
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Cross-matching Engine for Incremental

Photometric Sky Survey

Bc. Jiř́ı Nádvorńık

Supervisor: RNDr. Petr Škoda CSc.

4th May 2015

Acknowledgements

Most of all I would like to thank my supervisor Petr Škoda for patience and
willingness to help me with astronomical aspects of this thesis. I would also
like to thank Filip Hroch for his support in Munipack usage as well as in
theoretical aspects of my thesis. The next person that supported it very
helpfully is Martin Reinecke from the HEALPix support and last but not
least I would like to thank Markus Demleitner from GAVO for his support
far exceeding the scope of GAVO DaCHS package we are using. We also
acknowledge grant GACR 13-08195S.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 4th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Jǐŕı Nádvorńık. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nádvorńık, Jǐŕı. Cross-matching Engine for Incremental Photometric Sky
Survey. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2015.

Abstrakt

Pro źıskáváńı světelných křivek je dnes potřeba předem naplánovat přehĺıdku
oblohy, kde jsou pevně dané souřadnice expozic, které se v pr̊uběhu přehĺıdky
neměńı. Tato práce ukazuje, že to neńı nutné a že lze vytěžit světelné křivky
z astronomických dat, která k tomu v̊ubec nebyla p̊uvodně určena. T́ımto
zp̊usobem můžeme zrecyklovat všechny fotometrické přehĺıdky na světě a
vytvořit k nim světelné křivky pozorovaných objekt̊u.

Tato práce se zabývá zejména zp̊usobem generováńı katalogu objekt̊u,
který je nutný pro výše zmı́něné světelné křivky. V praxi se soustřed́ı na jeden
z největš́ıch problémů v astroinformatice. Jedná o klastrováńı datových ob-
jemů na úrovni Big Data, kde většina tradičńıch technik selhává a my muśıme
hledat nové cesty k dosažeńı ćıle. Zabýváme se širokou škálou možných řešeńı z
pohledu výkonu, škálovatelnosti, distribuovatelnosti, atd. Definujeme kritéria
pro časovou a paměťovou složitost, která jsme vyhodnotili u všech testovaných
řešeńı. Dále si vytvoř́ıme kvalitativńı nároky, které také zohledňujeme v hod-
noceńı výsledk̊u.

Použ́ıváme relačńı databáze jako výchoźı bod implementace a srovnáváme
je s nejnověǰśımi technologiemi potenciálně použitelnými pro řešeńı problému.
To mohou být noSQL Array databáze nebo přesunut́ı výpočetně náročných
fáźı na superpoč́ıtače s použit́ım paralelismu.

Kĺıčová slova astronomie, paralelismus, klastrováńı, big data, databáze

ix

Abstract

For light curve generation, a preplanned photometry survey is needed nowadays,
where all of the exposure coordinates have to be given and don’t change during
the survey. This thesis shows it is not required and we can data-mine these
light curves from astronomical data that was never meant for this purpose.
With this approach, we can recycle all of the photometric surveys in the world
and generate light curves of observed objects for them.

This thesis is addressing mostly the catalog generation process, which is
needed for creating the light curves. In practice, it focuses on one of the most
important problems in astroinformatics. This is clustering data volumes on
Big Data scale where most of the traditional techniques stagger and we have
to search for new paths to achieve our goal. We consider a wide variety of
possible solutions from the view of performance, scalability, distributability,
etc. We define criteria for time and memory complexity which we evaluated
for all of the tested solutions. Furthermore, we create quality standards which
we also take into account when evaluating the results.

We are using relational databases as a starting point of our implementation
and compare them with the newest technologies potentially usable for solving
our problem. These can be noSQL Array databases or transferring the heavy
computations of clustering towers supercomputers by using parallelism.

Keywords astronomy, parallelism, clustering, big data, database

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Data structure . 2

1.3 Our solution . 5

2 Review of possible solutions, prove of concepts 9

2.1 General background . 9

2.2 Database background . 10

2.3 Pure SQL solution . 11

2.4 Array Databases . 16

2.5 Apache Spark . 24

2.6 C++ application . 24

3 Design 27

3.1 MPI vs OpenMP . 27

3.2 Design details . 28

3.3 Functional requirements . 29

3.4 Application model . 30

3.5 Time Complexity . 32

3.6 Scalability . 33

4 Realisation 35

4.1 Implementation . 35

4.2 Integration . 42

5 Results 45

5.1 Time complexity . 45

5.2 Quality . 49

5.3 Result summary . 57

xi

Conclusion 59

Bibliography 61

A Acronyms 65

B Contents of enclosed CD 67

C Source codes 69
C.1 buildChunksFromCoordinates 69

xii

List of Figures

1.1 As-Is state . 2

1.2 To-Be state . 2

1.3 Small Magellanic Cloud . 3

1.4 NGC330 image . 4

1.5 OSPS coverage . 5

1.6 Astrometry accuracy . 6

2.1 Typical star observation . 10

2.2 Cluster of star observations . 10

2.3 DB Model . 11

2.4 Catalog cross-match . 12

2.5 Q3C Pixels . 15

3.1 Light curve generation workflow 28

3.2 C++ application UML class diagram 32

4.1 Elbow method . 39

4.2 Basic memory consumption . 42

4.3 Memory savings applied . 43

4.4 Resulting light curve displayed in SPLAT-VO 43

5.1 Total time based on data size . 46

5.2 Program parts time . 47

5.3 Thread time based on data size . 47

5.4 Thread time based on task size . 48

5.5 Parallel efficiency for clustering time of linear algorithm. 48

5.6 Clustering phase time compared to total running time 49

5.7 Real time of K-means hybrid algorithm 50

5.8 Parallel efficiency fo K-means algorithm 50

5.9 Aladin view of the HEALPix grid. 51

5.10 Clusters in overlapping region. 52

xiii

5.11 Initial centers chosen by random 53
5.12 EM convergence . 53
5.13 K-means variants comparison . 54
5.14 Elbow factor too high. 55
5.15 Cluster join radius too high. 55
5.16 Cluster join radius too low. 56
5.17 Catalog cross-match for incremental strategy 57
5.18 Catalog cross-match for incremental and K-means strategy 57

xiv

Chapter 1

Introduction

In this chapter we will define the topic of this thesis, it’s contents, justification
and purpose. As already said in the abstract, the main part of this thesis is
to take a set of observations1 and cluster them based on Euclidean and other
metrics.

The ultimate goal is to provide light curves2 of astronomical objects to the
end user, with as much quality as possible. For that, we need to generate our
own catalog3 of objects. The main problem with cross-matching4 matching
only an existing catalog is that we won’t be able to create light curves for all
of our observations. If we create our own catalog, however, we can guarantee,
that all of our observations will be part of a light curve. The As-Is state can
be seen on Fig. 1.1 and To-Be on Fig. 1.2.

1.1 Motivation

In this chapter we will justify the motivation for our thesis. We will explain
the usefulness of the work and the benefit it will bring to the end users. The
end users for our system are astronomers, but the nature of our data makes
it very interesting for geospatial science too.

The high level motivation is to create a light curve catalog for OSPS
(Ondřejov Southern Sky Photometry Survey) project [1], with the data origin-
ating form the Danish 1.54-m Telescope [2]. This photometry survey contains
hundreds of thousands of images, but almost all of them are observing the

1By the term observation, we mean a light dot identified on an image of the sky
2Light curve is a graph of an observation’s brightness based on time when the observa-

tions where taken.
3Catalog of astronomical objects is list of celestial objects identified by their coordinates.

These can be planets, stars, galaxies, quasars, etc.
4Cross-matching in astronomy is understood as a process of matching one data set with

another. The criterium is mostly distance between the data points, which means a point
from set A will only be matched to a point from set B if their distance is smaller than the
criterium.

1

1. Introduction

Telescope Munipack PostgreSQL
Light curves of some

objects

External catalog

Figure 1.1: As-Is state

Telescope Munipack PostgreSQL

Catalog creation

Light curves of all
objects

Figure 1.2: To-Be state

same region on the sky. Identifying celestial objects on these images is a com-
plicated process of astrometry5 and photometry6. The output of this process
is a set of observations of all identified objects7 for each image.

Our data used for producing the light curves is not actually meant for that
originally and that’s why we differ from the standard solutions nowadays. This
aspect will be brought in detail in 1.2.

1.2 Data structure

There is a lot of sky surveys which clearly had to solve this problem already.
To answer this question decisively, we need to introduce the structure of our
data.

5Astrometry is a process of measuring exact positions and movements of celestial objects
6Photometry is a process of measuring the flux, or intensity of an astronomical objects

electromagnetic radiation
7An observation of individual object is defined by their sky coordinates, photon flux,

and lots of other parameters

2

1.2. Data structure

Figure 1.3: Small Magellanic Cloud

As most of the fields are located in the area of Small Magellanic cloud8

seen on Fig. 1.3, they are very dense. On one image we have cca 5000 -
25000 identified observations. For comparison, on an average region on the
sky with the same coverage and deepness, there will be between 2000 and 5000
observations. We have cca one hundred thousand images in our dataset, with
a total of four hundred million identified observations. The dataset will still
grow until the end of the project when we expect to have six hundred million
identified observations which we need to assign to celestial objects. A typical
image looks like NGC3309 on Fig. 1.4.

1.2.1 Typical versus our data

In this section we will compare the typical approach to creating a light curve
catalog with the one we had to choose for ourselves. The reason for it is the
different structure of typical and our data.

8Small Magellanic Cloud is a dwarf iregular galaxy, one of the closest neighbors to our
Milky Way

9NGC330 is a open star cluster in Small Magellanic Cloud

3

1. Introduction

Figure 1.4: NGC330 image

1.2.1.1 Typical data

A typical light curve survey will have a before-hand defined grid of image
areas which will be observed repeatedly in regular time intervals. This grid
will not change during the project. This means that two images taken at
different times which cover the same region will overlap almost entirely (the
intersection of their coverages will be almost as big as the whole image).
This means that a differential photometry and astrometry can be used. The
most crucial condition for a differential astrometry to to be successful when
comparing two images is to have enough common coverage, so we can match
their positions. The difference between absolute and differential astrometry is
shown at the beginning of this presentation [3].

1.2.1.2 Our data

Unfortunately, we cannot use differential astrometry for our survey. The im-
ages taken in OSPS have mostly only few objects of interest (a planet, as-
teroid, or a Be star, ...), which means two things. First, 99 % of the data is
not originally meant to be used and second, there is no grid for restricting
the image positions. This is best seen on Fig. 1.2.1.2 - here we can see the

4

1.3. Our solution

chaotic spread of our images which makes differential astrometry and pho-
tometry stagger, because the images won’t have enough referential stars in
common.

Figure 1.5: OSPS coverage

1.3 Our solution

We would like to use this 99% of our data which is just thrown out, but has
no less quality and can easily lead to new discoveries. We believe that our
survey is not a rare case when most of the data is unused. With our approach,
we can actually recycle all of the images in the world even if they were not
originally meant for producing light curves and data-mine much information
from them.

Another reason why we’d like another approach is that we want our survey
to be incremental. That is not always the case for standard surveys, as when
they are closed, it would be very complicated to add later (or sooner) taken
images to the survey. When new images are taken, the light curves are just
updated, not generated anew.

Our astrometry is quite similar to the differential one, but we are not
comparing our images directly. It is done with the help of package Munipack
[4]. Instead of computing the astrometry and photometry for all images at
once, we create our own set of calibration stars selected from an on-line catalog
(currenty UCAC4 [5]) and try to calibrate our image’s coordinates with these.
We do the astrometry separately for each image, so at this point we don’t
mind whether the images actually overlap with each other or not.

This creates a small random error, which will cause all observations of one
immovable object create a group of points with a Gaussian distribution of
coordinates. The accuracy of our astrometry is around 0.2 - 0.3 arcsec, which
is about half the size of our pixels as can be seen on Fig. 1.6. These groups

5

1. Introduction

of points are our clusters, and assigning the cluster identifiers to these points
observed on the sky lets us to query for a light curve of one individual object
on the sky.

Figure 1.6: Astrometry accuracy

The product of the astrometry is just a binary table of observations for
each image. When we take this data from all of the images, we have four hun-
dred million observations which we need to cluster and assign to real physical
objects (cluster them). And how we do that is the topic of this thesis.

1.3.1 Incremental survey and Transients

With our research, we can even create incremental survey. On the first itera-
tion, we cluster all of the observations we have and create the first version of
our catalog. The individual star observations on each image are assigned to
objects in this catalog during the process.

After our survey has expanded, we take the images that were not processed
yet and try to cross-match them to our previously created catalog. For the
ones that did not match, we just run the catalog generation process separ-
ately, update the catalog with new identifiers, and assign the individual star
observations.

This way we can even detect transients, such as supernovas, for which we
didn’t have a catalog identifier before. This is a great advantage against usual
approach, when we just try cross-match against an on-line catalog and throw
away the observations of objects, which are not in the catalog.

6

1.3. Our solution

1.3.2 Publication

The results of this project will be presented on the IVOA Interoperability
Workshop – Spring 2015 meeting [6].

7

Chapter 2

Review of possible solutions,
prove of concepts

As there exist no solutions which are solving exactly our problem, this chapter
will not be a typical analysis. Instead we have to at least partially implement
each possible solution as a prove of concept and then evaluate the result and
decid whether this particular solution is feasible.

At the beginning of this chapter we define the background environment
where we have to apply our solutions. There will be also all of the solutions
which failed to some aspects. These solutions are analyzed carefully so we
don’t throw away an already partially or fully implemented solution.

The background needed will be defined in sections 2.1 and 2.2, all inac-
ceptable solutions in sections Pure SQL 2.3, Array Databases 2.4, Apache
Spark 2.5 and the final accepted solution is at the end of this chapter in
section 2.6.

2.1 General background

There are many possibilities of how to store astronomical data and publish it
to the world. The infrastructure we are using is inherited from my Bachelor’s
thesis [7]. The general data flow can be seen on Fig. 1.2. A more detailed
view can be seen further on Fig. 3.2.

The main thing we will be focusing on in our thesis is how to properly
cluster the astronomical data to produce desired light curves. We can see a
star on Fig. 2.1 with cca 300 observations distributed around the star center.
There is a closer look on Fig. 2.2, where we can see observations of one object
over a period of time. The error in the astrometry here is around 0.3 arcsec,
forming a cluster with a diameter cca 0.5 arcsec, as pointed out with the
gauging line.

9

2. Review of possible solutions, prove of concepts

Figure 2.1: Typical star observation

Figure 2.2: Cluster of star observations

2.2 Database background

The database model of the underlying architecture can be seen on Fig. 2.3.
Each image is represented by 1 row in exposure table. Observations identified
on this image will be kept in observation table, tracked by obsname id to the
exposure they were taken with. Then we will have to create identifiers for the
actual objects and write them to objcat table. Each observation should be
assigned to a catalog object via id cat foreign key.

The objobs complete view is used for easy access to the complete inform-
ation about an observation. It joins data from exposure, observation and
objcat tables, effectively linking image data (when the observation was taken,
with which filter) with the actual observation (point on the image with all
it’s identified attributes) and the catalog identifier (to which real object this
observation corresponds).

The objobs lightcurves table based on the objobs complete table and is used
with the SSA protocol [8] to publish the light curve. This process is described

10

2.3. Pure SQL solution

in detail in my Bachelor’s thesis [7].

exposure

PK obsname_id

 accref
 dateObs
 HJD
 band
 TEL_ALT
 TEL_AZ
 AIRMASS
 PRESSURE
 TMP
 ORIRA
 ORIDEC
 CRDER2

observation

PK,FK2 obsname_id
PK starNo

FK1 id_cat
 raj2000
 dej2000
 FLX
 PHOTON
 PHOTRATE
 FNU
 FNU
 MAG
 ABMAG
 STMAG
 PHOTONERR
 PHOTRATEERR
 FLXERR
 FNUERR
 FLAMERR
 MAGERR
 ABMAGERR
 STMAGERR
 SKY
 SKYERR

objcat

PK id_cat

 ipix_cat
 raj2000
 dej2000
 weight

objobs_complete

accref
obsname_id
starNo
dateObs
HJD
band
TEL_ALT
TEL_AZ
AIRMASS
PRESSURE
TMP
ORIRA
ORIDEC
raj2000
dej2000
MAG
ABMAG
STMAG
PHOTRATE
PHOTON
FLX
FNU
FLAM
MAGERR
ABMAGERR
STMAGERR
PHOTRATEERR
PHOTONERR
FLXERR
FNUERR
FLAMERR
SKY
SKYERR

objobs_lightcurves

PK ssa_pubDID

 accref
 ssa_dstitle
 ssa_creatorDID
 ssa_cdate
 ssa_pdate
 ssa_bandpass
 ssa_cversion
 ssa_targname
 ssa_targclass
 ssa_redshift
 ssa_targetpos
 ssa_snr
 ssa_location
 ssa_aperture
 ssa_dateObs
 ssa_timeExt
 ssa_specmid
 ssa_specext
 ssa_specstart
 ssa_specend
 ssa_length
 ssa_publisher
 raj2000
 dej2000
 min_date
 max_date

Figure 2.3: DB Model

2.3 Pure SQL solution

For summing it up, we are using PostgreSQL database for storing all the
observation data as it is nicely supported and used in the astronomy area, has
multiple sphere indexing algorithms implemented and can easily handle the
amounts of data we are using. The main reason, however, why we are using
this architecture is the GAVO DaCHS [9] package, which we are using for the
data ingestion and publishing, and this package is built on the PostgreSQL
database.

In this section we will describe all of the solutions which try to process all
of the work inside the PostgreSQL database.

2.3.1 PPMXL Catalog

In the original solution described in my Bachelor’s thesis [7], we did not create
our own identifiers. Instead, we took our observations and tried to cross-match
them with a deep enough on-line catalog. The idea is illustrated on image 2.4.

11

2. Review of possible solutions, prove of concepts

The individual observations on the left (one cluster is the same one as on
Fig. 2.2) are cross-matched to catalog objects on the right.If an observation
has no matching object in the catalog, it has no other way of assigning itself
to a light curve and will be forgotten.

The best results were produced with the help of PPMXL catalog [10]. We
managed to identify cca 70 % of our observations and within the 70 % there
were still errors mostly caused by duplicate entries in the catalog. Throwing
away more than 30% of our data is alone an unacceptable drawback.

Figure 2.4: Catalog cross-match

2.3.2 ”Silver bullet” query

So we need to create our own catalog. The possible ”integration friendly”
solution is to write a simple SQL query that would extract the identifiers we
need. Because we already have the data ingested into a relational DB (Postgr-
eSQL), it would be very convenient if we could create these identifiers inside
the database, without the need of moving big amounts of data to external
applications.

Thus, we created a ”silver bullet” query, which is just taking the data from
observation table, grouping them on some criteria, and writing the catalog
identifiers to objcat table and the assignments of points via cat it field back
to the observation table.

2.3.2.1 One big query

The query is based on the fact, that our clusters have cca 1 arcsec diameter.
So we are grouping the data on a condition, that all of the points in one
group can be connected by distances smaller than 1 arcsec. In practice this
is implemented by a self-join which iterates over all points and for each one
of them creates a group of points which are closer than 1 arcsec. Then if

12

2.3. Pure SQL solution

we iterate over groups of these points (members of my group), we are just
observing this cluster from different points of view. From these we can choose
the one that has the ”best” view - meaning he sees the most points - has the
largest group. This means just that the point is the closest to the center of the
cluster and if we create an average of coordinates of all his neighbors, it will
lie precisely in the center of this cluster. This approach can solve the corner
cases too (e.g. three points in one line or a equilateral triangle).

This clustering algorithm can be implemented in PL/SQL, runs fast and
has a very high precision for most of the patterns the observations can create
on the image.

If we look at the complexity of this algorithm, we see that it is highly
dependent on number of points in one cluster. If we are unlucky and we have
a cluster of 1000 points which have exactly the same coordinates, for each
one of them we get 999 coordinates with a distance zero. We have an O(n2)
complexity where n is the number of points in one cluster. This counts for
both computational and memory complexity.

Aside from the fact that our data has high density (on one image), it has
also high density in the sense that we have a lot of overlapping images. We
have at most cca 1000 points per cluster, at average cca 100. On the example
of the whole dataset which has cca four hundred million points, one most basic
point represented by 16B (right ascension, declination double precision), that
means cca 6GB ∗ 1002 = 600TB of intermediate results. As we would like
our algorithm to work for even bigger data sets, this is a major drawback of
”silver bullet” query algorithm.

2.3.2.2 Parallel smaller queries

Because the complexity problem is fatal only for the memory, parallelizing the
query for smaller chunks of data will actually solve this problem. However,
that creates another problem - how to divide the data into chunks?

The Q3C [11] IPIXes10, which we are using for our observations, can be
used for sorting the data and then just slicing the chunks sequentially. The
spatial locality of these identifiers is quite good, but is not guaranteed (close
points on the sky will have their IDs usually close to each other, but not
always). We also have high probability of slicing the clusters on the edges
of the chunks, and together with not guaranteed locality for the IDs, we will
produce duplicate clusters close to each other. This problem can be reduced,
if we iterate over points from the chunks only and look for their neighbors in
the whole observation table.

If we were to accept these duplicate errors and continue with the testing,
we will encounter the final bottleneck of this solution. The smaller the chunks
are, the less memory we will use (and the more threads we can actually use on

10IPIX is a Q3C identifier for one point on the sky. It is a long integer.

13

2. Review of possible solutions, prove of concepts

one machine). But as we are already pushing PostgreSQL to the limits with
the actual implementation (PL/SQL functions, looping over the table manu-
ally), the planner is very confused and will not produce any reasonable query
plan (which would be loading the actually processed chunk and the whole
observation table index into memory). Instead, it will do a lot of random
disk seeks when searching the index for close neighbors and then using the
whole memory for storing intermediate results. This query realization cannot
be changed easily without changing the PostgreSQL source code. And dis-
tributing a PostgreSQL database over several disk nodes is very complicated
and with already limited query plan quality, would not probably solve the
problem.

2.3.2.3 ”Silver bullet” query summary

The ”silver bullet” query solution is working really well with small data, but
we encounter very big problems with scalability. This solution is limited either
by disk capacity (storing intermediate results) or by the disk speed of random
seeks (when parallelizing the query into smaller parts) and these limitations
cannot be overcome, so we need to search for other solutions.

2.3.3 Iterative query

The limitation of ”Silver bullet” query is not a problem of the SQL, it is just
too high complexity of the actual clustering algorithm used. We can create a
streaming algorithm which can process the data with a linear complexity. We
will call this approach an Iterative query.

The idea is a quite naive sort of K-means algorithm. We iterate over all of
the points in the database and for each one process the following condition.

Do I have a catalog identifier in a given range within my coordinates? If
no, then I am a new cluster and the identifier is me. If yes, I add myself to
that cluster and just update the cluster coordinates by a weighted average of
mine coordinates and the ones already in that cluster.

This approach does not solve the corner cases when we don’t iterate over
the points in the right order. Example pattern here can be a cluster of directly
500 mas diameter. We start with a point completely on the left and create
new cluster. Then it happens we take the second point completely on the
right. The distance to the previously created catalog ID is exactly 1 arcsec
far away, so we have to create a new cluster. Then as we iterate over the rest
of the points, some of them will be assigned to the left cluster, some to the
right. In the end we have 2 clusters close to each other instead of one whole.

These cases are in practice quite rare though, so we can accept them as
error rate of this implementation. There is, however, a bigger drawback here
which comes from using SQL. This language is just not built for looping over
each single row of the data and doing operations on such level. For each point

14

2.3. Pure SQL solution

we have to do a couple of random seeks in the spherical database indexes before
we find all of the points closer than the distance limit. With an average of
couple ms per one cycle (which is really fast for close neighbors lookup in
a relational database), it takes us weeks to process our whole dataset with
very high disk usage the whole time. Under such load, we even discovered
that PostgreSQL is quite unstable, because it was simply not meant for such
usage.

2.3.3.1 Iterative query summary

Even if all other arguments were beneficial, we simply cannot accept instable
solution. Another option is of quite different matter.

2.3.4 IPIX iterating

One quite different approach still operating on the database level is the fol-
lowing. Instead of iterating over the points we can iterate over some measure
defining the clusters itself. If we create a grid of squares with the same res-
olution as the cluster size, we can actually iterate over the grid and just ask
what points are in this column. A sky indexing plugin in called Q3C [11] can
actually do that quite efficiently. We call the strategy IPIX iterating.

On this Fig. 2.5, we can see how the sphere is partitioned to ”squares” by
the Q3C algorithm. It is based on quad tree cube partitioning of the sphere
as can be seen on image 2.5.

Figure 2.5: Q3C Pixels

After assigning points to the squares in the grid, we can join the ones which
have points assigned and are next to each other, as that probably means that
we sliced a cluster which lies on the borders of these squares. This approach
however costs us precision in higher density areas where the cluster distances
are comparable with the cluster sizes as we join more clusters together under
one catalog identifier.

15

2. Review of possible solutions, prove of concepts

The big plus for the IPIX iterating method is it’s speed. For the whole
dataset (cca four hundred million observations) , it runs cca 40 minutes. It’s
complexity is O(n) where n is the number of Q3C squares used for the sphere
partitioning.

The accuracy is about the same as if we used the on-line catalog - around
70% of the object identifiers are identified correctly.

2.3.5 Combination

It would be very nice, if we could take advantage of such a fast algorithm,
which provides high precision for cca 70% of our observations and falls off
only where the star fields take up in density (clusters closer to each other).
We could separate the rest of 30% and process them in some other slower
algorithm. The problem is, that 30% will still take days to process with
the iterative query 2.3.3 link and with the ”silver bullet” query described in
chapter 2.3.2 we wouldn’t help ourselves, as it already solves sparse fields
easily and has problems with the dense ones.

The biggest problem is that telling whether we actually joined the interme-
diate results correctly is actually as hard as the clustering problem itself. We
tried several heuristics to separate the erroneous results, but every time with
worse results than with other non-combination approaches. So combining the
IPIX iteration with other sorts of clustering algorithms is a nice idea, but we
didn’t manage to solve to create a simple fast metric which would select all of
the incorrectly assigned points or incorrectly identified clusters.

2.4 Array Databases

That’s it, we are done with the relational databases. Clearly they are not
meant for such kind of work and the argument of not transferring big amounts
of data seems not that important after all. With freeing ourselves from the
bonds of standard database, we can look for more exotic ones.

The array databases have very nice way of storing data. In general we are
talking about column store (instead of standard row store) of data. The data
is logically stored as sparse matrices, where we can search for close neighbors
very effectively. That suits our data really well, as we have at least two
dimensions (right ascension, declination coordinates) where we would really
benefit from this strength. The array databases are even more effective, if we
have more dimensions of the data (so we can add more parameters for our
clustering). Another strength of array databases is that the sparse matrices
can be easily sliced and partitioned between multiple physical database nodes.

The biggest advantage is that most of the solutions are highly tuned to
keep most of the data in memory rather then disk, so we would have no more
problems with disk random seeks when searching for closest neighbors.

16

2.4. Array Databases

We could even group our data spatially, assign them to concrete partitions
and then run the clustering algorithm separately, knowing that all of the points
we need are actually in our physical partition. When we add a small overlap
to these regions on the sky, we will be sure, that no clusters will be split on
the edges.

With this approach we could even use the high support for extensibility
of for example MonetDB and write the clustering algorithm as an extension
to the database core and call it directly from SQL, leaving the parallelisation
management to the database itself. Or we could use SciDB with a simple C++
program that would transfer the data from database node, process it, and
return the results. The database would again care about the parallelization
over database nodes, where only a small geometrical chunk of sky will be
stored and processed.

We will now have a look at some most famous array databases used
nowadays. The MonetDB [12] and SciDB [13]. We will not make a detailed
comparison of these databases in the sense of benchmarking or some detailed
analysis. We will compare them only from our point of view, which is usability
for storing, publishing and most of all clustering astronomical data.

2.4.1 Requirements

The main points which we demand from the array databases can be summar-
ized into the following:

• Installation - As we are using Debian for our servers and that is not
something to be changed in near future, we need a support for this
system.

• Storage for astronomical data - We need to be able to store astronomical
data at least as well as in PostgreSQL Q3C [11] spatial indexing schemes.

• Publishing of astronomical data - If we decide to migrate to array data-
bases, we have two possibilities. We might migrate only part of our data
and functionality, or we migrate all of the functionality. It would be
very complicated to integrate the array database with PostgreSQL in
order to keep part of the data here and part of the data there. When
we decide to migrate fully though, we need to implement the protocols
for publishing data on top of an array database.

We are currently relying ourselves on the GAVO DaCHS package [9]
which implements majority of the IVOA VO [14] protocols and works
currently with PostgreSQL only. If we cannot transfer the data model
without any significant changes, it will be very difficult to accommodate
the processes above them accordingly.

In the end, we decided not to use the array databases only partially, as
that would bring us more troubles then benefits. As this decision was

17

2. Review of possible solutions, prove of concepts

also connected with other aspects, we won’t terminate our analysis here,
but try to compare other aspects needed for our cause too.

• Data migration from PostgreSQL - We need an easy data migration from
our data centers which are currently running on PostgreSQL.

• Extensibility for clustering - We need to be able to write an extension to
the database or call a program from the database which actually clusters
the data. Otherwise we would not benefit from the fact, that database
can handle the parallel processing on each data partition (i.e. database
node) for us.

• Fast neighbor lookup - This is not needed only for the clustering al-
gorithm, as obviously it can run outside the database as a stand-alone
program. But we actually need it for any kind of data publishing to
the outside world, as most of the astronomical queries will be spatially
based.

• Easy data partitioning - We need a simple way to control the partitioning
of our data across the database nodes. To be the distributed clustering
algorithm truly effective, we need to ensure high spatial locality on the
data. Each partition has to represent an area on the sky. In other
words, one cluster is permitted to have it’s members stored only at
one particular data partition,i.e.,physical database node. We would be
relying on that if we decided to process the data in smaller chunks. It
would be much easier if we could process each one separately without
the need of communication with the others.

2.4.2 MonetDB

We made the most detailed analysis for MonetDB [12] as it is really close to
what we need.The MonetDB is written in C, supports mainly Linux systems
and is very easy to install on Linux.

MonetDB is quite advanced as it has been developed since 1993. Amongst
its biggest strengths belongs high performance vertical fragmentation, auto-
matic and adaptive indices and run-time query optimization. In other words,
we don’t have to worry for example about indexing the data correctly, Mon-
etDB will create the indices itself, statistically based on the queries which will
be requesting the data.

2.4.2.1 Installation

If we want to install the database on one server, it is very easy. For a Linux-
based system, we can install it similarly to any relational database - as a
distributed package.

18

2.4. Array Databases

2.4.2.2 Storage for astronomical data

MonetDB is based on a an exotic way for data storage. It stores tables using
vertical fragmentation (storing each column as one table), called Binary Asso-
ciation Table (BAT. Each table is stored using a key-value mechanism, where
the keys are always a dense sorted list. Both the keys and values are stored as
memory mapped files, which ensures very high performance with data access
times. In the values we can store anything - in case of variable-width types the
value is separated into into a reference (offset) and the real value of variable
length.

For the right indexing (which in case of MonetDB means just sorting) the
data, we would need a sphere partitioning algorithm. We would also need to
implement the geometrical queries ourselves, whereas for PostgreSQL we can
use already tested and reliable plugins like Q3C [11].

There are actually several User Defined Functions in MonetDB under
LSST [15] package, based on HTM spatial indexing [16]. For all out pub-
lishing of astronomical data, however, they are incomplete and last but not
least poorly documented. We would not choose HTM indexing for our data
either, because it’s complexity climbes with the indexing resolution and it
does not guarantee the pixels to be of same size.

There is also a project which tried to use MonetDB for SDSS survey
SkyServer [17], where they actually implemented spatial queries based on
zones. This algorithm is described in article [18], but these methods de-
viate quite significantly from our current solutions and integrating them into
our clustering algorithms would be very difficult.

2.4.2.3 Publishing of astronomical data

Here comes the real problem. As we mentioned above, transforming the data
may be difficult, but it can be done. But it means we would have to rewrite
the implementation of the protocols responsible for publishing of our data.

As I have not found any good enough alternative to GAVO DaCHS [9],
it would mean implementing the support for another database layer to this
package directly, which is simply more effort than we would like to invest
only for the sake of better clustering results when all other functionalities we
already have in the current implementation using PostgreSQL.

2.4.2.4 Data migration from PostgreSQL

We can migrate the data through two channels. First one is through pg dump
utility, which gives us a database dump of all the tables and data. As not
all the data types in MonetDB and PostgreSQL match directly, we have to
manually repair the dump file according to the MonetDB data types. There
are some open source tools which do that automatically, but for bad experience
with such things, we chose another, safer approach.

19

2. Review of possible solutions, prove of concepts

Second approach is based on export to simple text (e.g. CSV) files, define
the tables in MonetDB manually, and just ingest the data from CSV. This
approach is safer, as we have complete control over the data types used in
MonetDB and we solve all the conflicts before-hand, separated from the data.

Each PostgreSQL and MonetDB have built-in tools which can export and
import CSV files, so there is no problem with this requirement.

2.4.2.5 Extensibility for clustering

Construct named User Defined Functions (UDFs) are used in MonetDB. These
functions are mostly written in pure C and wrapped by MonetDB inner
assembly-like language called MAL. We can write the functions directly in
MAL, but that is not advised, as it is not an easily debuggable language. The
MAL instruction to which we can link a C function has to be mapped to an
SQL function, which can call the functionality directly from the SQL front
end.

This architecture is quite complicated, but it allows us to call the BAT
functions directly from the C code. It is very convenient, as now we can just
pass points which we want to cluster to the C function, and it can write the
results directly to several other tables (e.g. cluster IDs and cluster assignments
of the original points). These functions are then stored with the MonetDB
source code, and using the bootstrapping algorithms, they can be included in
the whole build and made part of the MonetDB distribution.

Originally, we also thought we could use the very interesting MonetDB
functionality - the actual integration of R to the database itself. As R contains
a lot of clustering functions and modules, it would be very nice if we could
cluster the data in the database directly. There is also an example of how to
use K-means in MonetDB using the R module [19].

But - as the conventional clustering algorithms fall off with both time
(high complexity) and quality (usually merging clusters which should not be
merged) for Big data, we would have to divide the data into smaller chunks
which could be computed in parallel. This would be very nice when used in
synergy with the database partitioning. We could run the K-means in parallel
for small parts of the data where we could ensure high IO bandwidth if each
partition would be saved on a separate hard disk.

2.4.2.6 Fast neighbor lookup

As we already mentioned in the Storage for astronomical data argument, the
data is stored in separate tables for each column. If we take the two most
important ones for clustering - the coordinates right ascension and declina-
tion - we can see that the neighbor lookup will be fast even without explicit
indexing.

20

2.4. Array Databases

As each table is stored as a separated head which contains sorted IDs of
the actual values, if the data is sorted geometrically the lookup will be very
fast. Ensuring this data locality is quite a hard problem, but there is nowadays
a number of sky or sphere indexing algorithms, which we can use.

2.4.2.7 Easy data partitioning

In the official documentation of MonetDB [12] there is no word of partitioning
support. There are mentions of possibilities and experiments in the SDSS
SkyServer paper [17].

We still can use MonetDB for clustering the data using the Iterative query
approach mentioned in section 2.3.3.

We can still sort the data on disk accordingly to the geometrical locality
on sky, as this helps us with finding the nearest neighbors. We decided to
use HEALPix [20] library to take care of that. It has a very nice future
that the pixels partitioning the sphere are of equal size, thus the data will
be distributed uniformly in the grid. We will be talking about that in the
separate chapter 3.2.2.

We discovered later that such synergy with MonetDB is not actually pos-
sible, or at least very complicated. The MonetDB is written entirely in C so
the bootstrapping of the User Defined Functions mentioned in Extensibility
for clustering point can only work with pure C functions. HEALPix library
has APIs for C++ as well as for pure C, however, a key functionality needed
for the data partitioning is only available in C++. The thing we need here is to
be able to ask for neighbors of a pixel to compute overlaps (see chapter 3.2.2).

We could declare the API functions of our C++ program extern C then,
but that would still mean we have to build and distribute our C++ application
separately from the MonetDB code. This is a very high cost we would have
to pay and collides with the point Extensibility for clustering too.

2.4.2.8 Conclusion

We have discussed the individual points we need from the database above and
here comes the conclusion. Strong points of MonetDB are the Installation,
data Migration and the fast neighbor lookup. The storage of astronomical
data is fine, but we would have to implement our own plugin for querying the
astronomical data. We could base this plugin on HEALPix [20] data indexing
but we could not distribute the plugin as a part of MonetDB, as it cannot be
written in pure C.

In the end, all comes down to the Extensibility for clustering requirement.
As much as MonetDB is opened and easily extensible by pure C functions, it
cannot be extended by C++ code.

21

2. Review of possible solutions, prove of concepts

Overall, MonetDB seems quite mature, but the fact of inextensibility by
C++ (which we need for HEALPix, more info in chapter 3.2.2) and the lack
of horizontal partitioning make it inappropriate for our case.

2.4.3 SciDB

Another option we considered here is the SciDB [13]. As we realized quite
quickly that it does not fit for our cause, the analysis will only be that much
thorough to justify our decision.

The SciDB is a partially commercial project where the linear algebra mod-
ule (which we could make very good use of) is available only in the commercial
version. In the scientific open-source version there are all of standard func-
tionalities we need though so we will not dismiss it too quickly.

2.4.3.1 Installation

SciDB has a very nice installation automation script, which can install it
to multiple database nodes (even on different servers) easily. However, the
SciDB packaged distribution is very sensitive to the OS version. Installation
from packages requires RedHat / CentOS, and Ubuntu to the 14.9 release.
If we have another system version (in our case Debian 7), we have to install
manually from the sources. As we are considering extending these sources,
this is not too big obstacle for us.

2.4.3.2 Storage for astronomical data

SciDB has been founded as a part of the LSST [15] project originally. In the
flow of time, however, they deviated from this original purpose and formed a
stand alone partially commercial project. LSST chose to use massive distrib-
uted data center based on MySQL nodes thereafter.

The examples of using SciDB for geospatial as well as astronomical data
can be found over the internet. The logical storage of data is that we have
a multi-dimensional array of cells, which can hold an arbitrary number of
attributes. These attributes can be of any (even user-defined) type.

Data transformation will be needed, but no more complicated than when
using MonetDB. Actually it will be a lot easier, as we can define the cells as
coordinates and any attributes assigned to those coordinates can be hold in
an array of attributes directly.

2.4.3.3 Publishing of astronomical data

The real issue here again comes with the support for IVOA VO [14] protocols
to publish the data. The problem is that even if we managed to change the
data model to the better, we simply cannot afford to invest time connected
with adding another database support to the GAVO DaCHS [9] package.

22

2.4. Array Databases

2.4.3.4 Data migration from PostgreSQL

As we already decided to use CSV export from PostgreSQL, SciDB supports
this future fully. The pg dump file would require corrections of types, the same
as with MonetDB. See Data migration in previous chapter 2.4.2.4.

2.4.3.5 Extensibility for clustering

The SciDB supports multiple types of extensions - user-defined aggregates,
user-defined array operators and user defined functions. The last are the ones
that interest us most. These are scalar functions which accept variable number
of arguments of different data types, and return another data type.

We would have to define our own types for passing the input data (ob-
servations) to the function, as well as for the returned value, which would be
the original points grouped into clusters. Using parallelism inside this func-
tion shouldn’t be a problem and SciDB currently supports only C++ for user
defined functions, which perfectly suits us, as we need it for our HEALPix [20]
library.

2.4.3.6 Fast neighbor lookup

SciDB storage model ensures, that neighbor lookup will be fast as long as
the neighbors will be physically close in the multidimensional matrix. We are
talking about the cells in this matrix, which are representing point coordinates
in the sky.

As we already mentioned above, to enable this fast lookup by ensuring
data locality, we need to be able to sort the data accordingly. Thus, using a
sphere indexing algorithm like HEALPix [20] is needed and the extensibility
of SciDB allows us to do that.

2.4.3.7 Easy data partitioning

SciDB has a very transparent system of logical chunks, which are dividing the
multi-dimensional arrays into groups. These can be easily partitioned over
separated media. There can be also defined overlaps between these, so if we
can implement a clustering algorithm working on one node, it will not require
data transfer from other nodes.

2.4.3.8 Conclusion

The strong points of SciDB are the data partitioning, extensibility and fast
neighbor lookup points. Other points are acceptable, but very controversial
for us is the publishing of the actual data. As we don’t like to store part of
the data in PostgreSQL and part of it in SciDB, we would have to integrate
SciDB with implementation of IVOA VO [14] protocols.

23

2. Review of possible solutions, prove of concepts

2.4.4 Array databases conclusion

As much as we liked the idea of moving a part or our whole data center to array
databases because they work with astronomical data in a more natural way
than relational databases, the costs are too high. We are not discontent with
the nowadays functionality provided by standard database such as PostgreSQL
along with it’s sky indexing plugins, the only reason we are trying something
different is their inappropriateness for clustering algorithms.

The original thought was that we could migrate only the clustering al-
gorithm to the array database, but that is such an overkill if we compare it
to a stand alone C++ program. As we agreed it is not profitable to move all
of our functionality to the array databases, they are not useful for solving our
problem at all.

2.5 Apache Spark

Next thing we considered is using the Apache Spark [21] language, as it can be
used very efficiently for parallel cluster computing (here by the term cluster we
mean server cluster). We dismissed this language because it’s linear algebra
module has small support for clustering algorithms (in fact there is only K-
means algorithm) and if we are using a lower level language, we would like to
do a benchmark for multiple clustering algorithms on the data too.

2.6 C++ application

So the last resort for us are the oldest, but still most efficient tools available.
We will implement the clustering algorithm as a stand alone C++ applica-
tion, to which we will transfer the data. PostgreSQL is very fast with CSV
exports/imports, so we stick with that idea and the data will be transfered
in this format. We chose C++ explicitelly, because it is fast, relatively easy
compared to pure C and HEALPix [20] library supports it, which we will bring
up in chapter 3.2.2

We will not change the original database model, so the input will be only
one table of observations, which can be represented by right ascension and
declination, plus some unique identifier tracking the observation back to the
image file it was identified on.

The output will be a list of catalog coordinates of our light curves with
some catalog IDs and a list of the original observations assignments.

As we don’t have to limit us because of the database possibilities anymore,
we can implement any clustering algorithm we like. We decided to implement
the Incremental query defined in 2.3.3 as a base for our benchmarks, because
if we manage to load all the data set into the memory, there will be no problem
with iterating over each particular point. This algorithm has it’s own limits

24

2.6. C++ application

though, and as there are lots of C++ clustering libraries available, we can try
to integrate and test them for hopefully better results.

2.6.1 Dividing the work

The main problem of most of the clustering algorithms (K-means, Expecta-
tion Maximization, Hierarchical algorithms, etc.) is their complexity. With
growing number of clusters in the data, most of these algorithms run very
long and, specifically for our data, tend to join more clusters together. With
an average number of one hundred points per one cluster, we have cca four
hundred million clusters in our dataset. None of the more complex clustering
algorithms can process such data with a reasonable result - at least not as
whole.

So the key here is to divide the data into small chunks not only for helping
with the complexity, but also for improving the actual results of the clustering
algorithms. When each instance of the clustering algorithm runs for a data set
with 5 clusters, each with 100-1000 points, it still provides very good results.
It would be even better, if we could be sure, that each one of these chunks
actually contains all of the points of it’s clusters, that we cannot find any
sliced cluster on the edges of these.

There is a quite simple solution because of one fact we know of our data.
The actual errors in the observation coordinates come from the inaccuracy of
astrometry computed for these objects defined in chapter 1.3, i.e., the size of
clusters is smaller than this inaccuracy. This technique is the same for all of
our data, so we can define a threshold which is greater than the known maxium
size of a cluster and use it to define overlaps at the edges of our chunks, which
will be wider than this threshold. That ensures with one hundred percent
assurance, that we cannot slice a cluster. We will show this in the Realization
chapter in more detail in chapter 4.

2.6.2 GPU computing

There is also the possibility to accelerate the computational process by mov-
ing the most expensive processing to GPUs instead of processor. However,
to be this enhancement really efficient, this requires very intensive memory
micro-management. Also, the advantage of GPUs originates from the ability
to process high amount of small tasks which require very little communica-
tion with the memory. The clustering algorithm has to be deeply analyzed
and bottlenecks quite different from standard processor computing have to be
identified and addressed.

The GPU computing can be actually implemented in an existing C or
C++ application, transforming only small parts of the program, where we
know from the testing it is efficient. This is possible for example with an

25

2. Review of possible solutions, prove of concepts

nVidia CUDA Toolkit [22]. This toolkit of libraries can be called as simple
C++ functions.

There are several solutions implementing K-means using a GPU acceler-
ation. We are planning to take a little different approach, where we want
to decrease the number of points for one K-means run and parallelize these
tasks. Parallelization inside these tasks would not be that efficient, as it is
better if we effectively decrease the complexity by assigning less points per one
K-means instance, than to parallelize the one K-means instance for a bigger
data set.

After considering all of the above mentioned facts we decided against im-
plementing GPU optimization in our application.

26

Chapter 3

Design

All of the aspects of possible solutions and their results, mentioned in the
previous chapter, were carefully considered and a final design decision was
made. The accepted and fully implemented solution will be described in this
chapter.

We will implement the catalog generation as a stand alone C++ applica-
tion. This application will take data from PostgreSQL, produce results, and
these will be transfered back to the database. With this approach we don’t
have to change the underlying architecture of the data manipulation at all.

3.1 MPI vs OpenMP

The dimensionality of our data is not very high (2 coordinates, photon flux
or magnitude possible as 3rd dimension), so we can load the whole data into
memory and process it there. There is a possibility of streaming the interme-
diate parallel task distributions on disk, but the problem is that we cannot be
sure that a task is complete before we iterate over all points in the data set.

The processing cost for the individual tasks will be small in the terms of
memory. It depends on the task size, but compared to memory amount needed
for constructing these tasks, it is very small. The benefit of distributing the
work over multiple nodes is not high, as the tasks are supposed to be small.
Another reason why we’d like to try the threads approach is that it is easier
and faster to implement. And the easies way to implement a thread-based
producer consumer application is OpenMP library [23], so that is our final
decision for parallelization.

The parallel tasks will be processed by an arbitrary number of threads and
the results collected by a master thread and written back to disk.

27

3. Design

3.2 Design details

We can see the complete pipeline used for the light curve generation on
Fig. 3.2. The main part of our thesis is about the Clustering swim-lane.

Figure 3.1: Light curve generation workflow

3.2.1 Clustering algorithms

We also had to analyze multiple clustering algorithms and choose which ones
will be used within the C++ application. The possibilities here were a simple
K-means, Expectation maximization based techniques such as Gaussian mix-
tures, agglomerative or divisive hierarchical clustering or last but not least
some clustering algorithm of our own.

We also considered integrating R [24] with the Seamless R and C++ Integ-
ration [25]. There is a very large variety of clustering algorithms implemented
in R. However, most of these are usable only for testing on small amounts of
data, their complexity grows very quick. We also don’t have any possibility
to influence the behavior of these R modules, they have to be taken as-is.

Final reason why we favored C++ library over the integrating R modules
was the usability for big amounts of data. C++ is way faster than R in
equal computations and has the advantage, that we can debug and potentially
change or even repair the library we are using.

In the end, we decided to implement the Iterative query algorithm defined
in chapter 2.3.3, which will be used as a benchmark to other clustering al-
gorithms. Then we decided to use a library for randomized K-means al-

28

3.3. Functional requirements

gorithm [26] and the Armadillo C++ library [27]for EM algorithm based on
Mahalanobis distance.

3.2.2 HEALPix [20]

We also had to consider which sphere indexing library will we use to work
with the spatial data. This cannot be done without a library because we need
a complex way of building the chunks used for parallel processing. Another
reason is a pre-implemented optimized way of computing angular distance
between two points on a sphere.

The possibilities here were HTM indexing algorithm [16], HEALPix or
Quad Tree cube algorithm [11]. We will not do a detailed benchmark here, as
all of these algorithms are quite effective. The decision was simple in the end.

We chose HEALPix because of these major reasons:

1. HTM [16] has higher complexity for higher resolutions of the sphere
tessellation, whereas HEALPix [20] has constant complexity in this dir-
ection. We will work generally only with the high resolutions with the
clustering algorithm. The pixels have different sizes at different areas of
the sphere.

2. Quad Tree Cube [11] will also produce different sizes of the individual
pixels, thus it would be more complicated to distribute the data into
chunks uniformly.

3. HEALPix [20] can distribute the data uniformly, because it’s pixels are
of equal sizes on the same resolution. It is also very popular lately and
has been implemented into Aladin VO [28] client, which makes it much
easier to test and compare our results.

3.3 Functional requirements

We can summarize the results of our analysis to the following requirements
on our application.

1. Data input will be processed from CSV format. This input file will have
4 columns identifying an observation. The obsnameID and starNo are
used as a composite primary key for the observation table. The exported
columns will be the following:

a) Right ascension

b) Declination

c) imageID

d) starNo

29

3. Design

2. Data ouptut will be again in CSV format and will take place in two files.
First one will represent the catalog with following columns:

a) Catalog ID

b) Right ascension

c) Declination

And the second one will represent the observation mappings to these
catalog files, having the following columns. Again, obsnameID and
starNo are used to identify observation in database. The columns defin-
ing our catalog are:

a) Catalog ID

b) imageID

c) starNo

3. The program will be able to create a groups of the observations, which
can be processed in parallel completely separately without degrading the
results. This will be accomplished via the HEALPix library [20].

4. It will support several clustering strategies for comparison. Specifically
these will be:

a) Our own incremental strategy described in 4.1.3.1

b) Several variants of K-means from KMLocal library [26].

c) Expectation Maximisation strategy from Armadillo C++ library [27].

5. The solution will be integrated into our current data center. This integ-
ration will be implemented by scripts for exporting and importing CSV
data for PostgreSQL database.

3.4 Application model

The UML diagram for our application can be seen on Fig. 3.2. We will explain
the design on a typical run of our application.

The main part of the application logic is contained in class ClusteringCon-
troller. The entry point function just parses the command line arguments and
passes them to the the controller. Then it calls the run function. The Cluster-
ingController class holds instances of two other controllers - the CsvOperator
and ChunkOperator.

CsvOperator is responsible for working with input and output CSV files.
The CsvOperator will parse the input file into a vector of Coordinates and pass
it to the ClusteringController. This vector is logically owned by ChunkOper-
ator which works with this data most as with obsCoords vector.

30

3.4. Application model

Then, the buildChunksFromCoordinates method is called on ChunkOper-
ator, and the result is stored in two maps - the obsInCells and obsInOverlaps.
In these maps, Coordinates are assigned to their HEALPix [20] pixel IDs of
selected resolution, along with their overlaps if there are any. This function is
described more in chapter 4.1.2.

For each of these HEALPix pixels, a ClusteringTask is created. This clus-
tering task has a strategy by which it is to be solved. Each strategy is holding a
list of pointers to the Coordinates it has to process. The ClusteringController
ensures that tasks are processed in parallel by a number of threads, which has
been allocated to this run of our program. Each clustering task will have it’s
own results stored in cluster map type, which is a map of clusterIDs pointing
to a list of it’s members. The clusterID is too an instance of Coordinate struct
representing the cluster medoid.

These individual task’s results have to be collected into an overall result of
the clustering algorithm. This is done sequentially after the parallel phase of
actual clustering has been finished. We iterate over the tasks, throw out the
duplicate results of neighboring tasks, or merge them into common results.

The overall result is kept in the ClusteringController’s result, where we
ensure, that a cluster will not have duplicate members, i.e., the list of cluster
members is a set of Coordinates.

3.4.1 Configuration

The application will take the following configuration. The values values here
are optimal according to the testing results. The rest of configuration, such
as K-means configuration, will be listed later.

1 [p a r a l l e l O p t i o n s]
2 bigPixelNsideExp=15 ; P a r a l l e l task r e s o l u t i o n
3 over lapPixe lNs ideExp=18 ; Overlap p i x e l r e s o l u t i o n
4

5 [r e su l tOpt i on s]
6 IDNsideExp = 29 ; Catalog ID genera t i on r e s o l u t i o n
7 c lu s t e rDup l i c a t e sArcSec = 0 .5 ; Distance at which two c l u s t e r s w i l l

be i d e n t i f i e d as d u p l i c a t e s <arcsec>
8

9 [i n c r ementa lS t ra tegy]
10 catalogIndexNsideExp = 17 ; Reso lut ion o f the index i n s i d e one

task
11 c lus terRadiusArcSec = 1 ; Distance at which I w i l l add a

po int to the c l u s t e r <arcsec>

31

3. Design

KmeansEZHybrid

+ KmeansEZHybrid()
+ ~KmeansEZHybrid()

KmeansHybrid

+ KmeansHybrid()
+ ~KmeansHybrid()

KmeansLloyds

+ KmeansLloyds()
+ ~KmeansLloyds()

KmeansStrategy

+ cluster()
+ KmeansStrategy()
+ ~KmeansStrategy()

KmeansSwap

+ KmeansSwap()
+ ~KmeansSwap()

ClusteringStrategy

+ cluster()
+ C lusteringStrategy()
+ ~ClusteringStrategy()

EMStrategy

+ cluster()
+ EMStrategy()
+ ~EMStrategy()

IncrementalStrategy

+ cluster()
+ IncrementalStrategy()
+ ~IncrementalStrategy()

ChunkOperator

+ buildChunksFromCoordinates()
+ getObservationCoordinates()
+ getObservationsInCell()
+ getObservationsInOverlap()
+ ChunkOperator()
+ ~ChunkOperator()
+ main()

ClusteringController

+ C lusteringController()
+ ~ClusteringController()
+ run()

ClusteringTask

+ cluster()
+ ClusteringTask()
+ ~ClusteringTask()
+ getObsInCell()
+ getObsInOverlap()
+ getResult()
+ getTaskID()

vector

«typedef»
coords_list

vector

«typedef»
coords_pointer_list

map

«typedef»
coords_by_pix

unordered_map

«typedef»
cluster_map

unordered_map

«typedef»
cluster_distinct_map

CsvOperator

+ CsvOperator()
+ readCoordinates()
+ writeCatalog()
+ writeRelations()

«struct»
Coordinate

+ dec
+ imageID
+ ra
+ starID

+ Coordinate()
+ Coordinate()
+ Coordinate()
+ ~Coordinate()
+ get3DVector()
+ getHealP ixPointing()
+ isA lmostSame()
+ operator!=()
+ operator==()

1 1 ..*

1

1

1

result

1 1

obsInOverlaps

1

0..1 0 ..*

1

1

1

1 ..*

1

obsInCells

1

0..1

1 ..*

1

obsInCell

1

1 ..*

clusteringTasks

1

1

obsCoords

1

1 1 ..*

1

strategy

0 ..*

1
obsInOverlap

1

1

result

1

Figure 3.2: C++ application UML class diagram

3.5 Time Complexity

The most crucial application phases have the following complexity:

32

3.6. Scalability

1. Building chunks - This phase has a O(n) complexity, as it touches every
observation once.

2. Clustering phase - Dependent on a clustering algorithm, this is either
O(n) for a simple strategy, or O(n2) for other strategies implemented
(K-means, EM)

3. Collecting results - O(n2) for merging the results. Depending on the
task size, we have to check the neighboring tasks for duplicate clusters
and in worst case, merge them all.

3.6 Scalability

The scalability of our solution results from the chosen architecture. As we
are using an in-memory solution based on threads rather than individual pro-
cesses, we are favoring a shared-memory architecture. The memory limitations
for the whole application run are around 8 GB per 100 million points. This re-
lation is linear, so for 1 billion points we would need an 80 GB RAM machine
with one processor to do the division into parallel tasks. These individual
task’s complexities depend on the strategy used for solving these tasks, but
the idea is to keep them small for better efficiency and result quality of the
clustering algorithms beneath.

33

Chapter 4

Realisation

As we already deduced above, the most appropriate solution to our problem
is a stand alone C++ program, which will be integrated into our current data
center. We will comment the implementation in this chapter, pointing out
the interesting parts, which solved the problems the previously mentioned
solutions could not. We will also document here the way of integration with
our current solution of the original data ingesting and publishing the light
curves.

4.1 Implementation

In this chapter we will present the interesting parts of our solution, with
examples of C++ code.

4.1.1 HEALPix usage

We are using the HEALPix library [20] to create the parallel tasks, which can
be processed individually, without need of further communication between
themselves. The key aspect for defining such tasks is the Nside parameter
of the HEALPix grid. The NSide is specifying the size of HEALPix pixel.
The number is always 2N , where N can range from 1 to 29. For our case,
the most convenient are around 18, which specifies a pixel approximately the
size of one cluster. We use these pixels for defining the overlapping the region
of our parallel tasks, which are equivalent to the area of a HEALPix pixel of
a Nside = 18. The Nside used for the parallel tasks is meaningful between
10 and 15 (for 16 and more the overlap is actually bigger than the task area
itself).

For simplicity, the ”task size” term will be used for the exponent of an
Nside. For Nside215, the task size will be 15, for 229 the task size will be 29.
Whenever we will talk about the task size, we will refer to this exponent, not
the actual Nside value.

35

4. Realisation

4.1.2 Creating spatial chunks

This section is describing functionality in ChunkOperator’s buildChunksFrom-
Coordinates function. We are mentioning here the most interesting parts of
the code. For the whole function, you can look at appendix C.1.

First we transform our coordinates to the system HEALPix [20] is using
and then comes the interesting part. We create two HEALPix bases, first one
with the resolution of the task spatial partitioning (i.e. How big will be the
area for one individual task) and the second one with the resolution of the
overlaps.

1 HEALPix Base2 base1 (base1Nside , NEST, SET NSIDE) ;
2 HEALPix Base2 base2 (base2Nside , NEST, SET NSIDE) ;

Then we iterate over observations and decide in which cell it lies.

1 i n t64 i d x l o r e s = base1 . ang2pix (ob s e rva t i on s [i]) ;

Then we check, whether this point does not belong to an overlap (based
on the base2 finer grid) of the neighboring cell (based on the base1 rougher
grid). The big cell (i.e. task) can have up to 8 neighbors in the HEALPix
geometry.

1 // now check whether the surroundings o f the ob s e r va t i on touch
ne i ghbor ing j o b s

2 i n t64 i d x h i r e s = base2 . ang2pix (obs e rva t i on s [i]) ;
3

4 f i x a r r <int64 , 8> ne ighbors ;
5 base2 . ne ighbors (i d x h i r e s , ne ighbors) ;

We iterate over these 8 neighbors and if it happens that the nbidx lores (i.e.
big pixel ID next to our small pixel used for overlaps) is not actually the
current idx lores then we add our current point to this neighboring big pixel’s
overlapping region.

1 i n t64 n b i d x l o r e s = base1 . ang2pix (base2 . pix2ang (ne ighbors [j])) ;
2

3 i f (n b i d x l o r e s != i d x l o r e s) { // touches a neighbour c e l l
4 i f ((∗ obsInOverlap) [n b i d x l o r e s] . empty () | |
5 (∗ obsInOverlap) [n b i d x l o r e s] . back () != &(∗obsCoords) [i])

{
6 (∗ obsInOverlap) [n b i d x l o r e s] . push back (&(∗ obsCoords) [i]) ;
7 }
8 }

By this algorithm we can distribute any kind of spherical coordinates into
chunks of equal size (equal area on the sphere) with overlaps of variable size
in a linear complexity (touching each observation only once). This was the
biggest obstacle in parallel clustering of our data.

36

4.1. Implementation

4.1.3 Actual clustering

Each task remembers the strategy11 by which it should be solved.
The parallel processing of each task is resolved by OpenMP library [23].

The clustering loop looks like this. The omp set dynamic(0) is used to enforce
that the number of threads we provide will be actually used for the computing.

1 omp set dynamic (0) ; // E x p l i c i t l y d i s a b l e dynamic teams
2 omp set num threads (th i s−>noThreads) ;
3 #pragma omp p a r a l l e l f o r i f (th i s−>noThreads > 1)
4 f o r (s i z e t i = 0 ; i < c l u s t e r i n g T a s k s . s i z e () ; i++) {
5 Cluster ingTask ∗ currTask = c l u s t e r i n g T a s k s [i] ;
6 currTask−>c l u s t e r () ;
7 }

4.1.3.1 Incremental strategy

We wrote this strategy as a benchmark for the other strategies such as K-
means. Those were taken from 3rd party libraries mostly, so we will not
document them here.

This strategy is basically re-written Incremental query from chapter 2.3.3.
We iterate over observations in our cell, then we iterate over the ones in our
overlap in the same way and finally remove clusters we decide to be incomplete
(i.e. they were sliced on the edges of the overlap region). We remove the
incomplete clusters when using other strategies too.

1 void Incrementa lSt rategy : : c l u s t e r (c luster map &taskResu l t) {
2 proce s sObse rvat ions (obsInCel l , ta skResu l t) ;
3 proce s sObse rvat ions (obsInOverlap , ta skResu l t) ;
4 removeIncompleteClusters (ta skResu l t) ;
5 }

The code for processing each individual observation is simple too. For each
observation, we check whether we don’t have a catalog ID close to it already.
If there is one, we just update it and add ourselves to that catalog ID. This
is done in findAndUpdateNeighbor function.

If we could not update the catalog, that means we have to create a new
identifier with the same coordinates as the current observation. We set the
imageID and starID to -1 as this observation is not originally from database.
The catalogIndex is used for indexing already processed observations of this
task in memory for faster neighbor lookup.

1 void Incrementa lSt rategy : : p roce s sObse rvat ions (c o o r d s p o i n t e r l i s t
∗ obsLis t ,

2 c luster map &taskResu l t) {
3 f o r (c o o r d s l i s t i t i t = obsList−>begin () ; i t != obsList−>end

() ; i t ++) {

11Strategy is a software design pattern used for solving same task by different ways of
doing it

37

4. Realisation

4 Coordinate ∗ currObs = ∗ i t ;
5 i n t64 indexID = indexBase . ang2pix (currObs−>

getHEALPixPointing ()) ;
6

7 bool catalogUpdated = f a l s e ;
8 catalogUpdated = findAndUpdateNeighbor (indexID , currObs ,

ta skResu l t) ;
9

10 i f (! catalogUpdated) {
11 Coordinate ∗ c lu s t e r ID = new Coordinate (currObs−>ra ,

currObs−>dec , −1, −1) ;
12 ta skResu l t [c l u s t e r ID] . push back (currObs) ;
13 cata log Index [indexID] . push back (c l u s t e r ID) ;
14 }
15 }
16 }

The findAndUpdateNeighbor method gets close points from the catalogIn-
dex (it does not search all of the points, only the ones in neighboring pixels).
Then it iterates over these coordinates and for each one computes distance
to it. If the distance is smaller than a configured value, it is added to that
cluster. If not, we return false and a new cluster is based on it.

1 bool Incrementa lSt rategy : : findAndUpdateNeighbor (in t64 indexID ,
2 Coordinate ∗ currObs , c luster map &taskResu l t) {
3 c o o r d s p o i n t e r l i s t c lustersCloseToMe ;
4 getC losePo int s (clustersCloseToMe , indexID) ;
5

6 f o r (c o o r d s l i s t i t i t = clustersCloseToMe . begin () ; i t !=
clustersCloseToMe . end () ;

7 i t ++) {
8 Coordinate ∗ currNeighborClusterID = ∗ i t ;
9 double d i s t ance = HEALPixHelper : : computeDistance (currObs ,

currNeighborClusterID) ;
10 i f (d i s t anc e < Config : : c l u s t e rRad iu s) {
11 updateNeighbor ingCluster (currNeighborClusterID ,

currObs , ta skResu l t) ;
12 re turn true ;
13 }
14 }
15 re turn f a l s e ;
16 }

4.1.3.2 K-means strategy

We used the K-means algorithm from library KMlocal library [23]. The metric
used for optimization here is the Euclidean distance of our coordinates to the
K-means centroids called distortion. We are using average distortion for better
compatibility with the elbow method. Along with minimizing this function,
we also try to minimize the number of clusters. The algorithm is enhanced
with simmulated annealing. The randomization it brings gives us far better

38

4.1. Implementation

results with the right parameters, as it greatly reduces the risk of getting stuck
in a local minimum.

A K-means algorithm has to have a parameter K - the number of clusters.
We don’t have this number, however, and need to estimate it. The elbow
method is a standard method of choosing the right K. It is based on iterating
the algorithm for different K parameters and choosing the one with the best
ratio of minimizing K as well as the average distortion.

As our data is forming clusters of approximately the same size, we can
get away with a simple identification of the elbow in our graph of average
distortions, using just the ratio of average distortion of previous K to our
current K.

Figure 4.1: Elbow method

4.1.3.3 Parameters

1 [K−meansLocalStrategy]
2 maxClusters = 10000 ; maximum number o f t e s t e d c l u s t e r s per 1

task
3 maxTotStageVec0 = 100
4 maxTotStageVec1 = 10
5 maxTotStageVec2 = 2
6 maxTotStageVec3 = 1 ; number o f s t a g e s = a + (b∗k + c∗n) ˆd
7 minConsecRDL= 0.10 ; min consec RDL
8 minAccumRDL = 0.10 ; min accum RDL
9 maxRunStage = 3 ; max run Stages

10 in i tProbAccept = 0 .5 ; i n i t p r o b a b i l i t y o f acceptance
11 tempRunLengt = 10 ; temp . run length
12 tempReducFact = 0.95 ; temp . reduct ion f a c t o r
13 elbowFact = 2 ; elbow Method aceptance f a c t o r

The number of maxClusters is not that important, as the task sizes for the
K-means should be much smaller than this number, where the elbow method

39

4. Realisation

will just choose the right K and end the computation. If we want to use bigger
task sizes with thousands of clusters, this algorithm will run much slower,
but it will run nonetheless12. The O(n2) complexity for each individual task
depends on the actual best K for that cluster according to our elbow method,
not on the maxClusters parameter.

Most important is the number of stages (iterations) for the whole clustering
algorithms. This represents the total number of randomized starts of the
algorithm to get the best result possible. Choose this too small and the
quality will drop off, choose this too high and the clustering will be very slow.
The complexity for each task is O(n*m), where n is the number of running
stages and m the actual complexity of the individual K-means run.

The elbowFact is the coefficient of dK−1/dK , where K is the actual tested
number of clusters and d the average distortion, which needs to be satisfied
to accept the solution of K as best known so far. Otherwise, the algorithm
terminates.

The other parameters are specific for the different kinds of K-means al-
gorithm used and will be discussed in the result chapter 5.

4.1.4 Collecting results

When all of the tasks are complete, we need to collect the results from each
individual task and merge them into a common result. Thanks to the overlaps,
the clusters produced by individual tasks will never be incomplete (those we
threw away), but instead, there will be duplicate identifications of the same
cluster in spatially neighboring tasks.

Based on the clustering technique used, these clusters will be exactly the
same, or will be close to each other. As we can compare cluster centers only
based on their floating point coordinates, we cannot rely on exact equality.
Instead, we need to define a threshold distance at which we will declare two
clusters to be duplicates and need to be merged.

Because we already know the accuracy of our astrometry, we can even
improve the results of clustering algorithms inside the individual tasks. For
example K-means tends to divide clusters in particularly dense areas into mul-
tiple smaller ones. These have their centers very close to each other (typically
less then 500 mas).

The merging technique will serve two purposes then:

1. Remove duplicit results when collecting results on the edges of individual
tasks.

2. Merge duplicit results of clustering inside the tasks.

12The problem will be with the elbowFactor, as it is tuned for the task size 15. For lower
task sizes (i.e. bigger amount of observations), it can converge more slowly and for big K
the algorithm will run very long

40

4.1. Implementation

Thus, for each clusterID, we try to find other cluster centers closer than
a given threshold (in our case cca 500mas) and from these choose the closest
one and merge with it. The coordinates of a resulting cluster are re-computed
by weighted coordinates of both of the merged clusters (based on number of
members in each cluster). For merging the actual points we need to have a
set container for the resulting cluster members, which causes additional, but
inevitable memory overhead. More about the memory topic in chapter 4.1.5.

This technique of merging can be described as a simple 1 step streaming
K-means algorithm. It will still not ensure that the corner cases such as the
results of underlying clustering being in one line will be solved. But as the
points entering this phase should be already accurate results of the underlying
clustering algorithm, these cases will be extremely rare.

4.1.5 Memory optimization

The critical memory consumption point in our program is the distribution of
our data into individual tasks. As only the majority (but not all) of our data
is spatially localized (sorted), we have to go through the whole dataset to be
sure that each task is complete (it contains all points needed to process the
task without further communication).

One observation can be represented by two doubles (coordinates) and two
Integers (database ID), which is 24B in memory. For our whole dataset,
this stands for 4 ∗ 108 ∗ 24B = 8GB . This is still pretty usable on shared
memory based architecture. We can still reduce the memory by using some
kind of streaming for this process, but we postponed this optimization for
later versions.

Then we start building the pointers to these coordinates which represent
processing tasks at first, then clustering groups.

At the end, we need to collect the results. This process is the most memory
consuming, as we have to ensure the clusters to be without duplicates. This
is ensured by using a set container based on a tree structure - effectively using
much more memory per one pointer, than a simple vector.

With simple memory usage, we can see the memory consumption on a
small data set of one hundred thousand observations without optimization on
Fig. 4.2 and with optimization on Fig. 4.3. These graphs were taken with
Valgrind tool Massif [29] and displayed with Massif Visualizer [30].

The most efficient savings come from shrinking the data vector capacity
when all coordinates are loaded and from discarding coordinate pointers to
tasks that are already processed. Another enhancement that could be made
is using integer indices to the data vector, instead of using direct pointers to
it’s contents (8B for a pointer vs 4B for an array index - we don’t have more
than integer size observations). This micro-optimization will be implemented
if needed, but is not part of our current solution.

41

4. Realisation

At the end of the program run, we can see a fast grow in memory. This is
consumed by using a set to store the clustering results for each cluster. This
is actually needed to ensure we will not have duplicate entries in one cluster
after merging it with another one. At the end of the program, we have only
this result map and the original data structures in memory, no more memory
can be saved.

Figure 4.2: Basic memory consumption

4.2 Integration

The integration with PostgreSQL data is very simple, based on CSV export
of information required for the actual clustering, and CSV import for the
results of clustering. The tables used for export and import can be seen in
chapter 2.2.

The result of our work can be then published by the mechanism already
implemented in my Bachelor’s thesis [7]. The resulting light curve can be seen
on Fig. 4.4, displayed in SPLAT-VO [31]. The brightness of our star here
is around 15 magnitude and the period where the star was observed is from
2456220 Julian Date (19.10.2012) to 2456320 Julian Date (27.1.2013).

42

4.2. Integration

Figure 4.3: Memory savings applied

Figure 4.4: Resulting light curve displayed in SPLAT-VO

43

Chapter 5

Results

We will be measuring our results in both performance and quality. For per-
formance testing we are using a machine with 12 cores, 32 GB of RAM. For
quality testing, we will be using various comparison of our results with on-
line catalogs as well as analysing the results amongs themselves. We decided
to do the comparisons for data on a logarithmic scale, using testing data set
composed of 1 million, 10 million and 100 million observations.

The metric of quality will be the fitness of chosen cluster centers (i.e. that
the cluster centers were assigned correctly). This can be expressed in various
ways and we decided to use the one native to K-means algorithm - the distance
of points to their cluster centers (this metric is linearly dependent on distortion
used for K-means algorithm).

5.1 Time complexity

Here we will discuss the time complexity of the our algorithm. The key para-
meters on which the complexity depends are:

1. Strategy used

2. Data size

3. Parallel task size

4. Number of threads used

5. Other parameters specific for the strategy used

The strategies measured will be the incremental one described in sec-
tion 4.1.3.1 and the hybrid version of K-means [26] as it provides the most
quality results, as can be seen on Fig. 5.13.

Data sizes used will be as already mentioned 1 million, 10 million and 100
million observations.

45

5. Results

The parallel task size is explained here 3.2.2.

First we start with the simple incremental clustering strategy.

5.1.1 Incremental strategy

The incremental clustering strategy is described in chapter 4.1.3.1. We will
analyze the time usage of this simple algorithm for different data sizes.

5.1.1.1 Task size based on data size

On the Fig. 5.1 we can see the total time of our clustering algorithm for 1
million, 10 million and 100 million observations. Here we can see that for the
lower task sizes (i.e. greater number of observations per one task), are taking
more and more time. This behavior is explained on Fig. 5.2.

Figure 5.1: Total time based on data size

5.1.1.2 Program phases based on task size

On the Fig. 5.2 we can see running time of parts of the algorithm for 100
million observations based on the task size. We can see here, that all of the
algorithm parts run the same time, but increasing number of points in one
task (decreasing the task size parameter) will cause the time of collecting the
results. This is because we need to go through more and more results when
we are merging the results from individual tasks from the clustering phase.

5.1.1.3 Threads based on data size

On the Fig. 5.3 we can see here the running time for different numbers of
threads for 1 million, 10 million and 100 million observations. The algorithm

46

5.1. Time complexity

Figure 5.2: Program parts time

is linear and increasing number of threads will not accelerate it, because the
clustering phase of the algorithm takes in average cca 80% of the time needed
to even read the data from CSV, running on one thread. This relation is
compared on Fig. 5.6.

Figure 5.3: Thread time based on data size

5.1.1.4 Threads based on task size

On Fig. 5.4 we can see running time of different numbers of threads for incre-
mental clustering strategy, 100 million observations based on different parallel
task sizes. Again we can see here that the number of threads is not accel-
erating the computation much, parallelized phase of clustering is too simple

47

5. Results

and short. For smaller task size (bigger amount of objects per one task) the
algorithm runs longer.

Figure 5.4: Thread time based on task size

5.1.1.5 Parallel efficiency

On Fig. 5.5 we can see the real time for the clustering phase of our algorithm
for 100 million rows. We can see that the parallelization is actually efficient
but benefit of parallelization is not worth it as usually the clustering phase
takes cca 20 % of the computational time (it’s complexity is linear with the
number of points).

Figure 5.5: Parallel efficiency for clustering time of linear algorithm.

48

5.2. Quality

5.1.2 K-means hybrid strategy

Because of the higher complexity, we will measure K-means hybrid algorithm
with 1 million objects. This number is still considerable when using with this
high complexity strategy.

5.1.2.1 Clustering relative time

On the following graphs we can see the comparison of the clustering phase
time and the total time. For incremental algorithm, this is a very low ratio, so
the results of parallelisation are poor. For a K-means algorithm, however, the
percentage is very high and parallelisation works excellent. The comparison
can be seen on Fig. 5.6.

Figure 5.6: Clustering phase time compared to total running time

5.1.2.2 K-means parallel efficiency

For a smaller data set of 1 million observations, it runs a K-means algorithm
for times seen on Fig. 5.7. The parallel efficiency for this graph can be seen on
Fig. 5.8. We can see that the parallelization is really worth it, as the parallel
effectiveness is closing to one even for running time under one minute (i.e.
the parallel acceleration is close to linear). The results will be even better for
bigger data sets.

5.2 Quality

In this chapter we will discuss the results of the clustering algorithms tested.
We will discuss the quality of the individual results, as well as their overall
error rate and a comparison to on-line catalog.

49

5. Results

Figure 5.7: Real time of K-means hybrid algorithm

Figure 5.8: Parallel efficiency fo K-means algorithm

For most of the result analysis we used the latest version of Aladin [28]
with the new functionality of displaying the HEALPix grid. For the statistical
analysis such as histograms, we used TOPCAT [32].

5.2.1 HEALPix partitioning

On Fig. 5.9 the big pixel used for an individual parallel task is marked by the
red arrow. The individual observations are marked as red circles, the cluster
centers in the current task as yellow squares. The smaller quadrilaterals with
yellow borders can be used for the overlapping region around our red marked
task, as they are clearly bigger than the cluster size.

50

5.2. Quality

Figure 5.9: Aladin view of the HEALPix grid.

On Fig. 5.10 we can see the big pixel used for one task (borders marked
by red dots) and the small quadrilaterals seen are used for overlaps. A line
of these small pixels along the red line are forming the overlapping region.
For the big pixel situated on the bottom of the image we can see the green
marked observations are forming a cluster in it’s overlapping region and need
to be discarded, as they could interact with the cluster in the big pixel above,
without having all of the points needed in the same task.

Another more detailed view can be seen on Fig. 5.10

5.2.1.1 Expectation maximisation

Expectation maximization has poor results with our data and we show it on
the following images. On Fig. 5.11 we can see the initial centers. On fig. 5.12
we can see the convergence of these centers during the iterations. No matter

51

5. Results

Figure 5.10: Clusters in overlapping region.

what parameters where used, the result always merged all of the data into one
big cluster, the differences were only in the speed of convergence to this local
minimum.

The reasons can be inappropriacy of the Expectation maximization al-
gorithm for our data, misinterpretation of the arguments, or in the actual
implementation we used from a 3rd party library, but we couldn’t overcome
them and EM algorithm was discarded as inappropriate for clustering our
data.

52

5.2. Quality

Figure 5.11: Initial centers chosen by random

Figure 5.12: EM convergence

5.2.2 K-means

Several types of a K-means algorithm are displayed on Fig. 5.13, showing
their particular flaws on examples where they misinterpret the clusters. The

53

5. Results

legend can be seen on the right and the arrows are pointing out the cluster
centers this particular version of K-means produced after clustering the data
displayed as red dots.

Figure 5.13: K-means variants comparison

5.2.2.1 Elbow factor importance

On Fig. 5.14 we can see what happens if we specify the elbow factor too high.
The willingness of the algorithm to accept higher number of centers is low and
it ends before it can separate the data correctly.

5.2.2.2 Merging radius too high

On Fig. 5.15 we can see that defining the cluster join radius too high will
have similar effect. It joins multiple clusters together even if they were not
duplicates.

5.2.2.3 Merging radius too low

On the other hand, on Fig. 5.16 we can see that specifying the duplicate join
radius too low (e.g. 100 mas) will cause the duplicate results on edges of
our tasks remain. They will not be marked as duplicates and we result with
cluster centers closer to each other than 1 arcsec and with observations split
among two duplicate clusters.

54

5.2. Quality

Figure 5.14: Elbow factor too high.

Figure 5.15: Cluster join radius too high.

5.2.3 Catalog comparison

Here we will try to cross-match the created catalog with points from which it
was created and see the average distance between the cluster center and it’s

55

5. Results

Figure 5.16: Cluster join radius too low.

members.

The graph on Fig. 5.17 has a pattern of chi-squared distribution. This fact
comes from the way we are computing distances. For one dimension, the term
can be simplified as (x1−x2)

2. It is not important, whether x1 is greater than
x2, this information is lost with powering the subtraction. So the most points
on a histogram won’t indeed be around zero, but around mean accuracy of
the underlying astrometry process, which we stated to be around 0.25 arcsec.

The catalog identifiers are even more precise than the original astrometry,
as they take average coordinates for each cluster, effectively reducing the error.
The fact, that we get this histogram with high quality on-line catalog means
that we are identifying our cluster centers very precisely, as the mean distance
does not shift to higher numbers, but remains below the mean value of the
astrometry accuracy.

On Fig. 5.17 we can see the results of our incremental algorithm for one
hundred million rows cross-matched to 2MASS on-line catalog. It is a histo-
gram of distances between our catalog identifiers and the ones in the on-line
catalog. The red is for using big pixels for parallelization (task size 10), the
blue is for finer ones (task size 15). We can see the results are almost the
same - work parallelization is not costing us quality in the case of incremental
algorithm.

The results of the k-means algorithm are differing very slightly from our
own algorithm and if, they are worse. We can see that on Fig. 5.18 where

56

5.3. Result summary

catalog generation for 1 million observations is compared. The blue histogram
is for distances from K-means centers to SDSS catalog objects and the red
one for distances between the incremental strategy centers to SDSS catalog
objects.

Figure 5.17: Catalog cross-match for incremental strategy

Figure 5.18: Catalog cross-match for incremental and K-means strategy

5.3 Result summary

The result quality of different strategies explained above is highly dependent
on the actual data that is fed into the program. For the tested data our own
incremental strategy provides more accurate results. For more sparse data,
however, we believe that the K-means algorithm will produce better results
and here the parallel acceleration of the whole solution will kick in.

Nevertheless, Both of the methods provide high quality results and work
exactly as expected in the design phase of our project.

57

Conclusion

The goal of this thesis has been met. We finally managed to create a fully
operational solution, which can in small time create a catalog of light curves
of all our observations. The different approach we chose because of the nature
of our data made it very hard, but we succeeded. Our approach can be now
reused in any other similar sky survey where the light curve information was
never mined from it’s data.

In the end, the results of our own clustering algorithm with a linear com-
plexity are even more promising than the ones from sofisticated K-means
algorithms, which are running in polynomial times. But the processing of the
data of our size would not even be possible by these more complex algorithms,
if we didn’t divide the work so efficiently. That means we would not have a
comparison for the strategies and could not state that our linear complexity
clustering algorithm provides very useful results, even if compared to these
more complex algorithms.

There is another huge benefit of our thesis. We effectively created a pattern
that makes clustering or any other processing of spherical data very efficient
even for high complexity algorithms as we are able to slice the data space
into chunks, that can be processed separately, without degrading the result
quality.

59

Bibliography

[1] Škoda, P.; Hroch, F.; Nádvorńık, J.; et al. Employing the Technology of
Virtual Observatory as the Fundamental Framework for the CCD Pho-
tometry Survey. In Astronomical Data Analysis Software and Systems
XXIII, Astronomical Society of the Pacific Conference Series, volume
485, edited by N. Manset; P. Forshay, May 2014, p. 305.

[2] Danish 1.54-metre telescope. April 2015, [Cited 2015-05-03]. Avail-
able from: http://www.eso.org/public/teles-instr/lasilla/
danish154/

[3] Ros, E. High-Precision Differential Astrometry. April 2015, [Cited 2015-
05-03]. Available from: http://www.aoc.nrao.edu/events/VLBA10th/
oral/11-wednesday/ros-ak.ppt

[4] Mgr. Filip Hroch, P. Munipack. April 2015, [Cited 2015-05-03]. Available
from: http://munipack.physics.muni.cz

[5] Zacharias, N.; Finch, C. T.; Girard, T. M.; et al. The Fourth US
Naval Observatory CCD Astrograph Catalog (UCAC4). The Astronom-
ical Journal, volume 145, no. 2, 2013: p. 44. Available from: http:

//stacks.iop.org/1538-3881/145/i=2/a=44

[6] IVOA Interoperability Workshop – Spring 2015. April 2015, [Cited 2015-
05-03]. Available from: http://www.sexten-cfa.eu/en/conferences/
details/54-ivoa-interoperability-workshop--spring-2015.html

[7] Nádvorńık, J. Ondřejov Southern Sky CCD Photometry Survey: Cata-
log Server. Master’s thesis, Czech technical university in Prague, 2013,
[Cited 2015-05-03]. Available from: https://dip.felk.cvut.cz/browse/
details.php?f=F8&d=K102&y=2013&a=nadvoji1&t=bach

[8] Doug Tody, J. M. F. B. T. B. I. B. A. M. P. O. J. S. P. S. R. T. F. V. t. D.
A. L. w. g., Markus Dolensky. IVOA Recommendation: Simple Spectral

61

http://www.eso.org/public/teles-instr/lasilla/danish154/
http://www.eso.org/public/teles-instr/lasilla/danish154/
http://www.aoc.nrao.edu/events/VLBA10th/oral/11-wednesday/ros-ak.ppt
http://www.aoc.nrao.edu/events/VLBA10th/oral/11-wednesday/ros-ak.ppt
http://munipack.physics.muni.cz
http://stacks.iop.org/1538-3881/145/i=2/a=44
http://stacks.iop.org/1538-3881/145/i=2/a=44
http://www.sexten-cfa.eu/en/conferences/details/54-ivoa-interoperability-workshop--spring-2015.html
http://www.sexten-cfa.eu/en/conferences/details/54-ivoa-interoperability-workshop--spring-2015.html
https://dip.felk.cvut.cz/browse/details.php?f=F8&d=K102&y=2013&a=nadvoji1&t=bach
https://dip.felk.cvut.cz/browse/details.php?f=F8&d=K102&y=2013&a=nadvoji1&t=bach

Bibliography

Access Protocol Version 1.1. 2012. Available from: http://arxiv.org/
abs/1203.5725

[9] GAVO DC Software Distribution. April 2015, [Cited 2015-05-03]. Avail-
able from: http://soft.g-vo.org/

[10] Roeser, S.; Demleitner, M.; Schilbach, E. The PPMXL Catalog of Posi-
tions and Proper Motions on the ICRS. Combining USNO-B1.0 and the
Two Micron All Sky Survey (2MASS). The Astronomical Journal, volume
139, no. 6, 2010: p. 2440. Available from: http://stacks.iop.org/1538-
3881/139/i=6/a=2440

[11] Koposov, S.; Bartunov, O. Q3C, Quad Tree Cube – The new Sky-indexing
Concept for Huge Astronomical Catalogues and its Realization for Main
Astronomical Queries (Cone Search and Xmatch) in Open Source Data-
base PostgreSQL. In Astronomical Data Analysis Software and Systems
XV, Astronomical Society of the Pacific Conference Series, volume 351,
edited by C. Gabriel; C. Arviset; D. Ponz; S. Enrique, July 2006, p. 735.

[12] MonetDB. April 2015, [Cited 2015-05-03]. Available from: https://

www.monetdb.org/

[13] sciDB. April 2015, [Cited 2015-05-03]. Available from: http://

www.paradigm4.com/

[14] International Virtual Observatory Alliance. April 2015, [Cited 2015-05-
03]. Available from: http://www.ivoa.net/

[15] LSST Project. April 2015, [Cited 2015-05-03]. Available from: http:

//www.lsst.org/lsst/

[16] Szalay, A.; Gray, J.; Fekete, G.; et al. Indexing the Sphere with
the Hierarchical Triangular Mesh. Technical report MSR-TR-2005-
123, Microsoft Research, September 2005. Available from: http://

research.microsoft.com/apps/pubs/default.aspx?id=64531

[17] Ivanova, M.; Nes, N.; Goncalves, R.; et al. MonetDB/SQL Meets
SkyServer: The Challenges of a Scientific Database. In Proceedings of
the 19th International Conference on Scientific and Statistical Database
Management, SSDBM ’07, Washington, DC, USA: IEEE Computer So-
ciety, 2007, ISBN 0-7695-2868-6, pp. 13–, doi:10.1109/SSDBM.2007.19.
Available from: http://dx.doi.org/10.1109/SSDBM.2007.19

[18] Gray, J.; Szalay, A. S.; Thakar, A. R.; et al. There Goes the Neigh-
borhood: Relational Algebra for Spatial Data Search. CoRR, volume
cs.DB/0408031, 2004. Available from: http://dblp.uni-trier.de/db/
journals/corr/corr0408.html#cs-DB-0408031

62

http://arxiv.org/abs/1203.5725
http://arxiv.org/abs/1203.5725
http://soft.g-vo.org/
http://stacks.iop.org/1538-3881/139/i=6/a=2440
http://stacks.iop.org/1538-3881/139/i=6/a=2440
https://www.monetdb.org/
https://www.monetdb.org/
http://www.paradigm4.com/
http://www.paradigm4.com/
http://www.ivoa.net/
http://www.lsst.org/lsst/
http://www.lsst.org/lsst/
http://research.microsoft.com/apps/pubs/default.aspx?id=64531
http://research.microsoft.com/apps/pubs/default.aspx?id=64531
http://dx.doi.org/10.1109/SSDBM.2007.19
http://dblp.uni-trier.de/db/journals/corr/corr0408.html#cs-DB-0408031
http://dblp.uni-trier.de/db/journals/corr/corr0408.html#cs-DB-0408031

Bibliography

[19] MonetDB R integration. April 2015, [Cited 2015-05-03]. Available from:
https://www.youtube.com/watch?v=iPJJmRxxkZ0

[20] Górski, K. M.; Hivon, E.; Banday, A. J.; et al. HEALPix: A Framework
for High-Resolution Discretization and Fast Analysis of Data Distributed
on the Sphere. volume 622, Apr. 2005: pp. 759–771, doi:10.1086/427976,
astro-ph/0409513.

[21] Apache Spark. April 2015, [Cited 2015-05-03]. Available from: https:

//spark.apache.org/

[22] nVidia CUDA Toolkit. April 2015, [Cited 2015-05-03]. Available from:
http://www.nvidia.com/object/cuda home new.html

[23] OpenMP. April 2015, [Cited 2015-05-03]. Available from: http://

openmp.org/wp/

[24] The R Project for Statistical Computing. April 2015, [Cited 2015-05-03].
Available from: http://www.r-project.org/

[25] Eddelbuettel, D.; Francois, R. Rcpp: Seamless R and C++ Integration.
Journal of Statistical Software, volume 40, no. 8, 4 2011: pp. 1–18, ISSN
1548-7660. Available from: http://www.jstatsoft.org/v40/i08

[26] Kanungo, T.; Mount, D. M.; Netanyahu, N. S.; et al. An efficient k-means
clustering algorithm: Analysis and implementation. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, volume 24, no. 7, 2002: pp.
881–892.

[27] Sanderson, C. Armadillo: An Open Source C++ Linear Algebra Lib-
rary for Fast Prototyping and Computationally Intensive Experiments.
In NICTA, Australia, oct 2010.

[28] Bonnarel, F.; Fernique, P.; Bienaymé, O.; et al. The ALADIN interact-
ive sky atlas. A reference tool for identification of astronomical sources.
volume 143, Apr. 2000: pp. 33–40, doi:10.1051/aas:2000331.

[29] Massif: a heap profiler tool for Valgrind. April 2015, [Cited 2015-05-03].
Available from: http://valgrind.org/docs/manual/ms-manual.html

[30] Massif Visualizer. April 2015, [Cited 2015-05-03]. Available from: https:
//projects.kde.org/projects/extragear/sdk/massif-visualizer

[31] Starlink SPLAT-VO. April 2015, [Cited 2015-05-03]. Available from:
http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/

63

https://www.youtube.com/watch?v=iPJJmRxxkZ0
astro-ph/0409513
https://spark.apache.org/
https://spark.apache.org/
http://www.nvidia.com/object/cuda_home_new.html
http://openmp.org/wp/
http://openmp.org/wp/
http://www.r-project.org/
http://www.jstatsoft.org/v40/i08
http://valgrind.org/docs/manual/ms-manual.html
https://projects.kde.org/projects/extragear/sdk/massif-visualizer
https://projects.kde.org/projects/extragear/sdk/massif-visualizer
http://star-www.dur.ac.uk/~pdraper/splat/splat-vo/

Bibliography

[32] Taylor, M. B. TOPCAT STIL: Starlink Table/VOTable Processing Soft-
ware. In Astronomical Data Analysis Software and Systems XIV, Astro-
nomical Society of the Pacific Conference Series, volume 347, edited by
P. Shopbell; M. Britton; R. Ebert, Dec. 2005, p. 29.

64

Appendix A

Acronyms

BAT Binary Association Table

DaCHS Data Center Helper Suite

EM Expectation maximization

GAVO German Astrophysical Virtual Observatory

GPU Graphical Processing Unit

HEALPix Hierarchical Equal Area isoLatitude Pixelization of a sphere

HTM Hierarchical Triangular Mesh

IVOA International Virtual Observatory Alliance

LSST Large Synoptic Survey Telescope

MPI Message Passing Interface

OSPS Ondřejov Southern Sky Photometry Survey

Q3C Quad Tree Cube

SMC Small Magellanic Cloud

PL/SQL Procedural Language - Structured Query Language

PPMXL Catalog of positions and proper motions on the ICRS

UCAC4 The Fourth US Naval Observatory CCD Astrograph Catalog

UDF User Defined Function

VO Virtual Observatory

65

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

src...implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

67

Appendix C

Source codes

C.1 buildChunksFromCoordinates

1 i n t ChunkOperator : : buildChunksFromCoordinates (in t64 base1Nside ,
in t64 base2Nside) {

2

3 // the a l gor i thm needs a vec t o r o f p o i n t i n g s to work , so we
need to do some convers ion

4 vector<point ing> obs e rva t i on s ;
5 f o r (s i z e t i = 0 ; i < obsCoords−>s i z e () ; i++) {
6 obs e rva t i on s . push back (po in t ing ()) ;
7 obs e rva t i on s [i] . theta = (90 − (∗ obsCoords) [i] . dec) ∗ M PI

/ 180 ; // c o l a t i t u d e in radian , some func t i on o f
o b s e r v a t i on s d e g r e e s [i]

8 obs e rva t i on s [i] . phi = (∗ obsCoords) [i] . ra ∗ M PI / 180 ; //
l on g i t u d e in radian , some func t i on o f
o b s e r v a t i on s d e g r e e s [i]

9 }
10 s i z e t noObservat ions = obsCoords−>s i z e () ;
11 HEALPix Base2 base1 (base1Nside , NEST, SET NSIDE) ;
12 HEALPix Base2 base2 (base2Nside , NEST, SET NSIDE) ;
13

14 f o r (s i z e t i = 0 ; i < noObservat ions ; i++) {
15 // f i r s t see in t o which job the ob s e r va t i on f a l l s
16 i n t64 i d x l o r e s = base1 . ang2pix (ob s e rva t i on s [i]) ;
17 (∗ obs InCe l l) [i d x l o r e s] . push back (&(∗ obsCoords) [i]) ;
18 c o o r d s b y p i x i t got = obsInOverlap−>f i n d (i d x l o r e s) ;
19 i f (got == obsInOverlap−>end ()) {
20 (∗ obsInOverlap) [i d x l o r e s] = vector<Coordinate ∗> () ;
21 }
22

23 // now check whether the surroundings o f the ob s e r va t i on
touch ne ighbour ing j o b s

24 i n t64 i d x h i r e s = base2 . ang2pix (obs e rva t i on s [i]) ;
25

26 f i x a r r <int64 , 8> ne ighbors ;
27 base2 . ne ighbors (i d x h i r e s , ne ighbors) ;

69

C. Source codes

28 f o r (s i z e t j = 0 ; j < 8 ; ++j) {
29 i f (ne ighbors [j] >= 0) {
30 i n t64 n b i d x l o r e s = base1 . ang2pix (base2 . pix2ang (

ne ighbors [j])) ;
31

32 i f (n b i d x l o r e s != i d x l o r e s) { // touches a
neighbour c e l l

33 i f ((∗ obsInOverlap) [n b i d x l o r e s] . empty () | |
34 (∗ obsInOverlap) [n b i d x l o r e s] . back () !=

&(∗obsCoords) [i]) {
35 (∗ obsInOverlap) [n b i d x l o r e s] . push back (&(∗

obsCoords) [i]) ;
36 }
37 }
38 }
39 }
40 }
41 re turn 0 ;
42 }

70

	Introduction
	Motivation
	Data structure
	Our solution

	Review of possible solutions, prove of concepts
	General background
	Database background
	Pure SQL solution
	Array Databases
	Apache Spark
	C++ application

	Design
	MPI vs OpenMP
	Design details
	Functional requirements
	Application model
	Time Complexity
	Scalability

	Realisation
	Implementation
	Integration

	Results
	Time complexity
	Quality
	Result summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	Source codes
	buildChunksFromCoordinates

