Typically, applications that have a relatively large set of long-lived data (a
large old generation), and that run on machines with two or more processors,
tend to benefit from the use of this collector. An example would be web
servers. The CMS collector should be considered for any application with
a low pause time requirement. It may also give good results for interactive
applications with old generations of a modest size on a single processor [2].

1.2 .NET

Garbage collector in .NET has 2 main modes of operation: workstation and
server. They differ by the tradeoff between performance and heap efficiency.
Workstation mode is tuned to give maximum UI responsiveness. Server
mode is tuned to give maximum request throughput.

Since it is a generational collector, there are 3 generations of objects: Gen
0 (youngest), Gen 1 and Gen 2 (eldest).

1.2.1 Workstation GC Mode

This mode is designed to give maximum possible responsiveness to the user,
and cut down on any pauses due to GC. Ideally, you want to avoid any per-
ception of pauses or jerkiness in interactive applications so, to achieve this
responsiveness, Workstation GC mode limits the number of thread suspen-
sions.

Since .NET Common Language Runtime (CLR) version 1.0, Workstation
GC could run as either concurrent or non-concurrent; this simply refers to
which thread the GC runs on. In non-concurrent mode, thread execution of
the application code is suspended, and the GC then runs on the application
thread. It was designed for uniprocessor machines, where running threads
concurrently wasn’t an option.

As multicore/multiprocessor desktop machines are now very common, con-
current Workstation GC is now the norm and the default [3].

1.2.2 Concurrent Workstation GC

Concurrent GC has a separate thread for the GC to run on, meaning that
the application can continue execution while the GC runs. Crucially, object
allocation is also allowed as the GC is executing.

11

1. Existing Implementations

It’s also worth remembering that concurrent GC only applies to full collec-
tions, so Gen 0 and Gen 1 collections still cause thread suspension. However,
instead of just suspending all threads for the duration of a GC, the GC aims
to only suspend threads for short periods, usually twice during execution. In
contrast to non-concurrent GC, which suspends all threads for the duration
of the entire GC process, concurrent GC is much less prone to latency issues.

Here’s how it works. When a full concurrent GC takes places, the start
and end positions of the allocated objects on the heap are determined, and
garbage collection is limited to within this “GC domain”. The nice thing
about this is that the application can continue to allocate objects onto the
heap outside of this domain.

The application can continue to allocate objects right up until the eph-
emeral segment limit is reached, which is the size of the segment minus a
bit of space that we will call the ”No Go Zone.” Once this limit is reached,
application execution is suspended until the full GC is finished [3].

1.2.3 Background Workstation GC Mode (.NET 4.0)

With background GC, a Gen 0 or Gen 1 GC can be triggered for the newly
allocated objects while a full Gen 2 GC is in progress.

Gen 0 and Gen 1 now have tunable allocation thresholds which fire a back-
ground collection when exceeded, and allow rootless objects to be compacted
and their space to be reclaimed. At the very least, this delays the inevitable
reaching of the ephemeral segment boundary ”No Go Zone.”

It gets better: a background Gen 1 collection can now also create a new
segment and copy Gen 0 objects into it just like in classic GC. That means
there is no segment limit, which means no eventual thread suspensions due to
exhaustion. There is, of course, a price to pay for all this, and that is the fact
that application and foreground GC threads are suspended while background
GC executes. However, due to the speed of Gen 0 and Gen 1 collections, this
is usually only a small price [3].

1.3 Ruby

Both Rubinius and the JVM use concurrent garbage collection to reduce the
amount of time your application spends waiting for collection to complete.
When using concurrent garbage collection, the garbage collector runs at the
same time as your application code. This eliminates, or at least reduces,
pauses in your program due to garbage collection because your application
doesn’t have to stop and wait while the garbage collector runs.

Concurrent garbage collectors run in a separate thread from the primary
application. Although in theory this could mean that your application will
slow a bit because part of the CPU’s time has to be spent running the GC
thread, most computers today contain microprocessors with multiple cores,

12

1.3. Ruby

which allow different threads to run in parallel. This means one of the cores
can be dedicated to running the GC thread, leaving the other cores to run the
primary application. (In practice, this still might slow down your application
because fewer cores are available.)

MRI Ruby 2.1 also supports a form of concurrent garbage collection by
performing the sweep portion of the mark-and-sweep algorithm in parallel
while your Ruby code continues to run. This helps to reduce the amount of
time your application is paused while garbage collection runs [4].

13

Chapter 2

High Level Design

2.1 GC Algorithm

Garbage collection automatically reclaims the space occupied by data objects
that the running program can never access again. Such data objects are
referred to as garbage. The basic functioning of a garbage collector consists,
abstractly speaking, of two parts:

1. Distinguishing the live objects from the garbage in some way (garbage
detection), and

2. Reclaiming the garbage objects’ storage, so that the running program
can use it (garbage reclamation) [1].

For detecting (marking) live object, implemented GC uses the concept of
reachability. It means, that object is considered live (reachable) if it can be
accessed by a sequence of traversing of pointers starting from some object.

There is a special set of objects which form Root Set. Objects in this
set has special flag which marks them as root objects. These objects are
considered to be always live. They are destroyed at the very end of program
execution. Typically there are a few of them. For example, in TinyScheme
there is only one such object – main interpreter object. Root objects can be
created by passing special flag to the allocation routine.

Thus the set of live objects is simply the set of objects on any directed path
of pointers from the root set. Any other object is considered to be garbage
because there is no legal sequence of program actions that would allow the
program to reach that object. Garbage objects therefore can’t affect the future
course of the computation, and their space may be safely reclaimed.

GCs that use concept of reachability is called “tracing” because it traces
different paths of pointers starting from root set. Tracing GCs is a common
choice for modern implementation opposite to reference counting, which seems
to be better for integration into existing systems without garbage collection.

15

2. High Level Design

Figure 2.1: State of heap after tracing

In this figure, objects 1-6 are live, because they are reachable from object
1. Objects 7-9 are garbage, because they are not reachable from object 1.

This liveness criterion based on reachability is more relaxed than classical
meaning. For example, temporary object may be used only once in some
operation but still be accessible from local context. Such an object won’t be
considered as a garbage because it is still accessible. But eventually all these
objects will be reclaimed by GC. This is what called conservative “liveness”
of the object.

void SomeCode ()

{

// ...

Object t = CreateTemporaryObject ();

ObjectUse1(t);

ObjectUse2(t);

// In fact , object pointed by t is garbage here.

// But it isn ’t collected since t still

// points to that object.

SomeOtherCode (); // Not using t here.

return;

16

2.1. GC Algorithm

}

Listing 2.1: Liveness conservatism example

For reclaiming of garbage implemented GC uses procedure called compac-
tion. During compaction live objects are moved to the beginning of the pool,
so they form one big sequence of reachable objects. During that move oper-
ation they overwrite existing garbage objects. At the end of compaction on
the other end of the pool there is a big block of free memory.

Despite this approach requires moving of objects and updating references
to moved objects, it is widely adopted because it offers major benefits:

• Improving locality of reference: live objects aren’t scattered across whole
heap but are gathered in one place; Objects which were created simul-
taneously continue to be neighbors; Whole heap is sorted from old to
new objects with the increase of address

• Constant-time allocation of new objects: there is no need to keep track
of list of free regions (freelist) in the heap. Instead of that only one
pointer separating free and non-free regions is needed. Allocation is
done simply by moving pointer by the distance equal to the size of new
object

• No heap fragmentation means that all free memory is really accessible
to the program

Figure 2.2: State of heap before compaction

On this figure, “R” mean reachable object, “G” – garbage object, “?” –
uninitialized part of the heap.

Figure 2.3: State of heap after compaction

17

2. High Level Design

These figures don’t show references between objects. Whenever object is
moved – all references pointing to it are updated to point to new object’s
location.

2.2 Object Representation

For GC to be able to traverse pointers in the objects and move them, it should
be aware of the structure of the object: where pointers to other objects are
located and what is size of the object. In dynamic languages the common
solution for this is to have special hidden object header connected to each
object and storing all needed information about the object. GC itself can use
that header to store its object-specific information, which makes this approach
even more attractive.

As this GC should be used together with TinyScheme, the approach with
object header is used in this thesis. Keeping that in mind: object should
contain following parts:

1. Header: all necessary information about object

2. Slots: pointers to other objects

3. Raw data: optional data which isn’t traversed by GC but only holds
some VM-specific data about the object

It should be possible to specify number of slots and size of raw data during
allocation of the object. Also, GC should support object with no slots at all
or only with raw data (for example, pure value objects).

Thus, object header should contain GC-specific data, number of slots, size
of raw data and possibly some additional information.

2.3 Marking Process

As described before, marking is the process aimed to detect live objects by
reference traversing.

For truly real-time applications, fine-grained incremental garbage collec-
tion appears to be necessary. Garbage collection cannot be carried out as one
atomic action while the program is halted, so small units of garbage collection
must be interleaved with small units of program execution [1].

Incremental tracing collector can pause in the middle of collection cycle
while mutator continues, without ending up with inconsistent data.

Primitive garbage collectors, once they start a collection cycle, must either
finish the task, or abandon all their work so far. This is often an appropri-
ate restriction, but is unacceptable when the system must guarantee response

18

2.3. Marking Process

times; for example, in systems with a user interface and in real-time hard-
ware control systems. Such systems might use incremental garbage collection
so that the time-critical processing and the garbage collection can proceed
effectively in parallel, without wasted effort [5].

In multithreaded environment, marking process could be performed in
parallel with the main program (mutator), so the only time of “full stop” will
be time of compaction, which can’t be avoided because objects are moved
during that phase of GC.

Due to using of compaction, this process becomes simpler: scanning starts
from the beginning of the heap and new objects are allocated at the end of
the heap. So scanning process “chases” free pointer which separates used and
free parts of the heap. Process of marking stops when whole heap is scanned.
In that case GC should pause VM, do compaction, resume VM and start new
round of marking.

The only question which remains open in this approach is the modification
of already scanned objects by mutator (that’s how it got its name). If such
modifications are ignored – it will lead to freeing live objects instead of garbage
ones. That happens because of violation of Tri Color Invariant, which is
described as follows:

The strong tri-color invariant is the property of a reference graph that
there is no edge from a black node to a white node.

By preserving this property throughout tri-color marking, a tracing al-
gorithm can ensure that the collector will not miss reachable objects, even if
the mutator manipulates the graph during the collection. This invariant can
also be used to ensure that a copying garbage collector doesn’t confuse the
mutator. Mutator actions might need to change the color of the nodes affected
in order to preserve the invariant [5].

In the above definition term “black node” means scanned reachable object
and “white node” means scanned garbage object. So, it is natural to prohibit
black objects to point directly to white ones. Either black or white object
should be gray – not yet scanned. But it is allowed for black object to point
to gray and that gray to point to white. It just means that not all objects
have been scanned yet.

An incremental scheme must have some way of keeping track of the changes
to the graph of reachable objects, perhaps recomputing parts of its traversal
in the face of those changes [1].

So, marking process should work correctly together with the mutator.
Modifications caused by mutator should be correctly handled by the mark-
ing process. The solution for this is so-called write barrier: special operation
which is performed during write to the object. If a pointer to a white object
is stored into black object – write barrier marks white object as gray, so it
will be rescanned again. Thus, Tri Color Invariant remains maintained.

Write barrier can be implemented in a different ways. The task of this
thesis is to implement write barrier using hardware memory protection: pages

19

2. High Level Design

containing scanned object are marked as readonly. Whenever write to that
page is performed segfault occurs passing control to custom handler which
implements write barrier object making necessary fixes to object graph and
notifying marking process. This is a way of synchronization between mutator
and marker processes.

Figure 2.4: Violation of Tri Color Invariant

This figure shows the situation when objects 3, 4 and 6 will be collected
but the shouldn’t be.

Figure 2.5: Process of parallel marking

When marking process scans object it ensures that memory page which

20

2.4. Compaction Process

contains that object is marked as readonly. After marking is done and VM
is paused all memory protection is removed and compaction is performed.
When new cycle of garbage collection is started marking process starts to
protect memory pages with scanned objects again.

An important characteristic of incremental techniques is their degree of
conservatism with respect to changes made by the mutator during garbage
collection. If the mutator changes the graph of reachable objects, freed objects
may or may not be reclaimed by the garbage collector. Some floating garbage
may go unreclaimed because the collector has already categorized the object
as live before the mutator frees it. This garbage is guaranteed to be collected
at the next cycle, however, because it will be garbage at the beginning of the
next collection [1].

For a such kind of GC it is acceptable to be more relaxed (or conservative)
about detection of garbage objects. But there are some conditions that have
still be met by GC:

1. Eventually, all garbage objects must be collected: garbage mustn’t leak

2. While garbage objects may be categorized as live for a while, no live
object can be categorized as garbage

2.4 Compaction Process

Comparing to marking, compaction process is pretty straightforward. But
there is one thing that has to be discussed more carefully: references to moved
objects should be updated to point to new locations. To detect those invalid
references whole heap should be scanned, because any object could reference
moved ones. Taking into account that, process of compaction and updating
references has to implemented efficiently enough. Otherwise it overcomes all
benefits of compaction. The necessity of updating references is a price for
using compaction.

Additionally to references within heap (from one object to another), there
are implicit external references to objects. Consider following snippet of VM
code, which creates new cons cell:

pointer cons(pointer car_value , pointer cdr_value)

{

pointer result = alloc_object_with_2_slots ();

// WARNING: GC may occur here.

car(result) = car_value;

cdr(result) = cdr_value;

return result;

}

Listing 2.2: External reference example

21

2. High Level Design

Pointers car value and cdr value are external references to some objects
heap on the heap. They are external because GC isn’t aware of them. They
aren’t stored is a slot of any object. When cons is called they are on the stack
of VM. If collection occurs at point marked with corresponding comment,
object pointed by car value and cdr value may be moved and those pointer
will point at some random location in the heap. So, GC must have some
mechanism for dealing with those external references.

Consider another example, which illustrates given problem from another
point of view:

pointer create_new_binding(pointer env ,

pointer name ,

pointer value)

{

pointer binding_cell = cons(name , value);

// WARNING: GC may occur here.

// List of pairs name -value.

pointer binding_list = get_env_binding_list(env);

// Push new pair to the head of the list.

binding_list = cons(binding_cell , binding_list);

// Save new binding list back to env.

set_env_binding_list(env , binding_list);

return binding_list;

}

Listing 2.3: External reference example with allocation

This piece of code creates new binding in the given environment. Again, if
collection occurs in a commented place, bad things may happen. New object
pointed by binding cell isn’t attached to the existing object graph. So,
formally it is garbage an can be freed, so binding cell will point to some
random place. GC should have some mechanism to “catch” those kind of
objects while they aren’t attached to the object graph.

Support of external references and freshly created objects will be very con-
venient for VM implementers. Some implementations provide similar func-
tionality. For example, .NET has gcroot class for that [6] and Java has
NewGlobalRef() / DeleteGlobalRef() and NewLocalRef() / DeleteLocalRef()
[7].

2.5 GC and VM Synchronization

Since marking is performed in parallel with VM, there should be some syn-
chronization points between GC and VM.

22

2.5. GC and VM Synchronization

Obviously, when there’s no enough memory for allocation, collection may
occur in the allocation call. Also, there should be a possibility for VM to
trigger collection and to check with GC whether collection is needed.

From the point of view of GC, it should be able to pause all VM threads,
verify that they are paused and then resume all VM threads again.

23

Chapter 3

Implementation Details

This chapter contains technical details about created GC and its integration
into TinyScheme. For multithreading and synchronization linux implement-
ation of Portable Operating System Interface (POSIX)[8] threads is used:
Native POSIX Thread Library (NPTL).

Original TinyScheme was obtained from here: https://bitbucket.org/
janvrany/tinyscheme.

Modified TinyScheme together with new GC is here: https://bitbucket.org/
aquirel/tinyscheme-newgc.

Both versions also are stored on the enclosed CD.

3.1 Object Memory Layout

Figure 3.1: Object memory layout

Object header and slots have size of pointer on the target machine (i.e.
sizeof(void *)). Size of raw data is rounded up to be a multiple of size
of pointer. So, objects in the heap are always aligned.

Object header is the only mandatory part of the object. Slots and raw
data are completely optional. Object may contain slots and raw data simul-
taneously, which is a convenient feature for VM implementers. Slots contain
pointers to another objects on the heap (or NULL), so their content is used by
GC during marking process and they are updated whenever corresponding ob-
jects are being moved. Contents of raw data is ignored by GC. Raw data can

25

https://bitbucket.org/janvrany/tinyscheme
https://bitbucket.org/janvrany/tinyscheme
https://bitbucket.org/aquirel/tinyscheme-newgc
https://bitbucket.org/aquirel/tinyscheme-newgc

3. Implementation Details

be used to store values of primitive data types (numbers, booleans, strings,
etc.) of the programming language working on top of VM or any other data
which is private to VM or just has to be hidden from the programmer but still
stay connected to the object.

As it can be seen from the figure, there are no gaps between objects. So,
whole heap can be traversed from the beginning to the end (as singly linked
list) without any additional data structures, which is quite natural, because
all needed information is already in the heap. This feature appeared to be
quite useful during work on this thesis.

Object header contains following fields:

Field Bits Description

is root 1 Is this object a root

is scanned 1 Object scanned state

is garbage 1 Is this object garbage

is tracked 1 Is it tracked by an external reference (see 3.5.14)

flags 8 VM-specific flags ignored by GC

total size 10 Total size of the object in 4-byte units

slot count 10 Number of slots object has

Table 3.1: Object header fields

Object’s is scanned bit doesn’t have direct meaning: whether object is
already scanned or not. This approach would require flipping of this bit after
each marking phase for each object. Instead of that, there is an additional
flag in the GC itself, and only this flag is flipped after marking. To determine
whether object is scanned or not, object’s is scanned bit has to be compared
with the corresponding flag of the GC.

Object’s flags field can be used by VM to store any additional information
about the object. For example, TinyScheme uses this field to store type of
the object and its mutability status, since there is a few of builtin types in
TinyScheme.

Total size of header fields is 32 bits. On x86 64 another 32 bits of padding
are added to keep header aligned.

Traditionally, Lisp and Scheme implementations use cells of uniform format
and size as objects. Actual content of cell is determined using type tag – small
integer attached to each cell. This approach may be suitable for Lisp-like lan-
guages. This GC is more versatile: with its dynamic object format it can be
used for any language. Moreover, support of raw data inside object is a great
advantage for VM implementors.

26

3.2. Marking Process

3.2 Marking Process

Marking process takes advantage of the singly linked nature of the heap. It
consists of the four following steps:

1. Take current object. If it is already scanned – move to next one

2. Mark objects referenced by current object as reachable and unscanned

3. Mark current object as scanned

4. Jump to the smallest (closest to beginning of the heap) unscanned object
from step 2.

So heap may contain scanned (“S”) object mixed with unscanned (“U”)
ones. Marking process stops when it reaches end of heap.

Figure 3.2: Example of marking process

Additionally, marking process protects pages with scanned objects. If page
contains at least one scanned object – it will be protected for not to miss writes
to scanned objects by Mutator.

When parallel marking needs to modify object header in protected part of
the heap it unprotects its page temporarily.

Figure 3.3: Memory protection of scanned objects during parallel marking

27

3. Implementation Details

Figure 3.4: Temporary unprotection of the memory page

When parallel marking scans object beyond end of protected zone, it’s
page becomes protected.

Figure 3.5: Protection of new memory page

28

3.3. Compaction Process

After marking is finished and VM starts to wait for collection – finalization
of garbage objects is performed.

3.3 Compaction Process

Compaction starts with defragmentation of garbage objects: they are glued
together into special fill objects (“F”). These objects don’t have slots and
fill space between reachable objects. This approach allows to have consistent
heap state during collection.

Figure 3.6: Defragmentation of garbage objects

After defragmentation is finished – blocks of reachable objects are moved
to the start of the pool. Also, for each reachable block of reachable object
information about its original position is remembered. This information is
used later to update all references to moved objects in one pass over the heap.

So, compaction can be performed in 2 passes over the heap:

1. During first pass over the heap all reachable blocks are detected and
moved. Additionally, for each moved block its original position and
shift are remembered

2. During second pass, all references of reachable objects are tested against
remembered ranges of reachable blocks. In case of match, matching
pointer is updated with corresponding shift value.

29

3. Implementation Details

There is a nice feature in the implementation of compaction: for a reach-
able block only its end and shift are remembered. Since this information is
remembered even for not moved reachable blocks – beginning of the block
isn’t needed to update references correctly. Saved information about reach-
able blocks is automatically sorted because heap is traversed from beginning
to the end.

It may seem to be an overhead to store information about not moved
reachable block. But in fact, there can only be 1 such block: in the very
beginning of the pool. Following reachable blocks of reachable objects are
separated from previous ones by “F” objects.

Figure 3.7: Example of compaction

Following information about moved reachable blocks is remembered:

Shift Block End

0 - 0 = 0 3

7 - 3 = 4 11

16 - 7 = 9 22

Table 3.2: Information about moved blocks

Having this information, updating of references (and external references,
see 3.5.14) can be done in one pass over the heap: if slot of non-garbage

30

3.4. GC Thread

objects is less then some block end boundary – its value is decreased by the
corresponding shift.

Initial implementation of GC was moving reachable objects one by one,
also updating all references separately after each move. This approach was
very slow, so compaction was improved a lot comparing to the first version.

3.4 GC Thread

Described processes of marking and compaction are called from dedicated GC
thread, which is the main part of GC. It can be described in pseudocode as
follows:

void gc_thread ()

{

while (gc_is_working) // Not requested to stop by VM.

{

clear_statistics_counters ();

if (is_parallel_marking_enabled)

{

gc_mark ();

gc_pause_vm ();

gc_wait_for_vm_is_sleeping ();

}

else

{

gc_wait_for_vm_is_sleeping (); // Just wait.

}

// Before collection.

gc_fire_collection_callback ();

gc_unprotect_heap ();

// Mark objects referenced by external handles

// (REFERENCE_TRACKING_MODE_HANDLE) as reachable.

gc_mark_objects_as_reachable ();

// Do extra marking in case there are any

// unscanned objects.

gc_mark ();

// Set references to freed objects to NULL.

gc_update_freed_tracked_references ();

// Do collection.

gc_finalize_garbage ();

gc_defragment_garbage ();

31

3. Implementation Details

gc_compact ();

gc_update_references ();

// After collection.

gc_fire_collection_callback ();

gc_wake_up_vm ();

}

}

Listing 3.1: gc thread() pseudocode

3.5 GC Interface

This section describes interface of the GC. It also defined layout of object
header, which was described before: see section 3.1.

3.5.1 Struct GCStatistics

Stores GC statistics. Used by gc get statistics function (3.5.33) and gc-stat

scheme builtin (3.9.3.1).

3.5.2 Function gc create(size t pool page count, bool
use parallel marking)

Creates new GC object with given number of pages in the pool. If use parallel marking

is false – GC does marking process only when VM sleeps. This mode of op-
eration is used in benchmarks to compare stop-the-world (marking and com-
paction on full stop) and parallel approaches.

3.5.3 Function gc free(GC *gc)

Frees given GC object. Used by VM at the very end of execution.

3.5.4 Function gc start(GC *gc)

Starts GC thread.

3.5.5 Function gc stop(GC *gc)

Asks GC thread to stop and waits till it’s stopped.

3.5.6 Function gc set notification signal(GC *gc)

Sets SIGSEGV to be handled by GC. This is an implementation of write
barrier based on memory protection faults.

32

3.5. GC Interface

3.5.7 Function gc unset notification signal(GC *gc)

Restores original SIGSEGV handler.

3.5.8 Function gc register object finalizer(GC *gc,
gc object finalizer new object finalizer)

Registers user-supplied callback for object finalization.

3.5.9 Function gc register no memory callback(GC *gc,
gc no memory callback new no memory callback)

Registers user-supplied callback to be called when there is no enough memory.

3.5.10 Function gc register collection callback(GC *gc,
gc collection callback new collection callback)

Registers user-supplied callback to be called before and after collection is
performed.

3.5.11 Function gc set callback data(GC *gc, void
*new callback data)

Sets data pointer to pass to all callbacks. In TinyScheme it is used to pass
main interpreter object to all callbacks.

3.5.12 Function gc alloc(GC *gc, bool is root, unsigned flags,
size t slot count, size t byte count)

Allocates new object with given properties. Flags is user-defined object
header field ignored by GC (see 3.1 section). In TinyScheme this field is
used to store type of the object. This function may block till collection is
completed if there is no enough memory.

3.5.13 Function gc wait for collect completed(GC *gc, bool
check vm working)

Blocks calling thread till collection is completed. If check vm working is
true then blocks only if GC has requested VM to pause. Otherwise, blocks
unconditionally (i.e. when there is no memory).

3.5.14 Function gc track reference(GC *gc, ObjectHeader
**reference, ReferenceTrackingMode tracking mode)

Asks GC to update external reference to the object when it is moved. This
Application Programming Interface (API) is heavily used by VM.

33

3. Implementation Details

There are 3 kinds of external references:

Name Description

REFERENCE TRACKING MODE WEAK During its lifetime reference can point
only to single object. Object isn’t
marked as externally referenced. When
its collected – external reference is set
to NULL. This is some kind of weak ref-
erences for VM.

REFERENCE TRACKING MODE SINGLE OBJECT During its lifetime reference can point
only to single object. This type of ref-
erence can’t point to NULL. Object is
marked as externally referenced. So, it
won’t be collected till reference exists.

REFERENCE TRACKING MODE HANDLE During its lifetime reference can point
to different objects. This type of refer-
ence can point to NULL. Object pointed
by this type of reference won’t be col-
lected till reference exists.

Table 3.3: Kinds of external references

Typical scenario for using of single object external reference in VM is
following:

pointer cons(GC *gc , pointer car_value , pointer cdr_value)

{

gc_track_reference(

gc ,

&car_value ,

REFERENCE_TRACKING_MODE_SINGLE_OBJECT);

gc_track_reference(

gc ,

&cdr_value ,

REFERENCE_TRACKING_MODE_SINGLE_OBJECT);

pointer result = alloc_object_with_2_slots ();

// car_value and cdr_value are protected

// from being collected here.

// If they are moved --

// corresponding pointer are updated.

car(result) = car_value;

cdr(result) = cdr_value;

34

3.5. GC Interface

gc_untrack_reference(gc , &car_value);

gc_untrack_reference(gc , &cdr_value)

return result;

}

Listing 3.2: Single object external reference example

Typical scenario for using of external reference of type “handle” in VM is
following:

pointer cons(GC *gc , pointer some_object)

{

// Temporary variable used in different operations.

pointer t = NULL;

gc_track_reference(

gc,

&t,

REFERENCE_TRACKING_MODE_HANDLE);

t = object_get_slot(gc, some_object , SOME_SLOT);

// Some code trigerring collection.

// t points to the same object here

// and that object is still alive.

t = object_get_slot(gc, t, SOME_OTHER_SLOT);

// Some code trigerring collection.

// Previous object pointed by t might be collected.

// t points to new other object here , and that

// object is protected from being collected.

gc_untrack_reference(gc , &t);

// t points to a valid object here.

return t;

}

Listing 3.3: Handle external reference example

3.5.15 Function gc untrack reference(GC *gc, ObjectHeader
**reference)

Stops tracking given reference. If reference has mode REFERENCE TRACKING MODE SINGLE OBJECT

and it is last reference to the object – resets is tracked bit of pointed object
to 0 making object collectable again.

35

3. Implementation Details

3.5.16 Function object get slot(GC *gc, ObjectHeader *o,
size t slot index)

Returns value of given slot of the object o.

3.5.17 Function object set slot(GC *gc, ObjectHeader *o,
size t slot index, ObjectHeader *value)

Sets value of given slot of the object o to the new value.

3.5.18 Function object get byte(ObjectHeader *o, size t
byte index)

Returns pointer to given byte of raw data of the object o.

3.5.19 Function object fill slots(GC *gc, ObjectHeader *o,
ObjectHeader *value)

Sets all slots of the object o to the given value.

3.5.20 Function gc object get size in bytes(GC *gc,
ObjectHeader *object)

Returns size of given object in bytes.

3.5.21 Function gc object get header field(ObjectHeader
*object, int field)

Atomically returns given header field of the given object. Possible field

values are following ones:
OBJECT HEADER FIELD IS ROOT
OBJECT HEADER FIELD IS SCANNED
OBJECT HEADER FIELD IS GARBAGE
OBJECT HEADER FIELD IS TRACKED
OBJECT HEADER FIELD FLAGS
OBJECT HEADER FIELD TOTAL SIZE
OBJECT HEADER FIELD SLOT COUNT.

These values correspond to object header fields (see section 3.1).

3.5.22 Function gc update object header(GC *gc,
ObjectHeader *object, size t number of flags, ...)

Atomically updates header of given object. Takes necessary locks and tem-
porarily unprotects the object in case of parallel execution with VM. Takes
number of flags of pais of arguments. Each pair correspond to header field
and its new value. Example:

36

3.5. GC Interface

gc_update_object_header(

gc,

object ,

OBJECT_HEADER_FIELD_IS_SCANNED ,

(unsigned) true ,

OBJECT_HEADER_FIELD_IS_GARBAGE ,

(unsigned) false);

Listing 3.4: gc update object header() example

3.5.23 Function gc lock object(GC *gc, ObjectHeader
*object)

Locks object’s memory and allows direct modifications of its raw data.

3.5.24 Function gc unlock object(GC *gc, ObjectHeader
*object)

Unlocks object’s memory.

3.5.25 Function gc get pool(GC *gc)

Returns pointer to start of the pool.

3.5.26 Function gc get pool size(GC *gc)

Returns size of pool in bytes.

3.5.27 Function gc get used size(GC *gc)

Returns used size of pool in bytes.

3.5.28 Function gc vm register thread(GC *gc)

Notifies GC that new VM thread was born.

3.5.29 Function gc vm unregister thread(GC *gc)

Notifies GC that VM thread died.

3.5.30 Function gc vm thread awoke(GC *gc)

Notifies GC that existing VM thread awoke.

37

3. Implementation Details

3.5.31 Function gc vm thread fall asleep(GC *gc)

Notifies GC that existing VM thread went to sleep. So, GC can safely do
collection.

Typical pattern of usage of gc vm * thread-related functions is the follow-
ing:

void vm_thread ()

{

gc_vm_register_thread ();

gc_vm_thread_awoke ();

// Some code.

gc_vm_thread_fall_asleep ();

// Waiting for something.

gc_vm_thread_awoke ();

// Some code.

gc_vm_thread_fall_asleep ();

gc_vm_unregister_thread ();

}

Listing 3.5: gc update object header() example

3.5.32 Function gc is collection needed(GC *gc)

Returns true if collection is requested by GC – when it has no objects to scan
and is ready to start collection.

3.5.33 Function gc get statistics

Returns pointer to the GCStatistics struct (3.5.1) of given GC.

3.5.34 Function gc set parallel marking(GC *gc, bool
enable parallel marking)

Enables or disables parallel marking. See description of function gc create()

(3.5.2) for details.

3.6 TinyScheme Integration

Strictly speaking, gc track reference() 3.5.14 and gc untrack reference()

3.5.15 are enough to implement VM. But they have to be used carefully: all
tracked references must be untracked, single object external references must
not point to another object, etc.

38

3.6. TinyScheme Integration

The process of porting TinyScheme to new GC included a lot of tedious
work regarding managing this references. Moreover, incorrect usage of this
API could result in a lot of hard to find bugs: floating garbage, freeing used
objects and so on.

To solve that, several C macros were introduced. They somehow mimic
the behavior of C++ destructors and also provide automatic initialization.
The idea is to have some set of local variables (pointers to heap objects), call
gc track reference() for them at the beginning and gc untrack reference()

at the end. And this should happen automatically. For all this local pointers
REFERENCE TRACKING MODE HANDLE is used, since it is the most reliable ap-
proach. Also, references managed by these macros usually point to several
objects during reference’s lifetime, since functions where this feature is used
are quite big and complex (for example opexe *() family).

The general implementation if this scope macro accepts type of managed
object, its initial value, initializer and finalizer expressions. When applied
to TinyScheme, this macro is used with pointer type, NULL as an initial
value, gc track reference() as initializer and gc untrack reference() as
finalizer.

In TinyScheme these macro is used as follows:

pointer some_function(pointer _scheme_object , other_args)

scope(scheme_object , sc , gc , x, y)

{

local(x) = get(scheme_object , SCHEME_ARGS);

local(y) = car(local(x));

// Some code.

scope_return local(x);

} endscope;

Listing 3.6: Scope example

In this example, scheme object, x and y are automatically managed ref-
erences. They can be accessed using local(name) macro. Also, TinyScheme
customization of this macro automatically extracts pointers to scheme and
GC structs from scheme object. This operation is quite common in TinyS-
cheme. It also defines inner get, set and get byte functions, which don’t
need a GC pointer as parameter: it’s automatically extracted from the scope.
These functions are analogous to object get slot(), object set slot()

and object get byte().

Usage of this approach saved a lot of effort during porting TinyScheme to
new GC.

This scope macro can be used everywhere, where original C scope is al-
lowed:

int main()

39

3. Implementation Details

{

// Regular scope.

scope(object1 , object2)

{

local(object1) = 1;

scope ()

{

printf (" Hello from empty scope!\n");

} endscope;

// Breakable scope.

while (true)

{

scope(object1)

{

local(object1) = 42;

scope_break;

} endscope;

}

// Continuable scope.

while (true)

{

scope(object2)

{

local(object2) = 42;

scope_continue;

} endscope;

}

scope(object1)

{

local(object1) = 42;

scope_leave;

printf ("Not reached !\n");

} endscope;

local(object2) = 2;

} endscope;

scope(another_example);

printf (" another_example .\n");

// Manual scope finalization.

scope_finalize ();

endscope;

return 0;

40

3.7. Implementation of Write Barrier

}

Listing 3.7: Scope example

The limitation of current implementation of scopes it that inner scopes
can’t access object in outer scopes. But it is not a problem for TinyScheme
since it doesn’t use nested scopes: 1 level is enough.

Scope macro uses some GNU Compiler Collection (GCC) C extensions:
Locally Declared Labels and Nested Functions [9]. Also, C99 variadic macros
are used.

But actually this scope macro solves only the half of the problem. When
code only works with external references – everything is fine. But it’s also
needed to be able to work efficiently with slot content of usual objects. With
the external references approach, slot value will be copied to local external
reference and accessed through it. But during execution slot value of actual
object may change (point to another object) while external reference still will
be pointing to old object.

So the problem here is to access actual slot value of the object and still
have benefits of scope macro. To solve that another C macro was introduced.
It binds information about slot index and object to a locally defined name
and provides convenient access to the slot. It doesn’t introduce new external
reference, which is good for GC for performance reasons.

This macro is used together with scope macro as follows:

pointer some_function(pointer _scheme_object , other_args)

scope(scheme_object , sc , gc , x)

{

defslot(local(scheme_object), SCHEME_ARGS , sc_args);

local(x) = car(slot(sc_args));

setslot(sc_args , cdr(slot(sc_args));

scope_return local(x);

} endscope;

Listing 3.8: Slot example

In this example, sc args is a slot of scheme object with index SCHEME ARGS.
This combination of slot and scope macros proved to be very handy in process
of porting of TinyScheme to the new GC.

3.7 Implementation of Write Barrier

There are several special things about write barrier based on memory protec-
tion:

• SIGSEGV is delivered not to the particular thread, but to the whole
process. It is not possible to handle several segfaults simultaneously

41

3. Implementation Details

in each thread. So, heap memory writes from all threads should be
serialized

• When SIGSEGV occurs – corresponding memory page should be un-
protected to allow write. While page is unprotected, other threads may
write to scanned the objects on the page. So, all writes to the page must
be serialized

This special nature of SIGSEGV leads to a following pseudocode of the
write barrier:

// Write given value to the slot of the object.

void write_barrier(object , slot , value)

{

lock_mutation_mutex ();

lock_object_memory(object);

object.slot = value;

if (SIGSEGV_occured)

{

unprotect_page(object);

object.slot = value;

if (object_is_scanned(object))

{

// To be scanned again.

mark_object_as_unscanned(object);

}

protect_page(object);

}

unlock_object_memory(object);

unlock_mutation_mutex ();

}

Listing 3.9: Write barrier pseudocode

Actually, there are 2 possible candidates to be scanned again: object writ-
ten to or new slot value. This GC chooses first candidate to be rescanned
since it showed slightly better performance. It’s because in TinyScheme there
are few object which are written to very frequently: main interpreter (scheme)
objects. If new value will be rescanned, then in current round of collection
each object that was written to the modified scheme object will be treated
as live. But only last written value is actually live. So, this approach pro-
duces more floating garbage. It will be collected during next round, but still
it hinders performance.

42

3.8. Description of Selected GC Internals

3.8 Description of Selected GC Internals

This section describes some tricks, which were used in GC implementation.

3.8.1 Flipping of Garbage and Scanned Bits of the Object

After collection is performed, all live objects must be marked as garbage and
unscanned. This could be achieved by separate pass over the heap, but in
this GC another approach is used. GC struct itself has garbage and scanned
bits and only they are flipped. Do determine whether object is garbage, its
garbage bit is compared with garbage bit of GC struct. If they match – object
is garbage, otherwise – not. Same approach is used with scanned bit of the
object.

3.8.2 Condition Variables Instead of Sleeps

Initial implementation of GC was using nanosleep() function to synchronize
GC with VM: wait till VM is paused or resumed. But usage of POSIX condi-
tion variables showed better performance, despite additional mutex locks are
needed to work with condition variables.

3.9 New TinyScheme Functions

This section lists new builtin functions of TinyScheme, which were added
during implementation of this thesis.

These new functions don’t expose whole POSIX possibilities. Just bare
minimum for creating multithreaded applications is represented in current
TinyScheme implementation.

3.9.1 Multithreading Support

This group of functions deal with thread handle stored in the interpreter
object.

3.9.1.1 (current-thread)

Returns interpreter object corresponding to the calling thread.

3.9.1.2 (thread? object)

Returns #t if object is a thread. Otherwise returns #f.

3.9.1.3 (thread-finished? thread)

Returns #t if given thread is finished. Otherwise returns #f.

43

3. Implementation Details

3.9.1.4 (thread-create callable)

Creates new thread which runs callable. Returns freshly-created thread
object.

3.9.1.5 (thread-get-id thread)

Returns string containing id of given thread or id of current thread if function
is called with no arguments.

3.9.1.6 (thread-join thread)

Joins given thread and returns its return value. If thread is already finished
– returns immediately. Only 1 join to a working thread is allowed.

3.9.1.7 Example

TinyScheme 1.41

ts> (current -thread)

#<THREAD 7fdb78d73700 >

ts> (thread -finished? (current -thread))

#f

ts> (thread? (current -thread))

#t

ts> (thread? 1)

#f

ts> (thread -get -id)

"7 fdb78d73700"

ts> (define t (thread -create (lambda () (display "Hello

from thread !\n") 42)))

t

ts> Hello from thread!

(thread? t)

#t

ts> (thread -finished? t)

#t

ts> (thread -join t)

42

ts> (thread -get -id t)

"7 fdb784ee700"

ts> (quit)

Listing 3.10: Example TinyScheme session

3.9.2 Mutex Support

These functions provide mutex support for TinyScheme. Mutexes by default
are recursive.

44

3.9. New TinyScheme Functions

3.9.2.1 (make-mutex)

Creates new mutex.

3.9.2.2 (mutex? object)

Returns #t if object is a mutex. Otherwise returns #f.

3.9.2.3 (mutex-lock mutex)

Locks given mutex. Returns #t in case of success. Otherwise returns string
describing error occured.

3.9.2.4 (mutex-unlock mutex)

Unlocks given mutex. Returns #t in case of success. Otherwise returns string
describing error occured.

3.9.2.5 (mutex-trylock mutex)

If given mutex is free – locks it and returns #t. If mutex is locked – immedi-
ately returns #f. In case of error returns string with error description.

3.9.2.6 Example

TinyScheme 1.41

ts > (define m (make -mutex))

m

ts > (mutex? m)

#t

ts > (mutex? 1)

#f

ts > (mutex -lock m)

#t

ts > (mutex -trylock m)

#t

ts > (mutex -unlock m)

#t

ts > (mutex -unlock m)

#t

ts > (mutex -unlock m)

"Operation not permitted"

ts > (quit)

Listing 3.11: Example TinyScheme session

45

3. Implementation Details

3.9.3 Other Functions

3.9.3.1 (gc-stat)

Prints various GC statistics to default output. Returns #t.

TinyScheme 1.41

ts> (gc-stat)

GC Statistics:

Live: 5202, 129712b, 0.2474.

Garbage: 5892, 147392b, 0.2811.

Last Collection: 711, 18160b, 0.0346 , 66 moves.

Duration: 0.0029s.

SIGSEGVs: 0 (total 36175).

Peak Usage: 524280b, 1.0000.

Current Usage: 130016b, 0.2480.

#t

ts> (quit)

Listing 3.12: Example TinyScheme session

First group of 3 numbers represent number of live objects, their total size
in bytes and ratio of size of live object to total heap size.

Second group of 3 numbers represent same kind of information regarding
garbage objects.

Then information about last collection is given: number of collected ob-
jects, their size in bytes, number of moves of blocks of reachable objects,
duration of last collection (compaction phase).

Next 2 numbers mean number of memory protection faults (writes to
scanned objects) during last marking and in total.

Then general memory usage is provided: peak and current usage in bytes
and as a ratio.

3.9.3.2 (rand)

Returns pseudo-random number.

TinyScheme 1.41

ts> (rand)

58595509

ts> (rand)

1136457986

ts> (rand)

1524161434

ts> (quit)

Listing 3.13: Example TinyScheme session

46

Chapter 4

Testing

This chapter describes tests which were performed on TinyScheme with new
GC.

4.1 Functional Testing

GC and TinyScheme can be built in 3 build configurations:

1. Debug

2. Profile

3. Release

by passing appropriate argument to make.
In debug configuration different assertions and checks are added to the GC

code. They ensure that heap state is consistent, objects have correct value of
header fields and many other checks. All these checks cause significant slow-
down of the GC (especially gc assert heap(), which is also most important
one), but this mode is used only for testing. Also, this configuration includes
debugging information.

Profile configuration still includes debug information but assertions and
checks are disable, so they do not blur the performance picture. This con-
figuration is used for profiling, which can report more detailed results using
debug information from the executable.

Release configuration is built without debug information, assertions and
checks and with full optimization.

Also, for testing of GC itself dummy VM was created (file vm.c). It creates
several threads which allocate objects of random size and modify existing
objects. So, behavior of real VM is simulated in this way. This dummy VM
was used during initial testing (before integration with TinyScheme) and also
in cases of major changes in the implementation of GC.

47

4. Testing

4.2 Performance Testing

After GC implementation has been finished and all bugs (hopefully) were
defeated, main testing which was performed was performance one. The meth-
odology of performance testing in this thesis is the comparison of run times
of original TinyScheme and TinyScheme with new GC on same programs.

For measuring of running time standard time command was used like this:
/usr/bin/time --format "%e" /path/to/scheme /path/to/benchmark.scm.

Tests were performed on the machine with Intel Core i5 2410M CPU (max
frequency 2.3 GHz), 8 GB of RAM under control of Debian GNU/Linux OS.

4.2.1 Benchmarks

Following benchmarks were used in performance testing.

Simple loop:

; Singlethreaded.

; Simple benchmark.

(define (f i) (when (< i 256) (f (+ 1 i))))

(f 0)

Listing 4.1: benchmark 1 st.scm

Comparison of running simple loop 4 times in a sequence or in parallel:

; Multithreaded.

; Illustration of parallelizing of same amount of work.

(define thread -count 4)

(unless (defined? ’thread -create)

(define (thread -create f) (f)))

(define (f i) (when (< i 64) (f (+ 1 i))))

(do ((i 0 (+ 1 i)))

((= i thread -count))

(thread -create (lambda () (f 0))))

Listing 4.2: benchmark 2 mt.scm

Parallel quicksort (runs as singlethreaded on original TinyScheme):

; Multithreaded.

; Parallel quicksort example.

(unless (defined? ’thread -create)

(define (thread -create f) (f)))

48

4.2. Performance Testing

(unless (defined? ’thread -join)

(define (thread -join t) ’()))

(unless (defined? ’rand)

(define (rand) (random -next)))

(define (qsort -parallel -worker array l r)

(let ((pivot (vector -ref array (quotient (+ l r) 2)))

(left l)

(right r))

(do () ((> l r))

(do ()

((>= (vector -ref array l) pivot))

(set! l (+ l 1)))

(do ()

((<= (vector -ref array r) pivot))

(set! r (- r 1)))

(when (<= l r)

(let ((t (vector -ref array l)))

(vector -set! array l (vector -ref array r))

(vector -set! array r t))

(set! l (+ l 1))

(set! r (- r 1))))

(let

((left -sorter -thread

(thread -create

(lambda ()

(when (< left r)

(qsort -parallel -worker array left r)))))

(right -sorter -thread

(thread -create

(lambda ()

(when (< l right)

(qsort -parallel -worker array l right))))))

(thread -join left -sorter -thread)

(thread -join right -sorter -thread))))

(define (qsort -parallel array)

(qsort -parallel -worker array

0

(- (vector -length array) 1)))

(define array -size 32)

49

4. Testing

(define array (make -vector array -size))

(do ((i 0 (+ 1 i)))

((= i (vector -length array)))

(vector -set! array i (remainder (rand) array -size)))

(qsort -parallel array)

Listing 4.3: benchmark 3 mt.scm

Sequential quicksort:

; Singlethreaded.

; Quicksort example.

(define (thread -create f) (f))

(define (thread -join t) ’())

(unless (defined? ’rand)

(define (rand) (random -next)))

(define (qsort -parallel -worker array l r)

(let ((pivot (vector -ref array (quotient (+ l r) 2)))

(left l)

(right r))

(do () ((> l r))

(do ()

((>= (vector -ref array l) pivot))

(set! l (+ l 1)))

(do ()

((<= (vector -ref array r) pivot))

(set! r (- r 1)))

(when (<= l r)

(let ((t (vector -ref array l)))

(vector -set! array l (vector -ref array r))

(vector -set! array r t))

(set! l (+ l 1))

(set! r (- r 1))))

(let

((left -sorter -thread

(thread -create

(lambda ()

(when (< left r)

(qsort -parallel -worker array left r)))))

(right -sorter -thread

(thread -create

50

4.2. Performance Testing

(lambda ()

(when (< l right)

(qsort -parallel -worker array l right))))))

(thread -join left -sorter -thread)

(thread -join right -sorter -thread))))

(define (qsort -parallel array)

(qsort -parallel -worker array

0

(- (vector -length array) 1)))

(define array -size 32)

(define array (make -vector array -size))

(do ((i 0 (+ 1 i)))

((= i (vector -length array)))

(vector -set! array i (remainder (rand) array -size)))

(qsort -parallel array)

Listing 4.4: benchmark 4 st.scm

4.2.2 Results

When GC was finished integrated into TinyScheme, initial testing was per-
formed. Test results are given in the first section of table 4.2.2.

Since they were not very pleasant, some profiling using valgrind (callgrind
tool) [10] with kcachegrind [11] and gprof [12] was done. Based on profiling
data: following optimizations were performed:

• In hot functions gc object get size(), object get slot(),
object set slot() and object get byte() safety checks were moved
to debug configuration

• Events instead of sleeps were used for synchronization of VM and GC

• In gc alloc() function, VM thread goes to sleep only if alloc mutex

is locked

• Flipping of global garbage bit in one place instead of iterating over all
objects

• Functions gc object get header field(), gc object get size() and
object get slot() were translated to macros using excellent feature of
GCC: Statements and Declarations in Expressions [9]

51

4. Testing

• For compaction phase, new function was introduced:
gc object get size exclusive(), which uses direct access to the ob-
ject header instead of the atomic load.

After these optimizations results were much better than before – see second
section of table 4.2.2. But still much worse than original TinyScheme. An-
other interesting point is that test cases without parallel marking started to
overcome those with parallel marking enabled.

So, another round of optimizations was performed:

• Usage of pointer arithmetics instead of indexed access to internal dy-
namic arrays, which store external references

• Updating all references to moved objects in one pass using remembered
information about reachable blocks instead of separate pass for each
move

• get cell() function was optimized and functions using it (cons(),
immutable cons(), mk closure(), mk continuation(), cons()) were
turned to macros.

Results of these optimizations are shown in the third section of table 4.2.2
and they are better than previous ones.

According to profiling data, total time spent in GC thread is 30-35% in-
stead of 70-80% as before optimizations. But speedup is not so dramatic as
after previous optimizations. And still, cases without parallel marking con-
tinue to overcome.

Last round of optimization was about following improvements:

• Unprotecting of a page after first SIGSEGV on it and marking all objects
there as reachable and unscanned – should reduce number of SIGSEGVs

• Inline singlethreaded version of object set slot() used during refer-
ence update

• Delay time of marking thread adjusted

Results of these optimizations are in the fourth section of table 4.2.2. As it
will be shown later in this section, number of SIGSEGVs is quite important for
overall performance. It was decreased during these optimizations but number
of floating garbage increased instead, so total improvement wasn’t very big.

Another important point is the duration of delays during marking process.
If it’s too small then parallel marking process almost instantly traverses whole
object graph and marks it as reachable. On subsequent changes. another
live objects are being added, so total amount of floating garbage becomes
enormous. On the other hand, if parallel marking is too slow, it becomes not

52

4.2. Performance Testing

effective and its cost overcomes its profit. So, this duration of delay has to be
carefully adjusted, so that GC thread runs in the “background” of the VM.

Benchmark
Parallel
Mark

Enabled

Parallel
Mark

Disabled

Original
TinyScheme

Initial benchmark results

Simple Loop 9.34s 9.94s 0.14s

Parallel Loop 23.20s 28.35s 0.11s

Parallel QuickSort 56.97s 100.16s 0.37s

Singlethreaded QuickSort 55.72s 72.37s 0.33s

Benchmark results after first optimization round: events for synchronization,
flipping garbage bit in one place, turning hot functions to macros

Simple Loop 5.83s 1.74s 0.10s

Parallel Loop 5.97s 4.33s 0.10s

Parallel QuickSort 15.36s 11.63s 0.28s

Singlethreaded QuickSort 17.35s 4.84s 0.30s

Benchmark results after second optimization round: one pass to update all
references, optimizing some internal TinyScheme functions, usage of pointer
arithmetics for arrays

Simple Loop 4.99s 1.16s 0.09s

Parallel Loop 3.47s 3.24s 0.10s

Parallel QuickSort 12.91s 8.52s 0.33s

Singlethreaded QuickSort 15.57s 3.75s 0.29s

Benchmark results after third optimization round: unprotecting pages after
first SIGSEGV, adjusted mark delay

Simple Loop 4.89s 1.16s 0.11s

Parallel Loop 4.75s 3.74s 0.10s

Parallel QuickSort 13.35s 10.56s 0.28s

Singlethreaded QuickSort 14.11s 4.19s 0.27s

Table 4.1: Benchmark results for different configurations

Benchmark
Peak Final

Size Ratio Size Ratio

Simple Loop 524288b 1.0000 369000b 0.7038

Parallel Loop 524280b 1.0000 338896b 0.6464

Parallel QuickSort 524288b 1.0000 436040b 0.8317

Singlethreaded QuickSort 524288b 1.0000 256592b 0.4894

Table 4.2: Benchmark memory usage

53

4. Testing

Peak and final memory usages for each benchmark are given in table 4.2.2.
Another round of testing with different problem size and pool size was

performed:

• benchmark 1 st.scm (Simple Loop): number of iterations is 512 instead
of 256

• benchmark 2 mt.scm (Parallel Loop): number of iterations for single
thread is 128 instead of 64

• benchmark 3 mt.scm (Parallel QuickSort): array size is 64 instead of 32

• benchmark 4 st.scm (Singlethreaded QuickSort): array size is 64 instead
of 32

As it can be seen in table 4.2.2, running times are also doubled and the
gap between new and old schemes has grown even more, as also a gap between
cases with and without parallel marking.

Benchmark
Parallel
Mark

Enabled

Parallel
Mark

Disabled

Original
TinyScheme

Original configuration, pool 128 pages

Simple Loop (256 iterations) 4.89s 1.16s 0.11s

Parallel Loop (64 iterations) 4.75s 3.74s 0.10s

Parallel QS (32 elements) 13.35s 10.56s 0.28s

Singlethreaded QS (32 elements) 14.11s 4.19s 0.27s

Doubled problem size, pool 128 pages

Simple Loop (512 iterations) 9.40s 2.33s 0.19s

Parallel Loop (128 iterations) 12.77s 7.57s 0.19s

Parallel QS (64 elements) 45.57s 23.17s 0.67s

Singlethreaded QS (64 elements) 32.26s 8.57s 0.65s

Original configuration, pool 256 pages

Simple Loop (256 iterations) 4.52s 1.50s 0.11s

Parallel Loop (64 iterations) 4.86s 3.66s 0.10s

Parallel QS (32 elements) 14.12s 8.67s 0.28s

Singlethreaded QS (32 elements) 16.32s 4.79s 0.33s

Doubled problem size, pool 256 pages

Simple Loop (512 iterations) 9.11s 2.72s 0.22s

Parallel Loop (128 iterations) 10.41s 7.25s 0.19s

Parallel QS (64 elements) 33.30s 28.06s 0.62s

Singlethreaded QS (64 elements) 30.41s 9.91s 0.68s

Table 4.3: Benchmark results for different pool and problem sizes

54

4.2. Performance Testing

Another testing was performed on original problems, but with doubled size
of pool: 256 pages instead of 128. These results are comparable to those with
original pool size. But numbers should be less since collections should happen
rarely.

Taking into account this strange behavior and overcoming of cases with
disabled parallel marking, the testing of write barrier performance was per-
formed.

For that, separate small application was created. This application per-
forms given number of segmentation violations and handles them the same
way as GC does. The pseudocode of main loop of this testing application is
the following:

while (not_all_iterations_finished ())

{

protect_page ();

do_write ();

// SIGSEGV occurs.

return_from_sigsegv_handler ();

unprotect_page ();

do_write ();

}

Listing 4.5: SIGSEGV testing application pseudocode

At first, number of segmentation violations of new TinyScheme is meas-
ured, till it’s ready to run user code (after processing init.scm):

$ /usr/bin/time -f "%e" ./ scheme -c "(gc-stat)"

Live: 5101, 127280b, 0.2428.

Garbage: 20766, 524280b, 1.0000.

Last collection: 15665, 397000b, 278 moves ,

13707 sigsegvs (total 42648) ,

0.0066s.

0.36

Listing 4.6: Measuring of number of segmentation violations in new
TinyScheme

So, 42648 SIGSEGVs and 0.36 seconds.

Then, time for same number of SIGSEGVs was measured in a separate
test application:

$./ sigsegv 42648

Timespan: 0.1607s.

Listing 4.7: Simulating given number of SIGSEGVs

Surprisingly, half of time is spent only in SIGSEGV handling, which turns
out to be quite expensive operation. Taking into account this fact, other
portion of time should be spent in locks, which were added to use memory

55

4. Testing

protection as a basis for write barrier implementation: mutation lock and
page locks for particular pages.

So, now it is clear why disabled parallel marking showed better perform-
ance: after optimizing biggest bottlenecks during optimization sessions, cost
of handling protection faults came into the first place among all other per-
formance issues.

Same results were obtained by Zorn[13]:

The severe disadvantage of the simplistic approach (write barrier
using write protection faults) is the high cost of the operating sys-
tem handling a protection violation (typically several thousands
instructions). Because, in the past, protection faults have been as-
sociated with program errors or security violations, operating sys-
tem designers have not attempted to implement these faults with
great efficiency. Faulting on every store is clearly too expensive.

The proposed approach to fix this performance issue is that after first fail-
ing write page is unprotected and all subsequent writes do not fail. To detect
modified pages, modification of OS virtual memory interface is suggested: to
give access to dirty bits, so all modified pages will be rescanned.

In this thesis, another option was used: unprotect memory page after first
SIGSEGV on it and mark all objects on this page as unscanned and reachable.
The original goal was achieved. This approach gives 35017 SIGSEGVS on
startup (comparing to 42648 before). This decrease is not so big, as expected.
Also it doesn’t improve performance significantly. The reason for that is big
increase of amount of floating garbage, which appears after unprotecting a
page. This increase of garbage leads to more frequent collections, which take
time.

Another question that arises is whether it will be effective to avoid com-
paction – do it only for some collections or after hitting some threshold. Ac-
cording to profiling data, 6.57% of time was spent in gc compact() (24.29%
in gc mark(), 34.30% in gc thread()). Taking into account this and the fact
that avoiding of compaction will introduce free lists (explicit or implicit –
walking over heap) with additional overhead, it may be concluded that avoid-
ing of compaction will not increase overall performance, since TinyScheme
allocates object quite often (cons cells).

Moreover, collection round without compaction means that the only useful
job done is finalization of garbage.

56

Chapter 5

Possible Enhancements

5.1 Reimplementation of Write Barrier

According to performed performance tests, write barrier should be reimple-
mented. One possibility for it is to use software write barrier and ensure that
its implementation is as small as possible, so it would be inlined effectively.

Another possibility is to unprotect memory page after first memory pro-
tection fault and record that page is dirty in some external place. After that,
dirty pages should be rescanned either in parallel or just before compaction.

Also, another implementation of write barrier possibly will allow to get rid
of some global locks, which definitely shall improve overall performance.

5.2 Dynamic Heap Size

One of the first steps towards enhancing this GC is an ability to grow heap
size dynamically upon request when there is no enough memory in the existing
heap. Currently, heap size is set on startup and can’t be changed during VM
execution. This enhancement may be implemented using multiple independent
pools. So, GC heap will consist of several independent memory regions.

Another approach is to reallocate existing pool.

First way seems to be better because it allows to give back unused memory
to OS and doesn’t depend on reallocation of a huge memory block (which can
be impossible). But it will require major modifications to the existing GC
implementation:

• marking procedure will have to traverse object graph correctly across
multiple regions of memory

• compaction procedure will have to move objects across different memory
regions or within same region.

57

5. Possible Enhancements

5.3 Immediate Values

Another valuable enhancement is to add support for Immediate Values. Since
they are quite small to allocate whole object to store them. For example, in-
tegers, floats, characters – these values could be stored inside a pointer instead
of separate object. Pointer which holds Immediate Value can be recognized
by its nonzero 2 or 3 lower bits, which are all zeros for a usual pointer. This
feature should be particularly useful on x86 64 with its huge pointer size.

5.4 Delayed Finalization

GC has to run custom finalizer for objects which are freed. Currently it is
done during VM sleep before compaction. But it should be possible to do
finalization for some objects in parallel with VM, for example during GC
waits for VM to sleep before compaction.

5.5 Reducing Number of Passes over Heap

Current implementation of marking sometimes goes back to previous heap
objects during process of marking. Albeit those jumps back don’t mean new
pass over whole heap, they still introduce some amount of extra work. This
extra work can be avoided using the queue of yet unscanned objects. This
approach requires some extra memory but saves from needles jumping over
objects. The question here is whether this trade-off reasonable or not.

5.6 Better Vectors Implementation

Currently vectors are implemented as objects with number of slots correspond-
ing to the size of vector. But vector may contain thousands of elements and
these huge vectors aren’t supported by current implementation. Having 10
bits for storing object’s size means that maximum possible size of the object
is 4096 bytes which corresponds to 511 slots on x86 64.

It will be useful to have support of objects with large number of slots and
their size limited only by available pool size.

58

Conclusion

As the result of this thesis, parallel compacting GC was implemented. Imple-
mented GC provides well-defined interface which makes it easy to use both
for implementation of new VMs and integration into existing ones.

New GC was integrated into existing TinyScheme implementation, which
was also extended to support native multithreading. After some helper struc-
tures were created, which were described in the implementation details (chapter
4), the process of integration was almost automatic.

Performed performance testing revealed some major performance issues.
All of them were fixed except one: implementation of write barrier, which was
added as the most important item for the possible enhancements.

It was showed that SIGSEGV handling is quite expensive operation and
can’t be used for write barrier implementation, at least in the trivial way.

During performance optimizations, profiling tools (callgrind together with
kcachegrind and gprof) helped a lot to discover bottlenecks. Otherwise, it
would have taken a lot of time to find that places manually, if even possible
to do that. Usage of these tools allowed to significantly improve performance
of GC comparing to the original implementation.

Also, valgrind’s memcheck tool helped to debug TinyScheme integration
issues: memory leaks and incorrect accesses to memory.

59

Bibliography

[1] Wilson, P. R. Uniprocessor Garbage Collection Techniques. In ACM
Computing Surveys, 1992.

[2] Microsystems, S. Memory Management in the Java HotSpotTMVirtual
Machine. 2006.

[3] Farrell, C.; Harrison, N. Under the Hood of .NET Memory Management.
Simple Talk Publishing, 2011, ISBN 978-1-906434-74-8.

[4] Shaughnessy, P. Ruby Under a Microscope: An Illustrated Guide to Ruby
Internals. No Starch Press, 2014, ISBN 978-1-59327-527-3.

[5] Memory Management Glossary [online]. Available from: http://

www.memorymanagement.org/glossary

[6] MSDN Library [online]. Available from: https://msdn.microsoft.com/
library

[7] Java Documentation [online]. Available from: http://docs.oracle.com/
javase/8

[8] Open Group Base Specification Issue 7, 2013 Edition [online]. 2013. Avail-
able from: http://pubs.opengroup.org/onlinepubs/9699919799

[9] GCC Online Documentation [online]. Available from: https://

gcc.gnu.org/onlinedocs

[10] Valgrind Documentation [online]. Available from: http:

//valgrind.org/docs

[11] KCachegrind Documentation [online]. Available from: http://

kcachegrind.sourceforge.net/html/Documentation.html

61

http://www.memorymanagement.org/glossary
http://www.memorymanagement.org/glossary
https://msdn.microsoft.com/library
https://msdn.microsoft.com/library
http://docs.oracle.com/javase/8
http://docs.oracle.com/javase/8
http://pubs.opengroup.org/onlinepubs/9699919799
https://gcc.gnu.org/onlinedocs
https://gcc.gnu.org/onlinedocs
http://valgrind.org/docs
http://valgrind.org/docs
http://kcachegrind.sourceforge.net/html/Documentation.html
http://kcachegrind.sourceforge.net/html/Documentation.html

Bibliography

[12] Gprof Documentation [online]. Available from: https://

sourceware.org/binutils/docs/gprof

[13] Zorn, B. Barrier Methods for Garbage Collection. 1990.

[14] Wikipedia The Free Encyclopedia [online]. Available from: https://

en.wikipedia.org/wiki

62

https://sourceware.org/binutils/docs/gprof
https://sourceware.org/binutils/docs/gprof
https://en.wikipedia.org/wiki
https://en.wikipedia.org/wiki

Appendix A

Glossary

Collector In a garbage-collected system, the part that executes the garbage
collection code, which discovers unused memory and reclaims it [5].

Garbage Collector Garbage collector is an implementation of a garbage
collection algorithm [5].

Heap The heap or free store is the memory area managed by dynamic alloc-
ation [5].

Immediate Value Immediate value is the representation of a value object as
one or more machine words, as a register, or as a field in an instruction.
Immediate data takes its name from the value of the object being im-
mediately available, rather than requiring a load or indirection through
a reference [5].

Mutator (AKA client program) In a garbage-collected system, the part that
executes the user code, which allocates objects and modifies, or mutates,
them. For purposes of describing incremental garbage collection, the
system is divided into the mutator and the collector. These can be sep-
arate threads of computation, or interleaved within the same thread.
The user code issues allocation requests, but the allocator code is usu-
ally considered part of the collector. Indeed, one of the major ways of
scheduling the other work of the collector is to perform a little of it at
every allocation. While the mutator mutates, it implicitly frees memory
by overwriting references [5].

Pool In this thesis, same as heap.

Reachability An object is reachable if it is referred to by a root, or is referred
to by a reachable object; that is, if it can be reached from the roots by

63

Glossary

following references. Reachability is used as an approximation to liveness
in tracing garbage collection [5].

Root Set The root set is the collection of roots that the mutator declares to
the collector [5].

TinyScheme Minimalistic Scheme implementation in C.

Tri Color Invariant The strong tri-color invariant is the property of a ref-
erence graph that there is no edge from a black node to a white node.
By preserving this property throughout tri-color marking, a tracing al-
gorithm can ensure that the collector will not miss reachable objects,
even if the mutator manipulates the graph during the collection. This
invariant can also be used to ensure that a copying garbage collector
doesn’t confuse the mutator. Mutator actions might need to change the
color of the nodes affected in order to preserve the invariant. Algorithms
using this invariant are incremental update algorithms [5].

Virtual Machine A process VM, sometimes called an application virtual
machine, or Managed Runtime Environment (MRE), runs as a normal
application inside a host OS and supports a single process. It is created
when that process is started and destroyed when it exits. Its purpose
is to provide a platform-independent programming environment that
abstracts away details of the underlying hardware or operating system,
and allows a program to execute in the same way on any platform [14].

64

Appendix B

Acronyms

API Application Programming Interface.

GC Garbage Collector.

GCC GNU Compiler Collection.

JVM Java Virtual Machine.

NPTL Native POSIX Thread Library.

POSIX Portable Operating System Interface.

VM Virtual Machine.

65

Appendix C

Contents of Enclosed CD

readme.txt..this description
bin...........binaries of new and original schemes and GC dummy VM
src... sources

tinyscheme.....................sources of new TinyScheme and GC
tinyscheme-orig....................sources of original TinyScheme
thesis..................................LATEX sources of the thesis

benchmarksbenchmark sources and raw logs
figures....................................figures used in thesis

text...thesis text
task.pdf.............................thesis topic assigment in PDF
thesis.pdf thesis text in PDF

67

	Introduction
	Existing Implementations
	Java
	.NET
	Ruby

	High Level Design
	GC Algorithm
	Object Representation
	Marking Process
	Compaction Process
	GC and VM Synchronization

	Implementation Details
	Object Memory Layout
	Marking Process
	Compaction Process
	GC Thread
	GC Interface
	TinyScheme Integration
	Implementation of Write Barrier
	Description of Selected GC Internals
	New TinyScheme Functions

	Testing
	Functional Testing
	Performance Testing

	Possible Enhancements
	Reimplementation of Write Barrier
	Dynamic Heap Size
	Immediate Values
	Delayed Finalization
	Reducing Number of Passes over Heap
	Better Vectors Implementation

	Conclusion
	Bibliography
	Glossary
	Acronyms
	Contents of Enclosed CD

