Insert here your thesis’ task.

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Master’s thesis

”Coviator” - application for shared trip
planning - OS Android

Georgiy Shur

Supervisor: Ing. Jifi Hunka

7th January 2016

Acknowledgements

First of all I would like to thank my supervisor Ing. Jit{ Hunka for his patience
and valuable advices. Many thanks to everyone on the IT faculty of CTU for
sharing their knowledge. Moreover, thanks to all the people who helped me
with prototype testing and support me during the writing of this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 7th January 2016 Lol

Czech Technical University in Prague

Faculty of Information Technology

(© 2016 Georgiy Shur. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Shur, Georgiy. ”Coviator” - application for shared trip planning - OS Android.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2016.

Abstrakt

Tato diplomova prace popisuje proces vyvoje mobilni aplikace pro operaéni
systém Android a serverové Casti s databdzi, kterd komunikuje s mobilnimi
klienty pomoci REST API. Vysledkem je funkéni aplikace, kterd poskytuje
uzivatelim moznost planovani spole¢ného vyletu s vlastnimi misty a navigaci
mezi nimi. Tato prace se dotyka vsech kroku softwarového vyvoje: analyzy,
navrhu, implementace a testovani.

Klicova slova Android OS, cestovani, nativni aplikace

Abstract

This master’s thesis describes the development process of a mobile application
for Android OS and the server part with a database that communicates with
mobile clients via REST API. The result is the functional app that allows its
users to plan a shared trip with custom places and navigate through them. The
work touches on all the steps of the software development: analysis, design,
implementation and testing.

Keywords Android OS, travel, native app

X

Introductionl

[1 Research and analysis|

[1.3 Existing alternatives|
[1.4 Requirements specification|.

[2.5 Activity diagrams|.
2.6 UI/UX design|.

3 Implementation|

B Androidclientl.

4.1 Testing by developer|
4.2 Usability testing]

IConclusion

Bibliography]

|A Acronyms|

xi

Contents

19

.............. 19
.............. 25
.............. 27
.............. 30
.............. 33
.............. 33

41

.............. 41
.............. 48

51

.............. 51
.............. o1

61

63

67

69

|IC Application screenshots|

ID Contents of enclosed CDI

xii

79

81

List of Figures

1.1 Mobile operation systems share among survey respondents|. 4
[1.2 The most important travel application features among survey re-

| spondents| L 5
1.3 Mobile operation systems share worldwide|. 6
1.4 Comparison of 10S and OS5 Android versions share for August 2014,

| Applelnsider]o 7
[1.5 The screenshots of Google Maps| 8
[1.6 The screenshots of My Maps| 10
(1.7 The screenshots of MAPS.MEl. 11
[1.8 The screenshots of TripAdvisor| 12
[1.9 The screenshots of Iripomatic| 13
[1.10 The screenshots of Roadtrippers| 14
RI Domaimmodel o0 oo 26
2.2 Server database modell o o o000 31
2.3 Client database modell 32
3.1 Data loading sequence diagram| 47
IB.1 Use case diagram| 70
[B.2 Sign in/register activity diagram| 71
IB.3 Display data activity diagram|. 72
[B.4 Create trip activity diagram|. 73
IB.5 Create place activity diagram| 74
[B.6 "Coviator” task graph| 00000 75
[B.7 Wireframes, part 1| L 76
IB.8 Wireframes, part 2| oo 77

xiii

List of Tables

1.1 Applications’ features comparison|. 15

[2.1 Functional requirements covered by use cases 25

XV

Introduction

The idea of creating suchlike application occurred when I was traveling with
my friends. We realized that even with the abundance of mobile and web
applications presented in stores, it is quite difficult to find a tool that allows
to plan a trip together from different devices, use this plan during travels even
offline, and view and share its results in the end. But back then, it was only
our humble opinion.

The culture of traveling changed a lot during last two decades due to tech-
nology advancement. By leaps and bounds Internet displaces television, radio
and magazines as a travel information source, especially among young trav-
elers. With so much information available, more and more people get used
to organize their trips themselves rather than buying tours or packages from
travel agencies. Everybody could get any information instantly, if they only
had a smart device and Internet connection. GPS navigation allows smart-
phone owners to find their location and any places much easier than with
paper maps. Transportation, accommodation, bars and restaurants, attrac-
tions, shops, excursions, events and just any random locations - all that can
be found on the display of your smartphone or tablet. You don’t need to use
travel agencies anymore if you have a bit of time and savvy.

The other thing is, that people not only consume information, they pro-
duce it as well. Here comes the social networking. People like to share, and
this statement is even stronger in the context of traveling. They share photos,
news, locations, reviews. They share where they’ve been and what they’d like
to visit. They are blogging about travels, discuss their experiences and give
advices.

All these factors led to a rapid growth of the offer and demand of travel
applications in mobile stores. There is a big variety of travel apps for different
platforms and different purposes, but some of them are too specific, some
have poor interface, some are overcomplicated, some, on the contrary, lack
functionality. As long as each user has different needs, there is still a lot of
opportunities in this field. This work will try to find these opportunities and

INTRODUCTION

realize them in ” Coviator”, mobile application for shared trip planning.

This work consists of four chapters. First chapter is dedicated to analysis
and research. In this chapter a little survey will be conducted, then we’ll
find out the main requirements for the application and analyze the existing
alternatives. The architecture of application, communication protocols and
user interface will be designed in the second chapter. The third chapter will
include server and mobile client implementation details. In the last chapter,
we’ll try to test the app and apply modifications if needed.

CHAPTER 1

Research and analysis

1.1 Travelers research

Before we could come up with goals and requirements and choose platform
for application, it’s useful to conduct at least a little research among potential
users. In our case the potential users are people who travel. First of all we are
interested in travelers who own smart devices, but travelers without aforesaid
could be our potential users too. It was decided that the most appropriate
respondents for this research could be found in travel communities.

A little survey was published on several Czech, Russian and English speak-
ing travel forums and social network groups. It was consisting of the following
questions:

e How do you usually plan your trip (look for places to see and then
navigate to them)? (open question)

e Do you use mobile applications for trip planning and navigation during
your travels? (yes/no)

e What operation system does your smartphone/tablet use (single choice,
response options: i0S, Android, Windows Phone, Other (name))

e What mobile applications do you use? (open question)

e What functions are important for you? (multiple choice, response op-
tions: Orientation on map, Points of interest (from guides or other
users), Custom maps/places, Layers for different types of places, Shared

access, Offline map availability, Feedback (photos, reviews, visited /unvisited),

Social interaction (be a part of community), Route planning (by foot,
car, public transport, etc.), Web version (for planning), Other (name))

e Do you miss something in your applications and would like to add /improve?

(open question)

1. RESEARCH AND ANALYSIS

0S share among respondents

| 88 Android W i0s M WP I Other |

Figure 1.1: Mobile operation systems share among survey respondents

64 users were participating in this survey. Almost all respondents (91%)
use smart devices for their trips. Most of them responded that they use differ-
ent Internet resources and guides for trip planning or listen to their friends’ or
locals’ advices. Then they’re making a list of places of interest and use Google
Maps or another maps, navigation systems or even screenshots in their travels.
A few respondents who don’t use smart devices answered that they’re using
printed maps.

The most popular operation system among respondents is Android (59%).
They’re also using i0S (31%), Windows Phone (5%) and some other platforms
(5%)(figure [L.1))).

According to this survey, the most popular applications are Google Maps
and Google Maps Engine. More then a half respondents use at least one of
them. But some people aren’t completely satisfied with it, because Google
Maps application for all mobile platforms doesn’t allow to create, edit, or
view custom maps. They delegate those abilities to Google Maps Engine.
But Google Maps Engine has limited functionality. For example, Android
version doesn’t support offline mode. Among other applications there were
named Tripadvisor, Spotted by Locals, 2Gis, Maps 2Go, browser version of
Google Maps, Navigon, OsmAnd, MAPS.ME and some others. The most
popular applications that could compete with ” Coviator” will be analyzed in
detail in section 3 of chapter 1.

The next question of this survey attempted to list the main functions of

1.1. Travelers research

What functions are important for you?

Orientation on map

Points of interest (from
guides or other users)

Custom maps/places

Layers for different types of
places

Shared access

Offline map availability

Feedback (photos, reviews,
visited/unvisited)

Social interaction (be a part
of community)

Route planning (by foot,
car, public transport, etc.)

Web version (for planning)
Other
0 20 40 60 80 100

l Number of respondents, %]

Figure 1.2: The most important travel application features among survey
respondents

travel application. It was decided not to include flights and hotels booking
functionality, because there are a lot of good applications and services with
such specialization. Moreover, it isn’t a good practice to mix such different
things altogether, even if they belong to the same travels field. It might make
the application overcomplicated and overflow it with needless functionality.
The results could be seen on figure Among other functions, the respond-
ents named the opportunity to set different icons and colors do places on the
map and the option to contact the place from the application interface. It’s
quite surprising that so few people are interested in social interaction. Maybe
it’s because people who plan their trips properly aren’t interested in this as-
pect during planning phase and orientation. And then, they’re used to share
and discuss their experience in groups, social networks and forums known to
them and depending on community they want to communicate with. Maybe
that’s why they don’t want to see these features in their travel apps.

While answering the question what functions they’re missing or would
like to improve, a plenty of respondents named the functions from previous
question, depending on what application they use. Moreover, some of them
named friendly interface, speed, bike routes for cities and import from Google
Maps.

The information obtained during this research will be the cornerstone for
platform selection (chapter 1 section 2), goals and requirements specification

5

1. RESEARCH AND ANALYSIS

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

90% -

80% -
70%
60%
50%
A40%
30%
20%

10% - \-\W
0% +———— . - S A I '
’CS;L(0& x@ \'}& -(J'& Q’& 4,"0& '{”O}I '3’& »”’&)‘;,,0‘3‘ '\,@ '\?‘&

U U G R R
Source: IDC, 201402 Android =——i0S =—Windows Phone BlackBerry 0§ =——Others

Figure 1.3: Mobile operation systems share worldwide

(chapter 1 section 4) and application improvement in the future.

1.2 Platform selection

The results of the survey from chapter 2.1 show that the most popular mobile
platform is OS Android. But as far as the sample isn’t representative, let’s
turn to some major statistics. According to IDC numbers for 2014 Q2[I], the
situation is even more favorable for OS Android (fig [1.3)).

Anyway, i0S is still a very popular platform and according to our survey
results, people are interested in web version as well. It’s a good idea to make
the application for multiple platforms as long as users may access the same
functionality from different devices. This thesis’ scope will be limited to OS
Android only, but when developing communication API and server side, the
possible application expansion on other platforms (web, i0S) will be always
kept in mind. Moreover, in the conclusion part, we will consider this expansion
as one of the ways the application may improve in the future.

Although OS Android is undoubtedly the most popular mobile operating
system, there is a lot of obstacles in application development for this platform.

The first obstacle is the wide range of OS Android versions that are still
in use. Some new functions, that are available for newer versions, aren’t
supported by the older ones. On the contrary, the methods used for the

6

1.3. Existing alternatives

COMPARISON WITH I0S

i0s 7T ‘

Figure 1.4: Comparison of iOS and OS Android versions share for August
2014, Applelnsider

development of older versions rapidly become deprecated. In other words
there is a big problem of both forward and backward compatibility. The
other problem is the open-source nature of Android. Even the same version
may look different on different manufacturers’ software suites. This software
fragmentation may become android developer’s headache. The solution is to
analyze, what versions are the most popular and develop with the latest widely
adopted version in mind. On the figure[I.4]you can see the actual market share
for iOS an OS Android different versions[2].

In November 2014, the new version of Android will be released - 5.0 ” Lolli-
pop”. And while the application will be in development, the share of the older
version 2.3 ”Gingerbread” will only decrease. So, it was decided to support
versions 4.0.3 ”Ice Cream Sandwich” (API level 15) and higher and choose
version 5.0 ”Lollipop” as the target version.

The second big problem is hardware fragmentation. There is a vast variety
of different devices running OS Android (more than 12000), that have different
shapes, screen sizes, keyboards, cameras and buttons. It’s almost impossible
to develop an application that will work as expected on all Android devices.
The solution is to choose the most popular devices from each size category
and manufacturer and test the application on them. When it will look and
work as expected, we can eventually expand it on other devices.

1.3 [Existing alternatives

Now, knowing the platform for our future application and its rough concept,
we could monitor the situation on the market and analyze the possible com-
peting products in detail.

1.3.1 Maps (Google inc.)
Author: Google inc.

1. RESEARCH AND ANALYSIS

Your places Q " & = e]

§ Tratfic

B Pubke transport - | O Ekbk

2011 - 22.00 50 min

M .r'. Q & e 7
=
M
Vi
Pragué #
Settings
ity G 20T - 2202 46 min
0
| arl F Ms =

Help

Send feedback

Figure 1.5: The screenshots of Google Maps

Updated: October 24, 2014
Downloads: more than 1 billion

Price: free

It sounds funny when we mention Google Maps among competing applic-
ations. It’s impossible to compete with Google Maps, because almost every
Android user use this application. But when we look closer, we’ll see, that
Maps hasn’t even a half functionality we would like to achieve. The old browser
version of Google maps had a lot of that stuff: custom maps, layers, different
colors and icons for places, shared access, KML import, etc. But then they
decided to split functionality between two applications: Maps itself and so
called Google Maps Engine (GME). All the features related to custom maps
were delegated to GME, and the only way you can save places in Maps now -
add them to ”Favourites” without any classification options. But still, Maps
is a great app for navigating, it has a huge base of places, routes and other
information the most popular maps application should have.

The other thing is that Google maps has great open API that allows any
developer to use a wide amount of features and add their own. It is the most
popular maps API, that is available for iOS, OS Android and web. We will
consider the opportunity of using Maps API for our application in the next
chapter.

Regarding the facts above, we won’t put Google Maps in the resulting
table of alternatives.

1.3. Existing alternatives

1.3.2 My Maps (former Google Maps Engine)

Author: Google inc.
Updated: September 24, 2014
Downloads: more than 1 million

Price: free

Google has made a lot of changes in its Maps product during last two
years. Along with the significant changes in application user interface for all
platforms, Google picked out some of the functionality in separate applica-
tions. Thus Google Maps Engine appeared. Even if this idea of encapsulate
all custom maps functionality in separate application and not to overload ori-
ginal Maps sounds good, the realisation for OS Android is quite controversial.
For example, you can’t access to Maps ” Favorites” from GME. Or if you want
to use navigation, you still need to switch to Maps. So, instead of separation
we can see duplication here. The reviews in Play Store are showing that the
users aren’t satisfied as well. But Google is constantly improving its products,
and it’s just a matter of time when the changes occur. Anyway, analysis of
Google inc. is beyond this thesis’ scope, let’s take a look at the My Maps
application for OS Android.

The My Maps functionality isn’t very rich, but it contains the main fea-
tures for custom maps management. It is based on Google Maps and some
functionality is preserved here: access to Maps points of interest, search, nav-
igation, satellite view. Moreover, the user can sign in with its Google account
and immediately gain access to the custom maps associated to this account.
My Maps can create and edit custom maps, split it to different layers, add
and edit custom places to layers(either from coordinates or Google base or by
touching the map), add description to them and switch to Maps for routing.
We can access shared maps here, but can’t share it. The big advantage of this
application that it exists also for other major platforms: web and iOS. Web
version is more functional and polished. Here user can share maps, create
not only custom places, but custom routes too, export KML files and some
other things. Basically, the mobile version of My Maps could be seen as some
addition, viewer for the main, web application. But the mobile version gets
new functions time by time. One year ago, it could only view custom maps
and nothing else.

Now, the shortcomings of My Maps for OS Android. The first one - the
app doesn’t support offline mode. You could neither download map regions
nor see the labels. And it’s quite strange, because iOS version works offline
and offers to user to download a region on map. The second flaw is its speed.
Because with every zoom, the app downloads every chunk of map with labels
as well, it lasts a couple of seconds before we can see the full image. Our
respondents mentioned it as well. The iOS version doesn’t have this problem.

9

1. RESEARCH AND ANALYSIS

Victory Column -

AmE Victory Colmn
description

Help & feedback

Figure 1.6: The screenshots of My Maps

The third one - users can see custom places only on the map, the app doesn’t
have list view. It could be a problem when you have more than hundred of
places. And in the end, it isn’t entirely a travel app. It hasn’t the whole
feeling of a trip. You can’t add the feedback, mark visited places, summarize
the results and share them with other people.

Of course, My Maps is one of the main applications with such functionality,
and the most popular. It has some drawbacks, but we’ll try to fill these lacks
and to take the best from it.

1.3.3 MAPS.ME and MAPS.ME Pro

Author: MapsWithMe GmbH
Updated: October 8, 2014
Downloads: more than 1 million and more than 100 000 for pro version

Price: free and 4.99% for Pro version

It’s quite hard to find good maps application for Android, that don’t use
Google engine. But there are some really good maps that even overcome it in
some characteristics. MAPS.ME is one of them. Fast, detailed, looking good,
completely offline and has an impressive database (from OpenStreetMap data)
of points of interest (POI). Moreover, the search works in offline mode (only
Pro version) and supports classification and filtering. All you need is to load
the country or city of interest in advance. Maps aren’t big and have different
level of detailing depending on zoom.

10

1.3. Existing alternatives

(=) Bockmarks
Paris (220) >
Culture (111) >
Food & Drink (155) >
Shopping (17) >
Main (6) b

Figure 1.7: The screenshots of MAPS.ME

MAPS.ME Pro allows to make your own bookmarks (places) from coordin-
ates, database or by touching the map and add them to custom sets (layers).
Also you can edit names, descriptions and colors (only 8). These bookmarks
are available offline. The app supports GPS positioning routing in offline
mode. The public transport information isn’t complete. MAPS.ME supports
KML import. The application doesn’t have web version, but it exists for other
mobile platforms.

Furthermore, you can download guides for free if you have Pro version.
They are separate applications and are available for more than 20 countries.
Still, it is a map application, not consistent travel app.

1.3.4 TripAdvisor

Author: TripAdvisor
Updated: October 17, 2014
Downloads: more than 100 million

Price: free

Another one very popular service for travelers, that has some common
functionality with our future app, but won’t be a directly competing applic-
ation. TripAdvisor has its own base of restaurants, hotels, attractions, tours
etc. with detailed information and massive feedback potential. TripAdvisor
is used commonly by users to find places or activities according to ratings,
based on user reviews.

11

1. RESEARCH AND ANALYSIS

E@tripadvisor B Restaurants Q B Ambiente Pasta Fresca L

Plan the perfect trip

[4 =
i Ambieme Pagta Fresca p ::

A v LS - .- = - --.':.-g T
= L
——
E Prague 2 prevanen
Browse i s

il
B e 4
r
8 L
@ Near Me Now] &
® e biinen Ambiente Pasta Fresca
‘: Hotels * etmib gy WEEET 1 476 Reviews TAkm
Al ek A
0 Restaurants o @ - Restaurant Infarmation il

@ Altractions List Sort Filte

Figure 1.8: The screenshots of TripAdvisor

TripAdvisor for OS Android has two kinds of presentation: map and list.
It provides filtering and location-based search. Then, you can add places to
”Favorites” for each city, but only places from their database. TripAdvisor
doesn’t have shared access function and doesn’t work offline. But you can
download additional guide applications for each city with the same function-
ality, but working offline. TripAdvisor has web and iOS version. You can
access saved places from all platforms on account basis.

TripAdvisor allows users to mark visited places, leave reviews, photos and
ratings that will be available for other users. Some social interaction functions
are avilable as well.

1.3.5 Tripomatic

Author: Tripomatic
Updated: October 6, 2014
Downloads: more than 100 000

Price: free, 5.49% for offline maps (in-app purchase)

The first application from this list that is developed for complete itinerary
planning. The app exists for Android, iOS and web. Tripomatic allows to
create your trip from the beginning, then add places to each day of the trip.
It has its own base of places filtered by type, but allows to create custom places
and add category tags and description. The app allows to view your itinerary
on the map or in the form of daily list or overall list. Tripomatic supports
offline maps of top destinations only for additional price. Users may share their

12

1.3. Existing alternatives

{ -ﬁﬂr-a::tiunn

% Bems already present in your trip

Motre-Dame Cathedral
BT TR pep Gl Of Gothed
anchitecture, Both cn the outside and th

A Triumphal Arch
This arch measunng 50 meters is
dedicated 1o the sobders who sacrificed

Lourvre Mugewm
H The madtvialed MR o M wiikd
wll erachan| o with ils rich Fisloncal

The Holy Chapel
H Ly The whole chapel is ned by 1 3th-century

V&Q.;

4 = 3 stained glass. The best visit is on a sun
Ter F \ ; e .
/4 =) b City Hall Paris
. 4 ‘ . | bl This paquisie buildeg no langer serves
X % 1 R o= o city hall, @ is a0 administtive
i oh &1

Figure 1.9: The screenshots of Tripomatic

trips, but not for editing, only for observation. The routing option is present,
but uses Google Maps app (web version uses its own routing). Moreover,
this application can search for tours, tickets, car rentals and forecast weather.
Among other advantages we could name the good look of the application.

Unfortunately, upon close examination, the app appears to be raw. For
example, you can see custom places on the map and in the daily list, but they
are missing in the places overall list. Even if the app has days separation,
you can’t filter places on the map by days or open a map for particular day
(web version doesn’t have this drawback). The offline map supports only base
places, not user mapped itineraries. The places are displayed in the lists by
pictures, but you can’t add pictures to custom places. Then, the routing isn’t
available for custom places.

This is a good application with wide functionality, but many little draw-
backs and lack of shared access make it far from ideal, and controversial re-
views on Play Store confirm it.

1.3.6 Roadtrippers

Author: Roadtrippers
Updated: October 30, 2014
Downloads: more than 100 000

Price: free

Another application that allows to create complete trip itineraries. Web,
Android and iOS versions are available and look good. Unlike the previous

13

1. RESEARCH AND ANALYSIS

= Roadhippers

Top Rated

=% Accommodation s

mn
)

s Attractions

'@ Prague 6, Czech Republic

o Domus Henrici

@ Prague 5, Czech Republic

% Entertainment

v} Food & Drink e

= o}

= .—l ‘

M History w
& MNature

Shopping

Sports

Figure 1.10: The screenshots of Roadtrippers

app, Roadtrippers has very friendly user interface. Everything is clear and
works as expected. Unfortunately, this application supports fully only USA
at the moment. But you can already find some places in Europe and authors
promise to support other countries in the closest future.

The trip planning begins by entering the start and finish location. Then
the app suggests the places for this route and allows to add them. Moreover,
you can see places independently of your route, filter them by type and subtype
and add to the custom collections. Roadtrippers has big database of places
and each user may leave ratings, reviews, photos etc. Then, you could add
your own place (leave pin on the map or write an address) and it will be
immediately added to their database. So you can’t add custom places only
for yourself. The app calculates expected distance, time and gas expense for
your route.

Unfortunately, Roadtrippers for Android doesn’t support offline mode.
Moreover, it seems to make some complicated calculations and sometimes
works slow. For example, if you’ll try to add some African place to your trip
from Prague 5 to Prague 7, the app will freeze with the only opportunity to
restart it. The trips can be shared for observation, but not for editing.

1.3.7 Summary

Of course, there are much more trip planning applications on the market, but
they are either less successful copies of the apps mentioned above or aren’t
enough usable or popular.

The main functions and features of analyzed apps are summarized in the
table . ”+-” means that the feature is supported partly, for additional

14

1.4. Requirements specification

cost or uses third-party application.

Features MyMaps MAPS.ME TripAdvisor Tripomatic Roadtrippers
GPS position + + + + +
Places search + + + 4 +
Guides - - + + +
Places saving + + + + +
Custom places + + - + -
Layers/filters +- + +- + +
Shared editing + - - - -
Offline mode - + +- +- -
Feedback - - + - +
Routing +- + 4 - +
Web version + - + + 4
KML import +- + - - -

Table 1.1: Applications’ features comparison

As we can see, each of these applications lacks some features. Besides,
some of them have problems with speed, Ul or reliability. This work will try
to take these flaws into account and take only the best from these apps.

1.4 Requirements specification

Now, with the information obtained from survey and from alternatives ana-
lysis, we should be able to formulate functional and non-functional require-
ments.

1.4.1 Functional requirements

FR1 Account creation and management Since it is an application with
shared access that will be used by friends, creating an account will be
obligatory. Complicated authentication system is unnecessary, but some
simple and fast sign up/sign in mechanism is a requirement. During
registration, the user will be prompted to enter his screen name, valid
email address and password. Then, he will be able to sign in with
email/password pair. In view of cases when several users may use the
same device, the sign out option will be available as well.

FR2 Trips displaying The user should be able to easily look through his
trips and distinguish between different types if there will be some.

15

1. RESEARCH AND ANALYSIS

FR3 Trips creation, updating an deleting Each user should be able to
create his own trip and optionally add other travelers (coviators) to it.
Some additional options like attaching a picture should be available.

FR4 Trip places listing When opening trip detail, user is expecting to see
its places in suitable form like scrollable list.

FR5 Trip places map One of the main functions of this application is nav-
igation on map. Trip places should be displayed on map in the form of
markers. For better user experience, it’s good to add such useful and
familiar functions like positioning and navigation.

FR6 Places creation, updating an deleting Similar to trips but with some
additional functions. It is good idea to offer the users to choose place
location on map manually, or through familiar to him Google Maps inter-
face with places search. To allow users to quickly browse through places,
they could be optionally classified to user-created categories/layers with
their own colors. There will be the possibility to add some description
to place (address, history or some other notes). The user should be able
to mark the place visited as well.

FRT7 Place detail The detailed information about particular place that isn’t
presented in the list, should be easily accessible from both the map and
the list.

FRS8 Categories creation, updating an deleting Categories shouldn’t be
complicated. Just name and color should suffice. Color then will be used
in both the list and the map.

FR9 Place filtering and search Filters are useful when the user is inter-
ested only in some limited categories of places. The application should
allow filtering at least by user-created categories and by ”visited” mark.
Sometimes the trip may contain tons of places, and scrolling through all
of them may be annoying, that’s when search by name is irreplaceable,
especially real-time search.

FR10 Info and contacts Some contact on administrator/developer/operator
should always persist in the application. It may be the electronic form
or just static screen with information. A reference on info or help page
won’t be redundant as well.

1.4.2 Non-functional requirements

Client-server architecture Application will have client and server sides.
Server side will store personal and shared data (accounts, trips, con-
tributors) and serve as a communication medium between end devices.

16

1.4. Requirements specification

Clients will store data available for offline use and display it on user
request.

RESTful API Communication between end devices and server will be per-
formed through HTTP-based REST API. The information will be ex-
changed in JSON format. Such architecture enables easy further expan-
sion on other platforms.

Android OS platform Client side will be developed only for OS Android
due to reasons discussed in chapter 1.2. In the future, it may be extended
to i0S and web platforms. Minimum supported API level of Android
SDK will be 15 (version 4.0.3 "Ice Cream Sandwich”), target API level
will be 21 (version 5.0 ”Lollipop”).

Shared access Multiple users should be able to view or/and edit (depending
on access level) data from the same trip. The data about trip/place
creator will be available on server and displayed in application.

Offline availability The major part of functionality should be available without
Internet connection: map, trips, places displaying, filtering and navig-
ating on map. Creation, edition and deletion will available only with
Internet connection. Such limitation allows to avoid different synchron-
ization problems.

Internet connection for server actualization Without connection, end devices
will have access only to local copy of data. But for obtain actual data
from the server or apply changes to shared trip, they should be connec-
ted to the Internet. Each time the data will be received from server, it
will be synchronized with local database.

Google Maps mapping API The application will use Google Maps API
because it’s the most popular mapping API for Android. It provides
Google maps functionality and allows to overlay it with your own. It
isn’t complicated and its interface is quite familiar to Android users.

Android design guidelines compliance To simplify users’ experience with
the application it’s a good practice to follow these principles when de-
veloping for Android.

Stability and quickness The application should avoid crashes, freezes and
long pauses during some tasks (for example zooming or filtering).

Simplicity of use The application should have friendly interface that aver-
age user could quickly understand by himself.

Hints and feedback The application should always inform user about what’s
going on. It includes touch feedback, pop up messages (Toasts and

17

1. RESEARCH AND ANALYSIS

Snackbars in Android), progress bars, input error messages, confirma-
tion dialogs.

18

CHAPTER 2

Design

2.1 Use cases and scenarios

According to Ivar Jakobson, the inventor of use case concept, a use case is all
the ways of using a system to achieve a particular goal for a particular user.
Taken together the set of all the use cases gives you all of the useful ways to
use the system, and illustrates the value that it will provide[3].

More specifically, a use case is a written description of how users will
perform tasks on your website. It outlines, from a users point of view, a
systems behavior as it responds to a request. Each use case is represented as
a sequence of simple steps, beginning with a user’s goal and ending when that
goal is fulfilled[4].

Use cases are typically the next, more detailed level of functional require-
ments. Use cases are derived from functional requirements, but not necessary
have one-to-one correlation. In many situations, each functional requirement
will break down into several use cases. Use cases list may be graphically
visualized with UML use case diagram.

For better understanding and clearer outlook on the scope of the project,
use cases are often accompanied with textual descriptions - scenarios. A scen-
ario is one path or flow through a use case. Typically a use case has a primary
scenario, one or more alternate scenarios, and possibly exception scenarios[5].
Now, let’s try to work out the use cases based on functional requirements and
describe their flow with scenarios.

UC1 Sign in Signing in is a required action for user to use the application.
Sign in will be available only if the user isn’t already logged in. Login
credentials should be persisted on the device for the user not to be forced
to enter the data each time he opens the app.

1. The application will display the login screen with data form.

2. The user will enter the login credentials in the form and send them.

19

2. DESIGN

3. The application will verify this data. If it is valid, the user will be
logged in, else, the error message with the cause will be shown.

UC2 Register If the user doesn’t have an account yet, he is allowed to create
one through application interface. Registration is still available only if
the user isn’t signed in.

1. The application will display the registration screen with data form.
2. The user will enter the desired credentials in the form and send them.

3. The application will verify this data. If it is valid, the user account will
be created and the user will be automatically logged in, otherwise, the
error message with the cause will be shown.

UC3 Sign out The user will be able to sign out from the application. Sign
out is available only if the user is signed in.
1. The user chooses the ”"sign out” option.
2. The confirmation dialog is shown to him.
3. If the user confirms logout, the application goes to the login screen.

Flse, the user stays inside the main application part logged in.

UC4 Display trips The list with user trips will be shown to the user. The
trips screen is supposed to be the home screen when the user is signed
in.

1. The user chooses the "my trips” option.

2. The application displays the trips list.
UCS5 Create trip The user could create his own trip.

1. The user chooses the ”create trip” option.

2. The application shows the create trip form.

3. The user fills the form with data and sends it to the application.
4.

If the data is valid, the application creates the trip and adds it to the
trip list. This trips becomes available for other users added to the trip
by the creator. Otherwise, the error message is shown to the user.

UC6 Edit trip The user could edit his existing trip.

1. The user chooses to edit the trip.

2. The application shows the edit trip form (same as create with pre-filled
trip data).

3. The user may edit or add new data to the form and send it.

20

2.1. Use cases and scenarios

4. If the data is valid, the application edits the trip. Otherwise, the error
message is shown to the user.

UCT Add/remove coviator When creating or editing his trip, the user is
able to invite other people (coviators) to his trip or kick them out. The
added coviators should be displayed on the screen for user to be able to
remove them.

1. The user chooses to add coviator to the trip.

2. The application prompts the user to find an existing coviator and add
him to the trip.

3. If the coviator exist and isn’t already in the trip, the application adds
him to the trip and show to the user. Otherwise, the error is shown.

UCS8 Delete trip The user will be able to delete his own trips.

1. The user chooses to delete trip.
2. The confirmation dialog is shown to him.
3. If the user confirms deleting, the application erases the trip and all

places and categories inside it.

UC9 Display places list The user will be able to browse through places
inside his trips.
1. The user chooses the trip.
2. The application shows the places belonging to this trip.
UC10 Filter places The user should be able to filter his places list by dif-
ferent parameters.
1. The user chooses the "filter” option.
2. The application shows to him the different filter parameters.
3. The user chooses the desired filter set and sends it to the application.
4. The application shows the user the places list filtered by the user re-

quest.

UC11 Search places The user should be able to search places inside trip
by name.
1. The user chooses the ”search” option.
2. The application allows the user to type the name of the place.
3. The user enters the name of the place.
4

. As the user enters the name to the field, the application shows in real-
time the places that are corresponding to the entered query.

21

2. DESIGN

UC12 Display places map The application will display trip places on the
map in the form of markers. The markers should be located according
to the places coordinates and be distinguishable by their category. The
filters and search results from the list should work on the map markers
as well.

1. The user chooses the ”"show on map” option.
2. The application shows the places belonging to this trip on the map.

UC13 Go to my location The orientation on the map is one of the main
functions of the application. The user should be able to quickly find his
own location on the map.

1. The user chooses ”go to my location” option.
2. If positioning is available on the device, the application moves the map

viewport to the coordinates of user current location.

UC14 Navigate to place The user should be able to navigate to the chosen
place.
1. The user chooses "navigate” option.
2. The application shows the navigation directions to the user.
UC15 Show place detail The application will be able to show the user de-
tailed place information that isn’t presented in the list.
1. The user chooses the place.
2. The application shows detailed information about the place.
UC16 Create place The user should be able to create places that will be
then added to particular trip. The created place will be immediately
available to other coviators.
The user chooses the ”create place” option.
The application shows the create place form.

The user fills the form with and sends it to the application.

- W N

. If the data is valid, the application creates the place inside the chosen
trip and adds it to the places list. Otherwise, the error message is shown
to the user.

UC17 Edit place The user should be able to edit an existing place in his
trip.

1. The user chooses the ”edit place” option.

2. The application shows the edit place form with pre-filled place data.

22

2.1. Use cases and scenarios

3. The user may update the data and send it to the application.
4. If the data is valid, the application updates the place data. Otherwise,

the error message is shown to the user.

UC18 Choose location on map When creating or updating the place, the
user should be able to choose location for his place. There are two pos-
sible scenarios.

First scenario:

1. The user chooses the ”choose place location on map” option.
2. The application shows displays the map with search bar.

3. The user enters the query to the search bar (name, address, coordinates
etc.).

4. The applications suggests the user the predictions and finds the location
according to user query.

5. The user chooses this location and returns from the map or continues
the search.

Second scenario:

1. Same as UC18.1 first step.
2. Same as UC18.1 second step.

3. The user chooses the location directly on the map without entering any
text data.

4. The application computes coordinates of this place and offers the user
to save it.

5. Same as UC18.1 fifth step.
UC19 Choose category During place creation or edition, the user should
be able to choose the category from the list and apply it to this place.

1. The user chooses the ”choose category” option.

2. The application shows the list of existing categories and the option to
add new one.

3. The user chooses the category.

4. The application saves user choice for the place.
UC20 Delete place The user should be able to delete places inside his trip.

1. The user chooses to delete place.

2. The confirmation dialog is shown to him.

23

2. DESIGN

3. If the user confirms deleting, the application erases the place.

UC21 Display categories The application will show the list of existing cat-
egories for particular trip.
1. The user chooses to edit categories or chooses category for place.
2. The application displays categories list.
UC22 Create category The user should be able to create custom category
for particular trip.

7

The user chooses the ”create category” option.
The application shows the creation form.

The user fills the form with and sends it to the application.

oW o e

. If the data is valid, the application creates the category for the cosen
trip and adds it to the categories list. Otherwise, the error message is
shown to the user.

UC23 Edit category The user should be able to edit categories.

1. The user chooses the "edit category” option.

2. The application shows the editing form with pre-filled category data.

3. The user may update the data and send it to the application.

4. If the data is valid, the application updates the category data. Other-
wise, the error message is shown to the user.

UC24 Delete category The user should be able to edit categories.

1. The user chooses to delete category.
2. The confirmation dialog is shown to him.
3. If the user confirms deleting, the application erases the category.
UC25 Display app info The application should show user some basic in-
formation about itself and developer/operator contacts.
1. The user chooses the "app info” option.

2. The application displays the info.

The main use case diagram is shown in the figure

The use cases are describing the system from the user point of view, when
functional requirements - from the system itself. Even when these approaches
are containing different levels of granularity, they’re about the same system,
hence, they should cover each other completely. The table depicts how
our use cases cover the functional requirements given beforehand.

24

2.2. Domain model

F1 F2 F3 F4 F5 F6 F7 F8 F9 FI0

Ul
U2
U3
U4
U5
U6
U7
Us
U9
U10

Ul1

U12
U13
U14
U15
U16
ul1r
U18
U19
U20
U21
U22
U23
U24

025 -

Table 2.1: Functional requirements covered by use cases

2.2 Domain model

The use cases and scenarios define the behavioral aspects of the system, but
they don’t describe the structure. Sometimes the the transition between be-
havioral model and more specific structural (database or classes) model can
be quite hard. For these purposes exists the domain model, that models the
structure, but without implementation-dependent details.

Domain Modeling is a way to describe and model real world entities and
the relationships between them, which collectively describe the problem do-
main space. Derived from an understanding of system-level requirements,
identifying domain entities and their relationships provides an effective basis
for understanding and helps practitioners design systems for maintainabil-
ity, testability, and incremental development. Because there is often a gap
between understanding the problem domain and the interpretation of require-

25

2. DESIGN

. Place
Coviator 1 —created by — 0.
- Name
- Username Address
- Email
0.2 o - Coordinates
- Password " visited by Description
0.7 —]| T HESEIP
1o - Picture
0.= 0.z
0.z 0.1
Trip 1 Category
- Name - Name
- Picture 1 0. - Color

Figure 2.1: Domain model

ments, domain modeling is a primary modeling area in Agile development at
scale. Driven in part from object-oriented design approaches, domain model-
ing envisions the solution as a set of domain objects that collaborate to fulfill
system-level scenarios[6].

The domain model for Coviator is depicted in the figure[2.1] Let’s describe
the entities presented there.

2.2.1 Coviator

This is the user entity. It will contain the information about all the application
users. Each registration will add one user object to the system. Data like email
and password should have limited access, some security mechanisms, and must
not be exposed from the server (in detail in further chapters). Each coviator
could have any number of trips (create or be invited).

2.2.2 Trip

This is the main application entity. When trip is created by user, any amount
of places, categories or coviators could be added to it. Coviators could attend
any number of trips, but each place or category may belong to one trip at
most. It will be possible to attach a picture to the trip.

26

2.3. Backend

2.2.3 Place

This is the entity that will keep all the information about places (points of
interest) of the trip. The place must have its name and coordinates for dis-
playing on the map. Moreover, it should be possible to add some description
to the place, attach a picture and assign a category. A place may be attached
to one category at most. The place should contain the information about who
is the creator and who did visit this place among the coviators. The place
should have only one creator and any number of visitors.

2.2.4 Category

The category is a simple entity that have only two attributes: name and color,
both are required. The color is used to distinguish the places of particular
category on both the list and the map. The category may belong to one trip
only and any number of places could be assigned to it.

2.3 Backend

Since the application should provide shared access for multiple users around
the world through Internet, the backend solution have to be designed as well.
The client-server architecture was chosen as the most suitable for us for the
reasons of simplicity, centralization, data persistence and accessibility.

The main server purposes will be receiving data from clients, storing data
in the database and sending this data back to clients. Due to our requirement
that application should work locally even in offline mode, the client shouldn’t
take data directly from the server. The server should rather provide synchron-
ization for end devices when they’re requesting it. Hence, we don’t have great
requirements on server load and excessive performance. The server should
also provide basic authentication functionality.

Considering our server isn’t much sensitive to performance, it was decided
to take maintainability, simplicity and platform independence as priorities in
technology choice. Besides, the programming language preferences of the au-
thor were taken into account. For these reasons it was decided to build the
server with some of Java frameworks. There were two options considered:
Spring MVC and Play!. Below are the advantages of each of analysed frame-
works.

Spring MVC:

Better history

Better documentation

e Bigger community

Broader functionality

27

2. DESIGN

Play!:

Shorter learning curve

Better performance
RESTful (made by Web developers)
Better out-if-the-box functionality

Faster testing

Simplier to use

The choice was quite obvious, especially when Play! doesn’t lack any
important functionality that Spring has. The main Play! language is Scala,
but it supports Java as well.

For database purpose we will use some ORM library. Since ORM isn’t good
choice for Android client due to hardware and performance issues related to
reflection use, for server it’s just ok. ORM libraries allow to map database
entities directly to objects, POJOs (plain old Java object) in our example.
Play! framework supports two ORM libraries: JPA and Ebean. After a little
study, it came out that for our purposes, there aren’t much differences between
them. But due to better documentation and some extra features, Ebean was
chosen.

For communication between server and client it was decided to use REST-
ful API over HTTP protocol. It’s simple, uniform, popular and multiplatform.
Moreover, Play! framework has a great support of RESTful services, so it sim-
plifies the development vastly. As the data format, our API will use JSON,
the first class citizen both in Android/Java and Play! framework.

According to our use cases, the list of HT'TP requests was created. [7] was
used partly as an API design guideline.

POST /register Registers new user. Credentials should be sent in JSON.
Returns 201(created) with the username in case of success or 400(bad
request) with the details if credentials are wrong or user/email already
exists.

GET /login Serves for the verification of user credentials and allows him
to access application data. It’s always good practice to provide at least
minimal security to authentication even if your application doesn’t store
any valuable data. In our example it was decided to confine with Basic
Authentication: the encoded string is sent by the client in the ” Author-
ization” header of request and then decoded on the server side. But in
most cases it isn’t sufficient. Moreover, it is useless without SSL (HT-
TPS protocol), because it provides just basic BASE64 encoding that can
be easily decoded [§].

Returns 200(ok) if succeeded or 401(unauthorized) with the details if
the password is invalid or the user doesn’t exist.

28

2.3. Backend

GET /users/autocomplete Requests existing usernames starting with quer-
ied char sequence. Returns 200(ok) with user list if succeeded.

GET /trips Requests trips for the queried username. Returns 200(ok) with
trips list if succeeded or 404(not found) if user doesn’t exist.

POST /trips Creates new trip. Accepts JSON with trip data. Returns
201(created) with the created trip object on success.

PUT /trips/{id} Updates existing trip. Accepts JSON with trip data. Re-
turns 200(ok) with the updated trip object on success.

DELETE /trips/{id} Deletes existing trip. Returns 204(no content) if de-
leted successfully.

GET /trips/{id} Requests trip detail for requested ID. Returns 200(ok)
with requested trip object on success.

GET /trips/{id}/users Requests users for particular trip. Returns 200(ok)
with users list if succeeded.

POST /trips/{id}/places Creates new place for particular trip. Accepts
JSON with place data. Returns 201(created) with the created place
object on success.

DELETE /places/{id} Deletes existing place. Returns 204(no content) if
deleted successfully.

PUT /places/{id} Updates existing place. Accepts JSON with place data.
Returns 200(ok) with the updated place object on success.

PUT /places/{id}/visit Changes the "visited” state of particular place by
particular user. User authorization is requested in the header. Returns
200(ok) if the state was changed successfully.

GET /trips/{id}/categories Requests categories for particular trip. Re-
turns 200(ok) with the list of categories for requested trip.

POST /trips/{id}/categories Creates new category for particular trip.
Accepts JSON with category data. Returns 201(created) with the cre-
ated category object on success.

DELETE /categories/{id} Deletes existing category. Returns 204(no con-
tent) if deleted successfully.

PUT /categories/{id} Updates existing category. Accepts JSON with cat-
egory data. Returns 200(ok) with the updated category object on suc-
cess.

29

2. DESIGN

2.4 Database model

Now, with the requirements specified, use cases described, technologies chosen
and domain model ready, we could proceed with more specific structural
design. It have to be defined how all the will be persisted. Because of slightly
different requirements, database models of client and server parts will differ
too.

2.4.1 Server

Let’s come up with the brief description of our database tables. The detailed
model is presented on the figure

Coviator The first and the main difference between server and client data-
base model is the responsibility of the latter to store user informa-
tion. User emails and passwords must not be exposed from the server,
moreover, the client doesn’t need any information about the users when
in offline mode. In online mode, it could easily receive this information
from the server. The usernames and emails must be unique.

Coviator_Trip This is the junction table for normalizing the many-to-many
relation between Coviator and Trip tables.

Trip The Trip table itself contains only primary ID and trip name, but it
has one-to-many relations with both Place and Category tables. The
picture, that is in the domain model will be stored beyond database,
but its address will be composed from trip ID.

Category Apart from primary ID, name and color, the Category table con-
tains the foreign key to Trip table that defines their relationship.

Place The domain model was defining place coordinates as single parameter,
but in practice, it was decided to break it to latitude and longitude for
easier storing. The picture will be stored outside of database, but its
address will be composed of place ID and trip ID to which this place
belongs. The place entity has many-to-one relationship with Trip and
Category tables. Another difference from domain model, it was decided
to store ”created_by” as simple VARCHAR, because this binding is re-
dundant.

Visited_Coviator_Place The junction table to store many-to-many the re-
lationship between coviators and places they have visited.

2.4.2 Client

Almost all information for user interaction the application will receive from
local database. The server only provides synchronization and data updates.

30

2.4. Database model

Q id INTEGER PK
username VARCHAR
email VARCHAR
password WARCHAR —0.*

+ <PK>id
+ <UNIQUE> username
+ <UNIQUE= email

Visited_Coviator_Place

@ coviator id INTEGER FK
9 place_id INTEGER FK

+ <PK= (coviator_id; place_id)

Place

2 id INTEGER PK
name VARCHAR —0.*
description VARCHAR
location WVARCHAR

lat DOUBLE

Ing DOUBLE

created_by VARCHAR
trip_id INTEGER FK
category_id INTEGER FK

——0.*

L+l e

+ <PK>id

+ «FK= frip_id

+ «FK= category_id
2

Coviator_Trip

¥ coviator_id INTEGER FK
@ ftrip_id INTEGER FK

+ <PK= (coviator_id; trip_id)

2 id INTEGER PK
name VARCHAR

_1“ + =PK= id |
1
|

g

id INTEGER PK
name VARCHAR
color INTEGER

@ trip_id INTEGER FK

+ <PK= id
+ «<FK= trip_id

0.1 —

Figure 2.2: Server database model

2. DESIGN

id INTEGER PK

name VARCHAR
description VARCHAR
location VARCHAR

lat DOUBLE

Ing DOUBLE

created_by WARCHAR
is_visited INTEGER
trip_id INTEGER FK
category_id INTEGER FK

+ =PK= id
+ <FK= trip_id
+ «<FK= category_id

id INTEGER PK
name VARCHAR
coviators_string VARCHAR

0.1 —

+ <Pk id

id INTEGER PK
name VARCHAR
color INTEGER
trip_id INTEGER FK

+ <PK:= id
+ <FKe trip_id

Figure 2.3: Client database model

It was taken into account and client database was attempted to made to
answer the presenter layer needs. Detailed client database model is depicted

on figure [2.3

Trip The Trip table on the client side stores only the trips the user belongs to.
During synchronization, if some trip was updated, deleted or the user
was invited in another trip, te local trip table is updated. Because local
database doesn’t have users database, the ”coviators_string” parameter
was added to trip table. It represents the textual form of coviators taking
part in particular trip. This parameter is needed because the trip should

display at least usernames of coviators who travel with the user.

Category The category table is completely the same as in server database.

Place The place table doesn’t differ much from server variant as well. The
only difference is that it lacks ”visited” relationship with Coviator entity.
But it doesn’t matter, because client requires ”visited” state only for
the user itself. That’s why boolean parameter ”is_visited” is sufficient.
SQLite for Android doesn’t have native boolean type, that’s why it is
presented as integer.

32

2.5. Activity diagrams

2.5 Activity diagrams

In the section 1 of chapter 2 we have described the application behavior from
the user point of view. Unfortunately, use cases and even scenarios don’t
describe the application behavior from the system point of view. All the
activities involving client and server sides might be quite complicated since
the client works with two data sources: local database and REST API. It is a
good idea to show these applications flow with the help of activity diagrams.

In Unified Modeling Language (UML), an activity diagram is a graphical
representation of an executed set of system procedures and considered a state
chart diagram variation. Activity diagrams describe parallel and conditional
activities, use cases and system functions at a detailed level. The purpose of
the activity diagram is to model the procedural flow of actions that are part of
a larger activity. In projects in which use cases are present, activity diagrams
can model a specific use case at a more detailed level. However, activity
diagrams can be used independently of use cases for modeling a business-level
function, such as buying a concert ticket or registering for a college class [9] [10].

Below are the main activity diagrams of our application. In the figure [B.2]
the login /register flow is presented. The figure depicts the actions required
to show data. It covers both trip list and trip detail cases because the flow is
the same. Two next figures: [B.4) and present the trip and place creation
flow respectively. The category creation flow isn’t introduced here because it
is just a simplified version of the latter. The edition flow will look almost the
same. Other activities diagrams are much more plain, so it was decided not
to confine ourselves with these four.

2.6 UI/UX design

Up to this point, we were dealing with our application in general. We've
came up with structural and behavioral aspects of both the server and the
client side of the system and defined the communication rules between them.
But the main and the only actor here is the user. Even perfectly designed
travel application worth nothing if the user couldn’t interact with it. Or if
the interface is designed so poorly that complicates user interaction instead of
simplify it.

Firstly, it is useful to distinguish between the UX and UI design definitions.
UXD (User Experience Design) handles every aspect of the user’s interaction
with a product, service, or company that make up the user’s perceptions
of the whole. User experience design as a discipline is concerned with all the
elements that together make up that interface, including layout, visual design,
text, brand, sound, and interaction. UE works to coordinate these elements
to allow for the best possible interaction by users [I1]. At the same time, the
UID (User Interface Design) seems to be a bit narrower concept. It focuses

33

2. DESIGN

on anticipating what users might need to do and ensuring that the interface
has elements that are easy to access, understand, and use to facilitate those
actions [12].

If you imagine a product as the human body, the bones represent
the code which give it structure. The organs represent the UX
design: measuring and optimizing against input for supporting life
functions. And Ul design represents the cosmetics of the bodyits
presentation, its senses and reactions. [13]

We’ll begin with the task analysis, discuss some details concerning platform-
specific development and come up with application wireframes.

2.6.1 Task analysis

Even if use cases and tasks seem to have similar purpose, there is a thin line
between them. Use cases describe particular cases of interaction between the
user and the system that may be then decomposed to actions and scenarios.
But these actions aren’t necessarily performed by the user. On the contrary,
the tasks are describing the actions, even the minor ones, that user should
perform or cause to achieve some goal.

Task analysis analyses what a user is required to do in terms of actions
and/or cognitive processes to achieve a task. A detailed task analysis can be
conducted to understand the current system and the information flows within
it. These information flows are important to the maintenance of the existing
system and must be incorporated or substituted in any new system. Task
analysis makes it possible to design and allocate tasks appropriately within
the new system. The functions to be included within the system and the user
interface can then be accurately specified. But generally, task analysis is a
fundamental methodology in the assessment and reduction of human error
[14, 15].

As we said earlier, task analysis describes the system from user perspective.
It takes use cases as input, then derives all the underlying tasks an subtasks,
even the minor ones, that user should perform in the scope of particular use
case. The first thing is just to write down all these tasks that come to mind.
They can have different importance and granularity, but it doesn’t matter in
this first step.

e Display sign in form
e Sign in
e Display register form

e Register

34

2.6.

UI/UX design

Display trips list

Display create/edit trip form

Display add coviator dialog

Display coviator autocomplete suggestions
Add coviator to trip

Remove coviator from trip

Add trip picture

Delete trip picture

Submit trip creation/edition

Display delete trip confirmation dialog
Confirm trip deletion

Go to navigation menu

Display places list

Display create/edit place form

Display choose location map screen
Display location autocomplete suggestions
Choose location on map

Confirm location choice

Choose category

Submit place creation

Display places map

Navigate to place on map

Go to user location

Display place detail

Change place visited state

Display delete place confirmation dialog

Confirm place deletion

35

2. DESIGN

e Add place picture

e Delete place picture

e Choose filters

e Display categories list

e Display create/edit category form
e Submit category creation

e Display delete category confirmation dialog
e Confirm category deletion

e Enter place search query

e Clear place search query

e Sign out

e Display app info

e Go back

e Show error message

It is good practice sometimes to group tasks by some parameter or to sort
them. But in this example, the author found it hard to come out with really
useful classification, so it was decided to keep the task list as it is. What
the author found really useful is to transfer these tasks onto task graph. Task
graph isn’t a standardized UML diagram unlike the others in this chapter, but
it helps to structure tasks dependencies and can be the basis for wireframes
design. The task graph is presented in the figure Some tasks aren’t
depicted as graph nodes (go back, show error message), because these actions
should be available from multiple parts of the application.

2.6.2 OS Android Ul elements

Since its birth, Android application market was a total hell in the sense of
average app Ul comparing to iOS. The approvement requirements are much
weaker and till this moment, design guidelines weren’t really good and the
majority of developers weren’t following them. Moreover, each mobile manu-
facturer thinks it’s good to alter native Android design with their own mods.
All this mess doesn’t improve user experience.

But, in these latter days, Google makes huge steps to solve this mess and
to make Android design unified, clear and user friendly. In author’s opinion,
they’ve really made a breakthrough with their last version (5.0 Lollipop) and

36

2.6. UI/UX design

introducing of the ”Material design” concept. But this isn’t just version-
specific concept, it is whole design language for different platforms. Material
design is a unified system of visual, motion, and interaction design that adapts
across different devices. Material design is inspired by tactile materials, such
as paper and ink. Material surfaces interact in a shared space. Surfaces
can have elevation (z-height) and cast shadows on other surfaces to convey
relationships [16].

Let’s come up with a little brief on UI elements will be used in ” Coviator”
application. We'll try to follow Material design guidelines [I7] when it is
possible.

App bar App bar, or former action bar, isn’t a new element. But in Material
design it was properly defined. App bar is a special kind of toolbar
thats used for branding, navigation, search, and actions. To the left of
the app bar there is nav icon that is used either for navigation drawer
opening or as a back button. In our example, it will be used for both,
depending on the accessibility of navigation drawer. The title in the bar
is reflecting the current screen. The icons to the left are optional screen-
dependent menu items. We well using them for example for opening
filters, create trip form or search. App bar will be present on all screens
of our app except login screen (is redundant here) and location choosing
map screen, where it will be replaced by Google Maps-styled search
toolbar.

Navigation drawer Navigation drawer is a common pattern found in Google
apps. It is a sliding panel that displays the apps main navigation options
on the left edge of the screen. It is hidden most of the time, but is
revealed when the user swipes a finger from the left edge of the screen
or, while at the top level of the app, the user touches the app icon
in the action bar. It was decided in our app, that navigation drawer
will be accessible only from the central nodes of the app: trips list,
places list and places map screens. All other screens are leaf nodes, and
the back button will be sufficient there. Moreover, the navigation may
be overcomplicated otherwise due to possibility of infinite back stack
growth. Generally, the navigation drawer contains of the header and
the list. Design guidelines recommend not to change drawer content
depending on the screen. In our app, we’ll leave the list immutable, but
the header will change depending on navigation level. If it is trip list,
the username will replaced in the header. If it is trip detail, the header
will contain trip picture with the ”"Edit” button. Such solution allows
not to change the drawer list and at the same time make trip edition
accessible from the detail without encumbering app bar. The options
in navigation drawer list allow to access first level of navigation (trip
list), display app info and log out. Moreover, in case of extending the

37

2.

DESIGN

app functionality and navigation hierarchy, it will be easy to implement
these new options inside navigation drawer.

Floating action button Floating action buttons, or simply FABs are used

for a promoted action. They are distinguished by a circled icon floating
above the Ul and have motion behaviors that include morphing, launch-
ing, and a transferring anchor point. Only one FAB is recommended
per screen to increase its prominence. It should represent only the most
common action. We are decided to use FAB in several screens. On
places map and places list screens, FAB is used to create a new place. It
is common action, so its use is justified. On the choosing location map
screen, the FAB is appearing after some location is chosen and denotes
location confirmation. On places map, we decided to place the second
FAB even if it is against guidelines. But such behavior seemed logical to
the author, moreover, the official Google Maps app has two FABs too.
The second FAB will be "my position” FAB. When the place is chosen
on the map, the "add place” FAB will be transformed into ”navigate”
FAB. These two FABs will perform two familiar functions: navigation
to place and moving the map to user location.

Bottom drawer Bottom drawer is a sliding panel, that can be pulled out

from the bottom. This panel is used on the map to display place detail
information. It has three states: hidden, collapsed and expanded. The
panel is hidden (or invisible) when no place is chosen. Collapsed panel
appears when user chooses a place. It contains the main information:
place title, category, address and distance to the place. Then the user
may pull out the panel to see all the information about the chosen place.
It isn’t the Material standard element. There are bottom sheets in
Material design guidelines that are similar visually, but they’re intended
only to present a simple set of actions. Anyway, we decided to use this
pattern, because Google Maps app uses it and it will appear familiar to
the users for sure.

Dialogs A dialog is a small window that prompts the user to make a de-

38

cision or enter additional information. A dialog does not fill the screen
and is normally used for modal events that require users to take an ac-
tion before they can proceed. Material guidelines advise to use dialogs
sparingly because they are interruptive in nature. Their sudden appear-
ance forces users to stop their current task and refocus on the dialog
content. Not every choice, setting, or detail warrants interruption and
prominence. But in most cases, we will use dialogs just for confirmation
of sensible actions like deletion or log out. Only one more complicated
custom dialog will be used in the app. It is coviator choosing dialog.
It was decided that the whole separate screen will be redundant for
this task, and the dialog will be more handy. Furthermore, the dialog

2.6. UI/UX design

doesn’t occupy the whole screen and make the user see what coviators
he already chosen. The last one dialog we will use is information dialog
in offline mode. It will inform user that creation, edition and deletion
aren’t allowed without Internet connection.

Text fields A text field allows the user to type text into your app. It can be
either single line or multi-line. Touching a text field places the cursor and
automatically displays the keyboard. The Material text field provides
additional features. Floating label shows the hint when the user starts
typing. Bottom helper text is used to show the user the errors or the
limits on characters. We won’t use the character counters in the app, but
the errors will be always displayed below relevant text fields. Moreover,
text fields can use the autocomplete function, when relevant suggestions
are displayed as a list below text field when the user is typing. This
feature will be used in coviator and location searches.

Lists and cards Lists are representing a collection of data. Lists are best
suited to presenting a homogeneous data type or sets of data types, such
as images and text, optimized for reading comprehension with the goal
of differentiating between like data types or qualities within a single data
type. In our application, we are using lists to represent places, categories
and coviators inside trip. But trip items contain more information. The
guidelines are stating that if more than three lines of text need to be
shown in list tiles, use cards instead. So, it was decided to use cards
instead of simple list items to represent trips. Besides, list controls will
be used to represent filter items: radio buttons for single choice and
checkboxes for multiple choice.

2.6.3 Wireframes

Now, we have all we need to design wireframes, the last step before we could
start with prototype implementation. A wireframe is a two-dimensional il-
lustration of a pages interface that specifically focuses on space allocation
and prioritization of content, functionalities available, and intended behavi-
ors. For these reasons, wireframes typically do not include any styling, color,
or graphics. Simply said, a wireframe is a simple sketch of a user interface
[18, [19].

A wireframe can be created digitally, by special software and with details.
But the main advantages of wireframing that it’s quick and everyone can
do it. So, the pen and the paper are the best instruments that help us draw
wireframes. Paper wireframes are quick to edit, and allow to reveal drawbacks
on earlier stages of design. In the figures and the last version of
application wireframes is presented. It took the author more than ten attempts
to come up with this one, but each new version helped to find some lacks in

39

2. DESIGN

the design and improve it at significantly lower costs than it could be on later
phases of the project.

40

CHAPTER 3

Implementation

3.1 Android client

3.1.1 Tools and libraries
3.1.1.1 Android Studio and Android SDK

The applications for Android operating system are mostly written in Java pro-
gramming language. But plain Java isn’t sufficient for Android development.
Android SDK (software development kit) is a mandatory tool for creating ac-
tual Android applications. The Android SDK is a set of development tools
used to develop applications for Android platform. The Android SDK includes
the following [20]:

e Required libraries
e Debugger

An emulator

Relevant documentation for the Android application program interfaces
(APIs)

Sample source code

Tutorials for the Android OS

Every time Google releases a new version of Android, a corresponding
SDK is also released. To be able to write programs with the latest features,
developers must download and install each versions SDK for the particular
phone.

Although the SDK can be used to write Android programs in the com-
mand prompt, the most common method is by using an integrated develop-
ment environment (IDE). During the last year Android Studio has became the

41

3. IMPLEMENTATION

absolute number one IDE for Android development and the official IDE for
Android application development. Unlike Eclipse, Android Studio is created
by Android developers particularly for Android development and contains tons
of useful features without anything unnecessary. Android Studio is based on
IntelliJ IDEA software, and on top of its functions, it offers [21]:

Flexible Gradle-based build system

Build variants and multiple apk file generation

Code templates to help you build common app features

Rich layout editor with support for drag and drop theme editing

ProGuard and app-signing capabilities

Android Studio has much more different features, but their presentation is
out of scope of this project. In short, Android Studio simplifies development
process greatly and allows to manage the app easily on different stages.

3.1.1.2 Git

As a revision control system(RCS) it was decided to use Git. Revision con-
trol is necessary when working in teams, but even for local use, it is a very
useful thing. Revision control systems track and provide control over changes
to source code and records changes to a file or set of files over time so that
you can recall specific versions later. Git is the most popular modern revi-
sion control system. Git is a distributed RCS, working on the peer-to-peer
principle, which means that each peer’s working copy of the codebase is a
complete repository. In our example, when the author is working on the pro-
ject by himself and has only local repository, it may seem redundant. But the
project could always grow and expand, or new developer may be assigned to
it, so if the Git repository will be maintained from the start, it can simplify
the development process in the future. Moreover, basic Git functions are quite
easy to understand and use. Git is often used from the command line, but
Android Studio has the support of the main Git functions straight in the IDE.

3.1.1.3 Android support library

The Android Support Library package is a set of code libraries that provide
backward-compatible versions of Android framework APIs as well as features
that are only available through the library APIs. Our application should
support API level 15 and higher, that’s why Android support library is used.

42

3.1. Android client

3.1.1.4 Dagger

Dagger is a fast dependency injector. It doesn’t use reflection, and therefore,
works really quickly and doesn’t consume additional memory. It provides
field injection mechanism which is really useful when working with Android
components that doesn’t allow to alter the constructors. Dagger suits very
well for the implementation of MVP (model-view-presenter) pattern.

3.1.1.5 Otto event bus

Otto is an event bus designed to decouple different parts of the application
while still allowing them to communicate efficiently. Otto is working on the
post-subscribe principle, when poster and subscriber don’t know about each
other existence and communicate using special event objects. Otto us useful
for handling asynchronous communication between components.

3.1.1.6 Picasso

Picasso library simplifies the downloading of images from different sources
straight into views. It handles the callbacks and maintains the cache. It
allows as well to apply custom transformations to downloaded images.

3.1.1.7 Retrofit

Retrofit is the library for implementing the REST client on Android device.
Retrofit establishes the connection, creates HT'TP requests, sends data and
handles the callbacks.

3.1.1.8 Butterknife

Butterknife is the view injection library. It allows to avoid tons of boilerplate
code while getting the views and assigning listeners to them

3.1.1.9 Other open source libraries

There were used some other smaller libraries, mostly for different Material
views.

e Android Pager Sliding Tab Strip - Material design tabs panel.

e Material Drawer - Material design navigation drawer, sliding from the
left.

e Android Sliding Up Panel - drawer sliding from the bottom that was
used on map screens.

43

3. IMPLEMENTATION

e Floating Action Button Library for Android - Material design
floating action button.

e Material Edit Text - Material design text fields with floating labels
and helper texts.

With the release of Android support library version 22.0.0, the design
support library was introduced. It contains almost all Material components
that the used library have. But at the moment of the app implementation,
this version wasn’t yet released.

3.1.2 MYVP pattern

The big problem of Android applications structure, that it doesn’t have clean
separation between presentation and logic. Most of the applications use at best
the View-Model architecture. As a result, the logic is crammed into Activities
and Fragments and programmers have to fight the View complexities instead
of solving their business tasks.

The Model-View-Presenter (MVP) pattern or its analogs (MVC, MVVM)
is quite popular on some platforms, but in Android development, this is
a new phenomenon. Unfortunately, the flaw above is already imposed by
Activity /Fragment design. These components, views by nature, contain some
presenter functions. Moreover, these classes are quite enclosed, and there
weren’t much technologies allowing to efficiently implement the MVP pat-
tern. Bu recently, some of them have appeared: dependency injection with
Dagger and RxJava are modern tendencies that allow to make MVP not only
usable, but very useful as well.

MVP pattern decouples Views from data access mechanisms. As a result,
our components are:

e Reusable

Replaceable

Easier to test and debug

Breakable to separate tasks

e Clear to understand

The main drawback of MVP is some boilerplate code. Instead of one
Activity or Fragment it takes the programmer to create at least two interfaces
and two classes. But let’s define the main components of Android MVP first.

View View is a layer that displays data and reacts to user actions. On
Android, this could be an Activity, a Fragment, an android.view.View
or a Dialog.

44

3.1. Android client

Presenter Presenter is a layer that provides View with data from Model.
Presenter also handles background tasks and decides what happens when
you interact with the view.

Model Model is a data access layer such as database or remote server. The
Model is communicating with the other components through Interactors,
its interface classes.

When developing for Android, the programmer should always take the
components lifecycle into account. In this approach, Presenters are always syn-
chronized with View lifecycle. The View obtains Presenter reference through
dependency injection, then, in onResume method, it registers itself to Presenter.
The Presenter on the other way, already has the reference to needed Interactors
via dependency injection. The Interactors don’t care and know nothing about
neither Views nor Presenters. They are totally decoupled from Android com-
ponents lifecycle and communicating with Presenters through posting events
on event bus. Presenters are subscribed to appropriate events and can handle
them. When Presenter receives events destined to it, it handles it and decides
what to show to the user depending on its view state. Such architecture allows
to replace or edit Interactors easily without any changes in Views, test each
component independently and ensure the lifecycle will be safe even during
asynchronous communication.

This subsection was written with the help of [22] 23].

3.1.3 Data access
3.1.3.1 Client database

Android uses SQLite as a database technology. SQLite is an Open Source
database. SQLite supports standard relational database features like SQL
syntax, transactions and prepared statements. SQLite is embedded into every
Android device. Using an SQLite database in Android does not require a setup
procedure or administration of the database. You only have to define the SQL
statements for creating and updating the database. Afterwards the database
is automatically managed by the Android platform. Access to an SQLite
database involves accessing the file system. This can be slow. Therefore it is
recommended to perform database operations asynchronously [24].

The database can be accessed directly, but it’s a good practice to extend
ContentProvider class to use as a facade. Content provider is mainly used
to expose content to other applications, but it has its advantages even when
used inside single application. Content provider is accessible through Con-
tentResolver class from almost everywhere in the app (especially when we
can inject Context through dependency injection). Content provider handles
closing and locking of database and simplifies the access with URIs. In our

45

3. IMPLEMENTATION

example, DataProvider class extends ContentProvider and provides an API
for creating, deleting and updating data in SQLite database.

Content provider here represents the Model layer but its interface isn’t con-
venient for direct communication with Presenter. So, the DBInteractor class
serves as an interface between Presenter and Model layers. DBInteractor com-
municates with DataProvider on worker threads and loads data with custom
Loaders. Then it handles callbacks and post appropriate events containing
received data on the event bus. All the database interaction is performed
asynchronously without interfering with the UI thread.

3.1.3.2 Remote server

As it was said earlier, the application uses Retrofit library to handle REST
communication. The CoviatorApi interface maps HTTP requests and API
endpoints to corresponding Java methods. Then, the Coviator Apilnteractor is
communicating asynchronously with the server through CoviatorApi interface
and posts appropriate events to the event bus. If the server is unavailable, the
device is disconnected from the Internet, or some other error is occurred during
the communication, CoviatorApilnteractor posts the event with appropriate
error to the event bus and the Presenter can then show the user what is just
happened.

3.1.3.3 Data loading process

The application should work in offline mode, but it should synchronize its data
with the server if the device is connected to the Internet. That is why loading
requests to the local database and to the server have to be done independently.
Even if the application will fail to get the data from the server, the data from
the local database will be loaded anyway. But when the data from the server
will be received, it will be updated immediately in the local database and
shown to the user. This process is depicted in the sequence diagram in the

figure

3.1.3.4 Data creating/updating/deleting process

As it was stated earlier, the application will be allowed to create, update or
delete any data only when the server will be available. In that case, the data
changing request will be sent to the server. Then the server will try to preform
an appropriate operation and if something will go wrong, the server will send
the error to the client. The API Interactor will handle this error and tell the
Presenter to show it to the user. Otherwise, if the server will succeed with the
operation, the confirmation will be sent to the client. The client database will
be changed only during the synchronization (when the data will be requested).

46

3.1. Android client

View DBInteractor Apilnteractor

loadData() loadFromDE()

i loadFromServer()

|
/_—onDataLDadedFromDEl[event: -

request

showData(data)

I
1
alt |)
| onSuccess(response)
onDataLoadedFromServer(event)

updateDBData(data)

[data received, no errors]

£ onDBDataUpdatedi)
loadFromDB()

onDatal oadedFromDB(event) -

o

showData(data)

b oh ———— — ————————

[else] onError(response)

onDataLoadFromServerFail(event)
showError(error)

Figure 3.1: Data loading sequence diagram

3.1.4 Packages description

Let’s come up with a brief description of packages of the application and
classes inside them.

db Contains classes taking care of the database access. DatabaseHelper
handles database creation and updates. DataProvider provides the in-
terface to access database operations through URIs.

di Contains dependency injection modules (Dagger library). AppModule and
InteractorsModule provide global app dependencies. Each other mod-
ule provides dependencies for its own scope. For example, LoginMod-
ule provide dependencies that are needed during LoginActivity lifecycle
only.

domain This package contains Java data objects that are representing the
database entities like Trip or Place. The subpackages of ”domain” pack-
age contain other Model layer objects: events for event bus, custom
annotations, filter objects, serializable classes, requests, responses and
REST interfaces descriptions.

interactor All the Interactor interfaces and their implementations are loc-
ated in this package. DBInteractor and CoviatorApilnteractor are already

47

3. IMPLEMENTATION

described in previous subsection. Connectionlnteractor is monitoring In-
ternet connection and notifies other components if the state is changed.
GoogleApilnteractor works with Google services like Places API or loc-
ation services. Medialnteractor is responsible for accessing media re-
sources on the device, storing and retrieving images and getting them
from the gallery. SPInteractor is used for storing and retrieving data
from SharedPreferences (one of Android persistence technologies).

mvp Contains View layer interfaces that are implemented by different Activ-
ities and Fragments. Generally, each view corresponds to some applica-
tion screen or its element. All the Presenter interfaces and their imple-
mentations are located here as well. Each Presenter is bound to corres-
ponding View and serves as a middle man between the View and Model
layer (presented by Interactors). All Views and Presenters are extending
their base classes that contain common functionality. The Views are at-
tached to Presenters in onResume or similar methods of their Android
implementations (Activities and Fragments) and detached in onPause
method. It allows to avoid errors related with components lifecycle. For
example, if the event from the Interactor is received during screen rota-
tion (when the Activity is destroyed and recreated), the Presenter may
refer to the object inside this Activity that doesn’t exist. But when
the Presenter knows that no View is attached to it, it simply won’t do
anything or will wait for the View to be attached again.

ui The Android UI components are located there: Activities, Fragments, Ad-
apters and custom Android Views. Most of Activities and Fragments
are implementing MVP Views, except the ones that don’t have their
UI or are just containers. Adapters are considered to be part of View
layer and communicating with Presenters of Views they are part of. We
won’t describe in detail each Fragment or Activity, but generally they
represent some application section, screen or part of the screen. Dialogs
are also located in this package.

utils Contains different useful static methods and application constants.

3.2 Server

3.2.1 Tools and libraries
3.2.1.1 Play framework

We were already spoken of the Play framework in chapter It is a light-
weight and fast web framework written in Scala and Java. It allows to map
REST endpoints to Java methods in on row only and has ”hit refresh work-
flow”. By being RESTful by default, including assets compilers, JSON and

48

3.2. Server

WebSocket support, Play is a perfect fit for modern web and mobile applic-
ations. Play follows the modelviewcontroller (MVC) pattern. The Model is
the domain-specific representation of the information on which the application
operates. The View renders the model into a form suitable for interactions,
typically a user interface. The Controller responds to events (typically user
actions) and processes them, and may also invoke changes on the model. In a
Web application, events are typically HT'TP requests: a Controller listens for
HTTP requests, extracts relevant data from the event, such as query string
parameters, request headers... And applies changes on the underlying model
objects [25]. Play also manages database evolutions and automatically applies
scripts when database is changed.

3.2.1.2 Ebean ORM

Play framework uses Ebean object-relational mapping for automatically con-
vers Java objects into relational database entities and vice versa.

3.2.1.3 Jackson

Jackson is a multifunctional JSON processor that allows quickly convert JSON
strings into Java objects and vice versa.

3.2.2 Packages description

The play framework structure is reflecting MVC pattern and split code into
three packages. Our application doesn’t have its own View layer because it
serves only as mobile client backend.

controllers The Application class is the only class inside this package. All
the methods mapped to REST endpoints are located inside it. Each
of them accepts the request with optional body and query parameters,
performs some operation with database and sends the success or error
response depending on the result.

models Contains the main POJOs corresponding to database entities: Covi-
ator, Trip, Place and Category. The junction tables are generated auto-
matically by Ebean ORM. Also, responses and requests Java objects are
located here, as well as data validators.

49

CHAPTER 4

Testing

4.1 Testing by developer

This kind of testing was performed during all stages of implementation after
each new chunk of functionality has been added to the application. It includes
UI testing, Android components lifecycle testing, database integrity testing,
client-server communication testing and synchronization testing. During de-
velopment and testing the server was running locally and three devices (LG
Nexus 4, LG Nexus 5 and Sony Xperia Z) were available to the author.

A big amount of bugs and errors was revealed during these tests. For
example, the crashes of the app while accessing objects inside Android com-
ponent with finished lifecycle, improper synchronization between local and
remote data or bad HTTP requests. Also, there was a problem with adding
pictures to trips or places. Big images caused lags in Ul interaction. This
problem was solved by resizing pictures while loading them to the view. The
map was a problem thing as well. Because of complicated asynchronous data
obtaining mechanisms, the map didn’t show the correct data or was simply
crashing. Thanks to the MVP pattern, these sequences were clear easy de-
buggable. Of course there were much minor bugs, crashes and inconsistencies,
most of which were fixed after these tests.

4.2 Usability testing

After the prototype was ready and the server was functional, it was decided
to run tests on real users.

The most effective way of understanding what works and what
doesnt in an interface is to watch people use it. This is the essence
of usability testing. When the right participants attempt realistic
activities, you gain qualitative insights into what is causing users to

o1

4. TESTING

have trouble. This helps you determine how to improve the design.

[13]

Usability testing is the technique that engage users to participate in real-
istic scenarios. While the user is performing given tasks, the tester is observing
and making notes. The main purpose of this kind of testing is to reveal the
real obstacles the user could encounter, thus the real problems in Ul design.
That’s why there are some good practices the tester should follow:

e Make the Task Realistic Asking a participant to do something that
he wouldnt normally do will make him try to complete the task without
really engaging with the interface. Poorly written tasks make it harder
for participants to suspend disbelief about actually owning the task.

e Make the Task Actionable Its best to ask the user to do the action,
rather than asking them how he would do it. Otherwise, the participant
is likely to answer in words, not actions.

e Avoid Clues and Describing the Steps Step descriptions often con-
tain hidden clues as to how to use the interface. It may skew the results
and hide the problems which the user may have encountered without
your hint. [13]

4.2.1 Usability testing process

The situation gets a little complicated since it’s quite hard to simulate the real
use scenarios of our application, because shared access functionality requires
several users at the time to test it. Then, the scenario may be really time-
stretched, because the trip with its planning phase may last for several days
or even months. Moreover, it’s hard to make the test look realistic when one
of the main application functions is orientation on map, and the user is just
sitting in the front of your desk. Despite all that, the list of user scenarios
was composed with the best attempts to make it realistic and actionable.

e Task 1 Login to the application. Register if you dont have an account.

e Task 2 You are planning to visit Prague again, youve already been here,
but you didnt have Coviator app with you. Create a trip and invite your
friend Marty McFly to it. (Comment: Marty McFly and several other
"coviators” are already registered in the system)

e Task 3 You forgot to invite your other friend Doc Brown to your trip
to Prague. Do it now! Moreover, its a good idea to add some Prague
picture to the trip.

02

4.2. Usability testing

e Task 4 Add some places to the trip. Add a couple of your favourite
restaurants, the place where you stay, your university and some place
you love, but remember only its location. Its good to classify some of
these places to some categories. But you have to create them first.

e Task 5 You are in Prague and you are hungry. But you are well pre-
pared. Navigate to the closest restaurant.

e Task 6 Unfortunately, the quality of this place has worsen and the
dessert was awful. You should add a photo of it to your place detail,
add some notes and mark this place as visited.

e Task 7 Now you want to go home, but you dont remember the way.
Find this place on the map and try to get there.

e Task 8 You were almost home when Marty McFly texted you that he
found some awesome bar near you and you should immediately be there
And that he already added it to your trip. Ok, lets drink one or two
with Marty. Find this place on the map. (Comment: while the user is
reading this task, the tester is adding a new place to the trip from the
Marty McFly account)

e Task 9 Your trip is over. Lets see now what places you haven’t visited.
But you dont have Internet connection here (simulate data off).

Each user from our testing group was prompted to respond to two little
surveys: before the test and after the test. The first survey contains general
questions about the user and his experience with Android. The second one is
taking feedback on the user experience with our application.

Before-test survey:

1. What is your age? (Under 20, 21-30, 31-40, 41-50, over 50)
2. Do you own an Android device? (Yes / No)

3. If yes, what? (Device model)
4

. Are you interested in this application functionality? (Yes, No)
After-test survey: (contains open questions only)

1. Was the navigation in the application clear? What did confuse
you?
2. Was it hard to find some particular place or place group?

3. Was the map clear and easy to use? What was confusing?

4. Did something confuse you in the application generally?

93

4. TESTING

5. Maybe some functions were missing to you in the app that you
would like to add?

6. Did the app behave as you expected from an Android app? What
wasn’t familiar?

7. Would’ve you use this application for your trips? Why?

Seven users did participate in this survey. One of them answered ” Under
20” to the age question, one of them has ”30-40”, and all the last are in the ” 20-
30”7 category. Six users have their own android device, only one is Windows
Phone owner. The devices the respondents use are: Nexus 5, Sony Xperia
Z, LG G2, Vodafone Smart Prime 6, HTC Desire HD and another Nexus
5. All the users mentioned that they are quite interested in the application
functionality. The tests were performed in a small room without external
interference. The users were given their tasks one by one without limitation
in time. The tester wasn’t allowed to give any clues about UI, but had to
answer any other questions. While the users were performing their tasks, the
tester was taking notes. Then the users were thanked and asked to answer
the after-test questionnaire.

4.2.2 Usability testing results

Now, let’s take a look on the results of the testing step by step. Below there
are our tasks, their estimate solutions and tester observations.

1. Task 1 Login to the application. Register if you dont have an account.

Estimated solution: User enters his username and password and clicks
”login”. If he doesn’t have an account, he clicks "register”, fills
and sends the form and if everything is correct, the app logs him
in automatically.

Users solution: This functionality is common for almost all Android
apps, so everybody passed the step 1 as expected. Only one user
mentioned that the app isn’t hiding the keyboard after login if it
was shown.

Observer notes and users comments: Nothing special.

2. Task 2 You are planning to visit Prague again, youve already been here,
but you didnt have Coviator app with you. Create a trip and invite your
friend Marty McFly to it. (Comment: Marty McFly and several other
"coviators” are already registered in the system)

Estimated solution: User clicks "add” button, fills the name of the
trip, adds photo if he wants, then finds Marty McFly by name and
adds him to the trip. Finally, he presses the ”submit” button.

o4

4.2. Usability testing

Users solution: There weren’t problems with this task as well. Users
found the corresponding buttons quickly and proceeded as expec-
ted.

Observer notes and users comments: Users were quite familiar with
the autocomplete feature. Most of them were waiting for the in-
formation to appear after typing one or two letters.

. Task 3 You forgot to invite your other friend Doc Brown to your trip
to Prague. Do it now! Moreover, its a good idea to add some Prague
picture to the trip.

Estimated solution: User opens the newly created trip detail, opens
the drawer menu. Then he clicks on the ”edit” button and proceeds
to the trip edition screen. If the user has not added the picture to
the trip in the previous step, he adds it now. He invites new covi-
ator the same way as before and saves changes with the ”submit”
button.

Users solution: Here the first problems begin. More than a half of
respondents spent much time trying to find the edit interface. They
were confused with the ”edit” button location in the drawer menu.
The other part was completed without problems.

Observer notes and users comments: Some users mentioned in the
survey that they’re expecting the ”edit” button anywhere but not
in the drawer menu.

. Task 4 Add some places to the trip. Add a couple of your favourite
restaurants, the place where you stay, your university and some place
you love, but remember only its location. Its good to classify some of
these places to some categories. But you have to create them first.

Estimated solution: Click on the "add” floating button. Enter the
name and optional description. Choose category from the list or
create it with ”"+” button and choosing the color and the name.
Choose location by long click on the map or by choosing the address
with the help of autocompletion. Confirm location by clicking the
”done” floating button. Add optional picture and save the place
with ”done” button. Repeat for other places.

Users solution: All of the respondents have no problem with finding
the create interface, filling the form and choose the category. Half
of the users have chosen the location by typing the place name, but
others were trying to find the place by zooming and panning the
map. Some of them weren’t then able to figure out how to mark
the place. They were trying to click once or two times but most of
them eventually understood the long click pattern.

95

4. TESTING

o6

Observer notes and users comments: It turned out that the users
aren’t completely familiar with the long-click-to-mark pattern des-
pite its wide use in most of the map applications including Google
ones. One of the users made an observation that there is no way to
clear the place category, only to choose another one or delete the
category itself.

5. Task 5 You are in Prague and you are hungry. But you are well pre-

pared. Navigate to the closest restaurant.

Estimated solution: Open filters screen from the trip detail by click
”filters” button in the app bar. Filter restaurants only by checking
the corresponding checkbox. Apply filters and open map by click
"map” button in the app bar. Choose the closest marker to user
location. Click "navigate”.

Users solution: Only two respondents have used the filters, others
either found their restaurant in the list and clicked on it, or clicked
the "map” button and found the closest one.

Observer notes and users comments: Each solution is correct be-
cause it achieves the expected result. But this task wasn’t repres-
entative because of the small number of places in the trip. It is
plausible that the more places with different categories will be in
the trip, the more users will use the filters to find their place.

. Task 6 Unfortunately, the quality of this place has worsen and the

dessert was awful. You should add a photo of it to your place detail,
add some notes and mark this place as visited.

Estimated solution: Click on place marker on the map. Swipe up
the bottom panel with place detail. Click ”edit” button. Add the
photo and description as in task 4 and save changes. Click the
?visited” checkbox in the place detail.

Users solution: Only two users have found the place detail immedi-
ately. Others have spent some time to find out how to edit the place
details. They’ve tried to find it in the places list, in the filters, tried
to use search. But eventually all of them found it.

Observer notes and users comments: Again the users weren’t ex-
pected to see the place detail in the sliding bottom panel even if
it is the common pattern for almost all map applications including
Google. Maybe it is confusing because the main screen of the trip
detail is the list screen and the users aren’t thinking that the map
should contain the information. Or the users don’t use the map
applications to often to get used to this behavior.

4.2. Usability testing

7. Task 7 Now you want to go home, but you dont remember the way.
Find this place on the map and try to get there.

Estimated solution: Again as in the task 5, find the "home” marker
by filters, search or color on the map or in the list and navigate to
it.

Users solution: Most of the users just found the "home” place in the
list and clicked it to find on the map.

Observer notes and users comments: Basically it’s the same task
as the task 5 except the place is uniquely defined. The users haven’t
encountered any problems and they seem to act more confidently
than before while completing this task.

8. Task 8 You were almost home when Marty McFly texted you that he
found some awesome bar near you and you should immediately be there
And that he already added it to your trip. Ok, lets drink one or two
with Marty. Find this place on the map. (Comment: while the user is
reading this task, the tester is adding a mew place to the trip from the
Marty McFly account)

Estimated solution: Return to trip detail screen and find the new
place either on map or in the list.

Users solution: Some of the users weren’t sure what they should do
(they didn’t see how the interviewer added this new place to their
common trip from another device), but all of them returned to the
trip detail screen and either filtered places by the new category
”bar” or found the bar straight in the list.

Observer notes and users comments: The users were positively sur-
prised as the new place quickly appeared in their list.

9. Task 9 Your trip is over. Lets see now what places you haven’t visited.
But you dont have Internet connection here (simulate data off).

Estimated solution: Go to filters screen, filter by "not visited”. Ap-
ply changes.

Users solution: Some of the users were wondering how the missing
connection may affect this task, but completed it as expected.

Observer notes and users comments: The lack of Internet connec-
tion here didn’t make any difference. It was to confuse user if he’s
still able to use the application.

Lets’ summarize our testing results together with the results of the after-
test survey. Some of our assumptions about the functionality and the imple-
mentation of particular features were confirmed. The users accepted positively

o7

4. TESTING

the shared access feature and some of them mentioned the usefulness of this
function in the survey. The Android users said that the application has the
” Android feel” and they don’t need much time to get used to it. The offline
mode wasn’t tested properly, but a couple of users said that they’re expecting
this feature in their trip app. Almost all users said that the navigation was
quite clear, simple and intuitive except some things that were confusing. The
first thing is the edit button for the trip. The navigation drawer isn’t the
place where the users are expecting to find edit interface. The second thing
is the place detail. Not all users are familiar with the Google maps pattern
and it took time for them to figure out where it was. The next thing is the
long click pattern to mark a place on the map. Not all the users realized it
immediately. Then one of the users mentioned that there isn’t an ”empty”
category choice and if some category was chosen for the place, it can’t be reset,
only by deleting the category. Moreover, there were some minor but useful
suggestions from the users that may improve the app too. For example, it is
good to hide the keyboard after login if it was visible. Or if there isn’t any
place on the map, the app should zoom initially to the user current location.
Or a pull-to-refresh pattern for the places/trips list. Half of the users said
that they’re considering to use this app if it will be finished because it is easy
to manage the common trip with friends and it works offline. The other half
aren’t interested in it because they don’t travel or the applications they use
have more functions.

4.2.3 Applying testing results for further application
improvement

Usability testing really helped a lot to reveal the flaws of the current ap-
plication and find out what features and improvements will make the users
experience better. Now, with the help of our usability testing results, let’s try
to define the course of the future development of Coviator app.

First of all, the errors and the bad behavior should be fixed. It includes
some crashes that were revealed by the programmer and the minor problems
mentioned in subsection [.2.2] like the keyboard hiding after finish typing or
the option to clear a category for the place. Then, the main issues from
subsection should be considered.

The location of ”edit trip” button should be changed definitely. The best
of the options is to place it in the app bar like some users mentioned. The
problem is that there are already three buttons there and the app bar will be
overweight. On the other hand, switching between the list and the map can
be extracted to the tabs and viewpager. This will take additional place on the
screen, but make the navigation clearer.

It turned out that the place detail is tricky to find. But since the bot-
tom sliding panel is the common place to find it in the most popular map
applications, we're decided to leave it there. We just need to help somehow

o8

4.2. Usability testing

the users to find it. There are several options. The first one is to make the
place detail expanded by default when going to the map by clicking on some
particular place in the list. But the user may go to the map without choosing
some particular place, so the problem persists. Moreover by the time it may
annoy the user that the place detail will be always expanded even if he just
wanted to locate it on the map. The better practice is to show the user some
hint when he opens the map for the first time. It will make clear for the user
what he should do without annoying him for the second time. Moreover, the
secondary action is considered for each item in the places list that will allow
the user to go to the edit interface straight from the list.

The third testing problem was the long click pattern. But again, this is
the pattern supported by the Google itself, so we won’t change it. Instead, it
is good to show some hint the first time the user chooses the location for a
place.

99

Conclusion

The result of this thesis is an Android mobile application and a server that
communicate with each other via REST service. The application allows its
owner to create and edit the list of user-defined trips, add places to them and
assign to different categories. The application allows user to see these places
in the form of the list or in the form of markers on the map. Multiple users
of this application may share the same trip and see each other changes real-
time. All application functionality except editing and creating new places is
available without Internet connection. The application allow user to display
places on the map and navigate to them using the current location. The
user may filter trip places by user-defined categories and ”visited” status.
Moreover, multiple other features are implemented in this product: adding
photos, description and ratings, marking places as visited and others. Some
screenshots are available in appendix

For now, the application isn’t published on the Google Play store and the
server is running only locally, but the publishing is planned in the future after
the changes will be implemented.

During this work, all the requirements described in the second chapter
were met. The application went through all software design and development
steps and the prototype was created. The server and the REST APT allowed to
synchronize data and provide shared access real-time. When the application
became functional, the usability tests were performed. The usability testing
confirmed some of the design hypotheses, but revealed several problems and
misconceptions that were analyzed and the solutions were discussed.

But more important, this work allowed its author, me, to gain a lot of
valuable experience. I was able to go through complete software development
lifecycle and understand why all these steps are so important. For the first
time I was able to implement both parts of the project, Android client and
backend, and design the communication between them. I've learned lots of
new things specific for Android: UI, work with database and communication
via HT'TP. And again for the first time, I was able to conduct a user testing

61

CONCLUSION

and draw conclusions from its analysis. I was able to improve my general
software development process understanding and specific technical skills.

[

62

Bibliography

Chekuri, R. Why Windows Phone not Catching up with Rivals. Octo-
ber 2014. Available from: http://techiemadness.com/why-windows-
phone-not-catching-up-with-rivals/

Hughes, N. While 91Android hold 10Available from: http://
appleinsider.com/articles/14/08/22/while-91-of-apple-users-
run-ios—-7-five-different-versions-of-android-hold-10-share

Jacobson, I.; Christerson, M.; Jonsson, P.; et al. Use-Case 2.0, The Guide
to Succeeding with Use Cases. Addison-Wesley Professional, 1992, ISBN
978-0201544350.

Use Cases. Available from: http://www.usability.gov/how-to-and-
tools/methods/use-cases.html

Larson, R. Scenarios and Use Cases Useful Techniques. July 2010. Avail-
able from: http://www.watermarklearning.com/blog/scenarios-and-
use-cases/

Leffingwell, D. Domain modeling. February 2014. Available from: http:
//www.scaledagileframework.com/domain-modeling/

Hunter, T. Principles of good RESTful API Design. December 2013.
Available from: http://codeplanet.io/principles-good-restful-
api-design/

Stormpath. Secure Your REST API... The Right Way. April 2013.
Available from: https://stormpath.com/blog/secure-your-rest-
api-right-way/

Janssen, C. Activity Diagram. Available from: http://
www.techopedia.com/definition/27489/activity-diagram

63

http://techiemadness.com/why-windows-phone-not-catching-up-with-rivals/
http://techiemadness.com/why-windows-phone-not-catching-up-with-rivals/
http://appleinsider.com/articles/14/08/22/while-91-of-apple-users-run-ios-7-five-different-versions-of-android-hold-10-share
http://appleinsider.com/articles/14/08/22/while-91-of-apple-users-run-ios-7-five-different-versions-of-android-hold-10-share
http://appleinsider.com/articles/14/08/22/while-91-of-apple-users-run-ios-7-five-different-versions-of-android-hold-10-share
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.usability.gov/how-to-and-tools/methods/use-cases.html
http://www.watermarklearning.com/blog/scenarios-and-use-cases/
http://www.watermarklearning.com/blog/scenarios-and-use-cases/
http://www.scaledagileframework.com/domain-modeling/
http://www.scaledagileframework.com/domain-modeling/
http://codeplanet.io/principles-good-restful-api-design/
http://codeplanet.io/principles-good-restful-api-design/
https://stormpath.com/blog/secure-your-rest-api-right-way/
https://stormpath.com/blog/secure-your-rest-api-right-way/
http://www.techopedia.com/definition/27489/activity-diagram
http://www.techopedia.com/definition/27489/activity-diagram

BIBLIOGRAPHY

[10]

64

Bell, D. UML basics. Part II: The activity diagram. 2003. Avail-
able from: https://www.ibm.com/developerworks/rational/library/
content/RationalEdge/sep03/f_umlbasics_db.pdf

Usability Body of Knowledge, Glossary. Available from: http://
www.usabilitybok.org/glossary

User Interface Design Basics. Available from: http://
www.usability.gov/what-and-why/user-interface-design.html

Lamprecht, E. The Difference Between UX and UI Design- A Laymans
Guide. June 2015. Available from: http://blog.careerfoundry.com/
the-difference-between-ux-and-ui-design-a-laymans-guide/

Task Analysis. Available from: http://www.usabilitynet.org/tools/
taskanalysis.htm

Embrey, D. Task Analysis Techniques. 2000. Available from:
http://www.humanreliability.com/articles/Task’20Analysis’
20Techniques.pdf

Material design with Polymer, guide. 2015. Available from: https://
www.polymer-project.org/0.5/docs/elements/material.html

Google. Material design guide. 2015. Available from: Thttp://
www.google.com/design/spec/material-design/

What is a Wireframe? February 2014. Available from: http://
experience.sap.com/basics/post-143/

Wireframing. Available from: http://www.usability.gov/how-to-and-
tools/methods/wireframing.html

Janssen, C. Android SDK. Available from: http://www.techopedia.com/
definition/4220/android-sdk

Android Studio Overview. Available from: http://
developer.android.com/tools/studio/index.html

Leiva, A. MVP for Android: how to organize the presentation layer. April
2014. Available from: http://antonioleiva.com/mvp-android/

Mikheev, K. Introduction to Model-View-Presenter on Android. March
2015. Available from: http://konmik.github.io/introduction-to-
model-view-presenter-on-android.html

Vogel, L. Android SQLite database and content provider - Tutorial.
August 2014. Available from: http://www.vogella.com/tutorials/
AndroidSQLite/article.html#overview _sqlite

https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep03/f_umlbasics_db.pdf
https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep03/f_umlbasics_db.pdf
http://www.usabilitybok.org/glossary
http://www.usabilitybok.org/glossary
http://www.usability.gov/what-and-why/user-interface-design.html
http://www.usability.gov/what-and-why/user-interface-design.html
http://blog.careerfoundry.com/the-difference-between-ux-and-ui-design-a-laymans-guide/
http://blog.careerfoundry.com/the-difference-between-ux-and-ui-design-a-laymans-guide/
http://www.usabilitynet.org/tools/taskanalysis.htm
http://www.usabilitynet.org/tools/taskanalysis.htm
http://www.humanreliability.com/articles/Task%20Analysis%20Techniques.pdf
http://www.humanreliability.com/articles/Task%20Analysis%20Techniques.pdf
https://www.polymer-project.org/0.5/docs/elements/material.html
https://www.polymer-project.org/0.5/docs/elements/material.html
http://www.google.com/design/spec/material-design/
http://www.google.com/design/spec/material-design/
http://experience.sap.com/basics/post-143/
http://experience.sap.com/basics/post-143/
http://www.usability.gov/how-to-and-tools/methods/wireframing.html
http://www.usability.gov/how-to-and-tools/methods/wireframing.html
http://www.techopedia.com/definition/4220/android-sdk
http://www.techopedia.com/definition/4220/android-sdk
http://developer.android.com/tools/studio/index.html
http://developer.android.com/tools/studio/index.html
http://antonioleiva.com/mvp-android/
http://konmik.github.io/introduction-to-model-view-presenter-on-android.html
http://konmik.github.io/introduction-to-model-view-presenter-on-android.html
http://www.vogella.com/tutorials/AndroidSQLite/article.html##overview_sqlite
http://www.vogella.com/tutorials/AndroidSQLite/article.html##overview_sqlite

Bibliography

[25] Play framework: The MVC application model. Available from: https:
//www.playframework.com/documentation/1.0/main

[26] Group, N. N. Turn User Goals into Task Scenarios for Usability Test-
ing. January 2014. Available from: http://www.nngroup.com/articles/
task-scenarios-usability-testing/

65

https://www.playframework.com/documentation/1.0/main
https://www.playframework.com/documentation/1.0/main
http://www.nngroup.com/articles/task-scenarios-usability-testing/
http://www.nngroup.com/articles/task-scenarios-usability-testing/

APPENDIX A

API Application programming interface
SDK Software development kit
HTTP Hypertext transfer protocol
JSON JavaScript object notation
REST Representational state transfer
UML Unified modeling language
MVC Model-view-controller

MYVP Model-view-presenter

ORM Object-relational mapping
JPA Java persistence API

SSL Secure sockets layer

UI User interface

UX User experience

IDE Integrated development environment

RCS Revision control system

67

Acronyms

APPENDIX B

69

Figures

B. FIGURES

Mobile application for travel

) Display
R il
we) (o) ()

extend

Add/remove
coviator

extend

r’ : 1
Create trip

Go to my
location

Show
places on

Display

Delete trip
places list
“extend
Delete . -)
. Filter
extend places

b
Create .
place
b
Ay
A

Choose
location on

User N

extend”
- Search

places

-
-

X extend
extend ™\

. Y
N oose
; extend”” \ catego
Edit place Y- egory
1)

1
include
Create '
category _
Display
Delete Edit
category category

Figure B.1: Use case diagram

Q
=

categories

70

Is signed in?

Display login
screen

Has an account

Client Server

YES %

Has to sign out first

1
1
1
1
1
1
1
1
1
1
1
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Process
register
request

Fill data and
send register
request

Request valid?

NO

NO Display register

Send error
message

Show error
message

Fill data and .
. Process login
send login requast
request &q

YES

Send sign in
confirmation

Sign in

Figure B.2: Sign in/register activity diagram

Create

account

71

B.

FIGURES

72

Load data from
local database

Show data to
user

Client

Is connected?

[YES]

Request data

Server

Get data from

from server

Update data in

1 database

f Send data to

local database |*

Load data from
local database

Show updated
data to user

Figure B.3: Display data activity diagram

client

Client

Is connected? NO %@

YES

Show create trip

form Type query

Add coviators

Enter
coviator
username

Enter trip data Send trip data

Trip created,
return

Figure B.4: Create trip activity diagram

Server

Process query

Give
autocomplete
suggestion

Add new trip to
database

Confirm
creation

FIGURES

Client

Show create
place form

YES

Is connected? NO _)(:)

Choose
category

Fill and send

data

74

Choose location

Get place
from Google
API

Confirm
chosen
location
Choose
location on
map

I
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
]
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
I
I
I
I
I
I
I
I
I
I
I
1
1
1

Place created,
return

Show error

Figure B.5: Create place activity diagram

Server

Process data

Data walid?

YES

Save new place
to database

Send save
confirmation

Send error

Display
register form

Register

Sign out

Show app info

Subm

creation/edition

locati
scl

isplay choose

how delete trip
confirmation
dialog

Confirm trip
deletion

Mavigation menu

Display trips
list

T

isplay coviator
autocomplete
suggestions

Add/delete
trip pictute

Display add
coviator
dialog

Display
create/edit trip
_ form

Add coviator
totrip

Submit trip
creation/edition

Enter/clear

" Display

)i

search query

:é places list

Confirm place
deletion

it place

how delete trip
confirmation

dialeg Show trip

detail

Gotomy
location

Navigate to

Change place
visited state

place

/_\ld_

Choose filters

ubmit category’
creation/edition

\ﬁip\ay

Confirm
location
choice

Add/delete
place picture

on map
Teen

Choose
location on
map

Display location
autocomplete
suggestions

N4 Display Display
create/edit createfedit
categories list
place form

Confirm
category
deletion

confirmation
dialog

Figure B.6: ”Coviator” task graph

75

B. FIGURES

Figure B.7: Wireframes, part 1

76

Figure B.8: Wireframes, part 2

7

APPENDIX C

Application screenshots

3 O ¥ .4 @ 21017 3 ¥ .4 02124
+
COMPLETED
Praha
My trips
Morava P
COVIATORS: Sign out
Me, Marie Pojkarova, Conrad B. Hart, Darth
Praha Vader
0 places
Coviators (1) ADD
@ \anny Calavera X
e y
< (@]

79

C. APPLICATION SCREENSHOTS

30 w4 @2122 (=]
o v Q <

30 v 4 B 2118

30 ¥4 B 21:24

4 Edit categories
Narodni technickd sy & “ Architecture
knihovna & T g %%
R T H Party @
2 Fi
Zelend,
§
& : e
VSCHT Praha B
o
o'
(e @
Velvarskd
v
G Gen. Pixy &
Home Narodni technicka knihovna
Technicka 2710/6, 160 80 ha 6, Czec.. -m

3 v 4 @ 21:24

B
L4

30 v .4 @ 21:24

30 v 4 @ 21:23

< /s v = o @
® A
" Prirodni park
Drahdr-Trdja
O visited
:
5 A /
kpazge™ O Not visited
X Architecture
& N Naplavka
& ARACUED PRAGUED Party
k) Déicks Party
»/ 50.07399223 ; 14.41367090 m
~ = b No category
azskj hrad X :

Maesss

(o] /7

Edit
-
s N Sl -
Narodni technickd knihovna
Architecture
Technicka 2710/6, 160 80 Praha 6, Czec. -m

80

APPENDIX D

Contents of enclosed CD

readme.tXbt . ovviniiin i the file with CD contents description
T o o the directory of source codes
Impl. . implementation sources
tandroid Android client source code
backend . ..ovviiiiii i e server source code
thesisS...oovvvvn.... the directory of IXTEX source codes of the thesis

I =5 P the thesis text directory
Lthesis.pdf the thesis text in PDF format

	Introduction
	Research and analysis
	Travelers research
	Platform selection
	Existing alternatives
	Requirements specification

	Design
	Use cases and scenarios
	Domain model
	Backend
	Database model
	Activity diagrams
	UI/UX design

	Implementation
	Android client
	Server

	Testing
	Testing by developer
	Usability testing

	Conclusion
	Bibliography
	Acronyms
	Figures
	Application screenshots
	Contents of enclosed CD

