
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Utilising projective technologies for

object-oriented development of WEB UI

Bc. Jakub Červenka

Supervisor: Ing. Robert Pergl, Ph.D.

5th May 2015

Acknowledgements

I thank my thesis supervisor for guidance, optimism and patience during my
work. I also thank my family for their support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 5th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Jakub Červenka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Červenka, Jakub. Utilising projective technologies for object-oriented devel-
opment of WEB UI. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2015.

Abstrakt

Tato práce se věnuje analýze, návrhu a implementaci webové aplikace pro
vývoj objektově orientovaného webového uživatelského rozhrańı. Ukazuje také
potenciál využit́ı projektivńıch technologíı a generováńı kódu v této oblasti.

Kĺıčová slova uživatelské rozhrańı, objektově orientované programováńı,
JavaScript, React, webová aplikace, komponenty

Abstract

This thesis focuses on analysis, design and implementation of a web applica-
tion for development of object-oriented web user interface. It also shows the
potential of projective technologies and code generation in this area.

Keywords user interface, object-oriented programming, code generation,
projective technologies, JavaScript, React, web application, components

ix

Contents

Introduction 1

1 State-of-the-art 3

1.1 Server-side technologies . 3

1.2 Client-side technologies . 5

1.3 Summary . 11

2 Codiscent’s projective technologies 13

2.1 Codiscent products . 13

2.2 Benefits and drawbacks . 14

3 Analysis 15

3.1 Product statement . 15

3.2 Use cases . 16

3.3 Domain Model . 17

3.4 Requirements specification . 18

4 Design 19

4.1 Ambidex . 19

4.2 Data model . 22

4.3 Server API . 23

4.4 Data stores and actions . 24

4.5 User interface . 25

5 Implementation 29

5.1 Server implementation . 29

5.2 Reflux stores . 30

5.3 Components . 31

5.4 Deploying to Heroku . 32

5.5 Using projective technology . 32

xi

5.6 Testing . 35

6 Proof of concept 37
6.1 Component design . 37
6.2 Implementing in Instinct UI . 38
6.3 Generating the components . 38
6.4 Summary . 39

7 Future work 41
7.1 User interface . 41
7.2 Better validation . 41
7.3 Storage and concurrency . 42
7.4 Component features . 42
7.5 Ambidex . 43
7.6 Direct integration . 43

Conclusion 45

Bibliography 47

A Acronyms 51

B Application screenshots 53

C Proof of concept screenshots 55

D Contents of enclosed CD 61

E Installation guide 63
E.1 Requirements . 63
E.2 Installation . 64

xii

List of Figures

3.1 Use cases . 16
3.2 Domain model . 17

4.1 Flux stores and actions . 25
4.2 Instinct UI wireframe . 27
4.3 Components in Instinct UI . 27

B.1 Screenshot of Instinct UI with default components 53
B.2 Screenshot of Instinct UI with proof of concept components 54

C.1 Wireframe of homepage / category listing screen 55
C.2 Wireframe of product detail screen 56
C.3 Wireframe of shopping cart screen 56
C.4 Generated homepage / category listing screen 57
C.5 Generated product detail screen 58
C.6 Generated shopping cart screen . 59

xiii

List of Tables

4.1 List of available API endpoints . 28

6.1 Lines-of-code comparison . 39

xv

Introduction

Today, the usage of web applications is on the rise. Users spend a high percent-
age of their time working with the web browser and desktop applications are
shifting to the browser environment. E-mail clients, media players, even office
suites are available as web applications. There is even an operating system,
Google Chrome OS, which is basically a web browser. [1] Web applications
can be used not only on desktop, but on tablets and smart phones, regardless
of the operating system. Furthermore, the web app shares the same user data
between different machines, supressing the need of explicit synchronization.
Therefore, web design and development is growing more and more important.

Object-oriented programming (OOP) is a programming paradigm, which
uses real world abstractions and concepts in design and development of soft-
ware. The entities in the program, called objects, are representing real world
entities and ideas. The objects are like black boxes, hiding the data and
the implementation from the outside world and expose them only through a
defined interface. The program consists of many objects, which are communi-
cating to fulfill the goal of the program. The features and structure of OOP
enhance the reusability and testability of the code. Therefore, object-oriented
programming became very popular and almost all major programming lan-
guages support programming in an object oriented way.

However, the object-oriented programming is only rarely used for devel-
opment of the user interface of web applications. The web applications are
based on HTML and CSS, which are not “real” programming languages. On
the client side, the document is manipulated by JavaScript, an object-oriented
language, but often in a very imperative way. On the server side, the main
used technologies (PHP, Java, .NET) are themselves object-oriented, but the
generation of resulting HTML seldom is. Most languages and frameworks use
a templating engine, which is just a way to insert the application data into
the “plain” HTML.

Bret Victor is a designer, engineer and programmer who used to (among
other work) design user interface at Apple. [2] He won the Apple Design

1

Introduction

Award in 2007 for his Mac OS X trip planner widget, “The BART Widget”.
In his talks and essays, Victor prefers visual representation, simulation and
interactivity to formulas and symbol manipulation. He presented correspond-
ing demos in different science fields (for example math, data visualisation,
programming, electrical engineering, animation or politics).

In his talk “Inventing on Principle” at Canadian University Software En-
gineering Conference in January 2012, he presented a JavaScript environment
capable of showing the values of variables during the computation, manipu-
lating the variables and showing the result in real time, even “showing the
future” of an avatar performing a jump in a simple game. [3] The jump
changed according to variable setting, which allowed to find the needed val-
ues very quickly. He presented his life guiding principle, importance of ideas
and the need of an immediate connection between creators and their work.
Without this connection, some ideas may never come to a fruition. He creates
environments for ideas to grow, because to him, seeing ideas die “feels like a
moral wrong, it feels like an injustice”.

In another talk, “Drawing Dynamic Visualizations” at Stanford Human-
Computer Interaction seminar in February 2013, he presented a tool for rep-
resenting data in a visual way, which abstracted graph drawing to drawing
objects according to input values. [4] For example, for drawing a bar chart,
he drew a rectangle scaled to appropriate height. The canvas and the drawing
process were higly interactive, immediately showing each step and the result.
Each picture’s input were the data and its output was the geometry of the im-
age. This allowed to create data-driven, ad-hoc, but reusable and composable
visualization very quickly.

The goals of this thesis are to present a non-traditional solution to web user
interface development, based on facts and principles stated above. The first
goal is to analyse, design and implement and a web application which would
respect principles given in Bret Victor’s talks. The application would be used
to develop user interface components declaratively, with instant feedback to
the programmer. Any changes the user makes would be immediately visible in
the resulting component. The components should be object-oriented parts of
web user interface, with defined structure, appearance and behavior. As they
would be objects, they would be encapsulated and composable, increasing
their reusability.

The second goal of the thesis is to explore possibilities of projective tech-
nology in user interface design. Data from this application would be therefore
used with Codiscent Projector Template Generator (PTG) to generate work-
ing component code. The output of the application (input for the PTG) would
be independent on the programming language and used libraries of the gen-
erated components. That would enable using the same data to generate the
components in another language (when having appropriate generation tem-
plate) if the underlying platform changes, for example when a new technology
emerges.

2

Chapter 1

State-of-the-art

There are two main categories of web technologies — server-side and client-
side. I will focus on the client-side technologies, as traditional server-side
technologies, like PHP, Java or .NET are matured and stable and they are
out of the scope of this thesis. On the other hand, client-side technologies are
wildly evolving and their importance rises. Almost all client-side technologies
are based on JavaScript, a programming language interpreted by the browser.
While there are other technologies like Java applets and Flash, they are on
the decline. [5]

The client/server distinction is not very strict, as most modern server-
generated web sites have some JavaScript part (along HTML and CSS, which
are obviously rendered by the client), ranging from input validation to “in-
finite” scrolling and content fetching to web sockets and server-side events.
From the other side, client-side applications have to at least fetch “raw” (XML
or JSON) data from the server and sometimes, the page is rendered on the
server first, to allow agents without JavaScript (like search engines) to process
the page.

1.1 Server-side technologies

The most popular languages for server-side web development are PHP, Java
and ASP.NET. [6] I will describe a popular czech PHP framework, called
Nette, and a less traditional Smalltalk web freamwork, called Seaside.

1.1.1 Nette

Nette is a PHP web framework. It is developed by David Grudl with contribu-
tions from Nette community. [7] Nette uses a MVP (Model-View-Presenter)
architecture and templating engine Latte to render the web page. Nette sup-
ports using components as part of the application. These components are
self-contained — they have their own template and data. Nette provides base

3

1. State-of-the-art

component classes to compose the component tree and map user actions to
PHP methods (via so-called signals).

Nette has a sophisticated object model and utilizes dependency injection,
having its own DI container (with the configuration written in NEON, Nette
Object Notation, text format similar to YAML and superset of JSON). It
makes up for some PHP shortcomings, unifying inconstencies in behavior and
names and providing simple API for some PHP features (such as image ma-
nipulation, string manipulation or JSON parsing and generation).

Nette includes a debugger called Tracy which unifies error handling, dis-
plays clear error page (“bluescreen”, which is actually red) with call stack in
development and customizable “Internal server error” page (and supressing
all error messages, improving security) while notyfing site administrator in
production. The last part of Nette is Nette Tester, a lightweight testing tool.

Aside from templating and components, Nette includes classes for caching,
database connection, iterating through files, generating and validating forms
(validation rules are exported to JSON through HTML data attributes and
included JavaScript library uses them to perform client-side validation), send-
ing e-mails, user authentification and authorization, date and string manipu-
lations or HTML tag manipulation.

Nette automatically protects from Cross-site scripting, Cross site request
forgery (in forms), attacks on PHP session and more. For Nette, the security
is the highest priority.

Nette supports client-side scripting via AJAX with so-called snippets —
determined parts of page are rendered on server, then send back to the browser
as strings in JSON response. JavaScript client script then overwrites target
parts of the page in the browser, without refreshing the whole page. Another
optional script can be user to push the page change to browser history.

Nette has been recently (in version 2.2) split to 20 packages, which are con-
nected through Composer (dependency manager for PHP), so the developer
can get the whole framework or just the needed parts easily.

Aside from the core framework, the community of Nette programmers
produced a lot of addons, extending the functionality for specific use cases.

The last stable release of Nette is version 2.3.1, released on 27 March 2015.
The 2.2.x branch is also supported, the 2.1.x branch will only get security
updates until the end of 2015. All these versions require PHP 5.3.1 or higher.
The last version to support PHP 5.2 was 2.0.18, released on 22 December
2014.

1.1.2 Seaside

Seaside is a web application server for Smalltalk. [8] Smalltalk is a pure
object-oriented language, with many implementations (for example Pharo or
Squeak). Smalltalk applications take form of virtual machine images. Appli-
cation themselves therefore include environment for developing them — class

4

1.2. Client-side technologies

browser, workspace, output (called transcript) and debugger. Everything in
the apllication can be modified at runtime and the changes are instantly visi-
ble.

In Seaside, the page and the application are divided into components,
or widgets. Each component has a render method, which describes how the
component should be displayed. Seaside provides classes for generating HTML
programmaticaly. The programmer therefore does not write text templates
filled with data, but rather calls method on an object, HTML canvas.

Application runs in so-called render loop and application state interacts
with the browser — a method call may result in displaying a component
and the method returns after an user action (for example, choosing from a
list); likewise, clicking on a link calls appropriate component’s render method.
Invokation of Widget states and application screens can be easily composed
to create complicated workflows. The state is carried over through requests
by an URL parameter. The past application states are stored on the server,
so the Back button and server history can be used to return to those states.

The last stable version of Seaside is version 3.1, released in May 2013.

1.2 Client-side technologies

1.2.1 JavaScript

JavaScript is an interpreted, object-oriented language with first-class func-
tions. It is a dynamic-typed, prototype-based language which supports proce-
dural, object-oriented or functional programming. Despite its name, it is not
affilated with Java programming language, aside from having similar syntax
features.

There are several runtime engines for JavaScript, the most popular being
SpiderMonkey, used in Mozilla Firefox, and V8, used in Google Chrome and
Opera browsers. Other implementations include Chakra (Internet Explorer),
JavaScriptCore (Webkit) and Rhino (Java). [9]

The standard of JavaScript is called ECMAScript. The current version of
ECMAScript is 5.1 (ES5), which is supported by all major browsers. Older
browsers, like Internet Explorer 8 and older, support at least ECMAScript 3
(ES3) and the 5.1 functionality has to be added to the via so-called polyfills
or shims, scripts which simply define the ES5 functions in ES3 terms. This is
possible because objects in JavaScript are very extensible.

The new, 6th edition of ECMAScript, called Harmony, is being codified
and it includes new syntactic features like class definitions (which are just syn-
tax sugar, the inheritance model is still prototype-based) or shorter lambda
syntax. ECMAScript 6 (ES6) support varies browser to browser (or runtime
to runtime). It’s possible to write ES6 code and then transpile it (compile
between programming languages) to ES5 or use polyfills for ES6 functions.

5

1. State-of-the-art

(However, the new syntax features cannot be polyfilled and have to be tran-
spiled.)

The main area of usage of JavaScript are dynamic web applications. As
the usage of these applications rises, so does their complexity and demand
for their speed. Therefore, the JavaScript engines in browser came up with
many optimizations to fulfill those demands. These optimized engines give
JavaScript an advantage even in non-browser environments.

1.2.1.1 Node.js

Node.js is a JavaScript platform for server environment. It is based on Google’s
V8 engine used in Google Chrome browser. It is developed by a commu-
nity of developers and governed by software company Joyent. It utilizes a
single-threaded event model with callbacks to handle I/O asynchronously, in
a non-blocking way. This allows for a great number of connections running in
parallel. Node.js provides an API for all sorts of operations, including HTTP
or file system access. This API is abstracted from the operating system of
the server. Node’s current stable version is 0.12.2, released on 31 March 2015.
[10]

The V8 engine, the runtime engine Node.js is built on, is writen in C++. It
efficiently implements property access by creating hidden classes. It generates
machine code directly from JavaScript and uses inline caches, which can be
patched by the runtime. It employs a generational, stop-the-world, garbage
collector to ensure fast object allocation, short garbage collection pauses, and
no memory fragmentation. All these features make the V8, and therefore
Node.js, extremely fast. [11]

1.2.1.2 npm

npm is the package manager, originally created for Node.js, but now used in
various environments. Its intent is to make using shared code and sharing own
code easier. It also enables publishing and consuming updates more easily. [12]

npm manages code in so-called packages. Each package consists od several
JavaScript files and a file package.json, where the information about the
package is stated, including the dependencies of the package.

npm consists of three things — the command-line tool, which installs pack-
ages’ dependencies, publishes packages, etc. (the tool is also shipped with
Node.js); the registry, where the packages are stored; and the website, where
the information about the packages is presented.

1.2.2 jQuery

jQuery is a JavaScript library by the jQuery Foundation. It has concise API
and handles the differences in implementation between browsers. The main

6

1.2. Client-side technologies

features of jQuery are: traverisng and manipulating the document using CSS3-
like selectors, delegated and undelegated event handling or sending AJAX
(Asynchronous JavaScript and XML) request.

These features are used mostly to supplement server-generated page with
browser functionality. The elements of the page are often accessed directly in
an imperative way.

1.2.3 AngularJS

AngularJS is a client-side JavaScript framework developed by Google for cre-
ating “reactive” web applications. The code of the application is divided be-
tween HTML, which defines the view part of the application, and JavaScript,
which defines the application logic in form of controllers. The JavaScript is
divided into modules to prevent interference with global namespace.

Angular defines, parses and evaluates special HTML attributes (called
directives), which connect the HTML and JavaScript. Angular also replaces
JavaScript expressions embedded in HTML in double braces with their value.

Angular uses so called two-way binding, where the changes in JavaScript
values are reflected to HTML, whereas user input, like form values are reflected
in JavaScript variables. AngularJS detects changes by comparing the current
values with values stored earlier in a process of dirty-checking, unlike other
libraries. The two-way binding circumvents the need of changing the DOM
directly (for example, with jQuery).

Angular can be used to create components, which combine the HTML
template and the controller. Components form custom directives, which fur-
ther extend the HTML syntax. Components also have so-called scope, which
is different from JavaScript variable scope and which is used as the execution
context for expressions in the template. [13]

The last stable release of AngularJS is currently version 1.3.15, released on
17 March 2015. Google announced working on Angular 2, a complete rewrite
of Angular, with respect to modern web technologies, which is currently in
Development Preview phase. [14]

1.2.4 React

React is an open source JavaScript library for developing user interfaces. It
is developed and maintained (mostly) by Facebook. [15]

A React application consists of components — JavaScript objects. These
objects form a tree, which is mounted to the browser document.

Data of React components consist of properties, called props, and state.
Props are the data passed to the component by its owner, whereas state are
the data managed by the component itself. When the state or props of a
component is changed, it is re-rendered (along with its children), if neccessary.
Data in React flows in one direction — props are passed down the component

7

1. State-of-the-art

tree. Child components then use callbacks (given to them as props) to notify
parents about user input. When the callback is invoked, the parent changes
its state accordingly, re-rendering in the process.

React utilises so-called Virtual DOM to improve its performance — in-
stead of directly applying every change to the document in browser, it creates
in-memory representation of its components, then computes the diffference
between the components and the document and then does only the neccessary
changes. This improves user experience, too, because the DOM elements are
changed instead of removed and re-added.

1.2.4.1 JSX

React includes an enhanced JavaScript syntax, called JSX, which allows to
use a XML-like syntax to create React elements. [16] For example, given this
JavaScript code:

var Component = React.createClass({...});

var variable = "variable";

return React.createElement(

Component,

{

property: "value",

anotherProperty: variable

},

React.createElement("div", null, "Content")

);

It can be written in JSX as:

var Component = React.createClass({...});

var variable = "variable";

return (

<Component property="value" anotherProperty={ variable }>

<div>Content</div>

</Component>

);

JSX also enables some ES6 features, like object desctructuring and spread
operator. For example, this takes flag and style from the props passed to the
component, chooses class name according to the flag, adds { color: red } to
the style and passes the class name, the style and all other props to the child
element (div):

8

1.2. Client-side technologies

var Component = React.createClass({

render: function () {

var { flag, style, ...other } = this.props;

return (

<div className={ flag ? "enabled" : disabled }

style={ ...style, color: red } ...other>

Content

</div>

);

}

});

JSX script can be loaded to the browser using provisioned JSXTransformer
(for development) or transpiled to JavaScript (for production).

1.2.4.2 Flux

Flux is a JavaScript application architecture developed and used by Facebook.
It complements React views and makes for simpler application architecture
then convential MVC. [17]

In Flux, instead of calling event handlers criss-cross, changes are propa-
gated in a simple loop. The state of a Flux application consists of so-called
stores, which provide access to data. React components get data from the
stores. When the user input is handled, so-called actions are created and di-
rected through event dispatcher to stores registered to the dispatcher. Stores
modify their appropriate state and notify the components, which redraw if
needed.

The dispatcher is crucial for Flux, because it forbids dispatching actions if
another action is being dispatched, therefore preventing actions and changes
going out of control. It also allows the store to wait for another store(s) to
complete their handling of the action before handling the action themselves.

Flux is not a framework or library, it is mostly a pattern, which can be
implemented in many ways. Facebook published their implementation of a
dispatcher for public usage. There are also many other implementations of
Flux,

1.2.4.3 Isomorphic web applications

React can be used to create so-called isomporphic web applications. Isomor-
phic applications share code (not neccessarily all of it) between the server and
the client, with only small differences. [18]

To do this, the application needs to detect the environment and render the
view appropriately (including the HTML header on the server). Application
state also needs to be serialized by the server and then deserialized by the
client.

9

1. State-of-the-art

In case of React, the root component is rendered on the server with
React.renderToString or React.renderToStaticMarkup and sent to the
client via HTTP. On the client, the component is then mounted to document
via React.render.

Aside from the inherent benefit of having to write most of the code only
once, this approach combines benefits of both server-side and client-side ren-
dering. Because of the initial server-side render, the page load is faster (as the
client gets complete HTML in one request instead of loading the blank HTML,
API data and JavaScript separately, then rendering the page via JavaScript)
and the page is accessible to clients without JavaScript (for example, search
engine robots). Because the subsequent rendering happens in the browser, the
page does react much faster. Also, the application does not need to transfer
the markup again, saving bandwidth in the process. And finally, the server
load is reduced, as the server does not have to render the HTML again. [19]

1.2.5 Wakanda

Wakanda is an open-source JavaScript platform that provides a full develop-
ment stack for creating web applications. It is developed by a french company
called 4D. It consists of Wakanda Studio, Wakanda DB (a server), Wakanda
Framework (for client-side JavaScript) and Wakanda Web Tools. [20]

Wakanda Studio is an IDE for working with Wakanda Server and creating
the application as a whole. The data model, the view, client- and server-
side JavaScript are specified, run and debugged in the Studio. The model
entities (called Data Classes) and their attributes, methods and relations can
be defined visually in Data Model Designer or described in JavaScript. The
user interface of the application is created using a WYSIWYG designer. The
view is also connected to the model.

Wakanda DB is a server part of Wakanda. It consists of a JavaScript
engine, a NoSQL database and an HTTP server. It uses SquirrelFish Ex-
treme, the JavaScript engine of Safari, with added API for server purposes.
The NoSQL database, called DataStore, has comprehensive REST interface.
The database schema, server-side processing, and querying are all done in
JavaScript. The application can be deployed to the server automatically.

Wakanda Framework is used to manipulate the view and accessing the
server data in the browser. Wakanda Dev Tools consist of application Ad-
ministration Panel and Chrome Debugger, which can be used to inspect the
server-side code in Google Chrome browser.

1.2.6 Amber Smalltalk

Amber Smalltalk is a client counterpart to Seaside. Amber is a Smalltalk im-
plementation that runs in browser as JavaScript. Amber code is compiled to
JavaScript and can interact with JavaScript environment. The whole frame-

10

1.3. Summary

work utilizes JavaScript ecosystem, utilities and libraries, like Bower, Grunt
or jQuery. It consists of a browser IDE, which looks and works like other
Smalltalk implementations — class browser, workspace, trancript, etc. Like
Seaside, it uses HTML canvas to interface with DOM elements and render
HTML in browser. It also includes a base class for components – Widget. [21]

There is also a project called Tide Framework, which is a layer managing
communication between Amber in the browser with Pharo (Smalltalk imple-
mentation) on the server, allowing to send data from Pharo and render them
by Amber and sending request to Pharo server from Amber. It is however (as
of April 2015) still in an experimetal phase and no longer developed (the last
change on GitHub was from August 2014). [22]

1.3 Summary

Client-side JavaScript provides a large variety of frameworks and libraries,
from low-level library like jQuery to full stack solution like Wakanda. The
JavaScript ecosystem is developing swiftly and new ideas are put into practice
soon.

Because this thesis focuses on the user interface, I will use the library
specialized for user interface — React. React is also well designed with respect
to object oriented programming, as its components are well encapsulated and
composable. Complementing tools and patterns of React, JSX and Flux, are
also a reason to use React.

11

Chapter 2

Codiscent’s projective
technologies

Codiscent Ltd. is a consulting and software development company, which
specialises in software for code generation. They claim code generation (with
their software) allows to escape the “triple constraint” of software develop-
ment. The triple constraint states that the software development process and
the resulting product can have only two of Economy, Quality or Speed. The
code generation promises to help develop the software “Cheaper, Better and
Faster”.[23]

Codiscent’s bussiness is commercial software development and consulting
services. They offer various levels of cooperation and tool and methods usage
according to the situation and estimated frequency of updates to the generated
system.

Their methodology is called Agile Model Driven Development. It uses
Codiscent’s projective technology along with the specification data to generate
the desired solution.

2.1 Codiscent products

The main Codiscent products (for the scope of this thesis) are Projector Tem-
plate Generator and Generative Engineering Studio. Other Codiscent prod-
ucts include Solution Modeling and Integrity Support, Reverse Engineering
Studio and Control Center Generator. [24]

The Projector Template Generator (PTG) is the core of Codiscent’s
projective technology. It is a text generator, which combines specification
data, metadata describing a particular problem or set of requirements and
simple and concise templates to generate output. The format of the output is
specified by the template and it can take almost any form.

As the templates resemble the target code with only several more syntax

13

2. Codiscent’s projective technologies

elements to control the code generation, the template can be created to gen-
erate anything which can be written as text. The specifications can also take
many forms, including relational data, Excel spreadsheets, XML and UML or
ER diagrams. The flexibility to deal with various source types and output
formats is the most powerful feature of the PTG.

The output of the PTG is independent of both the PTG and the rest of
the CodiScent platform. It can be modified and further developed at will, but
there are significant benefits in continuing to use the platform futher.

The Generative Engineering Studio (GES) is an integrated developed
environment (IDE) supporting template creation and debugging. It uses the
PTG to generate code from templates and specification. It manages all ar-
tifacts needed for the code generation — models, specification data sources,
templates and extensions. It groups related artifacts into a solution. It also
controls the generation process.

The Reverse Engineering Studio (RES) supports similar workflow, but
instead of generating code, it parses code to produce the specification data.
The data can be then used with GES to forward-generate another solution.

2.2 Benefits and drawbacks

The main benefits of projective technologies are related to code — program-
mers have to write less code (just the template in ideal case), the generated
code is more uniform and therefore more clear than the hand-written code.
The templates can be also reused with another set of specification data almost
without effort. [25]

Other benefits include reduced maintenance effort, as the solution can be
regenerated easily when the specification changes, and easier migration and
transformation, as the templates can be easily changed to reflect changed
needs of the solution.

The main drawback of projective technologies is that they are not suitable
for every problem. It’s also a little difficult to extend the generated code,
although it is possible with right means.

14

Chapter 3

Analysis

3.1 Product statement

As stated in the introduction, the goal of this thesis is to create a web appli-
cation for creation of web user interface components. As the application will
be developed using JavaScript library React, I decided to name it Instinct
UI.

Instinct UI will be an application for creating web components declar-
atively. User will define a structure and properties of the component and
the application will render it. When the user changes the definition, Instinct
UI will re-render the component with the changes immediately. For example,
when the user changes the size, color or content of the component, the changes
would be instantly visible. This ensures the immediate connection between
the user, for example a web designer, and his creation, allowing the user to
explore his ideas and understand how the component behaves depending on
its input.

After creating the component with Instinct UI, the user would then down-
load the specification data and run them through the generation template with
Codiscent Projector Template Generator. The PTG will generate a working
component code ready to be used and deployed in user’s web UI projects.

As components are objects (in a OOP way), they need to be composable
and pass data from one component to another. As they are part of the user
interface, they should react on user input. React components accomplish
this by passing the data to children components as props, while listening for
user input and changing their state accordingly. In the scope of this thesis,
I focused on the structure of the components and passing the data from the
parent to the children. Handling user interaction (and passing the data from
the children to the parents) can be integrated in future work.

15

3. Analysis

Figure 3.1: Use cases

3.2 Use cases

This application consists of several use cases related to component definition.
They are shown in figure 3.1.

The user will be able to create a new component. This would add a new
empty component to the system. The component would be available for using
in another component. The user will be able to define how the component will
be rendered, namely specify its root element. Component’s root element could
be a HTML tag or another component. Because components render according
to their input, it will be able to specify sample data for the component.

Because the components can have a complicated structure, the user has
to have a way of defining it. The user will be therefore able to add, delete or
modify a child of a component or its another child. The user will also be able
to add, delete or modify a property of a component or its child.

The user will be able to rename an existing component. The component’s
name cannot be empty or the same as the name of another component in the
system. The user will also be able to delete a component if he or she wishes
to. The application should ask the user for confirmation of the deletion.

As the application is not the final destination of components, it also has
to prove a way of downloading the component data for use in the PTG.

16

3.3. Domain Model

Figure 3.2: Domain model

3.3 Domain Model

The domain model of this application consists of elements, components, HTML
tags and properties. Properties can be simple or composite. The domain
model is shown in figure 3.2.

• Elements are the basic units of the web page. They have two subtypes
— an element can be either a HTML tag or a component.

• HTML tags are the elements, that are displayed in the browser as a
part of HTML document and the DOM tree. Tags can contain child
elements as well as text. Tags may also have properties.

• Components are non-trivial, named elements, which are defined within
the application. They have one root elements and can have child ele-
ments as well as properties. Components render themselves according
to the input they have. Components can be parts of other components.

• Properties are named values which define or modify the behavior of
tags or components, for example HTML proprerty style or id.

• Simple properties have atomic values, i. e. a string or a number.

• Composite properties have non-atomic values, like arrays or objects.

17

3. Analysis

3.4 Requirements specification

3.4.1 Functional requirements

• The users will be able to specify definitions of components. The com-
ponent has to have a name and a root element.

• The user will be able to define, modify and remove the children of com-
ponents. The childern themselves will be able to have children, too.

• The user will be able to define, modify and remove the properties of the
component’s root element or any of its children.

• The components will be composable into a hierarchical structure.

• In the definition of the component, there has to be a way to define
passing of the properties from the component to its children, as well
as other data manipulation — accessing fields of an array or an object,
iterating through arrays, and conditional values.

• The users will be able to specify sample input data (properties) for each
component.

• The application will render the defined components according to the
specification and sample input data.

• The application will store the definitions of components and the sample
data to a storage for future use.

• The application will provide a way to download component definitons
and sample data.

3.4.2 Non-functional requirements

• The rendering of the component would be immediate, no save or page
refresh will be needed.

• The component definition and sample data will also be stored immedi-
ately.

• The application will be accessible on the internet and available for down-
load and execution on the local computer.

• The downloaded definitions and sample data will be in a format usable
with Codiscent Projector Template Generator.

18

Chapter 4

Design

4.1 Ambidex

Ambidex is a JavaScript library by Brenton Simpson for developing isomorphic
React applications. It was presented on React.js Conf 2015. It is developed in
the eBay Mobile Innovations lab. It uses several other libraries in concert to
bridge the differences between server and browser environments. Doing so, it
makes the application isomorphic, rendering on both the server and the client
using the same application code. [19]

I will use Ambidex to make Instinct UI isomorphic, i. e. have it render on
the server first, then use the browser environment to make its usage dynamic,
without the need to re-render the whole page on each change. It will also
allow me to develop it more quickly as the changes to the components will
be immediately shown within the browser without the need of refreshing the
browser.

4.1.1 React

React components are the basis of the view presented with Ambidex. Ambidex
leverages the ability of React to render the componet either in the browser,
mounted to a DOM node, or on the server as a static string. I described React
in a detail in section 1.2.4.

4.1.2 React Router

React Router is a JavaScript library, created by Michael Jackson, Ryan Flo-
rence and other contributors, used for mapping the URL to React components
that corresponds to that URL. [26] It also includes a component for travers-
ing between the pages without refreshing the page, called Link. The router
mounts appropriate component on page transition and pushes the new page
to browser history, so the Back button remains operational.

19

4. Design

React Router also supports having “nested routes”, which enable having a
common component (for example, the page layout) for the parent route with
specific components as children for the descendant routes. It also supports
routes with parameters, routes for redirection or page-not-found route.

Aside from the routing, the router supports intercepting the transitions to
and from the components, then aborting, redirecting or retrying the transition.

Ambidex uses React Router first to map the request URL to the right
component(s), then for calling Flux (Reflux) actions according to the router
state. This allows Ambidex to have the right data in the data stores in order
to render the page on the server.

4.1.3 React Hot Loader

React Hot Loader is a JavaScript library, created by Dan Ambramov, which
uses Webpack (see below) Dev Server to immediately push changes made to
the React components, without the browser refresh. This enables live editting
of React code, changing the appearance and behavior of the page on the fly.
[27]

Ambidex takes this one step further, because it generates the needed
<script> tags automatically.

4.1.4 Webpack

Webpack is a JavaScript library, created by Tobias Koppers and contributors,
used to bundle JavaScript files for the browser. This allows using JavaScript
files created for the server environment (for example, Node.js libraries) to
be executed in the browser. It also packs multiple files into a single bundle
or multiple chunks, that are loaded asynchronously. This reduces number of
HTTP requests made, which enhances initial loading time. The bundler also
handles dependencies and omits unneeded files, reducing the total bundle size.
[28]

Aside from bundling JavaScript files, webpack can also use loaders to
bundle various other file formats (for example JSON, CoffeeScript or CSS)
and supports their transformation (for example, transpiling CoffeeScript to
JavaScript or JavaScript with ES6 features to ES5). It is modular, so a cus-
tom loader for any format may be used.

Webpack Dev Server is a JavaScript library by the same author, used in
development to serve a Webpack application and reload it when the source
files change.

Ambidex uses Webpack to bundle all JavaScript source files, as well as the
Sass stylesheets. Ambidex also uses Webpack Dev Server in development along
with the React Hot Loader to display the changes of the code immediately.

20

4.1. Ambidex

4.1.5 Reflux

Reflux is a Flux implementation by Mikael Brassman. It deviates a little
from original architecture, being more of a traditional publication-subscriber
model, but still with actions, stores and one-way data flow. [29]

In Reflux, the dispatcher is merged with the action — the actions are
function objects, which can be trigerred just by invoking them and listened
to by registering the listener. The listener registers themselves to the action
directly with a function (method) to be called when the action is triggered.
The data stores are also a little different as they can listen to each other,
allowing to create aggregate stores.

Reflux does not enforce the restriction put up by Flux dispatcher — an
action can be called during handling another action. However, it is a good
practice to trigger events only in components (and not during handling store
changes) to prevent infinite loops (even though the events can be trigerred
asynchronusly).

Ambidex uses Reflux (in the stable version 0.1.4, in 0.2.0, it will be replaced
by author’s own Flux implementation) as a data store. On each HTTP request
to the server, Ambidex triggers actions according to the router state (the page
requested) and, waits for the defined stores to trigger, then renders the page.
The store trigger when they have loaded the data needed for rendering the
page, so the page will be rendered correctly. Ambidex then sends the store
state from the server as a part of the webpage in plain JavaScript. The client
then sets the state of client stores accordingly. This the circumvents need of
loading the data aside from the page in the browser, reducing load times.

On the client side, Ambidex triggers the appropriate actions on each router
transition, but renders the components immediately. When the stores have
loaded the data, they trigger, notifying the component, which re-render with
the loaded data.

Ambidex’s author extended Reflux by adding an option to generate Reflux
actions and stores from plain object defintion as well as “dehydrating” the
stores when sending them from the server add “hydrating” them on the client.

4.1.6 Mach

Mach is a JavaScript HTTP server and client library by Michael Jackson and
contributors. [30] It runs both in Node.js and in the browser. It uses the
anynchronous model of JavaScript to serve a lot of clients simultaneously.

It maps HTTP requests to (asynchronus) function calls. It also uses
JavaScript Promises (see section 5.1.1) for composing asynchronous function
calls, for example file operations.

Other features of mach include streaming of both requests and responses,
composability and usage of middleware functions and robustness, as it prop-

21

4. Design

agates errors along the promise chain and up the call stack to simplify error
handling and debugging.

Ambidex uses mach to serve the application on the server, as well as op-
tionally using its middleware, for example to serve static files.

4.2 Data model

The data model for Instinct UI has to be flexible enough to handle all kinds
of elements as well hierarchic data. I will therefore use JSON format of the
data. The entities in the data model include:

• Components, which will be mapped to objects with a root property
beginning with a capital letter consisting of component’s name.

• HTML tags, which will be mapped to objects with a root property
beginning with a small letter consisting of tag’s name.

• Syntax objects, expressing component’s props, loops and conditions,
which will be mapped to objects with a root property beginning with a
dollar symbol, for example $val. The parameters of the syntax objects
will be mapped to attributes of the syntax object. The syntax values
will be:

– $val for referencing component’s props

– $index for referencing fields of objects and arrays

– $for for iterating objects and arrays

– $if for conditional values

– $merge for mixing component’s props with default or overriding
values, for example mixing components’s default style with the style
passed to the component as prop

• Text nodes, which will be mapped to strings.

• Component and tag children, which will be mapped to children at-
tribute of component and tag objects, either as an array (in case of
multiple children), as a component or tag object (in case of single ele-
ment child), or as a string (in case of single text child).

• Component and tag properties, which will be mapped to other at-
tributes of component and tag objects.

Component definitions and sample data will be saved in files component.json
and data.json as an object with component names as keys and component
definitions (or the sample data) as values.

For example, the code for defining a box component, which renders the
black border around given child elements, as well as adding the given name:

22

4.3. Server API

{

"root": "div",

"style": {

"root": "$merge",

"merge": [

{

"root": "$val",

"val": "style"

},

{

"border": "3px solid black",

"float": "left",

"padding": "5",

"margin": "5"

}

]

},

"children": [

{

"root": "div",

"children": {

"root": "$val",

"val": "name"

}

},

{

"root": "$val",

"val": "children"

}

]

}

4.3 Server API

Aside from serving the application itself, the server will have to have an API
for loading and saving the component definitions and the sample data. The
data will be requested from Instinct UI itself and also from the user when
downloading the definitions needed for the PTG. Instinct UI will use a JSON
API, while the PTG definition will need to be available as XML.

I decided to create a REST API, which uses HTTP methods in a semantic
way:

• GET method to request the whole collection of data or just a single
entity

23

4. Design

• POST method to create a new entity

• PUT method to update (replace) the whole collection of data or just a
single entity

• DELETE method to delete the whole collection or just a single entity

The list of available endpoints is shown in table 4.1.

4.4 Data stores and actions

The Reflux data stores contain the data displayed in the application. They
respond to actions by changing the data and then notifying the components
(see below) about the change. In Instinct UI, only the Main component listens
to the stores. Instinct UI includes following data stores:

• Components store contains all component definitions in the applica-
tion.

• Data store contains all sample data in the application. It listens to the
component store in case a component is created and creates an empty
sample data object in that case.

• CurrentComponent store contains the name of the current compo-
nent, as given by the router.

The Reflux actions are called by the components (see below) as in response
to user input. Instinct UI includes following actions (also shown in figure 4.1):

• getComponents action is called by Ambidex on every request. Com-
ponents store listens to it and responses by fetching the data from the
API. The store triggers when the data are loaded.

• createComponent action is called to create a new component. The
Components store listens to it and responses by sending a POST API
request. It then GETs the definition of created component and then
triggers.

• updateComponent action is called when a component definition is
changed, with appropriate data and component name. The Components
store listens to it and responses by sending a PUT API request, then
immediately triggers.

• renameComponent action is called when component’s name is changed.
It is called with both old and new name. Both Component and Data
stores listens to it and rename the component and all references to it,

24

4.5. User interface

Figure 4.1: Flux stores and actions

then send a PUT API request, then immediately trigger. CurrentCom-
ponent also listens to it, and if the old name matches the current com-
ponent, it changes the current component to the new name and triggers.

• deleteComponent action is called when the user deletes a component.
Each store listens to it: the Components store removes the component
from its state, calls a DELETE API request, then triggers; the Data
store removes the component from its state and triggers, too; the Cur-
rentComponent compares the deleted component’s name with the cur-
rent component and if they match, it sets its state to null and triggers.

• getData action action is called by Ambidex on every request. Data
store listens to it and responses by fetching the data from the API. The
store triggers when the data are loaded.

• updateData action is called when the sample data of a component
change, with appropriate data and component name. The Data store
listens to it and responses by sending a PUT API request, then imme-
diately triggers.

• getCurrentComponent action is called by Ambidex, when the request
contains the name parameter. The store sets its state to the name given,
then triggers.

4.5 User interface

To design the user interface of Instinct UI, I first created a wireframe (shown
in figure 4.2), the used the wireframe to determine the components and their
relationships. In the end, I decided to create these components (shown in
figure 4.3):

25

4. Design

• Main component will be the container for all other components. It will
also own the application state, getting it from the stores and passing it
to its children (ComponentMenu, ComponentEditPanel and Renderer)
as props.

• ComponentMenu will display name of all components in the appli-
cation as React Router’s Links to enable changing the current compo-
nent. It will also include a button for adding a component (triggering
createComponent action) and two HoldButtons for scrolling the menu
horizontally.

• HoldButton will be a small component, which would fire events each
10 miliseconds as long as it is clicked on.

• ComponentEditPanel will manage the editting of the current compo-
nents. It will consist of an Input for component’s name, two JsonEdit-
Boxes, one for component definition, one for sample data. It would trig-
ger appropriate action (renameComponent, updateComponent or up-
dateData) when the name, definition or the sample data changes. It
will also contain a button for deleting the current component (by trig-
gering deleteComponent).

• Input will be component for editting text data. It would fire an event
when the text changes. When its default value (given in props) changes,
it will wait until it is not active, then changes the input value. This
prevents overrwriting of the changes and changing cursor position while
writing.

• JsonEditBox will be component for editting JSON data. It would parse
the text in its textarea everytime it changes. If the text will be a valid
JSON, it will fire an event, otherwise, it would display an ErrorMessage.
As with Input, JsonEditBox does not change the text if it is active.

• Renderer will be the heart of Instinct UI. It will render the current
component according to its definition and sample data. It will display
the ErrorMessage in case of an error.

• ErrorMessage is a visual component for displaying an error.

26

4.5. User interface

Figure 4.2: Instinct UI wireframe

Figure 4.3: Components in Instinct UI

27

4. Design

method URL Description

GET /components.json returns all component definitions
as JSON

/components.xml returns all component definitions
as XML

/data.json returns all sample data as JSON

/data.xml returns all sample data as XML

/components/:name.json returns given component definition
as JSON

/components/:name.xml returns given component definition
as XML

/data/:name.json returns sample data for the given
component as JSON

/data/:name.xml returns sample data for the given
component as XML

/:name.xml returns the data and the definition
for the given component as XML

/:all.xml returns all definitions and sample
data as XML

POST /components.json

/data.json

both end points create a new com-
ponent with definition and data
given as JSON, then redirect to ap-
propriate GET endpoint

PUT /components.json updates all component definitions
with the data given as JSON, then
returns the definition

/data.json updates all sample data with the
data given as JSON, then returns
the data

/components/:name.json updates given component defini-
tion with the data given as JSON,
then returns the definition

/data/:name.json updates sample data for the given
component with the data given as
JSON, then returns the data

DELETE /components.json

/data.json

not implemented (both endpoints
return status 403)

/components/:name.json

/data/:name.json

both end points delete the given
component, then return remaining
components or data as JSON

Table 4.1: List of available API endpoints

28

Chapter 5

Implementation

5.1 Server implementation

I implemented the server API (described in section 4.3) using the mach web
server (described in section 4.1.6). The JSON part was pretty straightforward,
the generation of XML for the XML part is described in section 5.5.1.

Because the API server may run on a different URL than the frontend,
I needed to add an option to send the Cross-origin resource sharing (CORS)
headers to the response to allow the clients loading the API with an AJAX
request from a different origin. I did this by creating a mach middleware
(basically a function), which adds the desired headers to each request.

I also decided to add a configuration option to either run the API server
directly as a middleware (using the mach.map method) within Ambidex or
as a stand-alone process. I did this so the server could be reloaded without
restarting the client application (as Ambidex does not reload files not used
during the rendering and takes relatively long time to start up). This also
allows to run the server on another host and/or port, if needed.

5.1.1 Promises

Promises (also called futures or deferred) are placeholder values for computa-
tions or operations which have not completed and returned the desired result
yet. Past approach to this problem was using the callbacks, which make the
code messy and hard to reason about. On the other hand, Promises can
create long operation chains (quite similar to Unix pipes) easily and utilize
non-promise functions in the process.

As a promise implementation, I used the when library by Brian Cavalier
and other contributors. When supplies promise wrappers for callback-based
filesystem operations of Node.js into promises, which allowed me to easily
perform additional operations on the results of the operations. I could also
easily chain those operations, for example read a JSON file, then parse the

29

5. Implementation

contents with JSON.parse, edit the data, then write them back to the file.
[31]

5.2 Reflux stores

I implemented the Reflux stores (described in section 4.4) as plain JavaScript
definitions, because Ambidex creates the stores in its own way from these
definitions to keep the store creation isomorphic.

Because the Components store and the Data store were very similar and
consisted of a lot of duplicated code, I refactored this code into four mix-
ins. The apiCalls mixin uses mach to send HTTP requests to the API. The
loadSendData mixin define the throttled (see below) methods for loading and
updating the store data. The updateCount mixin adds a counter of active
updates to the components. While this counter is greater than zero, the GET
requests are not made nor do their result (if the request was sent before the
update was made) reflect to the data stores to prevent overwriting of the
changes which are on the way to the server. And the rename mixin adds
helper method for renaming the component and references to it in the store
data.

Furthermore, I converted the store state to be immutable in the end —
instead of mutating the store object (component or data dictionary), a new
dictionary with changed and unchanged data was created. This enabled us-
ing PureRenderMixin in components. This mixin overrides default lifecy-
cle method shouldComponentUpdate, so that when component’s parent re-
renders (and the component receives new props and state), but the props and
state remain the same, the component does not re-render itself. Creating
of virtual DOM and DOM reconciliation is thus skipped, improving overall
performance. [32]

Usage of PureRenderMixin has two prerequirements — the first is afore-
mentioned immutability of props and state. Because PureRenderMixin does
only shallow compare, it would skip the update if something was changed deep
in the (mutable) state or props objects. (The alternative to immutability is to
use forceUpdate method to bypass the shouldComponetUpdate method when
the change is detected.)

The second requirement is the namesake “pureness”, i. e. the resulting
DOM must only depend on the props and state and always be the same
given the same props and state. This includes “pureness” of all the child
components. Because I used PureRenderMixin for all components (aside top-
of-the-hierarchy App component, which uses RouteHandler given by router)
and always used just props and state in render methods, this requirement was
fulfilled as well.

30

5.3. Components

5.2.1 Throttling

As I don’t want to send server request for every typed letter, I use a technique
called “throttling”, which is time-based regulation of code execution rate.
Request for GETting and PUTting the data are limited to run at most each
60 seconds and 1 second, respectively. Latest call of PUT is always executed,
sooner or later, to surely save the data, whereas the GET request is discarded,
so finishing it later would not overwrite any modifications the user would make
between making the delayed request and completing it.

Also, as the PUT and DELETE changes are displaying optimistically,
to prevent race conditions, when there is an update waiting for completion
(response from the servre), GET request are neither sent nor are the received
data written to the data stores.

I implemented the throttling with promises (using the when promise li-
brary) — the throttle function returns another function which:

a) returns a fulfilled (resolved) promise when called for the first time or after
the given time threshold

b) return a rejected promise when called again within the time threshold and
it should not be called later (for the GET requests)

c) return a (undecided) promise when called again within the time threshold
otherwise (for the PUT requests); this promise is fulfilled after the time
threshold or rejected when the function is called again within the time
threshold

This implementation enables cleaning up after the request, whether it was
really made or not. Before the throttled function is called, the updateCount
mixin counter of active update requests (described above) is incremented. Us-
ing the finally method (which behaves like finally exception construct, i. e. is
executed whether an exception was raised or not), the counter is decremented
again after the request was completed or discarded.

5.3 Components

I implemented the Instinct UI components, described in section 4.5, using
React and JSX. The implementation is not very complicated, aside from the
Renderer component.

The Renderer component contains the core of Instinct UI functionality. It
converts component definitions to React classes using the createComponent

and React.createClass methods. These classes are just thin closure wrap-
pers around the definitions, though. Most of the rendering is done by the
createElement method, which is called when the created class is rendered by
React.

31

5. Implementation

When createElement method is called, the type of the rendered element
is first determined by the getType method, which looks at element’s root

attribute. If the rendered element is the root of a component, the syntax
objects in it are evaluated using the replaceSyntax method. The children
of the element are normalized and created recursively. The React element is
then created by React.createElement method and returned.

5.4 Deploying to Heroku

I decided to host my application on Heroku. Heroku is a cloud (platform-as-a
service) hosting service supporting Ruby, Node.js, Python, Java, and PHP.
It runs the application using “dynos”, dynamic containers which behave like
virtual machines. The dynos are named and priced by performance (1X, 2X,
PX). The application can be run with multiple dynos, increasing redundancy.
Each user has enough monthly free dyno hours per application to run the
application in a single 1X dyno free of charge. [33]

Application are deployed to Heroku using the distrubuted version control
system Git. The user logs in to Heroku using the Heroku command-line tool,
then deploys the application with git push heroku master command. The
configuration is saved with each deploy, allowing to rollback changes in case
of need.

To make Instinct UI work on Heroku, I created a settings.heroku.js

file and added NODE ENV and URL environment variables to Heroku. Instinct
UI uses the NODE ENV variable to choose the right settings file and the URL

variable to send the API requests to the right server. In Heroku settings, the
API server runs as a middleware within the application and is mapped to
/api/ path.

I deployed Instinct UI to http://instinct-ui.herokuapp.com/. Because
Heroku limits the RAM of 1X dyno to 512 MiB and the application used more,
I had to bother Node.js a little and limit its old memory space to 420 MiB.
This limit was high enough for the app to actually run and low enough that
the whole used memory fitted in the 512 MiB provided by Heroku.

5.5 Using projective technology

To use the Codistent’s projective technology, I first had to generate XML data
specification from the JSON data used by Instinct UI. Then I had to create a
template to use with the PTG. Doing this, I had to take different JavaScript
environments, in which the generated component could be run, into account.
I also had to run the PTG simply and repeatedly.

32

http://instinct-ui.herokuapp.com/

5.5. Using projective technology

5.5.1 XML generation

I implemented the XML generation as a part of the API server. The server
loads the JSON data from the appropriate file, then, as a part of a promise
chain, it generates the XML data from the JavaScript definition. The entry
point of the XML generation is the generateXML function. It takes the JS
definitons as a parameter, restuctures them and then creates the XML builder
library by Ozgur Ozcitak (and contributors). [34]

Because the PTG views the data in terms of rows and columns, the JS
tree data had to be flattened by the depth-first search. Instead of elements
including each other, the parent elements had to reference their children us-
ing an element index. Also, the arrays and complicated objects in element
properties had to be turned into separate elements. The XML therefore uses
different element names for element references and atomic values (like strings
and numbers) to distinguish them. The XML also includes the type field to
differentiate objects, arrays, tags, components and syntax objects.

5.5.2 Generator template

I chose to generate React components using the PTG. Although they would
look the same, they would not be the same as the rendered components in
Instinct UI. The Instinct UI rendered generated components dynamically,
whereas the generated components will be static and as close as possible to
classic React components. The generated components would also be indepen-
dent on Instinct UI.

The generator template therefore has to create a JavaScript code derefer-
encing the elements referenced in the XML specification. To do that, I decided
to generate a function for each element, then call the function from the parent
element. The props of the component would be passed down as a function
parameter. The function code differs according to the element type:

• Objects assemble their properties, calling other element for non-atomic
values, then return the properties.

• Arrays assemble their children, calling other element for non-atomic
values, then return the children.

• HTML Tags assemble their properties, like the objects, assemble their
children like the arrays, then call React.createElement with their root
property, other properties and children, then return the created element.

• Components assemble their properties and children like the tags, then
call React.createElement with the generated component class (see be-
low), properties and children, then return the created element.

• Syntax objects evaluate the syntax accordingly, then return the result.

33

5. Implementation

In case of component definitions, a React class is generated for each of
them. The class just calls the appropriate function in its render method. In
case of sample data, sample render function with the name of the component
is also generated. This function returns the React element of the desired class
with the sample data.

Aside from the component template, I also created a simple template for
generating HTML. The HTML just includes appropriate JavaScript files (it
relies on the naming convention) and render the components with sample data
in the XML.

5.5.3 Universal Module Definition

When developing Instinct UI, I could rely on having Node.js on the server,
while Ambidex and Webpack handled transformation of the script for browser.
When creating generated components, I had to take different JavaScript en-
vironments into account. These environments differ mainly in the way of
separating the code and managing dependencies:

• CommonJS, which is used for example in Node.js, where each file de-
fines a module, using a require function to load dependencies and the
exports variable to export objects.

• Asynchronous Module Definition (AMD), which is used for exam-
ple by module loader RequireJS, where the modules are defined using
the define function, which also declares the dependencies.

• Browser environment, where scripts occupy the global namespace
and the dependencies are passed by simply loading the file.

I therefore included an Universal Module Definition (UMD) part to the
template code.[35] The UMD wraps the code in the function wrapper, detects
the environment and calls the function immediately with appropriate param-
eters. Inside the function, the code functions the same on all environments.
On CommonJS and AMD, the wrapper requires React (or declares it a as a
dependency) and exports an object consisting of all defined components and
sample render functions. In the browser, the wrapper consumes the global Re-
act object (which has to be created by including React script in the browser)
and defines (or extends) an object called InstinctUI with the components and
sample render functions.

5.5.4 Running the generator

As I didn’t have access to the GES licence, I was reliant on running the PTG
directly from the command line. However, the PTG accepts the template as
a command line parameter, which is very inconvenient. Therefore, I decided

34

5.6. Testing

to create a Windows command line script to run the PTG while specifying
the template file as a parameter. The script reads the file line by line using
the set /p command and delayed expression expansion. The quotes in the
template string are then escaped to use the string as a command line parameter
delimited with quotes. The PTG is then run with desired parameters.

I also had a small problem with the character encoding when generating
the components. The (non-ASCII) UTF-8 characters in the the template
generator application were interpreted as two or more characters, therefore
generating scrambled characters. The problem was made even worse by the
Windows command line transcribing the output to another encoding, turning
the majority of “bad” characters into question marks.

The codepage problem was finally solved by having the specification files
in UTF-8 and changing the console encoding (with the chcp command) to
Windows-1255. Apparently, the generator inperprets the input file (but not
the template string) as being encoded in Windows-1255 and produces Windows-
1255 output as well. But when the command line saves the scrambled char-
acters to the file unchanged, they form the original UTF-8 characters. This
solution is working, because both UTF-8 and Windows-1255 are compatible
with ASCII, so the PTG syntax characters are unaffected by the codepage
change.

5.6 Testing

For the testing of both Instinct UI and the component generation, I con-
structed three sets of components. The first set is the default component set,
showing the features of Instinct UI. The second set was used to test the XML
generation and the PTG, so it uses almost all possible types of elements. The
third set was used as a proof of concept, described in chapter 6.

During the testing, I created the components using Instinct UI each time
and compared the rendered components to the intended and expected output.
After creating the components with Instinct UI, I downloaded the appropriate
XML files, ran the PTG and then compared the generated components to the
components rendered in Instinct UI.

When developing the API part of Instinct UI, I tested server responses to
browser requests from Instinct UI and to requests made by cURL.

Concerning other parts of Instinct UI, I simply tested their behavior in
the browser.

35

Chapter 6

Proof of concept

As o proof of concept, I decided to design the user interface for a simple e-
shop. I will create three screens of the e-shop — homepage / category listing,
product detail and the shopping cart detail.

6.1 Component design

Before I decomposed the e-shop interface into components, I made a wireframe
for each of the three pages. These wireframes are shown in figures C.1, C.2
and C.3.

I used these wireframes to decompose the UI into these components:

• Homepage, ProductPage and CartPage are the root components
for the pages. They use the Layout component with ProductList, Pro-
ductDetail and CartDetail components, respectively.

• Layout is the top-level component of the document. It consists of Cart-
Info, Header and CategoryList components, displaying the given children
as the main content of the page.

• Header contains the top heading of the page.

• CartInfo shows user’s shopping cart state (number of items and the
total cost) as well as the (fake) link to cart detail.

• CategoryList shows the tree of e-shop categories. Each category is
shown as a single CategoryListItem element.

• CategoryListItem displays single category as a list item with (fake)
link to the category page.

• ProductList is the main component of the Homepage. It shows the
name of the category and products in the category, each as one Pro-
ductBox element.

37

6. Proof of concept

• ProductBox shows one product on the homepage. It displays product’s
name and image as well as a (fake) link to product’s detail page and the
AddToCartButton component.

• AddToCartButton shows the input field and submit button for adding
a product to the shopping cart.

• ProductDetail is the main component of the ProductPage. It shows
the product’s name, description, image and a AddToCartButton.

• CartDetail is the main components of the CartPage. It shows the table
of user’s shopping cart contents, each item as a CartRow. It also show
a (fake) link to proceed with the order.

• CartRow shows one item of user’s shopping cart. It shows the product
name, quantity, unit cost and total cost.

6.2 Implementing in Instinct UI

I created an Instinct UI component for each of components. I defined compo-
nent’s style, structure and composition via the component textarea. I added
sample data to the components via the data textarea.

All product, category and cart data are passed from the sample input data
through the components’ props. Note that all the data are statically passed
through the props, as Instinct UI (in its current version) is not capable of
props manipulation, such as multiplying the item quantity with the unit cost
to produce total cost.

A screenshot of Instinct UI with the Homepage component is shown on
figure B.2.

6.3 Generating the components

I downloaded the components.xml, data/Homepage.xml, data/ProductPage.xml
and data/CartPage.xml to the directory with the components.tpl and html.tpl
files and wrote and executed a simple build script, creating four JavaScript
files (one with component definitions, three with sample data for rendering
the components) and three HTML files (one for each component):

@echo off

call "%~dp0\run.bat" "%~dp0\components.xml"^

"%~dp0\components.tpl" > "%~dp0\components.js"

call "%~dp0\run.bat" "%~dp0\Homepage.xml"^

"%~dp0\components.tpl" > "%~dp0\Homepage.js"

call "%~dp0\run.bat" "%~dp0\Homepage.xml"^

"%~dp0\html.tpl" > "%~dp0\Homepage.html"

38

6.4. Summary

call "%~dp0\run.bat" "%~dp0\ProductPage.xml"^

"%~dp0\components.tpl" > "%~dp0\ProductPage.js"

call "%~dp0\run.bat" "%~dp0\ProductPage.xml"^

"%~dp0\html.tpl" > "%~dp0\ProductPage.html"

call "%~dp0\run.bat" "%~dp0\CartPage.xml"^

"%~dp0\components.tpl" > "%~dp0\CartPage.js"

call "%~dp0\run.bat" "%~dp0\CartPage.xml"^

"%~dp0\html.tpl" > "%~dp0\CartPage.html"

The screenshots of the generated files are shown in figures C.4, C.5 and
C.6.

6.4 Summary

After generating the files, I measured the lines of code written to the lines of
code generated (all data shown in table 6.1). The code generation produced
circa twice as much lines as I have written in JSON. This is not very much,
considering the structure and “density” of generated code. (However, the
JSON is also quite wordy.) Comparing the generated JavaScript code to
TPG’s actual input, the XML files, generated from JSON by Instinct UI, is
even worse — only two thirds of the lines in XML were generated by the TPG.
However, the XML has no other information than the JSON, it is just a lot
wordier.

Another interesting thing it that 52 of 179 elements in resulting compo-
nents.js (29%) are the $val element. In most cases, they could be generated
directly, saving the function call. Their syntax in Instinct UI could also be
simplified for easier writing of components.

All thing considered, it would be probably easier to write the components
by hand, but one would lose the benefits of the process — immediately seeing
the components in the browser and the ability to eventually generate the
components, using another template and another technology.

It should also be noted, that while only the static data from Instinct UI
were used here, the components could be set up with any data source, for

JSON XML* JavaScript + HTML

components 697 2490 1730

Homepage 74 356 226

ProductPage 50 245 172

CartPage 76 370 216

templates** 172 N/A N/A

total 1069 3461 2344

Table 6.1: Lines-of-code comparison (* – after formatting; ** – not in JSON)

39

6. Proof of concept

example another React component getting the data from the server. One could
also define a callback parameter of the components, pass the callback down
the component hierarchy and use it as the event handler for text inputs and
buttons (although this is quite React-specific way). However, this approach
would require creating all the callbacks at once, in the parent component and
passing it in a way corresponding to data rows. For example, the parent
component could add a callback to each of passed product (creating specific
callback for each product with bind method). The generated component
would then set the passed callback as an event handler for a HTML tag.

40

Chapter 7

Future work

Although the application satisfies the given task and the components can be
generated from its output, it is far from perfect. A lot of features were omitted
from the application due to scope and time requirements.

7.1 User interface

Because I focused on the rendering components and generating code, the in-
put of component definitons and data is still very basic. It can be improved
by using an embedded code editor (with features like code folding and syn-
tax highlighting), for example Ace Editor created by Ajax.org. [36] I even
attempted to use React-Ace, a React component for Ace by James Hrisho,
but it did not work with Ambidex / Webpack. [37]

The other approach to user interface would be a complete grafic interface
for creating and editing the components, similar to desgin view included in
many IDEs, including a tree view of component’s children, property definition
pane and canvas with draggable components.

7.2 Better validation

Server implementation currently does not validate the given input, other re-
jecting an ill-formed request or JSON. If given and invalid input (such as
unknown dollar-sign syntax), it prevents XML generation of the component
to succeed until the error is corrected.

The application itself also needs some more validation. Some constructs
(such as nested <p> tags or content directly in <table> tag) are modified by
the browser, causing React to leave the invalid component on the page until
it is refreshed away. Another error to catch is generating an infinite recusion
(that can happen in plain React, too). This kind of validation is unfortunately
complex, because by the time child component’s render method is called, its

41

7. Future work

parent’s render method has already returned. Thus, some other solution is
needed for this “context-aware” validation.

7.3 Storage and concurrency

Instinct UI currently stores the data in JSON files on the file system. This
does not work with Heroku (Heroku has so-called ephemeral filesystem, which
discards the changes everytime the application dyno is restarted) and supports
only limited concurrency. There is also no personification as all users work
with the same data, potentially overwriting work of the others. The solution
would be to use a datatabase storage on the server side, along with more
fine-grained requests from the client.

A related task is separating user’s components into multiple projects and
saving and loading different sets of component data. (This can be currently
done only by switching the JSON files in the data folder.)

7.4 Component features

In current state, generated components are just a static representation of input
data, they have no state and cannot react to user input, aside from keeping the
state in a (non-generated) parent component and passing event handlers down
the generated component structure. There should be a way of propagating
changes from user up the component structure or (in case of React and Flux)
to a data store.

Inspired by another Bret Victor talk, “Stop Drawing Dead Fish”[38], the
solution would be adding a behavior attribute (possibly with parameters) to
components. This attribute would define component reactions to user input
or other events in an platform-independent way. The behavior would be im-
plemented by the Renderer and in the generator template, manifesting the
behavior in Instinct UI app and the generated components.

Also, the specifications could be extended with more functionality them-
selves, to add well-defined abstract things like string concatenation or arith-
metics. The platform-dependent things could be abstracted into “built-in”
components implemented directly done in target technology. It is up to con-
sideration whether to implement these functions in a library (so there would
be an Instict UI library for React and then for any other platform needed),
or whether to include the code in templates and add it to components with
code generation (for example, the current $merge is generated directly to the
using element).

42

7.5. Ambidex

7.5 Ambidex

While the server-side rendering is powerful and Ambidex is definitely cutting-
edge, it is still in early stage of development (as of April 2015) and undergoes
a shift in included libraries (between its versions 0.1.4 and 0.2.0, currently
in beta). It causes Instinct UI to consume a lot of memory (400 MiB, para-
doxically more in production mode) and to start up slowly (which is partly
because I limited its memory, so it barely fits Heroku memory limits). The
question is whether to replace Ambidex of forfeit isomorphism altogether.

7.6 Direct integration

Generating created components now requires downloading the XML files and
running the template generator manually, which is not optimal. The generator
could be executed directly from the application server, although this would
force the server to run on Windows. Another solution would be to have a
desktop applications which communicates with Instinct UI backend and run
the generator locally. Both solutions require integrating (and distributing)
Codiscent software, which may not be possible (e. g. for licensing reasons).

43

Conclusion

The goals of this thesis were to create a tool for object-oriented development
of web user interface, which would respect principles given in Bret Victor’s
talks, and to explore possibilities of projective technology in user interface
design.

To meet the first goal, I performed a review of current object-oriented
languages, libraries and tools for creating user interface (see chapter 1). I
analyzed the problem (see chapter 3) and designed (see chapter 4) and imple-
mented (see chapter 5) a tool for creating them, called Instinct UI. This appli-
cation was deployed to http://instinct-ui.herokuapp.com/ and its source
codes are published on GitHub (https://github.com/redwormik/instinct-
ui), allowing other people to contribute to its development.

To meet the second goal, I first performed a review of Codiscent’s pro-
jective technologies (see chapter 2). Then, I wrote a template for Codis-
cent Projector Template Generator and processed the XML output of In-
stinct UI with the PTG to generate the React component code (see sec-
tion 5.5). I tested Instinct UI and the code generation by using two other
component sets (see section 5.6) as well as designing the user interface of a
simple e-shop (see chapter 6). I publised all the templates, scripts, and in-
put data used for the generation as well as the generated code on GitHub
(https://github.com/redwormik/instinct-ui-tg).

Although the generation of components in current state is probably not
the best application of projective technologies, it has its benefits. The inter-
mediate form (JSON and XML) is independent on the technology used for the
resulting components. Therefore, the technology can be changed simply by
creating a new template without changing the underlying specifications. The
specifications can be also changed and used to generate a new code.

Furthermore, with a better interface for creating the specification (dis-
cussed in section 7.1), the effort needed to design a component would be
greatly reduced. Also, as the functionality would be added to Instinct UI
(discussed in section 7.4), the effort to write the code with the same function-

45

http://instinct-ui.herokuapp.com/
https://github.com/redwormik/instinct-ui
https://github.com/redwormik/instinct-ui
https://github.com/redwormik/instinct-ui-tg

Conclusion

ality as the generated code would grow, so the code generation’s advantages
would be more prominent.

Therefore, I see this thesis more as a proof of concept (of specifying the
components declaratively, then generating a working code) and a jumping-off
point, than as a definitive solution.

46

Bibliography

[1] Google, Inc. What is Google Chrome OS? [online, video]. 2009,
[Cited 2015-05-03]. Available from: https://www.youtube.com/watch?v=
0QRO3gKj3qw

[2] Victor, B. Bret Victor, beast of burden [online]. 2014, [Cited 2015-
05-03]. Available from: http://worrydream.com/#!/cv/bret_victor_
resume.pdf

[3] Victor, B. Inventing on Principle [online, video]. 2012, [Cited 2015-05-01].
Available from: https://vimeo.com/36579366

[4] Victor, B. Drawing Dynamic Visualizations [online, video]. 2013, [Cited
2015-05-01]. Available from: https://vimeo.com/66085662

[5] W3Techs. Usage of client-side programming languages for websites
[online]. May 2015, [Cited 2015-05-04]. Available from: http://

w3techs.com/technologies/overview/client_side_language/all

[6] W3Techs. Usage of server-side programming languages for websites
[online]. May 2015, [Cited 2015-05-04]. Available from: http://

w3techs.com/technologies/overview/programming_language/all

[7] Grudl, D.; Nette Foundation. Nette Framework [online]. 2015, [Cited
2015-05-03]. Available from: http://nette.org/

[8] Seaside.st. seaside.st: About [online]. [Cited 2015-05-03]. Available from:
http://www.seaside.st/about

[9] Mozilla Development Network. About JavaScript [online]. 2015, [Cited
2015-05-03]. Available from: https://developer.mozilla.org/en-US/
docs/Web/JavaScript/About_JavaScript

[10] Joyent, Inc. About Node.js R© [online]. 2015, [Cited 2015-05-03]. Available
from: https://nodejs.org/about/

47

https://www.youtube.com/watch?v=0QRO3gKj3qw
https://www.youtube.com/watch?v=0QRO3gKj3qw
http://worrydream.com/#!/cv/bret_victor_resume.pdf
http://worrydream.com/#!/cv/bret_victor_resume.pdf
https://vimeo.com/36579366
https://vimeo.com/66085662
http://w3techs.com/technologies/overview/client_side_language/all
http://w3techs.com/technologies/overview/client_side_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://nette.org/
http://www.seaside.st/about
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://nodejs.org/about/

Bibliography

[11] Google, Inc. Design Elements - Chrome V8 [online]. 2012, [Cited 2015-
05-03]. Available from: https://developers.google.com/v8/design

[12] npm, Inc. npm [online]. 2015, [Cited 2015-05-03]. Available from: https:
//www.npmjs.com/

[13] Google, I. AngularJS [online]. 2015, [Cited 2015-05-03]. Available from:
https://angularjs.org/

[14] Google, I. Angular [online]. 2015, [Cited 2015-05-03]. Available from:
https://angular.io/

[15] Facebook, Inc. React [online]. 2015, [Cited 2015-05-03]. Available from:
https://facebook.github.io/react/index.html

[16] Facebook, Inc. JSX in Depth [online]. 2015, [Cited 2015-05-03]. Available
from: https://facebook.github.io/react/docs/jsx-in-depth.html

[17] Facebook, Inc. Flux [online]. 2015, [Cited 2015-05-03]. Available from:
http://facebook.github.io/flux/

[18] Bédard, J. R. Isomorphic JavaScript: Applications which run both client-
side and server-side [online]. 2015, [Cited 2015-05-03]. Available from:
http://isomorphic.net/javascript

[19] Simpson, B.; contributors. Ambidex [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/appsforartists/ambidex

[20] Wakanda SAS. Application Development Tool — wakanda [online].
2015, [Cited 2015-05-03]. Available from: http://www.wakanda.org/
application-development-tool

[21] Petton, N.; Amber contributors. Amber Smalltalk [online]. 2015, [Cited
2015-05-03]. Available from: http://amber-lang.net/

[22] Petton, N.; contributors. Tide [online]. 2014, [Cited 2015-05-03]. Available
from: https://github.com/tide-framework/tide

[23] Codiscent Ltd. codiscent.com [online]. [Cited 2015-05-03]. Available from:
http://codiscent.com/

[24] Codiscent Ltd. Codiscent Tools [online]. [Cited 2015-05-03]. Available
from: http://codiscent.com/?page_id=296

[25] Codiscent Ltd. Application Development Using Codiscent Generative
Technology and Methodology [online]. 2013, [Cited 2015-05-03]. Avail-
able from: http://ccm.fit.cvut.cz/wp-content/uploads/2013/10/
CodiScent-Technology-and-Methodology.pdf

48

https://developers.google.com/v8/design
https://www.npmjs.com/
https://www.npmjs.com/
https://angularjs.org/
https://angular.io/
https://facebook.github.io/react/index.html
https://facebook.github.io/react/docs/jsx-in-depth.html
http://facebook.github.io/flux/
http://isomorphic.net/javascript
https://github.com/appsforartists/ambidex
http://www.wakanda.org/application-development-tool
http://www.wakanda.org/application-development-tool
http://amber-lang.net/
https://github.com/tide-framework/tide
http://codiscent.com/
http://codiscent.com/?page_id=296
http://ccm.fit.cvut.cz/wp-content/uploads/2013/10/CodiScent-Technology-and-Methodology.pdf
http://ccm.fit.cvut.cz/wp-content/uploads/2013/10/CodiScent-Technology-and-Methodology.pdf

Bibliography

[26] Jackson, M.; Florence, R.; contributors. React Router [online]. 2015,
[Cited 2015-05-03]. Available from: https://github.com/rackt/react-
router

[27] Abramov, D.; contributors. React Hot Loader [online]. 2015, [Cited
2015-05-03]. Available from: https://github.com/gaearon/react-
hot-loader

[28] Koppers, T.; contributors. Webpack [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/gaearon/react-hot-loader

[29] Brassman, M.; contributors. RefluxJS [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/spoike/refluxjs

[30] Jackson, M.; contributors. Mach [online]. 2015, [Cited 2015-05-03]. Avail-
able from: https://github.com/mjackson/mach

[31] Cavalier, B.; contributors. when.js [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/cujojs/when

[32] Facebook, Inc. PureRenderMixin [online]. 2015, [Cited 2015-05-03]. Avail-
able from: https://facebook.github.io/react/docs/pure-render-
mixin.html

[33] Heroku, I. Heroku [online]. 2015, [Cited 2015-05-03]. Available from:
https://www.heroku.com/home

[34] Ozcitak, O.; contributors. xmlbuilder-js [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/oozcitak/xmlbuilder-js

[35] Burke, J.; Osmani, A.; contributors. UMD (Universal Module Definition)
[online]. 2015, [Cited 2015-05-03]. Available from: https://github.com/
umdjs/umd

[36] Ajax. org. Ace [online]. 2015, [Cited 2015-05-03]. Available from: http:

//ace.c9.io

[37] Hrisho, J. React-Ace [online]. 2015, [Cited 2015-05-03]. Available from:
https://github.com/securingsincity/react-ace

[38] Victor, B. Stop Drawing Dead Fish [online, video]. 2013, [Cited 2015-05-
01]. Available from: https://vimeo.com/64895205

[39] Rajlich, N.; contributors. node-gyp [online]. 2015, [Cited 2015-05-03].
Available from: https://github.com/TooTallNate/node-gyp

49

https://github.com/rackt/react-router
https://github.com/rackt/react-router
https://github.com/gaearon/react-hot-loader
https://github.com/gaearon/react-hot-loader
https://github.com/gaearon/react-hot-loader
https://github.com/spoike/refluxjs
https://github.com/mjackson/mach
https://github.com/cujojs/when
https://facebook.github.io/react/docs/pure-render-mixin.html
https://facebook.github.io/react/docs/pure-render-mixin.html
https://www.heroku.com/home
https://github.com/oozcitak/xmlbuilder-js
https://github.com/umdjs/umd
https://github.com/umdjs/umd
http://ace.c9.io
http://ace.c9.io
https://github.com/securingsincity/react-ace
https://vimeo.com/64895205
https://github.com/TooTallNate/node-gyp

Appendix A

Acronyms

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASP Active Server Pages

CSS Cascading Style Sheets

DI Dependency Injection

DOM Document Object Model

ES ECMAScript

GES Generative Engineering Studio

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Desktop Environment

JS JavaScript

JSON JavaScript Object Notation

MVC Model-View-Controller

MVP Model-View-Presenter

NEON NEtte Object Notation

OOP Object-Oriented Programming

51

A. Acronyms

OS Operating System

PHP PHP Hypertext Preprocessor

PTG Projector Template Generator

REST REpresentational State Transfer

UI User Interface

UTF Universal Transformation Format

WYSIWYG What You See Is What You Get

XML eXtensive Markup Language

YAML YAML Ain’t Markup Language

52

Appendix B

Application screenshots

Figure B.1: Screenshot of Instinct UI with default components

53

B. Application screenshots

Figure B.2: Screenshot of Instinct UI with proof of concept components

54

Appendix C

Proof of concept screenshots

Figure C.1: Wireframe of homepage / category listing screen

55

C. Proof of concept screenshots

Figure C.2: Wireframe of product detail screen

Figure C.3: Wireframe of shopping cart screen

56

Figure C.4: Generated homepage / category listing screen

57

C. Proof of concept screenshots

Figure C.5: Generated product detail screen

58

Figure C.6: Generated shopping cart screen

59

Appendix D

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

instinct-ui................................implementation sources
instinct-ui-tg...code generation templates and data and generated
components

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

61

Appendix E

Installation guide

E.1 Requirements

• Node.js v0.12 with npm v2.7

• Requirements for node-gyp library[39]:

– On Unix:

∗ python (v2.7 recommended, v3.x.x is not supported)

∗ make

∗ A proper C/C++ compiler toolchain, like GCC

– On Windows:

∗ Python (v2.7.3 recommended, v3.x.x is not supported)

∗ Windows XP/Vista/7:

· Microsoft Visual Studio C++ 2010 (Express version works
well)

· For 64-bit builds of node and native modules you will also
need the Windows 7 64-bit SDK

· If the install fails, try uninstalling any C++ 2010 x64&x86
Redistributable that you have installed first.

· If you get errors that the 64-bit compilers are not installed
you may also need the compiler update for the Windows
SDK 7.1

∗ Windows 7/8:

· Microsoft Visual Studio C++ 2012/13 for Windows Desk-
top (Express version works well)

63

E. Installation guide

E.2 Installation

1. Copy, download or clone the code from https://github.com/redwormik/
instinct-ui.

2. Install the dependencies with npm install.

3. Edit file application/settings.local.js to set up the host and the
port. If you don’t want to run the API server separately, set the option
RUN SERVER WITH CLIENT to true and add appropriate API PATH setting
to CUSTOM SETTINGS (see application/settings.heroku.js).

4. Run the application with npm start. If the server is set to run sepa-
rately, run npm run server in parallel.

64

https://github.com/redwormik/instinct-ui
https://github.com/redwormik/instinct-ui

	Introduction
	State-of-the-art
	Server-side technologies
	Client-side technologies
	Summary

	Codiscent's projective technologies
	Codiscent products
	Benefits and drawbacks

	Analysis
	Product statement
	Use cases
	Domain Model
	Requirements specification

	Design
	Ambidex
	Data model
	Server API
	Data stores and actions
	User interface

	Implementation
	Server implementation
	Reflux stores
	Components
	Deploying to Heroku
	Using projective technology
	Testing

	Proof of concept
	Component design
	Implementing in Instinct UI
	Generating the components
	Summary

	Future work
	User interface
	Better validation
	Storage and concurrency
	Component features
	Ambidex
	Direct integration

	Conclusion
	Bibliography
	Acronyms
	Application screenshots
	Proof of concept screenshots
	Contents of enclosed CD
	Installation guide
	Requirements
	Installation

