CZECH TECHNICAL UNIVERSITY IN PRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

Title: PCSS — System for Automatic Evaluation ot Submitted Computer Programs
Student: Be. Tomas Hauk

Supervisor: Ing. Martin Kager, Ph.D.

Study Programme: Informatics

Study Branch: Web and Software Engineering

Department: Department of Software Engineering

Validity: Until the end of winter semester 2016/17

Instructions

PCSS is a system for automatic evaluation of computer programs submitted by students during programming
competitions. The system consists of components communicating with a remote API. The goal of this work
is to finish the pilot implementation of PCSS.

- Study the current state of existing components of PCSS and their API.

- Fix the functionality of components that are currently not working as expected, namely the evaluation
component.

- Design the missing components (and their APIs) necessary to completely evaluate a program.

- Implement all such components to the point allowing to evaluate submitted programs in C and Java.

- Document and test your design and implementation.

v

The result should be a functional system that allows to submit programs with a web user interface, compile
them, run against test dath, evaluate the correctness, and provide a scoreboard based on given criteria.

References

Will be provided by the supervisor.

fg(LLL\L fl/‘ L

Ing. Michal Valenta, Ph.D. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague September 10, 2015

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Master’s thesis

PCSS — System for Automatic Evaluation
of Submitted Computer Programs

Be. Tomdads Hauk

Supervisor: Ing. Martin Kacer PhD.

11th January 2016

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Ing.
Martin Kacer PhD., for his support, guidance and helpful advices. I would
also like to thank my family and close friends for their patience and support
during the course of writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 11th January 2016 oL

Czech Technical University in Prague

Faculty of Information Technology

(© 2016 Tomas Hauk. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hauk, Tomas. PCSS — System for Automatic Evaluation of Submitted Com-
puter Programs. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2016.

Abstrakt

Néplni této préace je pilotni implementace systému pro automatické vyhod-
nocovani uloh, zejména v programovani. Hlavnimi pozadavky na systém
jsou modularita a rozSifitelnost, jez zajisti moznost pouziti systému i pro
méné typické pripady. Vysledkem je funkéni systém, ktery nabizi moznost
zabezpecteného vyhodnoceni zdrojovych kédu v programovacich jazycich C,
C++ a Java a dale nabizi webové rozhrani pro béh obecné soutéze nebo
Skolniho kurzu v programovéni.

Kliéova slova vyhodnocovaci systém, soutéze v programovani, ICPC

Abstract

The aim of this work is the pilot implementation of a system for automatic
evaluation of programming assignments. The main system requirements are
modularity and extensibility that will allow to use this system in less typical
situations. The result of this thesis is a functional system that is able to
automatically evaluate source codes in the C, C+4 and Java programming
languages and also offers a web user interface for operating general contest or
school course in programming.

Keywords evaluation system, programming contests, ICPC

X

Contents

Introductionl

[Theses related to PCSS|

Review of the original system architecture|

1.1 Domain terminology|
1.2 Intial state of the system|.

Analysis and design|

2.1 Collection and analysis of use cases and system tfeatures|
[2.2 System architecture|
2.3 CML component|
2.4 Judge component|o
Izlgll &&s5t2 i“lﬂl la!:ﬂl
[2.6 Scoreboard component|.
2.7 Proxy component|.
2.8 Other system modules|

3

Implementation|

3.1 Judge component|. L.
3.2 WebUI component|
3.3 Scoreboard component|

4.1 Automated testing|,
4.2 Manual testing]
4.3 CML testing],

Conclusion

xi

11
12
15
22
24
25
25

31
34
40
41

43
43
45
47

49

|Bibliography|

|A Acronyms|

[B_Contents of enclosed CDI

|C Deployment instructions|

|C.1 CML deployment|
|C.2 Judge deployment|
|C.3 Scoreboard deployment|

|C.4 Web Intertace deployment|

ID Documentation|

ID.1 Component configuration|

[D.2° System configuration|o

ID.3 Extending system functionality]|

[Web interface screenshots|

xii

51

55

57

59
59
60
60
61

63
63
67
73

77

List of Figures

1.1 Raw simplified domain diagram ot PCSS system.| 4
[L.2 Data processing in PCSS. From [1].|. 5
[1.3 Illustration of basic system components.| 6
[2.1 Ilustration of common system process. Taken from [1].| 10
[2.2 Tllustration of the Judge sub components tree and the orchestrat- |

18

| or/unit design.|o

53 10 e ThterTace]]] B T l

| actual implementation ot the algorithm. 18
2.4 Domain model of the contest data) 26
[2.5 Illustration of the internal representation ot the contest directory |
| in the CML component.| 29
(3.1 Illustration of modules communication 32
[3.2 System modules and their dependencies.| 33
3.3 Top level Judge process.| oL 34
[3.4 Illustration of the validation process.|. 35
[3.5 Illustration of the structure defining the submission processing al- |
| gorithm with two-step validation.|. 37
[3.6 Illustration of the scoring algorithm. 39
[C.1 lustration of deployed system components. Taken from [I| 62
[E.1 Contest detail with list of problems.| 77
.2 Web interface main page with contest list.|. 78
|E.3 Problem submissions and problem details and stats.| 78
.4 Logs of the compilation process.| 79
[E.5 Contest scoreboard] o o000 79

xiii

Introduction

PCSS (stands for ,,Programming contest scoring system”) is a system for
automated evaluation of submissions of either programming contest or a school
course. Its final version however should be able to operate other types of
contests such as best design contest or any other of non-programming oriented
contests.

The motivation for creating a new evaluation system is based on the fact
that the currently available ones (known to the author and researched in the
theses mentioned below) have either some functional issues or lack certain
desired features.

The most common major issue is the very specific orientation of the system
on some specific purpose, e.g. particular programming contest like mentioned
ACM ICPC. The rules of the contest are reflected in the system implementa-
tion in such a way that e.g. implementation of some other scoring approach is
not possible. Some systems for contest management are also not designed to
manage multiple contests at one time and usually aren’t suitable for running
in a different ,,domain context” like school course (and vice versa).

Other practical issue is the system availability and this is related to system
extensibility. Although most of the systems are available for free, not all of
them have also available their source codes. Lack of certain features (such as
support of e.g. Java language) might make them unusable for some purposes
and usage scenarios.

The system implemented in this thesis aims be an attractive alternative
to the currently existing evaluation systems by offering features and solving
problems described above. The system is designed with modularity in mind
and none of its components is presuming anything about the actual ,,domain
context” in which the systems runs, yet the system seems to be well suited
for managing contest, school course or run as an publicly available archive of
programming assignments. The system will be released as an open source.

This thesis builds on the work done in the past (complete list below),
mainly on the thesis [I] that aimed to design the top level system architecture.

1

INTRODUCTION

The core result of the work (except the architecture) was the implementation
of the unique and system specific data repository, so called CML. Since the
results of the mentioned thesis seemed plausible, the CML component was
used in this implementation without major changes and the main focus in
this thesis was on the implementation of components responsible for actual
program evaluation and web user interface.

Theses related to PCSS

This is the fifth thesis related to the PCSS system, in version designed in
[1] (there exists an old system of the same name that is predecessor of this
system). Following list is a brief summary of the work, that has been done in
the past.

Secure program execution Is bachelor thesis [2] that has been successfully
defended in 2012, implementing framework for secure program execu-
tion.

PCSS My bachelors thesis [I], successfully defended in 2013. The aim of
the thesis was to design and implement the initial version of the PCSS
system but the core of the thesis was unique data repository of the
system (so called CML component) — other implemented components
were in state of functional prototypes.

PCSS web interface Thesis [3] successfully defended in 2013 that aimed to
implement the web interface for the PCSS system for the purposes of
ACM ICPC programming contest [4].

Testing of PCSS Bachelors thesis [5] that was testing the initial implement-
ation of the PCSS CML component. Successfully defended in 2015.

CHAPTER 1

Review of the original system
architecture

Since the research has been already done, as is shown in relevant works listed
above, and the work assignment states that the system should be built on au-
thor’s previous thesis [I], author undertook research only when solving partial
problems of the system design or implementation (can be found in appropri-
ate sections of the thesis). This chapter will make just a brief overview of the
initial state of the system as implemented in [I].

1.1 Domain terminology

Since the final version of the system is planned to be used in different contexts,
this section will briefly address the terminology problems of this feature for
purposes of the thesis.

In the context of the ACM ICPC contest, the raw domain model of the
system will look as follows:

e There is one contest in the system.

e The main users of the system are teams that are solving contest problems
that are given.

Each contest has a set of predefined problems to be solved.

The output of the team (source codes) which solves a problem is called
a submission.

e The evaluated submission of the team is called a judgment.

Another context example in which the system can be used is automatic
evaluation of school assignments. In such case, the raw domain model will
look as follows:

1. REVIEW OF THE ORIGINAL SYSTEM ARCHITECTURE

e There is a set of courses in the system.

e The main user of the system is student who is signed up for particular

course

e Each course has set of problems or homeworks which the student should

solve

e The solution of the problem (created by student) is called submission

e The evaluated submission can be called judgment, grade or some point

gain etc.

Based on the examples above it is clear that the actual model remains the
same, but the terminology changes slightly for the purposes of a given context.
For purposes of better clarity of this thesis, the author uses exclusively the
terminology that has been mentioned first (ACM ICPC context). The raw

domain model is illustrated on the diagram

class RawDlomain

Ahstracttisc Uk Olyect

problemsState: FroblemState = ProblemState AC. ..
deadline: LocalDateTime

start: LocalDateTime

maxSubmissions: int

uzerRezponsible: String

*E R R K

Abstractlise LI Olyect Contestinfo Abstractlisc Uil et
Problembata # contestMame: String User
pmoblemName: String & contestShortName_: S # name: Stiing
zhorDescription: String © GEDE LocaIDateTllme 0.7 0.7 [# login: String
problemDescription: String # end: LocalDateTime # pasamord: String
longDescription: String # email: Sting
1 # shorDescription: String i
responsiblelszer: String 1
o.F 0=
AbstractOisc U Oyect A stractDiee Ui Oiect
Frobleminstance JudgeOutput

result: JudgementResult
judgmentScore: DefaultScorelata
judgementTeaxt: String
judgmentShontText: String

*® O OE®

1 o.F

Abstractiise U Oyect
Submission

uzerll: String
languagell: String
timeSubmitted: LocallateTime

Figure 1.1: Raw simplified domain diagram of PCSS system.

1.2. Intial state of the system

afal Componsnt layout 2 /

2. step of
evaluation

1. step of «th step of
evaluation evaluation

NV

Drata storage

!

Camponent for
uploading
submissions from
UsEIs

Figure 1.2: Data processing in PCSS. From [I].

1.2 Intial state of the system

The PCSS system is component oriented. Communication between compon-
ents is based on the REST principle [6] with the use of HT'TP protocol [7].
Core component of the system is called CML which serves as a unique data
repository and as a mediator between most of the other components of the
system. Other components are responsible for specific tasks — in most cases,
they download unprocessed data from the CML and upload the processed
data back. The basic structure of the system and its components can be
found on diagram Short description of components implemented in the
initial version of the system follows.

1.2.1 CML

This is the core component of the PCSS system responsible for data manage-
ment (retrieve and store) and synchronization of the other components work.
In typical case, each system component responsible for some particular task

5

1. REVIEW OF THE ORIGINAL SYSTEM ARCHITECTURE

cmp Interfaces simple /

[N
There ¢an be more than one Judge or Scoreboard Scoreboard component is processing
component in the system running in parallel. They judgments of particular submissions.
are alzo independent on the Contest and actual The autput of this process is final
Froblem currently evaluated. contest scoreboard.

Judge component is
responsible for A Judge Scoreboard
evaluation of submitted
source codes.,

[/l\ «HT TP «HTTF» A\
D ata repositony of the

system and "mediator
responzible for {l
synchronization of the L - - ChL

ather components ok
\]/ «HTTP» «HTTF = \]_/

Optional component, not Frosx = wieb U
],r I:)]
part of this wode. Future J =

implementation should
be able to handle user
management and '
caching.

Loes not know context of
the stored data.

aHTTF =

T

Web frontend for the users (teams)
submitting problem salutions. Can
communicate directhy with Chil
directly or wia Proxy component.

Figure 1.3: Illustration of basic system components.

will take its input data from the CML and the processed result will upload
back to CML, where it can be used as an input for another processing (this
approach is illustrated on diagram . The data in the CML should be ac-
cessed exclusively by the other dedicated components (i.e. access from web
browser should be denied).

The CML component was designed to be independent on the context of
the data being stored which means that it can be used for other systems than
PCSS. The current implementation does not support management of data
relations and effective data searching.

During the process of the CML design, author made an observation that
data in this type of system are (or should be) typically only created and read,
but not updated (only ,,interpreted” differently). Even if some submission
will be reevaluated multiple times (e.g. because of an technical issue), every

6

1.2. Intial state of the system

other previous judgment will stay in the system in the original form and the
system will just correctly decide which one is the actual one. In case of contest
scoreboard for example, the system creates new data entity representing the
scoreboard each time that the scoreboard needs an update (new submission
judgments were made) and the actual one is the newest one. In a certain
sense, the data entities stored in CML component are forming a ,,history” of
the contest.

As the consequence of the observation above, the data entities stored in
the CML component are immutable by default. Thus, the effective data
updates are not supported. In case that the intervention in the stored data
is really necessary (e.g. in case of some technical issues), the changes can be
done via appropriate HTTP methods (see below), but updating the data on
routine basis should be viewed as a certain violation of the CML philosophy.

Internally, the data are stored on the local file system in the multipart
format [8] which is also used in the body of the HTTP requests. The cur-
rent implementation is not efficient (using global pessimistic data locking) nor
secure (can be fixed via application server SSL settings).

Data entities are accessed via HT'TP protocol as ,,resources” (REST prin-
ciple). Standard implemented methods are GET (access data entity or dir-
ectory), PUT (create new entity) and POST (create new versioned entity).
For synchronization purposes there were implemented LOCK and UNLOCK
methods (these methods can operate on the whole data tree). For data updates
or deletion purposes there were implemented FREEZE, CLONE, RESTORE
and DISCARD methods.

The implementation details and discussion of design decisions can be found
in [1J.

1.2.2 Judge

Judge component is responsible for evaluation of the user submissions. Input
data are submission and the problem definition, output of the process is called
judgment result. This component communicates directly with CML.

The initial version of the component was able to evaluate source codes of
the C/C++ programming languages in a non-secure manner. Each contest
instance needed at least one own Judge component but could have more Judge
components running in parallel.

1.2.3 Scoreboard

This component is responsible for generating the contest scoreboard. Input
data are the best submissions of the problem for each user (team) in the
contest, the output is processed scoreboard of the contest. Main idea behind
this component is ability to post-process the results in specific way and to

7

1. REVIEW OF THE ORIGINAL SYSTEM ARCHITECTURE

provide optimization due the CML. This component communicates directly
with CML.

The initial version of the Scoreboard component was able to evaluate the
submissions only for the purposes of the ACM ICPC contest and was tightly
bind to the contest (i.e. each contest instance required its own scoreboard
component).

1.2.4 Proxy

The idea of the Proxy component was taken from the previous version of the
PCSS system. The purpose of this component is to provide user management
functionality, submission timestamping and caching (e.g. ability to accept the
submission even if the CML is unreachable for some reason). This component
serves as a mediator between the user interface and the CML and also provides
same API as the CML itself.

The component in the previous version of the system was only timestamp-
ing the submissions, no user management or caching were implemented.

1.2.5 Web interface

This component provides user interface for showing contest data (problem
definitions, submission results, scoreboard) and uploading submissions. This
component can communicate either with CML or with the Proxy component.

The previous version of this component was implemented in the [3], is
strictly tied to the ACM ICPC contest style and the interface to the PCSS
system was not implemented (i.e. the project was in the state of prototype
working only with mock data and mock CML client).

CHAPTER 2

Analysis and design

This chapter describes the process and results of the system analysis and
design along with appropriate discussion.

Collection of the use cases can be found in section Section 2.2 contains
quick discussion of the system architecture. Analysis and design of particular
components are described in the following sections: CML Judge web
interface Scoreboard [2.6] and Proxy Section [2.8] contains discussion of
the supporting system modules which are providing API to the CML (HTTP
clients) and other system features shared by other components.

2.1 Collection and analysis of use cases and
system features

Since the collection and analysis of use cases and required system features was
performed in every work related to PCSS system (see introduction chapter
for complete list), this section will provide just a quick overview and basic
discussion of the main use cases which were gathered from the mentioned
works, work assignment and from consultations between the author and the
supervisor of the thesis. Detailed analysis can be found in the thesis that were
referred to. The illustration of basic system evaluation process is illustrated

on diagram

2.1.1 Minimum set of use cases from the main user
perspective

The main use cases of the system were gathered from the work assignment
where they are described from the perspective of the user which is in role of
the student or team who submits source code which will be automatically eval-
uated. To this user, the system must provide following minimal functionalities
the web interface:

2. ANALYSIS AND DESIGN

s Gensral system process /

Team/studert

dury machins Ewvaluaticn
componsnt
. Jury
Send a solution of
the prablem
{submission)
decision flow decision flow information

Accepting and Frocessing and Gensration of
storing the evaluation of result or statistics Eezult of evaluation
submission submission PrOCESS
foutcome

Figure 2.1: Illustration of common system process. Taken from [I].

e Ability to log in to user account

e Show contests, to which the user has access to

e Show contest description

e Show list of contest problems

e Show contest scoreboard

e Show problem description and assignment details
e Show all submissions of user of particular problem
e Show all submission of user of particular contest

e Show scoreboard of particular problem

e Submit new submission in C/C++ or Java programming languages

The list above is the minimum set of use cases, which are necessary to
implement, so that system can be used at least for the purposes of the school
course. For the purposes of the ACM ICPC contest for example, there would
be needed at least one more user role of the Jury, who will be able to e.g. see
the submissions of all users, send contest announcements or respond to the
clarification requests of the teams. Detailed analysis of such context can be
found in [3], where the ACM ICPC web interface prototype was implemented.

10

2.2. System architecture

2.1.2 Required system features

The minimal list of system features looks as follows:

e ability to accept submission of a user

e compile (process) the submission source codes in C/C++ and Java pro-
gramming languages and create executable (interpretable) file

e perform validation of executable (interpretable) file in a secure way (the
execution must prevent corruption or compromising of system data and
prevent system intentional and unintentional crash)

e Evaluate the result of the validation process (create judgment)
e Create contest scoreboard from available judgments
e Provide way to create contest data (contest, users, problems etc. . .)

e Provide web interface with features described in

The list above seems pretty straght forward and does not need more dis-
cussion.

2.2 System architecture

The original system design is based around a data repository with specific
REST API (CML) and components, whose communication is done through
the CML (further review of the original architecture and its implications in
. Even though this approach, communication API and mentioned system
implications (like object immutability) can be viewed a little bit unorthodox,
author is of opinion, that this approach will work for given purpose of the
evaluation system, considering both drawbacks and benefits of the approach.
Another aspect worth mentioning is the positive feedback this architecture
received in the process of defense of the work [I]. Therefore, CML and its
API remains the ,,heart” of the system.

Alternative solution of the one described above would be to discard the
CML component from the system and utilize some more ,,mature” existing
solutions, such as some kind of XML database. This approach would probably
yield better results in the short-term, but for the current purposes of the
systems looks the CML approach sufficient and more interesting in perspective
of the future development of both PCSS system and CML itself.

Consequently, the system architecture remains the same and the core
of this work will be design and implementation of the specific components,
namely Judge (see and user web interface (see [2.5) components, which
are responsible for submission evaluation and user interaction.

11

2. ANALYSIS AND DESIGN

2.3 CML component

The main data repository of the system, CML, represented core of the au-
thors previous work. Review of this component showed, that except for some
efficiency and security issues provides this component sufficient functionality
for the system and therefore no major modification in the implementation
or the CML API will be needed. Throughout the entire course of work, the
component was stable and behaved as expected, with exception of few bugs,
which author fixed immediately. Thus, the conclusion from the architecture
section 2.2] holds.

Nevertheless, the CML is still at the state of the prototype and its current
implementation can’t match other more mature database systems. In the sec-
tions below the author discusses current CML drawbacks and their possible
solutions, which he observed and gathered during the work with this com-
ponent in the system. Found issues are concerning the CML security ,
efficiency and effective ad-hoc data changes . Some other minor
issues are mentioned in 2.3.4

2.3.1 CML security

Current implementation of the CML does no provide any security mechan-
isms. Because the system architecture is designed in a way, that user never
communicates with CML directly, but only through specific components (even
administrators), author sees three possible ways how to solve this issue:

e of the component by the valid SSL certificate, which practically means
deploying CML on server which handles the request authorization and
implementing the authentication mechanisms to the CML API module

(described in

e deploying the CML to the server, which is not accessible to public net-
work (security based by network setup and by the fact, that the potential
attacker does not know the internal data structure and exact server loc-
ation).

e combination of the previous two solutions.

Since the pilot deployment won’t be in a security critical context (either
small school course with approximately 50 students or leisure time program-
ming problems solving), first option should be sufficient. As the consequence,
the development was focused on other parts of the system.

12

2.3. CML component

2.3.2 CML efficiency

The efficiency and optimization of the CML implementation were not ad-
dressed yet. The analysis and discussion of the possible solutions follows.

First minor problem is component parallel access. Current implementation
of the CML is locking whole data tree by the global lock, which means, that the
CML is currently unable to utilize the server parallel processing capabilities.
The solution of this problem is either implementing a nontrivial algorithm for
locking specific subtrees or transition from the raw file-storage approach to
some underlying NoSql/Xml database (see [9] for possible solutions).

Second efficiency issue is related to the web interface component and
fragmented data model, which is mainly based on convention and direct links
uses only when necessary (which is in detail discussed in . This issue lies
in the need to display large amount of related data on one page, which can
practically mean many HTTP requests (request for each needed data entity).
Even redesign of the data model (e.g. not having all problem submission in
one directory but having directory for each user for each contest problem)
might not solve the issue entirely.

Quite a quick and simple solution to this problem would be to implement
some kind of caching mechanism, which can rely on already implemented CML
API header ,,if-modified-since”. In this scenario, the component would down-
load the object in the first request and then it would just check, if the object
haven’t been modified since the last download, which should be a rare case,
since the CML is designed to store immutable objects (changes are happening
rarely in exceptional situations, such as fixing technical issues). This approach
however won’t reduce the number of the HI'TP requests, only the amount of
transfered bytes.

The only solution of this efficiency problem (provided, that the API base
will remain the same) seems to be implementation of mechanism for obtain-
ing more entities in a single HTTP request at once. Best yet, design and
implement some mechanism, how to request some entities in specific subtrees
(e.g. submission data object relative path will contain user ID somewhere and
CML might return only those objects, which satisfies this condition). The
actual implementation might be based on some existing solution (e.g. XPath
language [10]) or some simple CML specific solution. Even more, this ap-
proach could further combined with the solution in previous paragraph, so
only changed entities would be actually returned. On the other side, while
this approach will make the system quite efficient, it represents certain kind of
deflection from the pure and clean REST principle and introduces additional
complexity on the CML API level as on the implementation level as well. For
this purpose, the reintroduction of the multipart format (which was replaced
by pure XML in this version) might be considered (the response to the re-
quest for multiple data entities would contain multiple XML data structures,
composed in multipart).

13

2. ANALYSIS AND DESIGN

As was mentioned in the CML security section the system pilot
implementation would probable serve only to few tens of users and for this
purpose should be the implementation sufficient enough. Moreover, both men-
tioned efficiency problems are related mainly to the Ul component. Both other
implemented components in this version of the system (Scoreboard and
Judge are for each evaluation cycle sending about 10 HTTP requests to
the CML, which is comparatively less to the mentioned web interface com-
ponent.

2.3.3 Data changes

Current version of the CML component still does not support ad-hoc data
changes (changes in data for purposes of elimination some kind of a contest
error or bug).

For the purpose of fixing some ,,expected” or ,,common” problems (such
as reevaluating some set of submissions, which were affected by some tech-
nical issue), the implementation of specific component would seem as the best
solution, since it would allow the contest judges or administrators to perform
these tasks comfortably and quickly through some UL

For the purposes of performing some more complex data interventions,
author proposes the following approach. First, the method FREEZE would
be performed on the affected data in the CML component. These data would
be cloned (CLONE method) to the new location and downloaded to the local
machine of administrator. Downloaded data (which will be initially in the form
of set of XML files structured in the local file system) could be transformed to
one XML structure, on which could be performed required data modifications
(e.g. with help of XPath). The modified XML would be than converted back
to the set of XML files, those could be uploaded back to the CML and then
methods RESTORE and UNFREEZE would be performed.

Approaches described above seems much more plausible thanks to the
utilizing of the XML as opposed to the previous multipart format (which is
certainly less flexible). Reliable implementation is unfortunately beyond scope
of this work.

2.3.4 Other miscellaneous CML issues

In the work [5], was found, that the current CML component does not work on
the Windows platform. The mentioned work did not discovered why exactly,
but since the Unix based operating systems seems better suited for deployment
of PCSS, it was decided to solve this issue in the later version of the system.

Another minor issue is semantics of the versioning API of CML component.
The original plan was to use the versioning API only for purposes of creating
new version of the same object, e.g. scoreboard (there is one data entity
representing scoreboard, but in different versions and the currently valid one

14

2.4. Judge component

is the one with the highest version). But at the same time, there is need to
differentiate the submissions of the one particular user to the same problem
in contest (i.e. to have a directory, where there are all submissions of user
for given problem and the actual submission files must have different name).
For this purposes, the current implementation uses the versioning mechanism,
which has misleading semantics with comparison of the one described above,
because the versioned submission objects are not the same one (compare to
scoreboard), where only the highest version is the actual, but they are entirely
different objects, using the versioning only for differentiating them by name.
The implementation of the second functionality would be probably the same
(e.g. will lead to directory with submissions, which will contain directory
”submission.1”, ”submission.2” etc), but, as stated above, there is semantic
difference, which might be confusing and in the future versions of the API
could be addressed and solved.

The last possible remark to the CML component is, that replacing the cur-
rent data storage approach (raw files on disc accessed by relative path) by some
kind of NoSql/XML database might still be an option, which might solve some
of the issues described above (namely efficiency and ad-hoc changes). Cost
for this change however is another technology, on which is system depend-
ent on and increased complexity of the CML component. The discussion and
research on this issue can be found in [IJ.

2.4 Judge component

This section describes the design and analysis process related to the Judge
component, which is responsible for evaluating the submitted source codes.
The state of the original version of the Judge component is described in chapter
List of required features and issues to solve follows, the analysis, design
process and appropriate discussion can be found in the subsections below.

The minimal list of features, which must the Judge component provide
looks as follows:

e Download the right submission from CML, using the synchronization
mechanisms provided by CML API

e Compile the downloaded source codes
e Run the compiled program against test data

e Evaluate the results and upload them back to the CML (again with help
of synchronization mechanisms).

15

2. ANALYSIS AND DESIGN

2.4.1 Desired component features

During the consultations with supervisor and analysis of the previous state of
the component were found following major issues or questions to be solved,
respective answered. Found problems are presented and discussed below.

2.4.1.1 Languages support

Supporting all features of the programming languages seems to be a non-trivial
task, since every language has its own specific features. Languages might use
different build mechanisms, e.g. for Java Ant, Maven or Gradle. They also
have a different approach, when it comes the packaging or module organiz-
ation. Lastly, they might have some specific language constrains, e.g. again
for Java, the source file must contain only one top level class and the name
of the file containing the class must be derived from the actual name of the
contained class (the javac compiler might refuse to compile the source code,
if the requirements are not met). The old version of the Judge component did
not support other language than C/C++.

2.4.1.2 Dynamic Judge configuration and contest independence

When discussing possible configuration strategies between author and super-
visor, it turned out that it would be very nice, if the Judge component would
be independent on the contest and if it would be able to handle different prob-
lem configurations dynamically. For example, the component might be able to
first evaluate source code for the purposes of the ACM ICPC contest (which
means download, compile, validate, upload submission) but than it should be
able to evaluate the submission from another contest, which would consist
of downloading two submissions representing chess solving programs, which
would be validated against each other (better chess playing program contest).
The original Judge architecture was not designed in any way for such purpose.

2.4.1.3 Judge sub-components modularity

Another problem with the old Judge component is its approach to modular-
ity and reusability of the components it has available for different purposes
(different compilators, validators, modules for plagiarism checking etc). Or in
another words, answering the question ,,How hard it will be to add new sub-
component or module or functionality to the Judge component and how hard
it will be to reuse it and integrate it with the existing ones?”. This is also a
architecture aspect not considered in the old version of the Judge component.

2.4.1.4 Secure execution of programs

Last feature, which should the Judge component provide, is the ability to
run the submitted problems in a secure way. This means, that the execution

16

2.4. Judge component

of the program should not lead to the crash of the system (or the Judge
component) it runs on and that the submitted program should not be able to
interfere (or cheat) the evaluation process, by e.g. reading the validation data
or providing the user with inappropriate information by abusing e.g. signals
etc. Since developing such feature (minimally for C/C++ and Java) is clearly
out of scope of this work, some existing is expected to be used and integrated
somehow into the component.

2.4.2 Programming languages

The complete solution of the languages problem from the list above is clearly
beyond the scope of this work and, at least in this version of the system, should
be sufficient to support C/C++ and Java languages in some simple form, so
that it will provide similar functionality to the systems like DomJudge [11],
PC? [12] or other similar systems.

For the current purposes, the author has decided to stick to the minimal
language support. The system will accept solution in form of the single file for
Java or C/C++ language. No build mechanisms or other advanced features
will be supported.

2.4.3 Dynamic judge configuration

The solution of the dynamic Judge configuration (second item on the list in
section) was found in form of a Spring framework [I3] and designing flexible
interface between the Judge sub-components. And the key for the interface
design was found in the realization, that the process of submission evaluation
can be abstracted to the tree-like structure, through which the processed data
(submission) will flow in the ,,pre-order” similar manner and where:

e The nodes of the tree will represent the ,,local” logic of the process and
will be responsible for controlling the data flow of its child nodes. Such
component might just pass the data from first child to the next one and
when done, pass it to the parent or it can implement some more soph-
isticated logic like conditional flow, iterative flow or other operations.
These sub-components were internally named orchestrators.

e The leaves of the tree will contain a sub-component, which will utilize
the strategy design pattern and will contain actual implementation of
some algorithm (compilation, validation etc) and will be responsible for
converting the data, which flow through the tree, to some form needed by
the contained algorithm implementation. These sub-components were
internally named units.

The example of the tree is illustrated on diagram The diagram
illustrates the interface between the unit and the actual algorithm implement-
ation.

17

2. ANALYSIS AND DESIGN

analysiz JudgeComponantsTreeProcess /

Judge

aflawn

FracessingChain
U

DefaultOrchestrator

Every element here,
DefaultOrchestratar and

generic tres structure.

The companents are
cammunication with

Iterative Orch estratar mainly o help of the
are child ol asses of o SubmissionContainar
AbstractOrchestratedUnit, o s 7l enitity.
they can form this type of it ’
-

Preevaluate Compile HerativeOrchestrator

Ewaluator

Uploader

7
.
-

- .

weflows ofi o atlows atlown

7

” Iterative OrchestrataPro cess

Validate

Figure 2.2: Illustration of the Judge sub components tree
or/unit design.

and the orchestrat-

dfd Orchestrated componerts interface /

Independent package .
Means total reusability of sush compenent.

Each functional unit (Validator, Compiler, etc...3 is in the independent
package, not at all dependant on Units, Orehestratars or the process itselt.

AbstractWalidator Contains map of value;

(AbstractContainers).

ﬁ‘l :

AbstractOrchestrate d10Unit

Validatornput

Rectangles represents
olasses implementing
algorithm. The ovals

tepresent Data entitiesipure
containers

Orchestrator

-7 I
% et ous
TextValidator i eflow o
eldEtotn SubmissionContainer
T~ I = aflomm
aflowsa == afloms -~
validatarDutput T
Each Unit can convert Map data to some ,sane” Java olass. Each
prosess unit (Compiler, Validater, Runner ete.) has its swn unit, which
creates the right 10 classes
Initial
direction
of
prosass

Figure 2.3: Ilustration of the interface between the orchestrated unit and the

actual implementation of the algorithm.

18

2.4. Judge component

2.4.4 Judge modularity

The third found issue with the old Judge component is the actual implement-
ation of the interface between the subcomponents, which will determine the
process of adding new sub-component and possibilities for their integration or
other aspects like parallelization. In the old Judge were the sub-components
communicating as the Java classes. In this situation, for adding the new com-
ponent or functionality would be needed to implement new class or whole
package, manually integrate them to the existing component and recompile
whole package.

Following possible communication solutions between Judge subcompon-
ents were found:

e as Java classes (old way)
e via HTTP directly

e via HTTP through local CML

e via local file system, emulating the CML locking principle

At first, it seemed quite tempting to utilize the existing API of the CML,
either by locally deployed CML or emulating the CML API at local file system
(for this purposes the Java NIO library [14] would be used). The advantage
of this approach would be the recursive application of existing API on the
lower level of the system, which would lead to somehow ,,clean and pure” sys-
tem architecture — the component would be able to communicate with the
file system, local CML, remote CML or any other component with the same
API. But the big downside of this approach (aside from probable efficiency
issues) would certainly lead to a very difficult configuration and maintainab-
ility (in comparison with the alternatives), because the subcomponents would
be actually different processes.

The final solution presented itself naturally when solving the previous is-
sue of the Judge architecture, namely when Spring and tree like component
structure were designed. With this approach, adding new component would
just mean writing the new module or class, writing new Spring configuration
file utilizing this class and either recompile the Judge with new dependency
or just update the JVM classpath.

2.4.5 Secure execution

The last problem mentioned in the list in section [2.4]is the ability of the Judge
component to execute the submitted program in a secure way. This feature
should have been already implemented in the previous version of the system,
utilizing the results of [2] (SRun component), but the author was unsuccessful
to integrate the results of mentioned work to the previous version of the Judge

19

2. ANALYSIS AND DESIGN

component or run the component independently from the command line (see
[1] for details).

In this work, the author made another attempt to use the SRun compon-
ent, but was unsuccessful again. The process was similar as described in [I]
and it seemed, that there was a progress found, but the last error found was
the system error ,,Requested resource is not available”, which happened at
the forking section of the program. Solution of this problem was not found
either by modifing the source code itself, nor in the software documentation.

It seemed, that attempts to use this components are very time consuming
and the success is not guaranteed. The found solutions to this situation were
either consultation (either with the author of the component or with someone
with higher knowledge of low level C++ and Unix systems) or finding and
using another one.

At this point, author decided to made a research of other existing solutions.
The examined software was either from the other existing programming con-
test systems or general purpose sandboxing components or approaches. After
a consultation with a supervisor, one special requirement on this component
was identified in the form of a license choice — using the component should
not end up in need to extend the license on the whole project (using e.g. GNU
license [I5] distinguishes between software composition and aggregation and
in the latter case, at least the Judge component would have to be published
under the GNU, if the secure component would be used).

The incomplete list of the software researched contains (totally unusable
solution are omitted):

e timeout script [16]

proot [17]

e component from DomJudge system [11]

CMS [18]

Moe [19] and Isolate component [20]

Author believes, that the most suitable one from the list above, is the
Isolate utility [20] used in the (currently obsolete, but being rewritten) Moe
contest system [19]. The authors of this system and utility are Martin Mares
(Charles university in Prague), Tomdas Gavenciak and Bernard Blackham.
The Isolate component provides various features, has simple installation and
deployment and was practically used in programming contests. List of inter-
esting features and settings follows:

e the program is executed in chroot environment, to which is possible to
map specific system directories and files for various access.

20

[\v]

2.4. Judge component

e provides ability to limit resources (time, memory, disc block writes, pro-
cess etc)

e can run in parallel in one system and provides support for system control
groups

e because of the command line API, its GNU license means no problem,
since it is the software composition and not aggregation.

The installation is very simple — it just needs to compile the program and
set the SUID bit, than its ready to be used. The usage example for executing
the Java program is illustrated on listing [2.1]

./ isolate —init

./usr/bin/isolate —dir=/tmp/compiler —dir=/etc —e —mem=20 —
time=4 —wall—time=4 —extra—time=2 —processes=32 —run /usr/
bin/java — —cp /tmp/compiler CorrectIO

./ isolate ——cleanup

Listing 2.1: Example usage of the Isolate utility for Java

As stated, the isolate utility was tested in real programming contests.
Regarding its security, authors claim [2I] [22], that they did not encounter
any security issues and bugs for the C or C4++ programming languages. From
the other compiled languages, they have got good experience with Pascal, for
which they found only problem with slowness of the Pascal 10 libraries. As
for the interpreted languages, the authors were quite thoroughly testing the
Isolate utility for purposes of executing C# programs (Mono platform [23]
with some special hacks), where they did not encountered any problems, but
do not guarantee the safety of the execution.

The authors of Isolate also tested Java, but encountered problems with
the JVM, which consumes quite a lot of resources, e.g. namely processes. The
consequence of this is, that it is currently impossible to restrict the executed
Java program to create these processes, since the JVM wont start without
them (in other words, more than one thread is needed to execute the Java
,,Hello World” program). The author of this work also encountered a strange
issue, that it seems to be not possible to execute the Java with Isolate with
less than 3000000kb of assigned memory (or at least, set the ,,—~mem 3000000”
parameter). On the authors testing system (Arch Linux 64bit [24], Intel i5,
4Gb RAM, Oracle JVM [25]), setting the parameter ,,—mem 250000” will
lead to the JVM crash (,,Not enough memory for code segment.”). Author
performed short experiments with JVM memory settings, but without any
success. This issue should be kept in mind, when using the Isolate in real
environment and certainly deserves more investigation. But for the current
purposes, deploying the Judge component on the system with more than 4Gb
RAM should not present any problem as for running it in the ACM ICPC
contest context. The consequence however is, that under this circumstances, it

21

2. ANALYSIS AND DESIGN

wont be possible to use the system for e.g. purposes, where memory handling
may be a criterion for accepting or refusing solution, at least in the Java
programming language.

One little drawback in the Isolate utility was found in the handling of
memory limits. Author believes, that for the most purposes, the best strategy
how to handle memory requests of program, which are crossing the given
limits, is to kill the program and inform the user, that the test crashed on the
memory exceeded error. By experimental attempts was found however, that
the Isolate utility does not kill the program, but just refuses the allocate the
requested memory — e.g. the C malloc function will return null. While this
is certainly not error, the final program behaviour is dependent on whether
the user checks, if the memory was returned and the final code or the system
behaviour is not strictly defined (i.e. the user may not be informed, that the
problem with the program was inappropriate memory handling).

At last, author would like to point out few advantages of using the Isolate
instead of the SRun component:

e Isolate was tested in real environment, while SRun was not

e Isolate is clearly disproportionately easier to use, deploy and maintain,
than the SRun (compare the SRun installation instructions from [2] and
the process of installing Isolate above).

2.5 Web interface

This section describes the process of design and analysis of the component,
which represents the user web interface for the main system user. The re-
quirements on the component are stated in review of the old state from
[3] in and design process is described in the

2.5.1 Web interface requirements

The minimal set of requirements on this component is described in [2.1.1} The
component should be preferably implemented in Java, since the rest of the
system is implemented this language and it will allow to use some of the
available functionalities like CML API library (see .

After a discussion it turned out, that it would be nice, if this component
could be universal to certain extent, so that it would be possible to use this
component in different contexts, as was discussed in the introduction chapter.
Quick analysis showed, that these contexts share most of the functionality
(upload source code and show related data), but main difference is displaying
the score or results. For example, ACM ICPC basically computes score on
boolean base (ACCEPTED, WRONG_ANSWER, and than handling ties),
but the school course can compute the final score in the percentual or ,,sum

22

2.5. Web interface

of points” manner, where there can be different score value thresholds for
accepting the solution as solved. Also, the actual score computing should be
linked to the contest and not the actual problem itself, so that same definitions
of the problems would be reusable between contests.

The universality described above also opens the question of a user manage-
ment. While for the school course, the user management and authentication
would be best to be done through the directory services, in case of the public
programming problems library is this approach inapplicable and some more
suited mechanism for user management will be needed.

2.5.2 Old state review

The previous web interface component was designed and implemented in [3].
It was written in Java using the Wicket framework [26].

The main problem found in this solution was, that it was designed and
implemented without the universality principles described above in mind. The
web interface in that version is designed for the purposes of the ACM ICPC
contest, so that it e.g. does not support multiple ongoing contests at once
or is implementing some ACM ICPC specific features (clarifications, judges,
ICPC style scoreboard etc).

The last found complication is, that the implementation uses the obsol-
ete data model, used in the previous version of PCSS and does not use any
,,translation” layer, which would make the Ul independent on the old PCSS
project.

Based on observations from this section, the author was of the opinion,
that it would be best to implement new web interface from scratch, with the
new evolved requirements in mind.

2.5.3 Design

First design decision lied on choosing the implementation framework. The
author of this work has quite a little experience with writing the web interfaces
(at this time), so little research and discussion were needed. Because learning
a new framework from scratch concealed danger of bad framework usage, bad
design decisions and seemed too time-consuming for the purpose, the author
choose the Java Server Faces framework [27], with which he was familiarized
during the related JavaEE course.

The problem with need of different scoreboard display algorithms was
solved by designing abstract interface, which allows to create universal data
structure, which must be interpreted prior to generating the score results to
the user. More details in B.1.21

The proper solution of the user logging strategy was found in the Proxy (see
component from the previous version of the system. But as the correct
implementation seemed beyond scope of this work and unnecessary for the

23

2. ANALYSIS AND DESIGN

pilot version of the system, it was decided, that for the current time being will
be users handled by the Ul component and the user creation or management
will be done via appropriate XML objects in the CML component.

After solving previous problems, the author begun to design the actual
web interface structure. The process went as follows:

e analysis of the use cases[2.1.1
e creating task list from use cases
e creating lo-fi prototypes of the Ul

e performed research of the UT of similar existing systems (Progtest [28§],
DomJudge [11], previous UI [3])

e revision of the lo-fi prototypes
e implementation of hi-fi prototype in HTML/Bootstrap [29]

e final implementation

Process details and created artifacts (like result of the task analysis or lo-fi
prototypes) are omitted for time and space save reasons.

The final design is based on the assumption, that the user will spend most
time in the area of the application, which represents one contest and with
this concept in mind was designed the application navigation and data layout.
The screenshots can be found in appendix [E]

Aside from the requirements above, author implemented additional fea-
tures, like contest superuser user role, logs from the evaluation process and
other. See section [3.2] for more details.

2.6 Scoreboard component

The purpose of this component is to generate the data structure, which con-
tains aggregated data representing the best submissions of the users in the
contests. Motivation for implementing this component is firstly to optimize
the data retrieval from CML when viewing scoreboard from the web interface
and secondly can the scoreboard (if not now, than in the future) perform some
kind of post processing of the result.

The component in the old version of the system was quite small and simple
— its task was to download new submissions, incorporate them to the previous
scoreboard version and upload the result back to CML.

Since the Judge component was now designed with contest and problem
independence in mind (see , it seemed to be a good idea to apply the same
concept to the new version of the scoreboard component. Thanks to the new
scoring implementation (see is the scoring logic abstracted from this

24

2.7. Proxy component

component and for scoreboard generation seems to be sufficient to use the
prepared API for interpretation of the score and comparison the results. The
implementation of the scoreboard for the particular contest only could also
bring configuration complications, since the scoreboard component would need
to be executed multiple times for the given contests or the running scoreboard
components would have to be configured somehow to know contests, which
they are supposed to handle. In comparison with the single (or parallelized)
scoreboard component concept (and with help of the abstracted scoring API),
this solution seems to yield no added benefit.

The final design of Scoreboard component is similar to the old one, with
the difference that the algorithm of scoring is abstracted to separate module
and the is now contest independent. See section [3.3]for implementation details.

2.7 Proxy component

The purpose of this component from previous version system is described in
chapter Because at design phase of the web interface was decided, that
users will be handled by the UI itself (see , there seems to be no reason
for using this component and therefore the current version of the system will
not utilize this component.

2.8 Other system modules

This section contains analysis and design of the system data model and other
system modules. The domain model design in described in the subsection[2.8.1]
and found design and implementation issues are described in the subsection
2.8

2.8.1 Domain model

Quick review of the domain model from the previous version of the system
showed, that the old model can be used with just a few minor modifications,
which reflect some additional system features (e.g. new scoring API or prob-
lem independence on processing structure). The new version of the domain
model is illustrated on diagram [2.4] For the purposes of clarity hides the
diagram some data entities, which are needed for the actual implementation.

2.8.2 CML API and data storage format

The previous version of the project contains API, which provides easier ac-
cess to the CML data entities and other CML features (like synchronization).
The original version of the API was three-layered. The first layer handled
the CML communication on the HT'TP level, the second on the data object
level (performed conversion and initialization from/to Java class) and third

25

2. ANALYSIS AND

DESIGN

class data ./
«enumerations
Judge mentResult
COMFILE_ERROR
RUNTIME_ERROR
TIME_LIMIT_EXCEEDED
SCORED
SECURITY_WVIOLATION
EVALUATION_FENDING
JULzING_ERROR
NOT_SET
Attributes
B 1ing fre adCnivt soore::Default SooreData
PR S - + DEFAULT_STRING: Sting="NOT_SET" freadOnly}
scoreValue: String= DEFAULT_STRING
emor boolean = false
tags MapsString, Strings = new HashMap<Str
1
«gnumerations
sooreboard::
Scoreboard State
Judge Output::
“alidationLogPair UNFROZEM
" T —— FROZEN scoreboard::Scoreboard Call
g Z11om 2 Stnng SHOWING_UNFROZEN
amorlog: String - # probleminstancelD: Sting 1
defaultlog: Stiing #scareboardState # userlD: String
1 # numberOfSubmissions: int ottt
result JudgementResult [JudgeOutput
Rl o, tScoreDats 1|# result: JudgementResult
: 0= # judgmentScore: DefaultScoreData
judgementTest Shing
AbstctCnl ! Ovect # judgmentShorText: String
vealidationData # compilationLog: String
compilationErrorLog: Stiing
walidationFainD: Sting
input: String 1
comectdnamer String 1
i Abstaotlise Ul Oiyect
sooreboard:: Scoreboard
rmezults SeteScorehoardCells = new HazhSetdSen
wenumerations # reboardState: reboardState = ScoreboardState. .
ProblemState # timeGenerated: LocallateTime
OFEMED 1 e
CLOSED Abstractlise U Oiyect
TEMPORARY_CLOSED Language
ACCESES_FORBIDDEM
= . # languageMame: Sting
#problamState 0. # compilerCommand: String
AbstractDiso U Obect # compilerdrgs: Sting
rnneCommand: Sting
ProblemDat:
T bt # runnerdrgs: String
problemMame: Sting # outputFileName: String
(eLRE riepreten # shortDescription: Sting # substituteRunFile: Sting
«cintefaces # problemDeseription: Sting # filenameExtension: String
score: # processingChainDatalocation: String -
IScoreFactory 0. 1
1 1 0.
Abstractlise U Olyecd
1 Contestinfo
contesttlame: Sting
contestShortMame: String
start: LocalbateTime
end: LocalbateTime
longDescription: String
shorbescription: String
responsibleUser String
allowedLanguages: List<String> = new LinkedList<...
1 [
o.r
0. L P i 2 A stractin so Lt Odyect
Abstractisc L Diyect User
Probleminstance
name: Sting
contestiD: Shing # login: Sting
problemDatalD: String # pasaword: String |1 0= 0.5 1
p DR =F AL # email: Sting
deadline: LocalbateTime Abstrachilse L Oyect
start: LocallateTime Submission
maxSubmissions: int =
userResponsible: String —(ESID: Sting
showCompilationLog: boolean = true 0. [HgERgliage|D: String .
B e vl AbstraciScoreF actory # timeSubmitted: LocalDateTime
sourceFileName: String

Figure 2.4: Domain model of the contest data.

2.8. Other system modules

layer provided support for component specific features (e.g. locking actually
processed submission in Judge component).

Analysis showed, that the API based is sufficient for the current purposes,
just one more layer was added (after the second one), which aggregates some
functionalities shared by components and implemented in the original third
layer.

Minor issue was found concerning the data storage format. The previous
version of the system stored data entities in the text files, which contained data
in multipart format. This approach was questioned in the previous version
of the work — while it seems quite nice from the API perspective (utilizing
standard HTTP only), it presents certain complications, since this format is
quite hard to work with (for e.g. purpose of the manual data intervention) as
opposed to the XML file. After a discussion, it was decided to migrate to the
XML format of stored data. This change should also ease the transition from
the raw file storage to some kind of NoSql/Xml database in CML component,
if such need will be discovered in future.

2.8.3 Issues with relations mapping

During the work, major issue, related to the specific CML nature, namely
object immutability and requirement to implement data object relations, was
found, and the real actual impact was discovered quite late in process of
implementation of the web interface. Because the object stored in CML should
not be modified (except for rare exceptions), best solution to approach the
relations problem was to rely on conventions rather than actual links. In
that way, the data object, which contains the e.g. contest data, does not
contain neither list of contest problems or submissions, but they are found
by convention in their appropriate directories. Relations are handled by the
appropriate component CML client, which will e.g. receive relative path of
the contest on input and, with help of some relations mapping object, will
return list of submissions (optionally filtered or post-processed in some way).

The actual problem is the implementation of the data mapper object,
which handles relations of the data entities and should ideally be flexibly con-
figurable and independent on the actual data contest (in case, that the CML
data repository would be used for other purposes than PCSS system). Ana-
lysis showed, that with the current CML API, there is need to handle mapping
of relative path of five different objects (see diagram [2.8.3] with structure of
the contest directory for better illustration):

Named file Under the relative path is stored the appropriate XML file. Ex-
ample entity is XML representing final judgment of submission.

Named directory Under the relative path is stored some named directory,
which just helps to structure the data tree and does not contain any

27

2. ANALYSIS AND DESIGN

actual data object. Example object is directory ,,problem-instances” in
the contest directory.

Versionned file This object is used with the CML POST method. The
actual relative path contains path and file name without version and
CML returns specific version (typically the actual newest one) of the
data object. Example object is XML file representing scoreboard in
contest.

Versioned composite object This object is similar to the versioned file,
but the actual relative path of the object is relative path of a directory
without version, which contains some XML data entity and arbitrary
amount of other objects as well. On request, the mapping API should
return the XML object data entity, of which relative path will be com-
puted from the relative path of the parent versioned directory (i.e. map
relative path of versioned directory to relative path of the contained
XML data entity). Such object in current implementation is represen-
ted by the submission object.

Named composite object This object is practically the same as the previ-
ous ,,versioned composite object”, but here the parent directory of the
actual data entity is not versioned, but named specifically. In this case,
that mapping entity must convert relative path of the directory which
contains some XML entity (and other objects) to the relative path of
the actual data XML object. Example object in current implementation
can be the contest object.

The final version of the mapper object should be configurable in a way,
which will allow to create the model of the file system (tree structure), and
which will define which type of object is stored where and which type of
entity is expected, when requesting an object on given relative path. For the
configuration purposes would be probably used the Spring framework.

The benefits of the datamapper object as described above are:

e Separation of the mapping functionality from the actual component
CML clients.

o Flexibility of the file system, which final structure would be flexibly
configurable.

e casier use of the CML component for purposes other than the PCSS
system (consequence of the previous item)

While author has a quite good idea of how to implement API described
above (implementing factory for each object type and compose them to tree-
like structure, which would be traversed with some kind of appropriate visitor),

28

2.8. Other system modules

bi-ep-2013-2014......cviiiiiii Root contest directory
| problem-instances. Directory with problem instances
L sample-problem. Root directory of problem instance

| _submissions.............. Directory with problem submissions
submission.l.......... Root directory of submission object
judgment.xml. Judgment XML object
submission-info.xml............ Submission meta data

sources.zip. Source codes of the submission
submission.2.......... Root directory of submission object
judgment.xml. Judgment XML object
submission-info.xml............ Submission meta data

sources.zip. Source codes of the submission

| problem-instance-info.xml. Problem instance data

| scoreboard...........iiiiiiiinn. Directory with contest scoreboard
scoreboard.l.xml, First contest scoreboard
scoreboard.2.xmlooiiiiinnn.. Second contest scoreboard

I 1= o= Directory with contest users
tusers—list doxml ...l First version of the contest user list
users-list.2.xml......... Second version of the contest user list

| _contest-info.xml.i..... XML file with contest data

Figure 2.5: Illustration of the internal representation of the contest directory
in the CML component.

actual, complete and reliable implementation seems to be out of scope of this
work, since it would also be necessary to rewrite clients for all three main
components of the current system implementation (Judge, Scoreboard and
web interface).

Alternative solution would be to resign on some specific file system fea-
tures, which would be easier to implement. The final result however would
miss some of the features like named directory (i.e. the root directory with
contest would not be named by the contest, as is illustrated on diagram [2.8.3]
but would be named like ,,contest.1”, ,,contest.2” etc). That would ultimately
lead to worse orientation in the file structure when browsed manually (by the
user and not machine).

The current implementation uses hard-coded mapping approach and au-
thor is of opinion, that this implementation flaw should be adressed before
implementation of the other components, which will rely on the CML APL.

29

CHAPTER 3

Implementation

This chapter describes and discusses the process of realization of the system.
Author will focus on discussion and system features introduction here, since
the implementation details could be found in the documentation in the ap-
pendix of this document.

As was defined in the requirements, the system was implemented in the
Java programming language, using the Maven [30] build system. The illustra-
tion of implemented system modules and module dependencies can be found
on diagram Mlustration of modules communication can be found on dia-
gram The short description of modules follows, more details can be found
in the sections below.

CML Server component, which serves as system data repository. Except
bug fixes, the author did not perform any significant changes in this
component.

Judge This package contains the Judge component, which is is responsible
for evaluating the user submissions (source codes). The analysis was
described in implementation is discussed in

WebUI Contains the web interface for submitting solutions and viewing res-
ults. The analysis can be found implementation discussion in

Scoreboard Contains the component, which is responsible for processing
and generating the contest scoreboard. The analysis can be found
implementation discussion in

CML Data Contains various classes shared across the system and its com-
ponents. In this module, author implemented the necessary domain
model and simple abstraction of the data entities relations. This package
also contains the scoring algorithm, since it is used in Judge, Scoreboard
and WebUI components. The analysis can be found in Discussion
of implementation is omitted.

31

3. IMPLEMENTATION

cmp PC554 components /

oz poss.cml OF PSS Prosy
8] HTTP 3 2]
L =T - rexy
A A
I I
HTTF HTTP

oz poss.cmlapi I

CMLAR

Q Q

=i | | ¢ =
oz poss.judge cZ poss. scoreboard oz .poss . webui

JudgeClient ScoreboardClient Wab UIClient

Q Q Q

Judge Cormponert Scoreboard Componernt Wizb |

Figure 3.1: Illustration of modules communication.

CML API Classes in this module are providing API for communicating with
the CML component. As described in the analysis author reimple-
mented the original clients to the 3-layers, which provides shared API
for CML communication by other components. Additionally were imple-
mented changes, which were consequence of migration from multipart to
XML format of the Data and fixed some bugs from the previous version
of the APIL.

Proxy Contains proxy component, which was implemented in the previous
version of the system and was not used in the current one. More details
can be found

32

pkg Packagehodel
cmldata

+ AbstractCmlXmlObject
+ Anstractiisc U Odyect
+ Databiscltils

g+ G Xl Olyectintedace
o T iV Ll Oiyect

.+ datawrappers

|+ exe

.+ factony

_| + icpc

_| + jazbadapters

_l > EE003 il
l‘.\‘mwt:ncgg) + CmilConfiguration
| + CmlFs

]
| + Cmiteta
| + CmilbetaTest

4‘—‘ + auth
crml=pi _
judge s methods

- + CmlApiTest ~7|] * model
= -
*j“‘:‘:""a"““dgem” + CmiHttpClient 2 |+ senvets
= + .
udge + CmlIHtpClient i+ synchranization
@ e EOmERaT + CmiHttpClientTest
+ JudgeComponentTest + UploadResult o poss)
+ JudgeTest =
= + UploadResult
+ Judgeltils .
=i [g appclient
+ Main %
= [*e=e -~ ;
= + Main ‘_? - webuiep
el R U ~ =
= + SCUtilz , = +WebUlUtilz
= - + methods =
+ SubmissionContainer [« — | * cmidlient
i+ client lf"mm'{:tlcssl] E}] *exc
| * compilation | \,‘ | +forms
|
+ compiler A + model
4 P I v 1
+ config | % + uicomponents
1 |
. I kY
.+ container |
]+ data I “ #mir pess)
i A
.+ ewaluator | \
_| + exc | v.\
]+ emec : v
i+ misc I *
o]+ T : scoreboard
|| + archestratar I + AppTest
] *+ preevalutaor : + Main
+ prototypes = +5 boardConfi
] * prototyp prox],r—l coreboardConfig
| tun + ScoreboardGenarator
] * runner + ProwyConfiguration + ScoreboardOutput
] + walidation + ProxySenlet |+ client
.+ walidator _| + exo
from poes) Frome poes) o poes)

Figure 3.2: System modules and their dependencies.

3.

IMPLEMENTATION

3.1 Judge component

The Judge component was implemented as was described in the section
The quick overview of implemented features follows, their discussion can be
found below.

e The Judge component is independent on the contest and the problem

(i.e. the actual process dynamically changes with the evaluated prob-
lem).

e The component executes the submitted programs securely with help of

the isolate utility.

e The component is currently able to evaluate submitted programs in C,

C++ and Java programming languages.

e The Judge component was designed with the modularity needs in mind.

Adding new component would usually mean to just implement one in-
terface and add the class to the class path of the module.

The top level Judge process is illustrated on diagram

=d JudgeProcess

. ~| Corfigure component
Execute
En>

[Ha]

Download submission and
related problem dats

End [ves]

fas fatal™

Build = procesz= tree

Exgcute process tree

Upload internal error Emar? Uplozd result

[He]

[es]

34

Figure 3.3: Top level Judge process.

3.1. Judge component

=ct WalidatorProcess /7

Start

Execute program

Compilation successful?
[ves]
WVALIDATION_SKIPPED
E: tion emor?
[He]

[res]

[res] %

Internal
emor

No]

Some limit exceeded?

@< [res]

Appropriate code
(TIME_LIMIT_EXCEEDED, SIGTERM etc)

“walidate output file

Validation error?

Walidation
result

Figure 3.4: Tllustration of the validation process.

3.1.1 Implementation of dynamic behaviour

As stated before, for implementing the dynamic behaviour of the component
was used the Spring framework. The actual representation of the process tree
is stored and downloaded from the CML component. After the initialization,
the Judge component will create entity called ,,SubmissionContainer”, which is
basically map of stored values of different datatypes. This map is then passed
to the root of the tree, which should be usually DefaultOrchestrator component
(see below). There are currently implemented three types of components for
purposes of the processing tree — Orchestrators, Units and actual processing
algorithm components. Their description can be found below.

3.1.1.1 Orchestrators

Orchestrators are handling the data flow and contains list of assigned compon-
ents (other orchestrators or units), implements the I0rchestrator interface.

DefaultOrchestrator This orchestrator just passes the work from one as-
signed component to other, in defined sequential order.

IterativeOrchestrator This orchestrator will pass the SubmissionContainer
to the assigned components given number of times, also in sequential
order.

35

3. IMPLEMENTATION

3.1.1.2 Units

Units are representing an interface between Judge component and independ-
ent processing algorithm. They contain particular implementation of some
algorithm (strategy design pattern), handle conversion from and to data input
of the particular algorithm and store result in SubmissionContainer. May
handle exceptions, if needed. Units are implementing the I0rchestratedUnit
interface)

DefaultCompilerUnit Generates needed input and output for classes, which
implements the ICompilerInterface.

DefaultValidatorUnit Generates the input and output data containers for
classes implementing the IValidator interface. The validation data are
downloaded from the CML component.

DefaultEvaluatorUnit Generates input and ouptut data containers for classes
that implements the IEvaluator interface.

3.1.1.3 Algorithm implementations

These classes are implementing some specific algorithm and are independent
on the Judge component and the whole system itself.

DefaultCompiler Implements the ICompilerInterface. Serves for compil-
ation of programs. The output of this component is either successfully
compiled program or CompilationError result.

DefaultValidator Implementation of the IValidatorInterface and con-
tains classes, which are responsible for secure execution and validation
of the compiled program (strategy pattern again). The process may be
skipped, if the validation failed. See diagram for more detailed al-
gorithm illustration. In the current implementation, the only validation
strategy implemented is binary validator.

DefaultEvaluator Implements the IEvaluatorInterface. This class per-
forms generation of the final judgment of submission (provided, that
none previous component crashed). Current implementation will set the
final Judgment result (enumeration) and will assign the final score (see
. Finally, the evaluator will upload the submission data entity to
the CML component along with another data entity called ,,Evaluation
request”, which contains the relative path to submission.

The component diagram for the most common evaluation scenario ,,com-
pile — validate — evaluate” is illustrated on figure [3.5

36

3.1. Judge component

cmp JudgeProcessComp

Judge and shared components

Thiz structure is generated uniquely
Client — Judge for each evaluated problem.
A !
T .
t
Processing tree components structure
|
Compilation process E Evaluation process
«Qrchestrators
E ._—-'—"'__F:? DefaultDrchestra‘tor<___"--—_____ E
_ -T7 «Unite
iz /':'\ DefaultEvaluator

Default CompilerUnit

A

A

2 i d

: whilgorithmimpls
whlgorithmimpls De‘fagultE\.raI ua?tor
Default Compiler

T
Orchestrated section (Walidation process)
|

«Qrchestrators

Default Orchestrator
AN
E %
/ A
Walidation 1 {test with zample data) \\Validation step 2 (test of program speed)
, \
wAlgorithmimpls — wllnits wllnits == —| «aAlgorithmimpls
Internal walidator Defaultvalidator Unit Defaultvalidator Unit Internalvalidator
JI?\ S - ”’ fll\
~ -
| r |
«Executiontdathods «Walidationtetho... «Executiontdethods «\alidationMethods
|zalateRunner Einaryvalidatar IzolzteRunner EBinaryalidator

i
'
' i The validatiens in current
'] ' implementation are sequentional,
e ————— - L‘> Exeeite >}> Validate > : but could be parallelized.
. e :
V
'

Evaluation process

Figure 3.5: Illustration of the structure defining the submission processing
algorithm with two-step validation.

37

3. IMPLEMENTATION

3.1.2 Scoring algorithm

As stated, it should be possible to use the system in different contexts and
therefore we can assume, that the different contexts will have different scoring
mechanisms and algorithms. For example, the ACM ICPC contest will show
score in the ,,total solved problems” manner, while the system for evaluation
of school homeworks might work on weighted percentual principle.

Because of this universality, author decided to implement the scoring mech-
anism using the interpretation principle. The data entity, which represents the
instance of the contest problem, will have access to class implementing the
IScoreFactory interface. This class will be able to produce some universal
data entity (created from list of validation results), which will be stored in the
final judgment. Anyone, who will need to compare two results (in this version
the Scoreboard and Web interface components), will first give them to the
original (or any other if need be) factory class, which will created interpreted
result, which contains methods to e.g. compare two score results, determine
if the scoring result is maximal or minimal possible etc.

This approach will allow to abstract the actual scoring algorithm from
Judge, Scoreboard and WebUI and should allow implementation of different
scoring algorithms. Another advantage of this approach is, that if some para-
meter of the scoring will change, it might not be necessary to reconstruct
the whole scoreboard from scratch, since the changed parameter will manifest
itself in the process of the interpretation.

The process and interface illustration can be found on diagram In
the current implementation of the system, author implemented two following
scoring algorithms:

Percentual scoring This method will go through list of validations and will
compute the weighed percentile of correct validations. The problem will
be marked as solved in case, that the final value will be equal or higher
than given threshold.

Pedantic boolean scoring This method will go through the list of valida-
tions and will set the problem as solved only in case, that all validations
were correct and no error (like exceeded time etc) was found.

3.1.3 Synchronization

Because it can be expected, that in the system will run more Judge compon-
ents in parallel, there is need to synchronize them, so that the work wont be
evaluated multiple times and there wont be any collisions when uploading the
Judgments.

The synchronization mechanism is provided by the CML component in
the form of subtree locking mechanism (see [I] for details). The work to be

38

3.1. Judge component

e-p ScoringAlgorithm 7
«enumerationz
walidations::¥alidationResult Enurn
CORRECT_ANSWER
N Abstzctio
WRONG_ANSIER . T
TIME_LIMIT_EXCEEDED st d=on o
FATAL_SIGNAL #ualidationResult I eIt ValidationResltE
INTERMAL_ERROR # weight int)
BN EFFOR # isolateCommand: String
SKIFPED_DUE_COMPILE_ERROR # diff: Sting
SKIFFED_DUE_INTERMAL_ERROR # description: String
Adtributes
stringValue: String
defaultzerbessage: String I
]
I
|
L
«informations
List of walidation
results
«inputs
«interfaces
score::|ScoreFactory TR R
+ create(ScoreFactorlnput): [Score s
+ getbefaultComparaton] : Comparatar<linterpretedScoras wdecision flows
+ createfinimal) : 1Score
woutputs
«interfaces
score:|Score
“élf;r';"::;t"” + getScoreValuei: String
A i X .
T2+ getTagen: Map<sting, Stings
+ isEron): boolean
+ ighefault]): boolean
+ getScoringlog: Scoringlog
winputs
Compaator
«interfaces
score:|Scorelnterprater wdecision flows IrterpretScore
+ interpretiJudgeOutput) : linterpreted
o H(ScoreboardCell) : lint tad
PR— imalint tedr : linterpreted
+ compare(JudgeOutput, JudgeQutput) : int
+ compareCells(ScoreboardCell, SeoreboardCell) :int
Compaahle
woutputs «interfaces
score::linterpreted Score
+ igfccepted(: boolean
+ isEror): boolean
winformationa + izshdax]): boolean
InterpretedSoore - —— {4 + ishing : boolean
+ gethdaxPossibleScore'falue) : String
+ gethdaxScored :int
+ getMinFPossibleScoreValuel) : String
+ gethdinScore): int
+ getfictualScoreValuel) : int
+ getResultString() : String
+ compareTolllnterpretedScare) @ int

Figure 3.6: Illustration of the scoring algorithm.

39

3. IMPLEMENTATION

evaluated is stored in the data entity called ,,Evaluation request” (contains
relative path to the submission waiting for the evaluation) and each Evaluation
request has data entity called ,,Evaluation ack”. When component asks CML
for work, it will attempt to lock some evaluation request, which does not have
its ack. If succeeds, than it will download it, process it, upload Judge output
along with evaluation ack and then will release the lock. The whole process
is optimized with help of the ,,modified-since” header, so that the CML will
return only those evaluation requests, which the Judge component haven’t
received yet.

3.2 WebUI component

As stated in analysis, the web interface was written from scratch. The com-
ponent was implemented in Java, using the Java server faces framework. The
design was created with help of Twitter Bootstrap.

The final implementation supports all requirements as defined in the sub-
section After consultation with the supervisor, following use cases were
added for all users:

e Showing logs of related process (e.g. compilation error log, validation
logs etc).

e Ability to submit the solution as file and also as pure text.

e Refuse the user to see contest details, see contest problem and submit
solutions if the contest did not started or the contest ended.

e Refuse the user to submit the solution if the maximum count was reached
or the problem is closed (was set so by admin, problem did not start or
problem ended).

Additionally was added one special user role (person responsible for con-
test), which has following privileges:

e can see all submissions of all users

e can submit any solution any time to any problem to particular contest,
even if the limit was reached

e when submitting the solution, the solution will be evaluated normally,
but the result will not be shown in the scoreboard of normal users.

e will have access to logs of the evaluation process, which are hidden to
normal user

40

3.3. Scoreboard component

3.2.1 Result

The current version contains some flaws and has some specific features, which,
as author believes, should be mentioned.

Firstly, the author did not test the web interface in the real environment yet
and there is a possibility, that the component might have some performance
issues, because of the architecture of the CML component and HTTP protocol.
While it seems no issue in the Judge or Scoreboard components (because the
actual evaluation algorithm will surely take no longer than about 10 HTTP
requests to initialize the process), in the web interface, where there is need
to show large quantities of related data (even if the user will ignore most of
them), this might be an problem.

The discussion and possible solution of this performance problem is also
described in will be probably handled by some caching mechanism. The
current implementation uses minimal caching, in which it does not download
the same data entity for the request more than once.

Second issue lies in fact, that the current version of application does not
use any mechanism for securing the passwords of the users — they are stored
in the plain-text form in the CML component. This issue was addressed, but
author decided not to secure them in this implementation. First reason is, that
the CML will run somewhere in the private network and will communicate only
with other system components — direct access will be denied. Second reason
is, that the user management will be eventually implemented in the Proxy
component, but in the later version of the system. Even though the state is
not ideal, it seems to be secure enough for some small pilot deployment and
therefore will be this issue solved in the future versions of the system.

Last remark concerns the implementation of the application logic. In
standard web applications build in Java server faces (or JavaEE) is controller
part of the application handled by Java server faces beans and the applic-
ation logic by Enterprise beans (EJB). But since the current version of the
application provides quite a little application logic and the use of the EJB
would bring just another technology dependency to the project, without any
found benefit, the author decided not to use the EJB and implement even the
application logic layer in the with the help of Java server faces beans.

3.3 Scoreboard component

Because there were too many changes made in the system from the previous
one, the author decided to rewrite the Scoreboard component from scratch
and use just a relevant code snippets from the previous version.

As stated in analysis section of this component, the Scoreboard is as Judge
component independent on contest and on the actual scoring algorithm, which
is used for computing results. And also, as case of the Judge component,

41

3. IMPLEMENTATION

there can be more than one Scoreboard component in the system, so the
synchronization is needed.

The synchronization mechanism basically the same as described in the
Judge component (see , with the difference, that in the role of the eval-
uation request is here the evaluation ack and in the role of the evaluation ack
used in Judge is here the scoreboard ack. In this way, the scoreboard checks
for any new evaluations of submissions by checking new Judge component
evaluation ack and when the submission was processed and new scoreboard
was generated and uploaded, the scoreboard will also upload the scoreboard
ack, so that the submission wont be processed twice.

As for the process itself, the input data are the new submission, old version
of the contest scoreboard and the scoring algorithm (stored in the problem
instance data entity). The Scoreboard will let the scoring algorithm inter-
pret the score and compare it with last result of the user for given problem.
If the result is better, the scoreboard get updated with new score. If not,
just a counter with submission count of the user for particular problem is
incremented and the new scoreboard is uploaded to the CML component.

3.3.1 Space efficiency considerations

The current implementation uses the versioning mechanism provided by the
CML component for the scoreboard storing. This may result in unnecessary
space usage in the CML component in case of the long-running contests, be-
cause as the consequence, there is currently stored every version of the contest
scoreboard, but read is usually only the last one.

The solution of this problem may be to implement some mechanism to
limit amount of versioned objects in the CML component.

42

CHAPTER 4

Testing

This section describes tests, which author performed in the current version
of the application. The section describes automated testing of the Judge
component. The section describes the manual testing of system features
through the web interface. The section contains quick remark about the
state of the CML component.

4.1 Automated testing

Automated tests were written only for the Judge component. The functional-
ity of the WebUI and Scoreboard components were tested manually (see the
13).

Author implemented 24 unit tests for the Judge component, each testing
some component implementation in the black-box manner and then there are
5 tests, which tests the Judge component as a whole against mock CML client.

For the purposes of testing, the author implemented simple Mock in-
stances, which represent one sample problem and 5 submissions, representing
5 basic source code types:

e accepted in C++

e wrong answer in C+-+

accepted in Java

time limit exceeded in C++

e memory limit exceeded in C+-+

The performed component and Judge tests are described in the following
composite list:

e The tests for the compiler includes:

43

4. TESTING

— Test of compilation of ,,Hello world” program in C++4, where is
tested, that the binary exists, compiler returned code 0 and that
standard and error outputs of program execution exists

— Compilation of Java ,,Hello world” program, where is tested that
given class file exists, javac returns the code 0, and the standard
and error output logs exists

— Tests of C++ ,,Hello world” program, which tests if the binary
exists, is executable and after execution returns the correct ,,Hello
world” string

— Same test as the previous one, but in custom set output directory
e Tests of basic two units:

— The DefaultCompilerUnit correctly initializes the input data con-
tainer from generic SubmissionContainer

— The DefaultOrchestrator unit passes the container correctly to 3
mock sub-units

Tests of default execution interface wrapper (used for execution of pro-
grams for compilation and validation purposes):

— The executed binary C++4 ,,Hello world” program is correctly ex-
ecuted and returns correct string

— Same as above, but in custom working directory

Same as previous ones, but with extended testing of the directory
content (binary, output files etc. . .)

— Test, that the working directory is correctly cleaned, after execution

e Tests for the Isolate wrapper are testing five binaries of the sample con-
test problem. Tested values are result codes OK, TIME_LIMIT_EXCEEDED,
SIG_.TERM and INTERNAL_ERROR of binaries, representing following

cases:

— correct answer in C++
— wrong answer in C++
— correct answer in Java
— time limit exceeded in C++

— memory limit exceeded in C++ (ends up in segfault due to the
Isolate behaviour)

e The tests of the validator is also based on submissions mentioned above,
tested values as ACCEPTED and WRONG_ANSWER of submissions:

44

4.2. Manual testing

— correct C++ program
— correct Java program

— invalid (wrong answer) C++ program

e The tests for the Judge component and default process tree contains
test of 6 basic submissions, which is tested for not throwing any excep-
tion, not crashing and returning the correct results (tested are Judge
output codes SCORED/COMPILE ERROR and score output ACCEP-
TED/WRONG_ANSWER), for submissions, which represents the fol-

lowing cases:

— correct answer in C++
— wrong answer in C++
— correct answer in Java
— time limit exceeded in C++

— memory limit exceeded in C++ (ends up in segfault due to the
Isolate behaviour)

— uncompilable code in C++

4.2 Manual testing

The system was also manually tested through the web interface to ensure,
that the stated requirements on the system are fulfilled and system provides
those features. The tests were performed on top of the sample data, which
can be found on CD. These data contains:

4 contests (2 in progress, one finished and one which has not started yet)

one problem definition to which all contest problem instances are linked

4 users, from one of them is the user responsible for the contest

e other necessary data to run the system (e.g. language definitions etc)

On these data and final version of the system, following tests were per-
formed:

e User does not see any contest, unless logged in, user also cant access any
data on any contest subpage (e.g. problem page) unless logged in

e User can log in with his credentials

o After logout, user is redirected to the index page and the cache is cleared
(tested from the contest page, problem page and scoreboard page of
running contest, see below)

45

4. TESTING

46

e User sees list of all contests, to which has access to

e For the contest, which did not started yet:

User cant access contest main page, scoreboard or any other contest
sub-page, unless is in privileged role

If in privileged role, he can access all contest data and upload sub-
missions, even though the submissions max count is reached

The Judge and Scoreboard component are processing the submis-
sions of privileged user, as if the contest was running

The submissions of privileged user are processed correctly for the
Percentual scoring algorithm, by both scoreboard and Judge com-
ponents, with correct results (compile error, wrong answer, time
limit exceeded, memory limit exceeded, partially correct and cor-
rect in C++ language, in Java language for the correct solution).
All tested submissions were accepted either via file or via text input.

The logs of the processed submissions are correct (i.e. are display-
ing correct compile input or output, source code, isolate command,
validation result, diff in case of partially correct submission and for-
mula for scoring computation in case of Percentual factory). The
source code can be downloaded as file.

The scoreboard shows correct results (submissions count and per-
centual result) in accordance with the Percentual scoring factory
algorithm.

The web interface will not crash and will display correct empty data
entities, if the components Judge and Scoreboard are not running
(i.e. empty scoreboard, minimal score etc).

e For the contest which has ended:

User can view contest description, problems, problems description,
contest scoreboard and his submissions with their detailed log, to
which has access to

User cant upload new submissions, unless he is the privileged user

For the privileged user does the contest behave as if the contest is
in progress (can view everything, can submit)

Privileged user has access to all contest submissions
Unprivileged user cant access page with all contest submissions

The uploading of the submissions behaves correctly (same results as
in the contest which did not started for privileged user, see above)

The privileged user sees the whole scoreboard, the unprivileged user
sees the scoreboard without the results of the privileged user

4.3. CML testing

— The scoreboard corresponds to the expected output and are cor-
rectly sorted.

e For the contest, which is in progress

— Every user sees all his submissions and their appropriate logs, con-
test main page, problems descriptions, scoreboard

— Every user can submit, if the problem is in progress, is not closed
and the maximum submissions count is not reached

— Privileged user can submit always
— Privileged user sees all submissions of all users in the contest
— Unprivileged user cant access page with all contest submissions

— The privileged user sees the whole scoreboard, the unprivileged user
sees the scoreboard without the results of the privileged user

— Tested submissions behave correctly, as in the case of privileged
user in the contest, which did not started yet.

— The scoreboard corresponds to the execpted output and are cor-
rectly sorted.

4.3 CML testing

As stated before, the thesis [5] has performed some thorough testing of the
CML component. Author briefly examined the work and found out, that the
component might contain indispensable amount of bugs in the CML API,
although the result might quite easily reflect the not ideal state of the CML
API documentation.

Nevertheless, author did encounter only minimal amount of minor bugs
in the current work and fixed them immediately — after the fixes, the CML
component behaved as expected and no other problems were found. Since
the CML component was not the primary aim of this work, author did not
investigate the found issues further, but in the future, maybe before further
CML development, this issue should be addressed and results of the mentioned
work reviewed.

47

Conclusion

In this thesis, the functional pilot implementation of the PCSS evaluation sys-
tem was created. The system is ready to be tested in some real environment,
preferably in the smaller school course or programming contest. For these
usage scenarios, only minimal additional implementation should be needed
(specific scoring algorithm and missing validation methods for specific prob-
lems). Because of the ,,smaller nature” of the event, it will be also easier to
address any unexpected system issue that might arise.

From the author’s perspective, the strongest part of the system is its mod-
ularity, extensibility and flexibility. The logic of the system’s processes seems
to be well separated, Judge component is highly configurable and the architec-
tural style seems to be based on simple and clearly understandable principles.
Because of the mentioned features, the result seems to fulfill the requirement
on system ,,domain independence”.

The main system drawback seems to be the implementation part of the
system and related system ,,immaturity” — i.e. the system currently does not
offer as many features as it could. The main reason of this is the fact that
author decided not to use any result of the theses from the previous years
related to the system, namely the framework for secure program execution [2]
and the web interface for the ACM ICPC contest [3]. This decision cost the
author time that could have been invested in the other parts of the system
(probably system infrastructure and Judge component).

Quite a lot of time was also consumed by using the immature CML data
repository that meant e.g. manual handling of the data relations in the imple-
mentation stage of the work. Using some existing solution with some object
related mapping such as Hibernate [31] would probably yield faster and more
comfortable work with data model. (Nevertheless, using the CML component
as the system data repository is, from the author’s point of view, still better
for the system in the long term and CML drawbacks will be hopefully solved
by future development.)

49

CONCLUSION

The implementation also contains certain sections with which the author
is not entirely satisfied. They do not present problem in the terms of system
functionality, but the author would like to rewrite them nevertheless at the
first opportunity (as an example can be used the configuration of programming
languages).

Overall is the author quite content with the final result. Author also hopes
that he will be able to contribute to the system development in the future and
that the system will also attract other contributors, since (as can be seen from
the text above or from the following section) there is a lot work, that can be
done via other bachelor’s or master’s theses, or some school courses projects
as well.

Future work

As for the future development, there are numerous ways to enhance the sys-
tem. From the view of the system infrastructure, the author believes that the
most crucial part is the implementation of the data model. The current imple-
mentation is not configurable and, mainly from the developer’s perspective,
is very difficult to work with. This fact is reflected in the CML API module.
Because all of the data processing components of the PCSS are dependent on
this system part, author believes that unnecessary delay in dealing with this
issue might bring complications or unnecessary work in the future.

Issue related to the one mentioned above is the absence of some tool for
creating the system data entities (e.g. contest, problem etc. ..).

CML component itself is also far from finished, even though practically
usable and reliable for the purposes of the current implementation of PCSS.
The component would mainly benefit from solving the security and efficiency
issues. The API of the CML seems sufficient, the only possible bigger en-
hancement here seems to be the ability to filter and return more than one
data entity. Review of the [5] that was testing the CML API would be also
helpful. Another possible enhancement is the implementation of some separ-
ate component (tool) that would allow to utilize the CML API responsible for
the manual data intervention.

A lot of work can be done in the Judge component. From the perspective
of the offered features, numerous modules might be implemented, such as
mentioned plagiarism checker, module for static code analysis, support for
more languages, more validation methods. ..

As for the user web interface, the main drawback is lack of usability testing
that might reveal some design flaws or suggest enhancements for better user
experience. As in the CML, this component would also benefit from imple-
mentation of some form of caching mechanism. Some tasks and Ul features
could be also moved from the server to the client (AJAX) that would also lead
to better user experience.

20

Bibliography

Hauk, T.: Zdkladni komponenty vyhodnocovaciho systému PCSS. Bach-
elors work, Czech technical university in Prague, 2013.

Silhavy, J.: Zdklad systému pro automatické hodnoceni programai. Bach-
elors work, Czech technical university in Prague, 2012.

Benak, T.: Webové rozhrani systému vyhodnocovdni programdtorskych
soutézi. Bachelors work, Czech technical university in Prague, 2013.

ACM ICPC International Collegiate Programming Contest. January
2016. Dostupné z: http://icpc.baylor.edu/welcome.icpc

Dmitriy, B.: Automated Test of of Programming Contest Fvaluation Sys-
tem. Bachelors work, Czech technical university in Prague, 2015.

Fielding, R. T.: REST: Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of Cali-
fornia, Irvine, 2000. Dostupné z: http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm

Fielding, R.; Gettys, J.; Mogul, J.; aj.: Hypertext Transfer Protocol
~ HTTP/1.1. RFC 2616 (Draft Standard), Cerven 1999, updated by
RFCs 2817, 5785, 6266, 6585. Dostupné z: http://www.ietf.org/rfc/
rfc2616.txt

Borenstein, N.; Freed, N.: MIME (Multipurpose Internet Mail Exten-
sions): Mechanisms for Specifying and Describing the Format of Internet
Message Bodies. RFC 1341 (Proposed Standard), Cerven 1992, obsoleted
by RFC 1521. Dostupné z: http://wuw.ietf.org/rfc/rfc1341.txt

NoSql. January 2016. Dostupné z: http://nosql-database.org/

XML Path Language (XPath) 2.0. January 2016. Dostupné z: http:
//www.w3.org/TR/xpath20/

o1

http://icpc.baylor.edu/welcome.icpc
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1341.txt
http://nosql-database.org/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

BIBLIOGRAPHY

[11]

[12]
[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

[21]

02

DomJudge. January 2016. Dostupné zZ: http://
domjudge.sourceforge.net/

PC2. January 2016. Dostupné z: http://pc2.ecs.csus.edu/

Spring framework. January 2016. Dostupné z: http://
projects.spring.io/spring-framework/

JavaSE7 NIO library. January 2016. Dostupné z: https:
//docs.oracle.com/javase/7/docs/api/java/nio/package-
summary.html

GNU General Public License v3. January 2016. Dostupné z: http://
www.gnu.org/licenses/gpl.html

Timeout script. January 2016. Dostupné z: https://github.com/
pshved/timeout

Proot. January 2016. Dostupné z: http://proot.me/

CMS Contest Management System. January 2016. Dostupné z: http:
//cms-dev.github.io/

The Moe Contest Environment. January 2016. Dostupné z: http://
www.ucw.cz/moe/

Isolate. January 2016. Dostupné z: http://www.ucw.cz/moe/
isolate.l.html

Mares, M.; Blackham, B.: A new contest sandbox. Olympiads in In-
formatics, ro¢tnik 6, 2012: s. 100-109. Dostupné z: http://mj.ucw.cz/
papers/isolate.pdf

Mares, M.: Moe — Design of a Modular Grading System. Olympiads in
Informatics, roénik 3, 2009: s. 60-66. Dostupné z: http://mj.ucw.cz/
papers/eval2.pdf

Mono — Cross platform, open source .NET framework. January 2016.
Dostupné z: http://www.mono-project.com/

Arch linux. January 2016. Dostupné z: https://www.archlinux.org/

JavaSE downloads. January 2016. Dostupné z: http://www.oracle.com/
technetwork/java/javase/downloads/index.html

Apache Wicket. January 2016. Dostupné z: http://wicket.apache.org/

Java, Server Faces Framework. January 2016. Dostupné z: http:
//www.oracle.com/technetwork/java/javaee/javaserverfaces-
139869.html

http://domjudge.sourceforge.net/
http://domjudge.sourceforge.net/
http://pc2.ecs.csus.edu/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
https://github.com/pshved/timeout
https://github.com/pshved/timeout
http://proot.me/
http://cms-dev.github.io/
http://cms-dev.github.io/
http://www.ucw.cz/moe/
http://www.ucw.cz/moe/
http://www.ucw.cz/moe/isolate.1.html
http://www.ucw.cz/moe/isolate.1.html
http://mj.ucw.cz/papers/isolate.pdf
http://mj.ucw.cz/papers/isolate.pdf
http://mj.ucw.cz/papers/eval2.pdf
http://mj.ucw.cz/papers/eval2.pdf
http://www.mono-project.com/
https://www.archlinux.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://wicket.apache.org/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

Bibliography

Progtest. January 2016. Dostupné z: https://progtest.fit.cvut.cz/
Bootstrap. January 2016. Dostupné z: http://getbootstrap.com/

Apache Maven Project. January 2016. Dostupné z: http://
maven.apache.org/

Hibernate. January 2016. Dostupné z: http://hibernate.org/

GlassFish Server Open Source Edition. January 2016. Dostupné z:
https://glassfish.java.net/

93

https://progtest.fit.cvut.cz/
http://getbootstrap.com/
http://maven.apache.org/
http://maven.apache.org/
http://hibernate.org/
https://glassfish.java.net/

APPENDIX A

Acronyms

ACK Acknowledgement

ACM Association for Computing Machinery
API Application program interface

CML Data repository of PCSS

EJB Enterprise Java Bean

GUI Graphical user interface

HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol

ICPC International Collegiate Programming Contest
PCSS Programming contest scoring system
REST Representational State Transfer
XML Extensible markup language

UI User interface

95

APPENDIX B

Contents of enclosed CD

example-datacoiiiiiiiii. directory with example data
configurationS.................. example component configurations
data.....coovnunnn. example CML data directory (contest, problems)
SOUTCES +vvviereenneneennnnnennns source codes of example problems
=D = J AP the directory with executables
T o o the directory of source codes
isolatevviiiiiiinnn. directory with the Isolate utility sources

PCSS it directory with PCSS source codes
thesis.............. the directory of IXTEX source codes of the thesis

I 7 PP the thesis text directory
Lthesis.pdf the thesis text in PDF format

| readme.tXt.....oiiiiiiiiiiiia... the file with CD contents description

APPENDIX C

Deployment instructions

Sections in this chapter are describing process of deployment of the PCSS
system (there is section for each component). Note, that no component can
run without the CML component, therefore the deployment of the CML is
mandatory.

The configuration file and example data templates can be found on the
CD. See section for details of component configuration.

The example of deployment is illustrated on diagram

C.1 CML deployment
1. Build the CML component if not built already.

2. Setup and run appropriate application server, which supports basic
JavaEE and Java server faces framework. Author of this work used
the Glassfish application server [32].

3. Create new directory for the CML component on the local filesystem, in
which the CML will store the data entities. In this directory, create the
directory named ,,data”.

4. (Optional) In to the CML directory, copy the example initial ,,data”
directory from the ,,example-data” folder on the CD.

5. Modify the ,,cml-config.properties” java properties file (located in pro-
ject resources in ,,CML/src/main/resources”), so that it will contain
correct path to the created CML directory (the directory created in step
3, which contains the ,,data” directory”)

6. Deploy CML on the application server and check, that the application
runs correctly on the appropriate URL. Upon access, the contents of the
,,data” directory should be returned in the form of the list.

29

C. DEPLOYMENT INSTRUCTIONS

C.2 Judge deployment

First, there is need to setup the isolate utility, than the Judge component

itself.

C.2.1 Setting up the Isolate utility

e Compile the isolate utility on the CD (src dir) via the make command

e Set the SUID bit to the generated binary

e Test, that the isolate works via added bash scripts test-c.sh and

test-java.sh (the correct result is string of type ,,You entered value:
...). The C script should always work, the Java script might need adjust-
ment based on the system. Consult the isolate documentation in case of
trouble.

C.2.2 Deploying Judge

1.

2.

Build the component if not built already.

Update the Judge configuration XML file (example structure and set-
tings available in file ,,default-judge-config.xml” located in directory
with example configurations). Main parts here are the URL of the CML
component and path to the Isolate binary from step

. Deploy the configuration file either in a remote location (must be ac-

cessible via URL) or to a local file system

Execute the Judge component by one of the following commands.

e java -jar Judge.jar /home/user/.config/judge-cfg.xml

e java -jar Judge.jar http://server.com/cfg/judge.xml

C.3 Scoreboard deployment

1.

2.

60

Build the Scoreboard component, if not built already.

Update the Scoreboard configuration XML file (example structure and
settings available as file,,default-scoreboard-config.xml” in the directory
with example configurations).

. Deploy the configuration file either in a remote location (must be ac-

cessible via URL) or to a local file system.

. Execute the Judge component by one of the following commands:

C.4. Web Interface deployment

e java -jar Scoreboard.jar /home/user/.cfg/scoreboard.xml

e java -jar Scoreboard.jar http://localhost/scoreboard.xml

C.4 Web Interface deployment
1. Build the project, if not built already.

2. Modify bean ,,applicationSettings” in the ,, WEB-INF /faces-config.xml”
file to suit the needs of the deployment (most importantly it must contain
correct URL of the CML component).

3. Deploy the project to the application server, which is able to handle
JavaEE and Java server faces technologies (author was again using the
Glassfish server).

61

C. DEPLOYMENT INSTRUCTIONS

Scorehoard generator FC

executionEnvironment

deployment PCES4 deployment illustration /

Judge computer 1

Judge computer 2

executionEnviranment

executionEnvirenment

SV JW SV
. El jar] Ijal .
I i i uclge.jar
scoreboard jar Judge jar PR
HTTP HTTF HTTF
Hizwni server
executionEnviranment
Tormeat
war
cml war
E HTTF E
war war
HTTF cmlproxy. war ek war
HTTP
Froxy server 2, contest site 2
exgcutionEnviranment]) HTTP
Tomaat HNustration of deployment of PS54 system.
Eecause of the HTTF protocal
@ communication, the concrete form may vary.
war
cmlprosy . war
F C
HTTF I
executionEnvironment executionEnvitonment
E HTTF Web browser Web browser
war
bl wvar

62

Figure C.1: Hlustration of deployed system

components. Taken from [1]

APPENDIX D

Documentation

This chapter contains documentation of important parts of the system.

D.1 Component configuration

The subsections below are describing process and the actual format of files
that are used for the configuration of system components.

D.1.1 CML configuration

The CML component is configured by the ,,cml-config.properties” file located
in the ,,src/main/resources” project directory. File is in the Java properties
format (key value principle). The configuration file contains only one para-
meter called ,,dataDirPath”, which must contain path to the to the CML
reserved directory on local file system.

The CML component must have read and write access to the mentioned
reserved directory.

In the CML directory, there must exist another directory called ,,data”.
Files in this directory can be accessed via CML API. The files in this dir-
ectory may be of any type, but because of the current implementation of the
versioning mechanism, they cannot have any extension.

For more information, see [I] which will contain actual information, except
changes mentioned in this text.

D.1.1.1 Example configuration

e The CML directory is set to ,,/home/user/.cml”

e The stored data entities of the CML component are stored in the dir-
ectory ,,/home/user/.cml/data”

63

D. DOCUMENTATION

e parameter of the configuration file ,,dataDirPath” will be set to path
,,/home/user/.cml”.

e CML will be deployed on the local application server and will be access-
ible via URL: ,,http://localhost:8080/cml”

e Let there be a data entity stored in ,,/home/user/.cml/data/cfg/file”,
this file will be accessible for e.g. GET method on the URL (of the
CML): ,,http://localhost:8080/cml/cfg/file”

D.1.2 Judge configuration

The Judge component is configured via XML file. This file is passed to the
component either as URL (in case, that it is stored on a remote location) or
as a path to file on local filesystem. The following configuration options are
currently supported (example configuration file on listing :

cmlURI This contains URL of the CML component. The Judge component
will quit, if the connection fails.

evaluationRequestsLocation This parameter contains relative path of the
CML directory, in which are stored versioned entities called ,,Evaluation
requests” which are representing input data for the evaluation process.

isolateCommand Contains absolute path to the binary executable (or sym-
link to the binary) of the Isolate utility on local file system. Component
must have rights to read and execute this file. The file must have set an
SUID bit.

isolateLimits This configuration section contains currently supported ,,lim-
its” settings of the Isolate utility. The parameters are (see Isolate doc-
umentation [20] for more details):

memLimit Maximum memory limit for the program executed by isol-
ate, in kB. Corresponds to the Isolate ,,—mem” switch.

timeLimit Maximum time limit in seconds for the executed program,
should count only the real CPU time. Corresponds to the ,,—time”
switch”.

timeWallLimit Wall-clock time limit (real time of the execution), meas-
ures time even if the program lost the CPU. Use this to handle e.g.
sleeping programs. Corresponds to the ”—wall-time” switch.

extraTime When a time limit is exceeded, wait for extra time seconds
before killing the program. Corresponds to the ,,—extra-time” switch.

discQuota Set disk quota to a given number of blocks and inodes.
Corresponds to the ,,—quota” switch.

64

=W N =

D.1. Component configuration

processesCount Maximum number of processes which the executed
program is allowed to create. You should set more than 1 for run-
ning Java programs, since JVM will create multiple processes even
for simple ,,Hello World” program. Corresponds to the ,,processes”
switch.

isolateSettings This parameter contains a string of Isolate settings which
are passed to the Isolate as a command line parameter. Use this to e.g.
map specific parts of the host file system to the executed program. The
final Isolate command will look as follows:
isolate <ISOLATE-SETTINGS> --run binaryFile

mainOrchestratorBeanID Contains name of the bean in the Spring con-
figuration file which defines the process tree of evaluation in Judge com-

ponent. See[D.2.2.3] for details.

waitingTime Represents number of seconds the Judge component waits be-
fore sending next work request to the CML component in case that no
work was downloaded on the last request.

<?xml version="1.0" encoding="UTF-8" standalone="yes” 7>
<judgeConfiguration>
<cmlURI>http://localhost:8080 /cml</cmlURI>
<evaluationRequestsLocation>/evaluation—requests</
evaluationRequestsLocation>
<isolateCommand>/usr/bin/isolate</isolateCommand>
<isolateLimits>
<memLimit>3000000</memLimit>
<timeLimit>4</timeLimit>
<timeWallLimit>8</timeWallLimit>
<extraTime>2</extraTime>
<discQuota>64</discQuota>
<processesCount>32</processesCount>
</isolateLimits>
<isolateSettings>—dir=/etc —e</isolateSettings>
<mainOrchestraorBeanID>mainOrchestrator</mainOrchestraorBeanID
>
<waitingTime>5</waitingTime>

7|</judgeConfiguration>

Listing D.1: Example configuration file of the Judge component

As stated in the the actual evaluation algorithm is dependent on the
problem itself and the component is dynamically configured by the related
Spring configuration file. Details of this configuration can be found in

65

W N

D. DOCUMENTATION

D.1.3 Scoreboard configuration

Configuration of the Scoreboard component is done by single XML configur-
ation file, which can be passed either by the path to file on local file system
or as an URL in remote repository at the start of the program.

The configuration file currently supports two parameters, the example con-
figuration file can be found on listing

cmlURL This contains url of the cml component. the Scoreboard component
will quit, if the connection fails.

waitingTime Represents number of seconds the Scoreboard component waits
before sending next work request to the CML component in case that
no work was downloaded on the last request.

<?xml version="1.0" encoding="UTF-8” standalone="yes” 7>
<scoreboardConfig>

<cmlURL>http://localhost:8080 /cml</cmlURL>
<waitingTime>10</waitingTime>

</scoreboardConfig>

Listing D.2: Example configuration file of the Scoreboard component.

D.1.4 WebUI configuration

The configuration of this component is done via the standard ,,faces-config.xml”
file, which is located in the ,,WEB-INF” directory of the web application.

The configuration itself is done through the application scoped bean named
applicationSettings. The example configuration file is on listing the cur-
rently supported configuration parameters are:

cmlURI This contains URL of the CML component. the WebUI component
will crash, if the connection fails.

adminMail Mail of the web application administrator (shown on the error
page).

maxSubmissionFileSize Maximum allowed size of the submission file in
kilobytes. The upload will be refused, if the file size will exceed this
threshold.

66

CUR W N e

16

N o= = e
DN = O © 00

NN NN
W

ot

D.2. System configuration

<?xml version="1.0" encoding="UTF-8’7>
<faces—config version="2.2"
xmlns="http://xmlns.jcp.org/xml/ns/javaee”
xmlns:xsi="http: //www.w3.0org /2001 /XMLSchema—instance”
xsi:schemalLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns. jcp.org/xml/ns/javaee /web—facesconfig_2_2 .xsd”>
<managed—bean>
<managed—bean—name>applicationSettings</managed—bean—name>
<managed—bean—class>
cz.pcss.webuiep.model. ApplicationSettings
</managed—bean—class>
<managed—bean—scope>application</managed—bean—scope>
<managed—property>
<property —name>cmlURI</property —name>
<value>http://localhost:8080 /cml</value>
</managed—property>
<managed—property>
<property—name>adminMail</property —name>
<value>admin@pcss4 . cz</value>
</managed—property>
<managed—property>
<property-—name>maxSubmissionFileSize</property —name>
<value>1024</value>
</managed—property>
</managed—bean>
</faces—config>

Listing D.3: Example configuration file of the WebUI component

D.2 System configuration

This section describes configuration parameters and format of system data
(e.g. contest, problem...).

The subsection covers description of configuration files and data
entities independent on the contest or problem definition (e.g. users). Config-
uration of problem definitions and process of creating new ones is described
in[D.2:2] The subsection [D.2.3] describes configuration of contest related data
and process of adding new contest to the system.

D.2.1 System data configuration files

This section describes the data entities used by system that are independent or
shared among contests. Before setting the contest and the problem definitions
itself, following data entities should be already present in the system:

e User data entities (D.2.1.1)
e Supported programming languages configurations (D.2.1.2)

67

D. DOCUMENTATION

<?xml version="1.0" encoding="UTF-8" standalone="yes” 7>
<user>
<email>hauktoma@fit.cvut.cz</email>
<login>hauktoma</login>
<name>Tomas Hauk</name>
<password>password</password>
</user>

Listing D.4: Example of XML representing user.

D.2.1.1 Users

XML files that are representing users are stored as ,,shared/users/username”
in the sample data. Fields of the XML are self-explanatory and can be found

on listing
D.2.1.2 Languages

The XML objects representing programming language settings are stored in
the ,,shared /languages/language-name” file. Example XML for the C++ lan-
guage is on listing for Java on The supported parameters are:

LanguageName Name of the language.
FileNameExtension Extension of the source code file.
CompilerCommand Path to compiler binary executable.

CompilerArgs Compiler arguments. The Judge can substitute correct val-
ues for ,,workingDirectory” (compiler directory) and ,,files-to-compile”
(list of files to be compiled).

sourceFileName Name of the source file — submitted program. If not set,
it wont be possible to submit java programs in text form.

isolateCommand Command for the isolate utility. This will be appended
to the Isolate command after the ,,—run” switch (see [20] for details).
Supports the ,,compiled-file” substitution.

OutputFileName The file name generated by the compiler. Must be set
because of the Java compiler constraints.

D.2.2 Problem configuration files

This subsection describes configuration files and configuration process of de-
fining new problems. The problem definitions are independent on the contest
and scoring approach and thus can be shared among the system contests.

To add new problem definition to the system, one must:

68

=W N =

D.2. System configuration

<Language>
<CompilerArgs>Wall —o b.out ${files —to—compile}</CompilerArgs
>
<CompilerCommand>/usr /bin /c+4</CompilerCommand>
<FileNameExtension>cpp</FileNameExtension>
<isolateCommand>${compiled—file }</isolateCommand>
<LanguageName>CPlusPlus</LanguageName>
<sourceFileName>io .cpp</sourceFileName>

</Language>

Listing D.5: Example XML describing C++ programming language settings.

?7xml version="1.0" encoding="UTF-8" standalone="yes”?>
\begin{verbatim }
<Language>
<CompilerArgs>d ${working—directory} ${files —to—compile}</
CompilerArgs>
<CompilerCommand>/usr /bin/javac</CompilerCommand>
<FileNameExtension>java</FileNameExtension>
<isolateCommand>/usr/bin/java — —cp ${compiled—file —dir}
CorrectlO</isolateCommand>
<LanguageName>Java</LanguageName>
<OutputFileName>CorrectlIO . class</OutputFileName>
<RunnerCommand>/usr /bin/java</RunnerCommand>
<sourceFileName>CorrectlO . java</sourceFileName>
</Language>
\end{verbatim}

Listing D.6: Example XML describing Java programming language settings.

e create data objects representing the validation data (see|D.2.2.1]).
e create data object containing basic problem data (see|D.2.2.2

e create the Spring configuration file representing the processing tree for

the Judge component (see|D.2.2.3).

Prerequisite of adding a new problem is having configured at least one
programming language definition (see|D.2.1.2)).

D.2.2.1 Validation data

The validation data are represented by pair of two files named input and output
(these names are mandatory). The input file will be given to the submitted
program upon execution on standard input. The output file contains any data
that can be used by the particular validator that will perform validation of
the output generated by the program. Each pair has its own dedicated direct-
ory that is by default located in the ,,shared/validation-data” directory The

69

TR W N =

D. DOCUMENTATION

dedicated directory can have arbitrary name and must contain both correctly
named files.

D.2.2.2 Problem definition

This XML object represent the top level problem definition. These data ob-
jects are by default stored in the ,,shared/problems/” directory. The actual
file might have an arbitrary name.

The problem definition currently supports following parameters (example
file can be found on listing [D.7)):

problemName Name of the problem as will be shown to the user.

problemShortDescription Short description (summary or intro) of the prob-
lem.

problemDescription The description of the problem and task assignment
details.

processingChainDataLocation Relative CML path of the Spring config-
uration file, which represents the processing algorithm for the Judge

component (see [D.2.2.3).

<?xml version="1.0" encoding="UTF-8" standalone="yes” 7>
<problemData>
<problemDescription>description</problemDescription>
<problemName>Sample problem</problemName>
<processingChainDataLocation>/shared/judge—component—settings/
default —process—tree</processingChainDataLocation>
<shortDescription>short description</shortDescription>
</problemData>

Listing D.7: Example XML representing the problem definition.

D.2.2.3 Judge processing tree

The actual algorithm is described in form of the Spring configuration file.
This file contains the actual structure of the algorithm whose components are
formed by set of units and orchestrators (described in .

This file is by default located in the ,,shared/judge-components-settings”
directory and can have an arbitrary name. This file can be theoretically shared
between different problem definitions.

The example file can be found on the enclosed CD. This example contains
tree which contains one compiler, 3 instances of binary validator and one
evaluation unit.

The top level bean, which will serve as the root of the processing tree must
be named as defined in the mainOrchestratorParam of the Judge configuration

file (see[D.1.2).

70

D.2. System configuration

D.2.3 Contest configuration files

This section describes the format and supported configuration options of the
contest related data along with the process of creating new contest.
To add new contest, one must:

e create data object representing basic contest info (see|D.2.3.1)).
e create list of users of the contest (see|D.2.3.2]).

e create data object representing problem instance (which is linked to
the problem definition created in [D.2.2.2)). Problem instance object is
described in [D.2.3.3]

Before adding new contest, the system should have access to data objects
representing at least one user (see|D.2.1.1)) and at least one problem definition

(see|D.2.2.2)).

D.2.3.1 Contest info

This XML file describes the basic contest settings and is located in the root
contest directory (e.g. ,,contests/contest-name/contest-info” in case of default
data). The file contains following settings (example file at listing :

allowedLanguages Relative paths to the data entities that represent allowed
languages for this contest.

ContestName Name of the contest.
contestShortName Short name of the contest.

ContestStart Date and time of the contest start. The contest will be ac-
cessible only to user responsible for contest (see below) before this time
and date.

ContestEnd Date and time of contest end. The user interface will refuse
to accept submissions of users after this date and time (except for the
responsible user, see below).

ShortDescription Short contest description.
LongDescription Long contest description.

responsibleUser Relative CML path of the XML object, which represents
user. This user has many privileges in this contest, such as ability to
submit always (regardless of contest or task time constraints), can see
all submissions in the contest of all users and his submissions are not
displayed in the scoreboard for regular users.

71

Tl W N

-~

D. DOCUMENTATION

<?xml version="1.0" encoding="UTF-8” standalone="yes” 7>
<ContestInfo>
<allowedLanguages>/shared /languages/cplusplus /shared/
languages/java</allowedLanguages>
<ContestName>Efective programming 1, ZS 2000/3000</ContestName
>
<contestShortName>BI-EP1 ZS 2000/3000</contestShortName>
<ContestEnd>2030—02—18T06:10</ContestEnd>
<longDescription>Long description here</longDescription>
<responsibleUser>/shared/users/hauktoma</responsibleUser>
<shortDescription>Short description here</shortDescription>
<ContestStart>2000—03—-20T10:10</ContestStart>
</ContestInfo>

Listing D.8: Example contest info XML object

D.2.3.2 Contest users

Is XML versioned object (located in ,,contests/contest-name/users/contest-
users.1” by default). This object contains list of relative CML paths of the
XML objects that are representing users participating in contest in role of the
,,team”. Example file is on listing

o?xml version="1.0" encoding="UTF-8” standalone="yes”?>
<usersInContest>

<users>/shared /users/anrbard</users>
<users>/shared/users /hauktoma</users>
<users>/shared /users /mmuunas</users>
<users>/shared/users/vlastsve</users>
</usersInContest>

Listing D.9: List of contest users (teams)

D.2.3.3 Problem instance

This XML object represents the instance of the problem that is linked to the
object with actual problem definition (see . This object is by default
stored in ,,contests/contest-name/problem-instances/problem-name/problem-
instance”. The example XML can be found on listing the supported
parameters are:

ScoreFactorylmplementation This parameter represents implementation
of some class implementing the IScoreFactory interface that is respons-
ible for handling score (creating, interpreting). See for details.

start Time and date of the problem start. Access to the problem definition
and submission before this time and date will be denied to regular user.

72

D.3. Extending system functionality

deadline Time and date of the problem end. Submissions from regular users
will not be accepted after this limit.

maxSubmissions Maximum submission count that is regular user allowed
to submit (privileged user can submit always).

problemDatalD Relative path to the XML object representing the actual
problem definition and that contains necessary data for e.g. evaluation

process (see |D.2.2.2| for details).

problemState Represents state of the problem. Currently supported values
are:

OPENED Standard state, no restrictions.

CLOSED No matter how deadline is set, the system does not accept
new submissions for this problem.

TEMPORARY _CLOSED Problem does not accept submissions, but
only temporary (e.g. technical issues). This option is technically
the same as the previous one but with different semantic meaning.

ACCESS_FORBIDDEN Problem does not accept submissions and
does not allow to see the problem details. (But it is possible to see,
that the problem instance exists in some particular contest.)

showCompilationLog Boolean value. True means, that regular user will
see a compilation log.

<?xml version="1.0" encoding="UTF-8" standalone="yes” 7>

<problemInstance>
<percentualScoreFactory>

<threshold>80</threshold>

</percentualScoreFactory>
<deadline>2017—03—-10T10:12</deadline>
<maxSubmissions>5</maxSubmissions>
<problemDatalD>/shared /problems/bubbles</problemDatalD>
<problemState>OPENED</problemState>
<showCompilationLog>true</showCompilationLog>
<start>2015-03—-20T10:12</start>

</problemInstance>

Listing D.10: Example XML representing problem instance in the contest.

D.3 Extending system functionality

The following subsections are describing process of adding new functionality
to the system.

73

D. DOCUMENTATION

D.3.1 Adding new scoring approach

Implementation of the scoring algorithm can be found in the module CM-
LData, in the package ,,cz.pcss.cmldata.score” (and ,,impl” subpackage). Im-
plementing new Scoring factory will mean implementing the abstract class
AbstractScoreFactory (most importantly method creating the universal data
structure and method used for interpreting it). The implementation details
and requirements should be apparent from the implementation of the factories
already implemented.

After implementation of the new scoring factory, there is need to add ref-
erence of new class to the ProblemlInstance class as an JAXB XML annotation
(@XmlElementRef). The class is located in the ,,cz.pcss.cmldata.icpc.data”
package.

If the above process was successful than the system will be able to use
the new Scoring factory by adding it the Problem instance data structure (see
D.2.3.3). No other intervention should be needed and the implementation
should correctly handle submissions evaluation as well as presenting correct
scoreboard to the user in the web interface.

D.3.2 Adding new validator

The implementation currently supports only exact binary validation. The
actual validation logic is currently implemented such that there is top-level
validation component implementing the IValidator interface (currently only
class InternalValidator) that is responsible for executing the program in secure
way and generating results. The actual validation method implementation is
separated from this class (strategy pattern) and is represented by the class
implementing the IValidationMethod interface.
To implement new validation method, there is need to:

e implement the IValidationMethod interface and its only method validate,
and

e create new Spring configuration file utilizing the new validation method
(see[D.2.2.3)), i.e. inject this new class to the InternalValidator instance.

D.3.3 Judge subcomponents

The architecture of Judge subcomponents was described in

Adding new Orchestrator (component responsible for data flow in the pro-
cessing tree) means implementing the abstract class AbstractOrchestrator. Im-
plemented class can be than used in the Spring configuration file (see
and can be used either as the root or inner node of the processing tree.

Adding new Unit (component, which is responsible for data preprocessing
for the actual algorithm implementation) means implementing the Abstract-
OrchestratedIOUnit interface. The new implemented unit can be used in the

74

D.3. Extending system functionality

Spring configuration file (see and can be used as a leaf in the actual
processing tree (i.e. will be assigned to some Orchestrator).

As stated in [2.4.4] the classes implementing the actual processing al-
gorithm are totally independent on the system itself. Implementing new pro-
cessing algorithm (e.g. static source code analysis, plagiarism checker...)
will mean implementing the new algorithm and appropriate unit, which will
handle preprocessing of data needed for the particular task. The new unit
will be than utilized in the Spring configuration file of the processing tree (see
and through it, the new algorithm will be injected into the unit.

75

APPENDIX

Web interface screenshots

e P

@ Main contest page

Efective programming 1, ZS 2000/3000 sl-£r1 zs 200013000

. N e
L < o o " oo - -
Studenti predmétu si praklicky ovéfi implementaci algoritmi a datovych struktur na konkrétnich slovné zadanych pfikiadech. o o
. Diraz je kladen nejen na nvrh feSeni, ale i na jeho korekin a efektivni implementaci, véetns oSetfeni viech okrajovych
o podminek. Studenti se naui pfemySlet o riznych variantach feSeni, budou se snaZit vybirat mezi nimi tu nejvyhodnéjsi a @
vyhybat se chybam pfi implementaci. BI-EP1 je zamySleno jako vibérovy predmét pro nadané studenty. Narocnost Fesen dloh
je vysi, nez u primémého predmétu se stejnou hodinovou dotaci... S a0 8ot @
: Harmonogram et TS 0TIO%2 & Toms @
Piedbsin pin preddek acueni f v abelce. Pl b se mide béhem semesiny it Snafte e chodi pedevdin na o, o o v rozvih oz jako iedsha
Bubties @
Tyden Datum Piednstka Cuiteni Hiavni téma dloh Do 2017031011012 & Toms o
° 1 910, Uvod. Informace o predmatu. Cteni vstupu. ~ Seznémeni s vyhodnocovacim systémem. Pistupy. Cvicné tiohy (nebodovane).
o 2 610 Formélovéni vystupu. Reéind Ssta. Jednoduché diohy: vstup, istup, reding Eisla @ 5151 days, 16 hours, 0 minutes
remain o end
3 23.10. Souté v programovani: CTU Open Contest. Ulohy z CTU Open. (pfidany)
< 4 3040, Elekivia programi Reseni oh minulho tdne. ReSeni ioh CTU Open. xR www
5 61 Pridady wullpoli a sezman 2adén o, konzutace Daisada ioh:eekivia
6 Contstino
6t Reseni oh minulého tcne (efekivia)
Contest ame: Efctive programming 1 25 20003000
7 2041 Hubd sia. Rekuze. 2adén o, konzutace Reluze, hubé slaa dl P 10125 2000500
PR Roseni oh minulho tidn (rskurze. oot ET—
9 412 Dynanické programovéni 2adén dob, konzutace Dynamické programarant. - 0003207100
0 1 Reseni tioh minulého tycne (dynamicke programovéni) prm—— T
11 1812 Zakady wipotelni geometie zadén dob, konzutace Dynamické programovén a geomete Personresponsite & Toms ik
15 81 Rezera.Konzulace, ziodly Roseni oh minulho tydne (geometri)
Hodnoceni
Body s sskévai 22 vieSend Gty podie ndleuit tbuly
Sadaloh Pocet Body za ilohu Body za pocet
& Tm dioh L1yden 2.tjden 4 dloha 2avic max
1 Vup, wslup, redind ila 7 B 2 p s »
2 Efekivia +jednoduché s . p p s »
3 Remeahubasia s s p s 5 »
4 Dynamicks programovtni . 5 p p s »
5 Vypodetni geometrie. 4 5 3 3 5 20
Cellem 5 10

Jako bonus lzo Tosit ndktars lohy CTU Open, 2a kazdou Jsou 2-3 body (potit o i tahdy, pokud i vyToSiltym pimo na soutdz) tato:

+ za kaidou lohu: 2 body

Celkové hodnoceni

Predmt jo zakonéen pouze .obyZejnym” (nekasifkovanym) zdpoctem. K eho bezprobiémovému zisken e teba dosahnou clkového poctu 85 bod

Figure E.1: Contest detail with list of problems.

7

E. WEB INTERFACE SCREENSHOTS

78

Welcome to the PCSS evaluation system

Main pa

Lotom s dolr s s, consocoe sdicg o arcu, sit amet id trstique. Maecenas st
n ul umaid feugiat lacinia

t at primifeid vehicula, vel Proinid

vl kb o ot o, U e 3 s e v s ks s D e e

magna. Donec non lore veltelus tempus dictum vel sed sapien. Sed id laorest lectus.

Nullam luctus viae viverra,

vitae, dictum dui,

Lorem ipsum dolor st amet, g elit amet id trstique. Maecenas st amet
akquam dsus, non tices magna. Done akaam, uma @ oLpat pharel,acus i consequt b, feuiataciia nua o i s, Vestdum honcus dapibus
st o ulices diam sagits . Maur ibus,sem ac prtum veic,Juso eni ius mlus, vecralecus uris mlis velt. Pro id nunc vl ras i tncdunt
enim, ac portor odi. neque, vitae viverra lectus, vitae tellus
tempus dictum vel sed sapien. Sed id laoreet lectus. Nulla nec telus vitae turps vehicula elementum. Nunc quis erat urpis. Nullam luctus vitas risiviae pellentesaque.
Mauris sit amet eros viverra, condimentum uma vitz, dictum dui

Fusce ac maximus justo, Lorem ipsum dolor st amet, consectetur adipiscing el Pellentesque ipsum nec aliquet. Praesent. egestas
magna vel, Uincidunt est. Donec tempus fels moleste metus molestie, sed feugiat ortorloborts. Integer blandit imperdiet placerat. Nullam a ante ornare odio tempor
. Suspedsse e, semper e s o Mlestadau s, usc s ofcur e, viaebendu damfuga ron. N s tpr o

e ipsum primis in f Duis vehicula isus ipsum, d elementum neque eleifend eu
Mascenas posuere nisi ut nunc venenalis, it amet faucibus dolor venenats. Phasellus nisl dolo, oo ot et

Pelentesque id odio sit amet nulla pulinar faucibus. Fusce sit amet uma sit amet velt cursus frngila. In aliuet a enim id soliitudin, Nulla et loborts ante. Integer vellt
mauris, volutpat d elt t,finibus mattsrisus. Integer cursus egestas sodales. Suspendisse egestas auctor nibh sed rutrum. Phasellus tistique blandit sapien, ut faclisis
lorem sodales sod. Donec quam neque, viverra dictum omare i, placerat n tellus. Cras quis neque ac tortor sagitis suscipit vitae a magna, Quisque finibus eficiur
euismod. Vestibulum ante ipsum primis in faucibus orciluctus et ultices posuere cublia Curae; I vitae urma dui. Suspendisse feugiat justo non molls vestioulum,
Aliquam sagitis erat et neque ullamcorper tiidunt vitae in mauris,

Maccenas pulvinar, velit tincidunt fermenturn thoncus, neque eros loborts turpis, molis porta ibero erat eu orci. Aliquam erat volutpat, Ut sed neque ligula, Vestbulum
dictum tempor augue, nassa in gravida, pharetra suscipitvel, ut Nam ultices fermentum
nunc. Maecenas faciisis non fibero id commodo, Curabitur viverra vestbulum st ut volutpat, Curabitur a ex nec massa oborts dapibus vitae in nunc. Sed in ante et
neque egestas convallis ut n sapien. Fusce cursus bh eget evismod ulrices. Ut sed scelerisque mi, vitae sagitis dui. Maecenas vitae mi veit. Sed pellentesque
massa quis ante effcitur, et bibendurn turpis posuere.

primis n faucibus orci Sed venenatis dolor pulvinar feugiat auctor. Ut sed odio lorem. Nullam quis ex
Vitae ex dapious puinar a d metus. Sed enim odio, malesuada et omare non, egestas ey erat. Nam commodo corsecior s ok ot s s, gl o
maximus enim. Maecenas portitor fincidunt enim ut portitor. a ue orci. tellus, sit
pi. Fusce Phaselus velquam trpis. Donee s ef,putvina ac aculs e, ditum sed masea.

Ierdum ot maleausdafamas ac ante peum prms i b

Mo s orm, s ko o, skt s ik Aonean s et o Vsccone s oo ks st o e vt o st
utfaciisis. q pat suscip s. Aliquar

i it blandit. eget cond giat tincidunt. Ut non dveidor

Pellentesque m a X = Cras semper, nibh
eu dictum scelerisque, lectus turpis finibus nula, d cursus orci turps vitae ex. Sed F elitvitae.
gl pors, masea g ulameorpe s, s sollciad st locus s ugue. Nl puinar plcert el d s,

I b fames ac ants

Curabitur faucibus leo sed

in faucibus. Duis. eu hendrerit magna. In i in convalis mi aceumsan in. Proin
temp iaculis luctus. Mk ioh. Cras id t ut ulamcorper sem. Curabitur sit amet justo est. Fusoe cursus arcu
leo, qus rhoncus d .M. tante non c ‘Sed faciisis diam eget arcu pellentesque feugiat.

Contests list

< ongoing @

ve programming 1.

going S 1990
£ 2030.02-16T06:10 & haukioma@ftcvitcz

« Q@ w Finishes @

- Notstar

25 2000

£ 2030.02-18706:10 & haukioma@ etz

Figure E.2: Web interface main page with contest list.

Bubbles si-ep1 zs 20003000

Bubbi

Main pa fecive programming 1, ZS 20001300

@ Problem definition @) My submissions oreboard

£2 Time submitted A State

1 2016.01-047180539.112
2 2016010071083 184
3 2016.01047190403332 (oo |
4 2e0n0mie0ssr oo |

0}

= Request clarfication

423 days, 20 hours, 6 minutes

remainto end

100% 4/5

submissions sent

(S N N N

I Submitvia fle

Choose language:

CPIusPlus

Choose file:

5 Last submission (#4)
£8 Time submitted:
A state:

i Score

© Probleminfo
Problem name:

Problem state:

fle Submit via code

Select fle

2016-01-04T18:05:39.112

AN

Bubbles.

Start £ 2015.03:20T10:12
Deadine: £ 2017-03-10T10:12
Maximum number of submissions: 5

Maximum score:

Person responsibie:

100

& Tomas Hauk

Figure E.3: Problem submissions and problem details and stats.

Submission evaluation logs
Compiaton | Vaidaion

Compilaion nfo

Compilation component
DefaulCompier

Compilation component version
10

Compilation command
+ Wall 0 b.ou fmpijuc

Compilation standard log

not set

Compilation error log

/tap/ Judge-conponent -tenp2416413319906670633/memory-exc..cpp: Tn function 7int main()7
/tnp/ Judga-conponent -tenp2416413319906670533/ enory-exc..cpp:8:10; Warning: variabla 7buffer? set BUE not used [-Wunused-but-set-variable]

‘Submitted source code

#include <st intf, scanf, NULL */
Sinclude <staltb.n> /* malloc, free, rand
#1nclude <unista.h

malloc example: randoa string generator*/
> /o

int matn ()

ehar * burrer;

buffer = (char*) malloc (10);

3
return 0;
)

Figure E.4: Logs of the compilation process.

Scoreboard

Main page | Efecive programming 1, ZS

0013000 | Scoreboard

S Scoreboard table s Statistics

Bubbles Sample problem Squares and Circles Scrabble
User Submissions Result Submissions Result Submissions Result Submissions Result TOTAL %
1 [Tomés Hauk] 5 16% 305 100% 5 100% a5 100% 79.00%
2 Viastimil vorc o5 0% 0% 0% 0% 0.00%
3 Michael Unnamed o5 0% 0% 0% 5 0% 0.00%
4, Andrew Barek o5 0% 0% 0% 0% 0.00%

& Backto contest detall

Figure E.5: Contest scoreboard.

79

	Introduction
	Introduction
	Theses related to PCSS

	Review of the original system architecture
	Domain terminology

	Review of the original system architecture
	Intial state of the system

	Analysis and design
	Collection and analysis of use cases and system features

	Analysis and design
	System architecture

	Analysis and design
	CML component

	Analysis and design
	Judge component

	Analysis and design
	Web interface

	Analysis and design
	Scoreboard component

	Analysis and design
	Proxy component
	Other system modules

	Implementation
	Implementation
	Judge component

	Implementation
	WebUI component

	Implementation
	Scoreboard component

	Testing
	Automated testing

	Testing
	Manual testing

	Testing
	CML testing

	Conclusion
	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD
	Deployment instructions
	CML deployment

	Deployment instructions
	Judge deployment
	Scoreboard deployment

	Deployment instructions
	Web Interface deployment

	Documentation
	Component configuration

	Documentation
	System configuration

	Documentation
	Extending system functionality

	Web interface screenshots

