
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Digital design

Master’s thesis

Design of a verification environment for a

smart sensor

Bc. Ivo Háleček

Supervisor: Ing. Jakub Šťastný Ph.D.

29th April 2015

Acknowledgements

I wish to express my sincere thanks to all of the ASICentrum s.r.o. for
their help and support. I am also grateful to my family, which supported me
through this venture.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on 29th April 2015 .

Czech Technical University in Prague

Faculty of Information Technology

c© 2015 Ivo Háleček. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Háleček, Ivo. Design of a verification environment for a smart sensor. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2015.

Abstrakt

Práce je zaměřena na návrh a implementaci verifikačńıho prostřed́ı pro in-
teligentńı senzor. Inteligentńı senzor, podle obecně uznávaných pr̊umyslových
definic, spojuje měř́ıćı prvek, analogově č́ıslicový převodńık a sběrnici pro ko-
munikaci.

Práce byla složena ze tř́ı hlavńıch část́ı. Prvńı část představovala nastu-
dovat literaturu za účelem seznámeńı se s moderńımi postupy pro verifikaci.
Druhou část́ı bylo navrhnout a sestavit model inteligentńıho senzoru, který
bude sloužit jako design-under-test pro verifikaci prostřed́ı. Třet́ı část́ı bylo
implementovat a zverifikovat testbench.

Hlavńım výstupem práce je testbench vhodný pro verifikaci inteligentńıho
senzoru, implementovaný pomoćı Unified Verification Methodology (UVM)
a SystemVerilogu. Testbench byl zverifikován pomoćı simulátoru a bylo sle-
dováno pokryt́ı pro sledováńı postupu verifikace.

Kĺıčová slova inteligentńı senzor, SystemVerilog, UVM, verifikace, test-
bench, SPI, I2C

Abstract

This Master’s thesis is focused on smart sensor verification environment im-
plementation. A smart sensor, according to generally accepted industry def-

ix

initions, combines a sensing element, an analog-to-digital converter (ADC),
and a bus interface.

The work of this thesis was divided into three tasks. The first task was
to study literature to get to know basics of modern verification approaches.
The second task was to design and build a smart sensor model, which would
serve as design under test for the testbench verification. The third task was
to implement and verify the testbench.

The main output of this thesis is a testbench suitable for smart sensor
verification, implemented using Unified Verification Methodology (UVM) and
SystemVerilog. The testbench has been verified in simulator and coverage
metrics have been collected during simulation to track the progress of verifi-
cation.

Keywords smart sensor, SystemVerilog, UVM, verification, testbench, SPI,
I2C

x

Contents

Introduction 1

1 State-of-the-art 3

1.1 Coverage . 3

1.2 Verification approaches . 5

1.3 Verification plan . 8

1.4 Verification tools . 8

2 Goals of thesis 11

3 Analysis and design 13

3.1 Smart sensor . 13

3.2 Framework selection . 20

4 System level design 21

4.1 Testbench components . 21

4.2 Register transaction . 22

4.3 Scoreboard . 25

4.4 ADC UVC . 25

4.5 Design under test . 27

xi

5 SPI UVC 31

5.1 SPI interface . 32

5.2 Configuration . 33

5.3 SPI transaction . 34

5.4 Driver . 36

5.5 Monitor . 37

5.6 Verification of SPI UVC . 38

6 I2C UVC 41

6.1 I2C interface . 42

6.2 Configuration . 43

6.3 I2C transaction . 44

6.4 Driver . 45

6.5 Monitor . 45

6.6 Verification of I2C UVC . 46

Conclusion 49

Bibliography 51

A Acronyms 53

B Contents of enclosed CD 55

xii

List of Figures

1.1 Functional verification . 6

1.2 Testbench . 6

1.3 Directed testbench . 7

1.4 Constrained testbench . 8

3.1 ADIS 16203 smart sensor . 14

3.2 Sensor block model . 14

3.3 DS1722 read transaction [1] . 16

3.4 LM75 i2c transaction [2] . 17

3.5 Sensor behavior loop . 20

4.1 UVM Testbench block-level hierarchy example [3] 21

4.2 Smart sensor testbench . 22

4.3 Register transaction usage diagram 23

4.4 ADC UVC structure . 26

5.1 SPI UVC structure . 32

5.2 SPI timing diagram . 33

5.3 SPI write transaction . 35

5.4 SPI read transaction . 35

xiii

5.5 Mosi timing diagram . 37

5.6 Mosi timing check . 40

6.1 I2C UVC structure . 42

6.2 I2C timing diagram [4] . 43

6.3 Sda timing check . 48

xiv

Introduction

The main topic of this thesis is implementation of verification environment for
smart sensor.

As complexity of digital designs grows, system verification is more and
more important. Bug revealed before tape-out is usually ten times cheaper
to repair than after tape-out and even hundred times cheaper to repair than
if revealed after product is delivered to customers. The more complex the
design is, the more stimuli needs to be simulated. Nowadays verification pro-
cess usually takes even more effort than the design alone. Therefore several
approaches have been introduced to speed up verification process.

The Chapter 1 brings summary on verification methods commonly used
and serves on theoretical basis for the thesis. First part of the chapter is
dedicated to Coverage, followed by Verification approaches summary.

The Chapter 2 sets the goals of the thesis and briefly describes why or how
to achieve them.

Analysis and design is documented in the Chapter 3. This chapter de-
scribed what smart sensor is, and how to model smart sensor for verification
purposes. Second part of this chapter is dedicated to verification framework
selection. SystemVerilog and UVM have been selected.

System level design is described in the Chapter 4. Testbench follows classic
UVM block-level testbench hierarchy. Steps needed to build smart sensor
model are also described at the end of this chapter.

The Chapter 5 is dedicated to SPI UVM verification component. SPI agent
supports typical smart sensor transactions, with configurable clock phase and
clock polarity configuration, error injection, SPI slave timing checks, and con-
figurable SPI master timing.

The Chapter 6 is dedicated to I2C UVM verification component. I2C

1

Introduction

agent supports typical smart sensor transactions, error injection, configurable
timing and sda timing checks.

2

Chapter 1

State-of-the-art

This chapter gives a summary of commonly used techniques in digital design
verification process.

Verification is a process of checking that design functions correspond to
the specification. As average number of gates in designs grows, the verification
process is more and more complex. Therefore verification process consumes
often much more effort than design itself.

Unless specification is written in formal language, verification process can-
not prove that design meets the specification. Specification documents are
written in natural language, which can be interpreted in many different ways.
If verification of design is done by another engineer than author of design,
those misinterpretations can be revealed.

1.1 Coverage

1.1.1 Code coverage

Code coverage measures how many and what parts of design source code
have been executed during verification. This metric should evolve towards
100%. While it’s an effective metric for small design units, which have separate
specification, it is not suitable when verifying designs composed of sub-designs
that have been independently verified. The objective of that verification is to
confirm that the sub-designs are interfaced and cooperate properly, not to
verify individual features.

3

1. State-of-the-art

Coverage lower than 100% indicates that part of design source code has
not been executed by testcases. It can indicate that there is need of new test
case, or a part of design source code is unreachable and can be removed. In
order to have reusable design parts, some parts of source code can be unused
due to verified system configuration, which leads to lower coverage, but does
not mean problem.

Results from coverage should be used only to help identify corner cases
that were not executed by testcases. Low code coverage indicates that multiple
design features of design has not been executed by verification environment
and therefore verification is not complete. On the other hand, 100% coverage
does not mean that design is verified. It only means all coverage points defined
in simulation have been covered. Execution of design source code does not
imply design behaves correctly [6].

Code coverage metrics are supported by verification tools and are collected
automatically if enabled.

Statement coverage measures how much of the total lines of code have
been executed by verification suite.

Path coverage measures all possible ways a sequence of statements can
be executed. Every branching in the code adds new paths. 100 % statement
coverage does not imply 100 % path coverage. All statements can be executed
without executing every branch. It is always necessary to determine conditions
which cause the path to be uncovered. Sometimes it can be even impossible
to get 100 % coverage, because taking one branch can imply taking another
one later in the code.

Number of possible paths grows exponentially with every code branching.
Therefore it is good to keep sequential code lower than 100 lines.

Expression coverage measures various ways paths through the code are
executed. One code branching can be affected by multiple conditions. As
in the case of statement coverage, it is necessary to determine why control
expression has not been executed and if such a condition can even occur.

FSM coverage measures all possible transitions in finite state machine
(FSM). Any unvisited state should be already identifiable from statement cov-
erage, because FSMs are usually coded using case statements. Some unreach-
able states can also be created by synthesis process. FSM having five states
will probably be encoded to three bits, leaving three unused combinations.
Verification engineer should also check what happens if design accidentally
reaches one of those unreachable states, for example due to magnetic field
effect.

4

Verification approaches

1.1.2 Toggle coverage

Toggle coverage measures which signals changed its value from 0 to 1 and
back. Signal is considered covered if it toggled back and forth at least once.
This metric does not indicate that every value of register has been set. If a
4bit register changes its value from 0000 to 1111 then all bits have changed
but only two combination have been set. However, this metric tells if all bits
of vector has been toggled back and forth.

1.1.3 Functional coverage

Functional coverage measures which combinations of inputs and outputs have
been verified and what internal states have been visited. By assigning weight
to each functional coverage metric, it can be reduced to one single value mea-
suring how much of functionality has been exercised. Giving higher weight
to more important functional coverage, this value can indicate progress of
the verification. This metric should raise rapidly toward 100 % at the begin-
ning, then progress usually significantly slows down while only hard-to-reach
functional coverage points remain.

1.2 Verification approaches

There are two basic approaches in verification process:

1.2.1 Formal verification

Formal verification uses formal methods of mathematics to prove correctness
of circuits with respect to certain specification or property. More information
on formal verification can be found in [7].

1.2.2 Functional verification

Functional verification is a process with goal of ensuring that a design imple-
ments desired functionality. As shown in Figure 1.1, functional verification
compares design and its specification.

Functional verification is performed by simulation. It is process of stimu-
lating design inputs with predefined input sequence and analyzing the output.

5

1. State-of-the-art

Figure 1.1: Functional verification

Figure 1.2: Testbench

Simulation code used to perform functional verification is usually referred as
Testbench. The testbench is a verification environment, it is connected to
design under verification ports (see Figure 1.2). Design inputs are stimulated
and outputs are monitored according to sequences defined by testcases. Test-
case is description for Testbench how to verify one set of related features.

It is however impossible for functional verification to prove that design is
bug free. It can only prove that design has a bug. Number of input com-
binations of combinational circuit is 2n, where n is number of inputs. For
sequential circuits also number of internal states must be taken into account.
Number of steps to cover all possible situations is 2m+n, where n is number
of inputs and m number of internal states. Therefore it is impossible to cover
and verify all possible situations which can happen, in reasonable time.

Therefore verification is a process that can never be 100% finished. Verifi-
cation is usually ended when the coverage goal has been reached and critical
functions have been verified.

6

Verification approaches

Figure 1.3: Directed testbench

1.2.3 Directed approach

With directed testbenches, every feature is checked using individual simulation
code. All the stimulus are generated manually. While directed testbench is
suitable for aiming to specific feature verification, it lacks scalability and ver-
ification of large design will consume too much effort if done only by directed
testbench.

As seen in Figure 1.3, coverage does not show increase in the beginning,
because verification environment is being developed. Then progress follows as
more and more testcases are covered by testbenches.

Completion of coverage of initial testcases does not necessarily mean that
verification is over. Other metrics can indicate that original testcases are not
as deep as imagined and additional testcases needs to be created.

1.2.4 Randomized constrained testbench

In order to increase scalability of verification process and to decrease effort
needed, constrained testbench can be used. Constrained testbenches use ran-
domization. That does not mean all inputs are stimulated with completely
random bit combinations. Random generators are constrained by constraints
to avoid generating lots of invalid combinations (eg. different data packets to
be sent through bus while no transaction will be performed).

As seen in Figure 1.4, initial effort is spent on verification environment
development and constraints definitions, but then coverage raises rapidly com-
pared to directed testbench. After some time coverage increase is not as steep,
so constraints are updated to verify uncovered features. In the end, only few
more coverage points are not covered, which can be finished by directed test-
cases.

7

1. State-of-the-art

Figure 1.4: Constrained testbench

1.3 Verification plan

Verification plan is a document, which specifies what and how will be verified,
who is responsible for individual parts verification and when verification pro-
cess will be finished. Plan contains detailed goals using measurable metrics,
along with optimal resource usage and realistic schedule estimates. Purpose of
the document is to review and discuss verification strategy before verification
itself is started and to serve on basis for planning.

1.4 Verification tools

1.4.1 Simulator

Functional verification is done in simulator. Simulation is always performed
on a simplified model of verified system. Proper level of abstraction has to
be selected with respect to the verified feature. If digital part of system is
verified, we can abstract from electrical properties of logical parts. We do not
need to care of exact voltage on a wire, we just need to know if it is in logical
state high or low. This will save time needed for simulation for the price of not
simulating features at lower abstraction levels, which can however be verified
at lower level of abstraction.

System level simulation verifies that system blocks communicates cor-
rectly at high abstraction level. Communication is usually represented by
transactions.

Register transfer layer (RTL) simulation verifies synchronous system
in terms of flow between hardware registers and logical functions performed
on signals [8].

8

Verification tools

Gate level simulation (GLS) is performed at lower level of abstraction
(with standard library cells as basic units), after synthesis with respect to
gate-level issues. GLS have higher memory and performance requirements,
therefore it is necessary not to waste simulation cycles on features, that can
be verified at higher abstraction level [9].

Transistor level simulation is performed at low level of abstraction with
transistors being basic unit.

1.4.2 Verification languages

Functional verification is usually done using either hardware description lan-
guage (HDL - VHDL, Verilog, . . .) or hardware verification language (HVL
- OpenVera, e, SystemC, ...). When performing verification using directed
testbench, HDL can be used with the advantage of having the same language
for design and verification. When using constrained testbench classical HDL
lacks support for randomization. Note that randomization requirements for
constrained verification are not just to have a random generator, but to have
advanced constrained generators, which are hard to implement. Hardware ver-
ification languages traditionally do have constrained randomization support,
but it is new language to learn.

One of the modern verification languages is SystemVerilog, sometimes
referred as HDVL, because it is based on HDL Verilog, but it implements sup-
port for functional verification and high level design. Learning SystemVerilog
is easy especially for engineers already familiar with Verilog. Using the same
language for design and verification have also advantage of better access to
design and no need of special interfaces [10].

There are also frameworks based on SystemVerilog making verification
even more simple (UVM, OVM, VMM), which are discussed in the Section
1.4.3.

Apart from standard verification languages, also property specification
language (PSL) can be used. PSL is language describing boolean (those
which can be true or false) properties of design. PSL can be used with VHDL
or Verilog design. Properties are used to create assertions, which are checked
by simulator. PSL can be for example used by monitors to check state of
design during simulation, for functional coverage or to define legal sequences
of input vectors for simulation [11].

9

1. State-of-the-art

1.4.3 Frameworks for verification

Complex designs require lots of effort to be spent on verification, therefore
some frameworks have been introduced to help engineers develop powerful
test environment faster. The most known ones are VMM, OVM and UVM.

Verification Methodology Manual (VMM) was the first successful set of
practices for creation reusable verification environments, based on SystemVer-
ilog, created by Synopsys. VMM uses advantages of object-oriented program-
ming, constrained randomization and functional coverage. VMM contributed
as source of inspiration when UVM was created [12].

Open Verification Methodology (OVM) is the library of objects and func-
tions for creation of constrained testbenches, collecting functional coverage
and transaction based stimulating of inputs. This was the first library avail-
able for SystemVerilog on multiple simulators. OVM contributed significantly
to development of it’s successor, Universal Verification Methodology.

Unified Verification Methodology (UVM) is modern open source verifica-
tion library based on OVM and VMM, available for SystemVerilog. It’s aimed
for creation of flexible, reusable verification components and assembly of test
environments with functionality for constrained randomization stimulus and
functional coverage. UVM is a combined effort of designers and tool vendors,
based on the successful OVM and VMM methodologies [13].

10

Chapter 2

Goals of thesis

The goal of the thesis is to implement a verification environment for a smart
sensor. This includes initial analysis of possible solutions, model of a smart
sensor, implementation itself, and verification. Expected output of the thesis
is:

• Verification approaches analysis. Several books have been written to the
topic of verification. Analysis of possible solutions will serve as basis for
the testbench design.

• Smart sensor model. Verification of testbench will be done against smart
sensor model used as design under verification.

• Testbench for a smart sensor.

• Verification plan. The testbench itself must be verified. Verification
plan defines will serve as basis for the testbench verification.

• Testbench verification report. Verification report includes functional cov-
erage report and conclusion of verification.

11

Chapter 3

Analysis and design

This chapter covers my effort on analysis and design of smart sensor verifica-
tion environment, which had to be done before implementation. An example
of smart sensor is given in Section 3.1, followed by specification of smart sensor
model needed to verify verification environment.

Verification tools and framework selection are discussed in Section 1.4.

3.1 Smart sensor

A smart sensor, according to generally accepted industry definitions, com-
bines a sensing element, analog interface circuit, an analog-to-digital converter
(ADC), and a bus interface, all in one housing. Making the grade against the
newest generation of smart sensors, however, means that additional function-
ality must be included, such as self-testing, self-identification, self-validation,
or self-adaptation. Of particular interest and importance to designers are such
smart sensor capabilities as self-calibration and self-diagnosis, the ability to
use signal processing, and multi-sensing capabilities [14].

An example of sensor (ADIS 16203) can be seen in Figure 3.1. It contains
some sensing elements with analog-digital converters, data processing units,
self-test, register map, and SPI Slave. Smart sensor model will be used as DUT
in verification environment to verify environment itself and shall be capable of
reading value from ADC converter, process received data, and send it through
one of the buses connected.

13

3. Analysis and design

Figure 3.1: ADIS 16203 smart sensor

Figure 3.2: Sensor block model

As smart sensor design is not the goal of this thesis, model should use as
much available cores as possible, and more effort should be spent on verifi-
cation environment itself. A processor can be used as data processing unit
with advantage of possibility to define behavior in C instead of HDL, which
will result in more flexible model and simplified implementation. Behavior,
written in C can be compiled and loaded as boot image. A good resource of
open-source cores is OpenCores website [15].

Block diagram of the smart sensor model can be seen in the Figure 3.2. The
smart sensor is composed of processor, SPI and I2C slave cores, non-volatile
memory and an interface to controll ADC. The sensor interface is described
in the Table 3.1.

14

Smart sensor

Table 3.1: Smart sensor interface

Interface Signal Type Description

CLK
clk logic Clock

reset logic Reset (active high)

SPI

csb logic Chip select bar (active low)
sck logic Serial clock

miso logic Master in, slave out
mosi logic Master out, slave in

I2C
scl logic Serial clock
sda logic Serial data

ADC

clk logic Clock
start logic Start measurement
data logic[7:0] Measured value
ready logic Measurement complete

3.1.1 Processor

I decided to use OpenRISC 1000 processor, because of consistent documen-
tation and because it’s developed and used by big community, so potential
problems should be simpler to solve.

I could however choose from a few implementations of OpenRISC 1000
processor.

The OR1200 is a 32-bit scalar RISC with Harvard micro-architecture,
5 stage integer pipeline, virtual memory support (MMU) and basic DSP
capabilities.[16]

The OR10 core implements the complete OpenRISC ORBIS32 instruction
set. It has a very simple design, one could say suboptimal, or even naive. It
does not implement the jump delay slot. It has a single Wishbone bus for
both instruction fetches and data access.

There are some other implementations of OpenRisc 1000 family, but they
does not seem to be finished or does not differ from OR1200 in a way which
is relevant to this project.

I prefer to use OR10 processor as it is simple, source is well documented
and although it is not as powerful as OR1200, performance is not important
for this purpose.

15

3. Analysis and design

Figure 3.3: DS1722 read transaction [1]

3.1.2 SPI slave core

The OpenCores website [15] offers in time of writing this thesis only one SPI
slave core [17], which suits license requirements and implementation is done.
However this core is not wishbone compliant, so interface unit will have to be
developed.

As smart sensors usually contain multiple registers, also register address
has to be transferred. DS1722 datasheet [1] describes how register address
and data are transferred through SPI in this sensor.

This sensor supports single and multiple read and write operations in half-
duplex mode. Timing diagram for single byte read can be seen in Figure
3.3. Other operations run similarly. Multi-byte transfer starts with starting
register address and data, for every following data byte target/source register
address is increased by one.

3.1.3 I2C slave core

Three stable I2C cores, supporting slave mode, can be found on the OpenCores
website [18] [19] [20]. I selected [20], because it is the only one which is
wishbone compliant.

Digital thermometer sensor - LM75 [2] features I2C interface for register
map access. As seen in Figure 3.4, this sensor uses three least significant
slave address bits as register map address. This register map addressing cuts
down number of other connectible slave devices, so I decided to use similar
addressing as in case of SPI.

3.1.4 ADC design

Analog-to-digital converter (ADC) is a device that converts a continuous phys-
ical quantity (usually voltage) to a digital number that represents the quan-
tity’s amplitude [21].

16

Smart sensor

Figure 3.4: LM75 i2c transaction [2]

Table 3.2: ADC registers

Address Type Name Description
0x0 RO adc meas Last measured value
0x4 RW adc cnt Control register
0x8 RO adc st Status register

Table 3.3: adc cnt register

7 6 5 4 3 2 1 0
0 0 0 0 irq en auto start start 0

I did not find any ADC wishbone compliant model, so I had to design my
own. Ordinary ADC interface used in designs includes control signal to start
adc measurement, signal telling that ADC measurement has finished, data
bus, clock, and analog input.

As the ADC will be connected to processor via wishbone, behavior will be
controlled by ADC 8 bit registers (described in the Table 3.2) accessible via
wishbone. End of measurement will be signaled by processor interrupt.

• irq en - Interrupt request enable. When set to 1, interrupt request is
generated when adc measurement is finished.

• auto start - ADC measurement auto start. When set to 1, ADC runs in
continuous mode and new measurement is started right after previous
one is finished.

• start - ADC measurement start. If this bit is set to 1, ADC performs
measurement. This bit is set to the value of auto start at the end of
measurement.

Table 3.4: adc st register

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 data ready

17

3. Analysis and design

• data ready - ADC data ready. This bit is set 1 when ADC measurement
is finished. If irq en is 1, interrupt request is generated. When register
adc meas is read, data ready and interrupt request is cleared.

3.1.5 Non-volatile memory

Non-volatile memory will introduce eight sensor registers accessable via SPI
and I2C. Data will be persistent, will be loaded from memory file at reset and
writen to file when after every write to the memory. As I could not find any
suitable NVM model core available, I will implement it by myself.

Sensor registers will store information about last measured value, con-
version constants and spi setup. Registers are described in the Table 3.5.
Registers sensor info and free1 store user defined values and sensor does
not use them. Register cnt reg stores ADC control values, described in Sec-
tion 3.1.4. Status register stores one-bit information whether an ADC value
has been measured since reset (see the Table 3.6. Register meas val contains
measured ADC data converted according to constants stored in meas const
register. Two most significant bits of meas const register defines number
of bits ADC measured value will be shifted right. Six remaining bits defines
additive constant which will be added to shifted ADC measured value. For
details, please see the Table 3.7. Register bus setup contains configuration
related to bus peripherals. Detailed information about single bits can be found
in the Table 3.8.

Table 3.5: Sensor reg map

Address Type Name Description
0x00 RW sensor info Info register
0x01 RW cnt reg Control register
0x02 RO adc data Raw ADC measured value
0x03 RO status Status Reg
0x04 RO meas val Converted ADC value
0x05 RW meas const Conversion constants
0x06 RW free1 Free register
0x07 RW bus setup SPI and I2C setup

Table 3.6: status register

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 measured

18

Smart sensor

Table 3.7: measurements constants register

7 6 5 4 3 2 1 0
sh1 sh2 add5 add4 add3 add2 add1 add0

Table 3.8: bus setup register

7 6 5 4 3 2 1 0
0 0 0 0 0 0 spi cphase spi cpol

3.1.6 Sensor behavior

Sensor behavior is implemented in C, which is compiled to boot image for
OpenRISC, saved in memory model.

When a peripheral core (SPI slave, I2C slave, or ADC) has received data
or needs new data to transmit, it generates interrupt request to OpenRISC
processor. Bus interrupts (SPI and I2C), changes specific bus register address
pointer and handles data transfer. The ADC interrupt handler is shown in
Figure 3.5.

When ADC interrupts come, ADC measured data are converted using con-
stants read from register meas const. Detailed information about conversion
was already provided in the Section 3.1.5. This simple conversion is performed
to simulate real smart sensor behavior, like conversion of ADC raw data to
temperature. Raw data are written to register adc data, converted data to
register meas val. The least significant bit of register status is set 1. As
this bit is cleared after reset, this bit can be used to signalize if at least one
measurement has been performed since reset.

19

3. Analysis and design

Figure 3.5: Sensor behavior loop

3.2 Framework selection

As mentioned in the Chapter 1.4, there are multiple hardware verification
languages available. SystemVerilog provides functions for constrained ran-
domization and together with one of verification methodologies introduced
(VMM, OVM, and UVM) offers framework for reusable testbenches.

UVM is successor of OVM and VMM and therefore I selected it as most
suitable methodology.

20

Chapter 4

System level design

This chapter describes the implementation of smart sensor verification envi-
ronment.

4.1 Testbench components

UVM testbench hierarchy is described well in UVM Cookbook [3]. An example
showing advised structure can be seen in Figure 4.1.

UVM verification environment for smart sensor based on hierarchy de-

Figure 4.1: UVM Testbench block-level hierarchy example [3]

21

4. System level design

Figure 4.2: Smart sensor testbench

scribed in Figure 4.1 can be seen in Figure 4.2.

Testbench top encapsulates individual tests, interfaces and DUT. Tests
contain verification environment, each test with individual environment con-
figuration. Test may contain various agents depending on build configuration
of the environment, virtual sequencer, and also a scoreboard.

4.2 Register transaction

As described in Section 3.1.2, sensor registers are accessed by register address,
write bit and data (in case of write transaction). Register transaction repre-
sents read or write of one or more bytes to consecutive registers. Register
transaction is represented by class bus seq item. Structure is represented in
the Table 4.1.

22

Register transaction

Figure 4.3: Register transaction usage diagram

4.2.1 Usage

Register transaction usage is shown in the Figure 4.3. Register transaction
can be generated without knowing, which interface will be used. Once de-
cision is made, it is sent to protocol-specific sequencer. Driver shall con-
vert bus seq item to protocol-specific sequence item by calling its method
do copy(bus seq item). Once converted, other protocol-specific properties can
be set (eg. slave address for I2C). Driver shall call function serialize, which
converts transaction properties to streams of bits to be send.

Monitor shall call function deserialize once transaction is collected, and
send it to agent analysis point. Functions serialize and deserialize are empty
in bus seq item and must be implemented by protocol-specific subclasses.

To convert this abstract transaction to protocol-specific transaction, func-
tions serialize and deserialize are introduced. Every protocol-specific subclass
must implement these functions.

23

4. System level design

Table 4.1: Register transaction

Name Type Randomized Description
addr logic[‘ADDR LEN] yes Register address
data logic[‘MAX DATA BITS] yes Data
data length integer yes Data length in

bits
write bit yes Transaction di-

rection. 1 =
master writes to
slave.

Table 4.2: Register transaction functions

Function name Param Type Description
to string return string Get printable form of transaction

(addr, write bit and data).
reverse return void Convert between LSB first and

MSB first representations.

push byte
return void Push data byte at the end of byte

array.
txn byte logic[7:0] Data byte.
bits num int Number of valid bits in txn byte.

• serialize - converts abstract transaction data members to protocol-specific
bitstream. Driver should call this function before driving the transaction
to corresponding bus.

• deserialize - converts protocol-specific bitstream to abstract transaction
data members. Monitor should call this function after collecting the
transaction from corresponding bus.

Error transaction can be generated by setting data length not dividable by
8. Transaction process is interrupted after all valid bits are transferred.

4.2.2 Functions

List of functions implemented in bus seq item can be seen in the Table 4.2.

24

Scoreboard

Table 4.3: Register transaction functions

Function name Param Type Description

register write

return void Write to register.
addr logic[] Register address.
data logic[] Data to be written.
frc bit If set 1, read-only flag is ignored.

register get
return logic[] Get register value.
addr logic[] Register address.

register check
return logic[] Check if data provided equals to register

value.
addr logic[] Register address.
data logic[] Data to be check.

4.3 Scoreboard

The scoreboard is used to predict DUT’s register content and check if trans-
action collected corresponds to expected register value. Registers mirroring
DUT’s readonly registers are writable only by ADC agent. Write operation
from SPI or I2C analysis port is ignored. The scoreboard offers following
register access functions described in the Table 4.3.

4.4 ADC UVC

The ADC UVM verification component is responsible of random ADC values
generation and response to sensor ADC interface, described in the Section
3.1.4. ADC agent structure can be seen in the Figure 4.4. ADC measurement
is started syncronously if no measurement is performed and start is high. After
number of clk edges specified in Section 3.1.4, random value is generated to
data and ready is set to 0.

4.4.1 ADC interface

ADC agent interface can be seen in the Table 4.4.

25

4. System level design

Figure 4.4: ADC UVC structure

Table 4.4: ADC Interface

Signal Type Description
clk logic Clock
start logic Start measumerent
data logic[7:0] Measured value
ready logic Measurement complete

Table 4.5: Run phase configuration

Parameter Type Default value Description
meas delay int 50000 Measurement duration (from start

rising edge to ready falling edge),
specified in clk pulses.

4.4.2 Configuration

ADC agent configuration is stored in adc agent config class. Configuration
(see Table 4.5) takes effect right after it is changed.

26

Design under test

4.5 Design under test

In order to verify the testbench, design under test had to be build. Smart
sensor model, designed in the Chapter 3, will be used as a design under test.
Some changes and fixes had to be done to DUT components.

The OR10 implementation of OpenRISC processor already came up with
wishbone interconnect module as well as with memory model capable of load-
ing program from compilled C file. Also Ethernet module and JTAG module
was included, but I did not need those, so I removed them.

I experienced some problems with or1k-elf-* toolchain as most of Open-
RISC documentation reffered to older or32-* toolchain, which is not recom-
mended to use anymore. As memory model attached to OR10 supported
loading firmware as hexadecimal words written text format (one four-byte
instruction per line), I had to write compile script which does following oper-
ations:

• compile C source without jump-delay slot support

• convert to binary format with or1k-elf-objcopy

• convert binary object to hexadecimal words written in text

• update firmware size in SystemVerilog compiler arguments file (dot f
file)

Jump delay slot is an instruction slot executed after jump instruction re-
gardless of preceding instruction. The common form of jump delay slot in-
struction is a single arbitrary instruction placed immediately after branch
instruction, which gets executed even if preceding branch is taken. As OR10
does not support jump delay slots, firmware has to be compiled without jump
delays, which means that nop instruction is inserted after every jump instruc-
tion.

4.5.1 Changes made to SPI core

The selected SPI core (selection discussed in the Section 3.1.2) was not wish-
bone compilant. I had to implement interface between wishbone and SPI core
processor interface to be able to connect core to processor.

As SPI core only generates interrupt request once eight bits are transferred,
I had to implement counter, which keeps track on number of bytes already

27

4. System level design

transferred during transaction. Register address is always transferred in first
byte of transaction, while data bytes are the other ones. This counter is reset
by csb going high.

4.5.2 Changes made to I2C core

The selected I2C core (selection discussed in the Section 3.1.3) should have
supported master and slave mode, but it did not operate correctly during
read transaction in slave mode. During write transaction, I2C master tells
the slave whether another byte is requested to be sent by setting acknowledge
bit high or low. I2C slave always wanted to send another byte regardless of
the acknowledge bit value. I had to fix this issue to make core work properly.

As one register access is performed by two I2C transactions (for details
see the Section 3.1.3) and I2C core only generates interrupt request once nine
bits (eight data bits and acknowledge bit, resp. seven slave address bits, write
bit and acknowledge bit) are transferred, processor would be unaware if new
data byte is transferred (or requested), or new register access has been started.
Therefore I had to implement simple state machine in I2C core which keeps
track on which byte (register address change, or data to be written / read)
has been transferred.

4.5.3 Non-volatile memory

As mentioned in the Section 3.1.5, I implemented the NVM core. I selected
VHDL as description language, as I have more experience with this HDL. This
showed up to not be good decision as VHDL has poor functions to access files
in filesystem. I had problem changing one single line in memory file after
NVM write operation, so whole register map is saved to file after every write.

This is not such a big problem for this smart sensor model as it has only
eight registers, but could significantly slow down simulation if used with much
larger number of registers.

The address and data with are defined through generics as well as memory
file. The memory file needs to exist and be accessible and has number of rows
greater or equal to number of registers (2w, where w is the address width).
Each register content is stored in one line, written as sequence of text bit
values. The first line contains content for address 0 and first character of every
line reffers to most significant bit. For example 4-bit register with address 0x3
and value 0xA would be stored at 4th row as 1010 string.

28

Design under test

Cadence offers tools for UVM regmap generation (iregGen). Register map
is described in XML structure (IP-XACT), including read-only bits masks.
IregGen can use this file to generate NVM model for DUT and also for Score-
board. Unfortunatelly I could not implement this due to lack of time.

29

Chapter 5

SPI UVC

SPI UVM verification component (see Figure 5.1) verifies SPI interface. Se-
quence of transactions is received through sequence port, sequencer passes
transactions to driver, driver generates SPI transaction. Monitor reads DUT
responce from SPI interface, reconstructs transaction. Monitor transaction is
sent through analysis port to scoreboard.

SPI UVC shall be capable of following features:

• SPI clock phase and polarity

• MSb or LSb first

• multibyte read

• error injection

– unexpected end of transaction

– ’x’ driven to mosi out of setup and hold time

• check: miso stable during csb high

• miso timing checks

31

5. SPI UVC

Figure 5.1: SPI UVC structure

5.1 SPI interface

SPI (Serial peripheral interface) is synchronous, master-slave serial commu-
nication interface developed by Motorola [22]. It has four wires, which are
described in Table 5.1. Detailed transmission protocol can be seen in Figure
5.2. When csb goes low, slave is activated and transmission started. Data is
sent through miso and mosi wires syncronously with sck, depending on cphase
and cpol configuration.

• CPOL stands for clock polarity configuration. It selects which sck edge
is deemed as active edge. If cpol = 1, active edge is low and in idle state
sck is high. If cpol = 0, active edge is high and in idle state sck is low
[23].

• CPHA (Clock phase) determines SPI clock format. If cphase = 1, sam-
pling of data occurs at even (2, 4, . . .) edges. If cphase = 0, sampling
of data occurs at odd (1, 3, . . .) edges [23].

32

Configuration

Figure 5.2: SPI timing diagram

Table 5.1: SPI Interface

Signal Type Description
csb logic Chip select bar (active low)
sck logic Serial clock
miso logic Master in, slave out
mosi logic Master out, slave in

5.2 Configuration

SPI agent configuration is stored in spi agent config class. Parameters are
divided to build phase configuration and run phase configuration. These con-
figuration groups reffer to corresponding UVM phases. Build phase configu-
ration (see Table 5.2) is taken into effect only during build phase, before test
is run. Run phase configuration (see Table 5.3) can be changed during test
and it is immediately taken into effect.

33

5. SPI UVC

Table 5.2: Build phase configuration

Parameter Type Default value Description
active uvm active pasive enum UVM ACTIVE Active or pas-

sive agent se-
lection

has coverage bit 0 1 Enable
coverage
collection

Table 5.3: Run phase configuration

Parameter Type Default value Description
checks enable bit 1 1 Enable functional checks

(miso static during csb
high)

timing checks enable bit 0 1 Enable timing checks
(miso setup and hold time)

cpol bit 0 Clock polarity
cpha bit 0 Clock phase
MSB bit 1 1 Most significant bit is sent

first
sck period time 30 µs sck period
TSetup csb time 5 ns time between the last edge

of sck and the rising edge of
the csb

THold csb time 5 ns time between the falling
edge of csb and first edge of
sck

TSetup mosi time 20 ns mosi setup time
THold mosi time 20 ns mosi hold time

5.3 SPI transaction

SPI transaction is represented by spi seq item, which is derived from bus seq item
4.2. SPI transaction implements functions serialize and deserialize. Function
serialize converts super class bus seq item data members to mosi bitstream.
Bitstreams represent streams of bits ready to be driven to bus (resp. bits
monitored from bus), including register address and write bit. Serialized write
transaction (resp. read transaction) is shown in the Figure 5.3 (resp. 5.4).
Function deserialize converts mosi and miso bitstreams to super class data
members. Transaction protocol-specific data members can be found in table
5.4. Data members listed already in super class are not listed and can be

34

SPI transaction

Table 5.4: SPI transaction members

Member Type Description
miso logic[‘MAX BITSTREAM LEN:0] Slave output bit stream
mosi logic[‘MAX BITSTREAM LEN:0] Master output bit stream
item len integer Length of bit stream (same

for mosi and miso) in bits

Figure 5.3: SPI write transaction

Figure 5.4: SPI read transaction

found in Section 4.2.

If error transaction is produced (data length not divisible by 8), csb goes
high after number of sck pulses equal to data length. No other data bits are
driven to mosi.

5.3.1 Functions

List of functions implemented in spi seq item can be seen in the Table 5.5.
Note that functions already implemented in super class bus seq item are not
listed. They can be seen in the Section 4.2 instead.

5.3.2 Serialize

Function serialize is called by SPI Driver before transaction is driven to SPI
bus. Register address is serialized to seven most significant bits of bitstream

35

5. SPI UVC

Table 5.5: SPI transaction functions

Function name Param Type Description

get byte mosi
return logic[7:0] Get serialized bitstream mosi

byte.
byte num int Requested byte number

get byte miso
return logic[7:0] Get serialized bitstream miso

byte.
byte num int Requested byte number

get bit mosi
return logic Get serialized bitstream mosi bit.
index int Requested bit number

get bit miso
return logic Get serialized bitstream miso bit.
index int Requested bit number

push bit
return void Push monitored mosi and miso bit

to bitstreams.
mosi logic Monitored mosi bit.
miso logic Monitored miso bit.

mosi, followed by write bit and data bytes to be sent (first byte to be sent
is placed right after the write bit). If transaction direction is READ (Master
reads from Slave), mosi contains only register address and write bit, rest is
filled with zeros. Bitstream miso is always set to zeroes during serialization.
Item len is set to data length+ 8.

5.3.3 Deserialize

Function deserialize is called by SPI Monitor after transaction is collected from
SPI bus. Highest seven mosi bitstream bits are deserialized as register address,
following bit as write bit. First 8 bits of miso are ignored. Depending on write
bit, data is set to remaining mosi bits if write bit is 1, resp. to remaining miso
bits if write bit is 0. Data length is set to item length− 1.

5.4 Driver

Driver is responsible for driving transactions passed from sequencer to SPI
interface. Transaction is converted to bits by calling function serialize. If
configuration bit MSB is set 0, all data bytes from transaction are reversed,
only address bits are reversed in byte containing register address and write
bit (write bit is kept in the place).

36

Monitor

csb

sck

mosi data7 data6 data0

TSetup_mosi

THold_csb TSetup_csb

THold_mosi

sck_period

Figure 5.5: Mosi timing diagram

Mosi data are only valid setup time before and hold time after sck sampling
edge, ’x’ is put on mosi when data are invalid. These timing values can be
configured in agent configuration described in the Table 5.3. If setup and hold
time is set to 0, mosi is not set ’x’ during transaction. The timing diagram of
mosi can be seen in the Figure 5.5.

5.5 Monitor

Monitor observes SPI bus and stores mosi and miso values to spi seq item at
every sampling edge. Once csb goes high, transaction is finished and monitor
calls function deserialize to convert mosi and miso bitstreams to register
transaction data members (register address, write bit and data). Transaction
collected is sent to the analysis port.

Checks are also done in monitor, if enable checks is set to 1, timing checks
are performed if timing checks is set 1.

5.5.1 Functional checks

Slave can change miso value only if csb is low. Otherwise monitor reports an
error if checks are enabled.

5.5.2 Timing checks

Slave must keep miso stable for setup time before drive clock edge and for hold
time after drive clock edge. Otherwise monitor reports error if timing checks
are enabled. Miso setup and hold time is configured in spi agent config.

37

5. SPI UVC

Table 5.6: SPI functional coverage

Watched property Coverage point Values
SPI clock phase spi phase 0, 1
SPI clock polarity spi polarity 0, 1
Cross phase, pol. cross polarity phase 00, 01, 10, 11
Bit order spi MSB MSB first, LSB first

Transaction len.
spi txn len standard, error1

txn multibyte singlebyte, multibyte

5.6 Verification of SPI UVC

SPI UVC is verified against SPI core in smart sensor model. Coverage collec-
tion was designed to cover features specified at the beginning of the chapter.
The goal of SPI UVC functional coverage is set to 100 %. The Table 5.6
provides summary on coverage points collected by testbench.

5.6.1 Verification Plan

This section provides basic planning for SPI UVC verification. Verification
plan can be seen in the Table 5.7. All the tests results except mosi timing
are expected to be checked from text report generated by testbench. The
mosi timing test, which purpose is to verify that driver drives ’x’ to mosi
when out of hold and setup time, is meant to be checked from waveform. The
mosi timing test result can be reported by waveform screenshot.

All the tests except for spi monitor checks test are expected to be finished
without error and are considered failed if errors reported. The spi monitor checks
test is expected to produce mosi not stable during csb high and hold and setup
timing checks violation. The spi monitor checks test is considered failed if any
of mentioned errors is never reported.

5.6.2 Coverage report

As seen in the Table 5.8, 100 % coverage has been reached, which was the
coverage goal.

1By error transaction is meant transaction with number of data bits not dividable by 8.

38

Verification of SPI UVC

Table 5.7: SPI verification plan

test cp
ha

se
cp

ol
M

SB
fu

nc
.

ch
ec

ks
tim

in
g

ch
ec

ks
m

ul
ti-

by
te

re
ad

w
ho

le
by

te
s

on
ly

m
os

i t
im

in
g

ch
ec

ks
un

sa
tis

fa
bl

e

er
ro

rs
ex

pe
ct

ed

spi cfg 00 0 0 1 0 1
√

spi cfg 01 0 1 1 0 1
√

spi cfg 10 1 0 1 0 1
√

spi cfg 11 1 1 1 0 1
√

spi err 0 0 1 0 1
spi lsb first 0 0 0 0 1

√

spi multi read 0 0 1 0 1
√ √

spi monitor checks 0 0 1 1 1
√ √ √

mosi timing 0 0 1 0 1
√

Table 5.8: SPI Coverage report

Coverage group Coverage point Coverage

spi cov

spi phase 100 %
spi polarity 100 %
cross polarity phase 100 %
spi MSB 100 %
txn len 100 %
multibyte 100 %
total 100 %

39

5. SPI UVC

Table 5.9: SPI UVC Verification report

Test Errors Result Note
spi cfg 00 0 PASSED
spi cfg 01 0 PASSED
spi cfg 10 0 PASSED
spi cfg 11 0 PASSED
spi err 0 PASSED
spi lsb first 0 PASSED
spi multi read 0 PASSED
spi monitor checks 118 PASSED Only miso timing and miso not

stable during csn high errors ob-
served.

Figure 5.6: Mosi timing check

5.6.3 Verification report

Verification report for tests reported by text can be found in the Table 5.9.
Verification report for tests reported by waveform screenshot can be found
below. As all tests have passed and coverage goal has been reached, SPI UVC
verification is considered successfully finished.

spi monitor checks test

Mosi hold and setup times have been verified from waveform. As seen in the
Figure 5.6, measured mosi setup time is 5us (note the Cursor - Baseline delta
time), which is same as mosi hold time and corresponds to hold and setup
times configured in the test.

Miso setup time has been verified by setting TSetup miso to value higher
than the SPI slave core design setup time (5ns) and observing miso setup
time violation errors.

40

Chapter 6

I2C UVC

I2C UVM verification component (see Figure 6.1) verifies I2C interface. Se-
quence of transactions is received through sequence port, sequencer passes
transactions to driver, driver generates I2C transaction. Monitor reads DUT
responce from I2C interface, reconstructs transaction. Monitor transaction is
sent through analysis port to scoreboard.

I2C UVC shall be capable of following features:

• MSb or LSb first

• multibyte read

• error injection

– unexpected end of transaction

– ’x’ driven to mosi out of setup and hold time

• sda timing checks

41

6. I2C UVC

Figure 6.1: I2C UVC structure

6.1 I2C interface

I2C is a serial protocol for two-wire interface (see th Table 6.1) to connect
low-speed devices like microcontrollers, EEPROMs, A/D and D/A converters,
I/O interfaces and other similar peripherals in embedded systems, invented by
Philips. Each I2C slave device needs an address – they must still be obtained
from NXP (formerly Philips semiconductors) [4].

Transaction timing diagram can be seen in the Figure 6.2.

Table 6.1: I2C Interface

Signal Type Description
scl logic Serial clock
sda logic Serial data

42

Configuration

Figure 6.2: I2C timing diagram [4]

6.2 Configuration

I2C agent configuration is stored in i2c agent config class. Parameters are
divided to build phase configuration and run phase configuration. These con-
figuration groups reffer to corresponding UVM phases. Build phase configu-
ration (see table 6.2) is taken into effect only during build phase, before test
is run. Run phase configuration (see table 6.3) can be changed during test
and it is immidiately taken into effect. Note that scl period is set via Tscl low
and Tscl high parameter while Tscl = Tscl low + Tscl high.

Table 6.2: Build phase configuration

Parameter Type Default value Description
active uvm active pasive enum UVM ACTIVE Active or pas-

sive agent se-
lection

has coverage bit 0 1 Enable
coverage
collection

43

6. I2C UVC

Table 6.3: Run phase configuration

Parameter Type Default value Description
checks enable bit 1 1 Enable functional checks

(miso static during csb
high)

timing checks enable bit 0 1 Enable timing checks
(miso setup and hold time)

TSetup stop time 4.00 us Stop condition setup time
THold start time 4.00 us Start condition hold time
TSetup start time 4.70 us Repeated start condition

setup time
THold sda time 0.25 us Data hold time
TSetup sda time 0.10 us Data setup time
Tbuf time 47.00 us Bus free time between stop

and start condition
Tscl low time 5.00 us Scl low duration
Tscl high time 15.0 ns Scl high duration

6.3 I2C transaction

I2C transaction is represented by i2c seq item, which is derived from bus seq item
4.2. I2C transaction implements functions serialize and deserialize. Function
serialize converts super class bus seq item data members to bitstream. Bit-
stream represents stream of bits ready to be driven to sda wire (resp. bits
monitored from sda), including register address and write bit. Function dese-
rialize converts bitstream to super class data members. Transaction protocol-
specific data members can be found in table 6.4. Data members listed already
in super class are not listed and can be found in Section 4.2.

Note that although slave addr has 10 bit length, I2C currently supports
only 7 bit slave address mode. Slave address is stored in bits 0 to 6. Remaining
3 bits are reserved for future 10 bit slave address mode extension.

If error transaction is produced (data length not divisible by 8), stop con-
dition is generated after number of scl pulses equal to data length. No other
data bits are driven to sda.

44

Driver

Table 6.4: I2C transaction members

Member Type Description
bitstream logic[‘MAX BITSTREAM LEN:0] sda bit stream
item length integer Length of sda bit

stream in bits
slave addr logic[9:0] Transaction slave

address
slave addr length int Slave address

length

6.4 Driver

Driver is responsible for driving transactions passed from sequencer to I2C
interface. Transaction is converted to bits by calling function serialize. If
configuration bit MSB is set 0, all data bytes from transaction are reversed,
only address bits are reversed in byte containing register address and write
bit (write bit is kept in the place).

During i2c write operation, sda data are only valid setup time before rising
edge of scl and hold time after scl falling edge, ’x’ is put on sda when data
are invalid. These timing values can be configured in agent configuration
described in the Table 6.3. If setup and hold time is set to 0, sda is not set
’x’ during transaction.

Due to half-duplex characteristic of I2C interface, register read transaction
cannot be performed in one i2c operation. Transaction must be divided to
two operations: write operation where register address is transfered to slave,
and read operation where slave transfers register data to master. To keep
unified driving process, register write transaction is divided to two I2C write
operations: first transfers register address and second one transfers data to
be written. Using two I2C transactions to perform register write operation is
not power effective, but low power approach is not goal of this thesis.

6.5 Monitor

Monitor observes I2C bus and stores sda values to i2c seq item at every sam-
pling edge. Once stop condition is observed, transaction is finished and mon-
itor calls function deserialize to convert sda bitstream to register transaction
data members (register address, write bit and data). Transaction collected is
sent to the analysis port.

45

6. I2C UVC

Checks are also done in monitor, if enable checks is set to 1, timing checks
are performed if timing checks is set 1.

6.5.1 Timing checks

Slave must keep sda stable for setup time before rising edge of scl and for hold
time after scl falling edge. Otherwise monitor reports error if timing checks
are enabled. Sda setup and hold time is configured in i2c agent config.

6.6 Verification of I2C UVC

I2C UVC is verified against I2C core in smart sensor model. Coverage collec-
tion was designed to cover features specified at the beginning of the chapter.
The goal of I2C UVC functional coverage is set to 100 %. The Table 6.5
provides summary on coverage points collected by testbench.

6.6.1 Verification Plan

This section provides basic planning for I2C UVC verification. Verification
plan can be seen in the Table 6.6. All the tests results except sda timing
are expected to be checked from text report generated by testbench. The
sda timing test, which purpose is to verify that driver drives ’x’ to sda when
out of hold and setup time, is meant to be checked from waveform. The
sda timing test result can be reported by waveform screenshot.

All the tests except for i2c monitor checks test are expected to be finished
without error and are considered failed if errors reported. The i2c monitor checks
test is expected to produce hold and setup timing checks violation. The
i2c monitor checks test is considered failed if any of mentioned errors is never
reported.

2By error transaction is meant transaction with number of data bits not dividable by 8.

Table 6.5: I2C functional coverage

Watched property Coverage point Values
Bit order i2c MSB MSB first, LSB first

Transaction len.
i2c txn len standard, error2

txn multibyte singlebyte, multibyte

46

Verification of I2C UVC

Table 6.6: I2C verification plan

test M
SB

tim
in

g
ch

ec
ks

m
ul

ti-
by

te
re

ad
w

ho
le

by
te

s
on

ly
sd

a
tim

in
g

ch
ec

ks
un

sa
tis

fa
bl

e

er
ro

rs
ex

pe
ct

ed

i2c base 1 1
√

i2c err 1 1
i2c lsb first 0 1

√

i2c multi read 1 1
√ √

i2c monitor checks 1 1
√ √ √

sda timing 1 1
√

Table 6.7: I2C Coverage report

Coverage group Coverage point Coverage

i2c cov

i2c MSB 100 %
txn len 100 %
multibyte 100 %
total 100 %

Coverage report

As seen in the Table 6.7, 100 % coverage has been reached, which was the
coverage goal.

6.6.2 Verification report

Verification report for tests reported by text can be found in the Table 6.8.
Verification report for tests reported by waveform screenshot can be found
below. As all tests have passed and coverage goal has been reached, I2C UVC
verification is considered successfully finished.

47

6. I2C UVC

Table 6.8: I2C verification report

Test Errors Result Note
i2c test 0 PASSED
i2c err 0 PASSED
i2c lsb first 0 PASSED
i2c multi read 0 PASSED
i2c monitor checks 1284 PASSED Only sda timing errors observed.

Figure 6.3: Sda timing check

i2c monitor checks test

Sda hold and setup times have been verified from waveform. As seen in the
Figure 6.3, measured sda setup time is 0.25 us (note the Cursor - Baseline
delta time), which is same as sda hold time and corresponds to hold and
setup times configured in the test.

48

Conclusion

The main task of this thesis was to build smart sensor model from free available
cores, implement testbench for smart sensors and verify the testbench against
the model.

The sensor model has been designed to receive measured data from ADC,
perform conversion according to constants stored in register and store con-
verted value to register. Register map is accessable through SPI and I2C
buses.

The sensor model has been built from cores available at OpenCores. Open-
RISC, I2C slave core and SPI slave core have been used, Wishbone has been
used as interconnection bus. Some bug fixes must have been made to cores.
Wishbone-to-ADC interface had to be implemented, as none was available
during writing of this thesis. Sensor behavior has been written in C and
compiled to memory model.

SystemVerilog and UVM have been selected as verification framework. The
testbench follows classic UVM block-level hierarchy and includes standalone
SPI agent, I2C agent, and ADC agent. SPI and I2C agents are capable of
error injection, coverage collection and timing checks.

The smart sensor testbench has been verified against smart sensor model,
coverage goals have been reached and testcases passed. The potential future
works could make some improvements to the testbench. Non-volatile memory
model could be reworked to use Cadence tools for register map generation
from IP-XACT file. Bus transaction hierarchy could be changed to let bus
agents send any transaction (without register address and write bit), which
would increase reusability.

In conclusion, smart sensor testbench has been implemented and verified
against smart sensor model, satisfying the requirements given.

49

Bibliography

[1] Dallas semiconductor. DS1722 - Digital thermometer with SPI.

[2] National semiconductor corporation. LM75 - I2C Digital Temperature
Sensor and Thermal Watchdog.

[3] Verification Academy. UVM Cookbook [online]. [cit. 2015-02-26], ac-
count required. Available from: https://verificationacademy.com/
cookbook/

[4] I2C Info – I2C Bus, Interface and Protocol. [cit. 2015-04-09]. Available
from: http://http://i2c.info/

[5] SPI Core UVC specification. 2010, [internal document].

[6] Bergeron, J. Writing testbenches. Kluwer Academic Publishers, second
edition, 2003, ISBN 1-4020-7401-8.

[7] Sanghavi, A. What is formal verification? 2010, [cit. 2015-04-
05]. Available from: http://www.eetasia.com/STATIC/PDF/201005/
EEOL 2010MAY21 EDA TA 01.pdf

[8] Register-transfer level. [cit. 2015-03-24]. Available from: http://
en.wikipedia.org/wiki/Register-transfer level

[9] Cadence. Gate-Level Simulation Methodology [online]. [cit. 2015-
03-24]. Available from: http://www.cadence.com/rl/resources/
white papers/gate level simulation wp.pdf

[10] Spear, C. Systemverilog for Verification. Springer, second edition, 2008,
ISBN 978-0-387-76529-7.

[11] The Designer’s Guide To PSL. [cit. 2015-03-02]. Available from: https:
//www.doulos.com/knowhow/psl/

[12] UVM, OVM and VMM. [cit. 2015-03-02]. Available from: https://
www.aldec.com/en/solutions/functional verification/uvm ovm vmm

51

https://verificationacademy.com/cookbook/
https://verificationacademy.com/cookbook/
http://http://i2c.info/
http://www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf
http://www.eetasia.com/STATIC/PDF/201005/EEOL_2010MAY21_EDA_TA_01.pdf
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register-transfer_level
http://www.cadence.com/rl/resources/white_papers/gate_level_simulation_wp.pdf
http://www.cadence.com/rl/resources/white_papers/gate_level_simulation_wp.pdf
https://www.doulos.com/knowhow/psl/
https://www.doulos.com/knowhow/psl/
https://www.aldec.com/en/solutions/functional_verification/uvm_ovm_vmm
https://www.aldec.com/en/solutions/functional_verification/uvm_ovm_vmm

Bibliography

[13] A Meade, K.; Rosenberg, S. A practical Guide to Adopting the Universal
Verification Methodology (UVM). Cadence design systems, second edi-
tion, 2013, ISBN 978-1-300-53593-5.

[14] Smart Sensors – Not Only Intelligent, but Adaptable. 2011, [cit. 2015-02-
23]. Available from: http://www.digikey.com/en/articles/techzone/
2011/sep/smart-sensors---not-only-intelligent-but-adaptable

[15] OpenCores website. [cit. 23. 2. 2015]. Available from: http://
opencores.org

[16] OpenRISC 1200 project page. [cit. 23. 2. 2015]. Available from: http:
//opencores.org/or1k/OR1200 OpenRISC Processor

[17] Spi master/slave core. [cit. 24. 3. 2015]. Available from: http://
opencores.org/project,spi master slave

[18] I2C Slave. [cit. 2015-04-05]. Available from: http://opencores.org/
project,i2cslave

[19] I2C Master slave core. [cit. 2015-04-05]. Available from: http://
opencores.org/project,i2c master slave

[20] I2C master/slave core. [cit. 2015-04-05]. Available from: http://
opencores.org/project,i2c master slave core

[21] Analog-to-digital converter. [cit. 2015-04-05]. Available from: http://
en.wikipedia.org/wiki/Analog-to-digital converter

[22] Serial Peripheral Interface Bus. [cit. 2015-03-24]. Available from: http:
//en.wikipedia.org/wiki/Serial Peripheral Interface Bus

[23] Motorola. SPI block guide [online]. [cit. 2015-03-24]. Available from:
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf

52

http://www.digikey.com/en/articles/techzone/2011/sep/smart-sensors---not-only-intelligent-but-adaptable
http://www.digikey.com/en/articles/techzone/2011/sep/smart-sensors---not-only-intelligent-but-adaptable
http://opencores.org
http://opencores.org
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://opencores.org/or1k/OR1200_OpenRISC_Processor
http://opencores.org/project,spi_master_slave
http://opencores.org/project,spi_master_slave
http://opencores.org/project,i2cslave
http://opencores.org/project,i2cslave
http://opencores.org/project,i2c_master_slave
http://opencores.org/project,i2c_master_slave
http://opencores.org/project,i2c_master_slave_core
http://opencores.org/project,i2c_master_slave_core
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf

Appendix A

Acronyms

DUT Design under test

UVM Unified verification methodology

OVM Open verification methodology

VMM Verification methodology manual

I2C Inter-integrated circuit

SPI Serial peripheral interface

ADC Analog/Digital converter

GPIO General purpose Input/Output

LSB Least significant bit

MSB Most significant bit

UVC UVM verification component

NVM Non-volatile memory

53

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
DP Halecek Ivo 2015.pdf.............the thesis text in PDF format
DP Halecek Ivo 2015.ps................the thesis text in PS format

55

	Introduction
	State-of-the-art
	Coverage
	Verification approaches
	Verification plan
	Verification tools

	Goals of thesis
	Analysis and design
	Smart sensor
	Framework selection

	System level design
	Testbench components
	Register transaction
	Scoreboard
	ADC UVC
	Design under test

	SPI UVC
	SPI interface
	Configuration
	SPI transaction
	Driver
	Monitor
	Verification of SPI UVC

	I2C UVC
	I2C interface
	Configuration
	I2C transaction
	Driver
	Monitor
	Verification of I2C UVC

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

