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Abstract

Using natural language processing tools in time and space limited environment
of web browser is interesting problem, which solution can provide enhanced
end user experience by augmenting website information with extra information
from external sources, text categorization and useful information highlighting.
One of the possible application is recipe extraction from page in user’s browser.

Keywords nlp, javascript, text mining, information retrieval, web

Abstrakt

Využit́ı technologíı pro zpracováńı přirozeného jazyka v dnešńıch prohĺıžeč́ıch,
představuje zaj́ımavý problém s omezeńımi jak na pamět’ tak čas. Řešeńı
tohoto problému nám otevře cestu ke zlepšeńı uživatelova prožitku UX pomoćı
doplněńı relavantńıch informaćı, automatické kategorizace nebo zvýrazněńım
d̊uležitých informaćı. Jedńım z možných využit́ı této technologie je źıskáńı
receptu z uživatelem prohĺıžené stránky.

Kĺıčová slova nlp, javascript, text mining, vytěžováńı informaćı, web
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Introduction

Motivation

Web is huge source of useful information, but in most cases this information are
not well tagged and automatized information retrieval is hard. Microformats,
microdata and RDFs are trying to change this, but we’re just at the beginning
of their long journey. At the current state most websites don’t use these
tagging methods or misuse them. By understanding information on the
website, we can provide user relevant information for viewed content and allow
user save relevant parts of viewed content into other storing services.

Tools nowadays provides such features, but they are usually designed
for desktop or server applications. Moving these tools into user’s
browser decreases needed processing power on servers, minimize network
communication and allows running data extraction on any site loaded in user’s
browser even without his direct interaction.

Personal Motivation

I’m particularly interested in recipe extraction since I’m working on a social
network allowing user save recipe from any site to a single place. To search and
categorize recipes on this site, I need to extract recipe ingredient, their amount
and preparation steps. Using this information we can implement features
like shopping lists, nutrition information, searching by diets, automatic
categorizations and recipe suggestions. But to do so we need to break down
the recipe, which is time-consuming for a user.

Approach

In order to extract recipe from a web page, I chose an approach using corpus
linguistic and implemented elemental stack for text processing, annotating
and corpus querying in JavaScript. On the top of this generic library, I built
a domain-specific application for language identification and recipe extraction.
In the following chapters, Libraries, NLP stack, Language identification and
Recipe extraction I’ll describe libraries and tools I’ve used, implemented
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Introduction

library for corpus linguistic, n-gram based approach for language identification
and methods used for recipe extraction, respectively.
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CHAPTER 1
Introduction into NLP

Natural Language Processing (NLP) is field where computer science, artificial
intelligence and linguistic meets. NLP uses text mining methods for creating
some knowledge about input text. One of the used processes describes
Figure 1.1. The input document is processed in pipeline of multiple methods.
First the text is parsed and basic structures like paragraphs and sentences
are extracted, further more granular structures, like word tokens are created.
These structures are processed by Part-Of-Speech (POS) tagger which adds
word syntactic information. From these annotated structures are extracted
entities and finally relationship of these entities are formed.

1.1 Corpus

Most NLP tools for text processing need collection of texts, which are used
to create statistical models of language. This collection is called corpus. A
corpus is a collection of machine-readable texts that have been produced in a
natural communicative setting. They have been sampled to be representative
and balanced with respect to particular factors; for example, by genre -
newspaper articles, literary fiction, spoken speech, blogs and diaries, and legal
documents.[18]

Public corpora Almost every country has its national corpus, which is
created by tagging documents in national language. These corpora are created
by linguistic institutes and contains billions of words, from various sources.
Beside language corpora exists corporas with specialized content like text
produced by non-native speaker. For Czech corpora containing 2.2 billions
words, see www.korpus.cz.

Corpus allows us statistical test on representative sample of language
and help us create statistical models of language. These statistical models

3



1. Introduction into NLP

Figure 1.1: Processing document

extracted from such corpus can provide useful information about similar
documents or even its amount of similarity to the corpus. One of important
application is language identification.

1.2 Language identification

For languages with a unique alphabet not used by any other languages, such
as Greek or Hebrew, language identification is determined by character set
identification.[10] For more difficult cases, such as European languages that use
exactly the same character set but with different frequencies final identification
can be performed by training models of byte/character distributions in each
of the languages. [10] To improve success of such model we can enhance
it with prediction of next letter or word. We formalize this idea of word
prediction with probabilistic models called N-gram models, which predicts
the next word from the previous N - 1 words.[12] This n-gram model creates
Hidden Markov Model of N - 1 order. Which can be used for prediction
sequence of letter in language. By comparing n-gram model generated
from training corpus with model generated from unknown document, we can
estimate probability of document language or even a topic.
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1.3. Tokenization

1.3 Tokenization

Tasks in NLP often require breaking input text into meaningful substrings
- Tokenization. One type of these substrings is a word. This process can
take many forms, depending on the language being analyzed. For English,
a straightforward and effective tokenization strategy is to use white space and
punctuation as token delimiters. This strategy is simple to implement, but
there are some instances where it may not match the desired behavior. [13]

Another important substring is sentence, which shares similar problems
with word tokens in their identification. For English text, it is almost as easy
as finding every occurrence of punctuation like “.”; “?”; or “!” in the text.
However, some periods occur as part of abbreviations or acronyms.[13]

While punctuation characters are usually treated as separate tokens, there
are many cases when they should be “attached” to another token. The specific
cases vary from one language to another, and the specific treatment of the
punctuation characters needs to be enumerated within the tokenizer for each
language.[10]

Some of these problems can be solved by adding language specific rules
into tokenizer. Most of tokenization rules can be expressed using standard
and widely implemented language - Regular Expression (RegExp).

1.4 Regular expression

The regular expression is used for specifying text strings in all sorts of text
processing and information extraction applications.[12]

Formally, a regular expression is an algebraic notation for characterizing
a set of strings. Thus, they can specify search strings as well as define
a language formal way. [12]

Sample of RegExp used for matching number is displayed in Listing 1.1.
This RegExp matches beside simple integers English format of numbers (1/2
or 1,000.99). Diagram describing matching process (Figure 1.2) shows three
matching groups. These groups will be returned by RegExp engine when
RegExp is applied on a string and matched. Group #1 is number itself, Group
#2 is explicit sign of the number and Group #3 is its terminator. First group
is simple, ([−+]?) states for optional plus or minus sign is a group. Similar
matching is used in Group #3 ( ?(? : st|nd|rd|th)?) but this time we can’t use
bracket for defining list of possible patterns, instead we use vertical line symbol
(pipe). By grouping all possible suffixes into unnumbered group (defined by ?:
symbols at the beginning of the group) we can make this group optional using
question mark, which states for one or zero occurrences. Final, middle part
matches number digits. Its first part matches 1 and more occurrences of digits
from 0 to 9 ([0− 9]). Further it matches either number in formats (1,000.00)
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1. Introduction into NLP

1 (
2 ([−+]?) // Group #2

3 [0−9]+ // integer matching

4 ( ? : ( ? :
5 ( ? : [ , ] ? [0−9]{3})∗ //thousands

6 ( ? : [ . ] [ 0 − 9 ] + ) ? // floats

7 ) | ( ? :
8 [ / ] [0 −9 ]+) // fraction

9 ?)
10 )
11 (\ ? ( ? : s t | nd | rd | th ) ? ) // Group #3

Listing 1.1: English number matching regex

1 <( s c r i p t | s t y l e ).+?<\/\1>
Listing 1.2: RegExp matching style and script tags

or fractions or it skippes directly to Group #3 matching in case of small or
undivided integer number.

Figure 1.2: Diagram for number matching regex

Beside tokenization, regular expression has important place in document
cleaning. Many texts contain certain classes of character sequences which
should be filtered out before actual tokenization; these include existing markup
and headers (including HyperText Markup Language (HTML) markup), extra
whitespace, and extraneous control characters. [10] One example of HTML
cleaning RegExp is displayed in Listing 1.2, which matches all script or style
tags in page.

1.5 Stem and Lemma

A lemma is morphology root of a word; it’s the form that can be found
in dictionaries and represents all its forms - lexeme (Figure 5.4). Lexemes
are created from lemma by language rules, which are complex, sophisticated

6
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and with lot of exceptions. This makes automatic lemmatization - the process
of converting any lex to its lemma, a complicated problem. Lemmatization
is required in case of analyzing languages with rich language resources such
as Czech, Dutch or German.

A stem is an artificial root of a word created by removing suffixes and
prefixes. In contrast with lemmatization, creating stem from the word -
stemmatization, doesn’t require extensive processing resources by using simple
rules. The stemmatization is suitable for cases where deeper semantic meaning
is not crucial or for performance focused application. It is widely used for a
fulltext search.

Both of these methods are considered as content normalization methods;
mapping different forms of tokens describing same concept to single form.

1.6 POS tagger

POS tagging is critical step in many NLP applications, since it is important
to know what category a word is assigned to in order to perform subsequent
analysis on it.[18] POS tagger classify basic lexical category of words, like verb,
noun or adjective and even its subcategories. There are a number of part-of-
speech coding schemes, based on tagsets of between 40 and 200 tags.[12]

Figure 1.3: The University of Pennsylvania (Penn) Treebank Tag-set
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CHAPTER 2
Goals

The goal of my work was to create suitable web browser application capable
of extraction recipe information, like ingredients and their amount and
preparation steps, from any website in supported language without any server
side text processing. This goal can be represented by following requirements,
the application should:

• load and process web page within a second

• not load more than few hundred kB of external resources into users
browser

• identify ingredients, amount and preparation of a single recipe

• be capable of identification of a supported language

• process web page in browser, server should act as storage of application
code and dictionaries

Text categorization and extraction are common task in NLP, but existing NLP
stacks are not suitable for usage in browser, they would require additional
plugins to be installed in clients browser. Implementation of lightweight
and on browser focused library for NLP is necessary, which defines more
requirements for my work:

• it should be possible to use implemented library in other, similar NLP
application

• library should be extensible

9





CHAPTER 3
Problem analysis

Recipe extraction can be modeled as information retrieval task, which can
be solved by NLP methods. Most of these methods can be generalized
and implemented as generic tools, that are not limited to recipe extraction.
Standard approach in information retrieval is identifying important parts
of document, use database of word relationships to build some basic knowledge
about document.

3.1 Application structure

To avoid server side processing, these NLP methods have to be implemented
in a programming language interpretable by a browsers - JavaScript.
Since this problem requires document in various languages and because
of language dependency of NLP methods, language identification is required.
By identifying the language, loading of a language dependent parts of the
library can be delayed and only those that are required will be loaded. In order
to conditionally load parts of the library, the library has to be divided into
modules.

3.2 Document

Some wrapper of the document text should be implemented in order to provide
unified access to its content and metadata. HTML documents have to be
parsed and only meaningful content stored as a plain text. This way we can
process HTML and plain text documents using same tools. Because of possible
live changes of Document Object Model (DOM), restricted access to DOM
in some cases (e.g. userscripts, iframes), an HTML parser is required. One
possible approach is creating DOM in a memory and extracting content from
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3. Problem analysis

there. With this approach there is a problem with separating text content and
tags, while keeping track of relationship between these two. Other approach
is creating custom HTML parser without building DOM.

3.3 Annotations

Document’s metadata gained directly from input document or extracted using
NLP tools, has to be stored and have access to them provided. This metadata
can be implemented as a document annotations. The annotation has it’s
starting and the ending point within the document text, each annotation
has a type which defines its relationship to the document text and allows
easier filtering. Finally, the annotation implementation needs to provide
some key-value storage for storing an additional data with various structure.
Annotations are usually stored as a set, which provides filtering methods.
These filtering methods should return view of a filtered annotation set
implementing same methods as an original one, which allows additional and
effective filtering.

3.4 NLP toolkit

Implemented NLP tools should use interface provided by document and
annotations classes described above and should not access document in other
way. Using this approach results of these tools will be available as new
annotations and accessible by other tools.

3.5 Tokenizer

Document content needs to be divided into classifiable parts like sentences or
words. Tokenizer is a basic tool from NLP toolkit that has to be implemented.
It might be language specific and, thus it needs to be implemented in extensible
manner.

3.6 Gazetteer

Gazetteer is a word dictionary that provides various types of information
about contained words. Most common types of information are POS category
(e.g. noun, verb) and topic information (e.g. cooking, furniture). This
type of dictionary is necessary for understanding text at least in terms
of its categorization. Thus, a gazetteer of cooking related words is required.
Since I have access to database of recipes with ingredients and preparation
in separate columns I can build gazetteer using this data. Data in this database
doesn’t contain POS tagging, so I have to use some external tool to tag them.

12
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3.7 Stemmer

In order to minimize number of gazetteer I need to map different forms of same
word into a single form which would be stored in gazetteer. Usual approach
is using Stemmer. Some stemmers for JavaScript already exists and can
be used. I just need to implement unified interface to use stemmers from
different sources in the same way and in case of missing Asynchronous Module
Definition (AMD) interface, wrap stemmer code into AMD module.

3.8 Extraction

Recipe extraction will require identifying language of document, and loading
appropriate tools. After application of these generic tools onto a document,
a domain specific tools has to be executed. These tools will extend knowledge
about document entities and identify important ones. Extracted information
will be filtered in order to identify the content of the most important recipe
on the page.

13





CHAPTER 4
Implementation

4.1 Library

The library is developed in JavaScript, which is present in all nowadays
browsers, both mobile and desktop, doesn’t need to be explicitly allowed
by user like Java and provides stable cross-platform and cross-browser
Application Programming Interface (API) unlike C/C++ using Native Client
(NaCl). JavaScript is single-threaded event driven functional programming
language with prototypical inheritance. All JavaScript code on a single page
is executed within one thread and during it’s computing the web page is not
responding to user interaction. This forces developers to write application
that have very short execution time or splitting runtime into multiple short
time frames, in order to avoid long delays of user interaction events.

4.1.1 Compatibility

Proposed library was implemented using latest ECMAScript 6 (ES6) syntax,
which is not at the time of writing this thesis natively supported by any
browser. But thanks to thes nature of javascript, there are transpilers, source-
to-source compilers, which can compile an ES6 code into an ECMAScript 5.5
code; most feature complete are traceur developed by Google and babeljs.
These transpilers solves only syntax problems, for accessing new API features
like Promises or TextDecode we need to load polyfills. Polyfilling is technique
where missing standard native browser feature is emulated by the loaded
javascript code. Babeljs provides library polyfilling most of ECMAScript 6
features. Thanks to transpilers and polyfills, we can write a future javascript
code today without losing the support of older browsers. Hopefully in the
near future, the code we write today will work natively.
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4. Implementation

4.1.2 Modular system

Module system is a must-have for applications with multiple classes and
internal dependencies. Days when we wrote javascript code to the end
of the HTML document are long gone; nowadays complex application requires
complex structure. Modular system allows developer creating large libraries
and users cherrypick just the parts that they actually need.

ECMAScript 6 provides module system which works the same on the server
and in the browser. Each module imports its dependencies in header and
then publicates its API using export keyword. This library was originally
modularized using AMD which still is a strong module system but since ES6
syntax is much cleaner, can be compiled into AMD and CommonJS module
format and it’s the future of javascript I’ve migrated library to ES6 modules.
This allows using library as compiled library with single access point in global
scope (like jquery) or loading sources as dependency into users project and
importing only part that user need, automatically with all its dependencies.
The later usually leads to a smaller application code and cleaner global scope.

4.1.3 Used tools

Building and testing tasks are covered by gulp.js. This tool is JavaScript
equivalent of MAKE that is commonly used in C projects. It provides easy
to use command line interface and automate building and testing process,
which can be even automatically executed after each file save. These build
tools are especially useful for complex building processes, which usually
consists of code checking, linting, testing, transpiling, sourcemap generating,
bundling, minification and compression.

Testing Tests are written using mocha.js and should.js assert framework,
which allows fast, multi-browser testing in Behavior Driven Development
(BDD) style. Since tests are just a web page, they require browser to start
the test framework, that runs tests. Using test framework that allows testing
in any real browser is crucial in current state of Internet environment, where
web browser implements new feature on a daily basis and multiple browsers
in multiple versions exist simultaneously. I’ve chosen phantom.js as browser
that runs tests automatically in the background during development because
of its low resource impact, which is achieved by its headlessness, and fast
feedback which is provided directly into a terminal or a test console of most
Integrated Development Environment (IDE). To make sure that library is fully
tested, a cover test library called blanket.js is included within test suit. This
library provides overview of which lines of code were executed during testing.

Dependency management Dependencies are defined following Node
package manager (NPM) and bower standards. Bower is a tool for dependency

16



4.1. Library

management, developed by Twitter and is widely used in web developer’s
community. NPM is node.js packaging manager which is primarily used
for managing server side and desktop JavaScript libraries and application.
As NPM dependencies I’m listing desktop tools for testing and building, like
grunt, it’s tasks and bower. Listed bower dependencies are third party libraries
that are directly used by developed library and developing tools, like mocha
and blanket. Bower also defines this library as possible dependency, which
makes it easy to find and include in other projects.

Lodash is a javascript library implementing many useful generic functions.
Most known functions are the collection iterators and transformations: map,
filter, reduce, any. Some of these functions are built into the browser, despite
that, the lodash implementation takes their performance to maximum and it
is significantly faster then native version in most browsers. Since I’m doing
a lot of array operation, I’m using lodash for its performance boost. Using its
ES6 module version, I was able to cherry-pick only a few functions I needed
(map and filter) and define it as a dependency in files which need them.

4.1.4 Summary

In this chapter, I’ve explained why I used JavaScript and with which versions
is implemented library compatible. Described nowadays best practices
in JavaScript and how are these practices applied. Described dependency
management in the scope of project, application and development tools.
Library source code, documentation and showcase of few features is available
on the GitHub: ficik.github.io/nlpjs. Only dependency of this library is
lodash.
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CHAPTER 5
NLP Stack

The library I’ve implemented for generic NLP tasks is called nlp.js and is
available on github. Library is split into three parts, core, extras and helpers
(Figure 5.1). Each of this part contains classes which are defined using AMD
API, which way defines dependencies on each other.

Figure 5.1: Package hiearchy

• Core module defines documents, corpora and annotations and is purely
focused on loading documents, storing its data and metadata and
providing access to it.

• Extras module defines NLP tools which accesses and modifies
documents.

• Helpers module defines functions and classes used by both, core and
extras.

19



5. NLP Stack

Figure 5.2: UML diagram of core package

5.1 Documents and Annotations

Document and annotations are represented by the Document and
AnnotationSet classes respectively and primary structures of the core module
(displayed in Figure 5.2) and the library. This library follows pattern
commonly used in other NLP tools and wraps the processed document into
an object separating text of the document and the metadata. The annotation
set is created by the document and a user should never need to create
a new instance of the annotation using its constructor. Same rule goes
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5.1. Documents and Annotations

with annotation set. Since annotations can be created by providing necessary
informations about new annotation to the annotation set in a multiple forms,
there should be no need to create new instances of annotations manually. s

5.1.1 Annotations

Annotations are stored in annotation set which is bound with document
and provides methods for storing, removing and querying annotations.
Annotations and annotation set are the most important part of this library.
Most of the higher level methods in NLP work with annotations, instead of text
and uses results of lower level methods (e.g. tokenizer, stemmer), which are
stored as annotations and stores its results also as annotations.

Implemented annotation set acts as a collection that provides standard
filter, map and each method. All of these methods iterates over annotations
in left-to-right, top-to-bottom order, which provides a stable and easy
to understand interface for processing words in sentence, lines or sentences
in document e.i. Annotation set is most frequently accessed object in this
library, thus any further performance optimizations should start here. So
far I was satisfied with its performance when I was working with thousands
of annotations but it can be pushed way further by switching internal data
array for some sorted structure like a heap.

Some common filtering methods were added to simplify usage of the
library. There are methods for filtering by annotation type, first annotation
after specified position and annotations overlapping selection. The latest is
very important for queries like words of sentence or sentence containing some
word. These methods are just wrappers above more powerful filter method,
which can create filtered annotations set using any predicate provided as a
function.

5.1.2 Annotations querying

When implementing annotation set, I was thinking of developing regex-like
engine to query annotations, but syntax for such engine was either too
complicated to use or made engine too weak. This is because possible
overlapping annotations, user defined feature set and types. I decided not
to implement regex-like querying and instead I’ve implemented querying
methods directly into annotations, which provides reasonable syntax sugar,
and is easier to debug, since query is just a JavaScript call and provides all
the power of the annotation set. Following example 5.1 presents example
of rule, that can be written using this querying system. This example creates
new annotation of type amount (line 4) by finding number (line 1) followed
(line 2) by unit (line 3).
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1 annotat ionSet . type (’number’ ) . each ( func t i on ( number ){
2 var nextWord = number . next (’word’ ) ;
3 i f ( nextWord . f e a t u r e s . major == ’unit’ )
4 annotat ionSet . add ( number . s t a r t ,
5 nextWord . end , ’amount’ ) ;
6 } ) ;

Listing 5.1: Annotation se querying example

5.1.3 Document

Library provides Document class, that represents plain text document and is
responsible for loading, parsing and storing input document. It also provides
access to documents annotations in the form of the annotation set described
in previous paragraphs. Beside simple plain text document I’ve implemented
HTML document which extends plain text document by overriding setter
of its text property. Input document has to be converted into plain text to be
accessible by tools like Tokenizer, thus HTML document preprocess HTML
content and extracts all HTML tags which are further removed from document
text and saved appropriately as annotations into annotation set. This is done
by custom HTML preprocessor that works even on malformed documents.

5.2 HTML Document parsing

HTML documents contain a lot of additional pieces of information beside
document text, which are used as functionality of the website (javascript),
esthetic purposes (Cascading Style Sheets (CSS)) or developer’s tags
(comments). These bits of information are usually not relevant for text
mining purposes and can be removed. Most of HTML tags are used just
for the aesthetic purposes but some of them can serve as a line or block
delimiters. Since blank characters like new line, tabs or multiple spaces are
ignored in HTML and all of them are rendered as a single space, they become
useless for text extraction and can be replaced with a single space. Instead
of these blank characters I’m using some HTML tags. Most relevant tags
seems to be paragraph (p), list item (li) and table row (tr). All of these tags
renders inner text in most cases (on large enough screen) as a single line and
don’t share same line with other tags in this group. Other relevant tag is
a break line (br) which can break content of mentioned tags into two lines.
With missing new line delimiter, in HTML detection of these lines is crucial
to correct sentence and non-sentence parts tagging.
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Corpus

The final part of the core module is a corpus, which provides way of merging
multiple documents of different type or even another corpora into one object
that acts as a document. Corpus implements same interface as the document
and thus all tools that work with the document work with the corpus as well.
The main motivation for using the corpus is executing a statistical analysis
on a large amount of documents from multiple sources.

Figure 5.3: UML diagram of extras package

5.3 Tokenizer

Tokenizer is a part of the tokenizer module. It operates on any Document
or Corpus objects and saves its results into their annotation sets. Tokenizer
in root of extras module acts as a generic tokenizer for European languages.
In order to create language specific version, this generic tokenizer should
by extended and some of its methods or properties overwritten.

Tokenization is a process of extracting meaningful parts of text (tokens)
from input string. Most common token used in text-mining is a word, which
can be defined, for purpose of text-mining, as a string containing alphabetical
symbols which are separated from other words by punctuation of white
characters. In presented library, tokenizer class contains methods which take
document text as primary source and generates annotations of appropriate
type. Tokenization methods for word, number, time, sentence and line were
implemented.
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Word tokenizer generates tokens of type described above, but also identifies
and tags stop word. Stop words are language specific words that usually
have no meaning of their own (e.g. the, that, on, at), this process is
called Stopping. Stopping is commonly included feature in nearly every
text mining software package. The removal of stopwords is possible
without loss of information because of the large majority of text mining
tasks and algorithms, these words have little impact on the final results
of the algorithm.[practical] Exception is a phrase detection and thus,
implemented tokenizer doesn’t automatically remove stop words, but
only marks them.

Number tokenizer generates tokens that represent numbers, integers, floats
or fraction.

Time tokenizer generates tokens containing either date or time or even
duration. Type of the time token is also saved.

Line tokenizer is html specific. This tokenizer generates annotations
for visual lines of text from some HTML block tags.

Sentence tokenizer generates sentences, which are defined in current
implementation as a string that starts with capital letter and ends
with interpunction. It also contains list of common abbreviations ending
with a dot and uses this list to prevent incorrect sentence termination
after abbreviations. In case of html document additional sentence
correction is added, which takes advantages of line tokens. This fixes
sentence by moving start of the first sentence of each line to the start
of the line and moving start of the following sentences of that line to the
end of the previous sentence. This fixing method prevents incorrect
identification of the start of the sentence in case of an appearance of a
capital letter within the sentence.

5.3.1 Czech tokenizer

Czech version of tokenizer is derived from the generic one and extends
capability of number and date methods. It also provides Czech stop words
dictionary list of abbreviations to improve sentence matching.

5.4 Stemmer

In computer linguistic exists a need for mapping words to their base form.
Stemming is the process of normalizing related word tokens into a single
form. Typically, the stemming process includes the identification and
removal of prefixes, suffixes, and inappropriate pluralizations.[practical] Main
motivation for this is to decrease the size of the necessary dictionary and
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simplifying rules. As humans we have gained ability to create base form of any
word from our native language (Figure 5.4). In linguistics this form is called
lemma, unfortunately learning computer this ability of ours, lemmatization, is
very complex problem, which require extensive dictionaries and complex rules.
In order to bypass the need for large dictionary, we can use stemmatization,
which is a process of removing common suffixes and prefixes in order to get
root of the word. This root doesn’t have to match morphological root but
usually should give same root for similar word.

Figure 5.4: Word lemmatization

The stemmer class from the extras module represent a loader and abstract
class which should be extended by a real stemmer. Existing JavaScript
implementation of stemmer for Czech and English are ports of stemmers
in snowball language. These implementations are not defined as modules
and thus, they have to be wrapped and they become part of this library.
Stemmer interface requires implementation of a single method, which returns
stem of provided word. Interaction with a document like iterating over word
tokens and creating and adding annotations is handled by abstract class.

5.5 Hunspell based stemmer

An addition to snowball ports is my implemention of stemmer, which is based
on Hunspell spellchecker.

5.5.1 Hunspell

Hunspell is a tool for spellchecking which uses dictionary and rules. Each
word in the dictionary is associated with a group of rules that can be applied
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1 SFX P y i n e s s [ ˆ ae iou ] y
2 SFX P 0 ness [ ae iou ] y
3 SFX P 0 ness [ ˆ y ]

Listing 5.2: Sample from English hunspell aff file

on to the word to create new valid form of that word.
Rules are in format displayed in Listing 5.2. Each line can contain up

to one rule, which is tab separated list:

1. Rule generates word suffix (SFX) or prefix (PFX)

2. Class of the rule

3. Suffix/prefix to remove

4. Suffix/prefix to add

5. Precondition

Class of the rule is character that is used in dictionary to map words to its
class in ruleset. Each word can have more classes, but not all rules of its class
can be applied to the word.

Substitution Rule aguments 3 and 4 are used to generate new word from
dictionary form. First argument defines whether this substitution is applied
to prefix or suffix.

Precodition Dictionary word affix is tested against regex which is 5th
argument of the rule.

5.5.2 Rule based stemmer

Hunspell rules can be applied in reverse to create dictionary word from its
expanded form. If we consider dictionary words as the base form of the word,
which is how mosts hunspell dictionaries are created, we can create stemmer
by applying inverted version of rules:

1. Select next rule

2. Create stem from word by removing rules addition parameter from
the word

3. Add rules removal parameter to the stem

4. Test stem against precodition
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5. Accept stem if precontion holds, else reset word and repeat

This rule based stemmer works well on languages that don’t have many
colliding rules like english. Unfortunatly it doesn’t work well on languages
with complex affix system like czech. Stemmer quality on these languages can
be improved by reordering rules by strength of the precondition and length
of affix that has to be removed.

5.5.3 Combining with dictionary

Previous rule based stemmer can be combined with dictionary provided along
with the hunspell rules. By loading dictionary to the stemmer we can create
stemmer which either is lemmatizer or something very similar; this depends
on ruleset quality. The dictionary allows us to add two additional checks
to the previous stemmer. To accept stem, it has to exits in the dictionary and
the rule has to be applicable to the dictionary word. This additional check
eliminates problems with wrongly applied rules.

Unfortunately now we have a problem with the size of the dictionary,
the czech dictionary is 4MB file containing more than 300 000 words. To
reduce its size we can test it against dataset of words we will be stemming.
And by counting each word and rule that has been used, we can eliminate large
part of the dictionary, leaving us with just few thousand even if we accept all
words that appeared at lease once.

5.5.4 Summary

Implemented stemmer generator is capable of creating a rule based stemmer
from a hunspell affix file, which is suffient for languages with a simple affix
system. It is also capable of loading a hunspell dictionary file. It can compute
model usage and using this statistic significantly reduce size of model or
reorder rules.

5.6 N-Gram

N-gram is a sequence of n items from input. These items can be for example
letters or words. In my implementation I’m using n-grams as a sequence
of letters, while replacing punctuation with spaces, removing non-alphabetical
symbols and trimming repeated white characters. This way I’m generating list
of n-grams for desired values of n. By computing frequencies of n-grams we
create Markov model of (n-1) order. Which can be used for text categorization,
authorship detection or language recognition.
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Figure 5.5: UML diagram of helpers package

5.7 Bayesian classifier

Bayesian classifier is machine learning algorithm base on Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)

I’ve implemented näıve Bayes classifier with smoothing constant. This
classifier can determine most probable class for given set of features. But
first, the classifier must be trained. During training process, classifier is fed
with classified features and number of occurrences of each feature in each class
forms the classification model. This model can be stored as JavasSript Object
Notation (JSON) and later reloaded.

During classification, classifier uses trained model and Bayes’ theorem
to calculate probability of feature set being given class. For solving following
equation we need to know the probability of a feature set while it’s given class,
the probability of the class and the probability the feature set itself.

P (class|featureSet) =
P (featureSet|class)P (class)

P (featureSet)

Probability of the feature set while it’s given class can be estimated
by using data from a training set. It’s a number of occurrences of the features
set, while classified as the class. But since occurrences of each feature is
saves separately we need to calculate probability of the whole set. In order
to do this, we need to assume that occurrences of features are independent.
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With this assumption, we can multiply probabilities of each feature to form
feature set probability.

Smoothing constant Calculating feature set probability by multiplying
probability of each feature can very easily yield zero probability; it’s
caused by adding probability of feature that wasn’t in the training dataset.
To overcome this problem, we can assume that each feature can appear
in any class. This can be done by adding smoothing constant to all feature
occurrences, even those that wasn’t seen before.

Probability of class can be estimated by counting trained documents
of given class. It can be also set manually from other external observation.

Probability of feature set can be also estimated from number
of occurrences of features in any class, but since the classifier selects the most
probable class of the same feature set and it doesn’t care about its actual
probability, we can skip this computation and just use numerator of the
probability.

5.7.1 Summary

I’ve implemented näıve Bayes classifier which can be used on both annotations
and text, or even their combination. It can be used to determinate most
probable classification of given feature set.

5.8 Other support classes

5.8.1 Frequency helper

Frequency is a simple object with methods for counting occurrences of some
item or items key within an array and provides this information as an
array. It also provides methods for filtering array by comparing its frequency
profile with other arrays. These methods are useful for various applications
of frequency analysis. It was for example used for generating dictionary from
recipe database and filtering it using background corpus.

5.9 HTTP helper

Similar HTTP helper is present in most frameworks and in order to establish
common access to resources on server like dictionaries and statistical model.
This method wraps Asynchronous JavaScript and XML (AJAX) call and
returns JavaScript Promise object that is later fulfilled with result data from
the server. This helper is currently subject to change and will be probably
replaced with external http module.
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5.10 Distances

5.10.1 Hamming distance

Hamming distance is one of the most known string metrics, thus it’s also part
of the library. This distance is defined for strings of the same length as number
positions with different characters. It’s not defined for strings of a different
length.

5.10.2 Levenshtein distance

Levenshtein distance also known as edit distance is string metric defined
as minimum number of insertions, deletion and substitution required
to transform one string to the other. Library contains weighted version of this
distance, which allows set cost of each operation. Static method of Levenshtein
object uses standard version where cost of all operation - insertion, deletion
and substitution is set to 1. Instantiation allows to set these costs.

5.10.3 Gazetteer

Gazetteer is a list of words that belongs to some category, which are used
for adding meaning to a words in a corpus; for example list of countries,
cities, important names. Since most of these lists are formated as a text file
with one term on each line, I’ve decided not to implement a parser (it’s just
spliting a string on the newlines).

Instead, I’ve implemented a class that applies a gazetteer provided as a
list of words onto the corpus and enhancing the feature set of annotations
in it by provided features. Word matching is done using both text and stem
if available. To allow word deviations like misspelling or different affixes, I’ve
added support for string metrics. Default metric is Levenshtein distance which
can be overridden by providing it to the constructor; any object with distance
method can be used.

5.10.4 SPARQL Wrapper

Simple Protocol and RDF Query Language (SPARQL) is a Resource
Description Framework (RDF) query language, which querying RDF
databases like dbpedia. Using this language and public SPARQL endpoints,
the browser application can request additional information about processed
content. Which can be very powerful tool for enhancing user experience.

Implemented wrapper provides simple interface to define SPARQL
endpoint and query it using AJAX or JSON with padding (JSONP) (in case
of missing Cross-origin resource sharing (CORS) headers). It also provides
simple query wrapper, which at its current form simplifies prefix management.
This allows creating enhanced endpoint specific versions of endpoint wrapper.
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One of these is implemented dbpedia wrapper, which automatically sets
connection parameters for any dbpedia language mutation and adds some
of the most common prefixes into query.

5.11 Summary

In this chapter I’ve described implemented library that can be used in any
corpus linguistic application in a browser or on a server. I’ve described basic
functionality of core of this library (document and annotations), presented
implemented annotation querying system, which was chosen instead of custom
regex-like solution. I’ve also explained problems and possible solutions
of HTML document in text-mining.

I’ve also described implemented tools that recipe extraction was build on -
Tokenizer, Stemmer and N-Grams. And explained how these tools access
document and how their results are stored.
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CHAPTER 6
Recipe Parser

6.1 Language identification

Language identification is another common task in NLP. There are many
approaches to this task, they often use some diacritics and special character
sequences detection.

N-Gram document profile Most approaches use low order n-gram
models. One possible approach is creating n-gram frequency profile from
the training set. Frequency profile is a list of n-grams sorted in descending
order by their frequency. This frequency profile is generated for each language
we want to identify. In order to classify document, frequency profile of the
document is created and compared to profiles generated from the training
set. Comparison is performed by computing distance of each n-gram from
classified document to the same n-gram in language profiles.

Profile distance Distance is defined as a difference in position (rank)
in profiles. Distance of profiles is a sum of distances of all n-grams from input
document. Language is identified by selecting language profile with the lowest
distance. Size of language profiles can decreased by taking only top k n-grams.
Dropping least frequent n-grams from profile have just a little impact on profile
accuracy because of their low frequency. Speed of decrease of occurrence
frequencies of n-grams according to their rank can be observed on Figure 6.1;
for easier distinguish between language profiles is x axis in logarithmic scale.
From total of 74,000, 108,000 and 98,000 n-grams extracted from English,
Czech and Slovak corpora respectively, the frequency of first 300 1-5-grams
occurred in 35-40%. Fast decrease of frequency can be explain by Zipf’s law,
which states for rank n and Pn probability of occurrence of the word at rank
n and language specific a very close to 1:
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1 {
2 "cs" : "_|e|a|o|n|t|r|k|p|i|l|v|s|m|d|c|u|e_|y" ,
3 "en" : "_|e|a|t|i|s|o|r|n|l|c|d|h|e_|p|s_|u|m|g" ,
4 "sk" : "_|e|a|o|n|i|r|k|m|t|s|v|p|l|d|c|y|a_|u"

5 }
Listing 6.1: Language profile JSON

Pn ∼
1

na

Figure 6.1: Frequencies of n-grams according to their rank

Generating language model According to experiment performed
on Usenet posting by Cavnar using only 300 top n-grams (n = 1-5) can
achieve 99.8% accuracy. [7]. Inspiring by cavnar’s experiment I’ve created
language profiles for czech, english and slovak using 300 most frequent n-
grams (n = 1 - 5). These profiles are saved as a JSON file (example of these
saved profiles containing 19 most common n-grams is shown in Listing 6.1)
which require only about 1kB per language and even less if the profile is
compressed with gunzip. Language profile was generated from 20 web pages
for each language.

Identification process Before identifying document language a JSON
containing language profiles is loaded and transformed into a map with n-
gram as a key and its rank as a value (example available as Listing 6.2). This
transformation speeds up lookup times, which can be assumed as constant
(O(1)). And language profile for document is generated and trimmed to top
300 n-grams. For each n-gram in this profile distance is calculated from same
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1 {
2 cs : {
3 "_" : 0 ,
4 "e" : 1 ,
5 "a" : 2 ,
6 . . .
7 } ,
8 en : {
9 "_" : 0 ,

10 "e" : 1 ,
11 "a" : 2 ,
12 . . .
13 sk : . . .
14 }

Listing 6.2: Transformed language profile

the n-gram in each trained profiles, in case of missing n-gram in language
profile, distance is considered maximal, which is equal to size of profile - 300.

Distances are summarized for each language and divided by number
of n-grams in document profile, this way we receive information about
average n-gram distance, which does not depend on a number of n-grams
in profile. In standard n-gram language identification language with the
lowest profile distance is considered a document language, because they expect
to have profiles for all languages it would classify. I’ve added threshold and
requirement to have average distance lower than this threshold. In case
of larger average distance I consider identification unsuccessful and document
language out of training set.

Estimating threshold To estimate threshold and size of the training set
I’ve compiled collection of 100 web pages from various sources for each
supported language and one set containing few unsupported languages, Polish,
German and French. In order to estimate reasonable threshold value, I’ve
tested all files in collection tested various values of threshold and counting
success rate. Figure 6.2 dependency of success rate on threshold value.
Language identification is most successful for values of threshold from 175
to 178 and classified 98% of documents in test suite correctly. For higher
values more false positives appear and documents in unknown language are
incorrectly classified as one of the supported languages. For lower values
more documents of known language are incorrectly discarded as an unknown
language.
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Figure 6.2: Estimation of threshold

Figure 6.3: Estimation of size of training set

Estimating the size of the training set In order to estimate the size
of the training set I’ve run similar test to the one for threshold estimation.
This time I’ve fixed threshold at 178 and I was changing number of documents
used for training. Average document in training set has around 500 words.
In terms of n-grams more is always better, as display in Figure 6.3 language
model starts stabilizing around 20 documents and with 24 documents model
achieved more than 99% accuracy on testing set.
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6.2 Recipe extraction

Extracting recipe is split into several steps.

1. Language identification

2. Tokenization and Stemming

3. Bayes classification

4. Grouping preparation and ingredients

5. Noise removal

6. Amounts extraction

7. Validating recipe quality

Language identification Web page language is identified by using n-gram
ranks comparison. For supported languages appropriate gazetteer, stemmer
and tokenizer are selected.

Tokenization and Stemming Language specific tokenizer is applied
onto the document, which generates annotations for words, numbers, lines,
sentences and time. Each word is processed by language specific stemmer,
which adds word stem as annotation feature.

6.2.1 Bayes classification

Bayes classifier was trained on recipes from Czech recipe database sRecepty.cz.
This site contains nearly 4000 recipes annotated with microdata, which served
as good source of classified data. I’ve extracted these recipes and saved them
as json files so I can rerun next steps without loading thousands of file html
documents into memory and parsing them.

Background data was extracted from Czech dbpedia, which is linked data
version of wikipedia. Thus, its data can be requested by SPAQL, which made
easy to download abstracts of 500 pages linked from Food resource and it’s
children.

For generating bayesian model I’ve created generator class accepting
recipe extractor, which serves as the middleware between the generator and
documents. For the Czech model I’ve used json version of the extractor which
provides generator with preparation and instructions from json files.
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Creating stemmer In order to generate memory efficiently classifier model
I had to stem the input. To do so, I’ve used the Hunspell stemmer and
provided it with Czech affix file and dictionary used in OpenOffice. Then,
I’ve optimized the stemmer by removing unused words and rules by testing it
against sRecepty database.

Creating classifier The classifier classifies features into 3 classes -
ingredients, preparation and background. Stemmed words of each block,
excluding numbers, were used as the input features for the classifier. Classifier
model and stemmer state were then saved as json file.

6.2.2 Classifying document parts

Classifier is executed on each line and sentence of the document to classify
lines as ingredients and sentences as preparation step. Resulting probability
numerators along with confidence are saved as annotation. The confidence is
defined as probability numerator of positive class divided by sum of probability
numerator of background and positive class. Background class was chosen
as the negative class, because I’m interested whether the feature set should
be a part of the recipe or not.

Preparation problems A lot of recipes contain instruction to do something
with a lot of ingredients, like put them into bowl and mix them. To improve
classification score of these sentences I’m adding part of the ingredient score
to the preparation. To do so I’m allowing preparation to be maximum
of preparation score and average of preparation and ingredient score.

6.2.3 Ingredient amounts

From each ingredient line is extracted amount, which can be either fully
defined amount as number and unit or just unit or number. Value is set
to 1 when no amount was found in the line.

6.2.4 Creating blocks

For completing recipe I’m bulking recipe parts into blocks - list of ingredients
and preparation steps. These blocks are created bulking parts that are close
to each other, which helps to remove noise (e.g. some sentences in comment
section). Maximum distance between parts in block is three time size of the
added part. This distance was determined by testing it on hundred recipes.
After creating blocks, parts with confidence value lower than 0.99 are removed.
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6.2.5 Pairing ingredients

The Final step of recipe extraction is pairing ingredients with preparation
step. For each block from previous step is calculated overall weight, which
represents a significance of the block in the page. This weight is calculated
as the median confidence value multiplied by the logarithm of number of its
parts. This weight express a need for both quality and amount of information.
The Logarithm in the equation expresses quickly decreasing need for more
information while confidence express the constant need for quality.

Each ingredient block is matched with each preparation block and for each
pair is computed as an overall weight of the pair. This process is presuming
that ingredients and preparation steps are usually close to each other on the
page and favors these pairs. The pair weight is computed by multiplying
the inverted value of a logarithm of their character distance and sum of the
overall weight of ingredients and preparation. This final value represents
the significance of the recipe in the page.

6.2.6 Validating recipe quality

Recipe parser doesn’t use any pre-flight recipe detection algorithm. Instead,
it tries to extract recipe from the page and then test if the extracted recipe
is good enough. To accept extracted recipe as a valid one, the recipe must
contain at least two ingredients and one preparation step, also confidence value
of recipe parts has to be more than 0.99.

6.2.7 Summary

In this section, I’ve described steps of implemented recipe parsing algorithm.
The algorithm identifies the language, uses optimized Hunspell stemmer and
language specific tokenizer to prepare the document and classifies its segments
by trained Bayes classifier. Finally, it aggregates classified parts and merges
them into a single recipe, representing most significant recipe on the page.
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CHAPTER 7
Application

The application is available on github.com/Ficik/recipes along with link
to demo application and documentation, which are hosted on github pages:
ficik.github.io/Recipes.

7.1 Using Application

7.1.1 Interface of Demo Application

Web application allows user to upload an HTML or submit link to online
page. Provided page is parsed and its textual form is displayed in the
right panel while parsed recipe is displayed in the left panel tagged
with schema.org/Recipe microdata. If no recipe is parsed, application reports
this information in the top right notification space and leaves the left panel
empty.

Currently, the only fully supported language is Czech, but the application
is also capable of recognizing English and Slovak language. Language code
of recognized language is displayed just next to the headline in the left panel.

Application displays notifications in top right corner, informing the user
about current processing status and errors.

Browser support This demo application is not meant to be used by the
end-user. The end user is expected to use the bookmarklet version of the
parser. Thus, this application wasn’t optimized for older browsers and was
tested only in the latest versions of Google Chrome and Firefox. Because
Internet Explorer and mobile browsers lack TextDecoder API, the upload
feature is limited to utf-8 encoded documents only.
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Figure 7.1: Demo application interface

URL fetch support The application is pure client-side javascript
application and due to CORS it cannot directly fetch pages from other
domains. To bypass this limitation, application queries cors-enabled Yahoo
API to fetch the webpage for it. Unfortunately some pages (for example those
hosted on Amazons’ AWS) block this Yahoo service.

Problems with encoding and URL fetching exists only in demo application
and not bookmarklet and for that reason it’s not necessary to solve them.
The problem with encoding doesn’t exist because the bookmarklet reads
already by browser decoded HTML. The CORS problem also doesn’t exists
because the bookmarklet doesn’t need access to 3rd party domain and its own
code is loaded by a script tag to which the CORS restictions are not applied.

7.1.2 Bookmarklet

The demo application has green bookmarklet button which can be dragged
into browser bookmarks. A bookmarklet is javascript code that can be saved
in users bookmarks and execute on any page by clicking on it in the
bookmarks. This is possible thanks to the javascript pseudo-protocol which
allows interpreting a link starting with ’javascript:’ as javascript code.

In this case, the bookmarklet code adds new script element, which loads
recipe parser and the result presentation code. After loading, the parser code,
the browser executes it and the application starts the parsing process. After
a few hundred of milliseconds, a result window is displayed informing the user
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7.1. Using Application

Figure 7.2: Bookmarklet overlay showing recipe

whether the page contains recipe and if so, it displays its ingredients and
preparation steps.

After closing the result window, all globals and DOM elements that were
added by the script are removed.

Browser extension Today, bookmarklet is a universal way to create
browser extension, even though they require manual user invocation. Same
code used in the bookmarklet, with some additional boilerplate can be used
to create native Google Chrome or Firefox extension. These browsers allow
user to write browser extensions in javascript and after packing them into
zip package with defined structure and manifest, they can be uploaded
to extension stores.

Main advantage of browser extension is automatic invocation on specified
pages and that they don’t require server to serve application code. The later
is especially useful for storing larger models, since user is no longer limited
by their bandwidth and only their memory.

The main disadvantage is requirement of having multiple codes to support
multiple browser. The ES6 module system and build tools like gulp or grunt
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7. Application

1 npm i n s t a l l −g bower gulp
2 npm i n s t a l l
3 bower i n s t a l l
4 gulp bu i ld
5 gulp

Listing 7.1: Installation process

makes this task way easier than it was in the past, but it still doesn’t solve
the problem with browser without javascript extension support.

7.2 Installation

Node.js is required and git recommended for setting up own copy
of application. Installation process listed on Listing 7.1 is quite standard
in web development. Node.js installation package contains package managing
tool - NPM. Using this tool install globally package manager for frontend
- bower and task runner - gulp (line #1). Then install locally application
build dependencies. Dependencies are listed in package.json (line #2). Then
install runtime dependencies by bower. Finally, either build application into
dist directory (line #4) or start local Hyper Text Transport Protocol (HTTP)
server and watch for changes in application code to build it (line #5). The later
rebuilds affected parts of code on each file change and reloads web page
in browser after build.

Application root is in dist directory, It should be possible to run application
just by opening index.html in this folder but not all features are supported
on file protocol (ajax and bookmarklet), thus HTTP server for serving files
from this directory is required. Using gulp for serving files is recommended,
but not required.

7.3 Building your own model

The main part of the recipe parser is a model that contains parser, stemmer
and classifiers configuration. This model can be generated by a script like
build.js. This sample script loads HTML files of Czech recipes as training
files into the model generator, provides it with a Hunspell dictionary and affix
files and creates an instance of RecipeParser. Finally, configuration of this
instance is serialized into a JSON file in the dist directory.
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7.4. Summary

7.4 Summary

In this chapter, I’ve presented demo user interface and a bookmarklet,
which represents a primary way the end-user will interact with the presented
application. Described bookmarklet place in the browser extension world and
noted its potential to be built as a browser extension. Finally, I’ve covered
how to install the application and how to use it as a developer.
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CHAPTER 8
Comparation with NLP

toolkits

The application for extracting recipes is built on the top more general library
- NLP.js; which is meant to provide web developers with NLP tools. Like
other NLP toolkits provides tools like tokenizer, stemmer, classifiers.

8.1 Annotation oriented

Tools like python NLTK or nodejs Natural, which acts as toolkit and provides
NLP tools operating with basic datatypes like stings, arrays and maps. On
the other hand NLP.js is based on its Document and Annotation objects,
which are heavily inspired by java NLP tool GATE, and most operations are
recommended to be done on top of these abstractions. They were created
to provide unified interface for querying and saving results. This allows
developer creating more complex tools, that can take results of other tools
in account.

The other javascript implementation of NLP tools is Natural. But unlike
Natural, my implementation doesn’t depend on any nodejs library.

Document and Annotation objects have small interface and they can
be easily extended. And thanks to duck typing instead of strong type checking,
it’s even possible to use custom implementations.

8.2 Available tools

For now the NLP.js offers just a subset of tools that offer older libraries.
Current list contains following tools:

• HTML parser
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8. Comparation with NLP toolkits

• Bayes classifier

• NGram classifier

• Adaboost classifier

• Czech and English snowball stemmer

• Huspell based stemmer generator

• Word frequency analyzer

• Generic and Czech tokenizer

• Accent removal tool

• String metrics

8.3 Platform limitations

This library is not intended to compete with desktop solutions, but should
act as their companion, by provided way to use models generated from corpus
of hundreds or even thousands of documents in client browser where they can
be used on small set of documents.

Disadvantages Application is limited by its platform, where only one
thread is available and all data has to be in memory and access to external
resources is limited to HTTP requests with CORS restrictions. These
limitations render this application unsuitable for processing megabytes
of documents, because of no direct access to file system, and thus no
effective way to text stream processing. It’s also not suitable for application
with extensive database lookups, because of limitations and low efficiency
of AJAX calls.

Advantages On the other hand this solution is suitable for application
which requires limited data exposure, because of data privacy policy. It
can also help with decreasing required server processing power and so
the production cost in case of large amount of simple text mining tasks.

Changes in future Some of the disadvantages might disappear in the
future with new API provided by browsers. For example the connection
to the external database for extensive entity querying might be more efficient
with HTML5 WebSockets, which would keep open connection for querying.
For frequently used applications a database of a few megabytes of data can
be stored in HTML5 localStorage. Access to file system might be solved with a
new HTML5 FileAPI.
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8.4. Summary

The technologies rapidly implemented by browsers can solve problems
with sizes of database and corpus, and add new possible use cases, but
one problem won’t be probably solved. The JavaScript is single threaded
interpreted language and this will always limit its performance.

8.4 Summary

The proposed library is not a direct competitor for desktop NLP solutions,
because of current platform limitations. Even though, the application provides
a developer with a set of frequently used tools in NLP applications. Same tools
that are provided by server-side solutions, like Native, NLPTK or GATE.
It is inspired by GATE Document with Annotations structure and provides
a similar interface.
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CHAPTER 9
Results

9.1 Application

9.1.1 Library

Generic library is available for use and extension that provides stable and
easy to understand API. This library covers basic needs of corpus linguistic
and text mining purposes. It can be easily extended either by forking
library on github1 or creating external library listing this one as dependency.
The library currently covers plain text and HTML document processing,
tokenizing, stemming of Czech and English words and n-gram calculations.

9.1.2 Language identification

The application built on implemented library is capable of identifying language
of a web page containing a recipe. During testing with 400 pages containing
recipes in both supported and unsupported languages, application achieved
99% accuracy.

9.1.3 Recipe extraction testing

In order to test the success rate of extraction process I needed tagged data;
Recepty.cz is another largest Czech recipe website, that tags its recipes
with Microdata. I’ve downloaded 200 recipes from this page and created test
suite by extracting ingredients and preparation steps using both implemented
Microdata extractor and my application. Results of both methods were
cleaned by trimming additional spaces and concatenated. Finally, the distance
between ingredients and preparation blocks were computed using Levenshtein

1https://github.com/Ficik/nlpjs
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9. Results

distance. Levenshtein distance or minimal edit distance computes minimal
number of edit operations, adding a character, removing a character, replacing
a character, that are needed to transform one string to the other.

Figure 9.1: Distribution of lengths of blocks of ingredients (left) and
preparation (right)

Accuracy Testing showed very good
accuracy when classifying the ingredients (Figure 9.2). I’ve set a threshold
for the correctly classified ingredient to 5 as I didn’t manage to fully clean
data returned from the extractor. Correctly classified were 169 recipes from
200 (84.5 %). Additionally, I’ve counted classifications that were extremely
off; by at least one-third of the length of correct classification. These cases
where parser extracted something else then required recipe was 6 %. This
leaves 9.5 % of misclassifications where only some ingredients were extracted.

For the preparation steps, I’ve set the threshold for correct classification
to 15 edits since average preparation is 3 times longer than average ingredients.
This returned 82 % accuracy. I’ve also calculated classifications that were
completely wrong, the same ways as I did for the ingredients. This resulted
in only 12 completely wrong classification (6 %).

False positives Detection capability was tested using 200 random pages
from Wikipedia, newspapers and blogs. Application successfully reported that
page doesn’t contain a recipe in 186 cases. Thus, its success rate on tested
sample was 93 %.

Performance Figure 9.4 displays time necessary for extraction process
with respect to raw document size. As we see average document size was
around 29 kB and they were processed within 67 ms on average on a single
thread of 2.4GHz processor. Loading resources vary on the Internet connection
and thus loading times were not included in results, but since the worst
time in was around 200 ms and resources needed to load were 200 kB,
this application should process average document under a second with any
nowadays Internet connection. The application is small enough to stay in the
browser cache which can, with proper server setup, result in zero loading times.
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9.1. Application

Figure 9.2: Histogram of Levenshtein distances of ingredients from desired
result

Figure 9.3: Histogram of Levenshtein distances of preparation from desired
result
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9. Results

Figure 9.4: Processing times with respect to size of parsed document
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Conclusion

I’ve successfully developed library capable of detecting and extracting recipes
from the web page, with a decent success rate. Extracted recipe is presented
to a user in modal window annotated with microdata. I was able to minimize
the size of the application and necessary dictionaries, I was able to get
it in 200kB using stemming, and available compression. This size allows
reasonable loading times on any today’s internet connection. The application
is capable of processing average web page within hundreds of milliseconds
which is, from a user perspective, almost instant. Along with recipe extraction
the application I’ve developed a library which can be used for similar text
mining applications. This library is distributed using nowadays standard
distribution tools and modern module system. Library contains a subset
of most important tools available in desktop toolkits like Natural.js and
NLPTK - multiple classifiers, string metrics, stemmers, tokenizers and HTML
parser. Due to the simplicity of gazetteer formats, there was no need
to develop parser for them, instead I’ve implement tool for their application.
Library contains third party stemmers, based on a snowball, for Czech and
English as well as my implementation of Hunspell based stemmer.

Future extension

Missing tools Implemented library is still missing some important tools;
one of those are POS tagger and language versions of existing tools. Next
step is to add or integrate these features.

Understanding of the content The document is already annotated
with lexical categories, next step would be building relations between words.
The very first step would be forming a relation between subject and verb. This
relation is one of the basic elements for rules creation; which is fundamental
of semantic analysis.
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Conclusion

Personal gain

By writing this thesis and implementing this application and library,
I’ve extended my knowledge in NLP domain and gained experience
in implementing complex text mining application. Additionally, I’ve created
a library that will be implemented in near future into a social network and
used daily by thousands of people.
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<http://corpus.canterbury.ac.nz/index.html>

[18] Pustojovsky, J.; Stubbs, A.: Natural Language Annotation for Machine
Learning. Sebastopol: O’Reilly, 2013.

[19] Russell, M. A.: Mining the Social Web. Sebastopol: O’Reilly, 2011.

[20] Wasserman, S.; Faust, K.: Social Network Analysis: Methods and
Applications. New York: Cambridge University, 1994.

58



APPENDIX A
Glossary

JavaScript Programming language used mostly in web browsers.

Microdata Microdata provides semantic information about content
of HTML tag by referencing to type of the tag content defined URI.
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APPENDIX B
Acronyms

AJAX Asynchronous JavaScript and XML.

AMD Asynchronous Module Definition.

API Application Programming Interface.

BDD Behavior Driven Development.

CORS Cross-origin resource sharing.

CSS Cascading Style Sheets.

DOM Document Object Model.

HTML HyperText Markup Language.

HTTP Hyper Text Transport Protocol.

IDE Integrated Development Environment.

JSON JavasSript Object Notation.

JSONP JSON with padding.

NaCl Native Client.

NLP Natural Language Processing.

NPM Node package manager.
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Acronyms

POS Part-Of-Speech.

RDF Resource Description Framework.

RegExp Regular Expression.

SPARQL Simple Protocol and RDF Query Language.
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APPENDIX C
CD content
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