
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Master’s thesis

Enhancing Availability of Services in

Multi-Tenant Environment Using

Software-Defined Networking

Bc. Martin Klepáč

Supervisor: Ing. Tomáš Hégr

29th April 2015

Acknowledgements

I would like to thank my supervisor, Ing. Tomáš Hégr, and the entire SDNLabs.cz
organisation for their support during the past 6 months.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 29th April 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Martin Klepáč. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Klepáč, Martin. Enhancing Availability of Services in Multi-Tenant Environ-
ment Using Software-Defined Networking. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2015.

Abstrakt

Raṕıdny nárast klientskych požiadavkov na poskytovatel’ov služieb dátového
centra pŕıpadne cloudu sa ocitá v rozpore s tradičnými, málo pružnými kon-
ceptami fungovania siet́ı. V záujme zachovania flexibility, ktoré dátové centrá
svojim zákazńıkom sl’ubujú, je potrebné odstránit’ tento rozpor, napŕıklad
s využit́ım inovat́ıvneho konceptu softvérovo definovaných siet́ı. Táto diplo-
mová práca využ́ıva tento koncept pri snahe zlepšit’ proces živej migrácie vir-
tuálnych strojov tak, aby nedostupnost’ služieb behom migrácie bola mini-
malizovaná. Práca je zameraná na oblast’ malých až stredne vel’kých dá-
tových centier. Z tohto dôvodu sú výstupy práce založené na reálnych mode-
loch komunikácie v danom prostred́ı. Výsledkom tejto práce a implementácie
pŕıslušného programu je zistenie, že latencia a stratovost’ paketov sa vd’aka
proakt́ıvnemu pŕıstupu k riadeniu siete dokáže mierne zńıžit’ v porovnańı
s klasickým pŕıstupom založeným na L2 preṕınańı, č́ım dochádza k zvýše-
niu dostupnosti služieb bežiacich na virtuálnom stroji, ktorý podstupuje živú
migráciu.

Klúčové slová SDN, softvérovo definované siete, živá migrácia, ONOS,
SDN kontrolér, virtuálny switch, Open vSwitch, overlay siete, orchestrátor,
OpenNebula

ix

Abstract

The immense growth of client requirements imposed on data center and cloud
providers results in a conflict with traditional networking concepts lacking the
required agility. In order to promote flexibility, which data center providers
promise to their clients, this discrepancy needs to be resolved, for instance
by employing the novel concept of Software Defined Networking (SDN). This
diploma thesis utilises this concept in order to minimise service downtime while
performing live virtual machine migration. The work is aimed at small/medium-
sized data centers and hence the findings are based on real communication
patterns found within such environments. The results of the thesis and imple-
mented application show that latency and packet loss is slightly diminished
thanks to the proactive approach taken during network topology changes when
compared to the traditional approach based on L2 forwarding. Hence, the
overall service availability within the virtual machine undergoing live migra-
tion is enhanced.

Keywords SDN, software defined networking, live VM migration, ONOS,
SDN controller, virtual switch, Open vSwitch, overlay networks, orchestrator
system, OpenNebula

x

Contents

Introduction 1

1 State-of-the-art 3
1.1 SDN . 3
1.2 Overlay networking protocols 9
1.3 Virtual switches . 16
1.4 Physical switches . 24

2 Analysis and design 27
2.1 Requirements . 29
2.2 Live VM migration discussion 29
2.3 Application design . 30
2.4 Technology choice . 35

3 Implementation 37
3.1 Inter-component communication 37
3.2 Class diagram . 43
3.3 Description of respective classes 46

4 Evaluation 51
4.1 Lab environment . 51
4.2 Methodology . 55
4.3 Results . 60

Conclusion 67

Bibliography 69

A Acronyms 75

B Contents of enclosed CD 79

xi

List of Figures

1.1 SDN high-level architecture . 5

1.2 ONOS architecture . 8

1.3 Sample overlay network using VXLAN 11

1.4 Unicast VXLAN using Nexus 1000V 13

1.5 VMware NSX for multiple hypervisors architecture 14

1.6 Comparison of L2 forwarding and L3 routing within NSX 15

1.7 Virtual switch schematic diagram 17

1.8 VLAN sprawl due to vMotion requirement 18

1.9 vSwitch loop prevention due to broadcast generated by a VM . . . 19

1.10 vDS schematic diagram . 20

1.11 Nexus 1000V schematic diagram 21

1.12 Open vSwitch architecture and packet flow diagram 23

2.1 Changes in CAM tables due to live VM migration within a single
tenant environment . 28

2.2 VM state diagram . 32

2.3 Use case diagram . 33

2.4 Sequence diagram . 34

3.1 Visual representation of data passed in started message 40

3.2 Flow of information between all components 43

3.3 Sequence diagram corresponding to the implementation 44

3.4 Class diagram . 45

4.1 Leaf and spine topology prepared for the application evaluation . . 53

4.2 Actual networking topology used for the application evaluation . . 56

4.3 First test case . 58

4.4 Second test case . 58

4.5 Third test case . 59

4.6 SDN: VM acting as iperf/flowping client against a static VM (1st
use case) . 61

xiii

4.7 Non-SDN: VM acting as iperf/flowping client against a static VM
(1st use case) . 61

4.8 SDN: VM acting as iperf/flowping server against a static VM (2nd
use case) . 62

4.9 Non-SDN: VM acting as iperf/flowping server against a static VM
(2nd use case) . 62

4.10 SDN: VM acting as iperf/flowping client against an external client
(3rd use case) . 63

4.11 Non-SDN: VM acting as iperf/flowping client against an external
client (3rd use case) . 63

xiv

List of Tables

1.1 Comparison of open source SDN controllers (as of February 2015) 8
1.2 Comparison of overlay networking protocols 15
1.3 Comparison of virtual switches . 24

3.1 Versions of SW components . 37

4.1 Switches employed in the application evaluation 52
4.2 Description of available servers . 55
4.3 Description of tools employed during the application evaluation . . 57
4.4 First test case performance comparison 64
4.5 Second test case performance comparison 64
4.6 Third test case performance comparison 65

xv

Introduction

In the last couple of years business has largely focused on improving its effi-
ciency. In terms of IT and its infrastructure, a transition from maintaining a
dedicated server room with a number of physical hosts to running virtualised
servers hosted by a cloud provider has taken place. Besides higher efficiency
and thus financial savings there are other reasons for this change, such as
accountability in terms of service level agreement between the two parties (i.e.
the customer and the cloud provider), possible lack of in-depth knowledge of
local IT personnel on the one hand and a degree of trust in the cloud provider
with multiple positive references from large companies on the other hand.

The set of requirements held by clients affect how cloud providers organise
their internal data center networking topology. Naturally, the cloud providers
need to take multi-tenancy into account, which means that they allow for shar-
ing of their infrastructure by multiple clients simultaneously without exposing
any tenant to information disclosure.

The requirement of flexibility and scalability (for instance, expressed by
building new virtual machines or connecting VM instances to a new network
virtually instantaneously) must also be considered when employing a particu-
lar network design.

Networking has been relatively stable in the past few years, as it is still
based on TCP/IP stack. Core principles of traffic forwarding (switching and
routing at layers 2 and 3 respectively) are well documented and have not
changed whatsoever. However, networking has long been known for burden
of configuring every device separately. Each device, be it a switch or router,
represents an independent instance with its own logic. At some time, unlimited
scalability as proposed by some data center providers may eventually discover
its limits due to the nature of networking device operation as described above
[1].

The scalability problem defined in the previous paragraph is aimed to be
solved by an emerging Software Defined Networking (SDN) paradigm. The
purpose of the thesis is to improve service availability in SDN-based data

1

Introduction

centers mostly in conjunction with an orchestrator system, which is responsible
for providing and keeping track of virtual machines on a hypervisor level. The
work is aimed to fit into small or medium-sized data centers. The thesis will
be divided into four main chapters, which will now be briefly described.

Chapter 1 will tackle the principles of SDN, evolution of virtual switches
operating within the hypervisor host and networking protocols which cope
with the multi-tenancy requirement in a more scalable fashion when compared
to traditional VLAN-based approaches.

Chapter 2 will include an analysis of the subsequent implementation part.
Based on the conducted research in the first chapter regarding SDN controllers,
a combination of SDN controller and orchestrator system will be designated.
A set of functional and non-functional requirements will be raised.

Chapter 3 will focus on the implementation itself on the basis of choice
made in the previous chapter. Some pieces of the code will be presented in
this chapter.

Chapter 4 will include a description of the evaluation methodology. Quan-
titative assessment of the resulting application in data center-like lab envi-
ronment will be carried out. Its results will be compared to the traditional
non-SDN-based approach.

Last but not least, based on the evaluation in chapter 4, conclusion will
attempt to provide definitive results and will aim to define the extent to which
SDN-based networks are a feasible alternative to currently employed networks.

2

Chapter 1

State-of-the-art

This chapter will provide an introduction into the concept of software-defined
networks. Since the implementation of such a concept requires changes through-
out the entire networking infrastructure, multiple related areas including but
not limited to overlay networking protocols and virtual switches will be tack-
led.

1.1 SDN

The concept of software-defined networking attempts to fundamentally change
the world of networking, predominantly in data centers. SDN as advocated by
Open Networking Foundation is characterised by a separation of control and
data planes within networking devices [2]. Every single networking device has
to perform at least the following activities:

• process traffic

• interact with the neighboring environment

• provide management access

More formally, every device consists of three planes – data plane is respon-
sible for traffic forwarding (be it switching at L2 or routing at L3), control
plane runs a variety of protocols such as dynamic routing protocols (OSPF,
BGP), neighbor discovery protocols (CDP, LLDP) or link aggregation proto-
cols (LACP, PAgP). Last but not least, management plane enables admini-
strators to configure the device via CLI or monitor its health via SNMP, for
instance [3].

Nowadays, most enterprise-level devices perform data plane functionality
within dedicated hardware, whereas control plane protocols are handled in
software by CPU. In other words, moving control plane away from the net-
working device should relieve the processor of switch/router in question and

3

1. State-of-the-art

allow the device to focus on traffic forwarding only. Furthermore, the transi-
tion of control plane functionality to an external entity should provide a unified
view on the entire networking topology instead of every device possessing a
partial view. On the other hand, the existence of a centralised controller,
which is in charge of providing control plane functionality to all connected
devices, brings about the problem of single point of failure (SPOF).

However, the most valuable advantage of SDN concept is the ability to
programatically change the behaviour of multiple devices irrespective of their
vendor at once, thus providing a degree of abstraction above the underlying
networking infrastructure. This is especially beneficial in large data centers
with multi-tenancy in mind, as business requirements should no longer be
impeded by their lengthy realisation.

Figure 1.1 shows a high-level architecture of SDN environment. The bot-
tom layer consists of network devices, which perform actual traffic forwarding
within their local data planes. The forwarding rules are, however, downloaded
from the SDN controller via controller’s southbound API. This action is usu-
ally performed by OpenFlow protocol. The SDN controller may communicate
with other applications such as an orchestrator system (OpenStack, VMware
vCloud Director), which keeps track of currently active virtual machines within
the tenant’s environment. The orchestrator may thus provide a list of IP and
MAC addresses for which the controller creates appropriate forwarding rules
(for instance, forward all traffic among VMs within a given subnet) and finally
downloads them to the physical infrastructure. From the perspective of the
controller, applications consume its northbound API.

The ideas behind SDN are far from being novel. In fact, twenty years ago
Open Signaling group believed that ”a separation between the communication
hardware and control software was necessary, but challenging to realise” [4].
Their attempt led to the specification of General Switch Management Protocol
(RFC 1987) [5], but the work has been discontinued since 2002. Therefore, it
is worth contemplating why a similar concept has failed in the past and what
has changed ever since.

Since a single SDN controller represents a SPOF, multi-controller deploy-
ment is more preferrable. Single controller solution may also result in a signi-
ficant latency between edge networking devices and the controller and hence
slower deployment of forwarding rules. In the current era of horizontal scaling,
scale-out architecture in which every controller is responsible for its zone or
region appears to be more favourable when compared to vertical scaling. The
drawback of scale-out architecture is state transition – when one controller
becomes unavailable, another controller must take his place.

Another obstacle to SDN deployment regards capabilities of the physi-
cal hardware. As OpenFlow forwarding entries are not necessarily limited to
traditional destination L2/L3 addresses only (in fact, OpenFlow entries may
match almost any field from layers 2 to 4), this implies greater TCAM space
consumption within physical devices. Excessive packet punting (effectively,

4

1.1. SDN

Figure 1.1: SDN high-level architecture

processing of unknown packets by CPU) and subsequent propagation of such
traffic to the controller may bring network operation to a halt as well. More in-
formation regarding SDN adoption in physical networks is provided in chapter
1.4.

1.1.1 Comparison of selected SDN controllers

As the entire SDN industry is rapidly growing, no standard regarding the
functionality of an SDN controller has yet been proposed. Although Open-
Flow is considered as the de facto standard of communication between control
and data planes, northbound API among SDN controllers differs significantly.
Therefore, the following section will attempt to compare several SDN con-
trollers from multiple perspectives.

Floodlight

Project Floodlight is an open source SDN controller sponsored by Big Switch
Networks. It has originally been created as a fork of another SDN controller
called Beacon. Floodlight is written in Java with support of both physical
and virtual switches in mind. In terms of southbound API, its latest 1.0
release supports both major OpenFlow versions – 1.0 and 1.3. Northbound
API is exposed via REST. Floodlight supports both proactive and reactive

5

1. State-of-the-art

flow learning. While in reactive mode OpenFlow-enabled switch contacts the
controller when the first packet within a flow arrives on its port and then
waits for the controller’s response, in proactive mode the controller downloads
relevant flow entries to the device in advance, thus minimising delay.

Although Floodlight is capable of providing multiple networks, it lacks
support of overlay protocols (notably VXLAN) as described in chapter 1.2.
Distributed scale-out architecture is not supported either, so Floodlight con-
troller represents a SPOF. On the other hand, the project documentation is
clear and contains rich examples of both northbound and additional modules
(such as stateless firewall) API.

The approach to Floodlight controller is well characterised by a former
CEO of Big Switch Networks Guido Appenzeller who claims that ”the enter-
prise version that is the Big Network Controller adds a lot of functionality that
is wrapped around Floodlight” [6]. Therefore, Floodlight controller is rather
suited for a proof-of-concept solution instead of production environment.

OpenDaylight

OpenDaylight is a complex SDN controller supported by virtually all renowned
vendors within the networking industry. The project is currently managed by
The Linux Foundation, which attempts to make OpenDaylight ”a core compo-
nent within any SDN architecture” [7]. The current version of OpenDaylight
is codenamed Helium.

Since OpenDaylight acts as a framework for SDN deployment, it supports
a large variety of protocols in southbound direction (OpenFlow 1.0 and 1.3,
XMPP, Netconf among others). In terms of northbound API, applications are
allowed to consume REST and OSGi interfaces.

HA-wise, several instances of OpenDaylight controller may act as a single
logical controller due to the east-west state synchronisation among the con-
trollers. OpenFlow-enabled switches in such an environment are required to
connect to multiple controller instances. OpenFlow 1.2 specifies two modes of
multi-controller operation: equal (all controllers have read-write access to the
device) or master-slave, in which the access is limited to a single controller at
any time [8].

OpenDaylight gives network administrators an opportunity to include nu-
merous modules. Virtual Tenant Network, for instance, is an application that
allows users to define a virtual network and subsequently automatically maps
the virtual network into the underlying infrastructure using SDN control plane
[9].

Unlike Floodlight, which lacks overlay network support, OpenDaylight pro-
vides an optional OpenDOVE plugin, which realises the multi-tenancy require-
ment via VXLAN encapsulation method [10]. It includes a separate control
plane called DOVE Connectivity Server, so it resembles unicast VXLAN as
described in chapter 1.2.3.

6

1.1. SDN

In summary, OpenDaylight provides a truly modular implementation of
an SDN controller. In its first Hydrogen release OpenDaylight was offered in
three editions (base, virtualisation, service provider), which emphasised the
magnitude of its possible deployments.

ONOS

ONOS, SDN operating system founded by ON.Lab and released under Apache
2.0 license, is specifically built for carrier and service providers, thus focusing
on HA, distributed scale-out architecture and performance [11, p. 1].

ONOS, similarly to OpenDaylight, provides its core services in a dis-
tributed fashion. ONOS may be deployed on a cluster of servers together
forming a single platform. Hence, a failure of a single instance of ONOS con-
troller should be transparent to the underlying networking device, which for
the time being utilises another controller instance.

In terms of northbound API, ONOS supplies two levels of abstraction. The
Intent Framework allows an application to request a service without knowing
how the actual service will be provisioned. An intent such as connecting two
hosts is translated into instructions compiled and downloaded to the under-
lying network devices. The other abstraction layer – Global Network View
provides an insight into the operational status of the network [11, p. 5-6].

Southbound API enables ONOS to control underlying devices using mul-
tiple protocols, including OpenFlow 1.0, 1.3 and Netconf. ONOS is in south-
bound direction protocol-agnostic, as the details of protocol through which
communication between the controller and the device takes place, are ab-
stracted using adapter API.

The high-level architecture of ONOS is depicted in Figure 1.2. Since Open-
Daylight provides similar abstraction layers as ONOS, the figure can be viewed
as a general architecture of a robust, scalable SDN controller.

Since ONOS is not primarily focused on data center needs, it is hardly
surprising that it does not support overlay networking protocols, specifically
VXLAN. Instead, a suitable use case for ONOS as proposed by ON.Lab is
network functions virtualisation (NFV), which can be characterised as decou-
pling specific hardware boxes from the software functionality. The purpose
of NFV is to deploy services on generic x86 boxes within virtual machines.
NFV differs from traditional virtualisation by connecting multiple VMs into a
single building block, thus minimising management overhead. ONOS thanks
to its northbound Intent Framework should be considered an ideal candidate
for creating such blocks and mapping them to the underlying hardware [12,
p. 5].

To sum up, ONOS in many respects resembles OpenDaylight (architecture,
scale-out approach), but due to its recent public release it may lack some
features, which OpenDaylight has managed to integrate within the framework.

7

1. State-of-the-art

Figure 1.2: ONOS architecture

Floodlight Open Daylight Onos

Current
version

1.0 Helium-SR2
(2nd release)

1.0.1

Release date December 2014 January 2015 January 2015

Implemented
in

Java Java Java

Documentation precise and con-
cise

difficult to follow satisfactory

Southbound
API

OF 1.0, OF 1.3 OF 1.0, OF 1.3,
XMPP, Netconf
etc.

OF 1.0, OF 1.3,
Netconf

Nortbound
API

REST OSGi, REST REST

Primary use
case

proof-of-
concept, small
environment

versatile (mostly
data center)

service/carrier
providers

Table 1.1: Comparison of open source SDN controllers (as of February 2015)

8

1.2. Overlay networking protocols

Summary of SDN controllers

Naturally, the list of SDN controllers as provided above is not exhaustive.
There are other open source alternative solutions such as Ryu (Python-based),
Maestro (Java-based) or Trema (C/Ruby-based) [13]. Not to mention the fact
that virtually every major vendor has implemented an own proprietary con-
troller such as VAN (HP), ProgrammableFlow (NEC), ONE (Cisco) and many
others. Based on the lengthy list of controllers, SDN business has developed
rapidly in the past few years, but no standard focusing on SDN controllers
has yet been proposed and hence every vendor/community approaches the
problem from a different perspective.

Table 1.1 compares and contrasts three analysed solutions. While Flood-
light is a relatively light product in terms of available features, OpenDaylight
and ONOS are more robust, scalable and thanks to their levels of abstrac-
tion more modular. All three products provide RESTful northbound API,
support of OpenFlow up to version 1.3 in the southbound direction, but only
OpenDaylight contains a truly scalable overlay networking module (VXLAN).

1.2 Overlay networking protocols

An overlay network can be characterised as a virtual network consisting of
nodes and logical links built on top of an existing network [14]. VoIP can
be considered as an example of overlay network, as it connects end-devices
(VoIP phones and gateways) using a cheap, commonplace IP network (i.e.
the Internet) as the underlay technology.

In terms of SDN, we will be using virtual layer 2 segments built on top of
existing IP-based (layer 3) networks. This gives users the impression of being
connected using a simple L2 switch, although the communicating devices may
actually be several hops from each other. Overlay networks are built to provide
a scalable alternative to regular VLANs. However, the transition from VLAN-
based approach to overlay networks requires a large part of logic being moved
towards the network edge, where hypervisors (and hence virtual switches)
reside – subchapter 1.3 contains more information about this transition.

This subsection will start by exploring the drawbacks of traditional L2
switching represented by VLAN-based solutions. Later, three novel overlay
protocols, namely multicast VXLAN, unicast VXLAN and VMware NSX will
be briefly described.

1.2.1 L2 switching using VLANs

VLANs have been the most prevalent overlay technology for the past 15 years,
but their scalability issues in large data centers act as an incentive to create
more robust solutions.

9

1. State-of-the-art

Firstly, VLAN ID within an encapsulated Ethernet frame is limited to 12
bits, so no more than 4096 VLANs can be provided within a data center.
Furthermore, due to the lack of TTL-like feature, L2 switching is reliant on
STP, which may prevent from an effective link usage in exchange for a loop-
less environment – particularly when devices are interconnected using multiple
physical links.

Additionally, flooding of broadcast, unknown unicast and multicast traffic
(abbreviated as BUM) is an inherent part of L2 switching. This effectively
means that every single broadcast generated by a device within a VLAN must
be processed by all other devices within the same VLAN. The same applies to
multicast before the switch manages to build a table of subscribers for a given
multicast address using IGMP snooping, for instance. Unknown unicasts are
handled by ARP, which yet again results in querying every device within the
VLAN. Thus, every L2 segment represents a single failure domain because a
failure of one host (be it a virus or a malicious user) may impact other hosts
within the same segment.

Last but not least, unlike L3, L2 does not provide any addressing hierar-
chy and thus switch must note down MAC addresses of all devices for which
forwarding should be performed in order to prevent from unnecessary ARP
queries.

All in all, VLANs do not scale adequately for large data center needs. Not
only their number is limited, but number of hosts within a VLAN is finite as
well. However, they represent a traditional and well-supported traffic isolation
mechanism befitting most other environments.

1.2.2 Multicast VXLAN

VXLAN in general is an overlay encapsulation method, which wraps original
Ethernet frame with VXLAN and UDP headers. VXLAN header defines a
24-bit VXLAN ID, which is used for traffic separation similarly to VLAN
tags.

While the original IP and Ethernet headers give VMs the impression of
being connected to a regular L2 switch, VXLAN and UDP headers initially
provided by a VXLAN module in a virtual switch logically connect virtual ma-
chines residing on two or more hypervisors. All VXLAN traffic is subsequently
encapsulated so that TCP/IP stack on the underlay is capable of transporting
VXLAN frames between multiple hypervisors. A sample network consisting
of two hypervisors connected by an overlay network is depicted in Figure 1.3.

In order to send a packet from VM 1 hosted by server A to remote VM 2
hosted by server B, several questions must be answered. These are [15]:

• How does VM 1 find out the MAC address of VM 2? In other words,
how is ARP request propagated to other virtual machines within the
same VXLAN subnet?

10

1.2. Overlay networking protocols

Figure 1.3: Sample overlay network using VXLAN

• How does hypervisor A determine the IP address of target hypervisor
B to which encapsulated VXLAN frames should be sent? How do VM
destination MAC addresses map to virtual tunnel endpoints (VTEPs)?

Multicast VXLAN as the name suggests uses IP multicast as a response
to both of these questions. It maps a VXLAN segment to an IP multicast
address. Instead of flooding BUM frames using L2, it performs flooding using
L3. Upon the start of a VM, hypervisor sends an IGMP join to subscribe
to a given multicast address. Hence, BUM traffic is sent to all hypervisors
listening to a given multicast address. Using dynamic learning mechanisms,
hypervisors gradually build their MAC-to-VTEP mappings to reduce further
ARP queries.

Multicast VXLAN implies that IP multicast routing must be enabled
throughout the underlay network. This requirement together with flooding
of BUM traffic similarly to traditional bridged networks means that a more
scalable solution will be required.

11

1. State-of-the-art

1.2.3 Unicast VXLAN

Unicast VXLAN unlike its multicast-based predecessor contains a control
plane, which significantly reduces BUM flooding and no longer requires an
IP multicast routing in the underlay – a major obstacle to multicast-based
VXLAN deployment. However, unlike its competitor, which has been stan-
dardised since August 2014 [16], unicast VXLAN is a proprietary solution
delivered by VMware and Cisco in new releases of Nexus 1000V distributed
switch [17].

Nexus 1000V consists of two subcomponents – distributed forwarding plane
within every hypervisor (VEM) and a centralised control plane (VSM). More
information regarding Nexus 1000V will be provided in subchapter 1.3.3. Ne-
vertheless, diagram 1.4 presents both above-mentioned subcomponents within
a unicast-based overlay virtual network. In contrast to the generic VXLAN
scheme in Figure 1.3, control plane is an inherent part of unicast VXLAN.

When a VM becomes active, local VEM reports this change to VSM,
which in turn notifies other VEMs within the same VXLAN segment. If MAC
address of the newly activated VM is propagated from VEM to VSM and
subsequently to all other VEMs, unicast VXLAN operates in MAC distribution
mode [17]. By reporting MAC addresses of respective VMs, VSM delivers a
complete MAC-to-VTEP mappings, so unknown unicasts are no longer present
within the network (i.e. no ARP requests). When it comes to multicast and
broadcast traffic, local VEM is supposed to provide packet replication to every
VEM with an active VM within the given VXLAN segment [18].

In summary, unicast VXLAN as implemented in Nexus 1000V provides
a more scalable solution compared to multicast VXLAN mostly due to the
fact that IP multicast routing is no longer a necessity and unknown unicast
flooding is eradicated via the means of control plane. Thus, the only scala-
bility limitation is the number of VEMs per VSM (128 as of February 2015
[17]). Even greater degree of scalability could be achieved via BGP-based
communication between multiple instances of VSM (scale-out architecture)
[19].

1.2.4 VMware NSX

VMware NSX or formerly known as Nicira NVP represents yet another overlay
networking solution, which provides L2 forwarding. It is actually offered in
two distinct variants – NSX for multi-hypervisor environment and NSX for
vSphere [20]. While the former heavily relies on Open vSwitch (OVS) (later
described in subchapter 1.3.4), NSX for vSphere utilises the functionality of
virtual distributed switch (as tackled in section 1.3.2) already present within
vSphere environment. NSX similarly to unicast VXLAN possesses a control
plane. Throughout the rest of the chapter NSX for multiple hypervisors will
be discussed and will simply be referred as NSX.

12

1.2. Overlay networking protocols

Figure 1.4: Unicast VXLAN using Nexus 1000V

Every hypervisor within NSX environment runs OVS with OpenFlow sup-
port. Every two hypervisor virtual switches sharing a common VXLAN seg-
ment are interconnected using a VXLAN tunnel among other possible encap-
sulation methods such as GRE or STT. Hence, a full mesh of tunnels results in
the fact that every two hypervisors within the same VXLAN segment appear
to be directly connected. Virtual switches also establish a connection to the
NSX controller, which determines the behaviour of Open vSwitches via Open-
Flow (flow control) and ovsdb-proto (tunnel configuration) protocols [21]. A
simplified picture of NSX components is provided in Figure 1.5.

OpenFlow entries downloaded by the NSX controller into respective Open
vSwitches bind VM destination MAC address with the tunnel endpoint. For
instance, if VM 1 attempts to communicate with VM 2, NSX controller pro-
vides OVS within hypervisor A with a forwarding rule towards A-B tun-
nel. This corresponds to MAC-to-VTEP mappings defined in unicast-based
VXLAN. Similarly, flooding of multicast and broadcast traffic may be han-
dled by packet replication by the source hypervisor. Unlike unicast VXLAN
in MAC distribution mode, NSX still performs unknown unicast flooding. For
more complex environments NSX supports BUM flooding through a dedicated
service node. In such a deployment, a single packet representing BUM traffic
is sent by the source hypervisor towards the service node, which in turn sends
replicated packets to all required OVS tunnel endpoints.

Besides L2 switching capability, NSX supports routing between multiple
VXLAN segments (i.e. L3 forwarding). Routing may be performed by in-
dividual Open vSwitches which together form a distributed router or via a
dedicated gateway node [22]. When a VM wants to communicate with an-

13

1. State-of-the-art

Figure 1.5: VMware NSX for multiple hypervisors architecture

other VM from a different subnet, it sends traffic to its default gateway, which
is the local OVS. Local Open vSwitch then forwards the packet towards under-
lay IP address corresponding to the remote OVS. Remote OVS then delivers
the packet to its directly connected VM and sends the response back to the
originating OVS.

Figure 1.6 summarises both L2 and L3 traffc forwarding. While A-C tun-
nel is employed for intra-segment forwarding between virtual machines 1 and
3, hosts A and B are not connected via a tunnel, as they do not share a com-
mon VXLAN segment. Hence, for successful communication between virtual
machines 1 and 2 local Open vSwitches acting as default gateways for directly
connected VMs must know full topology information, including ARP entries
and MAC-to-underlay-IP mappings for all tenant’s VMs so that OVS within
host A is capable of routing the packet towards OVS within host B and vice
versa.

In summary, NSX provides a richer set of features in comparison to unicast
VXLAN (distributed L3 routing, gateways to the external non-VXLAN world,
service nodes), not to mention the fact that NSX can be employed in both
open source OVS and proprietary vSphere environment alike.

14

1.2. Overlay networking protocols

Figure 1.6: Comparison of L2 forwarding and L3 routing within NSX

VLANs Multicast
VXLAN

Unicast
VXLAN

NSX

Standard IEEE
802.1Q

IETF RFC
7348

no (VMware
+ Cisco pro-
prietary)

no (VMware
proprietary)

Forwarding
options

L2 L2 L2 L2 + L3

Control
plane
separation

none none VSM mod-
ule (part of
Nexus 1k V)

NSX
controller

Scalability
issues

limited
number of
VLANs;
BUM flood-
ing; STP;
CAM size
for core
switches

multicast
routing
within
underlay
network;
BUM flood-
ing

maximum
128 VEMs
per VSM,
multiple
VSMs
(scale-out
architecture)
possible

distributed
L3
forwarding
(maintaining
full topology
information
on a tenant
basis)

Table 1.2: Comparison of overlay networking protocols

15

1. State-of-the-art

1.2.5 Overlay networking protocols summary

Table 1.2 compares and contrasts all of the above-mentioned solutions. While
VLANs are by far the most widely spread technology for traffic separation,
they are not suitable for large multi-tenant data center environment. Multicast
VXLAN relies on IP multicast routing in the underlay network and suffers from
BUM flooding. On the plus side, as a standardised solution it can work with
VXLAN gateways of multiple vendors. Unicast VXLAN and NSX removes
broadcast/multicast flooding thanks to a dedicated control plane. NSX for
multiple hypervisors additionally provides L3 forwarding and northbound API,
which can be consumed by an orchestrator system such as OpenStack [21].

1.3 Virtual switches

The purpose of a virtual switch is to allow virtual machines residing on a sin-
gle physical host communicate with each other using the same set of protocols
which would be used on a physical network without the need for additional
networking hardware [23, p. 3]. Moreover, virtual switches act as a bridge
between the physical and virtualised world, as they also provide virtual ma-
chines with connectivity to the external environment. In terms of SDN, we
need to determine the extent to which virtual switches can be managed via an
SDN controller, while providing support for a variety of networking protocols
(including overlay protocols which themselves guarantee the multi-tenancy
requirement). The schematic diagram of a virtual switch and its location is
depicted in Figure 1.7.

In the following sections several virtual switches will be described. While
most of them can be found in a set of proprietary products by VMware, Open
vSwitch acts as an open source alternative.

1.3.1 vSwitch

Virtual switch (abbreviated as vSwitch) is the simplest virtual L2 switch pro-
vided in VMware products, notably in ESXi servers. Unlike physical switches,
vSwitch does not learn MAC addresses associated with given ports – this piece
of information is already provided by the hypervisor, which knows MAC ad-
dress distribution to respective VMs and ports on vSwitch to which vNICs
(virtual NICs; virtual Ethernet adapters) are attached. Similarly to physical
switches, vSwitch maintains MAC-to-port mappings and performs lookup of
each frame’s destination MAC address [23, p. 4].

VM isolation is provided by means of VLANs similarly to regular physical
networks. vSwitch implements the concept of port groups, which are associated
with VLANs (usually in a 1:1 manner, although multiple port groups may
share a single VLAN). A port group can be viewed as a configuration template
common to all attached VM NICs. An example of configuration is the type

16

1.3. Virtual switches

Figure 1.7: Virtual switch schematic diagram

of load balancing towards the external world - active/active or active/standby
options allow administrators to specify which physical ports (called uplinks in
VMware terminology) are to be used for a particular port group. As of vSphere
5, a single ESXi server may host 127 vSwitches [24]. Uplink is dedicated to a
single vSwitch, whereas multiple port groups may share a common uplink.

The concept of VLANs results in a tighter coupling between the network-
ing and virtualisation world. Not only a given VLAN must be included in the
list of allowed VLANs on the trunk port from the physical switch towards the
server, but the same VLAN must be propagated in the port group configura-
tion within the ESXi host. The requirement of live migration (aka vMotion in
VMware terms) between hypervisors effectively means that all VLANs must
be propagated to all physical switches connected to the virtualised environ-
ment and to all switches in between (core and aggregation layers). This largely
extends VLAN broadcast domain and hence the spread of broadcast traffic.
Cisco would consider this to be in a breach of their best practices design [25,
p. 60]. Thankfully, there are some techniques which eliminate excessive broad-
cast for VLANs which do not have any active ports configured within a switch
– Cisco for this purpose implements VTP pruning.

The VLAN sprawl is displayed in Figure 1.8. Each color represents a se-
parate VLAN. Connection between two switches from a different layer (core,
distributed/aggregation, access/top of rack) is accomplished via a trunk link,
which is capable of transporting multiple VLANs over a single physical ca-
ble. This architecture therefore enables virtual machines to be migrated from
physical host A to physical host B and vice versa as long the same port group
(and hence, VLAN) is configured in both vSwitches.

Another disadvantage of vSwitch is a lack of supported protocols. vSwitch
does not support Spanning Tree Protocol, which is used to prevent loops at
layer 2. More importantly, vSwitch does not provide LACP capabilities used
for link aggregation. The fact that vSwitch does not support STP means that

17

1. State-of-the-art

Figure 1.8: VLAN sprawl due to vMotion requirement

there must be other mechanisms used for loop prevention and failure detection,
in particular when considering deployment with multiple uplinks.

Indirect link failure (a situation when, for instance, a link between aggre-
gation and ToR switch fails) is impossible to be detected by vSwitch itself.
Instead, link state tracking, which specifies two types of links – connections to-
wards the core layer on the one hand and connections towards ESXi servers on
the other hand – must be applied in the ToR switch. If a link towards the core
fails, all links leading to downstream ESXi hosts are shut down as a result.
Consequently, vSwitch detects direct link failure and uses other functional
uplinks instead.

In terms of loop prevention, vSwitch implements several rules, which com-
pensate for the lack of STP support, which would traditionally be responsible
for detecting loops at L2. These are as follows [26]:

• Dropping incoming BPDUs – vSwitch ignores incoming BPDUs from
physical ToR switches which results in all uplinks being active.

• Split horizon switching – frames received on one uplink are never for-
warded to other uplinks.

• Verifying source MAC address of incoming frame using RPF check – if
broadcast/multicast is generated by one of VMs running within the host,
it is sent out using a single uplink. The same frame, however, arrives
on other uplinks as well. By checking source MAC address using reverse
path forwarding, vSwitch determines whether the frame comes from a
VM hosted by the server itself. In such a case, the frame is silently
dropped. This behaviour is depicted in Figure 1.9. The red arrows show
the direction of broadcast traffic as it is generated by a VM, sent out
of one uplink, transported throughout the entire broadcast domain and
finally received and consequently dropped by another uplink.

18

1.3. Virtual switches

Figure 1.9: vSwitch loop prevention due to broadcast generated by a VM

The fact that vSwitch ignores 802.3ad (LACP) means that the only viable
manner in which a ToR switch and vSwitch can be interconnected using mul-
tiple links at the same time involves a statically configured port channel. This
tends to result in a lack of external connectivity for some VMs if configured
improperly. By default, vSwitch pins VM NIC to a specific uplink and if traf-
fic for the given VM NIC is received on a different uplink than expected, it is
silently discarded. The countermeasure is to assign traffic to an uplink based
on a hash function of (src IP, dst IP) on the vSwitch and physical ToR switch
alike [27]. Moreover, static port channelling is unreliable even if configured
properly because unlike LACP, which performs negotiation between the two
sides before establishing the connection and throughout its duration, static
port channel does not perform any validation whatsoever and may result in a
bridging loop [28].

In summary, vSwitch represents a very basic VLAN-capable switch, which
suffers from a lack of support of major networking protocols, notably LACP.
Additionally, it induces a close cooperation between the networking and virtu-
alisation team. Last but not least, vSwitch represents an independent entity
with both control and data planes hidden within the hypervisor.

1.3.2 vDS

VNetwork Distributed Switch (vDS) overcomes the requirement of having a
separate vSwitch for every ESXi host and instead provides a separation of
control and data planes. While the data plane functionality (i.e. frame for-
warding) remains hidden within the hypervisor, the control plane is now cen-
tralised and resides in vCenter Server. The schematic diagram is attached as
Figure 1.10. vDS is conceptually similar to stackable switches, which represent
a single entity from the management perspective, but every switch within a
stack still performs the forwarding itself. vDS thus brings several advantages

19

1. State-of-the-art

Figure 1.10: vDS schematic diagram

over original vSwitch, namely:

• increased flexibility due to simplified configuration in large-scale envi-
ronment

• port group configuration consistency – vDS makes sure that port groups
configured on physical hosts are identical, thus allowing vMotion

• LACP support since vSphere 5.1 (currently available version – 5.5 as of
January 2015) [29]

All in all, vDS offers the same set of functionality as vSwitch plus it pro-
vides simplified configuration and LACP support. However, vDS still does
solve the problem of limited functionality compared to enteprise physical
switches.

1.3.3 Cisco Nexus 1000V

Nexus 1000V represents an implementation of pluggable distributed virtual
switch architecture delivered by Cisco and VMware. Nexus 1000V is a re-
placement of vDS described in the previous chapter 1.3.2. In fact, Nexus
1000V heavily uses vDS-provided API and therefore its internal architecture
resembles vDS. It consists of two major parts, namely VEM and VSM. VEM
(Virtual Ethernet module) represents the virtual switch running within the

20

1.3. Virtual switches

Figure 1.11: Nexus 1000V schematic diagram

hypervisor, whereas VSM (virtual supervisor module) acts a central element
in terms of management, configuration and logic. Figure 1.11 displays the lo-
cation of both components within vSphere environment. The communication
depicted between the highlighted components will be described later.

VEM basically downloads configuration from VSM and forwards traffic at
L2 accordingly. Unlike above-mentioned virtual switches, VEM has always
provided a larger set of features, including but not limited to port security,
L2/L3 access control lists or private VLANs [30]. In later releases additional
security features such as IP source guard, DHCP snooping or dynamic ARP
inspection have been added making VEM and hence the entire Nexus 1000V
almost feature-wise comparable to enterprise-level physical switches [31].

VSM is conceptually similar to a supervisor module in high-end physical
switches such as Cisco Catalyst 6500. Modular supervisor in a chassis-based
switch acts a processor (i.e. central piece of logic) to the entire switch. VSM
operates as a virtual machine within a cluster of ESXi hosts. As it represents
a central point of configuration, which is then propagated to respective VEMs,
running two VSMs in an active-standby mode is available and recommended
as part of HA design.

For the the purpose of communication between VSM(s) and VEMs, two
additional VLANs are formed. Packet VLAN carries CDP/LLDP/IGMP pa-
ckets received by a VEM and propagated to the VSM for further processing.
Similarly, VSM sends periodic CDP/LLDP packets to VEMs, which in turn
forward them to physical uplinks. Control VLAN is used to download confi-

21

1. State-of-the-art

guration from VSM to individual VEMs [32].

Nexus 1000V provides multi-tenancy not only via VLANs similarly to
vSwitch/vDS, but also via unicast VXLAN as described in chapter 1.2.3.
Additionally, Nexus 1000V is capable of bridging the world of VLANs and
VXLANs by running a VXLAN gateway as a virtual machine.

To sum up, Cisco Nexus 1000V provides the most advanced virtual switch
in the VMware world. Range of supported protocols (including unicast VXLAN),
well-known IOS command line interface and prevention from a single point of
failure make Nexus 1000V an ideal virtual switch in a large data center.

1.3.4 Open vSwitch

Open vSwitch (OVS) represents an open source implementation of a virtual
switch. Unlike vDS or Cisco Nexus 1000V, OVS is not a distributed switch
that would be able to manage multiple virtual switches running within dif-
ferent hypervisors. Hence, in terms of manageability, OVS rather resembles a
simple vSwitch.

What distinguishes OVS from a regular Linux bridge (and from other vir-
tual switches as well) is the concept of flows. Unlike regular switches, which
make forwarding decisions based on destination MAC address only, OVS al-
lows for using multiple parameters at the same time. These may include L2 to
L4 options such as source/destination MAC/IP addresses, source/destination
TCP/UDP ports, VLAN tags, DSCP marks etc. This is where SDN comes
into place by allowing OpenFlow protocol to set up forwarding entries within
the virtual switch based on the requirements of a central authority, the SDN
controller. OVS is considered a de-facto Openflow (virtual) switch reference
implementation [33].

OVS consists of three major parts, two of which operate in user space
(vSwitch daemon also known as ovs-vswitchd and database server labelled
OVSDB server). The last component performs the actual packet forwarding
within kernel space. When the first packet arrives to OVS, the kernel module
determines whether it has any rules associated with the packet. If not, the
kernel module asynchronously sends the packet to user-space ovs-vswitchd,
which determines action to be taken (drop, forward, flood etc.). User-space
daemon notifies the kernel module and sends the packet to it. The kernel
module is then able to perform the actual forwarding. Subsequent packets
within a flow are forwarded directly by kernel without querying ovs-vswitchd
[34].

Figure 1.12 displays all three components comprising OVS as well as packet
handling as described in the previous paragraph. SDN controllers as defined
in chapter 1.1 may represent an external flow controller by providing a set
of permit/deny rules for inter-VM communication. The creation of switch
interfaces/ports/QoS settings can be performed via built-in ovs-vsctl tools, a

22

1.3. Virtual switches

Figure 1.12: Open vSwitch architecture and packet flow diagram

high-level API working above OVSDB. The database then acts as a persistent
storage for OVS configuration.

OVS scalability used to be limited prior to 1.11 release due to the microflow
concept. OVS would require exact flow match in order to forward a packet,
otherwise the packet would be punted to user-space ovs-vswitch daemon. Since
release 1.11, OVS has supported megaflows, which no longer require an exact
match and instead, provide the kernel forwarding module with an option to
perform wildcarding [35].

In terms of supported protocols, OVS lags behind state-of-the-art Nexus
1000V, but at the same time it provides support for STP, LACP and even
unicast-based VXLAN. NSX for multiple hypervisors heavily depends on OVS,
as it creates tunnels between every two Open vSwitches within hypervisor
hosts - for more information see chapter 1.2.4.

In summary, OVS is able to compete with proprietary, mostly VMware-
based virtual switches. Although it lacks the distributed nature when com-
pared to vDS or Nexus 1000V, its OpenFlow capabilities mean that the control
plane functionality can easily be ”outsourced” by means of the external con-
troller.

1.3.5 Virtual switches summary

Table 1.3 concludes the discussion related to virtual switches by comparing
each solution in terms of supported features and deployment model. Based
on the findings, it is obvious that Cisco Nexus 1000V and Open vSwitch
are the most advanced virtual switches. While Nexus 1000V provides well-
known Cisco IOS CLI for managing distributed virtual switch, its deployment

23

1. State-of-the-art

vSwitch vDS Nexus
1000V

Open
vSwitch

Vendor VMware VMware Cisco +
VMware

open source
community

Deployment per host per vCenter per vCenter per host

Separation
of control
and data
planes

none data plane
within every
ESXi host,
centralised
control
plane within
vCenter
Server

data plane
(VEM)
within
every ESXi
host, control
plane (VSM)
centralised
within a VM

data plane
within every
hypervisor,
control plane
possibly
”outsourced”
by the SDN
controller

STP
support

no no no yes (802.1D)

LACP
support

no yes yes yes

OpenFlow
support

no no no yes

Multi-
tenancy

via VLANs via VLANs via VLANs
and unicast
VXLANs

via VLANS
and unicast
VXLANs

Table 1.3: Comparison of virtual switches

is limited to the highest vSphere edition called Enterprise Plus [36] [37]. On
the contrary, Open vSwitch is supplied free of charge, but for more a complex
deployment it must be combined with an external controller, otherwise it
behaves as a more sophisticated Linux bridge.

1.4 Physical switches

The state-of-the-art chapter will be finished by a brief discussion of physical
switches and their problems with regard to SDN adoption. Virtual switches,
which are basically software constructs often representing a plugin or a load-
able module above the existing hypervisor, may be fairly easily changed. How-
ever, physical switches may have been operating for years within a data center
and the entire SDN adoption in such a case depends on the respective vendor
– whether OpenFlow-enabled firmware will be released or not.

Besides the actual support of OpenFlow or other SDN-related protocols,
scalability of the physical switch should be scrutinised as well. It has already
been implied that upon receipt of a packet for which a switch does not have
any associated flow, the switch may either drop the packet or more likely send

24

1.4. Physical switches

the packet for analysis to the external controller. The actual processing or
punting is realised via CPU and may negatively impact overall performance.

Another factor which could potentially impede switch performance is the
number of flows the switch is able to install per second. In a dynamic environ-
ment the SDN controller may create thousands of flows per second, but the
switch may limit the number of FIB updates to several hundreds - at least,
HP Procurve 5406zl switch is capable of installing roughly 275 new flows per
second [38].

The last, yet the most obvious scalability issue when installing new flows
into the physical switch is the limited size of TCAM. While the switch may
hold tens of thousands destination MAC addresses used for classical L2 forwar-
ding, the same TCAM table will hold few thousands of flows when considering
the 12-tuple based on which forwarding decisions are made in the OpenFlow
world [39].

All in all, SDN adoption should not be restricted to the virtualised world
only. On the contrary, there are several issues specific to physical switches
which are worth contemplating during (data center) design phase.

25

Chapter 2

Analysis and design

The purpose of the following chapter is to conduct an analysis of an applica-
tion, which will be implemented as part of the thesis. The application will
attempt to enhance the availability of services using the principles of SDN as
discussed in chapter 1. Specifically, the application will focus on reducing the
downtime during a live VM migration between multiple physical hosts. The
actual principles and techniques of VM migration (with the exception of net-
working) shall not be discussed in the thesis, as they have been well described
elsewhere, for instance in [40].

The downtime during live VM migration stems from the fact that upstream
switches continue forwarding traffic destined to the VM in question towards
the original hypervisor, while the VM has already been migrated to a different
host. Therefore, upstream switches have to be notified of a change in VM
location so that they can alter entries in their CAM tables. A sample topology
highlighting this problem is depicted in Figure 2.1. In this case, VM 2 is being
migrated from physical host A to host B. Consequently, CAM entries for VM
2 MAC address have to be updated throughout the entire broadcast domain
(consisting of 3 switches) right after VM 2 has been migrated.

Security concerns should also be taken into consideration when discussing
VM migration. The switchport to which VM is connected may impose restric-
tions on a list of source MAC addresses, thus preventing from MAC address
spoofing (in Cisco terminology this is referred to as port security). Such rules
must be reapplied at the destination switch – the switch to which the VM will
be connected after the migration. This is difficult to automatically achieve
using traditional networking concepts and therefore, port security is often ne-
glected in flexible data center environment, where vMotion and other types of
VM migration are commonplace.

27

2. Analysis and design

Figure 2.1: Changes in CAM tables due to live VM migration within a single
tenant environment

28

2.1. Requirements

2.1 Requirements

This section contains a list of requirements imposed on the application. These
are:

1. decrease in service downtime period during live VM migration

2. cooperation between the orchestrator system and the SDN controller

3. savings on network bandwidth and CPU processing by minimising flood-
ing of unknown unicasts (from the perspective of switches)

4. adoption of OpenFlow protocol to manage forwarding rules

5. multi-tenancy via the means of VLANs

The application should ideally perform faster (i.e. diminished service
downtime) when compared to traditional live VM approaches (see the fol-
lowing section 2.2). The idea behind this assumption is the fact that the ap-
plication will communicate with the orchestrator, which already possesses the
latest information regarding the status and transition of hosted VMs during
the migration. Additionally, these pieces of information will be propagated to
the SDN controller and appropriate forwarding rules recreated via the means
of its north-bound RESTful API. By directly injecting flow entries into the
switching topology savings in terms of network bandwidth consumption and
CPU processing will be achieved because switches will no longer rely on the
traditional MAC learning mechanism, which results in flooding unknown uni-
cast frames. Furthermore, OpenFlow will be be utilised for propagation of
flow rules. Last but not least, multi-tenancy requirement will be handled via
traditional VLANs, which should be sufficient for a small data center environ-
ment.

2.2 Live VM migration discussion

There are multiple approaches to the problem of live VM migration which
vary in the degree of involvement of the virtual machine itself or the hypervi-
sor. Ideally, since VM live migration should be transparent to the VM itself,
hypervisor in charge should notify upstream switches of any changes.

The most simple method is based on MAC address table aging and does
not induce any additional overhead. It is assumed that an entry in the switch
CAM, which associates a port number, VM MAC address and VLAN ID,
will age out after a period of inactivity (5 minutes in Cisco Catalyst series
switches [41]). Similarly, a CAM table entry corresponding to a MAC address
will be flushed if the same MAC address is detected on a different port. In
other words, the most recent arrival port is always associated with a given

29

2. Analysis and design

MAC address within the switch CAM table – at least in the Cisco world, but
the same concept is expected to be utilised universally [41]. In both of these
situations, CAM entries are updated reactively – when the newly migrated VM
attempts to communicate. Hence, this approach is imperfect, as it potentially
creates a blackhole because upstream switches are unaware of any changes and
will send the traffic to the original host until the VM starts communicating
from a different host. UDP traffic is in this respect more susceptible compared
to TCP, since UDP does not acknowledge successful packet receipt.

The proactive approach usually relies on sending gratuitous ARP either
by the destination hypervisor or the VM itself. Gratuitous ARP is used to
announce the ownership of an IP address on a network segment, so it is ob-
vious that such a solution is limited to a single LAN. However, this is not a
scalability issue, as the VM in question is supposed to retain both its IP and
MAC addresses when undergoing live migration. Gratuitous ARP sent by the
hypervisor does not require additional action to be taken by the VM itself,
which is considered advantageous. On the other hand, hypervisor actually
forges VM identity when sending ARP packets on its behalf. Gratuitous ARP
sent by the VM itself to some extent contradicts the transparency requirement
(VM should be completely unaware of its migration). This approach is em-
ployed by open source Xen hypervisor [42], whereas OpenNebula orchestrator
system (and the underlying KVM hypervisor) utilises gratuitous ARP sent by
the physical host [43].

VMware uses a different approach and instead of gratuitous ARP ESXi
hosts send reverse ARP (RARP) packets on behalf of the VM undergoing live
migration. Since the protocol is now considered obsolete, the broadcast mes-
sage sent by the hypervisor is ignored by hosts within the broadcast domain
with the exception of switches, which update their CAM entries as a result
of receipt of such packets [44]. VMware states that the service downtime due
to VM live migration takes up to 2 seconds on a Gigabit Ethernet network in
their vSphere product set [45].

2.3 Application design

The following subsection includes several UML diagrams. Figure 2.2 shows
a simplistic VM lifecycle within an orchestrator system. It does not take
into account actions such as VM suspending, its subsequent resuming and
deleting, to name a few. Instead, the gray triangle focuses on live migration
only. VM live migration may succeed, resulting in VM being hosted by a
different hypervisor. On the other hand, due to a lack of computing resources
within the potentially new hypervisor or networking issues, live migration may
fail and the application must be capable of handling both cases.

Figure 2.3 represents a use case diagram with a list of actions the appli-
cation should be able to perform. Firstly, the application will need to obtain

30

2.3. Application design

information from the orchestrator system regarding VM live migration – once
it has been initiated and once it has been completed along with the migration
status.

In case of a failed migration, for instance due to a lack of resources on
the destination host, it is assumed that the orchestrator system will con-
tinue hosting the VM on the original hypervisor. However, this behaviour is
platform-dependent. In this case, VM location and corresponding flow entries
will not be modified by the SDN controller or the application.

If a migration is to succeed, the application will find all relevant flow entries
by querying the SDN controller. Since the currently active sessions have to
persist once the migration has been completed, the application in conjunction
with the SDN controller will change ingress/egress ports in the flow entries as
highlighted in Figure 2.1. The new port numbers will be defined by the SDN
controller based on recalculation of a shortest path algorithm between the
two talkers – this would include the new location of the VM. Generally, when
redefining the relevant flow entries, we assume that the VM migration has
already succeeded – albeit at the time of the flow recalculation, the migration
result is unknown. Once the application has been informed of the migration
success, it will then ask the SDN controller to install the above-mentioned
flows.

The logic described in the previous paragraph is portrayed in Figure 2.4
– sequence diagram of communication among the orchestrator system, the
application and the SDN controller.

31

2. Analysis and design

Figure 2.2: VM state diagram

32

2.3. Application design

Figure 2.3: Use case diagram

33

2
.

A
n
a
ly

sis
a
n
d

d
e
sig

n

Figure 2.4: Sequence diagram

34

2.4. Technology choice

2.4 Technology choice

This subsection discusses the choice of appropriate technologies, which will be
used to implement the application. Based on the sequence diagram depicted
in Figure 2.4, both the SDN controller and the orchestrator system will be
designated. Additionally, the choice of SDN controller also significantly affects
the range of possible virtual switches.

Since the project should utilise open source tools, proprietary VMware
products are thus disregarded. In terms of virtual switches as described in
section 1.3, Open vSwitch remains the only viable option because the remain-
ing products – be it a simple vSwitch, distributed VDS or Cisco Nexus 1000V
are employed solely in VMware environment. Open vSwitch, on the other
hand, supports OpenFlow, which complies with the list of requirements as
stated in 2.1.

The discussion of orchestrator systems has not been part of this thesis.
Instead, a comparison of private IaaS cloud systems has been performed as
part of my bachelor’s thesis [46]. Based on the two-year-old research, Open-
Nebula has been selected as the orchestrator platform due to a couple of
reasons. Firstly, OpenNebula is capable of performing so called contextuali-
sation – ability to programatically change the behaviour of virtual machines,
while providing a fairly simple installation and subsequent configuration pro-
cedure. Secondly, OpenNebula is a suitable orchestrator system for a small or
medium-sized data center, which fits the overall picture as presented in the
introductory section.

In terms of SDN controllers, OpenDaylight and ONOS have been tho-
roughly contemplated, as neither of them represents a SPOF and thus they
may potentially be employed in production environment. In the end, ONOS
has been chosen mostly thanks to its Intent Framework, which allows the
programmer to concentrate on his task without the need for calculating the
shortest path within the underlying topology – this is instead performed by
ONOS and its Intent Framework. On the other hand, ONOS is a novel product
and as such does not support some features like VXLAN and therefore, tra-
ditional VLANs will be used as L2 over L3 overlay mechanism for separating
respective tenants.

The actual application will be implemented in Java programming language
due to the author’s previous experience and the fact that ONOS is written in
Java as well.

35

Chapter 3

Implementation

3.1 Inter-component communication

This subchapter attempts to describe the actual implementation of the com-
munication between all entities as displayed in Figure 2.4. Based on the se-
quence diagram the control application needs to obtain data in terms of VM
location from OpenNebula, perform some computation and propagate the re-
sults to ONOS SDN controller, which updates resultant flow entries. Since
some features which will be discussed in the following section are version-
specific, Table 3.1 shows versions of components on top of which the entire
implementation is built.

3.1.1 Communication with OpenNebula

OpenNebula supports XML-RPC, which provides programmers with the abi-
lity to query the state of virtual machine being migrated (hostname, source hy-
pervisor, IP address, MAC address, VLAN etc.)[47]. However, when it comes
to the migration process, OpenNebula itself does not have sufficient amount
of information regarding the destination hypervisor. The actual request to
perform live migration for a given VM is internally transformed into a single
command as listed in Code snippet 3.1. The code comes from /var/lib/one/re-
motes/vmm/kvm/migrate bash script, which is part of OpenNebula’s master
node.

Type of SW Name Version

Orchestrator system OpenNebula 4.12

Hypervisor management Libivrt 1.2.9-9

SDN controller ONOS 1.0.1

Table 3.1: Versions of SW components

37

3. Implementation

This suggests that OpenNebula is heavily dependent on the underlying
hypervisor (KVM in this case), which hosts virtual machines and performs VM
migration requests on behalf of the orchestrator system. Therefore, in order
to obtain all the required information regarding the source and destination
hypervisors in time, libvirt is used as a source of the information. Libvirt
itself is not a hypervisor – instead, it provides a unified management and API
for all major hypervisors (KVM, Xen, ESXi).

v i r sh −−connect qemu:/// system migrate −− l i v e $VM ID qemu+ssh ://
$DESTINATION/system

Code snippet 3.1: VM migration request transformed into libvirt call

Unlike OpenNebula, which performs regular polling to determine the state
of its virtual machines, libvirt uses the concept of hooks, which are custom
scripts triggered by specific system events [48]. These events according to the
official website occur when ”the libvirt daemon starts, stops, or reloads its
configuration” or ”a QEMU guest is started or stopped” [49]. The latter use
case will be utilised to send asynchronous messages to the control application.

Due to the asynchronous nature of hooks in general, it makes sense to
implement the hook as a simple script, which is able to respond to all required
events by sending messages to the control application. For this purpose, bash
was designated as the scripting language of the qemu hook. The bash script
asynchronously contacts the control application using network sockets. Since
the qemu hook is triggered on multiple occasions during VM migration, the
control application receives information regarding VM location gradually. By
sending messages asynchronously, the qemu hook remains stateless and in-
stead, the entire state is maintained within the control application.

The standard input of the qemu hook is represented by the libvirt XML
configuration file (which corresponds to the output of virsh dumpxml com-
mand) so the bash script is mostly in charge of parsing XML. External pro-
gram named xmlstarlet is used to perform simple XPath query to obtain the
appropriate pieces of information (VM hostname, MAC address, bridge name,
bridge port).

Not only is the qemu hook invoked repeatedly during a single VM migra-
tion, but it is triggered by source and destination hypervisors alike. The order
of the messages along with their timestamps is displayed in the following Log
snippet 3.2:

38

3.1. Inter-component communication

1 s r c hyperv i so r dst hyperv i so r
2 [1 0 : 2 7 : 4 2 . 2 2 4] one−16 migrate begin
3 [1 0 : 2 7 : 4 2 . 2 5 3] one−16 prepare begin
4 [1 0 : 2 7 : 4 2 . 4 7 2] one−16 s t a r t begin
5 [1 0 : 2 7 : 4 2 . 8 9 0] one−16 s t a r t ed begin
6 < ac tua l VM migrat ion >
7 [1 0 : 2 7 : 5 1 . 8 4 7] one−16 stopped end
8 [1 0 : 2 7 : 5 1 . 8 8 2] one−16 r e l e a s e end

Log snippet 3.2: Qemu hooks generated during a sample migration

The qemu hook informs the control application in steps corresponding
to line numbers 2 and 5 on the destination side and 7 on the source side.
Migrate message (line no. 2) is invoked at the very beginning of the migration
when resources are yet to be allocated on the destination side. Therefore, the
control application awaits another message from the destination hypervisor
corresponding to line number 5.

The started message informs the control application of the actual resource
reservation. This basically means that at this point the destination hypervisor
has already allocated a bridge port to which the VM will be connected after
the migration. The bridge port thus acts as the VM destination location.

The stopped message corresponding to line number 7 occurs after the ac-
tual VM migration and represents the turning point after which the source
hypervisor no longer hosts the VM.

All three above-described message types are handled by a single qemu hook
script, which upon the message receipt from libvirt and subsequent parsing
contacts the control application.

Libvirt, however, does not possess all the required pieces of information.
Specifically, when it comes to networking, libvirt is L3-unaware and hence does
not know VM IP address and VLAN tag (if used). Among others, these are
required to fully specify host location in ONOS. Therefore, the qemu hook also
queries OpenNebula using built-in XML-RPC. The actual XML-RPC query
is constructed using curl. IP address and VLAN tag are appended to other
pieces of information in the started message.

The control application and OpenNebula XML-RPC endpoints are not
hard coded within the qemu hook. Instead, a configuration file controller.conf
contains all the required data, including credentials of a user with sufficient
privileges to query OpenNebula. Note that storing user credentials in an
appropriately secured plain text file is the default method employed by Open-
Nebula. A sample configuration file is listed in Configuration snippet 3.3.

DESTINATION HOST=PRGNEB001
DESTINATION PORT=9001
RPC ENDPOINT=http ://PRGNEB001:2633/RPC2
RPC CREDENTIALS=oneadmin : DaFro j l i 3w i f

Configuration snippet 3.3: Sample configuration file for the qemu hook

39

3. Implementation

Figure 3.1: Visual representation of data passed in started message

Both the qemu hook and configuration file controller.conf are supposed to
be located in /etc/libvirt/hooks folder. Configuration file should be secured
by 600 umask, whereas the qemu script must be executable.

An example of actual started message as sent by the hook script to the
control application is displayed in Log snippet 3.4. Parameters are separated
by commas. The control application determines the message type based on
the very first argument, which is followed by the destination hypervisor, VM
name and MAC address. Next, human readable bridge name (bridge0) is
followed by its datapath ID (i.e. unique identifier of the switch in the net-
work). Similarly, bridge port (vnet0) is followed by its identifier within Open
vSwitch. The last trio defines whether VLAN tagging is in use, VLAN ID and
IP address respectively. These are obtained from OpenNebula, whereas the
previous pieces of information come from libvirt. All bits of information as
received from the started message in Log snippet 3.4 are visually displayed in
Figure 3.1.

STARTED,PRGNEB002, one −16 ,02 :00 : c0 : a8 : 0 0 : fb , br idge0 ,0000001
f296a95da , vnet0 , 50 ,YES, 110 , 1 92 . 1 68 . 0 . 2 5 1

Log snippet 3.4: Sample started message sent by the qemu hook

3.1.2 Communication with ONOS

In terms of communication with ONOS SDN controller, REST API was sup-
posed to be utilised. Unfortunately, ONOS version 1.0.1 released at the end of
January 2015, did not have full REST support, i.e. only a subset of resources
was available [50].

Therefore, a different approach has been taken. Since ONOS is provided
in terms of modules run within Apache Karaf application container, instead
of implementing a standalone application communicating with ONOS using

40

3.1. Inter-component communication

well-known API, the control application will be run as an ONOS module, thus
having access to internal structures and methods. The obvious drawback of
such a solution is the complexity compared to standardised API calls. How-
ever, until REST API has been fully implemented, this method represents the
only viable opportunity to interact with the SDN controller.

Access to ONOS internal resources is divided into two areas. While any
application may access existing topology information, only a subset of appli-
cations is allowed to communicate with the ONOS core layer responsible for
performing topology changes (adding switch, end host etc.). More specifically,
if any application wishes to obtain current topology information, it must re-
gister instances of *Service classes (for instance, TopologyService, HostService,
DeviceService etc.). Each service type is responsible for providing a particular
set of information. Code snippet 3.5 shows how instances of respective services
are requested in the control application. The @Reference notation signifies a
dependency on another ONOS module providing a particular service instance.

// end host in fo rmat ion
@Reference (c a r d i n a l i t y = Re f e r enceCard ina l i t y .MANDATORYUNARY)
pr i va t e HostServ ice m hostServ ice ;

// network dev i c e s with in the topology
@Reference (c a r d i n a l i t y = Re f e r enceCard ina l i t y .MANDATORYUNARY)
pr i va t e Dev i ceSe rv i ce m dev iceServ i ce ;

Code snippet 3.5: Access to internal topology services

Having access to various topology services, the control application may
now request specific topology information such as a list of detected end hosts.
Code snippet 3.6 comes from a class dedicated to communication with ONOS
– ONOSInteraction.

// return a l l end s t a t i o n s
pub l i c s t a t i c L i s t<Host> getHosts ()
{

List<Host> h host s = L i s t s . newArrayList (ONOSInteraction .
t h o s t S e r v i c e . getHosts ()) ;
r e turn h hos t s ;

}

Code snippet 3.6: Sample method utilising access to topology information

ONOS as suggested in previous code snippets distinguishes between in-
frastructure devices and end hosts. Class Device is a representation of infra-
structure device managed by OpenFlow protocol. On the other hand, class
Host is an abstraction of end-station host on the network, essentially a NIC.
ONOS defines class Topology as a union of all existing devices and links be-
tween them. Additionally, topology is able to recover from a link failure as
long as alternate paths exist. This means that a HostToHostIntent between
two hosts is able to recover from a failure condition as long as alternate paths
exist, resulting in a rewrite of underlying flows.

41

3. Implementation

However, ONOS concept of topology does not take end hosts into consi-
deration. Instead, the location of host is defined in HostLocation class, which
defines the infrastructure device and its port number to which the end host is
connected. Moreover, the host is further defined by its MAC address, set of IP
addresses and VLAN tag. These pieces of information are sent to the control
application using the qemu hook as described in section 3.1.1. The fact that
the end host is not part of the topology from ONOS perspective implies that a
change in HostLocation is not transparently detected. Therefore, the control
application needs to forcefully remove the original HostLocation and replace
it with a new location corresponding to the destination hypervisor as received
in the started message from the qemu hook – see Log snippet 3.4.

At this point, however, another obstacle has been detected. ONOS does
not allow applications to modify topology information. Regular applications
are thus able to perform read-only operations when it comes to the topology,
but cannot modify it. For this purpose the concept of providers has been
implemented. Providers are in charge of adding/removing end hosts, devices,
links and flows – usually based on receipt of some packets (such as ARP/LLDP
messages which are used to discover new end hosts).

Providers tend to act reactively, whereas the control application needs
to change host location proactively. Therefore, the decision to enhance the
functionality of Host subcomponent within OpenFlow provider has been made.
The current functionality is left intact and the newly implemented logic allows
the control application to interact with HostProviderService responsible for
adding/removing end hosts via the provider. Registering new host takes place
in OpenFlowHostProvider class using the following Code snippet 3.7.

// cons t ruc t s t ruc tu r ed e n t i t i e s
HostId host Id = HostId . host Id (macAddress , v lanId) ;
HostLocation hostLocat ion = new HostLocation (dev iceId , portNumber ,

System . cur rentTimeMi l l i s ()) ;
HostDescr ipt ion hos tDes c r ip t i on = new Defau l tHostDesc r ip t i on (

macAddress , vlanId , hostLocat ion , ipAddress) ;

// add the host us ing new l o c a t i o n in to the topology
p rov id e rS e rv i c e . hostDetected (hostId , ho s tDes c r ip t i on) ;

Code snippet 3.7: Adding a new host into the topology

In terms of multi-tenancy as one of the functional requirements defined in
section 2.1, VLANs are used to separate traffic between multiple tenants or
between multiple subnets belonging to a single tenant. The qemu hook obtains
VLAN tags from OpenNebula via XML-RPC query along with the VM IP
address and passes these pieces of information to the control application. The
control application changes host location of the VM undergoing migration and
by modifying flow rules it makes sure that all existing communication persists
after the migration. However, the control application does not enforce any
security measures in terms of permitting communication from VM A to VM

42

3.2. Class diagram

Figure 3.2: Flow of information between all components

B, probably in a different subnet. This should be performed by a firewall-like
upper layer application, utilising ONOS north-bound API.

The overall flow of information between all components is depicted in Fi-
gure 3.2. The fill color signifies the amount of work implemented in this
thesis. While the qemu hook and the control application are constructed from
scratch, HostProviderService is merely enhanced to provide proactive topology
changes.

The purpose of Figure 3.3 is to compare and contrast the original sequence
diagram as depicted in Figure 2.4 to the actual implementation. While the
original diagram assumed three entities, the actual implementation has re-
sulted in an addition of the fourth – hypervisor embodied by libvirt. Moreover,
both the control application and HostProviderService modules are actually
part of ONOS, whereas the original diagram expected the control application
to be a standalone application independent of ONOS.

3.2 Class diagram

Figure 3.4 displays a list of classes and their relationships defined within the
control application. Note that the following diagram does not take the qemu
hook or HostProviderService module into consideration.

43

3
.

Im
p
l
e
m
e
n
t
a
t
io
n

Figure 3.3: Sequence diagram corresponding to the implementation

44

3.2.
C

lass
d
iagram

Figure 3.4: Class diagram

45

3. Implementation

3.3 Description of respective classes

This subchapter defines the purpose of every implemented class within the
control application as well as ONOS HostProviderService module, through
which the control application interacts with the core layer when performing
topology changes.

Starting with the control application, class Hypervisor defines a physical
host on top of which virtual machines may be hosted. Hypervisor information
is collected from the qemu hook. VirtualMachine class specifies various para-
meters of a virtual machine detected within the control application. These
mostly include networking information such as MAC address, IP address,
VLAN tag etc. Besides, VirtualMachine is defined by its source and desti-
nation Hypervisor. These two classes mostly consist of getters and setters.

ONOSInteraction class simulates a static class present in many program-
ming languages with the exception of Java. It consists of static methods
handling invocations of internal ONOS functions and procedures. In order
to perform this goal, ONOSInteraction possesses the access to all required
ONOS *Services, for instance HostService, DeviceService and IntentService
among others. The goal of this class is to provide a single point of interaction
with ONOS.

ONOSInteraction class consists of methods of three kinds. Firstly, there
are some methods which merely act as wrappers around the existing ONOS
internal calls without adding any additional functionality. The purpose of such
methods is to provide encapsulation for other classes of the control application.
An example has already been listed in Code snippet 3.6 – query about existing
end hosts.

Secondly, ONOSInteraction class comprises of methods converting para-
meters (stored for instance as String objects) into internal ONOS structures.
This is performed either via ONOS built-in valueOf methods or static con-
structors taking textual/numeric representation of the structure as the only
parameter. The conversion is always associated with appropriate exception
handling. Example is displayed in Code snippet 3.8.

46

3.3. Description of respective classes

// return MAC address based on i t s s t r i n g r ep r e s en t a t i on
pub l i c s t a t i c MacAddress convertStringToMacAddress (S t r ing

s macAddress)
{

t ry
{

MacAddress macAddress = MacAddress . valueOf (s macAddress) ;
r e turn macAddress ;

}
catch (I l l ega lArgumentExcept ion i a e)
{

MigrateMaster . wr i t eToFi l e (”ONOSInteraction −
convertStringToMacAddress () − cannot convert S t r ing to
MacAddress . ”) ;

r e turn nu l l ;
}

}

Code snippet 3.8: Sample conversion of textual representation to MacAddress

Lastly, ONOSInteraction class contains methods which are used to imple-
ment the logic of control application, for example when regenerating original
intents between the VM undergoing migration and all associated devices/end
hosts. The original intents are saved during the VM migration and are passed
as the function argument. Outline of this method is listed in Code snippet
3.9.

// add i n t en t s based on VM MAC address & a l ready saved MAC
addre s s e s o f other endpoints

pub l i c s t a t i c L i s t<IntentId> addIntentsByMAC (St r ing vm MAC, L i s t
<HostId> vm otherHostIds)

{
HostId i f i r s t , i s e cond ;
Li s t<IntentId> i i n t e n t I d s = new ArrayList () ;
i f i r s t = ONOSInteraction . getHostIdByMAC (vmMAC) ;
. . .
f o r (HostId i o the rHos t Id : vm otherHostIds)
{

. . .
HostToHostIntent i h2h In t en t = new HostToHostIntent (t appId ,

i f i r s t , i s e cond) ;
t i n t e n t S e r v i c e . submit (i h2h In t en t) ;
i i n t e n t I d s . add (i h2h In t en t . id ()) ;

}
re turn i i n t e n t I d s ;

}

Code snippet 3.9: Regeneration of intents after VM migration

ONOSCoreInteraction class sends requests to add or remove a host to
HostProviderService module in order to change the location of VM undergoing
migration proactively. The communication is asynchronous and takes place
using sockets.

47

3. Implementation

Classes MigrateMaster and MigrateThread are the heart of the control
application. While the former receives all messages from libvirt, the latter
defines a lifecycle for a single VM migration. When a message from the qemu
hook is received, MigrateMaster passes the message to the correct instance of
MigrateThread. Every MigrateThread object is run as a separate thread han-
dling a particular VM migration, thus passing through the following methods
(assuming that no errors are detected):

1. processMigrateMessage ()

2. processStartedMessage ()

3. processShutdownMessage ()

These methods correspond to a receipt of messages sent by libvirt on behalf
of the destination and source hypervisors as depicted in Log snippet 3.2.

MigrateThread and MigrateMaster objects must communicate on several
occasions. Firstly, MigrateMaster passes messages received by libvirt to Mi-
grateThread using a Java built-in SynchronousQueue object, which basically
acts as a rendezvous point between the two threads, allowing the producer to
pass a single message to the consumer. This is displayed in Code snippet 3.10
from the perspective of the consumer, i.e. an instance of MigrateThread class.

// method used f o r p ro c e s s i ng STARTED message f o l l ow i ng prev ious
r e c e i p t o f MIGRATE message

pub l i c boolean processStartedMessage ()
{

// perform block ing read un t i l master thread i n s e r t s a new
STARTED message
St r ing t message = th i s . t queue . take () ;
S t r ing [] tokens = t message . s p l i t (” , ”) ;
. . .

}

Code snippet 3.10: MigrateThread receipt of mesage from MigrateMaster

Furthermore, any error detected by a MigrateThread object is passed to the
MigrateMaster instance using a shared AtomicBoolean variable. This basically
prevents MigrateMaster from passing further messages to MigrateThread if an
error has been detected while processing a previous message.

It has been implied that the only instance of MigrateMaster class contains
references to every detected VM. Moreover, the MigrateMaster object referen-
ces the ONOSInteraction object – singleton pattern is used for communication
with ONOS [51].

Regarding HostProviderService – existing component performing topology
changes – two additional classes have been implemented. Class PrepareServer
sets up a ServerSocket object and accepts hello/remove requests for a par-
ticular VM undergoing migration. The concept of ExecutorService has been

48

3.3. Description of respective classes

utilised – instead of creating a dedicated thread to every request, a pool of
threads of fixed size has been set up. If a thread is idle and a new request
comes in, the request is handled by the thread and upon the completion of
the task, the thread is returned to the pool. This is displayed in Log snippet
3.11.

whi le (t rue)
{

// l i s t e n on given socket accept ing c l i e n t connect ions
t h i s . p s so cke t = th i s . p s s e rv e rSocke t . accept () ;

// c r e a t e a new task
Appl icat ionHandler aHandler = new Appl icat ionHandler (t h i s .
p s so cke t) ;

// invoke thread
t h i s . p s executor . execute (aHandler) ;

}

Code snippet 3.11: HostProviderService task assignment

Last but not least, an instance of ApplicationHandler class is responsible
for performing topology changes proactively based on request type (end host
addition or removal). For this purpose, it asynchronously invokes two methods
of HostProviderService, namely hostDetected and hostVanished through which
the ONOS core layer is notified of a topology change. The asynchronous nature
of the two methods implies that MigrateThread responsible for a particular
VM migration must make sure that host or intent changes have been performed
successfully after submitting them. Original class InternalHostProvider, which
adds end hosts reactively based on receipt of ARP packets, has not been
tampered with.

49

Chapter 4

Evaluation

The purpose of this chapter is to evaluate whether the application, which
utilises the concepts of SDN, may be deployed in a small/medium-sized data
center when performing live VM migration. The SDN approach utilising in-
tents and underlying flows will be compared to the traditional non-SDN world,
which heavily relies on L2 switching. Before the description of the actual
methodology and subsequent evaluation the lab environment will be described
in detail.

4.1 Lab environment

In order to create a DC-like architecture, leaf and spine design has been de-
signated. Leaf and spine, which is the implementation of Clos networks, dis-
tinguishes between leaves (effectively represented by ToR switches) and spines
corresponding to core switches. Each leaf is connected to all spine switches
and the same principle applies vice versa. Additionally, there are no links
between switches at the same level. This design promotes high availability
and resiliency [52]. At the same time it provides an equal distance in terms
of number of hops for every two endpoints in the fabric [53].

Leaf and spine architecture was initially implemented using six physical
switches of multiple vendors – HP with their Procurve and Comware series
and Cisco Catalyst series. All physical switches support OpenFlow 1.3 and
hence were supposed to be managed by an instance of ONOS SDN controller.
Furthermore, two physical servers – HP DL360 G7 and Dell R210 II – were
connected to leaf switches at the opposite edge of the network. The physical
servers run OpenNebula and host virtual machines, which are migrated from
the original server across the entire network to the other host. Both servers
run Open vSwitch and hence are also managed by ONOS via OpenFlow 1.3.
ONOS SDN controller is run within a virtual machine hosted by one of the
servers. The ONOS virtual machine is run independently of OpenNebula
orchestrator system.

51

4. Evaluation

Vendor Series Fimrware
version

Number of
pieces

HP ProCurve E3800 KA.15.16.0004 2

HP ProCurve 5406zl K.15.16.0004 1

HP Comware A5500 5.20.99, release
5501P03

1

Cisco Catalyst 3650 03.07.50.SFT 2

Open vSwitch N/A 2.3.0 2

Table 4.1: Switches employed in the application evaluation

The overall picture of the topology is portrayed in Figure 4.1. The red
links which belong to controlled VLAN are detected and managed by ONOS
SDN controller, whereas the blue links corresponding to controlling VLAN
are managed using the traditional L2 switching. In other words, out-of-band
approach to SDN adoption has been selected. OpenNebula-managed virtual
machines are migrated from host URAN001 (the HP server) to URAN002
(the Dell server) and vice versa. The actual migration takes place in the
controlling VLAN, so it is not managed via OpenFlow. The communication
among tenant VMs is, however, controlled via OpenFlow. Additional mana-
gement VLAN is employed to provide access to the physical switches. In the
network topology depicted in Figure 4.1 separate links are used for each traf-
fic type (the management VLAN is not depicted for the sake of clarity). The
network topology therefore follows generally accepted network design princi-
ples in which a separate VLAN is dedicated to user traffic (i.e. a tenant),
management and vMotion (vMotion as an example of enterprise-level live VM
migration technology is sent unencrypted and therefore should not be mixed
with other traffic types [54]). The list of switches as employed in Figure 4.1
along with their firmware revisions is displayed in Table 4.1.

52

4.1.
L

ab
en

v
iron

m
en

t

Figure 4.1: Leaf and spine topology prepared for the application evaluation

53

4. Evaluation

Once the application has been implemented and network topology set up
according to Figure 4.1, a major obstacle was detected – ONOS as of version
1.0.1 suffered from severe problems in terms of managing the above-mentioned
switches with the exception of Open vSwitch. This did not turn out during
the application implementation itself because the application has initially been
tested against Open vSwitches, which have worked satisfactorily.

In terms of specific malfunctions, switches of different vendors implement
OpenFlow differently. For instance, HP switches use three OpenFlow tables
in which they store respective flow rules. These are tables 0, 100 and 200.
Table 0 is read-only and performs operation ”goto” table 100. Tables 100 and
200 have a default drop rule at the end. As it turned out after a discussion
with one of ONOS developers, ONOS SDN controller ”sends layer 2 rules
down to table 0 of the switch naively expecting a single table abstraction”
[55]. Unsurprisingly, HP switches refuse to add flow rules to read-only table
0 resulting in HP switches being completely unmanageable by ONOS SDN
controller.

Cisco Catalyst switches suffer from a less obvious, but equally serious
flaw. Both switches are successfully connected to ONOS, but they tend to
disappear soon afterwards and this cycle keeps repeating endlessly. ONOS
reports a cryptic error as depicted in Log snippet 4.1. The ONOS developer
this time could not detect the cause of the issue blaming ”poor implementation”
of the vendor or ”some vendor extensions” [55]. This may be partly true, since
the firmware revision 03.07.50.SFT is a nightly build used predominantly for
development purposes. Cisco was not able to provide a more recent and stable
build once the issues with connectivity persistence have been discovered.

2015−03−26 15 :21 : 32 , 802 | ERROR | ew I /O worker #6 |
OFChannelHandler | 74 − org . ono sp ro j e c t . onos−of−c t l − 1 . 0 . 1 |
Disconnect ing switch org . ono sp ro j e c t . openf low . d r i v e r s .
DriverManager$1@57616091 due to message parse f a i l u r e

org . p r o j e c t f l o o d l i g h t . openf low . except i on s . OFParseError : Unknown
value for d i s c r im ina t o r typeLen o f class OFOxmVer13 : 67588

at org . p r o j e c t f l o o d l i g h t . openf low . p ro to co l . ver13 .
OFOxmVer13$Reader . readFrom (OFOxmVer13 . java : 388)

at org . p r o j e c t f l o o d l i g h t . openf low . p ro to co l . ver13 .
OFOxmVer13$Reader . readFrom (OFOxmVer13 . java : 3 6)

. . .
at java . u t i l . concurrent . ThreadPoolExecutor$Worker . run (

ThreadPoolExecutor . java : 617) [: 1 . 8 . 0 40]
at java . lang . Thread . run (Thread . java : 745) [: 1 . 8 . 0 40]

Log snippet 4.1: Cryptic error reported by ONOS when managing Cisco switch

All in all, leaf and spine topology consisting of both physical and soft-
ware switches as displayed in Figure 4.1, could not be used to perform the
application evaluation.

Therefore, an alternative approach consisting of merely Open vSwitches
had to be considered and implemented. In order to utilise leaf and spine design,

54

4.2. Methodology

Hostname URAN001 URAN002 URAN003 APU00*

Type HP Proliant
DL360 G7

Dell Pow-
eredge R210
II

Cisco
WAVE-274

PC Engines
APU

CPU Intel Xeon
E5506
2.13GHz

Intel Xeon
E3-1220 V2
3.10GHz

Intel Core2
Duo CPU
E6400
2.13GHz

AMD
G-T40E
Processor
1000MHz

RAM 14 GB 8 GB 6 GB 4 GB

HDD 130 GB 443 GB 141 GB 3.6 GB

Distribution Debian 7 Debian 7 Debian 7 Archlinux

Kernel 3.2.0-4-
amd64

3.2.0-4-
amd64

3.2.0-4-
amd64

3.19.3-3-
ARCH

Role
within
topology

OpenNebula
master node

OpenNebula
compute
node

simulates
external
client (3rd
test case)

leaf/spine
switches

Table 4.2: Description of available servers

physical switches had to be replaced with dedicated physical servers running
Open vSwitch. One physical server simulates the spine layer, while other two
hosts replace leaf switches. The three servers simulating physical switches
come from a family of APU architecture and are hence labelled APU001 to
APU003. Existing physical servers – URAN001 and URAN002 are connected
to the leaf switches. These servers run OpenNebula services and host virtual
machines. Additional dedicated server is connected directly to the spine switch
– URAN003.

In conclusion, the final topology is depicted in Figure 4.2. VM migra-
tion is performed via the blue-colored controlling VLAN from URAN001 to
URAN002 and vice versa, whereas the red-colored controlled VLAN is entirely
managed via the means of ONOS SDN controller, but it may easily become
a regular L2-switched VLAN if Open vSwitches stop being managed by the
external controller.

Table 4.2 summarises the list of available servers, notably their hardware
configuration and role within the final topology as depicted in Figure 4.2.

4.2 Methodology

This section attempts to describe the fashion in which the application will be
evaluated. The methodology will be consistent with small/medium-sized data
center requirements.

55

4. Evaluation

Figure 4.2: Actual networking topology used for the application evaluation

Cisco states that approximately 75 percent of the data center traffic is
local and hence never leaves the premises of DC [56]. This is also labelled as
east-west communication. Based on the report the trend is not supposed to
change in the years to come. The campus network, on the other hand, follows
20/80 rule – most of the traffic is now passed across the core layer, which
corresponds to north-south traffic pattern [57]. There are a few examples,
which promote the east-west traffic pattern in data centers, namely:

• communication between web/application and database server – short
SQL select may fetch a large portion of the database,

• parallel computing – a master node allocates tasks which are computed
by slave nodes passing the complex results back to the master.

These examples not only emphasise the east-west traffic flow, but also
non-uniform amount of traffic passing between the communicating entities.

56

4.2. Methodology

Tool iperf flowping

Entity measured throughput (TCP) latency, packet loss
(UDP)

SW version 2.0.5 1.2.6

Server invocation iperf -s --interval 1 flowping -S -q

Client invocation iperf -c SERVER -f m
-t 50 --interval 1

flowping -h SERVER -c
50 -f FILE

Table 4.3: Description of tools employed during the application evaluation

These traffic flow patterns will be simulated using iperf and flowping uti-
lities. Iperf will be used to measure throughput for TCP communication
between an iperf client and server. The traffic is sent by the iperf client and
received on the server side [58]. Flowping, on the other hand, is UDP-based
application, which provides an alternative to regular ping utility [59]. Unlike
ping, which measures latency at L3, flowping measures latency as detected by
an application layer, since it operates at L7 of OSI model. Iperf and flowping
measurements will be run simultaneously. SW versions and options employed
on both client and server sides are listed in Table 4.3.

The below mentioned scenarios will be evaluated for both SDN and non-
SDN cases. The SDN scenario utilises the application implemented in section
3, whereas the non-SDN scenario will employ the traditional L2 switching.
Both will use the topology as displayed in Figure 4.2 – the only difference
being the fact that in the non-SDN mode Open vSwitches handle forwarding
themselves without being managed by an external SDN controller. The eva-
luated test cases are as follows:

1. VM being migrated (iperf client) vs. static VM (iperf server). The VM
being migrated will act as a database server, while the static VM will
represent an application/web server. This is schematically displayed in
Figure 4.3.

2. VM being migrated (iperf server) vs. static VM (iperf client). The VM
being migrated will act as a web/application server, whereas the static
VM will represent a DB server. This is depicted in Figure 4.4.

3. VM being migrated (iperf client) vs. physical host (iperf server). The
VM being migrated will act as a server for external client (e.g. web, FTP,
application server). This use case simulates external traffic leaving the
DC premises. The external client performs download operation. This is
portrayed in Figure 4.5.

The grey dotted lines signify the flow of VM migration process using the
controlling VLAN, while the light blue dotted lines represent the communica-
tion in terms of iperf/flowping using the controlled VLAN.

57

4. Evaluation

Figure 4.3: First test case

Figure 4.4: Second test case

58

4.2. Methodology

Figure 4.5: Third test case

The above-mentioned three test cases will be performed for both the SDN-
and non-SDN world. In the SDN scenario, ONOS and the application imple-
mented in section 3 will be invoked and required intents will be set up man-
ually. Afterwards, each of the above-mentioned test cases consisting of live
VM migration request, simultaneous iperf and flowping measurements will be
run 20 times in the same direction, which altogether entails 40 live VM migra-
tions per test case (20 live migrations will be the subject of the measurements
and 20 live migrations will revert the VM in question back to the original
hypervisor so that another iteration of iperf/flowping measurements can be
invoked). Since a VM migration given the topology in use takes approxi-
mately 20 seconds, a 35-second time frame will be used for iperf and flowping
measurements. This should be sufficient for the network and underlying com-
munication to become stable after the VM migration. In the end, average
values of throughput (based on iperf results) and latency (based on flowing
output) throughout the 35 second period will be obtained on a per-second time
frame. Additionally, average packet loss throughout all 20 migrations will be
measured as well. These principles also apply to the non-SDN scenario, but
this time switches will not be managed by ONOS SDN controller, but instead
they will use legacy L2 forwarding.

59

4. Evaluation

4.3 Results

The following section points out the results of the evaluation based on the three
test cases defined in the previous section 4.2. All test case measurements were
performed using both the SDN-based and the non-SDN-based principles. The
resultant figures 4.6 up to 4.11 corresponding to either iperf throughput or
flowping latency measurements are an average of 20 VM migrations. What
is common to all of the following measurements is the fact that VM migra-
tion finishes between 18th and 22nd second. During this critical time frame
average packet loss and latency increases, whereas throughput drops. This
applies to both the SDN-based and the non-SDN-based scenarios. The follow-
ing paragraphs will discuss the extent to which SDN and the traditional L2
forwarding differ in terms of performance during the critical time period.

60

4.3. Results

Figures 4.6 and 4.7 correspond to the first test case, in which the migrated
VM acts as an an iperf/flowping client against a static VM running iperf and
flowping server applications. Originally, both virtual machines reside on the
same host, but once the migration has been completed, the traffic between the
VMs spans across the entire network. The SDN approach performs slightly
better compared to the traditional L2 forwarding in terms of packet loss and
latency. SDN loses on average 2.25 % packets during the entire migration,
while 2.40 % of packets is lost in the non-SDN approach. Similarly, flowping
downtime during the critical part of VM migration is on average shorter in
the SDN case, 0.75 second vs 0.80 second in the non-SDN case. SDN excels in
terms of throughout during the critical phase of VM migration – 34 Mbps is
more than twice as much as the traditional L2 forwarding can inject (almost
14 Mbps).

Figure 4.6: SDN: VM acting as iperf/flowping client against a static VM (1st
use case)

Figure 4.7: Non-SDN: VM acting as iperf/flowping client against a static VM
(1st use case)

61

4. Evaluation

Figures 4.8 and 4.9 represent the second test case, in which the migrated
VM acts as an iperf/flowping server against a static VM running iperf and
flowping client applications. Similarly to the first use case, the traffic between
the two VMs spans across the entire network after the VM migration. The
SDN case is superior to its non-SDN counterpart in all major aspects – average
packet loss during the entire migration (2.85 % compared to 3.75 % in the
traditional L2 forwarding), flowping downtime during the critical part of VM
migration (0.9 second vs 1.2 seconds) and last but not least, throughput during
the transition (15.5 Mbps for the SDN case is almost double the figure obtained
in the non-SDN case – 7.5 Mbps).

Figure 4.8: SDN: VM acting as iperf/flowping server against a static VM (2nd
use case)

Figure 4.9: Non-SDN: VM acting as iperf/flowping server against a static VM
(2nd use case)

62

4.3. Results

Figures 4.10 and 4.11 represent the third test case, in which the migrated
VM acts as an iperf/flowping client against an external host running iperf and
flowping server applications. Unlike the two previous cases, which focus on
intra-DC communication, this test case represents communication between the
DC and the external world. The output of average throughput as recognised
by iperf resembles the first use case for both the SDN and the non-SDN cases.
This is analysed in the next paragraph. In terms of comparing the SDN-based
and the traditional approach, SDN outperforms its competitor in all major
respects. Similarly to the two previous test cases, iperf client can inject twice
as much traffic into the network during the critical part of migration when
compared to the non-SDN-based approach (31 Mbps vs. 15.7 Mbps).

Figure 4.10: SDN: VM acting as iperf/flowping client against an external
client (3rd use case)

Figure 4.11: Non-SDN: VM acting as iperf/flowping client against an external
client (3rd use case)

63

4. Evaluation

Aspect SDN Non-SDN

Total packet loss 2.25 ± 1.33 % 2.40 ± 1.23 %

Lack of connectivity
during transition

0.75 ± 0.44 s 0.80 ± 0.41 s

Minimal throughput
during transition

34.26 ± 34.05 Mbps 13.68 ± 15.33 Mbps

Maximal latency during
transition

4.76 ± 0.74 s 3.41 ± 2.53 s

Table 4.4: First test case performance comparison

Aspect SDN Non-SDN

Total packet loss 2.85 ± 1.18 % 3.75 ± 1.33 %

Lack of connectivity
during transition

0.90 ± 0.30 s 1.20 ± 0.41 s

Minimal throughput
during transition

15.58 ± 14.93 Mbps 7.45 ± 11.54 Mbps

Maximal latency during
transition

4.50 ± 0.49 s 2.94 ± 1.23 s

Table 4.5: Second test case performance comparison

Test cases 1 and 3 show a sharp increase in throughput after the end of
VM migration for both the SDN and the non-SDN scenarios. This may be
caused by a combination of the following two factors:

• different HW configuration of hosts URAN001 and URAN002 and

• utilisation of both servers differs since URAN001 hosts an additional
VM.

Therefore, URAN001 may have fewer computational resources as required
by the iperf client (i.e. VM undergoing migration), which attempts to inject
a large amount of traffic into the network.

Tables 4.4, 4.5 and 4.6 compare and contrast the results of respective test
cases for both the SDN and the non-SDN scenarios. Besides average packet
loss throughout the entire migration, average downtime and minimal through-
put during the critical phase of VM migration, the tables contain expected
values and corrected standard deviations for maximum latency as detected by
flowping during the 5-second time frame (18th-22nd second). These figures
are of lesser importance because they comprise of traffic that was actually
received by the flowping server and do not consider lost traffic.

The results also point out the fact that a large standard deviation is de-
tected in all cases for minimal throughput measurements – it is approximately

64

4.3. Results

Aspect SDN Non-SDN

Total packet loss 2.40 ± 1.23 % 2.85 ± 0.67 %

Lack of connectivity
during transition

0.75 ± 0.44 s 0.95 ± 0.22 s

Minimal throughput
during transition

31.20 ± 36.63 Mbps 15.68 ± 9.72 Mbps

Maximal latency during
transition

2.89 ± 0.37 s 0.80 ± 0.60 s

Table 4.6: Third test case performance comparison

equal to the expected value. This is caused by the fact that VM migrations
for a single test case tend to finish in a 1-3 second time frame and hence the
resulting throughput varies from 0 Mbps to approximately 2x expected value.
However, it is important to state that this behaviour is common to both the
SDN-based and the non-SDN-based scenarios for all test cases. Hence, the
expected value can still be considered a valid performance indicator.

In conclusion, proactive topology changes via the means of SDN result in
better performance during the critical phase of VM migration for all relevant
attributes (service downtime, throughput). Average packet loss throughout
the entire migration is also lower in the SDN case. Effectively, if iperf and
flowping were replaced by real-world services, VM undergoing migration would
probably lose fewer TCP sessions (which corresponds to a decrease in flowping
downtime) while serving more clients (which corresponds to an increase in iperf
throughput).

65

Conclusion

The purpose of the thesis was to analyse the extent to which the novel concept
of software-defined networking represents a feasible alternative to the tradi-
tional networking concepts in the small/medium-sized data center environ-
ment. The thesis specifically focused on a single use case – service availability
enhancement during live VM migration.

Chapter 1 familiarises the reader with the state of the art in several re-
lated fields varying from the definition and requirements imposed on SDN
controllers, currently available overlay networks providing multi-tenancy to a
description of virtual switches as employed by hypervisors.

In chapters 2 and 3 the application maintaining flow rules among the com-
municating entities is outlined and subsequently implemented. The applica-
tion is run as a module within ONOS SDN controller and gathers information
from multiple sources, namely libvirt virtualisation API and OpenNebula or-
chestrator system. The application proactively performs topology changes
(i.e. relocation of the VM undergoing migration) in accordance with the SDN
principles.

Chapter 4 attempts to evaluate the application using leaf-and-spine net-
work topology, which is commonplace in data centers. Since the original topo-
logy consisting of both physical and virtual switches cannot be fully managed
by ONOS SDN controller due to particular ONOS limitations described in
detail in page 54, an alternative topology comprised of virtual switches is cre-
ated. Throughput, latency and packet loss are measured for three particular
use cases, which represent both intra-DC and external communication. The
measurements are carried out for both the SDN-based and the non-SDN-based
scenarios.

Based on the measurement results it follows that the proactive approach
taken by the the application implemented in chapter 3 decreases packet loss
and provides larger throughput during the critical phase of VM migration.
If iperf and flowping – tools performing the quantitative evaluation – were
replaced by real-world services, more requests would probably be handled by

67

Conclusion

the VM undergoing migration while losing fewer existing TCP sessions.
The implemented application meets the requirements defined in subchap-

ter 2.1 with the exception of the third point – savings in terms of network
bandwidth and CPU processing. While the proactive approach eliminates
flooding of unknown unicast frames performed by switches in the traditional
L2 forwarding, SDN inherently induces an additional layer of complexity –
communication with the external controller. In terms of multi-tenancy as an-
other requirement, the application gathers VLAN configuration correspond-
ing to each of the communicating endpoints and changes the endpoint location
within a given VLAN, but does not enforce any security measures which would
prevent from inter-VLAN communication.

Although the SDN-based approach does not outperform the traditional L2
forwarding dramatically, one should keep in mind that SDN is more than a
novel traffic forwarding mechanism – instead, port security and perhaps other
security-related issues may potentially be solved in a programatic manner via
SDN.

On the other hand, the problems encountered while trying to manage
physical switches of multiple vendors by ONOS SDN controller emphasise the
current immaturity of SDN implementations. However, I believe that the
ability to program networks, which is the principal advantage of SDN over
traditional networking, will prevail and SDN will eventually become common-
place in certain environments, data centers being one of them.

68

Bibliography

[1] Vxchange. Scalable, secure and energy-efficient data centers. http://

www.vxchnge.com/data-centers/, 2015, accessed: 21 January 2015.

[2] Open Networking Foundation. Software-Defined Networking: The
New Norm for Networks. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/white-papers/wp-

sdn-newnorm.pdf, 2012, accessed: 06 February 2015.

[3] Salisbury, B. The Control Plane, Data Plane and Forwarding Plane
in Networks. http://networkstatic.net/the-control-plane-data-
plane-and-forwarding-plane-in-networks/, 2012, accessed: 06
February 2015.

[4] Bruno Nunes Astuto, Marc Mendonca, Xuan Nam Nguyen, Katia
Obraczka, Thierry Turletti. A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks. Communications
Surveys and Tutorials, IEEE, volume 16, 2014, ISSN 1553-877X.

[5] IETF. Ipsilon’s General Switch Management Protocol Specification Ver-
sion 1.1. https://tools.ietf.org/html/rfc1987, 1996, accessed: 06
February 2015.

[6] Kerner, S. M. Big Switch Emerges with Commercial SDN Portfo-
lio. http://www.enterprisenetworkingplanet.com/datacenter/big-
switch-emerges-with-commercial-sdn-portfolio.html, 2012, ac-
cessed: 07 February 2015.

[7] The OpenDaylight Project. About Open Daylight. http:

//www.opendaylight.org/project/about, 2015, accessed: 07 February
2015.

[8] The OpenDaylight Project. OpenDaylight Controller: Archi-
tectural Framework. https://wiki.opendaylight.org/view/

69

http://www.vxchnge.com/data-centers/
http://www.vxchnge.com/data-centers/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://networkstatic.net/the-control-plane-data-plane-and-forwarding-plane-in-networks/
http://networkstatic.net/the-control-plane-data-plane-and-forwarding-plane-in-networks/
https://tools.ietf.org/html/rfc1987
http://www.enterprisenetworkingplanet.com/datacenter/big-switch-emerges-with-commercial-sdn-portfolio.html
http://www.enterprisenetworkingplanet.com/datacenter/big-switch-emerges-with-commercial-sdn-portfolio.html
http://www.opendaylight.org/project/about
http://www.opendaylight.org/project/about
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework

Bibliography

OpenDaylight_Controller:Architectural_Framework, 2013, ac-
cessed: 07 February 2015.

[9] The OpenDaylight Project. OpenDaylight Virtual Tenant Net-
work (VTN): Overview. https://wiki.opendaylight.org/view/
OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Overview, 2015,
accessed: 07 February 2015.

[10] The OpenDaylight Project. OpenDOVE: Proposal. https:

//wiki.opendaylight.org/view/Open_DOVE:Proposal, 2015, accessed:
07 February 2015.

[11] ON.Lab. ONOS Overview. http://onosproject.org/wp-content/
uploads/2014/11/Whitepaper-ONOS-final.pdf, 2014, accessed: 07
February 2015.

[12] ON.Lab. Driving SDN Adoption in Service Provider Net-
works. http://onosproject.org/wp-content/uploads/2014/11/
Whitepaper-Service-Provider-SDN-final.pdf, 2014, accessed: 07
February 2015.

[13] Casado, M. List of OpenFlow Software Projects. http:

//yuba.stanford.edu/~casado/of-sw.html, accessed: 08 February
2015.

[14] University of Virginia: Jorg Liebeherr. Lecture nodes: Overlay
Networks 1. http://www.cs.virginia.edu/~cs757/slidespdf/757-09-
overlay.pdf, 2003, accessed: 02 February 2015.

[15] Pepelnjak, I. A Day in a Life of an Overlaid Virtual Packet.
http://blog.ipspace.net/2013/08/a-day-in-life-of-overlaid-
virtual-packet.html, 2013, accessed: 03 February 2015.

[16] IETF. Virtual eXtensible Local Area Network (VXLAN): A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks.
http://tools.ietf.org/html/rfc7348, 2014, accessed: 03 February
2015.

[17] Pepelnjak, I. Unicast-only VXLAN finally shipping. http:

//blog.ipspace.net/2013/07/unicast-only-vxlan-finally-
shipping.html, 2013, accessed: 03 February 2015.

[18] Raffe, A. Enhanced VXLAN: Who needs multicast? http:

//adamraffe.com/2013/06/24/enhanced-vxlan-who-needs-
multicast/, 2013, accessed: 05 February 2015.

70

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework
https://wiki.opendaylight.org/view/OpenDaylight_Controller:Architectural_Framework
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Overview
https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Network_%28VTN%29:Overview
https://wiki.opendaylight.org/view/Open_DOVE:Proposal
https://wiki.opendaylight.org/view/Open_DOVE:Proposal
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf
http://yuba.stanford.edu/~casado/of-sw.html
http://yuba.stanford.edu/~casado/of-sw.html
http://www.cs.virginia.edu/~cs757/slidespdf/757-09-overlay.pdf
http://www.cs.virginia.edu/~cs757/slidespdf/757-09-overlay.pdf
http://blog.ipspace.net/2013/08/a-day-in-life-of-overlaid-virtual-packet.html
http://blog.ipspace.net/2013/08/a-day-in-life-of-overlaid-virtual-packet.html
http://tools.ietf.org/html/rfc7348
http://blog.ipspace.net/2013/07/unicast-only-vxlan-finally-shipping.html
http://blog.ipspace.net/2013/07/unicast-only-vxlan-finally-shipping.html
http://blog.ipspace.net/2013/07/unicast-only-vxlan-finally-shipping.html
http://adamraffe.com/2013/06/24/enhanced-vxlan-who-needs-multicast/
http://adamraffe.com/2013/06/24/enhanced-vxlan-who-needs-multicast/
http://adamraffe.com/2013/06/24/enhanced-vxlan-who-needs-multicast/

Bibliography

[19] Cisco. Cisco Nexus 1000V release notes, release 5.2(1)SV3(1.1). http://
www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/
sw/5_2_1_s_v_3_1_1/release/notes/n1000v_rn.html#pgfId-213751,
2015, accessed: 03 February 2015.

[20] Bedem, R. V. D. Tech101 – VMware NSX. http://vcdx133.com/2015/
01/06/tech101-vmware-nsx/, 2015, accessed: 05 February 2015.

[21] Lowe, S. Learning NVP, Part 1: High-Level Architecture.
http://blog.scottlowe.org/2013/05/21/learning-nvp-part-1-
high-level-architecture/, 2013, accessed: 05 February 2015.

[22] Pepelnjak, I. Layer-2 and Layer-3 Switching in VMware NSX.
http://blog.ipspace.net/2013/11/layer-2-and-layer-3-
switching-in-vmware.html, 2013, accessed: 05 February 2015.

[23] VMware. VMware Virtual Networking Concepts. http://

www.vmware.com/files/pdf/virtual_networking_concepts.pdf,
2015, accessed: 25 January 2015.

[24] VMware. vSphere 5 Command-Line Documenta-
tion. http://pubs.vmware.com/vsphere-50/topic/
com.vmware.vcli.examples.doc_50/cli_manage_networks.11.4.html,
2014, accessed: 25 January 2015.

[25] Cisco. Cisco SAFE Reference Guide. http://www.cisco.com/c/en/
us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg.pdf,
2010, accessed: 25 January 2015.

[26] Pepelnjak, I. VMware virtual switch: no need for STP.
http://blog.ipspace.net/2010/11/vmware-virtual-switch-no-
need-for-stp.html, 2010, accessed: 25 January 2015.

[27] Oswalt, M. ESXi switch load balancing woes. http://

keepingitclassless.net/2013/05/esxi-vswitch-load-balancing-
woes/, 2013, accessed: 25 January 2015.

[28] Stretch, J. EtherChannel considerations. http://packetlife.net/blog/
2010/jan/18/etherchannel-considerations/, 2010, accessed: 25 Jan-
uary 2015.

[29] Wahl, C. Using LACP with a vSphere Distributed Switch 5.1.
http://wahlnetwork.com/2012/10/15/using-lacp-with-a-vsphere-
distributed-switch-5-1/, 2012, accessed: 25 April 2015.

[30] Cisco. Cisco Nexus 1000V virtual switch data sheet. https://

ciscodatacenter.files.wordpress.com/2010/03/data_sheet_nexus-
1k.pdf, 2008, accessed: 26 January 2015.

71

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/5_2_1_s_v_3_1_1/release/notes/n1000v_rn.html#pgfId-213751
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/5_2_1_s_v_3_1_1/release/notes/n1000v_rn.html#pgfId-213751
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus1000/sw/5_2_1_s_v_3_1_1/release/notes/n1000v_rn.html#pgfId-213751
http://vcdx133.com/2015/01/06/tech101-vmware-nsx/
http://vcdx133.com/2015/01/06/tech101-vmware-nsx/
http://blog.scottlowe.org/2013/05/21/learning-nvp-part-1-high-level-architecture/
http://blog.scottlowe.org/2013/05/21/learning-nvp-part-1-high-level-architecture/
http://blog.ipspace.net/2013/11/layer-2-and-layer-3-switching-in-vmware.html
http://blog.ipspace.net/2013/11/layer-2-and-layer-3-switching-in-vmware.html
http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf
http://www.vmware.com/files/pdf/virtual_networking_concepts.pdf
http://pubs.vmware.com/vsphere-50/topic/com.vmware.vcli.examples.doc_50/cli_manage_networks.11.4.html
http://pubs.vmware.com/vsphere-50/topic/com.vmware.vcli.examples.doc_50/cli_manage_networks.11.4.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/SAFE_RG/SAFE_rg.pdf
http://blog.ipspace.net/2010/11/vmware-virtual-switch-no-need-for-stp.html
http://blog.ipspace.net/2010/11/vmware-virtual-switch-no-need-for-stp.html
http://keepingitclassless.net/2013/05/esxi-vswitch-load-balancing-woes/
http://keepingitclassless.net/2013/05/esxi-vswitch-load-balancing-woes/
http://keepingitclassless.net/2013/05/esxi-vswitch-load-balancing-woes/
http://packetlife.net/blog/2010/jan/18/etherchannel-considerations/
http://packetlife.net/blog/2010/jan/18/etherchannel-considerations/
http://wahlnetwork.com/2012/10/15/using-lacp-with-a-vsphere-distributed-switch-5-1/
http://wahlnetwork.com/2012/10/15/using-lacp-with-a-vsphere-distributed-switch-5-1/
https://ciscodatacenter.files.wordpress.com/2010/03/data_sheet_nexus-1k.pdf
https://ciscodatacenter.files.wordpress.com/2010/03/data_sheet_nexus-1k.pdf
https://ciscodatacenter.files.wordpress.com/2010/03/data_sheet_nexus-1k.pdf

Bibliography

[31] Cisco. Cisco Nexus 1000V series switches data sheet. http:

//www.vmware.com/files/pdf/Cisco-Nexus-Network-Analysis-
Module-DS-EN.pdf, 2012, accessed: 26 January 2015.

[32] Pepelnjak, I. VLANs used by Nexus 1000V. http://blog.ipspace.net/
2011/08/vlans-used-by-nexus-1000v.html, 2011, accessed: 26 Jan-
uary 2015.

[33] Pepelnjak, I. What is OpenFlow (part 2)? http://blog.ipspace.net/
2011/10/what-is-openflow-part-2.html, 2011, accessed: 27 January
2015.

[34] Oswalt, M. Introduction to Open vSwitch. http://

keepingitclassless.net/2013/10/introduction-to-open-vswitch/,
2013, accessed: 27 January 2015.

[35] Pettit, J. Open vSwitch 1.11.0 Available. http://openvswitch.org/
pipermail/announce/2013-August/000054.html, 2013, accessed: 27
January 2015.

[36] Cisco. Cisco Nexus 1000V Essential and Advanced Editions FAQ.
http://www.cisco.com/c/en/us/products/collateral/switches/
nexus-1000v-switch-vmware-vsphere/qa_c67-717571.html, 2013,
accessed: 28 January 2015.

[37] VMware. vSphere pricing. http://www.vmware.com/products/vsphere/
pricing, 2015, accessed: 28 January 2015.

[38] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagan-
dula, Puneet Sharma, Sujata Banerjee. DevoFlow: Scaling Flow Mana-
gement for High-Performance Networks. Proceedings of the ACM SIG-
COMM 2011 conference, 2011.

[39] Ungerman, J. Cisco Connect: OpenFlow. http:

//www.cisco.com/web/CZ/ciscoconnect/2014/assets/
tech_sdn2_sp_api_openflow_ungerman.pdf, 2014, accessed: 09
February 2015.

[40] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, Andrew Warfield. Live Migration of
Virtual Machines. Proceeding NSDI’05 Proceedings of the 2nd conference
on Symposium on Networked Systems Design and Implementation, vol-
ume 2, 2005.

[41] Cisco. Catalyst 6500/6000 Switches ARP or CAM Table Issues
Troubleshooting. http://www.cisco.com/c/en/us/support/docs/
switches/catalyst-6500-series-switches/71079-arp-cam-

tableissues.html, 2009, accessed: 17 February 2015.

72

http://www.vmware.com/files/pdf/Cisco-Nexus-Network-Analysis-Module-DS-EN.pdf
http://www.vmware.com/files/pdf/Cisco-Nexus-Network-Analysis-Module-DS-EN.pdf
http://www.vmware.com/files/pdf/Cisco-Nexus-Network-Analysis-Module-DS-EN.pdf
http://blog.ipspace.net/2011/08/vlans-used-by-nexus-1000v.html
http://blog.ipspace.net/2011/08/vlans-used-by-nexus-1000v.html
http://blog.ipspace.net/2011/10/what-is-openflow-part-2.html
http://blog.ipspace.net/2011/10/what-is-openflow-part-2.html
http://keepingitclassless.net/2013/10/introduction-to-open-vswitch/
http://keepingitclassless.net/2013/10/introduction-to-open-vswitch/
http://openvswitch.org/pipermail/announce/2013-August/000054.html
http://openvswitch.org/pipermail/announce/2013-August/000054.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/qa_c67-717571.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-1000v-switch-vmware-vsphere/qa_c67-717571.html
http://www.vmware.com/products/vsphere/pricing
http://www.vmware.com/products/vsphere/pricing
http://www.cisco.com/web/CZ/ciscoconnect/2014/assets/tech_sdn2_sp_api_openflow_ungerman.pdf
http://www.cisco.com/web/CZ/ciscoconnect/2014/assets/tech_sdn2_sp_api_openflow_ungerman.pdf
http://www.cisco.com/web/CZ/ciscoconnect/2014/assets/tech_sdn2_sp_api_openflow_ungerman.pdf
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/71079-arp-cam-tableissues.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/71079-arp-cam-tableissues.html
http://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/71079-arp-cam-tableissues.html

Bibliography

[42] Jalaparti, V. [Xen-users] Xen live migration: from where is the
ARP sent? http://www.gossamer-threads.com/lists/xen/research/
201826, 2011, accessed: 17 February 2015.

[43] Kooman, S. VM HOOK scripts to send Gratuitous ARP replies on behalf
of VMs in OpenNebula cloud (ONE). https://github.com/hydro-b/
one-grarp, 2014, accessed: 17 February 2015.

[44] Nobel, R. The vSwitch “Notify Switches” setting. http:

//rickardnobel.se/vswitch-notify-switches-setting/, 2012,
accessed: 17 February 2015.

[45] VMware. Virtual machine live migration with vSphere vMotion. http:
//www.vmware.com/cz/products/vsphere/features/vmotion, 2015, ac-
cessed: 17 February 2015.

[46] Klepáč, M. Private IaaS cloud comparison. https://dip.felk.cvut.cz/
browse/details.php?f=F8&d=K104&y=2013&a=klepamar&t=bach, 2013,
accessed: 27 February 2015.

[47] OpenNebula Project. XML-RPC API. http://docs.opennebula.org/
4.12/integration/system_interfaces/api.html, 2015, accessed: 21
March 2015.

[48] Ruben S. Montero. How does opennebula monitor the vm’s state.
http://lists.opennebula.org/pipermail/users-opennebula.org/
2012-November/038418.html, 2012, accessed: 21 March 2015.

[49] Libvirt virtualization API. Hooks for specific system management.
https://www.libvirt.org/hooks.html, accessed: 21 March 2015.

[50] Koshibe, A. ONOS Developer’s guide: REST API (Draft). https:

//wiki.onosproject.org/pages/viewpage.action?pageId=1048699,
2015, accessed: 21 March 2015.

[51] Gupta, L. Singleton design pattern in java. http://howtodoinjava.com/
2012/10/22/singleton-design-pattern-in-java/, accessed: 02 April
2015.

[52] Hogg, S. Clos Networks: What’s Old Is New Again. http:

//www.networkworld.com/article/2226122/cisco-subnet/clos-
networks--what-s-old-is-new-again.html, 2014, accessed: 11 April
2015.

[53] Booth, R. Cisco Nexus - Part 2 - Design Basics. http:

//blog.movingonesandzeros.net/2013/05/cisco-nexus-part-2-
design-basics.html, 2013, accessed: 11 April 2015.

73

http://www.gossamer-threads.com/lists/xen/research/201826
http://www.gossamer-threads.com/lists/xen/research/201826
https://github.com/hydro-b/one-grarp
https://github.com/hydro-b/one-grarp
http://rickardnobel.se/vswitch-notify-switches-setting/
http://rickardnobel.se/vswitch-notify-switches-setting/
http://www.vmware.com/cz/products/vsphere/features/vmotion
http://www.vmware.com/cz/products/vsphere/features/vmotion
https://dip.felk.cvut.cz/browse/details.php?f=F8&d=K104&y=2013&a=klepamar&t=bach
https://dip.felk.cvut.cz/browse/details.php?f=F8&d=K104&y=2013&a=klepamar&t=bach
http://docs.opennebula.org/4.12/integration/system_interfaces/api.html
http://docs.opennebula.org/4.12/integration/system_interfaces/api.html
http://lists.opennebula.org/pipermail/users-opennebula.org/2012-November/038418.html
http://lists.opennebula.org/pipermail/users-opennebula.org/2012-November/038418.html
https://www.libvirt.org/hooks.html
https://wiki.onosproject.org/pages/viewpage.action?pageId=1048699
https://wiki.onosproject.org/pages/viewpage.action?pageId=1048699
http://howtodoinjava.com/2012/10/22/singleton-design-pattern-in-java/
http://howtodoinjava.com/2012/10/22/singleton-design-pattern-in-java/
http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
http://blog.movingonesandzeros.net/2013/05/cisco-nexus-part-2-design-basics.html
http://blog.movingonesandzeros.net/2013/05/cisco-nexus-part-2-design-basics.html
http://blog.movingonesandzeros.net/2013/05/cisco-nexus-part-2-design-basics.html

Bibliography

[54] Brown, M. Isolating vMotion traffic. https://communities.vmware.com/
message/2347811, 2010, accessed: 18 April 2015.

[55] Klepáč, M. onos-dev mailing list: ONOS vs. physical switches.
https://groups.google.com/a/onosproject.org/forum/#!topic/
onos-dev/U_BcylyY_kw, 2015, accessed: 11 April 2015.

[56] Cisco. Cisco Global Cloud Index: Forecast and Methodol-
ogy 2013–2018 White Paper. http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/global-cloud-index-

gci/Cloud_Index_White_Paper.html, 2014, accessed: 11 April 2015.

[57] O’Brien, S. 80/20. https://learningnetwork.cisco.com/thread/
25487, 2014, accessed: 11 April 2015.

[58] Sourceforge. Iperf. http://sourceforge.net/projects/iperf/, 2013,
accessed: 11 April 2015.

[59] Vondrous, O. FlowPing - UDP based ping application. http://

flowping.comtel.cz/, 2012, accessed: 11 April 2015.

74

https://communities.vmware.com/message/2347811
https://communities.vmware.com/message/2347811
https://groups.google.com/a/onosproject.org/forum/#!topic/onos-dev/U_BcylyY_kw
https://groups.google.com/a/onosproject.org/forum/#!topic/onos-dev/U_BcylyY_kw
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
https://learningnetwork.cisco.com/thread/25487
https://learningnetwork.cisco.com/thread/25487
http://sourceforge.net/projects/iperf/
http://flowping.comtel.cz/
http://flowping.comtel.cz/

Appendix A

Acronyms

AMD Advanced Micro Devices

API Application Programming Interface

APU Accelerated Processing Unit

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BPDU Bridge Protocol Data Unit

BUM Broadcast, Unknown unicast and Multicast

CAM Content Addressable Memory

CDP Cisco Discovery Protocol

CLI Command Line Interface

CPU Central Processing Unit

DB Database

DC Data Center

DHCP Dynamic Host Configuration Protocol

DSCP Differentiated Services Code Point

ESX (VMware’s hypervisor) Elastic Sky X

FIB Forwarding Information Base

FTP File Transfer Protocol

GRE Generic Routing Encapsulation

75

A. Acronyms

HA High Availability

HP Hewlett-Packard

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IOS (Cisco’s) Internetwork Operating System

IP Internet Protocol

IT Information Technology

KVM Kernel-based Virtual Machine

LACP Link Aggregation Control Protocol

LLDP Link Layer Discovery Protocol

MAC Media Access Control

NFV Network Functions Virtualisation

NIC Network Interface Card

ONOS Open Network Operating System

OSGi Open Services Gateway initiative

OSPF Open Shortest Path First

OVS Open vSwitch

OVSDB Open vSwitch Database

PAgP Port Aggregation Protocol

QEMU Quick Emulator

RARP Reverse Address Resolution Protocol

REST Representational State Transfer

RFC Request For Comments

RPF Reverse Path Forwarding

SDN Software Defined Networking

76

SNMP Simple Network Management Protocol

SPoF Single Point of Failure

SQL Structured Query Language

STP Spanning Tree Protocol

STT Stateless Transport Tunnelling

SVI Switch Virtual Interface

SW Software

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

ToR Top of Rack (switch)

TTL Time To Live

UDP User Datagram Protocol

vDS (VMware’s) VNetwork Distributed Switch

VEM (Nexus 1000V’s) Virtual Ethernet Module

VLAN Virtual Local Area Network

VM Virtual Machine

VNI VXLAN Network Identifier

vNIC Virtual Network Interface Card

VoIP Voice over Internet Protocol

VSM (Nexus 1000V’s) Virtual Supervisor Module

VTEP VXLAN Tunnel End Point

VXLAN Virtual Extensible Local Area Network

XML-RPC Extensible Markup Language Remote Procedure Call

XMPP Extensible Messaging and Presence Protocol

77

Appendix B

Contents of enclosed CD

readme.txt........................the file with CD contents description
src.......................................the directory of source codes

bash includes qemu hook script
java.............................includes all Java-based source code

control-application contains the control application source
host-provider-service..... contains HostProviderService source

latex...............the directory of LATEX source codes of the thesis
text.. the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

79

	Introduction
	State-of-the-art
	SDN
	Overlay networking protocols
	Virtual switches
	Physical switches

	Analysis and design
	Requirements
	Live VM migration discussion
	Application design
	Technology choice

	Implementation
	Inter-component communication
	Class diagram
	Description of respective classes

	Evaluation
	Lab environment
	Methodology
	Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

