
Master’s Thesis

Czech
Technical
University
in Prague

F8 Faculty of Information Technology
Department of Software Engineering

Tablet infotainment system

Bc. Michael Bláha

January 2016
Supervisor: Ing. Jan Šedivý, CSc.

Acknowledgement / Declaration
I would like to express my grati-

tude to my master thesis supervisor,
Ing. Jan Šedivý, CSc., for his support,
time and valuable advice.

I am also deeply grateful to the De-
partment of Vehicle Technology, Faculty
of Transportation Sciences, CTU for all
the help and patience with testing and
everything related.

I would also like to thank my college,
Bc. Lukáš Hrubý for cooperation and
advice.

This work was partially supported
by CZECH TECHNICAL UNIVERSI-
TY MEDIA LABORATORY and I am
grateful for that as well.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is
subject to the rights and obligations
stipulated by the Act No. 121/2000
Coll., the Copyright Act, as amended.
In accordance with Article 46(6) of
the Act, I hereby grant a nonexclusive
authorization (license) to utilize this
thesis, including any and all computer
programs incorporated therein or at-
tached thereto and all corresponding
documentation (hereinafter collective-
ly referred to as the “Work”), to any
and all persons that wish to utilize the
Work. Such persons are entitled to use
the Work in any way (including for-
profit purposes) that does not detract
from its value. This authorization is
not limited in terms of time, location
and quantity.

Prague, 12th January 2016

. .

v

Abstrakt / Abstract
Cílem této práce je navrhnout gra-

fické uživatelské rozhraní pro použití
tabletu v automobilu, které minimali-
zuje kognitivní zátěž a přitom poskytne
požadovanou funkcionalitu. Dalším cí-
lem je s použitím tohoto GUI vyvinout
tabletovou aplikaci, která umožní zobra-
zení informací obdržených z automobilu
pomocí OBD. Posledním cílem je otes-
tovat tabletovou aplikace ve vhodném
prostředí.

Klíčová slova: Android, Java, OBD,
GUI, auto, LCT, A/B testování, testo-
vání použitelnosti

The goal of this thesis is to design a
graphical user interface for in-car tablet
usage, which will minimize the cognitive
load and still offer the required function-
ality. Next goal is to develop a tablet
application using this GUI and display-
ing the information obtained from a car
via OBD. Final goal is to test the tablet
application in a suitable environment.

Keywords: Android, Java, OBD,
GUI, car, LCT, A/B testing, usability
testing

vi

Contents /
1 Introduction .1
1.1 Motivation .1
1.2 Project .1
1.3 Assignment analysis2

1.3.1 Assignment tasks2
2 Analysis .3
2.1 Existing applications.3

2.1.1 Torque .3
2.1.2 CarHome Ultra4
2.1.3 Car Dashdroid5
2.1.4 Ultimate Car Dock6
2.1.5 Conclusion7
2.1.6 Android Auto8

2.2 Platforms . 10
2.2.1 Android 10
2.2.2 iOS . 10
2.2.3 Windows 10
2.2.4 Conclusion 10

2.3 Android platform 10
2.3.1 Performance 11
2.3.2 Architecture 11
2.3.3 Material design 11

2.4 GUI . 12
2.4.1 Basic principles 12
2.4.2 UI in a car environment . 12
2.4.3 Development process 13

2.5 Business requirements 15
2.6 Use-cases . 15
2.7 Task list . 15
2.8 Development and support

tools . 16
2.8.1 Development environ-

ment . 16
2.8.2 Version control system. . . 16
2.8.3 Test driven develop-

ment . 17
2.8.4 Continuous integration . . 17
2.8.5 Test evaluation 18

2.9 On-Board Diagnostics 19
2.9.1 Connection 19
2.9.2 API . 19
2.9.3 Data . 20

3 Design . 21
3.1 Application architecture 21

3.1.1 Platform limitations 21
3.1.2 Extensibility 21

3.1.3 Modularity 22
3.1.4 Adaptability. 22
3.1.5 Architecture 22

3.2 GUI . 23
3.2.1 Phase one 23
3.2.2 Phase two 24
3.2.3 Phase three. 26
3.2.4 The final design 28

4 Implementation. 30
4.1 Preparation . 30

4.1.1 Environment 30
4.1.2 Versioning 30

4.2 Tablet specific 30
4.2.1 ModulePagerActivity 30
4.2.2 ModulePageFragment. . . . 31
4.2.3 ModuleFragmentAdapter . .31
4.2.4 GridLayout 31

4.3 Core . 32
4.3.1 Modules 32
4.3.2 Application. 33
4.3.3 Data . 34
4.3.4 Fragments 35
4.3.5 OBD. 36
4.3.6 Utility classes 36
4.3.7 Views . 37

4.4 GUI . 37
4.4.1 Common elements 38
4.4.2 Multiple designs 39

5 Testing . 41
5.1 Code . 41

5.1.1 Unit testing 41
5.2 Heuristic testing 42

5.2.1 Evaluation. 42
5.2.2 Conclusion 43

5.3 Testing with users 44
5.3.1 Simulator 44
5.3.2 Preparations 46
5.3.3 Process 48
5.3.4 Questionnaire evalua-

tion . 48
5.3.5 A/B testing evaluation . . 49
5.3.6 Lane Change Test eval-

uation . 52
5.4 Summary . 55

6 Conclusion . 56
6.1 Assignment completion 56

vii

6.1.1 Completing the assign-
ment tasks. 56

6.2 Project life cycle 57
6.2.1 Present 57
6.2.2 Future . 57

6.3 Summary . 57
References . 58

A CD content . 61
B User’s guide . 62
B.1 Installation guide 62

B.1.1 Prerequisites 62
B.1.2 Installation process 62

B.2 User guide . 62
C Glossary . 64
D Images . 65
E Tables . 67
F Scripts . 68

viii

Tables / Figures
5.1. Single user testing schedule 47
5.2. Results of path angle com-

parison . 53
5.3. Times and distances of turn

from the object 54
E.1. A/B testing. 67

2.1. Screenshot from Torque.4
2.2. Screenshot from CarHome

Ultra .5
2.3. Screenshot from Car Dashdroid . .6
2.4. Screenshot from Ultimate

Car Dock .7
2.5. Android Auto Home screen8
2.6. Android Auto Audio applica-

tion .9
2.7. Android Auto conversational

flow .9
3.1. GUI draft #1. 23
3.2. GUI draft #2. 24
3.3. GUI draft #3. 25
3.4. GUI draft#4 26
3.5. GUI draft#5 26
3.6. GUI draft#6 27
3.7. GUI draft#7 28
3.8. GUI draft#8 29
4.1. Final GUI implementation. 38
4.2. Quick menu in the final GUI . . 39
5.1. Simulator interior 45
5.2. Screenshot from CarDynam-

ics . 45
5.3. Screenshot from Smart Eye

Pro . 46
5.4. Glances for Torque 50
5.5. Glances for CarDashboard 50
5.6. Torque glance times 51
5.7. CarDashboard glance times. . . . 52
5.8. Glance times distribution 52
5.9. Path angles of the first par-

ticipant . 53
5.10. Turn paths. 54
5.11. Car path . 54
D.3. Music player GUI draft 65
D.4. Music playlist GUI draft 65
D.5. Implementation of the first

draft . 66
D.6. The grid with a music player

panel and measurements 66
D.7. Glance times distribution for

Torque . 66

ix

Chapter 1
Introduction

1.1 Motivation
In the modern era of portable electronic devices people use these devices daily. Unfor-
tunately, even when it is inappropriate – for example in cars during driving. Such usage
can easily cause safety hazards and often they actually do1). This situation calls despe-
rately for a proper solution. As the usage of these devices is forbidden while driving and
yet drivers still use them, a prohibition is not the solution. And when people do not
adapt, the environment has to. While we cannot change the way of transportation, we
can change the way of controlling these devices. Therefore an application will be made,
trying to solve this issue and helping the driver do all the tasks he wants to do, but
in a safe way without endangering the driver himself and everybody else who might get
hurt in a possible accident.

1.2 Project
The goal of this project is to create an application that will enable users to use their
android tablet safely while driving. In addition to focusing on usability and minimizing
the cognitive load, this application should offer rich variety of use cases in a simple but
attractive design. For the purpose of this project, this application will be referred to as
“CarDashboard”.

First step in the project is reviewing existing applications, as it is essential for better
insight and inspiration. Designing a proper user interface will follow. To design a user
interface for a car environment is not a simple task, because it is the main mean of
interaction with the driver, it’s quality is the most important factor in driver’s distrac-
tion when controlling the application. After designing the GUI, an application will be
developed implementing the given GUI. It will enable the driver to communicate with
car (currently using read-only operations) via OBD. After the development process, the
application will be properly tested using a car simulator. The tests will be thoroughly
evaluated using various evaluation methods.

1) http: / / www . dailymail . co . uk / news / article-2591148 / One-four-car-accidents-caused-cell-
phone-use-driving-five-cent-blamed-texting.html [1]

1

http://www.dailymail.co.uk/news/article-2591148/One-four-car-accidents-caused-cell-phone-use-driving-five-cent-blamed-texting.html
http://www.dailymail.co.uk/news/article-2591148/One-four-car-accidents-caused-cell-phone-use-driving-five-cent-blamed-texting.html

1. Introduction .
1.3 Assignment analysis

1.3.1 Assignment tasks

1.3.1.1 Review existing Android applications for in-car use
One of the key approaches in research project is reviewing the existing progress in
the given field. Reviewing existing applications helps to understand the topic, see
the bigger picture, learn from mistakes of others and last but not least, to get a general
idea about competition.

1.3.1.2 Review and analyze User Interface development methods for in-car
infotainment applications

Considering the car environment, the user interface must deal with a lot more problems
than usual. This task will review existing User Interface development rules and apply
them to the car environment, then analyze them and choose a proper method for car-UI
design process.

1.3.1.3 Analyze the in-car OBD API and exported data
On-Board Diagnostics API is a standard API provided by modern cars for gathering
various information, such as speed or engine temperature. This task focuses on under-
standing and gathering data from the OBD API.

1.3.1.4 Design an application system architecture for accessing the OBD data
and resources

Having the data from OBD and preparing an application for displaying them, designing
a proper architecture is required for everything to work well. The application has to
gather data and display them properly without unnecessary delay.

1.3.1.5 Design a tablet User Interface for in-car use
After reviewing existing applications and UI development methods, the next goal is to
create new User Interface for in-car use, while considering the constraints this environ-
ment puts on it.

1.3.1.6 Design and implement in-car application offering the OBD data for
Android tablet platform

With everything prepared and thought through, the application will be developed based
on result from all the tasks accomplished so far. In this case, the Android platform will
be used, as explained later in the text.

1.3.1.7 Perform UI and application testing and evaluate results
For best results the application must and will be tested. Both code and UI must be
tested properly, using various testing approaches, such as unit tests or usability testing
with real users in a car simulator.

2

Chapter 2
Analysis

This chapter is about the process of analyzing resources, researches, tools and project
related areas. It contains research about existing related applications, possible appli-
cation platforms and a description of the chosen platform in a more detailed way. It
also presents a basic insight into GUI design process as well as general GUI princi-
ples and GUI specifics for the car environment. Then the application idea is described
from the point of view of use-cases and tasks followed by the review of tools used for
development. Finally the OBD is described with it’s API and the data it provides.

2.1 Existing applications

An important step in developing a new application is checking related applications
(if they exist) for valuable information to learn from. Based on applications listed in
an article1), multiple applications are reviewed and analyzed, listing their advantages
and disadvantages.

2.1.1 Torque

Torque2) can actually show almost anything that OBD (described in section 2.9 on
page 19) provides. It is currently the most downloaded application from all the listed
applications.

Starting with an empty screen, a lot of settings are required before using this ap-
plication since there is no default mode. Adding new views is intuitive, but the add
menu lacks hierarchy and everything is just a list of various options. There is no cancel
button when popping the menu dialog. Several kinds of displays are supported, but
it is hard to tell by their names. Responsiveness it not smooth at all and launching
the application in a horizontal mode is confusing, as everything behaves like if it was
in a vertical mode.

1) http://www.makeuseof.com/tag/5-best-dashboard-car-mode-apps-android-compared/
2) available from https://play.google.com/store/apps/details?id=org.prowl.torquefree&hl=en

3

http://www.makeuseof.com/tag/5-best-dashboard-car-mode-apps-android-compared/
https://play.google.com/store/apps/details?id=org.prowl.torquefree&hl=en

2. Analysis .

Figure 2.1. Screenshot from Torque

2.1.1.1 Advantages

.High amount of data from OBD available,.various layout settings and themes,.HUD mode.

2.1.1.2 Disadvantages

.One-level confusing menu without hierarchy,. limited size options for displays (3 types),. lacks default mode with predefined displays,.hard to place displays, the grid does not work well,. slow and unresponsive.

2.1.2 CarHome Ultra
CarHome Ultra1) appears to be just a simple application offering speed, compass,
weather and external application launcher. New version also displays a location (an
address) and a phone version is able to reply to text messages. It also supports text-
to-speech feature (on touch).

The application starts with a pop-up tutorial for it’s elementary functionality, telling
the user about a speedometer, a compass, a weather forecast and a customizable dash-
board for launching external applications. In default it offers Google Maps, Google
Navigation and a voice search. Adding another external application shortcut is done
by tapping the tab. There are also some basic settings, which offer brightness mode
(day, night, auto), theme and safety options.

1) available from https://play.google.com/store/apps/details?id=spinninghead.carhome&hl=en

4

https://play.google.com/store/apps/details?id=spinninghead.carhome&hl=en

. 2.1 Existing applications

Figure 2.2. Screenshot from CarHome Ultra

2.1.2.1 Advantages

.Simple UI, easy to understand,. responsive, fluent,.possible to change units (mile/km, etc.),. lot of themes available,.adjustable update rates,.a lot of different settings.

2.1.2.2 Disadvantages

.Small buttons on small screens (fixed amount of (six) buttons),. even smaller setting buttons,. limited functionality,. tapping weather makes the app speak for every single tap, no matter if it already
speaks (it can speak for hours after a lot of taps).

2.1.3 Car Dashdroid
Car Dashdroid1) is another similar application providing basic information and func-
tionality. It also provides settings for Bluetooth communication, brightness, screen
rotation, full-screen, day/night mode and application settings, where other options can
be set, such as home address, theme, units, etc.

After a long on-load time of the application, a main window appears. It has three
screens which change by swiping right or left. The left screen contains a dial keyboard,
the right screen contains customizable cards (for external application shortcuts or built-
in tools) and the main screen consists of weather, speed and shortcuts to contacts, music,
navigation and voice commands.

1) available from https://play.google.com/store/apps/details?id=com.nezdroid.cardashdroid&hl=
en

5

https://play.google.com/store/apps/details?id=com.nezdroid.cardashdroid&hl=en
https://play.google.com/store/apps/details?id=com.nezdroid.cardashdroid&hl=en

2. Analysis .

Figure 2.3. Screenshot from Car Dashdroid

2.1.3.1 Advantages

.Simple UI, easy to understand,. responsive, fluent,.possible to change units (mile/km, etc.),.able to read incoming SMS using TTS.

2.1.3.2 Disadvantages

.Very limited functionality,.not optimized for a tablet,.distractive commercial ads in a free version.

2.1.4 Ultimate Car Dock

While the design is very similar to CarHome Ultra, Ultimate Car Dock1) offers fewer
displays on a single screen. There are five screens, each one consists of six cards. Every
card can change into shortcut or a build-in application. The Ultimate Car Dock has
only few built-in applications: music player, voice command, speed, weather, messages
and calls. It also supports shortcuts to other applications.

1) available from https://play.google.com/store/apps/details?id=com.appsontoast.ultimatecar-
dock&hl=en

6

https://play.google.com/store/apps/details?id=com.appsontoast.ultimatecardock&hl=en
https://play.google.com/store/apps/details?id=com.appsontoast.ultimatecardock&hl=en

. 2.1 Existing applications

Figure 2.4. Screenshot from Ultimate Car Dock

2.1.4.1 Advantages

.Simple UI, easy to understand,. responsive, fluent,.possible to change units (mile/km, etc.),.able to read various incoming notifications using TTS (Gmail, WhatsApp, etc.),.predefined SMS responses (selectable when a message comes),.direct calls and messages (shortcut to call/message a certain person).

2.1.4.2 Disadvantages

.Limited functionality,.not optimized for a tablet,. small text font.

2.1.5 Conclusion
Except by Torque, which focuses mainly (and only) on OBD, all the applications are
very similar to each other. They have similar design and functionality – mostly weather,
speed provided by GPS, a voice command feature and shortcuts for external applica-
tions.

2.1.5.1 Suggestions

.OBD support,. shortcuts to other applications,.adjustable cards,.built-in cards (weather, speed, voice command, etc.),. simple grid-based UI,.possibility to change displayed units,. responsive and fluent,.day and night theme,

7

2. Analysis .
.predefined message and call responses,.TTS for incoming notifications.

2.1.5.2 Possible issues to avoid

.Slow responsiveness,. limited functionality,. small and hardly visible font,.distractive ads.

2.1.6 Android Auto
Recently, Google Inc. presented new application model for information delivery while
driving [2]. It is called Android Auto and it provides a standardized user interface and
user interaction model for Android devices. Focusing on minimizing the driver distrac-
tion, it presents a few options to interact with a user. It supports three application
types:.System overview,.audio applications,.messaging applications.

2.1.6.1 System overview
System overview is supposed to be a home screen for an Android Auto application.
It presents both current and past notifications. The amount of notifications is limited
based on screen size. Every notification consists of an intent icon, a text and an image,
while following certain sizing rules. Every such notification can be expanded on the spot
or another sub-application can be launched.

Figure 2.5. Android Auto Home screen

2.1.6.2 Audio applications
Audio applications in Android Auto have a simple template structure. It consists of
a main consumption view, a drawer and a queue screen. The main consumption view

8

. 2.1 Existing applications

displays a few control elements and a cover background. The drawer is a simple list
and provides access to favorite and popular content. Finally the queue screen displays
a list of pending content (for example songs in a queue).

Figure 2.6. Android Auto audio application

2.1.6.3 Messaging applications
Focusing on minimizing the cognitive load, messaging concept in Android Auto prefers
voice control to looking and typing. It allows reading the message out-loud and re-
sponding with a set of predefined voice commands as well as dictating a whole message
using a built-in speech recognition.

Figure 2.7. Android Auto conversational flow

2.1.6.4 Conclusion
It seems to be a good sign that even Google Inc. is interested in this area and performs
such a research. Every Android application can be designed for Android Auto and use
it’s simplified user interface, allowing the developer to focus on other issues than in-car
user interaction. However, the functionality is currently very limited. Hopefully there
will be further progress soon.

9

2. Analysis .
2.2 Platforms

The chosen platform heavily influences market share an application can reach. There-
fore, only platforms with a solid market share are considered. Another criteria is a sim-
plicity of development, which influences the time and effort put into an application
before it can be released. This is especially important for finding out the sale potential
of an application quickly.

Following the first rule mentioned above and based on tablet sales in past years [3],
the only viable options for an application are platforms Android, iOS and Windows,
since other platforms did not score high results.

2.2.1 Android
In 2013, the Android platform had 61.9 % market share [3], making it the most used
platform in the world. Targeting the Android platform creates a large base of potential
customers.

The development language for Android is Java, commonly known object-oriented pro-
gramming language with a solid developer base. Therefore it is easy to find developers
as well as answers to variety of programming related issues, making the development
easier.

2.2.2 iOS
With 36 % market share in 2013 [3], iOS is the second most popular tablet platform.
Considering a typical iOS user who is willing to pay for quality, iOS could be a good
choice for an application in context of potential customers.

However, the development language called Swift is somewhat new in the world, which
brings a lot of possible difficulties. Searching for answers while developing in this
technology might prove to be too troublesome.

2.2.3 Windows
With only 2.1 % market share in 2013 [3], the Windows platform does not seem to be
a valid choice for given criteria. Having thirty times lower customer base than Android,
it goes into the nice-to-have section when it comes to multi-platform applications.

2.2.4 Conclusion
Fulfilling the requirements for customer base as well as simplicity of development,
the Android platform seems to be the best choice available at the time of writing
this thesis. As such, it will be analyzed more thoroughly later in this chapter (2.3).

2.3 Android platform
There are some platform aspects to be considered when developing for Android-based
tablet device. First is a problem which is present with most of the tablet devices today –
the device performance. While the hardware is continuously evolving, one must consider
older devices as well as growing requirements for graphical presentation. The second
possible issue is the Android architecture, which influences the inner communication
throughout an application. [4]

10

. 2.3 Android platform

2.3.1 Performance
Nearly with every new version of Android, new presentation effects are prepared for
developers to use. While it is not mandatory, it is still advised to hold the platform
standards as the market demands it. An application must have a good look and feel
in order to attract attention. This must be considered when creating an application,
because the environment demands fluent responses.

2.3.2 Architecture
The main building block in Android application is an Activity. The Activity is an in-
dependent component of an application, a hybrid between a controller and a view in
MVC architecture. It contains a single screen (which contains a single layout), it has
it’s own independent data. An application usually consists of multiple loosely coupled
Activities. Those Activities are held in an Activity stack, where they are preserved to
be used later without need to create them all over again. However, if the system needs
memory, it clears the stack from the bottom (least recently used Activities).

Serving for communication between Activities there are so called Intents. An Intent
is a main concept of communication between two components. A component can be
for example an Activity or a Service. Intent can contain simple data such as primitive
or serialized data.

Presentation is handled using XML layout descriptors, which contain information
about View objects and their parameters. This feature allows to separate the actual
code from a layout creation, which could help the front-end designers create a GUI
without having to understand the Java language or the Android API.

XML is not used just for layouts. Most of the resources are defined using XML
descriptors. There are strings, values, dimensions and even certain graphical objects
defined using XML. These resources are accessible from code using a static class R,
which is created during build time by most build system automatically.

As a relatively new concept, a new element called Fragment was created. It is similar
to the Activity, however it is not a mandatory component. It can be used as a controller
for a certain functionality area. It’s advantage is that a developer can create separate
Fragments with separate area of concern and display one or many of these based on
the screen size. The typical use-case example can be a list of items and a detail of
a selected item. On small screens two Activities, containing a single Fragment each,
will be needed, while on larger screens one Activity can contain both Fragments.

2.3.3 Material design
Material design is a visual language created by Google Inc. It is inspired by a real
material, it’s behavior in motion, the effects of light and dark, the rules of physics. It
also describes colors, which should please the eye and create meaning and focus. The
usage of this language is described in Material design guidelines [5].

Every material has certain properties. Every element is considered to be a real object
with it’s depth and it’s position in the 3D space. This causes a lighting to create shadows
based on an elevation, to distinguish between layers, to show distance of elements.

Material design guidelines also describe animations considering the mass and weight
of animated objects, responses to interaction, also the physical laws of motion in accel-
eration and deceleration, in jumping up and falling down.

Apart from these general descriptions of material and motion, it also states certain
rules and exact measurements. For example, lists should be scrollable vertically and
fluently. Buttons, icons, fonts and all the other elements should be of certain sizes.

11

2. Analysis .
Views should choose from a certain set of layouts. Layouts for lists, cards, buttons and
so on are all specified in the guidelines.

2.4 GUI

2.4.1 Basic principles
As the main tool of communication between an application and it’s user, user interface
must follow one basic rule – the user goes first. UI is about the user, he must have
a good feeling when using the application. He must understand what to do and how to
do it. Therefore there are four rules that a proper UI must obey [6]:.Clear – it must be obvious what and where the user can control,.effective – minimizing required user interactions for a certain (requested) thing to

happen,. foolproof - avoiding errors before they happen,.pleasant - no stress when working with the UI, pleasant colors, a contrast, a good
readability.

Those rules might seem too shallow. That is why there are certain subgoals which are
more specific, helping to achieve the main four goals. Those subgoals are the following
seven:.Minimality – removing everything that can be removed without losing a requested

information value,. responsiveness – giving the user a proper feedback so that he knows something is
happening,. forgiveness – letting the user make mistakes, allowing him to fix them (for example
undo button or prompt message),. familiarity – using familiar, commonly used metaphors, icons, procedures,.consistency – using a consistent visual and interaction language,. integration – using platform specific elements and rules. simplicity - allowing the user to quickly learn how to use the UI

2.4.2 UI in a car environment
When developing a user interface for a car, certain responsibility is added. The need
of safety while using the UI becomes a main priority. Because of that, some aspects
are more important than others [7]. The most important aspects are described later in
this section.

2.4.2.1 Minimality

For minimizing the cognitive load, there must be as little information as possible at
a certain time. A user must see what he wants to see on first sight without seek-
ing the answer for too long. When minimizing the information displayed, there is no
confusion, which minimizes the glance time.

2.4.2.2 Consistence

Supporting usability and shortness of learning curve, consistence allows a user to re-
member one procedure and apply it successfully in different sections of UI. It allows
user to learn things just once.

12

. 2.4 GUI

2.4.2.3 Readability

Good readability is one of the conditions for an application to be pleasant to use. In
case of a car environment, however, the readability of information is not just pleasant
but also critical. Allowing the user to see the information he needs to see in the shortest
time possible is fatal when it comes to driving. Therefore the text font has to be large
enough for every driver to recognize it.

2.4.2.4 Controls

When it comes to controlling an application in an environment such as car, it is required
to consider certain aspects that are not present in other environments. The moving car
prevents user from being precise when it comes to touch. Therefore controls must be
large enough to be reliably reachable.

2.4.2.5 Colors

While in other environments a user can usually control a device brightness, it is not as
easy task while driving. Furthermore, blinding the user with too much light might be
fatal. Therefore proper colors must be used. For example, dominance of white color
might be visible well in the daylight, but might blind the user at the night time. Also,
proper color contrast must be considered for good a visibility and readability.

2.4.2.6 Responsiveness

Responsiveness is an important factor when it comes to pleasure of using an application,
but when it comes to using it in a car, it becomes extremely important for safety as
well. When an application is responsive, it’s user does not have to check the screen for
progress so often or worse, wait for the progress looking at it continuously.

2.4.3 Development process
The GUI development process is a part of a bigger process – the User Interface de-
velopment process. As the decision has already been made to create a graphical user
interface, development methods for other types of user interface will not be described.

The basic procedure of creating a UI design consists of multiple steps [8]. Fulfilling
requirements for each step properly should guarantee a proper outcome. The UI design
steps are as follows:.Assignment and understanding,. research,.behaviour specification,.basic vision (mockup),.detailed design of the looks,. implementation,.usability testing,. evaluation,.final implementation.

The process can also be divided into fewer phases, from which each contains multiple
tasks. The list mentioned above is divided into these phases, so that these phases are
certain sets of steps that can be iterated over and over for the best result possible.
These phases are the lo-fi phase, the hi-fi phase and the final phase.

13

2. Analysis .
2.4.3.1 Lo-fi phase.Basic product statement,.needs assessment,.use case brainstorming,. task list definition,. task analysis,.prototyping,. evaluation,. cognitive walk-through,. collaborative critiquing,.heuristic evaluation,. re-design.

The product statement should state what the product is, what it does and who is it
for. This ensures that the developer knows what is he actually trying to achieve and
why. Also, it briefly describes a target user group.

The needs assessment is a systematic process for determining and addressing
the needs. It is not necessary to perform unless the goal or the user group is unknown.
It also involves a user research.

The use-case brainstorming is used for finding the use-cases of the application. In
other words, the outcome should be a set of use-cases, of things user can do with
the application. It also gives an idea about functionality, not just the UI.

Also created using the brainstorming method, the task list is defined. Is is based
on the use cases created earlier. A task is a procedure that a user has to do with
the application when achieving a single goal. After defining the tasks they are also
analyzed.

After the analysis is completed, a prototype can be created. Prototypes are the early
drafts of the GUI, they serve as something to work on, a physical representation of
the current GUI design direction. They are usually done with a paper and pencil or
a professional prototyping software, but they lack functionality. Prototypes in this
phase can also be called mock-ups, wire-frames or lo-fi prototypes.

The prototype is then evaluated using several evaluation processes. A cognitive walk
through, a collaborative critiquing and a heuristic evaluation should be done. The
cognitive walk through is an attempt of an expert to act as a user and walk through
the application. The collaborative critiquing is a session where a group of people tries
to find problems. And the heuristic evaluation is about fulfilling the heuristic rules and
should be taken into consideration during the whole design process.

2.4.3.2 Hi-fi phase
The hi-fi phase assumes the completion of the lo-fi phase and takes the prototype further
into reality. The hi-fi prototype adds functionality. It is an illusion of the final visual
and interaction design. It also already runs on the target platform and follows it’s
look&feel. While it should mostly work like the final application, the actual application
logic does not have to be implemented yet. Also, only the main parts of the application
UI are prototyped.

Also in the hi-fi phase, an iterative evaluation process is present. The prototype
is implemented, tested, evaluated and then optionally redesigned over and over again.
Usually the final design is used in the application itself, which, however, does not have
to be the best way.

14

. 2.5 Business requirements

The evaluation in this phase is already done with users, but also testing without
users is present to check the direction correctness (heuristic testing etc.). Usability
testing is performed and depends on the application itself. As mentioned in [9], five
users should be enough to test an application, as an additional tester does not add as
much precision.

2.5 Business requirements
Business requirements describe the application from the business view. They do not
describe exact details, neither they describe easily measurable requirements. It is a set
of what should be achieved with the developed software. Simple business requirements
follow:.Minimizing the cognitive load,. simple and consistent user interface,. fast and responsive,.usability before attractivity,.performance before delightful details,. rich, extensible functionality:.display information about car,.display common information (time, battery, weather, ...),. etc.

2.6 Use-cases
Use-cases describe objectives users want to achieve with a system. They describe not
only the UI, but also the functionality. They are usually named with a verb and
optionally a noun. The name should be descriptive enough in order to give a proper
idea about the specific goal.

The use-case list is based on the analysis so far. It is inspired by the research on
existing applications in section 2.1 and the general idea of the application mentioned
in section 1.1..Display information from the car,.display device information (time, battery, etc.),.display icons for the information to be easily recognizable,.allow customization of displayed information,.provide safe controls,.provide easy access to other applications,. support different themes (light, dark).

2.7 Task list
The tasks are based on the use-cases, they are more exact subtasks of the use-case
scenarios. A single use-case scenario can be done by performing one or multiple tasks
from the task list. They describe the system from the user perspective..Display a single piece of information,

15

2. Analysis .
.add a display:. select a position for a new display,. select a desired information or. select a desired action:. select a simple action or. select an external application,

. remove a display,. invoke an external application:.add external application display,. invoke an external application on touch,. change a theme,. create a group of displays,.move to another group of displays,.move back from another group of displays,.go back.

2.8 Development and support tools
A fluent development process cannot be done without proper development and support
tools. These tools provide additional safety of code (prevention from loss of code),
additional protection layer against bugs (automatic tests), help with implementation
(code-completion, linking etc.) and more.

2.8.1 Development environment
Even though using text editor and command line is an option, for speed of development
only Integrated Development Environments are considered. In the time of writing this
text, there were two possibilities for Android development – Eclipse and Android Studio.

2.8.1.1 Eclipse
Based on research by Oliver White [10], the Eclipse IDE1) is the most often used Java
IDE. That is probably the reason why Google Inc. suggested this IDE for Android
development in early phase. However, Eclipse has lost Android development support
in late 2014 [11].

2.8.1.2 Android Studio
Released in 2014, Android Studio2) became the main platform for Android development.
It is based on IntelliJ IDEA IDE and supported by Google Inc. For that reason, it is
an obvious choice for new applications to be developed in Android Studio.

2.8.2 Version control system
Versioning is very important part of a software development process. Being able to
go back to working version or to develop new features while the main version is still
working, is priceless. Currently there are three main VCS worth considering (based on
an article3)).
1) https://eclipse.org/
2) available at http://developer.android.com/tools/studio/index.html
3) http://www.sitepoint.com/version-control-software-2014-what-options/

16

https://eclipse.org/
http://developer.android.com/tools/studio/index.html
http://www.sitepoint.com/version-control-software-2014-what-options/

. 2.8 Development and support tools

2.8.2.1 Subversion
Subversion1) has a single repository where all the data are stored. This simplifies
the backup of a whole project, because all the data are located in one place. This,
however, creates possible threat of data loss when the central repository gets corrupted
without backup.

Because of the central repository, Subversion allows read and write access controls
for every single location and have them enforced across the entire project, which can
come in handy when developing in a large community, but it is usually not required
when developing in a small team.

2.8.2.2 Mercurial
Mercurial2) is a distributed source control management tool, it focuses on performance
and scalability. It also gives a high priority to keeping history as it is fairly difficult to
alter historic data inputs. Also several GUI tools exist for the Mercurial version control
system.

2.8.2.3 Git
Git3) is a widely used version control system. It uses a concept of distributed repos-
itories. Those repositories contain immutable objects identified by the hash of their
content. This makes the history very safe, as there is no way of changing a commit.
However a commit can be replaced with another commit and the development story
can be altered, making it well-arranged for the potential needs of future analysis. It
also supports branching and staging.

2.8.2.4 Conclusion
As the author has a long experience with Git and it is also one of the most widely
used VCS, it will be used for version controlling. It is continuously being improved and
enhanced, it supports various additional functionality (for example by using hooks) and
is overall widely supported, therefore Git seems to be the best choice.

2.8.3 Test driven development
Being one of the main development approaches in the last decade, test driven develop-
ment helps to develop an application quickly and fluently. The main idea of TDD is to
create automatic tests before the actual application code. While this enforces a devel-
oper to think twice when creating tests, which makes him think about what he actually
wants to achieve, it also helps against random errors in code. Having the application
tested with every build also supports continuous integration, which is described later
in this text.

The most usual tool in Java is the JUnit framework4). It allows writing simple
repeatable tests and is an instance of the xUnit architecture. Also API for testing from
the Android support libraries will be used, as the application environment is specific
and for proper testing, an access to certain resources and objects is necessary.

2.8.4 Continuous integration
“Continuous Integration is a software development practice where members of a team
integrate their work frequently, usually each person integrates at least daily - leading
1) https://subversion.apache.org/
2) https://www.mercurial-scm.org/
3) https://git-scm.com/
4) http://junit.org/

17

https://subversion.apache.org/
https://www.mercurial-scm.org/
https://git-scm.com/
http://junit.org/

2. Analysis .
to multiple integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible.” [12]

Continuous integration supports rapid application development while giving the much
needed feedback, so that a developer can see and adjust the direction, which the appli-
cation development takes.

For simple CI integration in practice, there are several online services. For this
particular application development, Travis1) system was chosen. While offering usual
CI functionality, it also integrates easily with GitHub2) and Gradle3) build system.

2.8.5 Test evaluation
As described in a section about usability testing (5.3), testing with users on a car
simulator will be performed. There is an eye-tracking system on the simulator as well,
therefore there will be huge amount of data gathered from both the simulator and
the eye-tracker. A proper software must be used to analyze these data and to present
them. Also it has to be purchasable cheaply or for free. A few options will be described
here: Wolfram Mathematica, Matlab and R.

2.8.5.1 Wolfram Mathematica

Wolfram Mathematica4) is a professional software for technical computing. It covers
all areas of technical computing from mathematics, physics and so on. It is based
on Wolfram Language, which has strong algorithmic power as well as wide range of
capabilities. In Wolfram Mathematica pretty much every technical computation can
be done in the most reasonable time. It has one of the most advanced help systems
available with hundreds of thousands examples.

However, all of this does not come for free. The Wolfram Mathematica software is
very costly and for purpose of this thesis, a minimum functionality would be used. As
the results of the testing will probably be presented later in a research paper, a profes-
sional license would have to be used.

2.8.5.2 Matlab

Matlab5) is another software known for it’s technical computing capabilities. It is
capable of numeric computation, data analysis and visualisation, programming and
algorithm development and even application development and deployment. It is a high-
level language and an interactive environment on it’s own.

The disadvantage is the price of Matlab. Even a student license is very costly and
a professional license would be needed in the future for the research paper release. It
might be an option in the future, however it is not a viable option now.

2.8.5.3 R

R6) is a free software environment focused on statistical computing. It does not have
as wide area of use as the software mentioned above, but it is still capable of analyzing
large sets of data, which means it might just be enough for the test results to be analyzed
properly. Should it not be enough, a different approach has to be taken.

1) available at https://travis-ci.org/
2) https://github.com/
3) http://gradle.org/
4) https://www.wolfram.com/mathematica/
5) http://www.mathworks.com/products/matlab/
6) https://www.r-project.org/

18

https://travis-ci.org/
https://github.com/
http://gradle.org/
https://www.wolfram.com/mathematica/
http://www.mathworks.com/products/matlab/
https://www.r-project.org/

. 2.9 On-Board Diagnostics

Even though it is completely free, the use and functionality it not limited. Also it fits
the cheep purchase requirement making it a viable choice. Therefore, R will be used
for test results analysis and evaluation.

2.9 On-Board Diagnostics
On-Board Diagnostics stands for a self-diagnostic equipment requirements for automo-
tive vehicles. The modern implementations offer standardized communication port to
provide real-time data as well as diagnostic trouble codes.

Currently there are two versions of OBD. The first one (OBD I) provides only diag-
nostic trouble codes. The second one (OBD II) adds real-time vehicle data. The third
version (OBD III) is currently being developed. It should support so called “remote
OBD”, which would broadcast the data to other vehicles, which could prevent collisions
by warning the drivers when something bad happens. [13]

2.9.1 Connection
To connect to the OBD II, an OBD-II Blue-tooth Adapter (often also referred to as
Dongle) has to be connected to the car. This dongle then enables creating a bluetooth
connection and via that connection it provides a communication channel. Some dongles
also support Wi-Fi.

2.9.2 API
The OBD communication protocol supports certain modes and allows reading informa-
tion on certain PIDs. The mode is used to set a mode of an OBD adapter. As stated
in the latest OBD-II standard SAE J19791) there are 10 modes available. Based on
the current mode the adapter behaves differently. The modes are:.Show current data,. show freeze frame data,. show stored Diagnostic Trouble Codes,. clear Diagnostic Trouble Codes and stored values,. test results, oxygen sensor monitoring,. test results, other component/system monitoring,. show pending Diagnostic Trouble Codes,. control operation of on-board component/system,. request vehicle information,.permanent Diagnostic Trouble Codes.

Vehicle manufacturers are not required to implement all the modes as well as they
are not required to implement all the PIDs. However, there is a special request available
to receive the list of supported PIDs. This is done via sequence of bits stating 1 for
supported and 0 for not supported PIDs.

For every mode, there are different PIDs available. The actual vehicle data (such
as speed, fuel, engine load, temperatures, etc.) are available via modes 1 and 2. The
Diagnostic Trouble Codes are available via modes 3, 7 and 9. For information retrieval,
a hexadecimal number is sent to the adapter containing the PID number according to
the data requested. The full table of PID codes is available at the OBD-II wikipedia
page2).
1) http://standards.sae.org/j1979_201408/
2) https://en.wikipedia.org/wiki/OBD-II_PIDs

19

http://standards.sae.org/j1979_201408/
https://en.wikipedia.org/wiki/OBD-II_PIDs

2. Analysis .
As the OBD is widely used in software, libraries used for accessing the data are

available. Such library can save a lot of work required to implement the communication
protocol, to solve all the safety issues as well as to cover different vehicles. For such
task, an OBD-II Java API library1) will be used [14].

2.9.3 Data
The OBD-II covers nearly all the driving data one can imagine a vehicle knows. It goes
from the usual data, such as vehicle speed or engine RPM, to less usual such as multiple
oxygen sensors. As mentioned earlier, the full table of the data provided is available at
the OBD-II wikipedia page. All of these data should be available (via the application)
to the driver if he demands it and if the car supports it

1) available from https://github.com/pires/obd-java-api

20

https://github.com/pires/obd-java-api

Chapter 3
Design

This chapter is about the design process. The first section is about the application
architecture, it’s requirements and the platform conditions. It is followed by a thorough
description of the GUI design process divided into four phases as parts of the iterative
process.

3.1 Application architecture
Designing a proper application architecture is one of the main and most challenging
tasks in the development process. Changing the architecture in the future proves to
be one of the most expensive changes as for man-hours [15]. Application architecture
influences a data flow, a communication between components and overall application
performance, as well as an extensibility and a possibility to change or add features in
the future. While the Android application architecture enforces certain components
and platform features to be used, there is still a space for diversity.

3.1.1 Platform limitations
As mentioned in Android platform analysis in section 2.3 on page 10, the typical An-
droid application consists of multiple Activities, which communicate with each other
using Intents. While this approach supports the loosely coupled concept, it makes cer-
tain inter-cooperations rather difficult. Sharing an object between activities usually
means serializing the object or saving it to the database, which leads to deserializing
or loading from the database later. When striving for excellent performance, this can
emerge into a serious problem. As the Android platform does not allow database IO
operations on the main presentation thread, it requires background thread with call-
backs to the main one and a screen revalidation when such callbacks occur. It is critical
to avoid such delays as much as possible when comes to car environment where fast
reactions are required.

3.1.2 Extensibility
With the current rapid application development there is a need to be able to adjust
an application based on market requirements. While creating a new application with
every new feature is a possibility, it is certainly better to be able to add new features
to the old application so that it actually never becomes old. Extensibility is one of
the main requirements for many reasons. When it comes to the application developed
in this thesis, new features are planned to be added based on a user feedback. Therefore
the architecture must be prepared to be easily extensible.

The main approach to achieve a proper extensibility should be to write a clean
code, which can prove to be a good idea when considering nearly every part of an
implementation process. Also the modularity concept is very useful when it comes to
extensibility and it will be discussed in section 3.1.3.

21

3. Design .
3.1.3 Modularity

3.1.3.1 Note for Android platform limitations

The first considered approach was to create requirements on modules, such as mani-
fest file as a descriptor and an implementation file with source codes and resources, so
that the modules could be loaded dynamically and the extensions could be customiz-
able. Then a user-base could develop modules on their own and add them freely into
the application once they meet the requirements.

However, the Android concept with XML layouts does not allow their inflating during
runtime. Because it is a performance-expensive operation, it pre-processes a XML file
when building the application, as quoted below.

“For performance reasons, view inflation relies heavily on pre-processing of XML files
that is done at build time. Therefore, it is not currently possible to use LayoutInflater
with an XmlPullParser over a plain XML file at runtime.” 1)

3.1.3.2 Overview

Modularity concept allows application to contain certain modules, each offering a cer-
tain functionality based on some predefined requirements. The modularity will be sup-
ported via extending predefined classes and implementing required functionality (such
as action on update). This limits the modularity, however it is not suitable to do it
differently at the moment given the restrains mentioned above.

3.1.4 Adaptability
Because the space on the screen is limited and also unknown in advance (multiple
devices have varying screen sizes) and every user might want to see a different kind
of information, he must be able to modify the layout, to choose the information he
wants to see. The application must be adaptable to user’s needs and requirements, so
that he can control the application fluently and spend as little time as possible seeking
the requested information.

For that reason there will be module containers which can contain multiple modules.
A user then selects the module for each container and selects a single container to be
displayed at a time. This allows to build custom module sets for greater adaptability.

3.1.5 Architecture
A multilayer architecture will be used for the application. With the Android architec-
ture requirements, a modified MVC architecture will be used, where an Activity works
as a controller and partially as a view. The activity will contain a set of modules, which
are single-purpose elements based on the predefined classes (as mentioned in section
3.1.3). Those modules will communicate via interface, which will be implemented by
the activity. Also an event-driven approach will be used in communication, especially
with timed events.

1) from documentation available at http://developer.android.com/reference/android/view/
LayoutInflater.html

22

http://developer.android.com/reference/android/view/LayoutInflater.html
http://developer.android.com/reference/android/view/LayoutInflater.html

. 3.2 GUI

3.2 GUI

Given the car environment, designing a proper graphical user interface is crucial for
an in-car application. Not only it has to look good, it also has to consider safety issues
such as minimizing the cognitive load and required glance time to control the application
or to read displayed information. To achieve that the GUI should follow the principles
mentioned in section 2.4.

3.2.1 Phase one

In the early phase of the design process, the main idea was to display a single piece
of information at a time. Given that, a certain concept was created with a single
application panel per screen, which would be a scrollable list. Swiping left or right
would change the focus to another application panel. Part of the previous and following
application panel would be seen as shown in figure 3.1.

Figure 3.1. GUI draft #1 with multiple panels

This concept was recreated into a similar concept with a difference in sizes of a pre-
vious and a following application panel. Those panels would be moved into the back-
ground which would make them smaller, as shown in figure 3.2, however, more of these
panels could be visible letting the user know more about the actual structure. Also, it
presents combination of a name and an icon for easier recognizability.

23

3. Design .

Figure 3.2. GUI draft #2 with the next and previous panels pushed into the background

For both drafts the following applies. The swipe action would invoke text-to-speech
action telling user the name of a selected panel. This could lower the need to look at
the application screen while driving. Also, all the panels would have different colors
making them recognizable on the first sight. The touch on an application panel would
invoke the related application. This could be a music player, a map, etc. Examples of
a music player sub-application are shown in figures D.3 and D.4 in the appendix B on
page 65.

3.2.1.1 Advantages.Readability – given a single panel per screen with only a name and an icon in it,
the font can be large enough to be properly readable..Colors – colors can distinguish separate applications panels making them easily rec-
ognizable once the user learns the colors for each application.

3.2.1.2 Disadvantages.Consistence – however is the main screen consistent, the invoked sub-applications
are not. The concept does not force them to be, neither it gives a clue about how
they should look..Limited – the main screen has a limited functionality (near to none) while the layout
of sub-applications would have to be created independently every time a new feature
is implemented. This also limits easy extensibility as creating a proper GUI is not
a simple task with the given constraints.

3.2.2 Phase two
The next step was to fix the problems mentioned above. Being inspired by the reviewed
applications (2.1) one attempt ended with the concept shown in figure 3.3. It presents

24

. 3.2 GUI

a vertical list of applications displayed in a column on the right side of the screen instead
of a horizontal list over the whole screen. The main area contains the usual car data
such as speed, rpm and consumption.

Figure 3.3. GUI draft #3 with the main section in the center and the menu in the right
panel

The second image 3.4 shows possibility of inserting a sub-application screen between
an application list and car data, for example a navigation. Also, it presents the concept
of micro-controls in an application list. It would allow a single control button to be
displayed on an application panel such as pausing a song or muting the music player.

25

3. Design .
Figure 3.4. GUI draft#4 with additional application screen in the center, pushing the car

data to the left panel

3.2.2.1 Advantages

.Controls – the concept shows improvement in consistent functionality for displayed
application panels, which eases the control.

3.2.2.2 Disadvantages

.Minimality – the amount of data grows and it appears to be too much. There are
different kinds of data displayed at the same time..Consistency – the vertical application list is consistent, however, the central panel
is still suffering from the lack of consistency, as every sub-application can have a dif-
ferent layout.

3.2.3 Phase three
The next step towards a consistency and a space usage was to create a grid. This grid
would be adjustable based on a screen size, displaying the proper amount of application
panels for a given device. As shown in figure 3.5, it is just an extension of a previously
shown vertical list making it vertical and horizontal – two dimensional.

Figure 3.5. GUI draft#5 with a grid of panels

Adding functionality to this grid, a new card concept emerged. It consists of cards,
which provide additional information as well as control elements (as shown in figure
3.6). They would be active demo-versions of the full applications, which would then be
invoked by a touch to the upper area of the card, as shown in figure D.6 in the appendix
B.

26

. 3.2 GUI

Figure 3.6. GUI draft#6 with a grid of panels, which display information and offer basic
functionality

3.2.3.1 Advantages

.Accessible functionality – the concept shows basic functionality available without
a need of invoking the full application. This allows a user to remain in the main
screen in most cases.

3.2.3.2 Disadvantages

.Controls – in order to fit in the card area, the controls might prove to be too small,
which makes it difficult to touch them.Readability – in order to fit in the card area, the text might have to be too small,
which makes it difficult to be read

27

3. Design .
3.2.4 The final design

Figure 3.7. GUI draft#7 with a grid of simple panels

Because every single one of the previously mentioned designs had at least one critical
disadvantage, a new approach had to be taken. Because of consistence, every element
must be specified. But considering the need for simplicity, there must be very limited
amount of these elements.

Given the requirements for both consistence and simplicity as well as extensible func-
tionality, the elements are divided into two groups: these, that display information and
these, that control the application. The simplest way appeared to be the following: one
element serves as a display element, which displays one and only one kind of informa-
tion, and the second element serves as a control button, which allows user to perform
a single action. Every kind of functionality appears to be achievable by these elements
or by sets of these elements.

Also, for improved adaptability a hierarchy model was considered, which makes it
possible to create independent sets of functionality using a hierarchical model, which
supports the consistence and simplicity by repeating the same pattern in distinct areas.

As shown in figure 3.8, the display panel consists of a name, an icon, a value and
a unit. The control button is more simple, it consists of a name and an icon. An icon
serves as a checkpoint for eyes to seek out the requested information quickly.

28

. 3.2 GUI

Figure 3.8. GUI draft#8 presenting the action panel (left) and the display panel (right)

The idea is to have several screens containing several application panels (where
amount of panels is based on screen size) with changing the screen by swiping left
or right. As mentioned in section 2.3.3 on page 11, Android suggests using vertically
scrollable lists when presenting large sets of data. This can be suitable in most cases,
however, in a car a user can easily swipe too heavily and scroll elsewhere and getting
back to original place can put an unnecessary load on the driver’s attention. Therefore
there have to be separate pages, where one swipe changes a page by one.

As for the colors, a proper contrast has to be present for a good readability. As
mentioned in section 2.4.2 on page 12, two modes should be present. While light mode
offers good readability even in a direct sunlight, it blinds the driver during the night
time as it emits too much light. Therefore it is a good idea to implement a dark mode
as well for a night time usage. For the highest contrast possible, white on black or black
on white are the best options.

3.2.4.1 Advantages

.Minimality – only a single value is displayed per each panel,. familiarity – using familiar (platform specific) icons should ease the information seek-
ing process,.consistence – consistent hierarchical model with only two types of elements,. integration – using platform specific icons and specifics is a part of realization process,. simplicity – again, there are only two kinds of elements, which is simple enough,. readability – because of the good contrast the text will be easily recognizable and
readable.

29

Chapter 4
Implementation

This chapter is about the whole realization process – a process of implementing the ap-
plication with it’s logic and GUI. It starts with a section about preparation, which
provides an insight into the preparation of implementation environment and tools. It
is then followed by a description of a tablet specific part and then the actual core of
the application. At last the final GUI is described.

4.1 Preparation
While this thesis focuses on creating a tablet application, it’s functionality could be
shared amongst other Android platforms just by reflecting the differences. A possibility
to extend application to a mobile or any other platform creates a need to divide a single
project into two – a core with a shared functionality and a tablet part which focuses
on the tablet GUI and other specifics.

4.1.1 Environment
As mentioned in analysis section 2.8.1 on page 16, Android Studio IDE is used for the
code development. As it does not allow importing other project as a library, it requires
a shared project to be registered as a module. This module has to be placed in a project
sub-folder and it is an Android Studio project of it’s own. This is done by adding a new
module and selecting a library module.

4.1.2 Versioning
Because of the workaround with a shared library in Android Studio, a special ap-
proach has to be taken. As Git supports submodules, a shared library has to be
registered as one. This can be achieved by calling a command “git submodule add
LIBRARY REPOSITORY URL” in the root project folder and then adding the library sub-
folder into the “.gitignore” file.

4.2 Tablet specific
While the Android API is shared across all Android platforms, it is the device size
that is usually different. The GUI has to adapt based on a platform and therefore it’s
implementation differs. This section describes the tablet-related implementation using
a shared library described in section 4.3.

4.2.1 ModulePagerActivity
As mentioned in analysis section 2.3.2 on page 11, an Activity is a basic component of
every Android application. In this case, it is the only launch point of the application,
it implements so called IModuleContext interface described in section 4.3 on page 32,

30

. 4.2 Tablet specific

which controls the interaction with modules (3.1.3). Presentation of a screen content
is delegated to ModulePageFragment (4.2.2).

While usually multiple activities are present in a single application, thanks to consis-
tent hierarchical model a single activity class can be reused for multiple instances with
different data, which means that there is a single activity invoked per one requested set
of modules.

4.2.1.1 Improvements

There are some improvements implemented for performance, battery consumption and
hardware overloading prevention reasons, one of which is reacting to an Activity state
by disabling inactive modules. Because of the independent module concept, modules
display data on their own and they do not know when the data are requested. Therefore,
the activity uses a list of these modules (as listeners) to deactivate them when entering
a paused or stopped state.

Also, sometimes it is required to restart the entire application, for example when
some global changes need to be performed. As the Android architecture saves latest
activities in a stack as mentioned in section 2.3.2 on page 11, it is necessary to clear this
stack first, so that the OS does not backtrack to an old Activity. This is done by keeping
control over existing activities and ending them one by one. This can also be used when
forcing the application to exit, as there is no proper option to end an application on
Android platform from the application developer’s view.

4.2.2 ModulePageFragment
As mentioned in section 2.3.2 on page 11 a Fragment can take over part of an Activity’s
functionality. In this case a ModulePageFragment handles the presentation of a module
set using a ModuleFragmentAdapter (4.2.3) for obtaining the data and a custom layout
GridLayout (4.2.4) for displaying them in a grid.

4.2.3 ModuleFragmentAdapter
ModuleFragmentAdapter follows the adapter concept, where an extension of the An-
droid API class Adapter is used to cover the access to a list of data. This adapter
gets a single ParentModule (described in section 4.3.1 on page 32) and retrieves it’s
submodules on demand.

4.2.4 GridLayout
Because the Android concept does not expect the functionality required by this appli-
cation, a library class android.widget.GridLayout1) is not suitable for this situation.
As mentioned in section 3.2.4 on page 28, Android suggests the lists to be scrollable
vertically. This is a functionality fully supported by android.widget.GridLayout but
unsuitable for the given use-case.

For reasons mentioned above a custom layout had to be created. Based on given
measurements (of a module tile, a space) it computes amount of modules displayed
per page and also their positions. Given the computed positions it then lays out all
the provided modules.

1) more information available at http: / / developer . android . com / reference / android / widget /
GridLayout.html

31

http://developer.android.com/reference/android/widget/GridLayout.html
http://developer.android.com/reference/android/widget/GridLayout.html

4. Implementation .
4.3 Core

The core contains all the functionality, it handles data, logic and also a standardized
part of presentation, which consists of predefined single module views. Everything will
be described in the following text.

4.3.1 Modules
As mentioned in section 3.1.3, there are so called modules, which handle the interaction
between the application and it’s user offering a single action or information. Together
they can create multiple connected sets of functionality with consistent interface.

4.3.1.1 IModule

IModule is an interface which covers the basic module functionality. It has to be
implemented by every single module in order to achieve a proper polymorphism. Using
this approach, a tablet implementation can display a set of modules without knowing
which module does what.

4.3.1.2 AbstractSimpleModule

AbstractSimpleModule is an abstract class which implements most of the IModule’s
functionality. It handles creating a unique Id for every module, which will be described
later in section 4.3.3. It also handles common module events and overrides simple meth-
ods to ease the implementation of a new module, which does not need these methods.
Every other module extends this class.

4.3.1.3 AbstractParentModule

For consistent hierarchical model, there has to be a module containing other modules.
This module extends the AbstractParentModule class, which covers a module container
functionality. Every instance of a ModulePagerActivity (4.2.1) contains such container
and displays it’s content as a list of modules.

4.3.1.4 AbstractDisplayModule

Displaying information is one of the most important goals of the CarDashboard applica-
tion. AbstractDisplayModule is the base class to be extended by modules displaying
information. It handles updating a displayed value on request. It also supports text-
to-speech, as the value is said out-loud on touch.

4.3.1.5 AbstractTimedUpdateDisplayModule

AbstractTimedUpdateDisplayModule serves as an extension to the AbstractDisplay-
Module handling automatic timed updates. It uses advanced generics to offer multi-
ple update modes for extending modules. Such mode states the frequency of calling
the getUpdatedValue method, which is to be implemented by subclasses. An optimiza-
tion is implemented for this process, as getUpdatedValue can invoke a long-lasting
process. The last value is saved for further use by the updateValue method, while
the getUpdateValue method merely updates this last value when it is done.

4.3.1.6 AbstractShortcutModule

As mentioned in section 2.3.2, there is an Intent as a mean of communication. This
Intent is able to invoke an Activity, a Service and many other things. It can also
invoke an Activity of a different application installed on the device, which launches
the application. The AbstractShortcutModule handles invoking a custom Intent.

32

. 4.3 Core

4.3.1.7 Other modules
There are several implementations of the modules mentioned above. A few will be
shortly described in the following list:.SimpleShortcutModule – a mere implementation of the AbstractShortcutModule

class (4.3.1),.SimpleParentModule – a mere implementation of the AbstractParentModule class
(4.3.1),.AppShortcutModule – an extension to the AbstractShortcutModule which limits
to Intents invoking other installed application, therefore the CarDashboard can serve
as an application launcher optimized for in-car usage,.EmtpyModule – also referred to as an add module, it is meant to be swapped for
a different one, occupying an empty space,.BackModule – a module handling a back button, which can be pressed to get back
to the upper parent module (go up in the hierarchy),.LightButtonModule – a module created for IoT support, offering a way to turn
a given light on or off,.ObdRpmModule – a module communicating with the OBD and displaying informa-
tion about current RPM of the vehicle,.ObdSpeedModule – a module communicating with the OBD and displaying infor-
mation about current speed of the vehicle.

4.3.1.8 IModuleContext
An interface to be implemented by an Activity which should display the modules. It
provides functionality to go up or down in a module hierarchy, to toggle a quick menu
for a certain module or to gain access to resources.

4.3.1.9 Quick menu
A quick menu serves as a quick options menu for a simple module. Every module can
invoke such quick menu. Usually it contains cancel, edit and delete options. It might
contain other options specified by the given module.

4.3.2 Application
This section describes the application logic. While most of the logic is hidden in mod-
ules themselves, the communication across application components must be handled
elsewhere.

4.3.2.1 UpdateApplication
android.app.Application is the main class of the Android architecture. There is
a single instance of this class per application. For that reason, this class is extended
and enhanced with creating and starting timers for timed updates. An instance of
this extended class is to be used by the tablet implementation instead of the original
android.app.Application.

4.3.2.2 FastEventBus
The concept of event bus is to have publishers and subscribers. It is most suitable for
timed events, which serve as a signal for modules to update themselves. However, it is
not limited just for the time updates. Most of the communication can be handled using
the event bus. The FastEventBus offers such functionality while still being as simple
as possible for better performance.

33

4. Implementation .
4.3.3 Data

4.3.3.1 Resources
As mentioned in the section 2.3.2, resources usually consist of XML files accessible as
static properties of the automatically generated class R. A new class was created in this
project to wrap the access to resources for selected types of data. StringResource
and IconResource classes wrap the access to single sources of a resource, meaning that
for example a StringResource can load the string from a resource or from a runtime
memory. Accessing a resource this way separates the resource user from the data access
layer, making the code simpler.

4.3.3.2 Storage
As the application is adjustable by users, the settings need to be preserved. The main
data area to be saved is the user-customized hierarchy of modules. Given the hierarchy
model of these data and the simplicity of content (module type, name, additional data),
a JSON format is used for the data persistence. A single JSON file is created containing
all the required data for a customized user interface. The advantage of the JSON format
is the ability to easily persist these settings on a server given the support of JSON format
from web communication protocols.

To save and load these data there is a class ModuleDAO. This class separates the access
code from the rest of the application, making it easy to change the saving format,
the type of data saved or even the location of data. It also enables data to be saved in
a background thread, so that the saving process does not block the application.

4.3.3.3 Runtime data
For performance reasons to avoid unnecessary loading and object creating, current mod-
ules are preserved in a runtime data container called ModuleSupplier. This container
wraps the access to modules based on their Id, as mentioned in section 4.3.1 on page
32. It also contains a default set of modules when no preserved data are available.

Another advantage of this class is a possibility to adapt. Should the modules take
too much space in memory, it is easy to switch to a data loading model, where modules
would be loaded into a memory on demand and deleted when they are not currently in
use. Doing such change would not affect the rest of the application.

4.3.3.4 Object creation tools
One of the challenging tasks was to save and then load all types of modules. Since
there can be custom modules, it is not an easy task without requesting the developer
to create DAO for every module. To simplify the module implementation process as
much as possible, a set of creation tools was made. Once the module fits in one of these
tools, it can be loaded and created without further effort. However, once a new module
type is created, for example a type which requires additional data to be saved, a new
tool has to be implemented into existing tools.

There are two types of these tools. The tools to create an object based on a loaded
module data and the tools to create an object based on a selected module when adding
a new one into the structure. Both of these tools are based on Java reflection API.
For both of these tools a map exists in the ModuleCreationToolsMap class based on
the module class. Every module class has to be registered with a ModuleCreator and
a ModuleLoader before being able to be loaded or added.

The ModuleLoader serves to create a new object from previously persisted session.
It is an enum of many enum items, each of which implements a method to load from

34

. 4.3 Core

a JSONObject and to save into the JSONObject. Support methods are provided for
saving and loading common data, so that only the specifics have to be implemented.

The ModuleCreator serves to create a new object when swapping the EmptyModule
(4.3.1). On the first sight it is simpler than ModuleLoader, because most modules
can be created just by reflection (creating a new module based on class with default
data in it). However, several modules require custom data, such as SimpleShortcut-
Module, AppShortcutModule, GmapsShortcutModule, etc. Those usually use custom
Fragments handling the user data input with callback methods back to the creator.
Those Fragments will be discussed later in the section 4.3.4 on page 35.

4.3.4 Fragments
Following are DialogFragments, which means Fragments in Dialog windows. The
advantage of the DialogFragment is the ability to adapt. On larger screens it is a dialog
window as a pop-up, on smaller screen it is a full-screen window.

4.3.4.1 ModuleListDialogFragment
This Fragment is used when adding a new module into the structure. It contains
a list of available modules in a structure defined by the developer. This structure uses
description objects for all the modules. When a module is selected, based on it’s class
a ModuleCreator is obtained from the ModuleCreationToolsMap (4.3.3). Using this
creator a new module object is created and inserted into given position using a callback
method to IModuleContext (4.3.1).

4.3.4.2 ApplicationListDialogFragment
When a shortcut to an external application is selected as a new module, an Applica-
tionListDialogFragment gets invoked by the ModuleCreator. Adapter of this Frag-
ment loads all the available applications installed on the device and provides their
data to the ApplicationListDialogFragment. The icons and names are displayed in
a list for a user to select. Selecting a module invokes a callback method, which calls
the related method in the ModuleCreator.

4.3.4.3 CustomShortcutDialogFragment
When a custom Intent is to be created as a module, a CustomShortcutDialogFragment
gets invoked. This Fragment offers input for a title and an Intent content and as usual,
invokes a callback method once the data are provided.

4.3.4.4 GmapsShortcutDialogFragment
As an extension to the previous, this Fragment allows creating custom Intents particu-
larly for Google Maps. Using Google Maps API1), it allows creating shortcut modules,
which can invoke the following:.Display a location on a map,. launch navigation to a certain location from the current location,. search the current location for a given string, for example a hospital, a pharmacy or

a gas station.

4.3.4.5 RenameDialogFragment
RenameDialogFragment has been added to allow a user to change a title of a selected
module. Because the title is saved as a StringResource (4.3.3), it is source-independent
1) https://developers.google.com/maps/

35

https://developers.google.com/maps/

4. Implementation .
on the outside. Therefore, a String can be used instead of a XML resource. The user
can then customize his user interface a bit more.

4.3.5 OBD
While modules are as independent as possible, there are cases where a shared function-
ality is required. Communicating with the OBD protocol is relatively expensive and it
would be inefficient to handle it separately. Therefore the communication is centered
into a single sub-package, which handles the data retrieval using requests and saving
the responses for later use. Every module displaying the OBD data can then ask this
package for an information and receive it as quickly as possible.

Handling the OBD communication is done by a background service which uses
the OBD-II Java API library [14] to send requests to the OBD and to receive results.
It sends requests based on tasks from a queue, where modules push their requests. This
ensures that only currently needed information will be requested, minimizing the load.

4.3.6 Utility classes
There are several utility classes – stateless classes providing certain sets of functional-
ity. As a utility class, every one of them is filled with static methods that help with
frequently used operations that do not require to change the outer state.

4.3.6.1 ModuleUtils
A ModuleUtils class implements several methods offering a functional approach for
lists of modules. Providing a Single Abstract Method (SAM) interface for an action
on an IModule given as a parameter, it performs this action for each (even recursive)
submodule of a given parent module. Also a particular module class or a super-class
can be provided, so that only the related modules are affected.

The simpler method called forEach merely iterates over all submodules, performs
action on each one of them and if the submodule happens to be also a parent module,
it calls itself recursively on this parent submodule as well.

The more complicated method called forEachDeepCopy not only iterates recursively
over all submodules, but also creates a deep copy of all the parent modules, so that
changing their structure does not affect the original. This is helpful when adjusting
modules before saving them.

4.3.6.2 ModuleViewUtils
ModuleViewUtils is a utility class providing methods to edit ModuleViews described
later in the section 4.3.7 on page 37. It enables filling them with a data provided by a
given IModule, preparing listeners and quick menus. This covers the access to certain
View fields, separating the view layer from the rest.

4.3.6.3 ModuleViewFactory
A ModuleViewFactory class enables creating new ModuleViews (4.3.7). It offers cre-
ation of a simple ModuleView or a ModuleView in a certain holder View. This holder
can then wrap a module and adjust it’s size based on the platform it is displayed on.

4.3.6.4 TextToSpeechUtils
This class provides simplified text-to-speech functionality. It handles all the settings
and preparations and a calling object merely has to provide a string to be read out-loud.
This class is especially useful given the environment and it is often used with several
modules. For example, all the implementations of AbstractDisplayModule (4.3.1) use

36

. 4.4 GUI

the text-to-speech functionality when touched, saying the related value. Once the driver
memorizes the position of a module, he can easily push it without even looking at it
and still receive the information about value.

4.3.7 Views

As the in-car GUI is not the usual type of GUI, it requires several implementations of
custom Views. Some provide functionality that is not provided by the Android API,
some minimize the programming effort when working with modules as well as cover
the low-level implementation.

4.3.7.1 AutoResizeTextView

To be able to create custom modules easily, it is necessary to create automatically
adjustable elements. Such element is the AutoResizeTextView, which automatically
resizes the text based on the space provided. This enabled the information to be as
large as possible, while still being able to display several types of data (even longer
strings). This class is used to help displaying an AbstractDisplayModule (4.3.1).

4.3.7.2 ModuleView

ModuleView is a main element of a presentation layer for a module. It handles accessing
the inner data, such as a title or an icon, as well as access to the related module object.
The ModuleView is an extension to the android.widget.RelativeLayout and uses
a XML descriptor, from which it is inflated.

4.3.7.3 ModuleActiveView

ModuleActiveView is an extension to the ModuleView, it uses a different XML layout
descriptor and adds a value and unit data display. It is optimized for frequent data
updates by saving the pointer to the View containing the actual value. This avoids
the unnecessary load when seeking an element inside a layout.

4.3.7.4 Other views

There are many other views similar to the ones described above or just simple views
used for displaying custom lists. Those views wrap access to the inner data presentation
elements to separate the layers properly.

4.4 GUI

Implementation of the GUI is based on the final design described in section 3.2.4 on page
28. While following the designed concept, also platform specific rules as mentioned in
section 2.3.3 on page 2.3.3 were applied where possible. Following the Material Design
was a secondary goal, since the safety of the driver is the most important goal. Therefore
compromises had to be made and they will be discussed later in this section. The final
result is shown in figure 4.1.

37

4. Implementation .

Figure 4.1. Final GUI implementation

4.4.1 Common elements

4.4.1.1 Colors

As described in section 3.2.4, two color modes are present – so called themes. One
consists of a white font, gray secondary icons and a black background, while the other
consists of a black font, gray secondary icons and a white background.

4.4.1.2 Sizes

While the Material Design (2.3.3) suggests certain measures, they are not suitable
for a car environment as the control and presentation elements would be too small.
Therefore sizes are adjusted and much larger.

4.4.1.3 Effects

Trying to follow the Material Design principles (2.3.3), several graphical effects are
present in order to increase the overall attractivity. All the modules support proper
elevation with shadowing even with the elevation increase when touching the button.
Also, a ripple effect is present when the module is touched, a stronger ripple effect
appears on a longer touch. This gives a user a proper visual feedback making the ap-
plication more pleasant.

4.4.1.4 Quick menu

As mentioned in section 4.3.1, a quick menu is a limited set of options for every module.
It gets invoked by a long touch on a module. It separates the rectangular module into
four rectangular pieces, each containing a button (as shown in figure 4.2).

38

. 4.4 GUI

Figure 4.2. Quick menu (2nd row, 3rd column) in the final GUI

4.4.1.5 Icons

Given the platform guidelines (2.3.3), it is easier to find proper icons for various actions.
Material Design icons1) are frequently updated and more icons are added on demand.
Should an icon be missing currently, it has a high chance of being created later. It also
helps to use familiar icons, so that a user does not have to learn more images and their
meanings.

4.4.2 Multiple designs
As mentioned in section 3.2.4, there are two types of modules – an action module and
a display module. Both of these modules have separate implementation, while sharing
common elements like colors, standard icons, fonts and effects, as mentioned earlier
(4.4.1).

4.4.2.1 Action module

An action module is a rectangular element consisting of a large centered icon and a title
in the bottom on background of the opposite color to the font color. The icon ensures
recognizability, while the title specifies the module identity. The result can be visible
in figure 4.2 (except for the quick menu it is full of action modules).

Such action module is meant to be pressed, not to display information. On press it
performs some action, which may or may not give a feedback, based on it’s purpose.
However, it always gives a visual feedback (4.4.1).

4.4.2.2 Display module

A display module is also a rectangular element, however it consists of a large centered
value text, a title on top, a value in the right bottom corner and a small gray icon in
the left bottom corner. All of it is on background of the opposite color to the font color.
The result can be seen in figure 4.1 (all modules in the first row are display modules as
well as the first and the last module in the second row).

1) available from https://github.com/google/material-design-icons

39

https://github.com/google/material-design-icons

4. Implementation .
Such display module serves as a source of information for the driver. It can display

various data in a well readable form, while preserving an attractive design. It is able
to display several types of data from numbers to short strings.

40

Chapter 5
Testing

This chapter is about testing and all that is related. Starting with a section about
testing the code, it describes a use of the test-driven development via unit tests. Then
a heuristic testing is performed as a main mean of testing without users and the results
are reviewed. Finally, the testing with users is thoroughly described, as it consists of
the usage of a real-world car simulator, it’s preparations and an elaborate evaluation
of all the gathered data including the eye-tracking system and a simulator log. During
the usability testing, A/B testing and a Change Lane Test are performed.

5.1 Code
As mentioned in section 2.8.3, the application development aimed to follow the prin-
ciples of the test-driven development approach. This means that unit tests cover part
of the application functionality. They do not cover everything, as automating certain
functionality (such as GUI for example) might actually be more time-consuming than
manual testing.

5.1.1 Unit testing
At first some difficulties have to be mentioned. As an Android application is not usually
being developed in an Android environment, the problem of accessing actual Android
API emerges. This means that writing proper unit tests gets complicated and it is often
easier (when comes to simple applications) to test it manually. This goes against the
test-driven development approach, however, amount of time was limited and automated
tests for features dependent on Android API will hopefully be implemented later.

Apart from that, unit tests were created for Android API independent classes and
methods, for example utility classes. JUnit1) framework was used, as it eases the test
implementation process, which consists of creating a test class in a package according to
the tested class or method, then creating test methods with a @Test annotation. Such
methods get invoked during the test phase of a build process. They contain assertions,
which check input for it’s validity (usually an expected value and an actual value are
provided to the assertion). Every such assert command is then evaluated and the failed
ones are presented to the developer.

This approach helped discovering a lot of hidden bugs. Even a small change, which
seemingly does not influence the tested component, can actually cause errors, which
then get caught by the unit tests (in the best case scenario). With a minimal effort this
can save a lot of hard work looking for a flawed area of code.

1) http://junit.org

41

http://junit.org

5. Testing .
5.2 Heuristic testing

Heuristic testing is based on following a certain set of rules. It is based on somebody’s
experience. It is a speed process of checking the user interface for common issues.
However, it does not interpret a user’s activity. The following evaluation will use
the heuristic created by Jakob Nielsen, which consists of ten rules (following later in
the text). [16]

For purpose of presentation, in further text there will be signs plus (+) and minus (−)
used for interpreting positive (plus) and negative (minus) evaluations. Also, priorities
will be stated next to the rule violations in parentheses and they will be limited to the
words low, medium and high. Also additional notes are present (for future use).

5.2.1 Evaluation

5.2.1.1 Visibility of system state

+ No long-lasting operations present, every long-lasting operation happens in the back-
ground without a user knowing,

+ issues might appear with a server synchronization, which is not implemented yet.

5.2.1.2 Match between system and reality

+ Icons match their real world models,

+ car informative modules have a car icon,
+ clock module has a clock icon,
+ etc.

5.2.1.3 Minimal responsibility and stress

− Missing confirmation prompt when removing a module (irreversible operation) (high),
− missing confirmation prompt when editing a module (irreversible operation) (high),
− missing proper edit option for shortcut modules (irreversible module addition oper-

ation) (high).

5.2.1.4 Match with platform and common standards

+ Material Design present where possible,
− Material Design not present where not suitable:

− icon size (too large) (small),
− list controls (does not scroll fluently, but scrolls page by page) (small),
− navigation is not done by a navigation drawer, but rather a file-system like style

(small),
− measures do not match the standards (too large) (small),
− platform back button does not work immediately after changing the theme

(medium).

42

. 5.2 Heuristic testing

5.2.1.5 Error prevention

+ Mandatory fields are properly highlighted,
+ keyboard for text fields is limited based on the given field type,
− Intent module is not properly tested before adding (medium).

5.2.1.6 Look and see

+ User interface is simple and consistent,
− availability of a quick menu is not visible, a user must memorize it (medium),
− position in a tree structure is missing, a user does not see which layer is he in (high).

5.2.1.7 Flexibility and effectivity

+ Basic settings are very simple,
− there is no advanced mode for advanced users (medium),
− there are no macros (small),
− there are no key shortcuts (small).

5.2.1.8 Minimality

+ Only the most important information are shown,
+ the concept is minimalistic,
+ only a single information displayed per module.

5.2.1.9 Meaningful error lines

− Only the platform default error line is present (high),
− the error line does not say what happened wrong (high),
− the error line does not say how to prevent the error from happening (high).

5.2.1.10 Help and documentation

− The documentation is very limited (high),
− the inner help is missing (high),
− there is no context hint for input fields (medium).

5.2.2 Conclusion
Overall results are relatively positive. Several compromises which break the platform
standards had to be made for the sake of safety during usage, but the priority list is
clear.

However, there are several missing supportive elements, such as prompts, error re-
ports and hints. All of these are on the to-do list for later implementation and hopefully
it will be fixed before the release of the application.

43

5. Testing .
5.3 Testing with users

The importance of proper testing is critical as a driver cannot be distracted from driving.
Any significant flaw in the application design might prove to be fatal and it certainly
is not the intention. Therefore thorough testing must be performed in order to achieve
the desired level of reliability.

One of the most commonly used approaches is the usability testing, where usually
several participants try to perform certain actions with an application. This is done in
a development environment and watched by the developers.

However, the GUI is meant to be used in unusual conditions, therefore testing in
a development environment cannot cover usability tests well enough. Considering that,
the UI evaluation follows commonly recognized rules about a Car UI testing - the LCT
(Lane Change Test). Given the issue of performing possibly dangerous tasks in live
traffic, the usability tests are performed in a safe but realistic environment - in a car
simulator with real-drive scenarios.

Also, to see how the application is doing in context of competition, thorough A/B
testing is performed. This testing uses the advantages of a car simulator as well. The
competition to be compared with is the application Torque (2.1.1), which is currently
one of the most downloaded OBD-supporting applications on Android market1).

As a related application has been developed simultaneously for a mobile platform [17],
testing was performed for both of these applications together. Therefore, preparations
were made just once as well as some parts of actual testing, such as introduction and
questionnaires. However, both platforms were tested by each user so that the results
are relevant.

5.3.1 Simulator
While providing safety, a car simulator has other advantages as well. It is equipped
with a set of cameras that track the eye movement. It is then easy to find out where
and for how long is a user focusing his sight, which is really important for evaluating
the cognitive load. It is also easy to try out different scenarios with a single click, not
requiring to drive around looking for a proper place.

1) https://play.google.com/store/search?q=OBD&c=apps&hl=en

44

https://play.google.com/store/search?q=OBD&c=apps&hl=en

. 5.3 Testing with users

Figure 5.1. Simulator interior

The simulator is located in Albertov in Prague in the building of the Faculty of
Transportation Sciences1), CTU. It is build from the interior (5.1) of a Škoda Octavia
car and surrounded by three screens. There are three computers as the hardware back-
ground. One serves for computing the physical mode, other one serves for visualizing
and the last one handles the control and communication interface.

The data from the simulator are broad-casted over serial line and they are limited
to speed and revolutions per minute. However, they can supposedly be extended to
a wider area of information.

The control software is called “CarDynamics” (shown in 5.2), it shows all kinds of
data about the current state of the vehicle, such as speed, rounds per minute, steering
wheel position, gear position, acceleration, position in a world model and more. It
contains several world scenarios – highways, countryside or even small cities.

Figure 5.2. Screenshot from CarDynamics

As mentioned above, there is also an eye-tracking system. This enables the tester to
precisely determine when and how often a user looks at the application, on the road
or elsewhere. The system consists of two EyeTracker cameras and a complex software
called Smart Eye Pro (see figure 5.3).

1) https://www.fd.cvut.cz/english/

45

https://www.fd.cvut.cz/english/

5. Testing .

Figure 5.3. Screenshot from Smart Eye Pro

5.3.2 Preparations
Before even starting to test with users, several preparations had to be made. This
included implementing a software that can emulate an OBD module to transfer data
from the simulator to the application. Also cameras had to be prepared, because
the software is not flawless and proper eye tracking prove to be an issue. Then, finally,
scenarios could have been made for all the tested situations.

5.3.2.1 Software

As the simulator broadcasts data through a serial link, it is impossible to easily catch
the data in a tablet and still have a realistic scenario. Also an OBD module is expected
to be used with the application, therefore it is most suitable to emulate it. A simple
software has been developed in a Java language for such task. It listens to the serial link
on a certain port, translates these data into inner Java primitive types, since they are in
the C structure format. Then a bluetooth connection is initialized and an OBD module’s
protocol is emulated in order to communicate with the actual tablet application. This
had to be optimized for Torque as well in order to have even conditions.

5.3.2.2 Cameras

After testing the eye tracking cameras, a new issue emerged. Those cameras were
unable to track the intended position of a tablet, as it was too low. Moving the tablet
up did not help, therefore positions of the cameras had to be adjusted. The cameras
were moved, so that they can track the eye when looking at the tablet. However, they
were no longer able to track eyes when following the road. The test results had to be
limited to looking at the tablet or not looking at the tablet.

5.3.2.3 Scenarios

As shown in table 5.1, the testing schedule has been made containing multiple support-
ive tasks as well as two testing scenarios. While the rest of schedule is shared across
platforms, the A/B and LCT testing scenarios are unique for each platform, therefore
more time is required.

46

. 5.3 Testing with users

Start End Duration [min] Content
00:00:00 00:05:00 5 Introduction
00:05:00 00:10:00 5 Pre-test questionnaire
00:10:00 00:25:00 15 Instructions and EyeTracker setup
00:25:00 00:40:00 15 Warm-up driving
00:40:00 00:55:00 15 A/B testing
00:55:00 01:05:00 10 LCT testing
01:05:00 01:10:00 5 Post-test questionnaire
01:10:00 01:15:00 5 Debriefing

Table 5.1. Single user testing schedule

The A/B testing scenario is simple. At first the user drives the route without any
application, so that he gets to know it. Then he drives the same route with application
A (Torque), while being frequently asked to read out-loud the speed and RPM. The
speed is to be read from the first second with interval of 20 seconds, the RPM is to be
read from the tenth second with interval of 20 seconds. The RPM and speed displays
are located on different screens, so that the user has to scroll from one to another. The
same scenario goes for the application B (CarDashboard). A and B applications switch
places for every tester (B first, A second or the other way around). The metrics then
are the glance times for both applications.

The Lane Change Test (LCT) scenario is similar, however only the CarDashboard
application is being tested. The driver is supposed to drive on a highway until a speed
limit sign appears telling him to drive at 60 km/h. After a while (approximately 3
minutes) an object appears from nowhere 35 meters in front of the driver in his lane.
He is then supposed to turn to the left lane and avoid the object. During the whole
journey the user is asked for RPM to be read from the tablet application, so that
he has to control the application while driving. The metrics are avoiding the object
and reacting as fast as possible while using the application. It measures how much
the application distracts the driver and how much does it influence the reaction time.

5.3.2.4 World models

As there are multiple world models available, it is necessary to choose a proper ones
for the given scenarios. Therefore several world models were tested and the best ones
were chosen. For the AB testing, a countryside with villages on the route was chosen.
It is the most realistic model available, containing even traffic and so on. For the LCT
testing a highway world model without traffic is the most suitable. However, it had
to be edited, so that an object could appear at a given location when driver crosses
a certain radius. This object would appear seemingly randomly, but there were two
fixed locations in an environment, where every part of the road looks the same, which
does not give the driver anything to memorize. This ensures that the driver is not
prepared when the object appears.

5.3.2.5 Questionnaires

A Screener questionnaire was created in order to select participants. This questionnaire
ensured that only relatively active drivers would participate. Also only smart-phone
users were considered, as other drivers are not likely to use such a device (smart-phone,
tablet) while driving. It is based on three questions:.Are you a smart-phone user?.Are you a driver?

47

5. Testing .
.How many times per week do you drive?

A pre-test questionnaire was created in order to get some information about the par-
ticipant. The information provided would be anonymous and would only serve for
statistics. It consists of six questions:.How old are you?.What is your sex?.How many kilometers you drive by a car per year?.Which operating system is your smart-phone running?.Have you ever used smart-phone while driving?.How often are you using your smart-phone while driving?

This questionnaire also focuses on the market demand – trying to find out, if
the drivers tend to use their devices while driving. Again, it is assumed that by
answering the smart-phone questions, answers to similar tablet questions would be
strongly related. Usually when a person has a smart-phone with a certain operating
system and also has a tablet, the operating system on the tablet is the same. This
simplifies the questionnaire and does not overload the participant, as the participation
was voluntary and without payment.

A post-test questionnaire serves to find out how satisfied are the participants with
the application and the testing process itself. It consists of following the five questions,
some of which are to be rated from 1 to 5, where 1 is the best:.What is your impression of using the device while driving? (1-5).Were the goals clear for you? (Yes/No).How acceptable was the way of solutions for given tasks? (1-5).Was the amount of displayed information appropriate? (1-5).Would you use the application in everyday driving? (Yes/No)

5.3.3 Process
After selecting (based on the screener questionnaire) five participants [9] and scheduling
the testing times, they were invited to come to the Faculty of Transportation Sciences in
Albertov, where the simulator was located. There they filled the pre-test questionnaire
and begin the actual testing based on the schedule mentioned in section 5.3.2.

After eye-tracking setup was done and once the participant felt comfortable with
the simulator (after driving for a while in the warm-up phase), the scenarios took
their place. The eye-tracking and simulator logging was turned on as the participant
accomplished all the given tasks.

A post-questionnaire was filled and the testing was over. This was done for all five
participants. Approximately 3 gigabytes of plain text data were collected from both
the eye-tracking and the simulator logging.

5.3.4 Questionnaire evaluation

5.3.4.1 Pre-test questionnaire
Both men and women participated in the testing, in age range from 22 to 45 years
with the mean of 28 and standard deviation of 9.62. The kilometers per year driven
by the participants were in range from 4000 to 30000 with the mean of 14800 and
the standard deviation of 10849. As for the smart-phone operating systems, all the most
commonly used were present. With Windows Phone and iOS both appearing once,

48

. 5.3 Testing with users

the Android OS was present with 3 participants. All of the participants confessed to
having used the smart-phone while driving at least once, with 3 of them confessing to
use it often. The other 2 confessed to using the smart-phone only occasionally.

5.3.4.2 Post-test questionnaire

While the goals appeared to be clear for all the participants, not all were entirely happy
with the application. The overall satisfaction with the application was in range from
1 to 3 out of 5 with the mean of 1.8 and the standard deviation of 0.8366 and the ac-
ceptability of the ways of solutions for given tasks was also in range from 1 to 3, also
with the mean of 1.8, however with the standard deviation of 0.7582. The participants
expressed satisfaction with the amount of information displayed, as the grades were in
range from 1 to 2 with the mean of 1.2 and the standard deviation of 0.4472. At last,
4 out of 5 participants would use the application in everyday driving.

5.3.5 A/B testing evaluation
The A/B testing is a testing of the Torque versus the CarDashboard in even conditions.
The participant drives while frequently being asked to read information of the screen
(as described in section about scenarios 5.3.2). The eye-tracking system tracks the eye
movement and logs every 16.6 milliseconds if the driver is looking at the tablet or not
at the given moment. This ensures certain precision and reliability of results.

Logs have been examined and several outcomes measured. As first the comparison
of glance frequency will be shown. Then some statistical data are measured, such as
confidence intervals and such. An overall comparison is created. Then duration of
glance time is examined and compared for both applications. A maximal glance time
and an average glance time are compared as well as a mean and a standard deviation.

5.3.5.1 Glance frequency

Glance distribution in log files for Torque is visible in figure 5.4. The X axis contains
the individual log entries while the Y axis adds 1 per each user looking at the application
at the given moment. The log entries are limited from 5000 to 10000 and added together,
as shown on the R script below (the initialization script is shown in F.8).

addedData <- c()
for(i in 5000:10000){

counter = 0
for(j in 1:5){

counter = counter + data[[j]]$Tablet[[i]]
}
addedData <- c(addedData, counter)

}
barplot(addedData)
axis(1)

49

5. Testing .

Figure 5.4. Glances for Torque

Figure 5.5. Glances for CarDashboard

These are just illustrative plots to see the portion of time looking at the applica-
tion (the black area of the plot) and not looking at the application (the white area
of the plot). The glance distribution in log files for CarDashboard is visible below
the Torque image for better comparison (5.5).

While the individual percentage ratio of time spent looking at the Torque is in range
from 13 to 18 percent with the mean of 15.55 and the standard deviation of 2.19,
the same for CarDashboard is only in range from 6 to 8 percent with the mean of 7.45
and the standard deviation of 1.32. The average percentage ratio of time spent looking
at the Torque is then 15.55 %, while for CarDashboard it is only 7.40 %. The R script
for the average time ratio is shown below, the R scripts for individual (per participant)
data are shown in F.10.

glanceLength = 0
glanceSum = 0
for(j in 1:5){

glanceLength = glanceLength + length(data[[j]]$Tablet)
glanceSum = glanceSum + sum(data[[j]]$Tablet)

}
print(100 * glanceSum / glanceLength)

5.3.5.2 Glance time
As another important metric, the maximal glance time (the longest continuous time
interval spent looking at the application) measured for Torque was in range from 817
to 1616 milliseconds with the mean of 1263.3 and a standard deviation of 296.11. The
same was measured for CarDashboard and the results for the maximal glance time are
in range from 450 to 1217 milliseconds with the mean of 716.7 and a standard deviation
of 298.38. This means that the average maximal glance time for CarDashboard is nearly
half the average maximal glance time for Torque.

As mentioned by Daniel McGehee [18], drivers tend to try obtaining the required
information for 1.5 to 2 seconds, then they give it up for the moment and try again

50

. 5.3 Testing with users

later. The 1.5-2 seconds glance time is also considered to be the safety limit for a single
task requiring a visual focus. With the CarDashboard exhibiting maximal glance times
lower than 1.2 second, the limit of 1.5 second is not even reached which is a success.

Furthering the glance time analysis, all the log entries were combined into one (as
shown in R script in the addition F.9). Based on Student’s t-test, there is 1 % chance
that the driver will be looking continuously at the Torque application for more than
157.67 milliseconds. For CarDashboard there is 1 % chance of looking at the application
for more than only 109 milliseconds. Both of the results from the t-test performed in
R are shown in the additions (F.11 and F.12), the result for CarDashboard is shown
below for illustration.

t.test(glanceList, alternative="less", conf.level=0.99)

One Sample t-test

data: glanceList
t = 24.935, df = 983, p-value = 1
alternative hypothesis: true mean is less than 0
99 percent confidence interval:

-Inf 108.5484
sample estimates:
mean of x
99.27168

With the average glance time being 143.926 milliseconds for Torque, the CarDash-
board appears to perform much better with it’s average glance time of 99.27 millisec-
onds. The glance times for Torque are shown on figure 5.6, the glance times for Car-
Dashboard are shown below the Torque figure on figure 5.7.

Figure 5.6. Torque glance times

51

5. Testing .

Figure 5.7. CarDashboard glance times

From further analysis it appears, that the distribution of glance times is exponential.
Should this assumption be correct, the probability of looking at the application for
longer time would decrease exponentially. The comparison plot used for determining
the distribution is shown in image 5.8, it is a result of the R script shown below.

xMean = mean(glanceList)
xSd = sd(glanceList)
a = xMean - sqrt(0.25)
b = a˜+ xSd * sqrt(11.75)
hist(glanceList, prob = 1)
xWidth=max(glanceList) - min(glanceList)
xGrid=seq(min(glanceList) - 0.2 * xWidth,

max(glanceList) + 0.2 * xWidth, length = 30)
lines (xGrid,dnorm(xGrid, mean = xMean, sd = xSd),

col = ’red’, lw = 2, lty = 2)
lines (xGrid,dunif(xGrid, min = a, max = b),

col = ’blue’, lw = 2, lty = 2)
lines (xGrid,dexp(xGrid, rate = 1 / xMean),

col = ’green’, lw = 2, lty = 2)

Figure 5.8. Glance times distribution

5.3.6 Lane Change Test evaluation
As described in scenario (5.3.2), every participant drove for approximately 3 minutes in
the speed of 60 kilometers per hour, when the object appeared from nowhere 35 meters

52

. 5.3 Testing with users

in front of the car. The object was a yellow cube with 2.2 meters long side and a red
arrow pointing to the left lane. This suggested the driver to go around the object by
changing the lane to the left one.

5.3.6.1 Object avoidance

The most important metric in the Lane Change Test is avoiding the object while working
with the application. Every participant managed to avoid the object, from which we
can assume the success rate around 100 % (the success rate of the testing is 100 %,
however it can be safely stated that nothing is perfect and real 100 % in every situation
possible is not achievable).

5.3.6.2 Reaction time

Figure 5.9. Path angles of the first participant (0.1 meters point distance)

The second metric is the reaction time. A reaction is determined from the path of
the vehicle. The beginning of a turning of a car is considered as the start of the actual
reaction. The turning is determined from significantly increasing the angle between
subsequent vectors in the path. This is done by creating pairs of subsequent vectors
from trinities of subsequent points. Experimentally, it was discovered (for the measured
data see example in figure 5.9 based on the script F.13) that an angle of 0.2 degrees
is significant enough to determine the turn. The exact results are visible in table 5.2,
the visual comparison is visible in the related figure 5.10.

Color Turn coordination X Turn coordination Y
black -5265.919 2294.193
red -5267.260 2293.928
blue -5266.978 2293.958
green -5262.808 2293.958
yellow -5263.845 2293.725

Table 5.2. Results of path angle comparison

53

5. Testing .

Figure 5.10. Turn paths

Given the results, a reaction time can be measured. As described by Marc Green [19],
reaction time consists of three parts, which are highly situation-dependable and unexact.
These parts are as follows:.Mental processing time – the amount of time it takes for brain to perceive a signal

and to decide upon a response,.movement time – the amount of time it takes to perform a response (using muscles),.device response time – the amount of time it takes for a vehicle to react to an input.

For the purpose of evaluating, the reaction time will be assumed to be a single
value without dividing it into three parts. A note has to be made that the simulator
reaction delay is much lower than a real vehicle delay, therefore a device response time
is minimized. When driving at 60 kilometers per hour, it is approximately the speed of
16,667 meters per second. The times of reaction were measured based on the speed and
the traveled distance from the moment of an object appearance. The measured times
and the distances (from the object) of turns are shown in table 5.3, an illustration is
shown in figure 5.11.

Participant Turn distance [m] Turn time [ms]
P1 8.29 497.4
P2 6.97 418.4
P3 7.25 435.1
P4 11.41 684.6
P5 10.39 623.6

Table 5.3. Times and distances of turn from the object

Figure 5.11. Car path

According to the statistical data gathered so far on a human benchmark page1), where
participants push the button when it turns green (knowing it will do so) five times over,
the average human reaction time for highly expected signal is 215 milliseconds. While
1) available at http://www.humanbenchmark.com/tests/reactiontime

54

http://www.humanbenchmark.com/tests/reactiontime

. 5.4 Summary

the participants in the change lane test did expect something to happen and that they
will have to go around something, they drove for three minutes focusing on keeping
the speed as well as controlling the tested application in a homogeneous environment of
highway in the forest, which heavily lowers their alertness. However, the results are still
under 0.7 second with the mean of 531 milliseconds. As described in a master’s thesis
by Pamela M. D’Addario [20], a similar test was performed focusing on alerted obstacle
crash avoidance. Alerted means that the participants knew what is the test about.
The measured mean time was 0.78 seconds. Another similar test was performed also
with average results around 0.7 seconds. This means that the application controlling in
the change lane test did not influence the participant’s awareness. The results are even
slightly better than the ones from the tests mentioned above, but it can be caused by
the difference of measured signals – the accelerator pedal vs. steering wheel movement,
as the steering wheel movement is usually performed faster. Also, the simulator has
much lower reaction delay than a real vehicle.

5.4 Summary
Thanks to automated testing, the amount of bugs that got into the release version was
limited. The unit tests prevented many bugs from flowing through. However, certain
bugs and imperfections were present in the tests as well, allowing dysfunctional code
go past them. The test-driven development just adds another layer to the application
development protection layer, but it is not perfect.

After the development of the graphical user interface was done, the heuristic test-
ing came into place. Many shortcomings have been found, however, not all were fixed
because of the thesis deadline. They will surely be fixed as soon as possible, as the appli-
cation will be released into the real market and it has to be nearly perfect by then. The
heuristic testing however gives a great insight into certain areas of the user interface.

Then even with a few difficulties, the application was tested in the most suitable
environment available – a real-world car simulator. Thanks to the eye-tracking and
the simulator logs huge amount of data had been gathered. The evaluation of these
data was done using the R software.

The A/B testing against the potential competitor – Torque was performed. The tests
have shown that the CarDashboard performs better in the real life scenarios based on
obtaining information from a car.

The Lane Change Test was done in order to find out the influence of reaction time
when using the application. None or a minor influence (in terms of units of milliseconds)
has been found, from which one can assume that the application usage is as safe as
planned.

Overall the testing was successful and it helped developing a good and safe application
for in-car environment. The testing participants were usually happy with the way
the application is done and most of them claimed that they would use the application
daily.

55

Chapter 6
Conclusion

In this chapter, first the assignment completion will be reviewed (fulfillment will be
described for every single point of the assignment). Information about the project life
cycle, it’s present and future will follow. Finally the thesis will be reviewed followed by
a personal opinion and experience.

6.1 Assignment completion

6.1.1 Completing the assignment tasks

6.1.1.1 Review existing Android applications for in-car use
The reviewed applications are described in section 2.1. There are the following appli-
cations: Torque, CarHome Ultra, Car Dashdroid, Ultimate Car Dock. Also Android
Auto was briefly described, as it is the current direction of Google in the automotive
area.

6.1.1.2 Review and analyze User Interface development methods for in-car
infotainment applications

A GUI is analyzed in section 2.4. This analysis contains requirements for GUI (2.4.1)
as well as differences for the in-car usage (2.4.2). It also describes the development
process (method) of a user interface in section 2.4.3.

6.1.1.3 Analyze the in-car OBD API and exported data
The OBD is analyzed in section 2.9. The API is then described in section 2.9.2 and
the data are described in 2.9.3. The OBD is also mentioned in the realization chapter
in section 4.3.5.

6.1.1.4 Design an application system architecture for accessing the OBD data
and resources

The application architecture is described in section 3.1, where the limitations of the plat-
form architecture (3.1.1), the extensibility (3.1.2), the modularity (3.1.3) and the adapt-
ability (3.1.4) are described.

6.1.1.5 Design a tablet User Interface for in-car use
The process of designing the tablet User Interface for in-car use is described in the design
section 3.2. It presents four phases of GUI creation process and the emergence of
the final GUI design.

6.1.1.6 Design and implement in-car application offering the OBD data for
Android tablet platform

The application development phase is described in chapter 4 in sections 4.2 and 4.3.
The OBD access itself is described in section 4.3.5 while the data are provided using
modules described in section 4.3.1.

56

. 6.2 Project life cycle

6.1.1.7 Perform UI and application testing and evaluate results
The testing is described in chapter 5. Both application (5.1) and UI testing (5.2 and
5.3) are present. The testing with users was performed on a real-world car simulator
and it is thoroughly described in section 5.3.

6.2 Project life cycle

6.2.1 Present
Currently the application is being prepared for release. As mentioned in the chapter
about testing (5), some adjustments have to be made in order to fix all the issues. After
this is done, the application will be releases to the Google Play Store1).

6.2.2 Future
In the future, the application will be enhanced with additional functionality, statistics
and so on. It is planned to implement a logging mechanism which will log interesting
data on server. Those data can later be evaluated and presented to the user (for example
his driving style can be evaluated, it can also serve as a path tracker and so on).

Also, the application can serve as a device for Internet of Things as a controller
and/or a viewer. It can display simple information (such as home temperature) or even
turn on lights, open the garage, play music, etc. Some of the functionality is already
being tested, the application contains a few IoT modules (temperature display and light
switch).

6.3 Summary
The goal of this thesis has been achieved, however a lot of work is still left to be done.
The CarDashboard application offers a simple graphical user interface and easy extend-
ability, making it truly versatile. The car does not have to be the only environment the
application can be used in. The next step can be smart homes or even factories, where
precision and simplicity are necessary.

The thorough testing has shown overall success of development. The GUI appears to
follow the intended path of safety while offering variable functionality. The tests have
also shown certain level of satisfaction of the application users, which after all is one of
the most important goals.

I am really glad I had a chance to work with a wide area of technologies during this
project. I had a chance to perform a proper testing with access to a car simulator,
which is far better than what I could’ve imagined at the beginning. I used all kinds
of statistical methods when evaluating the results and it was very interesting to see it
from different points of view.

I’ve learned a lot more about developing for Android. However imperfect it was, it
is a great experience to have. Also trying the GUI development process in practice is
really interesting. During that I’ve learned some wonderful techniques from start to
end.

And at last but not least, I’ve improved my research abilities, as I’ve reviewed several
research papers and soon I might attempt to create one or two (in cooperation with
Lukáš Hrubý) regarding this topic. Overall, this has been a great experience.
1) https://play.google.com/store?hl=en

57

https://play.google.com/store?hl=en

References
[1] GORMAN, Ryan. One in four car accidents caused by cell phone use while driv-

ing.. but only five per cent blamed on texting. Http://www.dailymail.co.uk [on-
line]. Associated Newspapers Ltd, 2014, 2014-03-27 [cit. 2016-01-03]. Available
from: http://www.dailymail.co.uk/news/article-2591148/One-four-car-accidents-
caused-cell-phone-use-driving-five-cent-blamed-texting.html

[2] Designing for Android Auto [online]. Google Inc. [cit. 2016-01-03]. Available from:
https://www.google.com/design/spec-auto/designing-for-android-auto/designing-
for-cars.html

[3] LUNDEN, Ingrid. Gartner: 195M Tablets Sold In 2013, Android Grabs Top Spot
From iPad With 62% Share. Http://techcrunch.com [online]. AOL Inc., 2014,
2014-03-03 [cit. 2016-01-03]. Available from: http://techcrunch.com/2014/03/03/gartner-
195m-tablets-sold-in-2013-android-grabs-top-spot-from-ipad-with-62-share/

[4] Android Developers [online]. Google Inc. [cit. 2016-01-03]. Available from:
http://developer.android.com/index.html

[5] Material design [online]. Google Inc., 2015 [cit. 2016-01-09]. Available from:
https://www.google.com/design/spec/material-design/

[6] ŽIKOVSKÝ, Pavel. Návrh uživatelských rozhraní: Úvod [online]. 2015, 10-
16 [cit. 2016-01-03]. Available from: https://edux.fit.cvut.cz/courses/MI-
NUR/ media/lectures/x01-uvod.pdf

[7] HEATON, Andrew. Designing for In-Dash Automotive. A UX Primer. REVIN-
ITY : ANDREW HEATON [online]. 2013-07-02 [cit. 2016-01-05]. Available from:
http://revinity.com/?p=128

[8] ŽIKOVSKÝ, Pavel. Návrh uživatelských rozhraní: Návrh UI, prototypy [online].
2015, 1-71 [cit. 2016-01-05]. Available from: https://edux.fit.cvut.cz/courses/MI-
NUR/ media/lectures/x02-navh a prototyping.pdf

[9] NIELSEN, Jakob. How Many Test Users in a Usability Study? Nielsen Norman
Group [online]. 2012-06-04 [cit. 2016-01-07]. Available from: https://www.nngroup.com/articles/how-
many-test-users/

[10] WHITE, Oliver. Java Tools and Technologies Landscape for 2014. Zero-
Turnaround [online]. ZeroTurnaround, 2014-05-21 [cit. 2016-01-07]. Avail-
able from: http://zeroturnaround.com/rebellabs/java-tools-and-technologies-
landscape-for-2014/6/

[11] DUCKETT, Chris. Google releases Android Studio, kills off Eclipse ADT plugin.
ZDNet [online]. CBS Interactive, 2014-12-09 [cit. 2016-01-07]. Available from:
http://www.zdnet.com/article/google-releases-android-studio-kills-off-eclipse-adt-
plugin/

[12] FOWLER, Martin. Continuous Integration. Martin Fowler [online]. 2006-05-01
[cit. 2016-01-08]. Available from: http://www.martinfowler.com/articles/continuousIntegration.html

58

. .
[13] Global OBD Vehicle Communication Software Manual [online]. Snap-on Inc.,

2013-08-01 [cit. 2016-01-08]. Available from: https://www1.snapon.com/Files/Diagnostics/

UserManuals/GlobalOBDVehicleCommunicationSoftwareManual EAZ0025B43B.pdf
[14] PIRES, Paulo. OBD-II Java API. 2015-12-18 [cit. 2016-01-07] Available from:

https://github.com/pires/obd-java-api.
[15] MCCONNELL, Steve. Code complete. 2nd ed. Redmond, Wash.: Microsoft Press,

2004, xxxvii, 914 p. ISBN 079-0145196705.
[16] ŽIKOVSKÝ, Pavel. Návrh uživatelských rozhraní: Semestrálka, Testing without

users [online]. 2015, 31-68 [cit. 2016-01-07]. Available from: https://edux.fit.cvut.cz/courses/MI-
NUR/ media/lectures/x03-semestralka testing without users.pdf

[17] HRUBÝ, Lukáš. Car infotainment application on a smartphone. Prague, 2016.
Master’s Thesis. Faculty of Electrical Engineering, CTU in Prague.

[18] MCGEHEE, Daniel V. Visual and cognitive distraction metrics in the age of the
smart phone: A basic review [online]. Association for the Advancement of Auto-
motive Medicine, 2014, 2014-03-01 [cit. 2016-01-08].

[19] GREEN, Marc. Driver Reaction Time [online]. Visual Expert, 2013 [cit. 2016-01-
08]. Available from: http://www.visualexpert.com/Resources/reactiontime.html

[20] D’ADDARIO, Pamela Maria. Perception - Response Time to Emergency Roadway
Hazards and the Effect of Cognitive Distraction. Toronto, 2014. Master’s Thesis.
University of Toronto.

59

Appendix A
CD content

| readme.txt............................description of the CD content
+---apk.....................folder containing the application .apk file
+---src..sources folder
| +---CarDashboard........................implementation source codes
| \---MP_Blaha_Michael_2016..........................tex source codes
\---text...thesis text folder

MP_Blaha_Michael_2016.pdf..................thesis in PDF format

61

Appendix B
User’s guide

B.1 Installation guide
B.1.1 Prerequisites.application .apk installation file,.Android tablet device,.OBD-II Blue-tooth adapter (optional).

B.1.2 Installation process

1. Copy the .apk file inside the Android device,
2. execute the .apk file from the Android device file system,
3. complete the installation process,
4. insert OBD-II Blue-tooth adapter into the car (optional),
5. pair device with the adapter via Blue-tooth (optional),
6. launch the application (optional),
7. go to settings (optional),
8. connect the application to the adapter (optional).

B.2 User guide

Figure B.1. Application GUI

62

. B.2 User guide

As visible in figure B.1, there are several rectangular modules visible. Interaction
with a module is done using a single touch. For modules displaying some value, the
touch causes the application to say the value out loud. For other modules it performs
an action depending on the module type:.Folder module invokes a sub-folder (displays other modules),. shortcut module invokes a different application or an intent,.add module invokes a module selection screen for addition,.back module goes back to the parent from sub-folder,.other modules, such as light button module, can invoke certain action (based on their

purpose).

Navigation in application is done using a swipe to the left or right. This changes the
screen to the right or to the left screen. Navigation to sub-folders is done via touching
them, as mentioned earlier.

Figure B.2. Application GUI with Quick menu (2nd row, 3rd column)

There is also a feature called “Quick menu” for almost every module (with exception
of back modules and add modules). The Quick menu is invoked by a long touch.
As shown in figure B.2, the touched module divides itself into four separate buttons
containing basic features - cancel, delete and edit.

Adding a module is done via the add module (module with a plus icon). This
invokes a list of available modules (divided into few sections). Some modules can
require additional settings before being added. Such module is an intent module or an
application shortcut module.

63

Appendix C
Glossary

API . Application Program Interface
CI . Continuous Integration
CTU . Czech Technical University
DAO . Data Access Object
GUI . Graphical User Interface
HUD . Head-Up Display
IDE . Integrated Development Environment
IoT . Internet of Things
JSON . JavaScript Object Notation
LCT . Lane Change Test
MVC . Model-View-Controller
OBD . On-Board Diagnostics
RPM . Revolutions Per Minute
SAM . Single Abstract Method
SMS . Short Message Service
TDD . Test Driven Development
TTS . Text To Speech
UI . User Interface
VCS . Version Control System
XML . eXtended Markup Language

64

Appendix D
Images

Figure D.3. Music player GUI draft

Figure D.4. Music playlist GUI draft

65

D Images .

Figure D.5. Implementation of the draft image 3.1

Figure D.6. The grid with a music player panel and measurements

Figure D.7. Glance times distribution for Torque

66

Appendix E
Tables

Torque CarDashboard
Participant Glance ratio Max glance time Glance ratio Max glance time

P1 18.63329 % 1300 ms 8.291183 % 633 ms
P2 15.71007 % 1617 ms 5.478639 % 450 ms
P3 13.1708 % 817 ms 7.768305 % 550 ms
P4 13.76879 % 1283 ms 8.866204 % 733 ms
P5 16.47285 % 1300 ms 6.895412 % 1216 ms

Mean 15.55116 % 1263 ms 7.459949 % 717 ms
S. deviation 2.191875 % 286.1138 ms 1.32362 % 298.3752 ms

Table E.1. A/B testing

67

Appendix F
Scripts

data <- list()
data[[1]] <- fread("../usability tests/p1_t_ab_torque.log",

select = c("ClosestWorldIntersection.objectName"))
data[[2]] <- fread("../usability tests/p2_t_ab_torque.log",

select = c("ClosestWorldIntersection.objectName"))
data[[3]] <- fread("../usability tests/p3_t_ab_torque.log",

select = c("ClosestWorldIntersection.objectName"))
data[[4]] <- fread("../usability tests/p4_t_ab_torque.log",

select = c("ClosestWorldIntersection.objectName"))
data[[5]] <- fread("../usability tests/p5_t_ab_torque.log",

select = c("ClosestWorldIntersection.objectName"))
for(i in 1:5){

data[[i]][data[[i]]!="tablet"] <- 0
data[[i]][data[[i]]=="tablet"] <- 1
names(data[[i]])[names(data[[i]])=="ClosestWorldIntersection.objectName"]

<- "Tablet"
data[[i]]$Tablet <- as.numeric(data[[i]]$Tablet)

}

Figure F.8. Initial script for loading and preparing the data

glanceList <- c()
counter = 0
for(j in 1:5){

for(i in 1:length(data[[j]]$Tablet)){
val = data[[j]]$Tablet[[i]]
if(val == 0){

if(counter > 0){
multiplied by 1000/60 because of the˜log entry frequency
-> 1000/60 milliseconds
glanceList <- c(glanceList, counter * 1000 / 60)
counter = 0

}
} else {

counter = counter + 1
}

}
}
if(counter > 0){

glanceList <- c(glanceList, counter * 1000 / 60)
}

Figure F.9. Creating list of glance times

eval <- list(c(),c())

68

. .
for(j in 1:5){

ratio = sum(data[[j]]$Tablet) / length(data[[j]]$Tablet)
max = 0
counter = 0
for(i in 1:length(data[[j]]$Tablet)){

val = data[[j]]$Tablet[[i]]
if(val == 0){

if(max < counter){
max = counter

}
counter = 0

} else {
counter = counter + 1

}
}
eval[[1]] <- c(ratio * 100, eval[[1]])
eval[[2]] <- c(max * 1000 / 60, eval[[2]])
print(ratio * 100)
print(max * 1000 / 60)

}
mean(eval[[1]])
sd(eval[[1]])
mean(eval[[2]])
sd(eval[[2]])

Figure F.10. Evaluating glance ratio and max glance time for all the participants

> t.test(glanceList, alternative="less", conf.level=0.99)

One Sample t-test

data: glanceList
t = 24.39, df = 1360, p-value = 1
alternative hypothesis: true mean is less than 0
99 percent confidence interval:

-Inf 157.6701
sample estimates:
mean of x

143.926

> t.test(glanceList, conf.level=0.99)

One Sample t-test

data: glanceList
t = 24.39, df = 1360, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
128.7046 159.1475

sample estimates:
mean of x

143.926

Figure F.11. Confidence intervals for Torque glance times

69

F Scripts .
> t.test(glanceList, conf.level = 0.99, alternative="less")

One Sample t-test

data: glanceList
t = 24.935, df = 983, p-value = 1
alternative hypothesis: true mean is less than 0
99 percent confidence interval:

-Inf 108.5484
sample estimates:
mean of x
99.27168

> t.test(glanceList, conf.level = 0.99)

One Sample t-test

data: glanceList
t = 24.935, df = 983, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:

88.99696 109.54640
sample estimates:
mean of x
99.27168

Figure F.12. Confidence intervals for CarDashboard glance times

startX <- c()
startY <- c()

angles <- list(c(),c(),c(),c(),c())
xpoints <- list(c(),c(),c(),c(),c())
ypoints <- list(c(),c(),c(),c(),c())

for(column in 1:5){
printedA = 0
printedB = 0
xlimA = 0
xlimB = 0
for(i in 1:length(data[[column]]$V3)){

if(printedA == 0){
if(data[[column]]$V3[[i]] >= (-5239.3-35)){

print(i)
xlimA = i
printedA = 1

}
} else {

if(printedB == 0){
if(data[[column]]$V3[[i]] >= (-5239.3)){

print(i)
xlimB = i
printedB = 1

}

70

. .
} else {

break
}

}
}

space = 0.1
xCoord = 0
x1 = 0
x2 = 0
x3 = 0
y1 = 0
y2 = 0
y3 = 0
for(i in xlimA:xlimB){

if(xCoord == 0){
x1 = data[[column]]$V3[[i]]
y1 = data[[column]]$V5[[i]]
xCoord = x1
xpoints[[column]] <- c(xpoints[[column]], x1)
ypoints[[column]] <- c(ypoints[[column]], y1)

} else {
xCoord2 = data[[column]]$V3[[i]]
if(abs(xCoord - xCoord2) < space){
} else {

if(x2 != 0){
x3 = data[[column]]$V3[[i]]
y3 = data[[column]]$V5[[i]]
xCoord = x3
xpoints[[column]] <- c(xpoints[[column]], x3)
ypoints[[column]] <- c(ypoints[[column]], y3)
ux = x2 - x1
uy = y2 - y1
vx = x3 - x2
vy = y3 - y2
top = ux * vx + uy * vy
bot = sqrt(ux * ux + uy * uy) * sqrt(vx * vx + vy * vy)
angles[[column]] <- c(angles[[column]], acos(top/bot)*180/pi)
x1 = x2
y1 = y2
x2 = x3
y2 = y3

} else {
x2 = data[[column]]$V3[[i]]
y2 = data[[column]]$V5[[i]]
xCoord = x2
xpoints[[column]] <- c(xpoints[[column]], x2)
ypoints[[column]] <- c(ypoints[[column]], y2)

}
}

}
}

71

F Scripts .

angles[[column]][is.nan(angles[[column]])] <- 0

for(i in 1:length(angles[[column]])){
if(angles[[column]][[i]] > 0.2){

print(xpoints[[column]][[i+1]])
print(ypoints[[column]][[i+1]])
print(i)
startX <- c(startX, xpoints[[column]][[i+1]])
startY <- c(startY, ypoints[[column]][[i+1]])
break

}
}

}
plot(angles[[1]])

Figure F.13. Script for calculating the path angles

72

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Motivation
	Project
	Assignment analysis
	Assignment tasks

	Analysis
	Existing applications
	Torque
	CarHome Ultra
	Car Dashdroid
	Ultimate Car Dock
	Conclusion
	Android Auto

	Platforms
	Android
	iOS
	Windows
	Conclusion

	Android platform
	Performance
	Architecture
	Material design

	GUI
	Basic principles
	UI in a car environment
	Development process

	Business requirements
	Use-cases
	Task list
	Development and support tools
	Development environment
	Version control system
	Test driven development
	Continuous integration
	Test evaluation

	On-Board Diagnostics
	Connection
	API
	Data

	Design
	Application architecture
	Platform limitations
	Extensibility
	Modularity
	Adaptability
	Architecture

	GUI
	Phase one
	Phase two
	Phase three
	The final design

	Implementation
	Preparation
	Environment
	Versioning

	Tablet specific
	ModulePagerActivity
	ModulePageFragment
	ModuleFragmentAdapter
	GridLayout

	Core
	Modules
	Application
	Data
	Fragments
	OBD
	Utility classes
	Views

	GUI
	Common elements
	Multiple designs

	Testing
	Code
	Unit testing

	Heuristic testing
	Evaluation
	Conclusion

	Testing with users
	Simulator
	Preparations
	Process
	Questionnaire evaluation
	A/B testing evaluation
	Lane Change Test evaluation

	Summary

	Conclusion
	Assignment completion
	Completing the assignment tasks

	Project life cycle
	Present
	Future

	Summary

	References
	CD content
	User's guide
	Installation guide
	Prerequisites
	Installation process

	User guide

	Glossary
	Images
	Tables
	Scripts

