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Abstrakt

Tato práce se zaměřuje na přidání nové šifrovací sady s autentizovaným šifrováním
do OpenSSL implementace TLS protokolu použitím EVP API. Nová šifra byla
vybrána z přihlášených algoritmů do CAESAR soutěže. Nová šifrovací sada
byla úspěšně otestována analýzou TLS síťové komunikace mezi serverem a
klientem.

Klíčová slova autentizované šifrování s přidruženými daty,caesar soutěž,openssl
evp api,openssl knihovna,tls šifrovací sady,tls protokol

Abstract

This thesis focuses on adding a new authenticated encryption cipher suite
in the OpenSSL implementation of the TLS protocol using the EVP API.
The cipher was selected from CAESAR competition submissions. The new
cipher suite was successfully tested by analysing TLS network communication
between server and client.

Keywords authenticated encryption with associated data,caesar competi-
tion,openssl evp api,openssl library,tls cipher suite,tls protocol
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Introduction

At its core, the Internet is built on top of IP and TCP protocols, which are used
to package data into small packets for transport. As these packets travel across
the world, they cross many computer systems in many countries. Because the
core protocols do not provide any security by themselves, anyone with access
to the communication links can gain full access to the data as well as change
the traffic without detection.

Over the last years, the Internet has grown into a major platform for the
world’s communication. The Internet’s trustworthiness has become critical
to its success. If a person cannot trust that they are communicating with the
party they intend, they will not give out their confidential data. If they cannot
be assured that delivered information is not modified in transit, they will not
trust it as much.

Currently the TLS protocol uses a MAC-then-Encrypt generic composition
of encryption and authentication algorithm to achieve both confidentiality and
integrity. More recently, the idea of using a single cryptosystem has become
accepted. In this concept, the MtE composition is replaced by a single au-
thenticated encryption algorithm, such as AES-GCM.

This thesis focuses on the OpenSSL cryptographic library, which is the most
frequently used implementation of the TLS protocol worldwide. It implements
a new authenticated encryption algorithm into the TLS protocol.
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Chapter 1

Modern cryptography

1.1 Kerckhoffs’ principle

In the modern era of cryptography, crypto algorithms are preferred to be pub-
lic. A well-known Kerckhoffs’ principle roughly says, that the security of the
cryptosystem must depend only on the secrecy of the key, and not on the
secrecy of the algorithm.

There are very good reasons for this rule. Algorithms are hard to change.
They are built into software or hardware, which can be difficult to upgrade. In
real world, the same algorithm is used for a very long time. It is hard enough
to keep the key secret, keeping the algorithm secret is far more difficult and
expensive.

From past we know that it is very easy to make a small mistake and create
cryptographic algorithm that is weak. If the algorithm is secret, nobody will
find this fault until the attacker tries to break it. On the other hand, if the
algorithm is public, researchers worldwide can participate in analyzing and
improving the algorithm and its implementations. Thus if the algorithm is
kept secret, for example by a private company saying that their algorithm is
unbreakable, you should not trust it.

While the cipher is publicly known, the secret key still needs to be ex-
changed via another communication method, which prevents Eve from reading
it. Alice and Bob can meet in person to exchange the key or Alice can mail it
via public post service. The key exchange problem is covered more detailed in
section 1.4.

1.2 Encryption

Encryption is the original goal of cryptography. It is the process of encoding
messages in such a way that only authorized parties can read it. Encryption
does not of itself prevent interception, but denies the message content to the

3



1. Modern cryptography
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m

Bob
m

Eve
m 7

m

Figure 1.1: How can Alice and Bob communicate securely?

interceptor.
The generic use case is: Alice and Bob1 want to communicate with each

other. However, communication channels are assumed not to be secure. Eve
is eavesdropping on the channel. Any message that Alice sends to Bob is also
received by Eve. (The same applies for messages sent from Bob to Alice, but
it is the same problem and the same solution will work for Bob’s messages,
so we concentrate to Alice messages.) How can Alice and Bob communicate
without learning everything? (Figure 1.1) [2]

To prevent Eve from understanding the conversation, Alice and Bob want
to use encryption. They first need to agree on a set of encrypt and decrypt
function E,D (a cipher) and a secret encryption key Ke. Then they can use
encryption in their communication channel in Figure 1.2.

So Alice wants to send a plaintext message m. She first encrypts it using
the encrypt function E(Ke,m) to get a ciphertext message c. It can be sent
over the communication channel, because only Alice and Bob know how to
decrypt it. When Bob receives the ciphertext, he can decrypt it using the
decrypt function D(Ke, c) to get the original plaintext m that Alice wanted to
send to him.

1Alice, Bob and Eve are placeholder names commonly used when discussing cryptogra-
phy, to identify an archetypal role of participant. Alice is a sender, Bob is a receiver and
Eve is an eavesdropper. For the first time these names were used in Ron Rivest’s paper
introducing RSA public key cryptosystem. [1] Since then, a number of other names have
entered cryptographic literature, such as Malory for malicious active attacker.

E

Ke

m c

(a) Encrypt function
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Ke

c m

(b) Decrypt function

Alice

E,Ke

m, c := E(Ke,m)

Bob

D,Ke

c,m := D(Ke, c)

c

Figure 1.2: Generic setting for encryption
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1.3. Message authentication
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Figure 1.3: How can Bob know who sent the message?

Now Eve tries to listen to the message, but she receives only ciphertext
message c. If we assume she does not know the encryption key Ke, she cannot
decrypt it.

Example algorithms: RC4, DES, AES

1.3 Message authentication

Alice and Bob have another problem, as shown in Figure 1.3. If Eve has a
bit more control over the communication channel, she can not only passively
listen to messages, she can also actively interfere.

To prevent Eve from undetectably modifying or forging messages, Alice
and Bob want to use authentication. They first need to agree on a set of
sign and verify functions S, V (usually the verify function simply uses the sign
function and compares its results) and a authentication key Ka (different from
encryption key Ke). Then they can use authentication their communication
channel in Figure 1.4.

So Alice wants to send a message m. She first computes a signature a using
the sign function S(Ka,m). This signature is also called Message Authentica-
tion Code (MAC). The message along with its signature can be sent over the
communication channel, because only Alice and Bob know how to generate
the signature. When Bob receives the message, he verifies the signature using

S

Ka

m a

(a) Sign function

V

Ka

m

a
{0, 1}

(b) Verify function

Alice

S,Ka

m,a := S(Ka,m)

Bob

V,Ka

m,a, V (Ka,m, a)?

m,a

Figure 1.4: Generic setting for authentication
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1. Modern cryptography

the verify function V (Ka,m, a), if it passes, he can be sure that Alice sent the
message.

Now Eve tries to modify the message m to a different message m′. If we
assume that she does not know the authentication key Ka, she can only replace
m with m′. Bob will try to verify it, but it fails, so Bob will recognize that
the message is not correct and he will discard it.

Pure authentication is only a partial solution. Eve can still do a lot of other
malicious actions. Imagine Alice sending to Bob a messages containing requests
for bank transfer. Eve can record a message and then send it to Bob later
again (replay it), reorder messages, or completely delete messages. Therefore,
authentication is almost always combined with a message numbering scheme.
If a messagem contains such a message number, Bob is not fooled by Eve when
she replays old messages. Bob will simply see that the message has correct
signature, but the message number is from an old message, so he will discard
it.

The best scheme of message numbering is a number sequence, incrementing
by 1 for each message. Bob will accept only messages which passes the veri-
fication step and whose message number is strictly greater than the message
number of the last message he accepted. So Bob receives a subsequence of
messages of that Alice sent. A subsequence is simply the same sequence with
growing message numbers with zero or more messages deleted.

Authentication with sequential message numbering solves most of the prob-
lem. Eve can still stop Alice and Bob from communicating by deleting or
delaying messages. But that is all she can do. Alice and Bob can prevent the
loss of information by using a scheme of resending messages that were lost,
but that is more application-specific problem, and not part of cryptography.

Example algorithms: HMAC-MD5, HMAC-SHA1, HMAC-SHA256

1.4 Key exchange

Symmetric cryptographic primitives share a huge disadvantage. They rely on
the existence of a shared secret value by Alice and Bob, which is used as a key
to those algorithms. Without it, they do not work.

The secret value must be exchanged via a different, more secure commu-
nication channel, such as by handing it over in person, by public post service,
or by cellphone. We cannot simply send the secret value in plaintext over the
same channel as the message, which the secret value is protecting, because Eve
could see it and use it to read or manipulate the protected content. If it would
be safe to send the secret value via the channel, then it is useless to bother
with encryption or authentication at all.

The problem of key distribution is often solved by technique called One-
Time Pad (OTP). Alice and Eve can meet in person and exchange a lot of
random values. Later when they are separated and they need to communicate

6



1.5. Authenticated encryption

securely, they just choose a single random value they exchanged before, eg. by
its ID, and use it to secure further communication. After the communication
ends, they will not use it again to prevent attacks which can take advantage
from using the same key.

OTPs provide the most secure way to communicate securely, however it is
very resource-consuming to exchange secret values this way. Thus an easier
method is necessary to establish a secure communication channel. The solution
lies in the modern field of asymmetric cryptography.

By using a well-designed key exchange cryptosystem, Alice and Bob can
establish a shared secret value, without sending it over an insecure channel. In
short, they agree on common parameters, which they use for generating their
secret values. Then they transform them to a public parameters, they exchange
them, and using their own secret value, and the value from the opposite party,
they can compute the shared secred value. If thecomputed value is kept secret,
Alice and Bob can use it as a key for all crypto algorithms that needs a shared
key. Eve can listen to key exchange parameters, but she cannot compute the
same value, because she does not know their secret exchange parameters.

Example algorithms: Diffie-Hellman, ElGamal
Asymmetric cryptography offers cryptographic primitives for encryption

and message authentication as well, but these topics are out of scope of this
thesis.

1.5 Authenticated encryption

Many applications desires to achieve both confidentiality and integrity goals by
using some combination of encryption and authentication algorithm. However,
securely combining them together is difficult, because it could lead to incorrect,
error-prone combination.

There are a few researched combinations of encryption and authentication,
called generic compositions: Encrypt-and-MAC (E&M), Encrypt-then-MAC
(EtM), MAC-then-Encrypt (MtE). These combinations are successfully used
in real-world software.

More recently, the idea of providing both confidentiality and integrity goals
using a single cryptosystem has become accepted. In this concept, the com-
bination of encryption and authentication algorithm is replaced by a single
Authenticated Encryption (AE) or Authenticated Encryption with Associated
Data (AEAD) algorithm. [3]

Authenticated Encryption is a form of encryption that, in addition to pro-
viding confidentiality for the plaintext that is encrypted, provides a way to
check its integrity and authenticity. Decryption is combined in single step
with integrity validation. These attributes are provided under a single, easy
to use interface.

7



1. Modern cryptography

Plaintext

Ciphertext MAC

(a) Encrypt-and-MAC

Plaintext

Ciphertext

Ciphertext MAC

(b) Encrypt-then-MAC

Plaintext

Plaintext MAC

Ciphertext

(c) MAC-then-encrypt

Figure 1.5: Generic compositions of authenticated encryption

Application designers can benefit from using AE by allowing them to focus
on real project needs, instead of designing their own cryptosystem. More
importantly, the security of an AE algorithm can be analyzed independent
from its use in a particular application. This property frees the user of the AE
of the need to consider security aspects such as the relative order of encryption
and authentication and the security of the particular combination of cipher and
MAC.

1.5.1 Generic compositions

The simpliest approach to design authenticated encryption schema is to com-
bine a standard symmetric encryption algorithm with a MAC in some way.
There are a few possible ways how to do it:

Encrypt-and-MAC The plaintext is encrypted to ciphertext, then a MAC is
computed from plaintext as well. The ciphertext (containing encrypted
plaintext) and plaintext’s MAC are sent together.

Encrypt-then-MAC The plaintext is encrypted to ciphertext, then a MAC
is computed from ciphertext. The ciphertext (containing encrypted plain-
text) and ciphertext’s MAC are sent tegether.

MAC-then-Encrypt AMAC is computed from the plaintext, then the plain-
text and MAC are encrypted together to ciphertext. The ciphertext
(containing encrypted plaintext and plaintext’s MAC) is sent.

See Figure 1.5 for comparison.
All of them are used in real-world software - Encrypt-and-MAC in SSH,

Encrypt-then-MAC in IPSec and MAC-then-Encrypt in TLS. However, recent
research shows that only Encrypt-then-MAC schema is provably secure. [4] [5]

1.5.2 Associated data

Authenticated Encryption with Associated Data adds the ability to check the
integrity and authenticity of some Associated Data (AD), also called Additional

8



1.5. Authenticated encryption

Authenticated Data (AAD), that is not encrypted and sent side by side with
the ciphertext.

Associated data can be for example TLS record header, to ensure that
unencrypted data in the header cannot be tampered with, and TLS record
sequence number, to ensure that the messages cannot be replayed.

9





Chapter 2

Competition for
Authenticated Encryption:
Security, Applicability and

Robustness

In 2013, CAESAR was announced. It is a worldwide cryptographic com-
petition, focused on finding new methods of authenticated encryption, that
offer advantages against commonly used AES-GCM and will be suitable for
widespread adoption. Submitted algorithms will be publicly evaluated by com-
mittee of researchers in fields of cryptography and cryptoanalysis.

This competition follows a long tradition of focused competitions in secret-
key cryptography:

• In 1997, United States National Institute of Standards and Technology
(NIST) announced an open competition for a new symmetric cupher,
Advanced Encryption Standard (AES). This competition attracted 15
submissions from 50 cryptographers around the world. In the end, Rijn-
dael was chosen as AES.

• In 2004, European Network of Excellence in Cryptology (ECRYPT) an-
nounced the ECRYPT Stream Cipher Project (eSTREAM), a call for
new stream ciphers suitable for widespread adoption. This call attracted
34 submissions from 100 cryptographers around the world. In the end,
the eSTREAM committee selected a portfolio containing several stream
ciphers.

• In 2007, NIST announced an open competition for a new hash standard
to Secure Hash Algorithm family (SHA-3). This competition attracted
64 submissions from 200 cryptographers around the world. In the end,
Keccak was chosen as SHA-3.

11



2. Competition for Authenticated Encryption: Security,
Applicability and Robustness

required integrity confidentiality single-use

plaintext yes yes yes no
associated data yes yes no no
secret message number no yes yes yes
public message number no yes no yes

Table 2.1: CAESAR inputs

All past cryptographic competitions attracted many submissions from cryp-
tographers around the world, and then even more security and performance
evaluations from cryptanalysts. They are generally viewed as having provided
a tremendous boost to the cryptographic research community’s understanding
of underlying concepts, and a tremendous increase in confidence in the security
of some existing cryptosystems. Similar comments are expected to apply to
CAESAR. [6]

2.1 Requirements

2.1.1 Functional requirements

For the purpose of CAESAR competition, an authenticated cipher is a pair of
encrypt and decrypt functions, meeting the following specific requirements.

All inputs and outputs should be represented as opaque byte-strings (mem-
bers of a set Z∗28), because they benefit from direct support of current com-
puters to store and transmit them.

A cipher is permitted to be defined using objects other then byte-strings,
nevertheless it must specify an unambiguous relationship between those objects
and byte-strings (e.g. endianness of integers).

A cipher must specify a length of all fixed-length inputs. It is permitted to
specify a maximum length of various-length inputs, but this limit must not be
smaller than 65 kB and submissions are expected to include justification for
any maximum length limits.

No other restrictions on their structure should be imposed, all inputs meet-
ing the length restrictions must be accepted.

2.1.1.1 Inputs and outputs

A plaintext is a variable-length input/output, a piece of confidential informa-
tion a sender wants to transmit to a receiver, as introduced in section 1.2.

A ciphertext is a variable-length input/output counterpart of the plaintext,
that can be transmitted over an insecure channel. it is usually longer then the
plaintext, because it contains an authentication tag. This length difference
is permitted to be fixed constant, thus leaking the plaintext length via the

12



2.1. Requirements

ciphertext length. Designers are advised that minimizing ciphertext length is
generally considered more valuable than hiding plaintext length.

A key is a fixed-length input, which determines the output of both encrypt
and decrypt functions. The key must be shared between both communicating
parties prior to encrypted communication. Without a key or with a different
one then used in the encrypt function, the decrypt function produces no useful
result. This follows the Kerckhoffs’ principle as introduced in section 1.1.

An associated data is a variable-length input, a piece of information known
by both communicating parties, which does not need to meet confidentiality
requirement. However, its origin still needs to be verified by the receiving
party. It can be for example some message metadata, such as version of used
protocol.

A nonce (number used once) is a fixed-length input. It is a public value,
which which is usually used as IV for the enclosed cipher. Such IVs should be
unique for each encryption run, so it makes all ciphertexts undistinguishable
even if the same key, message and associated data is used.

However, CAESAR call for submissions requests an unusual authenticated
encryption interface. The user, who wants to encrypt, instead of providing
the usual four arguments (the key, nonce, associated data, and message) for
authenticated encryption, he needs to provide five arguments. The nonce has
been transformed into a public message number and secret message number.
[7]

A public message number is a fixed-length input. It is a public value with
the same requirements as the nonce in the original definition of authenticated
encryption.

A secret message number is a fixed-length input. It is a secret value,
recoverable from the ciphertext, however it is not a part of the plaintext.
Allowing both a secret message number and a public message number creates
possibilities of different levels of their security requirements.

All inputs must meet various security purposes, as indicated by Table 2.1.

2.1.2 Software requirements

Each first-round submission must contain a portable reference software imple-
mentation to support public understanding of the cipher, cryptanalysis, verifi-
cation of subsequent implementations, etc. The implementation must cover all
recommended parameter sets, and must compute exactly the function specified
in the submission. The reference implementation is expected to be optimized
for clarity, not for performance. [6]

The submission must export the following constants:

• CRYPTO_KEYBYTES – the fixed length of key

• CRYPTO_NSECBYTES – the fixed length of secret message number (0 if not
supported)

13



2. Competition for Authenticated Encryption: Security,
Applicability and Robustness

• CRYPTO_NPUBBYTES – the fixed length of public message number (0 if not
supported)

• CRYPTO_ABYTES – the maximum (usually fixed) length difference between
plaintext and ciphertext

1 #define CRYPTO_KEYBYTES 16
2 #define CRYPTO_NSECBYTES 0
3 #define CRYPTO_NPUBBYTES 12
4 #define CRYPTO_ABYTES 16

The submission must export the following crypto_aead_encrypt and crypto_aead_decrypt
functions, which perform the encrypt and decrypt operation respectively.

1 int crypto_aead_encrypt(
2 unsigned char *c, unsigned long long *clen,
3 const unsigned char *m, unsigned long long mlen,
4 const unsigned char *ad, unsigned long long adlen,
5 const unsigned char *nsec,
6 const unsigned char *npub,
7 const unsigned char *k
8 ) {
9 // the code for the cipher implementation goes here,

10 // generating a ciphertext c[0],c[1],...,c[*clen-1]
11 // from a plaintext m[0],m[1],...,m[mlen-1]
12 // and associated data ad[0],ad[1],...,ad[adlen-1]
13 // and secret message number nsec[0],nsec[1],...
14 // and public message number npub[0],npub[1],...
15 // and secret key k[0],k[1],...
16 return 0;
17 }

1 int crypto_aead_decrypt(
2 unsigned char *m, unsigned long long *mlen,
3 unsigned char *nsec,
4 const unsigned char *c, unsigned long long clen,
5 const unsigned char *ad, unsigned long long adlen,
6 const unsigned char *npub,
7 const unsigned char *k
8 ) {
9 // the code for the cipher implementation goes here,

10 // generating a plaintext m[0],m[1],...,m[*mlen-1]
11 // and secret message number nsec[0],nsec[1],...
12 // from a ciphertext c[0],c[1],...,c[clen-1]
13 // and associated data ad[0],ad[1],...,ad[adlen-1]
14 // and public message number npub[0],npub[1],...
15 // and secret key k[0],k[1],...
16 return 0;
17 }

14



2.2. Submissions

The output of functions must be determined entirely by the inputs in their
arguments and must not be affected by any randomness or other hidden inputs.

The functions should perform the operation in constant time with regard
to any input data (even invalid data) to prevent timing side-channel attacks.

The decrypt function must return -1 if the ciphertext is not valid, i.e. if
the ciphertext does not equal the encryption of any (plaintext, secret message
number) pair with this associated data, public message number, and secret key.
The functions may return other negative numbers to indicate other failures,
for example memory-allocation failures. [6]

2.1.3 Hardware requirements

Each submission selected for the second round will also be required to include
a reference hardware design (i.e., a reference implementation in the VHDL or
Verilog languages). Details of the hardware API have not yet been specified.
[6]

2.2 Submissions

The competition was announced on 2013-01-15 at the Early Symmetric Crypto
workshop in Mondorf-les-Bains, also announced online2. First-round submis-
sion papers must have been received till 2014-03-15, reference software imple-
mentations must have been received till 2014-04-15.

After passing the first-round deadline, all submissions were published. All
submission papers can be downloaded on CAESAR homepage3. Submission
source codes are bundled together with SUPERCOP benchmark application4.
There is a website with SUPERCOP speed benchmark results5.

Also there was Directions in Authenticated Ciphers (DIAC) 2014 confer-
ence, where a lot of sumbission authors presented their candidates. Talk slides
are available for download on the DIAC website6.

There were submitted 57 candidates for the CAESAR competition. A
good insight into their classification is provided by Authenticated Encryption
Zoo7. At the time of writing this thesis, 9 candidates (AES-COBRA, Calico,
CBEAM, FASER, HKC, Marble, McMambo, PAES and PANDA) are consid-
ered broken and were withdrawn from the competition, because a cryptanalysis
was published that broke the security claim made by the designers. [8] There
are 48 candidates remaining. It is expected that the about a half of them will
advance to the second round.

2https://groups.google.com/d/forum/crypto-competitions
3http://competitions.cr.yp.to/caesar-submissions.html
4http://bench.cr.yp.to/supercop.html
5http://www1.spms.ntu.edu.sg/~syllab/speed/
6http://2014.diac.cr.yp.to/index.html
7https://aezoo.compute.dtu.dk/
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2. Competition for Authenticated Encryption: Security,
Applicability and Robustness

m1 m2 m3 m4

EK EK EK EK

c1 c2 c3 c4

(a) ECB block mode

m1 m2 m3 m4

IV ⊕ ⊕ ⊕ ⊕

EK EK EK EK

c1 c2 c3 c4

(b) CBC block mode

The ECB mode is the most basic block mode, which does not perform any block feedback.
Note that the plaintext structure is still observable in the ciphertext.

Figure 2.1: Basic block modes

Announcement of second-round candidates was initially scheduled for 2015-
01-15. However it is a hard task to do a proper security review, analysis and
comparison of all submissions. Currently in the time of writing this thesis, the
second-round candidates announcement is being postponed every month.

2.2.1 Overall construction

Most of first-round candidates can be classified according to their construction
design approaches. [8]

Block Cipher A block cipher is a bijective keyed permutation E : {0, 1}k ×
{0, 1}n → {0, 1}n, E(K,P ) = C, parametrized by a secret key K of
length k, and that takes as input a plaintext message p of length n, and
outputs a ciphertext message c of length n. The permutation is used
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2.2. Submissions

(a) The sponge construction

(b) The duplex construction

Figure 2.2: Sponge functions

for encryption, an inverted permutation is used for decryption. A block
mode is usually accompanied with a block mode.

Block Mode A block mode (also called mode of operation) is used by
block ciphers for secure transformation of data larger than a single
block. See Figure 2.1 for basic block modes. Some submissions
defines only a new block mode and relies on existing block cipher
(e.g. AES). [9]
Example candidates: COBRA, JAMBU, POET

Stream Cipher A stream cipher is a pseudo-random generator, that takes a
fixed-length secret key and generates a keystream of variable length. The
keystream is combined with the plaintext message to produce ciphertext
message and vice versa. The combining operation is usually XOR.
Example candidates: ACORN, Morus

Key-Less Permutation A key-less permutation is a bijective permutation
on fixed-length strings. The key is sent to the permutation alongside
the input, thus changing the internal state, effectivelly encrypting the
output and producing the MAC tag.
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2. Competition for Authenticated Encryption: Security,
Applicability and Robustness

Sponge Function A sponge function is a generalization of both hash
functions, which have a fixed output length, and stream ciphers,
which have a fixed input length. It is a simple iterated construction
for building a function with variable-length input and arbitrary-
length output based on a fixed-length permutation. The inner per-
mutation operates on a finite state of b = r + c bits. The value
r is called the bitrate and the value c the capacity. The sponge
construction operates on the state by iteratively applying the in-
ner permutation to it, interleaved with the entry of input or the
retrieval of output, chunked by bitrate size. Literally, the sponge is
said to absorb its inputs block by block first before it processes and
squeezes it out afterwards. [10]
A duplex sponge construction is closely related to the sponges.
However unlike sponges, which are stateless between calls, the du-
plex construction allows alternation of input and output blocks at
the same rate, like a full-duplex communication. Which means that
it requires only one call of the inner permutation per input block.
[11] See Figure 2.2 for comparison.
Example candidates: Ascon, ICEPOLE, Keyak, NORX, STRIBOB

2.2.2 Underlying primitive

Under the overall construction usually hides a cryptographic primitive (e.g.
inner permutation in sponge construction), which does the heavy lifting.

AES A lot of submissions use AES cipher or some of its parts (e.g. its round
function), because during the years, AES have been enormously analysed
in detail, and it is still believed to be secure. Moreover, starting with
Intel’s Westmere microarchitecture in 2011, current processors provide
AES native instructions (AES-NI), that allow hardware-accelerated fast
constant-time encryption and decryption.

Other named primitive e.g. SHA2, Keccak, ChaCha, Streebog, etc.

Generic primitive type e.g. Linear Feedback Shift Register (LSFR), Ad-
dition Rotation XOR (ARX), Logic Rotation XOR (LRX), Substition
Permutation Network (SPN), etc.

2.2.3 Functional characteristics, selection criteria

The selection of second-round candidates will focus not only on general security
of the scheme, but no less on important functional characteristics, which are
good to have.

High Security The schema should be secure against all known kinds of crypt-
analysis.
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2.3. Selection

High Speed The schema should be fast enough to compete with existing ci-
phers. However it is arguable whether the speed can be achieved by
hardware acceleration such as by AES-NI or SIMD (SSE2, AVX2) in-
struction sets, because it does not need to be available on all platforms.

Simplicity Clean design principles simplify cryptanalysis and allow a straight-
forward implementation in software and hardware.

Minimum Overhead The ciphertext will be always larger than the plain-
text, because it needs to include the MAC tag. However, this length
difference should be minimal.

Side-Channel Robustness The schema should resist against timing side-
channel attacks, e.g. by avoiding data-dependant table look-ups (S-
Boxes) or integer arithmetrics.

Parallelizable An operation is parallelizable if the processing an input block
does not depend on the output of processing any other block. Paralleliz-
able encryption and decryption is considered separately.

Online A cipher is called online if the processing an input block depends only
on the output of processing of previous blocks and only constant size-
state is used from the processing of one block to the next. It effectivelly
means that the MAC tag must be computed during encryption, thus
online schemes can be called one-pass. Such schemes can be faster in
general. Schemes that are not online are called offline or two-pass.

Inverse-Free A scheme is called inverse-free if it does not require either its
underlying primitive inverse operation, e.g. as does require the block
cipher’s decryption function. Such scheme can save precious memory
and circuit area resources.

Nonce Misuse-Resistance States the robustness of the scheme when nonces
are repeated. This property avoids maintaining a nonce generator.

2.3 Selection

Because in the time of writing this thesis the announcement of second-round
candidates is still being postponed, I could not choose a qualified candidate,
which I would implement into OpenSSL. So I decided to implement a cipher
using the generic CAESAR API (see subsection 2.1.2).

As a reference cipher for my implementation part I chose the NORX cipher,
because it have received no negative analysis. However it is not important
which particular cipher I used, because the cipher can be easily switched for a
different cipher complying with the CAESAR API, as soon as the the second-
round candidate or final announcement will be made.
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Chapter 3
Transport Layer Security

(TLS) protocol

TLS is a security protocol used in almost 100% of secure Internet transactions.
Essentially, TLS transforms a typical reliable transport protocol (such as TCP)
into a secure communication channel suitable for sending sensitive messages.
TLS does not dictate which cryptographic algorithms need to be used. Instead,
TLS serves as a framework establishing and maintaining a secure comminuca-
tion channel, while new cryptographic algorithms can be implemented using a
common interface.

Adding encryption to an existing protocol is best performed in a transpar-
ent way, so that applications using the protocol library do not need to change
their code to support encryption. A perfect example is HTTP protocol. A
HTTP library can support both plaintext HTTP and encrypted HTTPS, and
an application using this library can select the protocol simply in an URL, by
specifying http:// or https:// respectively. See Figure 3.1.

TLS has four main goals, listed here in the order of priority:

Cryptographic security This is the main issue: enable secure communica-
tion between any two parties who wish to exchange information.

Interoperability Independent programmers should be able to develop pro-
grams and libraries that are able to communicate with one another using
common cryptographic parameters.

Extensibility TLS is effectively a framework for the development and deploy-
ment of cryptographic protocols. Its important goal is to be independent
of the actual cryptographic primitives (e.g., ciphers and hashing func-
tions) used, allowing migration from one primitive to another without
needing to create new protocols.
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3. Transport Layer Security (TLS) protocol

http://google.com https://google.com

Application Application

HTTP HTTP

TLS

TCP TCP

IP IP

Ethernet Ethernet

Application Layer

Transport Layer

Network Layer

Link Layer

encryption
added

Figure 3.1: Role of TLS in TCP/IP Reference Model

Efficiency The final goal is to achieve all of the previous goals at an accept-
able performance costreducing costly cryptographic operations down to
the minimum and providing a session caching scheme to avoid them on
subsequent connections. [12]

Whereas TLS provides security over reliable TLS communication, there
also exists its variant, DTLS protocol. DTLS is deliberately designed to be
as similar to TLS as possible, both to minimize new security invention and
to maximize the amount of code and infrastructure reuse. [13] This thesis is
about TLS only.

3.1 Standardization

The Internet is the result of a long-term collaboration between governments,
academia, and businesses seeking to create a worldwide communication net-
work. For the Internet to function correctly, it must be based upon standard-
ized communication protocols.

Standards concerning the Internet are produced by the Internet Engineer-
ing Task Force (IETF) non-profit organization, where experts from around
the world collaborates in work groups focused on specific area. IETF produces
an informal series of documents known as Requests for Comments (RFCs).
For a document to become an Internet standard, it is begins its life by being
proposed as an RFC on the standardization track. RFCs in development are
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3.2. Records

Type Version Length

Header Data

Figure 3.2: TLS record

temporarily available as Internet Drafts. After approval from IETF may be
published as Proposed Standard. [14]

There are also other classes of RFCs, most notably experimental and infor-
mational RFCs. IETF RFCs cover all the topics of interest to an implementer
working with the Internet, which would explain why there are so many of
them8 - over 7400 at the time of writing.

Many of IETF RFCs describe security algorithms, protocols, or recom-
mendations. The most interesting for this thesis are these produced by TLS
working group9, such as:

RFC2246 The TLS Protocol Version 1.0

RFC4346 The Transport Layer Security (TLS) Protocol Version 1.1

RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2

draft-ietf-tls-tls13 The Transport Layer Security (TLS) Protocol Version
1.3 (work in progress)

RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS

RFC6655 AES-CCM Cipher Suites for Transport Layer Security (TLS)

TLS implementations are typically written as a set of functions that gener-
ate and parse all TLS record messages, and perform the relevant cryptographic
operations. The state machine that this process must implement, is currently
not standardized, and differs between implementations. Allowing unexpected
transitions in this state machine can lead to unexpected behavior. There is
an effort to standardize the TLS state machine to allow formal verification of
core components in cryptographic protocol libraries. [15]

3.2 Records

At a high level, TLS protocol specifies a structure of every record (packet).
Each TLS record starts with a short header, which contains information about

8http://www.rfc-editor.org/rfc-index.html
9https://tools.ietf.org/wg/tls/
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3. Transport Layer Security (TLS) protocol

the record type (subprotocol), protocol version and data length. Message data
follows the header. See Figure 3.2 for record structure.

The record type is identified in the record by 1-byte integer ID as specified
in Table C.1. The protocol version can be either SSL 3.0 (deprecated), TLS
1.0, TLS 1.1, TLS 1.2 and it is identified in the record by 2-byte integer ID as
specified in Table C.2. The data length field is 2-byte long and it specifies the
message data length.

There are the following record types (subprotocols):

Handshake protocol The handshake protocol to negotiate connection pa-
rameters, such as the cipher suite, authenticate each other and verify
that handhshake messages have not been modified by an attacker.

ChangeCipherSpec protocol The ChangeCipherSpec protocol contains a
single message, which is a signal from the sending side that it obtained
enough information to generate the connection parameters, such as the
encryption keys, and is switching all further communication to encryp-
tion. Client and server both send this message when the time is right.

Alert protocol Alerts are intended to use a simple notification mechanism to
inform the other side in the communication of exceptional circumstances.
They’re generally used for error messages, as listed in Table C.5.

Application protocol The Application protocol carries application messages,
which are just opaque byte arrays as far as TLS is concerned. These mes-
sages are packaged, fragmented, and encrypted by the record layer, using
the current connection security parameters, such as the negotiated cipher
suite.

Heartbeat protocol The Heartbeat protocol extension allows a keep-alive
functionallity without performing renegotiation. Its purpose is intended
especially for DTLS, however it is implemented also in TLS.

This thesis focuses on negotiation of the cipher suite in the Handshake
protocol and on application data encryption in the Application protocol.

3.3 Handshake protocol

When a client and server start communicating, they use the handshake proto-
col to negotiate connection parameters, such as the cipher suite, authenticate
each other and verify that handhshake messages have not beed modified by an
attacker. It is the most complex part of the TLS protocol, because it performs
these tasks:

• exchange supported capabilities and agree on shared connection param-
eters (TLS protocol version, cryptographic algorithms)
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3.3. Handshake protocol

• exchange necessary cryptographic parameters to agree on shared secret
values (master secret) using public-key cryptography

• exchange certificates or other cryptographic information to authenticate
one another

• verify that the handshake has not beed tampered by a third party

• verify that both parties have calculated the same secret values and they
can be reliably used to transport application data via record protocol

This phase usually takes 6-13 messages (see Table C.3 for list of all message
types) in 3-4 network flights, depending on which features are used. There
can be many variations in the exchange, depending on the configuration and
supported protocol extensions. In practice, we can see three common flows:

• full handshake with client and server authentication

• basic handshake with server authentication

• abbreviated handshake that resumes an earlier session

If a client and server has not previously communicated with each other,
both parties will perform a full or basic handshake in order to establish a
session. See Figure 3.3.

Full handshake requires client authentication, whereas basic handshake
does not. Also it is possible to perform an anonymous handshake without any
authentication, but it is not recommended, because it is sucpectible to MitM
attacks.

A full handshake is completed after 4 network flights before the handshake
is complete and protocol parties can begin to send application data. Thus,
using TLS adds a latency penalty of 2 RTTs if the client sends application
data first, such as in HTTP protocol.

1. ClientHello - client initiates a handshake, sends its capabilities to server

2. ServerHello - server selects the best connection parameters supported by
both parties

3. Certificate - server sends its certificate chain (only if server authentica-
tion is required)

4. ServerKeyExchange - server sends additional information required to
generate the master secret (only if it is required by selected cipher suite)

5. CertificateRequest - server requests client authentication and sends re-
quirements for acceptable certificates (only if client authentication is
required)
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Client Server

1

2

3

4

5

6

7

8

9

10

11

12

13

14 14

ClientHello

ServerHello

Certificate∗

ServerKeyExchange∗

CertificateRequest∗

ServerHelloDone

Certificate∗

ClientKeyExchange

CertificateVerify∗

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

handshake completed

Application

∗ optional message
[ ] ChangeCipherSpec protocol message

Figure 3.3: TLS full handshake
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Figure 3.4: TLS abbreviated handshake

6. ServerHelloDone - server indicates completion of its side of negotiation

7. Certificate - client sends its certificate chain (only if client authentication
is required)

8. ClientKeyExchange - client sends additional information required to gen-
erate the master secret

9. CertificateVerify - client proves the posession of private key correspond-
ing to the previously sent client certificate (only if client authentication
is required)

10. ChangeCipherSpec - client notifies server, that all following messages are
encrypted

11. Finished - client sends a MAC of the handshake messages it sent and
received

12. ChangeCipherSpec - server notifies client, that all following messages are
encrypted

13. Finished - server sends a MAC of the handshake messages it sent and
received
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3. Transport Layer Security (TLS) protocol

14. handshake is completed, secure communication channel is established,
both parties can securely send application data

An abbreviated handshake is completed after 3 network flights, thus adding
a latency penalty of just 1 RtT if the client sends application data first. See
Figure 3.4. The session reuses previously exchanged secret values between the
client and server, identified by either Session Tickets or Session Cookies.

3.4 Cipher suites

TLS is great in flexibility which provides for using various cryptographic primi-
tives in a common framework. A selection of cryptographic primitives and their
parameters is called cipher suite.

A cipher suite is defined by the following attributes:

• Key exchange algorithm

• Authentication algorithm

• Encryption algorithm

– cipher algorithm

– key size

– cipher mode

• MAC algorithm (unless it is included in encryption algorithm)

• Pseudorandom function (since TLS 1.2)

Cipher suite names are usually long, descriptive and consistent. They are
made from names of underlying used algorithms. See Table C.6 for sample
common cipher suites.

3.4.1 Key exchange

Key exchange as introduced in section 1.4 is used in TLS to establish a shared
value called premaster secret. The structure of premaster secret depends on
the key exchange algorithm. From the premaster secret is constructed a 48-
byte shared value called master secret, a value which is used in all subsequent
operations affecting the security of the session.

Which key exchange is used depends on the negotiated suite. Once the
suite is known, both sides know which algorithm to follow. In practice, there
are four main key exchange algorithms:
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3.4. Cipher suites

RSA RSA is effectively the standard key exchange and authentication algo-
rithm. More specifically, it is a key transport algorithm – the client
generates the premaster secret and transports it to the server, encrypted
with the server’s public key. It is universally supported but suffers from
one serious problem. Its design allows a passive attacker to decrypt all
encrypted data, provided she has access to the server’s private key. Be-
cause of this, the RSA key exchange is being slowly replaced with other
algorithms, those that support so called forward secrecy.

DHE Ephemeral Diffie-Hellman (DHE) key exchange is a well-established al-
gorithm. More specifically, it is a key agreement algorithm – the negoti-
ating parties both contribute to the process and agree on a common key.
It is liked because it provides forward secrecy but disliked because it’s
slow. In TLS, DHE is commonly used with RSA authentication.

ECDHE Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) key exchange is
based on elliptic curve cryptography, which is relatively new. Concep-
tually it is a key exchange algorithm similar to DHE. It’s liked because
it’s fast and provides forward secrecy. It’s well supported only by mod-
ern clients. In TLS, ECDHE can be used with either RSA or ECDSA
authentication. [12]

3.4.2 Authentication

Authentication is tightly coupled with key exchange in order to avoid repeti-
tion of costly cryptographic operations. In most cases, the basis for authenti-
cation will be public key cryptography (most commonly RSA, but sometimes
ECDSA) by X509 certificates.

The certificate is either compared to a preshared certificate or validated
against a trusted root store managed by operating system. The trusted root
store contains root certificates of default trusted Certificate Authorites (CAs),
which are privileged to issue X509 certificates. If TLS is used in web browser
in HTTPS protocol, the browser can show the state of certificate validation to
the user. Trusted certificate is usually signalized by a green lock icon, while
untrusted certificate displays a warning and the user can decide if he trusts
the certificate or not. See Appendix D for browser behavior details.

Once the certificate is validated, the client has a known public key to work
with. After that, it’s down to the particular key exchange method to use the
public key in some way to authenticate the other side.

During the RSA key exchange, the client generates a random value as the
premaster secret and sends it encrypted with the server’s public key. The server
decrypts the message to obtain the premaster secret. The authentication is
implicit. It is assumed that only the server in possession of the corresponding
private key can retrieve the premaster secret.
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During the DHE and ECDHE exchanges, the server contribute to the key
exchange with its random parameters, signed with its private key. The client
can validate it by the corresponding public key.

Do not confuse authentication with message authentication. Asymmetric
authentication is used during handshake, while message authentication is used
during application data transfer.

3.4.3 Encryption and message authenticaion

TLS can encrypt data (as introduced in section 1.2) using a variety of ways,
using ciphers such as 3DES, RC4, AES or CAMELLIA. AES is by far the most
popular cipher.

Integrity validation (as introduced in section 1.3) is part of the encryp-
tion process using an authenticated encryption scheme (as introduced in sec-
tion 1.5). It is handled either explicitly at the protocol level using a MtE
generic composition scheme (as introduced in subsection 1.5.1), example al-
gorithms usually consist of HMAC and hash function such as MD5, SHA1,
SHA256. However, recent research shows that only EtM schema is provably
secure. TLS reacts to these results and introduced optional EtM support,
which can be negotiated by a specific a TLS extension as defined in RFC
736610.

Or the integrity validation can be handled implicitly by the negotiated
AEAD cipher. Currently it is recommended to prefer AEAD to generic com-
position cipher suites, because they can offer better performance and security.
However there is only one widespread AEAD cipher, AES-GCM. The CAE-
SAR competition as described in chapter 2 focuses on finding new AEAD
ciphers.

The MAC tag is computed from plaintext and additional data, such as
TLS record header, to ensure that unencrypted data in the header cannot be
tampered with, and TLS record sequence number, to ensure that the messages
cannot be replayed.

3.4.4 Pseudorandom function

A pseudorandom function is used in TLS to expand the 48-byte master secret
into arbitrary-length blocks of data, which can be used as shared keys in en-
cryption, message authentication and other algorithms requiring secred shared
data.

Before TLS 1.2, a protocol-wide pseudorandom function was used, which
was combined from HMAC-MD5 and HMAC-SHA1. Since TLS 1.2, it was
defined a recommended PRF: HMAC-SHA256. New cipher suites must ex-
plicitly specify a PRF, the recommended PRF or stronger. Older cipher suites
must use the recommended PRF when negotiated over TLS 1.2.

10https://tools.ietf.org/html/rfc7366
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Chapter 4
OpenSSL

OpenSSL11 is an opensource cryptographic toolkit, consisting of implemen-
tations of many cryptographic aslgorithms, all versions of TLS protocol and
various command-line tools.

It is free to get and use for both non-commercial and commercial purposes,
with some simple licence conditions12.

OpenSSL provides two libraries, libssl and libcrypto. libssl is re-
sponsible for SSL/TLS protocol, also with other supportive functions such as
parsing and validating X509 certificates.

4.1 Release schedule

Because SSL/TLS library is considered as part of critical infrastructure, it is
important for developers and vendors to know which versions are supported
to receive security fixes in future. Whenever a new version containing fixes for
known security flaws is released, in production environment it is recommended
to update the library as soon as possible, because not updating could cause
dangerous leak of confidential information.

Since OpenSSL 1.0.0, the versioning policy was improved to clearly indicate
the level of included changes13:

• Letter releases, such as 1.0.1k, contain bug and security fixes and no new
features.

• Minor releases, such as 1.0.2, usually contain new features, but they
does not break binary compatibility. Every application compiled with
version 1.0.0 can be also compiled with any of future 1.0.x versions and
get advantages of new implemented features.

11https://www.openssl.org
12https://www.openssl.org/source/license.html
13https://www.openssl.org/about/releasestrat.html
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4. OpenSSL

• Major releases, such as 1.1.0, can break binary compatibility.

Also support timelines were updated recently for all current and future
releases:

• 0.9.8 and 1.0.0 will be supported until 2015-12-31. Security fixes only
will be applied until then.

• 1.0.1 will be supported until 2016-12-31.

• 1.0.2 will be supported at least until 2016-12-31.

• Every future releases will be supported at least for two years, a LTS
release will be supported at least for five years.

Version 1.1.0 will break binary compatibility because a major cleanup is
necessary. A lot of recently found security bugs were caused by excessive
complexity of the source code. The preview version is expected to be available
in the middle of 2015 and to be released in the end of 2015.

4.2 Source code

Download the source code from the official OpenSSL homepage14 and compare
its hash fingerprints. The latest version in the time of writing is 1.0.2a.

Compile it with commands:

1 ./config
2 make

It results into an all-in-one apps/openssl binary. You can run attached
tests with make test command. If you wish to install it globally to your
system, run make install command with root privileges.

While making changes into OpenSSL code, sometimes I needed to debug
the binary with GDB. You can turn on debugging symbols with ./config -d
command and build again.

OpenSSL coding style in past was inconsistent, however in the recent stable
version 1.0.2 it has been unified to conform a defined rules15.

OpenSSL provides two primary libraries: libssl and libcrypto. The libcrypto
library provides the fundamental cryptographic routines used by libssl. A user
can however use libcrypto without using libssl.

OpenSSL source code contains a lot of various directories, for my purposes
only the following are significant:

14https://www.openssl.org/source/
15https://www.openssl.org/about/codingstyle.txt
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4.3. Command-line tools

• apps – command-line tools

• crypto – libcrypto library

• ssl – libssl library

• demos – examples

• docs – man pages and howtos

• include – include header files

• util – perl scripts for C code generation

4.3 Command-line tools

OpenSSL is primarily a library that is used by developers to include support
for strong cryptography in their programs. However it is also a tool that
provides access to much of its functionality from command line. This way it
can be used by shell scripts or programming languages that do not have native
bindings, but can run shell commands. [16]

The openssl binary is an entry point for all commands. You call it follow-
ing the pattern:

1 openssl command [command_opts] [command_args]

Alternatively you can call it without arguments to enter the interactive
mode with an OpenSSL> prompt. Then you can directly type your commands.
You can leave the interactive mode with Ctrl+C or Ctrl+D or by typing quit.

You can get a list of available commands by calling:

1 openssl list-standard-commands

OpenSSL binary provides command-line access to the following significant
cryptographic operations and applications:

• openssl dgst – a message digest command, producing or verifying a
digest of supplied file(s) using hash functions or digital signature algo-
rithms

• openssl enc – a symmetric cipher command, allowing data to be en-
crypted or decrypted using various block and stream ciphers, using keys
derivated from passwords or explicitly provided
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• openssl speed – a benchmark to test the performance of all included
cryptographic algorithms

• openssl asn1parse – a diagnostic parser of ASN.1 encoded structures;
public and private keys, certificates and other cryptographic structures
are usually stored in ASN.1 format

• openssl x509 – a multi-purpose utility to operate with X509 certificates

• openssl s_server – a generic TCP+TLS server which listens on a given
local port, it can operate either in plain text mode, or as a simple HTTP
server, processing requests and responding with files in current directory

• openssl s_client – a generic TCP+TLS client which connects to a
remote host, very useful diagnostic tool

• openssl s_time – a client which benchmarks the performance of a TLS
connection

OpenSSL supports a lot of cryptographic algorithms, some of them also
have their own aliases (pseudo-commands) for faster command line access.
Supported algorithms and their corresponding pseudo-commands can be listed
by the following commands:

• openssl list-message-digest-algorithms – list of message digest al-
gorithms

• openssl list-message-digest-commands – list of message digest pseudo-
commands

• openssl list-cipher-algorithms – list of symmetric encryption algo-
rithms

• openssl list-cipher-commands – list of symmetric encryption pseudo-
commands

• openssl list-public-key-algorithms – list of public key algorithms

• openssl ciphers -v [cipherlist ] – list of TLS cipher suites, com-
plying with the given cipherlist, or all by default

• openssl ecparam -list_curves – list of named elliptic curves

34



4.3. Command-line tools

4.3.1 Symmetric encryption

The openssl enc command16 encrypts or decrypts given data using various
supported ciphers. By default, it reads the data from standard input, a writes
to standard output.

It accepts the following significant options:

• -ciphername – the cipher name, it specifies the requirements on the
length of key and IV

• -d – decrypt the input data

• -K hex – the key used in cipher, it must be represented as a string
comprised only of hex digits

• -iv hex – the IV used in cipher, it must be represented as a string
comprised only of hex digits

Example:

1 ENC="openssl enc -aes-128-cbc"
2 PLAINTEXT="Lorem ipsum dolor sit amet, consectetur adipiscing elit."
3 KEY=123456789abcdef03456789abcdef012
4 IV=00000000000000000000000000000000
5
6 CIPHERTEXT=$(echo -n "$PLAINTEXT" | $ENC -K $KEY -iv $IV | xxd -p)
7 echo "$CIPHERTEXT"
8
9 ef45d7ca2e7a1cb2b61e412767974b23af5b6532fc92373b9433029c8a30

10 7fbe7737aac0fe4435ac5a3919884195469038e7345c61cb3cc205e570d8
11 a10a1f9d
12
13 PLAINTEXT2=$(echo -n "$CIPHERTEXT" | xxd -r -p | $ENC -d -K $KEY -iv $IV)
14 echo "$PLAINTEXT2"
15
16 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

4.3.2 Performance benchmarking of cryptographic
algorithms

The openssl speed command17 can run performance benchmarks of all in-
cluded cryptographic algorithms - hash functions, symmetric ciphers, assymet-
ric key exchanges and digital signatures.

It accepts the following significant options:

• -evp algorithmname – run benchmarks on an EVP algorithm
16https://www.openssl.org/docs/apps/enc.html
17https://www.openssl.org/docs/apps/speed.html
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• algorithmnames – if any algorithms are given, speed tests those algo-
rithms, otherwise all are tested

Example:

1 openssl speed -evp aes-128-gcm
2
3 Doing aes-128-gcm for 3s on 16 size blocks: 43106948 aes-128-gcm’s in 3.00s
4 Doing aes-128-gcm for 3s on 64 size blocks: 30559247 aes-128-gcm’s in 2.99s
5 Doing aes-128-gcm for 3s on 256 size blocks: 11774457 aes-128-gcm’s in 3.00s
6 Doing aes-128-gcm for 3s on 1024 size blocks: 3428879 aes-128-gcm’s in 3.00s
7 Doing aes-128-gcm for 3s on 8192 size blocks: 444651 aes-128-gcm’s in 3.00s
8 ...
9 The ’numbers’ are in 1000s of bytes per second processed.

10 type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
11 aes-128-gcm 229903.72k 654110.97k 1004753.66k 1170390.70k 1214193.66k

4.3.3 Generic server

The openssl s_server command18 emulates a generic TCP server, which
uses TLS to ensure a secure communication channel. It listens for incoming
connections and after a connection is established, it forwards standard input
to the opposite party through TLS data protocol, and writes all received data
to standard output.

It accepts the following significant options:

• -accept port – the port to listen on for connections, 4433 by default

• -cert filename – the certificate, a self-signed certificate can be used

• -key filename – the certificate private key

• -cipher ciphernames – the supported cipher list. When the client
sends a list of supported ciphers, the first client cipher also included
in the server list is chosen. Because the client specifies the preference
order, the order of the server cipherlist irrelevant. This behavior can be
overriden by -serverpref option.

• -serverpref – use the server’s cipher preferences, rather than the client’s
preferences

• -WWW – emulates a simple web server. Resources will be resolved rela-
tive to the current directory, for example if the resource /page.html is
requested, the file ./page.html will be loaded.

Example, run in parallel with s_client example:
18https://www.openssl.org/docs/apps/s_server.html
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1 openssl s_server -accept 4444 -cert selfsigned.crt -key selfsigned.key -cipher
DHE-RSA-AES128-GCM-SHA256↪→

2
3 Using default temp DH parameters
4 Using default temp ECDH parameters
5 ACCEPT
6 -----BEGIN SSL SESSION PARAMETERS-----
7 ...
8 -----END SSL SESSION PARAMETERS-----
9 Shared ciphers:DHE-RSA-AES128-GCM-SHA256

10 CIPHER is DHE-RSA-AES128-GCM-SHA256
11 Secure Renegotiation IS supported
12 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
13 DONE
14 shutting down SSL
15 CONNECTION CLOSED
16 ACCEPT

After the connection is established, a string "Lorem ipsum..." is successfully
transferred from the client to the server.

4.3.4 Generic client

The openssl s_client command19 emulates a generic TCP client, which uses
TLS to ensure a secure communication channel. After a connection is estab-
lished, it forwards standard input to the opposite party through TLS data
protocol, and writes all received data to standard output.

It accepts the following significant options:

• -connect host:port – the host and port to connect to, local host and
port 4433 by default

• -cipher ciphernames – the supported cipher list. Although the server
determines which cipher suite is used, it should take the first supported
cipher in the list sent by the client.

Example, run in parallel with s_server example:

1 openssl s_client -connect 127.0.0.1:4444 -cipher DHE-RSA-AES128-GCM-SHA256
2
3 CONNECTED(00000003)
4 depth=0 C = XX, L = Default City, O = Default Company Ltd
5 verify error:num=18:self signed certificate
6 verify return:1
7 depth=0 C = XX, L = Default City, O = Default Company Ltd
8 verify return:1

19https://www.openssl.org/docs/apps/s_client.html
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9 ---
10 Certificate chain
11 0 s:/C=XX/L=Default City/O=Default Company Ltd
12 i:/C=XX/L=Default City/O=Default Company Ltd
13 ---
14 Server certificate
15 -----BEGIN CERTIFICATE-----
16 ...
17 -----END CERTIFICATE-----
18 subject=/C=XX/L=Default City/O=Default Company Ltd
19 issuer=/C=XX/L=Default City/O=Default Company Ltd
20 ---
21 No client certificate CA names sent
22 Server Temp Key: DH, 1024 bits
23 ---
24 SSL handshake has read 1704 bytes and written 289 bytes
25 ---
26 New, TLSv1/SSLv3, Cipher is DHE-RSA-AES128-GCM-SHA256
27 Server public key is 2048 bit
28 Secure Renegotiation IS supported
29 Compression: NONE
30 Expansion: NONE
31 SSL-Session:
32 Protocol : TLSv1.2
33 Cipher : DHE-RSA-AES128-GCM-SHA256
34 ...
35 Verify return code: 18 (self signed certificate)
36 ---
37 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
38 DONE

After the connection is established, a string "Lorem ipsum..." is successfully
transferred from the client to the server.

4.3.5 Performance benchmarking of TLS

The openssl s_time command20 emulates a generic TCP client, which uses
TLS to ensure a secure communication channel. It can request a page from the
server and includes the time to transfer the payload data in its timing mea-
surements. It measures the number of connections within a given timeframe,
the amount of data transferred (if any), and calculates the average time spent
for one connection.

It accepts the following significant options:

• -connect host:port – the host and port to connect to, local host and
port 4433 by default

20https://www.openssl.org/docs/apps/s_time.html
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• -cipher ciphernames – the supported cipher list. Although the server
determines which cipher suite is used, it should take the first supported
cipher in the list sent by the client.

• -time sec – specifies how long in seconds the benchmark should run

• -new – performs the timing test using a new session for each connection.
If -www option is not used, this can be used to benchmark specifically
the TLS handshake protocol.

• -reuse – performs the timing test using the same session for each con-
nection. If -www option is not used, this can be used to benchmark
specifically the TLS handshake protocol with session resume.

• -www filename – this specifies the resource to GET from the server.
If this parameter is not specified, then it will only perform the TLS
handshake to establish a connections, but not transfer any data.

1 openssl s_time -connect 127.0.0.1:4444 -cipher DHE-RSA-AES128-GCM-SHA256 -time
3 -new↪→

2
3 Collecting connection statistics for 3 seconds
4 ...
5 857 connections in 1.47s; 582.99 connections/user sec, bytes read 0
6 857 connections in 4 real seconds, 0 bytes read per connection
7
8
9 openssl s_time -connect 127.0.0.1:4444 -cipher DHE-RSA-AES128-GCM-SHA256 -time

3 -reuse↪→
10
11 Collecting connection statistics for 3 seconds
12 ...
13 11834 connections in 1.11s; 10661.26 connections/user sec, bytes read 0
14 11834 connections in 4 real seconds, 0 bytes read per connection
15
16
17 openssl s_time -connect 127.0.0.1:4444 -cipher DHE-RSA-AES128-GCM-SHA256 -time

3 -reuse -www /test-8k.dat↪→
18
19 Now timing with session id reuse.
20 starting
21 ...
22 96 connections in 0.03s; 3200.00 connections/user sec, bytes read 790752
23 96 connections in 4 real seconds, 8237 bytes read per connection
24
25
26 openssl s_time -connect 127.0.0.1:4444 -cipher DHE-RSA-AES128-GCM-SHA256 -time

3 -reuse -www /test-1M.dat↪→
27
28 Now timing with session id reuse.
29 starting
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30 ...
31 84 connections in 0.41s; 204.88 connections/user sec, bytes read 88084164
32 84 connections in 4 real seconds, 1048621 bytes read per connection

4.4 libcrypto library

The libcrypto21 library provides high-level and low-level interfaces for the im-
plemented fundamental cryptographic algorithms.

For most uses, users should use the high-level interface that is provided for
performing cryptographic operations. This is known as the EVP22 interface
(short for Envelope). This interface provides a suite of functions for performing
encryption/decryption (both symmetric and asymmetric), signing/verifying,
as well as generating hashes and MAC codes, across the full range of OpenSSL
supported algorithms and modes. Working with the high-level interface means
that a lot of the complexity of performing cryptographic operations is hidden
from view. A single consistent API is provided. In the event that you need
to change your code to use a different algorithm (for example), then this is a
simple change when using the high-level interface. In addition low-level issues
such as padding and encryption modes are all handled for you.

The EVP functions provide a high-level interface to OpenSSL crypto-
graphic functions. They provide the following features:

• A single consistent interface regardless of the underlying algorithm or
mode

• Support for an extensive range of algorithms

• Encryption/Decryption using both symmetric and asymmetric algorithms

• Sign/Verify

• Key derivation

• Secure Hash functions

• Message Authentication Codes

• Support for external crypto engines

In addition to the high-level interface, OpenSSL also provides low-level
interfaces for working directly with the individual algorithms. These low-level
interfaces are not recommended for the novice user, but provide a degree of
control that may not be possible when using only the high-level interface.

21https://wiki.openssl.org/index.php/Libcrypto_API
22https://wiki.openssl.org/index.php/EVP
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Where possible, the high-level EVP interface should be used in preference
to the low-level interfaces. This is because the code then becomes transparent
to the algorithm used and much more flexible. Additionally, the EVP interface
will ensure the use of platform specific cryptographic acceleration such as AES-
NI. The low-level interfaces do not provide the guarantee.

4.4.1 EVP API

A specific cipher or message digest algorithm is identified by an unique EVP_CIPHER
or EVP_MD struct respectively. OpenSSL user is not expected to create these
themself, but instead they can use a built-in function to return the struct of
particular algorithm that they wish to use. In the following text I focus only
on cipher algorithms.

An extract from evp.h header file listing some functions returning EVP_CIPHER
struct is shown below. There is a specific function for every supported com-
bination of cipher algorithm and its parameters (a key length, a block mode,
etc.).

1 const EVP_CIPHER *EVP_enc_null(void);
2 const EVP_CIPHER *EVP_rc4(void);
3 const EVP_CIPHER *EVP_aes_128_cbc(void);
4 const EVP_CIPHER *EVP_aes_128_gcm(void);
5 const EVP_CIPHER *EVP_aes_256_cbc(void);
6 const EVP_CIPHER *EVP_aes_256_gcm(void);

The EVP_CIPHER is represented by the following signature:

1 struct evp_cipher_st {
2 int nid;
3 int block_size;
4 int key_len;
5 int iv_len;
6 unsigned long flags;
7 int (*init)(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned

char *iv, int enc);↪→
8 int (*do_cipher)(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned

char *in, size_t inl);↪→
9 int (*cleanup)(EVP_CIPHER_CTX *);

10 int ctx_size;
11 int (*set_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *);
12 int (*get_asn1_parameters)(EVP_CIPHER_CTX *, ASN1_TYPE *);
13 int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
14 void *app_data;
15 } EVP_CIPHER;

The meaning of its important parameters follows:
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• nid – integer; unique identifier

• block_size – integer; cipher block size

• key_len – integer; cipher key length

• iv_len – integer; cipher IV length

• flags – bit array, represented as integer; cipher flags specifying its ca-
pabilities

• init – function pointer; called during initialization, it can allocate the
cipher context before the operation

• do_cipher – function pointer; called during sending the input data, it
should perform the encrypt/decrypt operation

• cleanup – function pointer; called during finalization, it can free the
cipher context after the operation

• ctx_size – integer; cipher-specific context size, can be used to store
cipher-specific data during the operation

• ctrl – function pointer; used to invoke special actions, which do not
have a specific field in the EVP_CAESAR struct

Prior to performing the encrypt/decrypt operation, a cipher context must
be allocated and initialized to store setting and state during the operation.
The cipher context is represented by EVP_CIPHER_CTX struct.

1 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);

Note the cipher context is different from cipher-specific context. The
cipher-specific context is stored inside of the cipher context, however the
cipher-specific context is allocated and freed by the cipher itself in its init
and cleanup functions, which are called by EVP internally, and a user does
not need to care about it.

So now we are prepared to perform the encrypt/decrypt operation. First,
we need to set a cipher, a secret key and an initialization vector (IV). We
can use an initialization function, specifically named EVP_EncryptInit_ex or
EVP_DecryptInit_ex. There is also an universal EVP_CipherInit_ex function
with enc parameter, which controls which operation is performed. However I
recommend the first option, because usually we are sure which operation do
we want to perform, so it should be hardcoded using the specific functions
instead of depending of an integer parameter. It internally calls the cipher’s
init function from the EVP_CIPHER struct.
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1 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE
*impl, const unsigned char *key, const unsigned char *iv);↪→

2 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE
*impl, const unsigned char *key, const unsigned char *iv);↪→

Any input data should be sent to the cipher by an update function EVP_EncryptUpdate
or EVP_DecryptUpdate. It accepts the input data, and it fills the provided out-
put buffer with the encrypted/decrypted output data, and returns a number
of written bytes. Usualy it can be called multiple times, if the cipher supports
streaming.

The functions internally calls the cipher’s do_cipher function with the
same parameters.

1 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
const unsigned char *in, int inl);↪→

2 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
const unsigned char *in, int inl);↪→

After the input data block ends, a finalization function EVP_EncryptFinal_ex
or EVP_DecryptFinal_ex needs to be called. This function can append few
more bytes to output, for example a padding or an authentication tag.

The functions internally call the cipher’s do_cipher function with null pa-
rameters to signalize the end of operation. The cipher can react by appending
few more bytes to output, for example a padding or an authentication tag.

1 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
2 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, int *outl);

After all cipher operations were finished, the cipher context must be cleaned
up and freed by the EVP_CIPHER_CTX_free function. It internally calls the
cipher’s cleanup function.

1 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *a);

4.4.2 EVP API – Symmetric encryption and decryption

With the knowledge of EVP API as described in subsection 4.4.1, a user can
perform symmetric encryption and decryption operations across a wide range
of algorithms and modes. The following code shows how to use it to encrypt
and decrypt a piece of confidential information.

Encryption using the EVP API consists of the following stages:

• Setting up a cipher context
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• Initializing the encryption operation, providing key, IV

• Providing plaintext bytes to be encrypted

• Finalizing the encryption operation

The sample encrypt function uses AES-128 in CBC mode. It takes as
arguments the plaintext, the length of the plaintext, the key, and the IV. Also
it takes in a buffer to put the ciphertext in (which we assume to be long
enough), and will return the length of the ciphertext that it writtes.

The length of plaintext is necessary, OpenSSL cannot use strlen function
to determine its length, because it can contain any data, even null (\0) bytes.
The length of key and IV is fixed, appropriate for the chosen cipher, which
means both the key and IV 16 bytes long for AES-128 in CBC mode.

The source code follows. It misses the most of error handling code, which
would be necessary in a real application.

1 int encrypt(
2 unsigned char *plaintext, int plaintext_length,
3 unsigned char *key,
4 unsigned char *iv,
5 unsigned char *ciphertext
6 ) {
7 EVP_CIPHER *cipher;
8 EVP_CIPHER_CTX *ctx;
9 int length;

10 int ciphertext_length;
11
12 // get the cipher handle
13 cipher = EVP_aes_128_cbc();
14
15 // initialize the cipher context
16 ctx = EVP_CIPHER_CTX_new();
17
18 // initialize the encryption operation
19 // the key and IV length should be appropriate for the chosen cipher
20 EVP_EncryptInit_ex(ctx, cipher, NULL, key, iv);
21
22 // provide the plaintext to be encrypted, and receive the ciphertext
23 // this can be called multiple times as required
24 EVP_EncryptUpdate(ctx, ciphertext, &length, plaintext, plaintext_length);
25 ciphertext_length = length;
26
27 // finalize the encryption operation
28 // further ciphertext bytes may be received
29 EVP_EncryptFinal_ex(ctx, ciphertext + ciphertext_length, &length);
30 ciphertext_length += length;
31
32 // cleanup the cipher context
33 EVP_CIPHER_CTX_free(ctx);
34
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35 return ciphertext_length;
36 }

Decryption using the EVP API consists of the following steps:

• Setting up a cipher context

• Initializing the decryption operation, providing key, IV

• Providing ciphertext bytes to be decrypted

• Finalizing the decryption operation

The sample decrypt function uses AES-128 in CBC mode. It takes almost
the same arguments as the encrypt function, with the exception that the
plaintext and the ciphertext are swapped.

The source code follows. It misses the most of error handling code, which
would be necessary in a real application.

1 int decrypt(
2 unsigned char *ciphertext, int ciphertext_length,
3 unsigned char *key,
4 unsigned char *iv,
5 unsigned char *plaintext
6 ) {
7 EVP_CIPHER *cipher;
8 EVP_CIPHER_CTX *ctx;
9 int length;

10 int plaintext_length;
11 int ret;
12
13 // get the cipher handle
14 cipher = EVP_aes_128_cbc();
15
16 // initialize the cipher context
17 ctx = EVP_CIPHER_CTX_new();
18
19 // initialize the decryption operation
20 // the key and IV length should be appropriate for the chosen cipher
21 EVP_DecryptInit_ex(ctx, cipher, NULL, key, iv);
22
23 // provide the ciphertext to be decrypted, and receive the plaintext
24 // this can be called multiple times as required
25 EVP_DecryptUpdate(ctx, plaintext, &length, ciphertext, ciphertext_length);
26 plaintext_length = length;
27
28 // finalize the decryption operation
29 // further plaintext bytes may be received
30 ret = EVP_DecryptFinal_ex(ctx, plaintext + plaintext_length, &length);
31 plaintext_length += length;
32

45



4. OpenSSL

33 // cleanup the cipher context
34 EVP_CIPHER_CTX_free(ctx);
35
36 if (ret > 0) {
37 // decryption successful
38 return plaintext_length;
39 } else {
40 // decryption failed
41 return -1;
42 }
43 }

4.4.3 EVP API – Authenticated encryption and decryption

Following the recent advances in AEAD, the EVP API of libcrypto library also
supports the ability to perform authenticated encryption and decryption. It
provides confidentiality by encrypting the data, and authenticity by creating
a MAC tag over the encrypted data.

Using AEAD ciphers is nearly identical to using standard symmetric en-
cryption ciphers. In addition, a user can optionally provide some Additional
Authenticated Data (AAD). The AAD data is not encrypted, and is typically
passed to the recipient in plaintext along with the ciphertext. An example of
AAD is the IP address and port number in a IP header used with IPsec.

The output from the encryption operation will be the ciphertext, and a
MAC tag. The MAC tag is subsequently used during the decryption operation
to ensure that the ciphertext and AAD have not been tampered with.

Authenticated encryption using the EVP API in much the same way as for
symmetric encryption as described in subsection 4.4.2. The main differences
are:

• AAD data can be provided before encrypting the plaintext data

• after the encryption is finished, the MAC tag needs to be obtained

The sample encrypt function uses AES-128 in GCM mode. It takes as
arguments the plaintext, the length of the plaintext, the key, and the IV. Also
it takes in a buffer to put the ciphertext and the MAC tag in (which we assume
to be long enough), and will return the length of the ciphertext that it writtes.

The length of plaintext is necessary, OpenSSL cannot use strlen function
to determine its length, because it can contain any data, even null (\0) bytes.
The length of key, IV and MAC tag is fixed, appropriate for the chosen cipher,
which means the key 16 bytes long, the IV 12 bytes long and the MAC tag 16
bytes for AES-128 in GCM mode by default.

The source code follows. It misses the most of error handling code, which
would be necessary in a real application.
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1 int encrypt(
2 unsigned char *plaintext, int plaintext_length,
3 unsigned char *aad, int aad_length,
4 unsigned char *key,
5 unsigned char *iv,
6 unsigned char *ciphertext,
7 unsigned char *tag
8 ) {
9 EVP_CIPHER *cipher;

10 EVP_CIPHER_CTX *ctx;
11 int length;
12 int ciphertext_length;
13
14 // get the cipher handle
15 cipher = EVP_aes_128_gcm();
16
17 // initialize the cipher context
18 ctx = EVP_CIPHER_CTX_new();
19
20 // initialize the encryption operation
21 // the key and IV length should be appropriate for the chosen cipher
22 EVP_EncryptInit_ex(ctx, cipher, NULL, key, iv);
23
24 // provide the AAD data to be authenticated
25 // this can be called zero or more times as required
26 EVP_EncryptUpdate(ctx, NULL, &length, aad, aad_length);
27
28 // provide the plaintext to be encrypted and authenticated, and receive

the ciphertext↪→
29 // this can be called multiple times as required
30 EVP_EncryptUpdate(ctx, ciphertext, &length, plaintext, plaintext_length);
31 ciphertext_length = length;
32
33 // finalize the encryption operation
34 // further ciphertext bytes may be received
35 EVP_EncryptFinal_ex(ctx, ciphertext + ciphertext_length, &length);
36 ciphertext_length += length;
37
38 // receive the MAC tag
39 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag);
40
41 // cleanup the cipher context
42 EVP_CIPHER_CTX_free(ctx);
43
44 return ciphertext_length;
45 }

Authenticated decryption using the EVP API in much the same way as for
symmetric decryption as described in subsection 4.4.2. The main differences
are:

• AAD data can be provided before decrypting the ciphertext data
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• before the decryption is finished, the expected MAC tag needs to be
provided

• a return value should be considered as a possible failure to authenticate
ciphertext and/or AAD

The sample decrypt function uses AES-128 in GCM mode. It takes almost
the same arguments as the encrypt function, with the exception that the
plaintext and the ciphertext are swapped, and the MAC tag is provided by a
user.

The source code follows. It misses the most of error handling code, which
would be necessary in a real application.

1 int decrypt(
2 unsigned char *ciphertext, int ciphertext_length,
3 unsigned char *aad, int aad_length,
4 unsigned char *tag,
5 unsigned char *key,
6 unsigned char *iv,
7 unsigned char *plaintext
8 ) {
9 EVP_CIPHER *cipher;

10 EVP_CIPHER_CTX *ctx;
11 int length;
12 int plaintext_length;
13 int ret;
14
15 // get the cipher handle
16 cipher = EVP_aes_128_gcm();
17
18 // initialize the cipher context
19 ctx = EVP_CIPHER_CTX_new();
20
21 // initialize the decryption operation
22 // the key and IV length should be appropriate for the chosen cipher
23 EVP_DecryptInit_ex(ctx, cipher, NULL, key, iv);
24
25 // provide the expected MAC tag value
26 EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag);
27
28 // provide the AAD data to be verified
29 // this can be called zero or more times as required
30 EVP_DecryptUpdate(ctx, NULL, &length, aad, aad_length);
31
32 // provide the ciphertext to be decrypted and verified, and receive the

plaintext↪→
33 // this can be called multiple times as required
34 EVP_DecryptUpdate(ctx, plaintext, &length, ciphertext, ciphertext_length);
35 plaintext_length = length;
36
37 // finalize the decryption operation
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38 // further plaintext bytes may be received
39 ret = EVP_DecryptFinal_ex(ctx, plaintext + plaintext_length, &length);
40 plaintext_length += length;
41
42 // cleanup the cipher context
43 EVP_CIPHER_CTX_free(ctx);
44
45 if (ret > 0) {
46 // decryption successful
47 return plaintext_length;
48 } else {
49 // decryption failed
50 return -1;
51 }
52 }

Currently, there is no standardized way to get and set the MAC tag for dif-
ferent ciphers. All current implementations use the universal EVP_CIPHER_CTX_ctrl
function, which allows various cipher specific actions. However, the action
identifier is specific for each cipher, e.g. EVP_CTRL_GCM_GET_TAG. This should
change in future version of OpenSSL, there are new universal action identifiers
such as EVP_CTRL_AEAD_GET_TAG in development code, used by both currently
implemented AEAD ciphers (AES-GCM, AES-CCM).

4.5 libssl library

The libssl23 library is a part of OpenSSL source code in ssl directory and
provides an open-source implementation of TLS protocol. It depends on the
libcrypto library, as introduced in section 4.4.

It consists of both server and client code, which consists of functions that
generate and parse all TLS record messages. It calls a common interface of
the negotiated cipher suite to relevant generic cryptographic operations. The
cipher suite calls libcrypto code using either low-level or high-level EVP API.

Cipher suites which use the EVP API can take advantage from the common
EVP interface, so such cipher suites can share code as well. Implementing a
new cipher suite with EVP algorithms is as easy as adding a few declarations
and almost no code at all.

23https://wiki.openssl.org/index.php/Libssl_API
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Chapter 5

Implementing a new TLS
cipher suite in OpenSSL

All CAESAR candidates publish its encrypt/decrypt primitives through the
same CAESAR API, see subsection 2.1.2. I decided to implement a generic
TLS cipher suite into OpenSSL in such way, that any CAESAR candidate can
be used in the new cipher suite.

This chapter documents my source code added to OpenSSL 1.0.2. Basically
I implemented a bridge between OpenSSL EVP API and CAESAR API. I can
compile my customized OpenSSL with any CAESAR cipher, and it works. For
my testing purposes, I chose the NORX cipher, see section 2.3.

There is no public documentation about implementing a new cipher or a
new TLS cipher suite into OpenSSL, so I had to read through the OpenSSL
source code a lot, tracing the code of already implemented ciphers and cipher
suites.

The OpenSSL code is a joint work of many security experts, verified by
real-world production usage and it can contain a lot of undocumented hidden
knowledge. Because of no public documentation about this topic, I consider
my implementation as experimental and I’m sure that my implementation is
not perfect, it can contain hidden security bugs. Having this in mind, I do not
recommend my code for production use under any circumstances.

5.1 Cipher

EVP API provides an universal interface to symmetric encryption, here a
source code using it is independent on the chosen cipher. This is the main
reason why I chose to implement a new cipher into the OpenSSL EVP API.

EVP API is a high-level interface to OpenSSL cryptographic functions.
While OpenSSL also has direct interfaces for cryptographic operations, the
EVP interface separates the operations from the actual backend used. That
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way, the actual implementation that is used can be changed, and one can
specify an engine to use for the operations.

5.1.1 Implementation

I implemented a new abstract cipher named CAESAR, which serves as a bridge
to its real implementation behind CAESAR API. Source code shown here is
stripped to the most important parts, for full source code see attached files of
this thesis.

I defined a new function in crypto/evp/evp.h file returning a reference to
my new EVP_CIPHER struct.

1 const EVP_CIPHER *EVP_caesar(void);

I implemented all cipher related code in crypto/evp/caesar/e_caesar.c
file. The cipher is defined by an EVP_CIPHER struct, which holds all cipher-
cpecific setting and pointers to functions performing related operations. See
section 4.4 for more detailed description of the EVP API.

1 typedef struct {
2 unsigned char *key;
3 unsigned char *nsec;
4 unsigned char *npub;
5 unsigned char *ad;
6 size_t ad_length;
7 int is_tls;
8 } EVP_CAESAR_CTX;
9

10 static int caesar_init(EVP_CIPHER_CTX *ctx, const unsigned char *key, const
unsigned char *iv, int enc);↪→

11 static int caesar_set_ad(EVP_CIPHER_CTX *ctx, const unsigned char *in, size_t
in_length);↪→

12 static int caesar_encrypt(unsigned char *c, unsigned long long *clen, const
unsigned char *m, unsigned long long mlen, const unsigned char *ad,
unsigned long long adlen, const unsigned char *nsec, const unsigned char
*npub, const unsigned char *k);

↪→
↪→
↪→

13 static int caesar_decrypt(unsigned char *m, unsigned long long *mlen, unsigned
char *nsec, const unsigned char *c, unsigned long long clen, const
unsigned char *ad, unsigned long long adlen, const unsigned char *npub,
const unsigned char *k);

↪→
↪→
↪→

14 static int caesar_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const
unsigned char *in, size_t in_length);↪→

15 static int caesar_cleanup(EVP_CIPHER_CTX *ctx);
16 static int caesar_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
17
18 static const EVP_CIPHER caesar = {
19 NID_caesar,
20 1,
21 CRYPTO_KEYBYTES,
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22 CRYPTO_NPUBBYTES,
23 EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |

EVP_CIPH_FLAG_AEAD_CIPHER,↪→
24 caesar_init,
25 caesar_cipher,
26 caesar_cleanup,
27 sizeof(EVP_CAESAR_CTX),
28 NULL,
29 NULL,
30 caesar_ctrl,
31 NULL
32 };
33
34 const EVP_CIPHER *EVP_caesar(void) {
35 return &caesar;
36 }

The cipher’s init function (specifically caesar_init) initializes the cipher
context in EVP_CAESAR_CTX struct, and copies the key and the IV into the
context, so it can be used later by the caesar_cipher function.

1 static int caesar_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc) {↪→

2 EVP_CAESAR_CTX *cipher_ctx = (EVP_CAESAR_CTX *)ctx->cipher_data;
3
4 cipher_ctx->key = (unsigned char *)calloc(CRYPTO_KEYBYTES, sizeof(unsigned

char));↪→
5 cipher_ctx->nsec = (unsigned char *)calloc(CRYPTO_NSECBYTES, sizeof(unsigned

char));↪→
6 cipher_ctx->npub = (unsigned char *)calloc(CRYPTO_NPUBBYTES, sizeof(unsigned

char));↪→
7 cipher_ctx->ad = (unsigned char *)calloc(1, sizeof(unsigned char));
8 cipher_ctx->ad_length = 0;
9 cipher_ctx->is_tls = 0;

10
11 memcpy(cipher_ctx->key, key, CRYPTO_KEYBYTES);
12 memcpy(cipher_ctx->npub, iv, CRYPTO_NPUBBYTES);
13
14 return 1;
15 }

The cipher’s do_cipher function (specifically caesar_cipher) is the main
processing function. It applies the cipher to the input data, and writes the
result of the encrypt/decrypt operation to the output buffer. If the function is
called with no output buffer, the input data is considered as associated data,
which contributes to MAC tag.

1 static int caesar_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const
unsigned char *in, size_t in_length) {↪→

2 int ret = 0;
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3 unsigned long long out_length = 0;
4 EVP_CAESAR_CTX *cipher_ctx = (EVP_CAESAR_CTX *)ctx->cipher_data;
5
6 if (in_length > 0) {
7 if (out == NULL) {
8 caesar_set_ad(ctx, in, in_length);
9 } else {

10 // correct length for AEAD tag
11 if (cipher_ctx->is_tls && ctx->encrypt) {
12 in_length -= CRYPTO_ABYTES;
13 }
14
15 // message
16 if (ctx->encrypt) {
17 ret = caesar_encrypt(out, &out_length, in, in_length, cipher_ctx->ad,

cipher_ctx->ad_length, cipher_ctx->nsec, cipher_ctx->npub,
cipher_ctx->key);

↪→
↪→

18 } else {
19 ret = caesar_decrypt(out, &out_length, cipher_ctx->nsec, in,

in_length, cipher_ctx->ad, cipher_ctx->ad_length,
cipher_ctx->npub, cipher_ctx->key);

↪→
↪→

20 }
21 }
22 }
23
24
25 return ret == 0 ? (int)out_length : ret;
26 }

1 static int caesar_set_ad(EVP_CIPHER_CTX *ctx, const unsigned char *in, size_t
in_length) {↪→

2 EVP_CAESAR_CTX *cipher_ctx = (EVP_CAESAR_CTX *)ctx->cipher_data;
3
4 if (cipher_ctx->ad) {
5 free(cipher_ctx->ad);
6 }
7
8 cipher_ctx->ad = (unsigned char *)calloc(in_length, sizeof(unsigned char));
9 cipher_ctx->ad_length = in_length;

10 memcpy(cipher_ctx->ad, in, in_length);
11
12 return 1;
13 }

1 static int caesar_encrypt(unsigned char *c, unsigned long long *clen, const
unsigned char *m, unsigned long long mlen, const unsigned char *ad,
unsigned long long adlen, const unsigned char *nsec, const unsigned char
*npub, const unsigned char *k) {

↪→
↪→
↪→

2 int ret = crypto_aead_encrypt(c, clen, m, mlen, ad, adlen, nsec, npub, k);
// @see CAESAR API↪→

3
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4 return ret;
5 }

1 static int caesar_decrypt(unsigned char *m, unsigned long long *mlen, unsigned
char *nsec, const unsigned char *c, unsigned long long clen, const
unsigned char *ad, unsigned long long adlen, const unsigned char *npub,
const unsigned char *k) {

↪→
↪→
↪→

2 int ret = crypto_aead_decrypt(m, mlen, nsec, c, clen, ad, adlen, npub, k);
// @see CAESAR API↪→

3
4 return ret;
5 }

The cipher’s cleanup function (specifically caesar_cleanup) is used to
cleanup and free all memory allocated by init functions.

1 static int caesar_cleanup(EVP_CIPHER_CTX *ctx) {
2 EVP_CAESAR_CTX *cipher_ctx = (EVP_CAESAR_CTX *)ctx->cipher_data;
3
4 free(cipher_ctx->key);
5 free(cipher_ctx->nsec);
6 free(cipher_ctx->npub);
7 free(cipher_ctx->ad);
8
9 return 1;

10 }

The cipher’s ctrl function (specifically caesar_ctrl) is used to invoke
special actions, which do not have a specific field in the EVP_CIPHER struct. I
needed only one specific action, EVP_CTRL_AEAD_TLS1_AAD for setting associ-
ated data from TLS library.

1 static int caesar_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) {
2 EVP_CAESAR_CTX *cipher_ctx = (EVP_CAESAR_CTX *)ctx->cipher_data;
3
4 switch (type) {
5 case EVP_CTRL_AEAD_TLS1_AAD: ; // empty statement
6 int in_length = arg;
7 unsigned char *in = (unsigned char *)ptr;
8
9 cipher_ctx->is_tls = 1;

10
11 if (!ctx->encrypt) {
12 // correct length for AEAD tag
13 // @see e_aes.c
14 unsigned int len = in[in_length - 2] << 8 | in[in_length - 1];
15 len -= CRYPTO_ABYTES;
16
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17 in[in_length - 2] = len >> 8;
18 in[in_length - 1] = len & 0xff;
19 }
20
21 caesar_set_ad(ctx, in, in_length);
22 return CRYPTO_ABYTES; // AEAD tag length
23 default:
24 return -1;
25 }
26 }

Finally I registered the new cipher in crypto/evp/c_allc.c file. From
now on, the new cipher is available for use by its name, caesar.

1 void OpenSSL_add_all_ciphers(void) {
2 ...
3 EVP_add_cipher(EVP_caesar());
4 }

5.1.2 Testing

First I checked if the new cipher is registered properly in OpenSSL.

1 apps/openssl list-cipher-algorithms
2
3 ...
4 CAESAR
5 ...

I created a simple Shell script to test my new cipher. It uses a fixed sample
plaintext, and it generates a random key and IV.

It uses OpenSSL CLI command enc as described in subsection 4.3.1. It
encrypts and decrypts a sample plaintext with my new caesar cipher.

In order to verify that my new cipher implementation works as intended,
the following criterias must pass:

• no error is thrown
An error can be thrown because of various reasons:

– the new cipher is not implemented correctly

– invalid padding found during decryption

– invalid MAC tag found during decryption

• the output plaintext from decrypt operation equals to the original plain-
text
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• if any of the key, the IV, and the input plaintext changes, the ciphertext
output changes as well

• if the key and IV is set to a fixed value, the ciphertext output from
encrypt operation should stay the same

1 ENC="apps/openssl enc -caesar"
2 PLAINTEXT="Lorem ipsum dolor sit amet, consectetur adipiscing elit."
3 KEY=$(openssl rand 16 | xxd -p)
4 IV=$(openssl rand 16 | xxd -p)
5
6
7 echo " $PLAINTEXT"
8 echo "key= $KEY"
9 echo "iv= $IV"

10
11 CIPHERTEXT=$(echo -n " $PLAINTEXT" | $ENC -K $KEY -iv $IV | xxd -p)
12 echo
13 echo " $CIPHERTEXT"
14
15 PLAINTEXT2=$(echo -n " $CIPHERTEXT" | xxd -r -p | $ENC -d -K $KEY -iv $IV)
16 echo
17 echo " $PLAINTEXT2"
18
19
20 echo
21 if [ " $PLAINTEXT" == " $PLAINTEXT2" ]; then
22 echo "ok"
23 else
24 echo "fail"
25 fi

The script’s output follows.

1 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
2 key=7bd48e478c585ea9b43647b6e3d61a9e
3 iv=b556987d0755badb75b4178df8516b67
4
5 f42d77fd83ee1899b6ca0b852abcea796660f0be27ccefd1fd2ce220694b
6 a8fe154501fa0cde39332cb37099194a307203bb3b78294b9f4fc80f1c48
7 d478a7c611112982437f7a70
8
9 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

10
11 ok

Note that OpenSSL CLI enc command currently does not support any way
to provide additional authenticated data. Actually it does not support AEAD
ciphers at all, there is a condition checking for AEAD flag in the cipher’s flags

57



5. Implementing a new TLS cipher suite in OpenSSL

field, which throws an error. I commented off this condition, because I needed
this command to test the new cipher. There is no harm in doing so, additional
authenticated data can be empty, and the MAC tag is still checked by the
cipher itself.

1 int MAIN(int argc, char **argv) {
2 ...
3 /*
4 if (cipher && EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
5 BIO_printf(bio_err, "AEAD ciphers not supported by the enc utility\n");
6 goto end;
7 }
8 */
9 ...

10 }

5.2 TLS cipher suite

Any TLS cipher suite consists of various selected cryptographic primitives,
providing key exchange, authentication, encryption and MAC. My thesis fo-
cuses only on a new encryption algorithm, so I implemented a new TLS cipher
suite, which consists of a secure choice of Diffie-Hellman ephemeral (DHE)
key exchange, RSA authentication, CAESAR encryption (see section 5.1 for
details about implementation) and SHA256 pseudorandom function. There is
no MAC, because MAC is already provided by the CAESAR AEAD cipher
itself.

I named the new cipher suite to be consistent with existing cipher suites,
TLS_DHE_RSA_WITH_CAESAR_SHA256 by IANA conventions and DHE-RSA-CAESAR-SHA256
by OpenSSL conventions.

The new cipher suite which can be negotiated by client and server in TLS
handshake (see section 3.3 for details). During the handshake, cipher suites are
represented by IDs. Public cipher suites are registered by IANA organization24

and they are assigned with unique IDs, which are known to all parties. I did not
want to publish the new cipher suite to production, I consider it experimental,
so I used a private space of IDs: "All cipher suites whose first byte is 0xFF are
considered private and can be used for defining local/experimental algorithms."
[17] So I chose the ID for the new cipher suite to be FF81.

5.2.1 Implementation

OpenSSL code related to TLS cipher suites is capable of using EVP API, thus
it was really simple to implement the new cipher suite using the new cipher
from section 5.1.

24http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
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First I added a few new constants to ssl/tls1.h, ssl/ssl_locl.h and
ssl/t1_trce.c files, defining IDs and names of the new cipher suite.

1 #define TLS1_CK_DHE_RSA_WITH_CAESAR_SHA256 0x0300FF81
2 #define TLS1_TXT_DHE_RSA_WITH_CAESAR_SHA256 "DHE-RSA-CAESAR-SHA256"

1 #define SSL_CAESAR 0x00004000L

1 static ssl_trace_tbl ssl_ciphers_tbl[] = {
2 ...
3 {0xFF81, "TLS_DHE_RSA_WITH_CAESAR_SHA256" },
4 ...
5 };

I added a new cipher suite definition to ssl/s3_lib.c file, where I refer-
enced the new cipher using the new constants.

1 OPENSSL_GLOBAL SSL_CIPHER ssl3_ciphers[] = {
2 ...
3 {
4 1,
5 TLS1_TXT_DHE_RSA_WITH_CAESAR_SHA256,
6 TLS1_CK_DHE_RSA_WITH_CAESAR_SHA256,
7 SSL_kEDH,
8 SSL_aRSA,
9 SSL_CAESAR,

10 SSL_AEAD,
11 SSL_TLSV1_2,
12 SSL_NOT_EXP | SSL_HIGH,
13 SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256,
14 128,
15 128,
16 },
17 ...
18 };

In ssl/ssl_ciph.c file I found every code responsible for finding a cor-
rect EVP cipher by the new constants, and I added there a condition branch
returning the new cipher.

1 static const SSL_CIPHER cipher_aliases[] = {
2 ...
3 {0, SSL_TXT_CAESAR, 0, 0, 0, SSL_CAESAR, 0, 0, 0, 0, 0},
4 ...
5 };
6
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7 void ssl_load_ciphers(void) {
8 ...
9 ssl_cipher_methods[SSL_ENC_CAESAR_IDX] = EVP_get_cipherbyname(SN_caesar);

10 ...
11 }
12
13 int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const

EVP_MD **md, int *mac_pkey_type, int *mac_secret_size, SSL_COMP **comp) {↪→
14 ...
15 switch (c->algorithm_enc) {
16 ...
17 case SSL_CAESAR:
18 i = SSL_ENC_CAESAR_IDX;
19 break;
20 ...
21 }
22 ...
23 }
24
25 static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth,

unsigned long *enc, unsigned long *mac, unsigned long *ssl) {↪→
26 ...
27 *enc |= (ssl_cipher_methods[SSL_ENC_CAESAR_IDX] == NULL) ? SSL_CAESAR : 0;
28 ...
29 }
30
31 char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) {
32 ...
33 switch (alg_enc) {
34 ...
35 case SSL_CAESAR:
36 enc = "CAESAR" ;
37 break;
38 ...
39 }
40 ...
41 }

5.2.2 Testing

I used OpenSSL CLI commands s_server and s_client as described in sub-
section 4.3.3 and subsection 4.3.4. I run them simultaneously, each command
in a separate terminal on a single computer. Server and client are connected
to each other byu specifying the same single port 4444.

The s_server command creates a TCP server. It listens on a specified port
(4444) and forces negotiation of the new ciphersuite DHE-RSA-CAESAR-SHA256.
It authenticates itself by a self-signed certificate, which I created only for
purpose of testing the new cipher suite.

The s_client command creates a TCP client. It connects to the specified
host and port (localhost:4444) and forces negotiation of the new ciphersuite
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DHE-RSA-CAESAR-SHA256.
In order to verify that my new cipher implementation works as intended,

the following criterias must pass:

• no error is thrown
An error can be thrown because of various reasons:

– the new cipher is not implemented correctly (this was verified in
section 5.1)

– the new cipher suite is not implemented correctly

• a two-way communication channel between the server and client is
established
Any data that I enter on server will be sent unaltered to client and vice
versa.

• a two-way secure communication channel between the server and
client is established
Any data that I send via the channel will be sent encrypted during
transmission.

I entered a fixed message ("Lorem ipsum dolor sit amet, consectetur adip-
iscing elit.\n") to client and I watched it appear on server. The output from
server and client reports that it is using the new cipher suite. The communi-
cation channel was successfully established.

1 apps/openssl s_client -connect 127.0.0.1:4444 -cipher DHE-RSA-CAESAR-SHA256
2
3 CONNECTED(00000003)
4 depth=0 C = XX, L = Default City, O = Default Company Ltd
5 verify error:num=18:self signed certificate
6 verify return:1
7 depth=0 C = XX, L = Default City, O = Default Company Ltd
8 verify return:1
9 ---

10 Certificate chain
11 0 s:/C=XX/L=Default City/O=Default Company Ltd
12 i:/C=XX/L=Default City/O=Default Company Ltd
13 ---
14 Server certificate
15 -----BEGIN CERTIFICATE-----
16 ...
17 -----END CERTIFICATE-----
18 subject=/C=XX/L=Default City/O=Default Company Ltd
19 issuer=/C=XX/L=Default City/O=Default Company Ltd
20 ---
21 No client certificate CA names sent
22 Peer signing digest: SHA512
23 Server Temp Key: DH, 512 bits
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24 ---
25 SSL handshake has read 1568 bytes and written 217 bytes
26 ---
27 New, TLSv1/SSLv3, Cipher is DHE-RSA-CAESAR-SHA256
28 Server public key is 2048 bit
29 Secure Renegotiation IS supported
30 Compression: NONE
31 Expansion: NONE
32 No ALPN negotiated
33 SSL-Session:
34 Protocol : TLSv1.2
35 Cipher : DHE-RSA-CAESAR-SHA256
36 ...
37 Verify return code: 18 (self signed certificate)
38 ---
39 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
40 DONE

1 apps/openssl s_server -accept 4444 -cert selfsigned.crt -key selfsigned.key
-cipher DHE-RSA-CAESAR-SHA256↪→

2
3 Using default temp DH parameters
4 ACCEPT
5 -----BEGIN SSL SESSION PARAMETERS-----
6 ...
7 -----END SSL SESSION PARAMETERS-----
8 Shared ciphers:DHE-RSA-CAESAR-SHA256
9 CIPHER is DHE-RSA-CAESAR-SHA256

10 Secure Renegotiation IS supported
11 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
12 DONE
13 shutting down SSL
14 CONNECTION CLOSED
15 ACCEPT

I watched the communication using the Wireshark application, which is ca-
pable of monitoring network traffic. It shows the TLS Handshake protocol (as
described in section 3.3) messages negotiating the new cipher suite identified
by ID FF81 and the TLS Application protocol messages carrying the encrypted
data.

In Wireshark, I logged all communication on local loopback network inter-
face and filtered all TLS communication. See the packet capture Table 5.1.
For the purpose of verifying my implementation, there are following important
packets with TLS protocol messages:

• Packet 4 – ClientHello

• Packet 6 – ServerHello

• Packet 7 – ChangeCipherSpec
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No. Source Destination Content

4 client server ClientHello
6 server client ServerHello, Certificate, ServerKeyExchange,

ServerHelloDone
7 client server ClientKeyExchange, ChangeCipherSpec, Fin-

ished (encrypted)
8 server client NewSessionTicket, ChangeCipherSpec, Fin-

ished (encrypted)
11 client server ApplicationData

Table 5.1: Packet capture

• Packet 8 – ChangeCipherSpec

• Packet 11 – ApplicationData

When the client initiates the connection, it sends the ClientHello message.
It contains client’s capabilites. The most important for me is the list of sup-
ported cipher suites. There is an unknown cipher suite "Unknown (0xff81)",
which represents the new cipher suite.

1 Frame 4: 165 bytes on wire (1320 bits), 165 bytes captured (1320 bits) on
interface 0↪→

2 Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)↪→

3 Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1
(127.0.0.1)↪→

4 Transmission Control Protocol, Src Port: 35287 (35287), Dst Port: 4444 (4444),
Seq: 1, Ack: 1, Len: 99↪→

5 Secure Sockets Layer
6 TLSv1.2 Record Layer: Handshake Protocol: Client Hello
7 Content Type: Handshake (22)
8 Version: TLS 1.0 (0x0301)
9 Length: 94

10 Handshake Protocol: Client Hello
11 Handshake Type: Client Hello (1)
12 Length: 90
13 Version: TLS 1.2 (0x0303)
14 Random
15 Session ID Length: 0
16 Cipher Suites Length: 4
17 Cipher Suites (2 suites)
18 Cipher Suite: Unknown (0xff81)
19 Cipher Suite: TLS_EMPTY_RENEGOTIATION_INFO_SCSV (0x00ff)
20 Compression Methods Length: 1
21 Compression Methods (1 method)
22 Extensions Length: 45
23 Extension: SessionTicket TLS
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5. Implementing a new TLS cipher suite in OpenSSL

24 Extension: signature_algorithms
25 Extension: Heartbeat

The server receives the ClientHello message, compares the client’s capabil-
ities with its own, selects the best connection parameters which are supported
by both parties, and sends them back to the client in the ServerHello message.
Again, there is an unknown cipher suite "Unknown (0xff81)", which represents
the new cipher suite.

1 Frame 6: 1416 bytes on wire (11328 bits), 1416 bytes captured (11328 bits) on
interface 0↪→

2 Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)↪→

3 Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1
(127.0.0.1)↪→

4 Transmission Control Protocol, Src Port: 4444 (4444), Dst Port: 35287 (35287),
Seq: 1, Ack: 100, Len: 1350↪→

5 Secure Sockets Layer
6 TLSv1.2 Record Layer: Handshake Protocol: Server Hello
7 Content Type: Handshake (22)
8 Version: TLS 1.2 (0x0303)
9 Length: 58

10 Handshake Protocol: Server Hello
11 Handshake Type: Server Hello (2)
12 Length: 54
13 Version: TLS 1.2 (0x0303)
14 Random
15 Session ID Length: 0
16 Cipher Suite: Unknown (0xff81)
17 Compression Method: null (0)
18 Extensions Length: 14
19 Extension: renegotiation_info
20 Extension: SessionTicket TLS
21 Extension: Heartbeat
22 TLSv1.2 Record Layer: Handshake Protocol: Certificate
23 TLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange
24 TLSv1.2 Record Layer: Handshake Protocol: Server Hello Done

The client and server now performs a check if the secret communication
channel was sucessfully established. They send a ChangeCipherSpec message
signalizing that all subsequent communitaion is encrypted by the selected ci-
pher suite and a Finished message containing some data known to both parties.
If decryption succeeds, they can start transmitting ApplicationData messages.

There is a single ApplicationData message which does not contain any
plaintext data. Nobody should be able to decrypt it, because the secret key is
exchanged assymetrically by Diffie-Hellman algorithm. I can confirm that it
contains my message by comparing plaintext and ciphertext lengths.
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5.2. TLS cipher suite

1 Frame 11: 144 bytes on wire (1152 bits), 144 bytes captured (1152 bits) on
interface 0↪→

2 Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst:
00:00:00_00:00:00 (00:00:00:00:00:00)↪→

3 Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1
(127.0.0.1)↪→

4 Transmission Control Protocol, Src Port: 35287 (35287), Dst Port: 4444 (4444),
Seq: 218, Ack: 1569, Len: 78↪→

5 Secure Sockets Layer
6 TLSv1.2 Record Layer: Application Data Protocol: Application Data
7 Content Type: Application Data (23)
8 Version: TLS 1.2 (0x0303)
9 Length: 73

10 Encrypted Application Data:
63be9025dec52eb3fbae5c54560c5027de0a10af19eceb7e...↪→

11
12 0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00 ..............E.
13 0010 00 82 ff e4 40 00 40 06 3c 8f 7f 00 00 01 7f 00 ....@.@.<.......
14 0020 00 01 89 d7 11 5c c9 80 6f aa 2c 9d ee 1d 80 18 .....\..o.,.....
15 0030 05 6a fe 76 00 00 01 01 08 0a 01 95 d8 25 01 95 .j.v.........%..
16 0040 91 17 17 03 03 00 49 63 be 90 25 de c5 2e b3 fb ......Ic..%.....
17 0050 ae 5c 54 56 0c 50 27 de 0a 10 af 19 ec eb 7e 3e .\TV.P’.......~>
18 0060 d0 2f 58 6a 1f 30 ff d1 8e ec 2f 20 70 eb 12 64 ./Xj.0..../ p..d
19 0070 96 01 b2 0a 54 24 06 ec cb 39 ad 15 54 e0 e9 4f ....T$...9..T..O
20 0080 7b 15 d3 cc ca 48 fb 88 ec a9 9d 3c 7f 5d fb 22 {....H.....<.]."

The plaintext message sent from client to server is 57 bytes long. The
ciphertext as observed in packet capture is 73 bytes long. The cipher is
an AEAD stream cipher with MAC tag 16 bytes long, thus the ciphertext
length should equal the plaintext length + the MAC tag length. Lciphertext =
Lplaintext +LMAC , 73 + 57 + 16 It confirms that my implementation works as
intended.
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Conclusion

The TLS protocol consists of a complex structure of standardized RFC doc-
uments by IETF. I studied the most important ones to understand the flow
of the TLS protocol over the network. I examined its implementation in the
OpenSSL library, which consists of a almost two decades old, complicated C
code. Nonetheless this library is massively used in the real world and it is an
important part of critical infrastructure of the Internet.

I studied the field of authenticated encryption while following the course of
the CAESAR competition and recently published relevant papers. I classified
CAESAR submissions by their design principles, overall construction and un-
derlying primitives. I presented functional requirements and selection criteria
for the winning candidates.

During the time of writing this thesis, the announcement of second-round
candidates keeps being postponed. I did not have enough information to make
a quallified choice, so I decided to implement a cipher using the generic CAE-
SAR API.

As a reference for my implementation I chose the NORX cipher, because it
has received no negative analysis. However it is not important which particular
cipher I used. It can be easily substituted for a different one complying with
the CAESAR API, as soon as the second-round or the final candidates are
announced.

I successfully tested my implementation by observing TLS network com-
munication between server and client.

I consider my implementation as experimental. It can serve as a reference
for future work. I do not recommend it for production deployment under any
circumstances.
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Appendix A

Symbols

m plaintext message

c ciphertext message

a message authentication code

E encrypt function

D decrypt function

H hash function

S sign function

V verify function

K secret shared key

PK public key

SK secret (private) key
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Appendix B
Acronyms

AAD Additional Authenticated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Anvanced Encryption Standard

AES-NI Advanced Encryption Standard - New Instructions

AVX Advanced Vector Extensions

CAESAR Competition for Authenticated Encryption: Security, Applicabil-
ity and Robustness

DTLS Datagram Transport Layer Security

EtM Encrypt-then-MAC

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardization

IV Initialization Vector

MAC Message Authentication Code

MitM Man-in-the-Middle

M&E MAC-and-Encrypt
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B. Acronyms

MtE MAC-then-Encrypt

OTP One-Time Pad

PRF Pseudorandom Function

RFC Request for Comments

RTT Round-Trip Time

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

SSH Secure Shell

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol
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Appendix C
TLS constants

Dec Hex Name

20 0x14 ChangeCipherSpec
21 0x15 Alert
22 0x16 Handshake
23 0x17 Application
24 0x18 Heartbeat

Table C.1: TLS record types

Major Minor Hex Name

3 0 0x0300 SSL 3.0
3 1 0x0301 TLS 1.0
3 2 0x0302 TLS 1.1
3 3 0x0303 TLS 1.2

Table C.2: TLS versions
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C. TLS constants

Dec Hex Name

0 0x00 HelloRequest
1 0x01 ClientHello
2 0x02 ServerHello
4 0x04 NewSessionTicket
11 0x0b Certificate
12 0x0c ServerKeyExchange
13 0x0d CertificateRequest
14 0x0e ServerHelloDone
15 0x0f CertificateVerify
16 0x10 ClientKeyExchange
20 0x14 Finished

Table C.3: TLS handshake types

Dec Hex Name

1 0x01 warning
2 0x02 fatal

Table C.4: TLS alert levels
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Dec Hex Name Level

20 0x14 Bad record MAC fatal
21 0x15 Decryption failed fatal
22 0x16 Record overflow fatal
41 0x29 No certificate warning/fatal
43 0x2b Unsupported certificate warning/fatal
45 0x2d Certificate expired warning/fatal
48 0x30 Unknown CA fatal
49 0x31 Access denied fatal
50 0x32 Decode error fatal
51 0x33 Decrypt error warning/fatal
60 0x3c Export restriction fatal
70 0x46 Protocol version fatal
71 0x47 Insufficient security fatal
80 0x50 Internal error fatal
90 0x5a User canceled fatal
100 0x64 No renegotiation warning
110 0x6e Unsupported extension warning
111 0x6f Certificate unobtainable warning
113 0x71 Bad certificate status response fatal
114 0x72 Bad certificate hash value fatal
115 0x73 Unknown PSK identity fatal
120 0x78 No Application Protocol fatal

Table C.5: TLS alert types
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C. TLS constants
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Appendix D

Security indication in
browsers

If TLS is used in web browser in HTTPS protocol, the browser can show the
state of certificate validation to the user. A certificate trusted by system is
usually signalized by a green lock icon, while untrusted certificate displays a
warning and the user can decide if he trusts the certificate or not manually.

Additionally browsers can display a green bar with company name if the
certificate is EV validated, in order to increase users’ confidence of the server
identity. It is useful in case of communication where the identity must be ver-
fied with the lowest false positive possible, such as with banks or government.

We can divide browsers’ indication of connection security to five categories:

• No security

• Encrypted, failed authentication

– self-signed certificate
– expired certificate
– forged certificate

• Encrypted, authenticated, with warning

– mixed content from secured and unsecured sources
– deprecated cryptographic primitives

• Encrypted, authenticated

– domain ownership is validated

• Encrypted, authenticated with Extended Validation (EV)

– domain ownership and company existence is validated
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D. Security indication in browsers

(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.1: Browser security indication - Chrome 40

(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.2: Browser security indication - Firefox 35

80



(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.3: Browser security indication - IE 11

(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.4: Browser security indication - IE 11 (Metro)
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D. Security indication in browsers

(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.5: Browser security indication - Opera 27

(a) No security

(b) Encrypted, failed authentication

(c) Encrypted, authenticated, with warning

(d) Encrypted, authenticated

(e) Encrypted, authenticated with EV

Figure D.6: Browser security indication - Safari 5.1
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Appendix E

Content of attached CD

README.md ......................... the file with CD contents description
DP_Zak_Jan_2015.pdf.................... the thesis text in PDF format
DP_Zak_Jan_2015.tar.gz. the archive of LATEX source codes of the thesis
openssl-1.0.2.tar.gz............the archive of original OpenSSL 1.0.2
openssl-1.0.2-caesar.tar.gz... the archive of OpenSSL 1.0.2 with the
new cipher suite, testing scripts and network capture between server and
client
supercop-20141124.tar.bz2................................the archive
of SUPERCOP benchmarking suite, with the CAESAR candidates’ source
codes in crypto_aead directory
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