
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Automatic User Interface Generation
Doctoral Thesis

by

Miroslav Maćık

A thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

Ph.D. program: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Prague, January 2016

ii

Thesis Supervisor:
prof. Ing. Pavel Slav́ık, CSc.
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague

Copyright c© 2016 by Miroslav Maćık

Abstract

The development and broad public dissemination of modern information and com-

munication technologies implies a need for new requirements to corresponding user

interfaces. There is a significant rise of diversity in physical form-factors of interac-

tive devices, as well as the underlying software platforms on which those devices are

based. The vast majority of present society, including people with special needs, re-

quires access to modern information technologies. This trend represents a challenge

for corresponding user interface technologies. Corresponding technologies should of-

fer a sufficient level of adaptivity and context-sensitivity while preserving reasonable

development costs.

The requirements for this dissertation thesis have been coordinated with the

results of an extensive survey of the state of art in this field. Our approach repre-

sents a method for context-sensitive automatic user interface generation. It relies

on several methods introduced in the framework of this thesis. Our method for

the user interface description and delivery supports consistent models on different

levels of abstraction, as well as a seamless integration of the individual components

of our system. As part of our approach, we suggest a context model that reduces

development and maintenance complexity by the introduction of a concept of con-

sistent independent sub-models. Our automatic user interface generation method

uses optimization techniques to provide usable resulting user interfaces, minimizing

the user effort required. The validity and efficiency of our approach are supported

by an evaluation based on user studies, as well as an analysis of development efforts.

Furthermore, this dissertation thesis describes a number of practical applications of

our approach.

Keywords: Automatic User Interface Generation, Context Model, User Interface

Description Language, User Interface Delivery, Model-Based User Interface Design,

Optimization

iii

iv

Abstrakt

Vývoj a široké rozš́ı̌reńı moderńıch informačńıch a komunikačńıch technologíı před-

stavuje nové požadavky pro souvisej́ıćı uživatelská rozhrańı. Je patrný nár̊ust di-

versity r̊uzných interaktivńıch zař́ızeńı jak co se týče jejich fyzické formy, tak i

softwarové platformy, kterou tato zař́ızeńı využ́ıvaj́ı. Převážená většina dnešńı

společnosti vyžaduje př́ıstup k moderńım informačńım technologíım a to včetně lid́ı

s nejr̊uzněǰśımi postižeńımi. Tento trend představuje výzvu pro souvisej́ıćı technolo-

gie pro uživatelská rozhrańı. Tyto technologie by měly nab́ıdnout dostatečnou mı́ru

adaptivity a přizp̊usobeńı se kontextu použit́ı při současném zachováńı rozumných

náklad̊u na vývoj.

Požadavky na tuto dizertačńı práci byly koordinovány s rozsáhlou studíı stávaj́ı-

ćıch řešeńı v této oblasti. Navržehé řešeńı reprezentuje př́ıstup pro automatické

generováńı uživatelských rozhrańı zohleduj́ıćı kontext použit́ı. Tento př́ıstup záviśı

na několika metodách představených v rámci této dizertačńı práce. Naše metoda pro

popis a doručeńı uživatelských rozhrańı podporuje konzistentńı modely na r̊uzných

úrovńıch abstrakce stejně tak, jako konzistentńı integraci jednotlivých komponent

našeho systému. Jako součást našeho př́ıstupu jsme navrhli kontextový model,

který snižuje složitost vývoje a údržby prostřednictv́ım konceptu konzistentńıch

nezávislých podmodel̊u. Naše metoda pro generováńı uživatelských rozhrańı využ́ıvá

optimalizačńıch technik tak, aby výsledná uživatelská rozhrańı vyžadovala co nej-

menš́ı úsiĺı od svých uživatel̊u. Správnost a efektivita našeho př́ıstupu je podpořena

ověřeńım založeným na uživatelských studíıch a na analýze úsiĺı nutného pro vývoj.

Tato dizertačńı práce dále obsahuje několik praktických př́ıklad̊u použit́ı našeho

př́ıstupu.

v

vi

Acknowledgements

This research has been partially supported by the Technology Agency of the Czech

Republic under the research program TE01020415 (V3C - Visual Computing Com-

petence Center).

This research has been partially supported by Technology Agency of the Czech

Republic, funded by grant no. TA01010784 (Form Cloud).

This research has been partially supported by the Czech Technical University under

grant no. SGS13/213/OHK3/3T/13.

This research has been partially done within project Automatically generated user

interfaces in nomadic applications founded by grant no. SGS10/290/OHK3/3T/13

(FIS 10-802900).

The research has been partially supported by project VITAL funded by the sixth

Framework Program of European Union under grant FP6-030600 (VITAL).

This research has been partially supported by project i2home funded by the sixth

Framework Program of European Union under grant FP6-033502 (i2home).

vii

viii

ix

Dedication

To my parents.

x

Contents

List of abbreviations xv

1 Introduction 1

1.1 Motivation . 3

1.2 Dissertation thesis objectives . 4

1.3 Structure of this thesis . 5

2 Background and Related Work 7

2.1 User Interface generation approaches 8

2.2 Input for automatic User Interface (UI) Generation 18

2.3 UI description languages and UI delivery 22

2.4 Context model . 25

2.5 Automatic UI evaluation . 29

2.6 Conclusion . 32

3 UI Description and Delivery 35

3.1 UIP Platform . 36

3.2 UIP clients . 39

3.2.1 Common UIP Client Core . 40

3.2.1.1 UIP Client Event Protocol Communicator 40

3.2.2 UIP Client Platform Extensions 41

3.3 UIP Server . 42

3.3.1 Event Handling API . 43

3.3.2 UIP Application . 45

3.4 Conclusion and Contribution . 45

4 Input for User Interface generation 47

4.1 Abstract User Interface . 48

4.2 UIP visual editor . 50

xi

xii CONTENTS

4.3 Application audit and AUI transformation 51

4.4 Transformation of specific input models 53

4.4.1 Universal Remote Console Sockets 53

4.4.2 OpenHAB . 55

4.5 Conclusion and Contribution . 56

5 Context Model 57

5.1 UIP Context Model . 57

5.1.1 Device Model . 58

5.1.2 User Model . 58

5.1.3 Environment Model . 59

5.1.4 Assistive Technology Model 59

5.1.5 Computation of final context model property values 59

5.2 Context sensors . 61

5.3 Conclusion and Contribution . 61

6 User Interface Generation and Optimization 63

6.1 Concrete User Interface (CUI) optimization 63

6.1.1 Optimisation heuristics . 66

6.1.2 Templates . 68

6.2 CUI Generation Process . 68

6.3 Conclusion and Contribution . 71

7 Source-code audit based UIs 73

7.1 Application source code audit . 74

7.2 Resulting UIs . 75

7.3 Conclusions an Contribution . 77

8 Application: Indoor navigation for users with limited navigation

and orientation abilities 79

8.1 Navigation system design . 81

8.1.1 Smart kiosk . 82

8.1.2 Interactive tactile map . 84

8.1.3 Simple navigation terminal . 84

8.2 SW and HW Architecture . 85

8.3 Conclusion and Contribution . 87

CONTENTS xiii

9 Other applications 89

9.1 E-governance . 90

9.2 GraFooSha: Food Sharing for senior users 92

9.2.1 Technical realization . 93

9.3 Conclusion and Contribution . 95

10 Evaluation 97

10.1 Evaluation of context model adaptions 97

10.2 Evaluation of perceived quality of generated UIs 101

10.3 Development and Maintenance Efforts 103

10.4 Evaluation of network transfer protocol 104

10.5 Conclusion . 106

11 Conclusions and Future Work 107

11.1 Future Work . 113

A Tools for development support 141

A.1 UIP Web Portal . 142

A.2 UIP Visual Editor . 144

A.2.1 UIP Visual Editor Evaluation 146

B Source Code Examples 147

B.1 UIP AUI Example . 147

B.2 Context model properties . 148

B.2.1 Device model . 148

B.2.2 User model . 149

xiv CONTENTS

CONTENTS xv

XAML Extensible Application Markup Language . 23

XML Extensible Markup Language . 20

UI User Interface . xi

AUI Abstract User Interface .xvii

CUI Concrete User Interface . xii

UiGE Pipeline Context-sensitive Automatic Concrete User Interface Generation

Pipeline . xvii

FUI Final User Interface. .12

GUI Graphical User Interface . 15

CRF Cameleon Reference Framework . 2

UM User Model . 15

DM Device Model . 23

EM Environment Model. .15

ATM Assistive Technologies Model . 57

UCH Universal Control HUB . 53

CM Context Model . xix

UiGE UIP User Interface Generator . xviii

API Application Programming Interface . 28

RDF Resource Description Framework. .26

UIDL User Interface Description Language . 3

ORM Object-Relational Mapping . 20

MDD Model-Driven Development . 9

MBUID Model-Based User Interface Development . 9

PDA Personal Desktop Assistant

GP Generative Programming . 16

XSLT Extensible Stylesheet Language Transformations . 19

UML Unified Modeling Language . 20

DSL Domain-Specific Language . 21

AOP Aspect-Oriented Programming . 20

xvi CONTENTS

ICT Information and Communication Technologies . 27

OWL Web Ontology Language . 26

FP Framework Program . 28

UCD User Centered Design . 32

ISO International Standardization Organization . 32

List of Figures

1.1 Context-sensitive Automatic Concrete User Interface Generation Pipeline

(UiGE Pipeline) . 2

2.1 Related work areas in relationship to the UiGE Pipeline 7

2.2 Adaptability and adaptivity . 8

2.3 Architecture of MASTERMIND system 10

2.4 Architecture of PUC system . 11

2.5 UIs generated by Uniform tool . 12

2.6 Functionally equivalent UIs generated by Supple 13

3.1 UI delivery method in relation to UiGE Pipeline 35

3.2 Client-server architecture with thick and thin clients 36

3.3 UIP Protocol communication . 37

3.4 UIP Platform conceptual components and protocols 37

3.5 UIP Protocol reference architecture 38

3.6 Reference architecture of UIP Client 39

3.7 Reference architecture of UIP server 42

3.8 Simplified scheme of Event Handling API 44

3.9 Components of a UIP Application . 45

4.1 Input transformation scope in the UiGE Pipeline 47

4.2 Input Methods . 48

4.3 Example Abstract User Interface (AUI) structure 48

4.4 Functionally equivalent CUI’s . 49

4.5 Components of UIP visual editor . 50

4.6 Code-inspection . 52

4.7 URC integration – derivation of AUI 54

4.8 Abstract Interface Builder for URC 54

4.9 Integration of OpenHAB . 55

xvii

xviii LIST OF FIGURES

5.1 Scope of context model in the UiGE Pipeline 57

5.2 Components of Context Model . 58

5.3 Computation of context-sensitive UI properties 59

6.1 UIP User Interface Generator (UiGE) in the scope of the UiGE Pipeline 63

6.2 Simple mapping . 64

6.3 Example of simple mapping . 65

6.4 Heuristics rule . 66

6.5 Example of importance heuristic . 67

6.6 Template mapping . 68

6.7 Simplified scheme of the UI generation process 69

6.8 Small model update . 70

6.9 Substantial model update . 70

6.10 AUI update . 70

6.11 Context model update . 71

7.1 Data-driven applications in the scope of the UiGE Pipeline 73

7.2 UIs for iPad and PC generated with and without templates 75

7.3 Adaptions of UIs for iPhone . 76

8.1 In-hospital navigation system components 79

8.2 Navigation procedure with proposed system. 81

8.3 Early version of Smart Kiosk UI . 82

8.4 Example UI of Smart kiosk prototype 83

8.5 Prototype if interactive tactile map 84

8.6 Concept and physical realization of final prototype of Simple Naviga-

tion Terminal . 84

8.7 Client-server architecture of distributed navigation system 85

8.8 Simple Navigation Terminal Components 86

9.1 Applications described in this chapter in the scope of the UiGE Pipeline 89

9.2 Transformation from 602 zfo to UIP CUI and AUI 90

9.3 Form rendered using original Form Filler Software 90

9.4 Same form rendered using UIP Desktop Client 91

9.5 Equivalent form as a result of automatic CUI generation 91

9.6 Design developmnet of GraFooSha 93

9.7 Internal Electronic Components of GraFooSha Device 94

9.8 Integration of GraFooSha IoT device into the UIP Platform 95

LIST OF FIGURES xix

10.1 Plan of the three-phase Context Model (CM) evaluation study. 98

10.2 Example of user interface used in the study 99

A.1 Scope of the UIP Development Support Tools in the framework of

UiGE Pipeline . 141

A.2 UIP Portal – UIP Application management 143

A.3 Low-Fidelity prototype of UIP Visual Editor 144

A.4 Evolution of property window of the Low-Fidelity prototype of the

UIP Visual Editor . 145

A.5 UIP Visual Editor – editing AUI . 145

A.6 Deployment of a UIP Application from the UIP Visual Editor 146

xx LIST OF FIGURES

List of Tables

2.1 Comparison UI generation approaches 16

2.2 Comparison of input methods suitable for AUI derivation 21

2.3 Comparison of UI description languages 24

2.4 Comparison approaches for context modeling 28

2.5 Comparison of UI evaluation methods 31

8.1 Context model properties relevant for CUI adaption 83

10.1 Results of CM evaluation study . 100

10.2 Subjective assessment of context model properties 101

10.3 Subjective evaluation of form UIs . 102

10.4 Comparison of manual and code-inspected approach regards the size

of code. 103

10.5 Frame transfer time (Simulated stream) 105

10.6 Frame transfer time (Real-time video) 105

B.1 Device model properties . 149

B.2 User model properties . 151

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

The rapid development of information and communication technologies in recent

decades has brought about new requirements for interactive systems. Modern ap-

plications should be able to run on devices of various kinds, capabilities or based on

different operating systems. Moreover, UIs of such applications should adapt to the

current context of use. The aspects of the current device on which the application

is running should be considered. It is also very important to adapt to the needs

and preferences of the current user, as well as to the current environment in which

the interaction carried on. In some cases, one application session can migrate over

multiple devices during the runtime; some application UIs are also distributed across

multiple devices to enable more effective and more comfortable interaction, e.g. for

purposes of smart household control. Details regarding new requirements brought

about by this development are described in section 1.1.

When dealing with the abovementioned requirements, standard UI development

methods can be very inefficient. According to [16], in such cases, massive code

replication that complicates both application development and maintenance is the

most serious issue. This thesis deals with context-adaptive automatic UI generation

for heterogeneous UI platforms. It introduces UIP (User Interface Platform) that

simplifies UI development using multiple novel concepts. We introduce a method

of how to deliver a single UI description to multiple device platforms that differ in

software and hardware capabilities, as well as in the operating system. The current

rise of popularity of interactive devices used in various contextual situations requires

novel methods to deal with new UI adaption requirements. The primary contribu-

tion of this thesis is the introduction of a method for automatic UI generation. On

the basis of the Context-sensitive Automatic Concrete User Interface Generation

Pipeline (UiGE Pipeline), this method enables automatic context-sensitive trans-

1

2 CHAPTER 1. INTRODUCTION

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Figure 1.1: Context-sensitive Automatic Concrete User Interface Generation
Pipeline (UiGE Pipeline), inspired by [11]

formation from one input model to multiple concrete UIs whose appearance and

structure corresponds to the actual contextual situation. A context-model that fits

to proposed UI generation methods is also introduced as part of this thesis.

This dissertation thesis focuses on the context-sensitive automatic generation of

UIs. Approaches in this research domain typically reference the Cameleon Reference

Framework (CRF) [11] as a guideline for specification of basic definitions and terms.

CRF differentiates the evolution of a UI into four stages:

• Concepts and Task Model are the most abstract stages. Various models that

describe UIs on this level exist, including Task Model, Workflow Model or

Dialog Model.

• Abstract User Interface (AUI) is a hierarchical composite structure that de-

scribes UIs in a platform-independent manner. AUI does not define actual

element representation or the layout.

• Concrete User Interface (CUI) is an explicit description of UI. CUI descrip-

tion consists of specific UI elements (interactors). Although actual CUI form

depends on the target platform, the CUI description language is platform in-

dependent.

• Final User Interface (FUI) is UI in a form that can be rendered on a particular

run-time infrastructure platform (e.g. iOS Smartphone, Windows PC). It uses

platform native UI elements (interactors).

This general definition is also represented in Figure 1.1. Individual approaches

for UI generation differ from others in the principles behind individual steps of the

generation process and their complexity. For the purposes of this thesis, the process

of automatic generation of CUIs is defined as context-sensitive transformation of an

AUI into a CUI. Context-sensitivity includes adaptions to target platform, user and

1.1. MOTIVATION 3

interaction environment. The resulting UIs are optimized using minimal metrics,

primarily to minimize the estimated user effort necessary for the interaction.

This thesis focuses on the realization of the CUI generation pipeline as depicted

in Figure 1.1. Individual steps of this pipeline were addressed by different meth-

ods described in particular chapters of this dissertation thesis. We call the overall

realization UIP Platform. From the perspective of the UiGE Pipeline, this disser-

tation thesis focuses on all its steps. In chapter 4, we describe a method of how

to derive input from various models used in the industry. Chapter 5 describes the

Context Model (CM), which is an important attribute of the process of automatic

CUI generation. Our method for automatic CUI generation is described in chapter

6. Chapter 3 focuses on our User Interface Description Language (UIDL) and our

method of CUI delivery, as well as on defining the basic foundations of the UIP

Platform.

Apart from a description of automatic CUI generation pipeline realization on the

theoretical level, this dissertation thesis also focuses on practical implementation.

Chapters 7 - 9 focus on practical applications in which the methods described in this

thesis were used. From a developer perspective, the more steps of the UiGE Pipeline

that are used for an implementation of an application, the less effort is expected

to be invested into its development. In appendix A we describe the development

support tools that have been created in relation to our realization of the Context-

sensitive Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline).

Namely, we mention related UIP Visual Editor (see section 4.2 and section A.2 and

development support web portal (see section A.1).

The following section describes in detail the motivation for the approach and

corresponding methods introduced in the framework of this thesis.

1.1 Motivation

Users often perceive the quality of the UI as the quality of the whole application.

The development of application UIs with a conventional approach typically requires

significant implementation efforts. According to [48], about one half of an appli-

cation code is related to its UI. The application development costs are therefore

significantly affected by the effort invested into the application UIs [wos4]. When

considering adaptive UIs, the costs and effort grow with the number of features that

are provided and the range of user groups that are supported.

The development of UIs is currently reaching the post-WIMP era [109]. This

4 CHAPTER 1. INTRODUCTION

trend is most obvious in the rise of smart devices, especially smartphones and tablet

computers. Recently, analysts have reported that the number of smartphone users

worldwide has reached one billion [14]. This implies a need to focus the UI develop-

ment on new UI platforms. Smart devices have various form-factors and hardware

specifications, and are based on various operating systems. In most cases, it is nec-

essary to develop an application that runs natively (using platform native UI com-

ponents) on multiple platforms. This requirement typically leads to code-replication

when the platform-dependent UI part of the application must be restated for each

supported platform.

From a development perspective, it is challenging to deal with multiple plat-

forms. Each platform typically has more or less different development mechanisms

and underlying programming languages too. If there is a demand for adaptive UIs

that reflects changes in the current usage context, the problem of UI development

becomes even more complex. In such a situation, it would be very difficult to man-

ually implement UIs that satisfy the requirements of all the possible contextual

situations. There would be a large amount of restated UI code for individual situa-

tions. Consequently, the development and maintenance costs for the UIs would be

very high. A possible solution to this problem is to address it through automatic

UI generation.

1.2 Dissertation thesis objectives

This section summarizes the general objectives of this dissertation thesis. The pri-

mary aim, as well as the title of this thesis, is to model an automatic UI generation

pipeline. Accomplishing this aim requires addressing the challenges stated in the

previous section 1.1. A list of objectives that frame the aim of this dissertation

thesis follows:

1. Definition of a methodology for an Automatic Context-sensitive Generation of

Concrete User Interfaces.

2. Modeling and Implementation of this methodology in a form of the Context-

sensitive Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline).

3. Integration or Development of a Context Model (CM). An existing suitable

Context Modeling method could be adapted. Alternatively a novel context-

modeling method that suits our requirements regarding the development ef-

1.3. STRUCTURE OF THIS THESIS 5

ficiency and consistency with other UiGE Pipeline components can be devel-

oped.

4. Integration or Development of a UI Description and Delivery Language/Method.

It should be an integral part of the UiGE Pipeline implementation and support

high development efficiency.

5. Minimization of the amount of work required for UI development and mainte-

nance in case of complex multi-platform, context-sensitive UIs.

(a) Provide developers with supporting tools and usage guidelines that will

help them to deal with the UiGE Pipeline.

(b) Development of an input transformation method for input derivation from

existing models used in practice.

6. Evaluation of the proposed solution.

(a) Demonstration of its usefulness for purposes of practical applications.

(b) Evaluation of generated UIs from the perspective of relevant target users.

(c) Evaluation of related development support tools from the perspective of

their users (the developer perspective).

1.3 Structure of this thesis

This thesis is structured as follows: chapter 2 focuses on related approaches and

methods relevant to the objectives of this thesis. It lists comparable UI generation

approaches, possible input models, UI description languages sufficient for automatic

UI generation, context modeling methods, and methods of automatic evaluation of

UI quality.

The following chapters focus on the main topic of this thesis – design and im-

plementation of a platform for automatic UI generation. Chapter 3 focuses on the

software architecture of the platform and primarily focuses on methods to deliver

a single UI to different platforms that differ in capabilities. Chapter 4 describes

different methods that are considered to comprise an AUI – the immediate input for

automatic UI generation is defined in the terms of this thesis. Chapter 5 describes

our multi-component context model which was defined for purposes of this work.

6 CHAPTER 1. INTRODUCTION

Chapter 6 focuses on the automatic CUI generation method as the main objective

of this thesis. Mainly, it describes the UI optimization function, as well as the

realization of the CUI generation process itself. After the definition of methods

that represent a contribution of this thesis, we list selected applications that were

based on those methods. In chapter 7, we show an example that uses application

source-code audit to generate context-sensitive CUIs. An indoor navigation system

tailored for navigation of individuals with low navigation and orientation abilities is

described in chapter 8. Finally, chapter chapter 9 lists other substantial real-world

applications that at least partially incorporate methods brought about by this work.

The evaluation of individual concepts introduced by this thesis, as well as their

applications, is described in chapter 10. After an evaluation of UI quality perceived

by target users, we also focus on the analysis of the development effort to investi-

gate the efficiency of our method. The evaluation of important applications of our

approach is also part of this chapter. This thesis is concluded by chapter 11, which

describes the level of fulfillment of the individual thesis objectives. A statement

of possible future work is also part of this final chapter. Appendix A focuses on

development tools related to the UiGE Pipeline. The second appendix, B, contains

technical examples related to our UI description language and Context Model.

Chapter 2

Background and Related Work

This chapter focuses on analysis of related research relevant to the automatic UI

generation. At the beginning, general approaches for automatic UI generation are

listed in section 2.1. Figure 2.1 shows to which parts of the UiGE Pipeline refer the

individual sections of this chapter. Discussion of several methods and approaches

to derive immediate input for automatic CUI generation is described in section 2.2.

One of the important objectives of this work is to generate UIs that can be delivered

to various platforms with different capabilities and operating systems. In section

2.3 we focus on relevant User Interface Description Languages that are suitable for

platform-invariant UI description.

As the context-model is an important attribute to the automatic UI generation,

different methods for context-modeling are stated in section 2.4. Quality of UIs

is typically evaluated by methods dependent on human experts like usability stud-

Section 2.1

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Section 2.2

Section 2.3 Section 2.3

Section 2.4

Section 2.5 Section 2.5

Figure 2.1: Related work areas in relationship to the Context-sensitive Automatic
Concrete User Interface Generation Pipeline (UiGE Pipeline)

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

ies or expert evaluation methods. In case of automatic UI generation, automatic

methods must be used to assess quality of resulting UIs in order to provide optimal

results. Possible approaches for automatic UI evaluation and optimization are listed

in section 2.5.

2.1 User Interface generation approaches

Basic approaches to simplify UI design are visual editors and widget builders, such

as [70]. While these tools help with the initial design for a particular platform, they

provide only limited support for maintenance. For example, when a developer wants

to generalize or to parametrize the UI code, this type of builder fails to adapt to the

code changes, so that subsequent changes cannot be made through the editor [48].

There are approaches like Microsoft Access [21] and Oracle Forms [91] that use

widget builders to compose form-based UIs to access data in relational databases.

These approaches also support the semi-automatic generation of the forms. Al-

though these systems are well adopted by the industry due to their simplicity, they

are not suitable for generating context-sensitive UIs for multiple platforms. They

lack context model adaptations, there is no support for various layouts and custom

components and the output platform is restricted to desktop and web.

The fundamental work on model-based development has been conducted by

Stephanidis et al. [104]. In their work they provide an overview of adaption tech-

niques in the web environment. They distinguish between adaptability and adaptivity

terms, see Figure 2.2. Adaptability refers to self adaptation based on knowledge avail-

able prior to interactive sessions, while adaptivity refers to self-adaptations based on

knowledge acquired during the runtime. Corresponding project Avanti is presented

(a) Adaptability (b) Adaptivity

Figure 2.2: Adaptability and adaptivity, from [104]

2.1. USER INTERFACE GENERATION APPROACHES 9

as a case study to demonstrate adaptivity features. Among other properties, the

presented system adapts to context properties like disabilities, expertise or interests

of the user, or even to the season of the year. The context knowledge is obtained by

questionnaires (disabilities, expertise, interests) or from system resources (season).

This context model structure corresponds to the examples shown in the framework

of the Avanti demonstrator, however, it might be inappropriate for another practical

applications.

Wobbrock et al. introduced concept of ability-based design [113]. Similarly to

Stephanidis et al. [104] they distinguish between adaptive and adaptable systems.

According to Wobbrock et al., adaptivity mean the degree to which a system can

change itself in response to user behavior, whilst adaptability mean the degree to

which software can be customized by a user, therapist etc. This definition is con-

sistent with that by Stephanidis et al. The consequence of this definition is that

adaptivity requires an automatic UI generation that reflect knowledge (typically in

form of Context Model) in case of nontrivial cases.

Sottet et al. [101, 102] focus deeply on Model-Driven Development (MDD). In

their work they provide a deep explanation of MDD approaches to model-code and

model-model transformations. They describe an approach for (semi)automatic gen-

eration of ubiquitous UIs preserving usability. They defined transformation map-

pings that preserve usability properties. Authors state that the ergonomic and

usability criteria defined by mappings are often inconsistent and the final solution

may require trade-offs. They provide an example of a home heater system control

showing a framework for usable UI. Their work has some limitations, for example

element composition does not allow simple modification or parametrization of a spe-

cific UI element. For instance, a single element cannot be easily positioned relative

to others. From the practical point of view the presented framework lacks compat-

ibility with traditional development approaches such as JavaEE [8]. This can limit

its practical usage, impact the performance, and in combination with an existing

application backend, this approach leads to information replication in the model.

Calvary et al. [11] introduce a unifying reference platform for developing multi-

context UIs. The context of use is decomposed into user, platform and environment

context. The authors also introduce the notion of plastic UIs, which support multi-

ple contexts of use while preserving usability as context-adaption occurs. The term

plasticity is also mentioned by Sottet et al. in [101, 102]. Several Model-Based User

Interface Development (MBUID)-based approaches are evaluated against the pro-

posed reference platform. For such systems, integration with the application backend

10 CHAPTER 2. BACKGROUND AND RELATED WORK

will introduce possible code-restatement. This makes development and maintenance

more difficult. Context models in the reference framework are ontology-based. How-

ever, the expressive power of ontology-based models is strong, corresponding devel-

opment and maintenance are very complex for real situations. This makes it harder

to use such systems in a real environment.

In complex systems, multiple different interactive devices can render the UI.

These devices are often based on various platforms and have various capabilities,

e.g. resolution, size, interaction modality, etc. Technologies that allow a single UI

to be delivered to various platforms are already available, such as HTML 5, but

constraints on adaptive features and context-awareness persist. Although there are

approaches that suggest partial-solutions, such as [10], they do not provide a general

solution and typically fail to provide real-time context-aware adaptations and are

limited to a small number of context properties.

MasterMind [105] is one of the first systems that integrate multiple models to-

gether. As shown in Figure 2.3, an application model, task model and presentation

model are used in the design-time environment. Proprietary notations for all models

were used in the MasterMind system. This makes this system rather good example

of early model-based toll than reusable approach.

The Mobi-D system described in [87] provides assistance in the development

process rather than automatic design. Interface and application developers are still

involved in the development process. The Mobi-D sytem is a set of tools to support

development cycle. There are several clearly defined models: user-task model, do-

main model, dialog model and presentation model. Relations between these models

are also explicitly defined. The development process starts by deriving user tasks,

Figure 2.3: Architecture of MASTERMIND system (from [105])

2.1. USER INTERFACE GENERATION APPROACHES 11

starting by informal description converted to an outline. The next step is the def-

inition of user-tasks and the domain. Skeleton domain model is derived from task

outline. Both domain and user model are refined by a developer. The framework

provides explicit methods for generalizing pieces of models to be reused in other de-

signs. The final step is design of presentation (user interface) and dialog. Decision

support tools provide recommendations in order to help developer to build the final

interface. This system provides recommendations that do not limit flexibility, but

make the development process more organized. The Mobi-D system is supposed to

be used by usability engineers rather than by standard developers. The models for

more complex interactions require significant effort to be developed. For purposes

of this work is important an idea of explicit separation of models. Furthermore

reusability of pieces of models can lower required development effort of any system

and provide more consistent results.

XWeb system described in [77] tries to apply the web metaphor to services in

general in order to support higher levels of interactivity. The main motivation is

to enable creators of services to abstract from interactive technologies and devices.

Although neither XWeb was massively practically used, it brings an important idea

of platform-based thin client. This is actually generalized web approach that be-

comes more and more adopted by Web 2.0 technologies like Google docs. The idea of

moving the application logic to the server and supply the user with as thin platform-

specific client as possible inspired the development of our solution for CUI delivery

– the UIP Protocol, see chapter 3.

The main motivation for the Personal Universal Controller (PUC) [71] project

was to simplify controlling of appliances by using a single device with richer UI that

Figure 2.4: Architecture of Personal Universal Controller system (from [71])

12 CHAPTER 2. BACKGROUND AND RELATED WORK

is able to control more appliances at once. Mobile devices like PDAs or Smart phones

were used as the main controllers. Figure 2.4 depicts the architecture of the PUC

showing one connection between a PUC device and an appliance. This complex

system allows controlling various appliances by various controlling devices (PUC

devices). The PUC use its own proprietary appliance-oriented langue for describing

abstract user interfaces. For generation of CUIs, the PUC uses a simple rule-based

approach (e.g. a command is always represented by a button). An advantage of the

PUC project is that it is also to generate speech UIs.

Uniform [72] is another promising user interface generator that has been brought

into public in 2006. The main contribution is that the consistency of the Final User

Interface (FUI) is taken into account. It means that the system is trying to find

similarities between currently generated user interfaces and interfaces that have been

presented to the user in the past. The final look of the user interface is therefore

adapted to be as consistent with current user interfaces as possible. Figure 2.5

shows an example of user interfaces generated by Uniform. The first two images

show the user interfaces of two independent copy machines. On the second two

images there are depicted UIs rendered in order to be consistent with copy machine

A or B respectively.

ICrafter [85] is a framework for services and their user interfaces in a class of

ubiquitous computing environments. Authors refers the ubiquitous computing en-

vironment as an interactive workspace. The aim is to enable users to interact with

services in this environment using various modalities and input devices. ICrafter

provides UI generation and on-the-fly aggregation of services. Accordingly to the

Figure 2.5: User interfaces generated by Uniform tool for a simple and complex copy
machine with consistency attribute disabled and enabled (from [72])

2.1. USER INTERFACE GENERATION APPROACHES 13

authors, a service is either a device (e.g. light, projector or scanner) or an applica-

tion (e.g. web browser or PowerPoint running somewhere in the environment). In

Appliances request UI from interface manager, the request contains the appliance

description. At first, the interface manager selects an appropriate UI generator (a

software entity that can generate UI for one or more services for a particular appli-

ance). The appropriate generator is selected in the following order: generator for

the service instance, generator for the service interface and finally service indepen-

dent generator as a fallback. In the next step the selected generator is executed

with access to service descriptions, appliance description and the context. Using

this information, the appropriate generator constructs the FUI.

Unlike other systems, ICrafter uses specific UI generators for particular services

and UI description languages (target platforms). Most of them are implemented

using a template system. An interesting idea brought by the ICrafter approach

is the usage of so-called service patterns. Patterns are recognized in the available

services. ICrafter then generates UIs for these patterns. On one hand, this leads

to better consistency and easier service aggregation. On the other hand, unique

functionality is not available in the aggregated service. Another contribution is the

involvement of a template system (parametrizable, human-designed parts of a UI)

in UI generators. In most cases, the UI designed by human designer is better than

automatically generated equivalent (exceptions are for example UIs generated fit

complex contextual restrictions, e.g. UIs for people with specific needs).

Supple [37] uses combinatoric optimization to generate CUIs optimized according

Figure 2.6: Functionally equivalent UIs generated by Supple. The difference inUIs
is caused by parametrization of optimization function. Where for UI (a) is preferred
easy navigation, whereas for UI (b) are preferred easy to use widgets. (from [37])

14 CHAPTER 2. BACKGROUND AND RELATED WORK

to minimal metrics. Combinatoric optimization is based on a functional description

of a UI, and takes into account both device and user properties. The UI genera-

tion process is defined as an optimization problem where the algorithm is trying to

minimize the estimated overall user effort. Figure 2.6 shows example UIs generated

by Supple. These functionally equivalent UI are generated with the same space

constrains, but using different parametrization of the optimization function. User

behavior is traced in order to adapt the generation of the new UI to user proper-

ties and user needs (recognized from prior use or using special motor and cognitive

tests).

Approach by Jelinek et al., described in [46] is an example of an approach that

uses an annotated source code as input. The motivation was to remove the necessity

to manipulate with abstract models explicitly, but keep the flexibility they provide.

The authors define the AUI as a set of the following elements: text input, number

input, single item selection, multiple item selection, monitoring, responding to alerts

and other (specific) elements. A simple approach for generation of concrete user

interfaces was used – an explicit platform dependent mapping of concrete widgets

to abstract user interface elements. Furthermore, a simple vertical layout was used.

This system is designed to support ubiquitous computing (in this case an interactive

workspace). There is a key idea of services (devices or applications) that are used

as an input for the process of user interface generation. Generation of the concrete

user interface depends on the selected generator. Usually the generator is platform

and service specific, but a simple automatic approach is possible.

In [32], Engel et al. provide an evaluation of model-based UI development ap-

proaches. Furthermore, they present their own PaMGIS framework that supports

semi-automatic generation of UI code. This MBUID approach based on various in-

put models, namely: task, dialog, interaction, layout, user, device, and environment

models. Complexity of the models is reduced using patterns on different abstraction

levels. The authors also introduce their own PaMGIS pattern specification language

(PPSL).

Vanderdonckt in [110] focuses on distributed user interfaces (DUIs). In contrast

to traditional UIs, DUIs enables users to distribute UI elements among different

platforms and physical environments. This work provides a conceptual framework

to support UI distribution controlled by the end user, under control of the system

or a mixed-approach. Resulting UIs can be subject to adaptation with respect to

the end user, environment and the target platform.

Kolb et al. in [52] focuses on automatic generation of UI component in process-

2.1. USER INTERFACE GENERATION APPROACHES 15

aware information systems (PAISs).The PAISs focusses on business processes and

are mainly used in large companies. The authors state that there was little effort to

automatically generate UIs in this domain, despite the process of manual UI creation

is tedious and error-prone. According to the authors, UI logic can be expressed using

the same notation as for process modeling. They introduce a bi-directional pattern-

based transformation between process model and the UI.

Tran et al. in [106] present an approach for multi-agent system (MAS) based UI

generation from combined task, context and domain models. In this scope an agent

is a computer system, situated in some environment that is capable of flexible auto-

nomic action in order to meet its design objective. The described system uses four

types of agents: Model analyst, Function analyst, UI creator, and Code generator.

These agents gradually transform the input models into UI code and application

logic code. The authors present their approach on an example of basic database

application.

Cerny et al. in [16] present a system for automatic UI generation accordingly to

user’s specific preferences. Resulting UIs conform to user different skill levels, capa-

bilities or physical locations. While reducing development and maintenance costs,

the authors suggest to application source-code audit and Aspect-oriented program-

ming for UI development. UI adaptions suggested by the authors are rather on level

of UI structure. The proposed approach should be extended to support more target

UI platforms as well as adaptions on the level of UI appearance, e.g. the widget

selection.

UI generation ap-

proach

Principle Conext-

senisive

Pros Cons

Widget builders – e.g.

NetBeans [70]

Manual

Graphical

User Inter-

face (GUI)

design

No Uniersal approach, easy

to use

Little adaptation

(mostly OS level),

code replication

Widget builders for

databases – e.g. Mi-

crosoft Access [21] and

Oracle Forms [91]

Manual

and semi-

automatic

GUI design

No Easy to use Little adaptation, lim-

ited to relationship

databases

Stephanidis et al. [104] MDD Yes(User

Model

(UM),

Environment

Model

(EM))

Adaptivity Complicated develop-

ment and maintenance

of model decriptions

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Sottet et al. [101, 102] MDD Yes Ubiquitous UIs, usability

optimisation

Incompatible with tra-

ditional development

methods, information

replication

MasterMind [105] MDD No Early MDD tool Proprietary notations,

obsolete

Mobi-D [87, 86] MDD Yes Early complex MDD ap-

proach

Obsolete, rather devel-

opment assistance tool,

high development effort,

only explicit mapping

XWeb [77] Tree

remap-

ping, static

rules

No (only

attributes

of target

device and

platform)

Idea of platform-specific

thin client

Static transformation

rules

Personal Universal

Controller [71]

Rule based

transfor-

mation

No Multimodal, multidevice Proprietary description

languages, obsolete

Uniform[72] Rule based

transfor-

mation,

consistency

rules

No Optimises UI consistency Some principles re-

stricted to home appli-

ances domain

ICrafter [85] Template

based

transfor-

mation,

service ag-

gragation

Yes (envi-

ronment)

Multimodal ubiquitous

approach, UI patterns

Obsolete, platform spe-

cific templates must be

developed for each ser-

vice/appliance

Supple [37] Combinatoric

optimiza-

tion

Yes Global combinatoric UI

optimisation

Complicated support of

multiple target platforms

Jelinek et al. [46] Generative

Program-

ming (GP)

No Development efficiency Simple platform-specific

transformation rules only

PaMGIS [32] MDD Yes (user,

device, en-

vironment)

Complexity reduction by

abstraction patterns

Complex maintenance of

many different models

Vanderdonckt in [110] Conceptual

framework

Yes (user,

device, en-

vironment)

UI distribution Not fully implemented

Kolb et al. [52] (Pro-

cess model tranforma-

tion)

PAISs,

business

rules

No Bi-directional transfor-

mation between process

model and UI

No adaptivity, UI opti-

misation

Tran et al. [106]

(Agent Based)

Multi-

agent

system,

model

transfor-

mation

Yes Easy to use Database example only

Cerny et al. [16] AOP, code

inspection

External Effective development

and maintenance

No global optimisation

Table 2.1: Comparison UI generation approaches

2.1. USER INTERFACE GENERATION APPROACHES 17

In this section, we have listed different approaches that deal with the automatic

UI generation. In the Table 2.1 there is a summary of those related approaches

accordingly to their main principles, their pros and cons. Several listed methods

have brought interesting, original concepts, however, they are now obsolete. For

example, the Personal Universal Controller [71] focuses on a platform that is not

practically used anymore.

The MasterMind project [105] uses proprietary notations, Mobi-D [87, 86] is

rather a development support tool than a true automatic UI generation method.

ICrafter [85] brings interesting ideas of service integration based on their hierarchy

and transformation templates, however, the realization from 2001 is also technically

obsolete. Some approaches also focus only on a specific domain, e.g. Uniform [72]

focuses the home appliance control only.

Generally, we can focus on the advantages and disadvantages of a particular

method from the user perspective, but also from the perspective of application de-

velopers. In accordance with this thesis objectives, an ideal approach should provide

maximally usable UIs that are adapted to the user needs and preferences. At the

same time, it should support an effective development with low information restate-

ment. Some listed methods are conceptually strong, but require high development

and maintenance costs for a real deployment. E.g. PaMGIS [32] bases on many

different models that must be maintained and also it does not support minimization

of information restatement. MDD approach by Sottet et al. [101, 102] is incompat-

ible with traditional development tools and also induces unnecessary information

restatement. Stephanidis et al. [104] described one of first MDD approaches for

automatic UI generation. This work also contains important definitions, however

related context model structure is complicated and corresponding examples are ob-

solete.

However, Supple has a limited support of target UI platforms, it brings an im-

portant concept of combinatoric optimization – minimization of estimated user’s

effort. This advanced CUI optimization method inspired also our method described

in chapter 6. In contrast, some approaches support only simple AUI to CUI trans-

formation based on static mapping rules, e.g. [77, 46]. This simple transformation

can not provide optimal results in complex cases. For purposes of our work, we used

more sophisticated transformation inspired by the combinatoric optimization.

Current trends as stated in the motivation section (1.1) require a solution that

18 CHAPTER 2. BACKGROUND AND RELATED WORK

is able to effectively generate UIs that are accustomed to their context of use. Fur-

thermore, a satisfactory method should enable effective support for multiple target

UI platforms at the same time. Another requirement emerges from the perspective

of development and maintenance costs. AspectFaces [16] for example bring an in-

teresting solution, primarily from the perspective of development efforts. However,

in this approach context adaptivity is restricted to the general UI structure rather

than on adaption on the presentation level (i.e. widget selection).

The approach described in this thesis should focus on maximizing the usability

of resulting UIs and the versatility in terms of the number of supported platforms. It

should enable complex UI adaptions of the presentation level and context sensitivity.

At the same time, it is necessary to focus on minimizing required development and

maintenance efforts.

2.2 Input for automatic UI Generation

In the previous section, we focused on a general survey of approaches for automatic

UI generation. These approaches use various input models with different complexity.

This section focuses on input models suitable for automatic UI generation. Con-

sequently, we focus on related methods to effectively derive AUIs from other input

models, ideally those already used in the field.

From the perspective of input for automatic UI generation, various approaches

have been developed. These approaches can be divided into generation approaches

(GP), model-based approaches (MDD), inspection-based approaches, and aspect-

based approaches. Each of these offers certain advantages for UI development, but

may fail to address UI maintenance or complex situations, mostly when the UI

changes during runtime or adapts to users. In this section we focus on approaches

that enable generating AUI as an output. Although AUIs can be implemented

manually, this would be complicated for complex applications. In many cases, it is

better to derive the AUI from other available input model or even using analysis of

an existing application source code.

Model-driven development (MDD) [18, 83] suggests that a model is the source

of information and the resulting code is generated using this model and a set of

transformation rules. Model-Based User Interface Development (MBUID) [11] is a

variant of MDD in the domain of UI development. The main advantage should be

that there is no information replication, but this applies only to basic scenarios.

MBUID model transformations are addressed by Clerckx et al. [20]. In more

2.2. INPUT FOR AUTOMATIC UI GENERATION 19

complex cases, inconsistencies between the source and derived models become an

issue. When modifying concrete models like a dialog model or CUI, developers

introduce inconsistencies that should be also reflected in source abstract models.

A solution that partly solves this problem is bi-directional mapping, which ensures

that most modifications in derived models are automatically reflected in the source

models. The proposed solution was demonstrated on the DynaMO-AID prototyping

tool.

Based on Lopez et al. [59], most current adaptive systems use hardcoded adap-

tion rules that are hard to maintain and reuse. Code replication may become an

issue when capturing multiple variants of usage context. The authors suggest to

use MBUID together with transformations from abstract models to concrete models

based on generic mapping rules. They present the T:XML tool for a graphical spec-

ification of the transformation rules. As output it provides adaptations for transfor-

mation languages such as Extensible Stylesheet Language Transformations (XSLT).

The target language to describe UIs in a platform independent manner is USIXML

[58]. It involves multiple abstractions to capture the specification of UI in multiple

context variants while supporting platform independence. The authors conclude

that excessively detailed adaptation rules are hard to reuse in other applications

and thus they suggest providing a set of generic mapping rules.

A possible advantage of MBUID approaches based on task models [7] or workflow

models [98] is that an interaction flow (UI navigation) can be automatically derived.

According to [63], in practice, most applications lack such model definitions due to

their complexity. To avoid the unnecessary code-replication, state transitions based

on the workflow description should be tightly integrated with an application low-level

source code [98]. Typical data-oriented applications with form-based UIs include an

implicit interaction flow that results into standard navigation (e.g. validation phase,

possible decomposition of complex forms into a wizard UI etc.).

Luyten [60] aims to apply MDD based on a task-centered approach to fill the

gap between HCI design and software engineering. The authors suggest to use the

Concur Task Tree (CTT) notation [7] to model tasks in environment context-aware

manner. The focus of the work is on distributed UIs. A tool MoDIE is presented

for CTT modeling in accordance with an environment model. Similarly to [101],

this approach does not suggest a concrete connection to the existing applications or

application backends.

A workflow model or a task-model, such as [7], can be used to derive AUI. In

this case, the task-model must be very detailed in order to enable individual UI

20 CHAPTER 2. BACKGROUND AND RELATED WORK

components to be derived, including restrictions (used for final element selection,

validation etc.), data-binding etc. Development and maintenance of such models

for complex applications is demanding. Alternative approaches such as Generative

programming [24] use domain specific languages (DSLs) to address the separation

of concerns, but they lack runtime context awareness and can introduce information

replication. An example of such an approach is the method described in [93].

Aspect-Oriented Programming (AOP) is efficient for the transformation of pri-

mary input models such as a data-model to the AUI. Aspect-oriented approach

[55] seems to be an interesting approach that brings the runtime weaving process,

although still does not address the problem of information replication.

An approach that addresses the above mentioned disadvantages involves the use

of data persistence structures code-inspection, AOP and GP concepts. Modern

object-oriented applications use Object-Relational Mapping (ORM) [78] to bridge

the database incompatibility [8]. Code-inspection applied to the extended data

model can be used for deriving AUIs [18]. The data model extensions are similar to

the Unified Modeling Language (UML) stereotype extensions [17]. In source code

is this extension achieved by field annotations or by Extensible Markup Language

(XML) descriptors. This type of extension is not novel – the industry already uses

these annotations for input validation and for security [15].

Data model extensions are not limited to the concerns mentioned above. Such

an extension can consider user profiles, location-awareness, etc. [18]. The result

of the application data inspection is a hierarchical structural model that can be

transformed to AUIs in multiple steps. An aspect-oriented approach can be used

for the purposes of this transformation. This ensures that there is a small amount

of replicated code and easier maintenance. This process takes place at runtime, it

reflects the application data-model and the current context, and allows the system

to adapt to various situations. The advantages over the MDD approach are that

it does not require the presence of an extra model for the UI and thus it does not

restate any information in it.

Table 2.2 summaries input methods suitable for derivation of AUIs as immediate

input for CUI generation method as subject of this thesis. Authors of [67] observe

that MDD induces problems during adaptation and evolution management. MDD

handles common situations well, but when we need a slight modification of UI for an

edge case this would take place in the UI code rather than in the model itself [16].

Potential code regeneration from the model becomes impractical, as it erases the

above mentioned manually added information [16]. Another issue arises when we

2.2. INPUT FOR AUTOMATIC UI GENERATION 21

Table 2.2: Comparison of input methods suitable for AUI derivation

Input method Examples Pros Cons

MBUID [83, 11, 20, 59] Universal approach Often require information
replication

GP [93] Addresses concern separation Problematic runtime adaption,
possible information replica-
tion

Task and Workflow
models

[7, 98] Universal approach Complex development and
maintanance of detailed
models

Code inspection +
AOP

[48, 18, 16] Effective, low code replication For applications using ORM
(certain inspection method is
domain-specific)

apply the MDD approach solely to the UI, but not to the persistence and business

part of the system. In such a case, the information captured by the model must

match to the information captured by the rest of the system. When only one part of

the system changes, another part may lose compatibility and may need to address

the changes. When Domain-Specific Language (DSL) are used for the UI descrip-

tion, these languages do not provide type safety and thus maintenance of change

propagation becomes tedious and error-prone since changes are made manually.

AspectFaces [15] and MetaWidget [48] are examples of code-inspection ap-

proaches with an ability to inspect Java-based data models and to understand their

extension marks. MetaWidget, however, does not provide support for adaptive UIs.

It restricts the mapping to a limited set of components, and it is not possible to

switch between various presentations, validations at runtime, or to integrate other

concerns. On the other hand, MetaWidget integrates transformations to multiple

platforms. However, neither AspectFaces nor MetaWidget provides global optimiza-

tion to derive optimal UI component selection and layout.

The first direction to consider for automated derivation of AUI is model-driven

development, but it suffers from various disadvantages. First, the design of the model

brings a development and maintenance overhead. Most likely, there is an application

backend, and this model must be kept consistent manually. Second, models that

need to capture different concerns might become complex. Multi-model integration

can become an issue from the integration and performance perspective [16] when

model-to-code transformation is at runtime, which is suggested by [9]. Third, the

MDD does not solve problems with crosscutting concerns that can arise at model

level.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 UI description languages and UI delivery

This section focuses on selected examples of UIDL. The focus will be on those UIDLs

that incorporate some level of abstraction from the target UI platform. Automatic

CUI generation as destined in this thesis require platform-independent input instead

of description tailored for a particular platform, e.g. Windows desktop. The input

UI description language must effectively describe UIs that can be later automatically

transformed for for currently requested target UI platform and current contextual

conditions.

A User Interface Description Language abstraction can be seen on the language

level or on the UI content level. On the language level, a single language can be

used to describe UIs delivered to various platforms, but a particular UI described in

such a language corresponds to a concrete contextual situation – typically the target

platform. In the vocabulary of this thesis this level of abstraction corresponds to

CUI. In the following text, UI description languages with this level of abstraction

will be designed as CUI level abstraction UIDLs.

On the contrary, the abstraction on the content level allows single UI description

to be used in many contextual situations. This abstraction level corresponds to AUI

as defined above. Abstraction on the content level UI level requires, apart from

trivial cases, context-sensitive automatic UI generation to derive CUIs that can be

rendered on a particular target UI device.

User Interface Markup Language (UIML) [1] is an early language for platform-

independent UI description. It is an XML-based language, that enables abstraction

on the description level (AUI). UIML does not support the UI description on other

levels. We can currently state that this language has been deprecated.

XML User Interface Language (XUL) [35] is a UI markup language developed

by the Mozilla Foundation. It is based on XML. Using XUL, graphical UIs can be

implemented similarly to Web pages. It also uses multiple existing Web technologies

such as Cascading Style Sheets (CSS) [96], Java Script or Document Object Model

(DOM) [73]. The abstraction level of XUL is rather on the CUI level, however, some

level of context-independence of a single UI description can be reached using the

CSS and run-time manipulation with the DOM.

MARIA [80] is a universal declarative UI description language that supports mul-

tiple abstraction levels. It was designed to support applications running in Service-

oriented Ubiquitous environments. Abstraction levels considered by MARIA are

Task level, Abstract level, Concrete level and Implementation level. The later three

2.3. UI DESCRIPTION LANGUAGES AND UI DELIVERY 23

levels corresponds to AUI, CUI, and FUI levels in terms of this thesis. MARIA ex-

tends the concept of Web services defined by WSDL language with annotations that

enable the generation of UIs. Accordingly [81], the current trend is that concept of

complex Web-services is being replaced by stateless RESTfull applications. This fact

and description-complexity of Web-services (WSDL) prevents MARIA from broader

practical use.

USIXML [58] is an XML-based UI description language. Similarly to MARIA,

it supports the definition of UIs on multiple levels – Task and Concepts level, AUI

level, CUI level. USIXML architecture considers multiple models that are used for

UI transformation. There are Domain Model, Task Model, AUI Model, CUI Model,

Mapping Model Context Model and Transformation Model. The authors suggest

integration of these models into one formal and uniform format. On the contrary,

this induces relatively high language complexity and therefore complicated adaption

by new developers.

Extensible Application Markup Language (XAML) [25] is an XML-based declar-

ative language for Microsoft .NET applications. XAML is widely used for Windows

Presentation Foundation, Silverlight, and Windows Workflow Foundation applica-

tions. When used for UI specification, XAML defines structure of UI elements, data

binding, and eventing. However, XAML language can be used for definition of UIs

desired for different platforms, each definition corresponds to a concrete platform.

In the terms of this thesis, UIs described by XAML correspond to CUI level.

Multimodal Interaction Markup Language (MIML) [3] focuses on a three-layered

description of agent-based interactive systems. It defines dialogue patterns between

humans and various types of interactive agents, including voice-dialogue systems or

event human-reseambling robots. MIML defines multimodal UIs on three different

levels – task level markup language, interaction level markup language and platform

level description. The Task Markup Language is an XML-Compliant language, each

its document consists of two parts – head and body. This resembles the structure of

an HTML document, but the semantic is substantially different. The head part basi-

cally contains a Context Model with two sub-models: UM and Device Model (DM).

Each body part consists the information that should be presented to the user, fol-

lowed by the information that should be retrieved from the user. There is also con-

cept of information filtering according user’s knowledge level. The interaction level

markup language is modality-independent extension of VoiceXML language. The

platform-independence of the MIML was archived using advanced binding on the

lowest level. Using this concept task and interaction level are platform-independent.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

The interaction level markup language corresponds to AUI in the terms of this thesis.

Synchronized Multimodal User Interaction Modeling Language (SMUIML) [31]

is a UIDL for multimodal interaction. The authors presented nine guidelines for

UIDLs for purposes of the multimodal interaction. In the scope of this thesis,

we should notice requirements about the abstraction, the control over the fusion

mechanism, the event management and adaptivity regarding to the CM and the

UM in particular.

In this section we summarized selected UIDLs related to our approach. Table 2.3

shows the analyzed UIDLs, their abstraction levels, pros and cons. Although many

of them bring interesting concepts, most languages that are practically used like

XAML or XUL do not offer a satisfactory level of abstraction. In contrary, some

languages, like UIML, enable UI definition only on the abstract level. This can

cause issues if there is a need of manual modification of UIs resulting from context-

sensitive transformation of this input model. The manual modification would require

knowledge of any output language, which increases development efforts and amplifies

probability of introducing an error.

Table 2.3: Comparison of UI description languages

UI markup lan-
guage

Abstraction Pros Cons

UIML AUI AUI concept Obsolete
XUL CUI Real-world use Low abstraction, strong

relationship to web
MARIA [80] Task, AUI, CUI Multiple abstention levels Its connection to web-

services
USIXML [58] Task, AUI, CUI,

Context, Do-
main, Mapping

Multiple abstention levels,
system of transformations

Language complexity

XAML [25] CUI Widely used Mostly for Windows plat-
forms, only CUI level

MIML [3] task, interac-
tion, platform

Advanced binding Possible information repli-
cation

SMUIML [31] Dialog, AUI,
CUI

follows guidelines for
multimodal-interaction
UI description languages

Lack of context-adaptivity

2.4. CONTEXT MODEL 25

2.4 Context model

Context Model (CM) is an important attribute for the CUI generation when we want

to adapt to current conditions of use. Common adaptions are regarding to attributes

of the interaction device used, the user or the environment the interaction is carried

out. In this section we analyze suitable context modeling methods.

Regarding user capabilities and preferences, most CMs currently strive to fit

people with disabilities to standard systems, using various assistive technologies.

The ability-based design [113] has been proposed as a response to this problem.

It uses context-awareness to provide adaptations to user-specific abilities, instead

of forcing users to use a specific assistive technology. In order to provide context-

aware adaptations, there must be a context model. CM typically consist of models of

user, device, and environment. According to [113], the problem with currently used

context models is that they leverage the user disabilities rather than the abilities.

In the scope of this thesis, the UM is the most important component of the

context model. However, other components of the CM exist. Most context modeling

approaches define DM and EM. Another sub-models can be also defined, but often

they are specific for a certain application domain.

In the following text we summarize approaches for user modeling. The original

approaches emerged from rehabilitation engineering, where the human performance

was measured and quantified in order to provide better adaptations of patients.

The focus of rehabilitation engineering is much wider than just information and

communication technologies (ICT). In this field the user models emerge typically

from the medicine. The most common models are defined by the World Health

Organization – The International Classification of Diseases [69] and International

classification of functioning, disability and health [114]. From the point of view of

UI design is interpretation of such models rather complicated. Influence of values in

these user models (more or less medical data) to user interface is typically unclear.

The user context (UM) can be modeled using formats desired for information

exchange. An example of widely used one is the vCard [22] file format – a standard

for electronic business cards. Some basic information about user can be described

by standard vCard properties – e.g. gender, spoken language or timezone. Despite

this, for purposes of our work we need a more complex UM that can also describe

properties important for the automatic adaption of UIs.

Another example of a context-modeling approach that focuses primarily on the

user modeling is described in [103] as ETSI ES 202 746 draft standard. A number

26 CHAPTER 2. BACKGROUND AND RELATED WORK

of user characteristics and preferences that apply independently of any particular

application can be described using this approach. Users should be able to specify

their context-dependent needs in ways that require the minimum need to under-

stand the individual applications. Properties relevant to adaptions based on the

UiGE Pipeline are for example the preferred input (and output) modality, simple

text (whether text-simplification should be used), symbols (whether symbols should

be used to represent information), visual preferences like brightness, content-contrast

or font-size. This approach represents a promising context-modeling method that

could be adapted for purposes of the context-sensitive CUI generation. On the other

hand, clearer separation of UM and DM properties would be necessary to simply

the development and maintenance of CM instances.

Knappmeyer et al. [50, 51] presented a lightweight XML-based context repre-

sentation schema called ContextML. Context information is categorized into scopes

related to different entity types. ContextML uses REST-based [89] communication

between framework components. The presented context representation method pro-

vides generic context representation and context exchange approach. The context

is represented by entities. Each context state is called scope and provides a consis-

tent context-instance at a specific moment. The proposed approach has been tested

on two mobile platforms (iOS and Android) with following context providers: Loca-

tion Provider, Civil Address Provider, User Profile Provider, Environment Provider,

Time Context Provider, and Activity Provider. This context model can be orga-

nized in various abstraction layers form primitive scopes to high-level scopes. It

is extensible – this method allows adding new scopes in runtime and in plug and

play fashion. ContextML lacks the schematic strength of the Web Ontology Lan-

guage (OWL) [64] or the Resource Description Framework (RDF) [49] based ontolo-

gies. Instead, it aims for light-weight context representation that can be used on

mobile devices with constrained resources. The main advantage of this approach is

the fact it supports a combination of context modeling, maintaining and exchange.

However, an explicit relationship between context attributes represented by Con-

textML and UI attributes must be specified to enable the use of a similar approach

in the framework of our appraoch.

Sheng and Benatallah in [97] propose ContextUML – a Unified Modeling Lan-

guage (UML) based context modeling language for MBUID. UML is industry de-

facto standard for design and development of software systems. The proposed con-

text model is desired for development of context-aware Web services. The authors

distinguish two types of context – atomic context and composite context. Atomic

2.4. CONTEXT MODEL 27

contexts are low-level context instances that do not rely on other contexts and can

be directly provided by context sources (e.g. sensors). On the contrary, composite

contexts aggregate multiple contexts on the high-level to provide more abstract in-

formation. Authors further focus on context awareness modeling by introducing two

mechanisms – context binding and context triggering. The current implementation

of ContextUML is tailored for Web services.

Peißner et al. in [82] focus on individualization patterns for accessible and adap-

tive UIs. MyUI User profile variables include: visual acuity, field of vision, ambient

light, ambient noise, language reception, language production, attention, processing

speed, working memory, long term memory, Information and Communication Tech-

nologies (ICT) literacy, hand-eye coordination, speech articulation, hand precision,

contact grip, last name, email address, preferred language, etc. From this list we

can see that the user profile mixes different variables with low consistency. Some

variables like ambient light or noise are not usually not included in the category

of User Model (profile), instead they technically fit into the category environment

model (alternatively into the device model). The influence of the proposed variables

to the composed UIs is also not clear. On the contrary, MyUI supports runtime

tracking of context changes and their reflection in the corresponding UI.

Razmerita et al. [88] focused on ontology-based user modeling for knowledge

management systems. Their architecture used three different ontologies: user on-

tology, domain ontology and log ontology. The authors mentioned user properties

and characteristics like identity, email, address, competencies, cognitive style, and

preferences. In general the user model is structured according Leaner Information

Package specifications [43], user model contains eleven groupings: Identification,

Qualification, Certification, Licenses, Accessibility, Activity, Competence, Interest,

Affiliation, Security Key and Relationship. The presented approach incorporates

explicit part of user model that is maintained by the users themselves. An implicit

part of user model uses various techniques to encourage users to codify their expe-

rience. The system uses user behavior analysis and related heuristics to codify the

level of user activity, level of his/her knowledge sharing etc. This approach also in-

corporates social and gamification [28] aspects to encourage users to be more active.

Technical implementation of this approach uses a OntoUM server that stores data

in the RDF [49] format.

Kaklanis et al. in [47] focus towards the standardization of UMs for simulation

and adaption purposes. The authors propose Virtual User Modeling and Simulation

Standardization (VUMS’) project cluster aiming to develop an interoperable UM.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.4: Comparison approaches for context modeling

Context model Sub-models Pros Cons

vCard [22] UM Established standard Limited information use-
able for UI adaption

ETSI ES 202
746 [103]

Primarily UM,
partially DM

Relevant properties in UM Interconnection of CM
properties

ContextML [50,
51]

DM, UM, EM Both context represen-
tation and context ex-
change, lightweight con-
text representation

No direct relationship to
UI attributes

ContextUML
[97]

Not specified
by design (UM,
EM in example)

Atomic and composite
contexts

Tailored to web, does not
specify context structure

Peißner et al. in
[82]

UM Clear relationship to UI
attributes

Model complexity, unclear
relationship to UI

Razmerita et al.
[88]

UM Complex multi-factor
model

complicated

VUMS project
[47]

UM Focus of people with dis-
abilities

Leverage users’ limita-
tions

Dynamix [12] DM, EM Context sensing, device
integration, Application
Programming Inter-
face (API)

To-date restricted to An-
droid

This UM is able to describe both able-bodied people as well as people with various

kinds of disabilities. The VUMS project cluster consists of four Framework Program

(FP) 7 EU projects – VERITAS, MyUI, GUIDE, and VICON.

Carlson and Schrader in [12] suggest a new community-based approach for

context-aware computing. Dynamix is a lightweight background service running

on a user’s mobile device. It models context information from the environment us-

ing user’s mobile device itself as s sensing, processing a communication platform. A

simple to use API is exposed to applications that request context support. Dynamix

supports automatic discovery, downloading and installation of plug-ins required for

a given context-sensing task.

In this section, we presented several approaches for context modeling. Those

approaches are listed in Table 2.4. The original approaches like [114] emerged from

rehabilitation engineering. According to [113], the main issue is that most current

context modeling approaches leverage user’s disabilities rather than their abilities.

There are also context modeling approaches that are based on complex ontological

models. However, these approaches can model complex contextual instances in a

particular domain, they induce substantial issues from the perspective of develop-

2.5. AUTOMATIC UI EVALUATION 29

ment and maintenance efforts due to their complexity. For purposes of this thesis,

we need a context model that is easy to maintain on one hand and can model level

of user specific abilities in the same way as their limitations on the other hand. A

promising approach that inspired our solution is draft standard ETSI ES 202 746

described in [103]. However, it provides an inspiration for relevant CM properties,

the corresponding CM structure contains unnecessary interconnection between UM

and DM properties that could complicate the development and maintenance of CM

instances.

2.5 Automatic UI evaluation

An automatic UI generation method approach requires a method how to automat-

ically assess the quality of the generated UIs in order to provide optimal results.

This section focuses on the promising state of the art methods available that could

be potentially used.

In accordance with the aims of this thesis, an important objective is to generate

UIs that will be maximally useable. Accordin to ANSI 2001 [79] and ISO 9241

part 11 [44], the dimensions of usability are effectiveness, efficiency and satisfaction.

For the process of automatic UI generation, we need a method that will provide

automatic UI evaluation from the usability perspective. This section focuses on

existing methods that can meet such a requirement.

There are several laws and rules of thumb that are used for UI development

and evaluation for decades. For example Hick’s Law [90] puts into the relationship

the number of available choices and decision time, whilst Fitts’ Law [62] model the

duration of the act of pointing. There are also rules emerging from psychology

that suggest how to compose the UI structure (layout), most notably the laws of

organization in perceptual forms, known as Gestalt rules [111].

The Nielsen heuristics [75] consist of ten general principles for interaction design.

The heuristics were derived by factor analysis of 249 usability problems to provide

maximum explanatory power. Due the their general manner, in the original form,

those heuristics require a human expert to be present for both the design as well

the evaluation of an interactive system.

Okada et al. [76] describe two methods for automated evaluation of usability

and accessibility of web pages. Usability is evaluated using analysis of logs resulting

from user interaction. The author focus mainly on the effectiveness by comparing

real logs with lots resulting from the ideal (desired) interaction. Accessibility was

30 CHAPTER 2. BACKGROUND AND RELATED WORK

evaluated using machine learning methods.

Gimblett and Thimbleby [38] describe an evaluation method that uses a theorem

discovery method to automatically find and check usability heuristics. They auto-

matically and systematically look for sequences of user input that are equivalent

(or almost equivalent) in their effect on a system. Authors state that such almost

equivalent actions that result in different outcomes are source of potential errors

and user confusion. This method requires a complete UI to be used in the full ex-

tend, however, it can be also used for the iterative development. AUI as defined for

purposes of this thesis already contain available actions, hence, this method is not

useable for CUI derivation. From our perspective, it can be used for optimization

of AUI derivation from other input models.

Fainer and Andrews [34] propose the usability markup language – UsabML, which

defines a structured reporting format of usability evaluations. A web-based system

called Usability Reporting Manager (URM) can handle formative usability reports

described in UsabML. Discovered issues can be directly imported into standard issue

tracking systems. However, UsabML can be useful for structure formative usability

reports, the proposed tool does not offer real automated usability evaluation.

Chattratichart and Lindgaard [19] describe a comparative evaluation of heuristic-

based usability inspection methods. They compare classical heuristic evaluation

(HE) based on the Nielsen heuristics [75] with HE-Plus and HE++ heuristics. They

conclude that both HE-Plus and HE++ outperformed HE in terms of effectiveness

and reliability. The main reason is that HE-Plus and HE++ support focusing on

problem areas.

Sauro and Kindlund [92] describe a method to standardize usability metrics

into a single score – the summated usability metric (SUM). The SUM provides

one continuous variable for summative usability evaluations that can be used in

hypothesis testing and usability reporting. The user satisfaction was measured using

questionaries including questions on task experience, ease of task, time on task and

overall task satisfaction.

Cassino and Tucci [13] describe an approach to evaluate interactive visual en-

vironment based on SR-Action Grammars formalism. Using their approach it is

possible to aid the developer to create applications that automatically respect a

significant number of usability rules. They propose VALUTA - Automatic tool for

usability verification at the abstract level. The system takes as input an interactive

visual application, generates related formal specification and automatically performs

the implemented usability checks. The authors implemented a verification of a set of

2.5. AUTOMATIC UI EVALUATION 31

Nielsen heuristics [75]: completeness, correctness, aesthetic and minimalist design,

user control and consistency. The current version of the VALUTA tool is tailored

for Web-pages.

Kurniawan and Zaphiris in [54] present a set of UI development guidelines fo-

cuses on elderly people. The proposed guidelines are divided into eleven categories

focusing on: target design, use of graphics, navigation, browser window features,

content layout design, links, user cognitive design, use of color and background, text

design, search engine, and user feedback & support.

Seffah et al. [95] provide an evaluation of currently used usability measurement

methods. Upon their analysis, they provide an consolidated hierarchical model of

usability measurement. The authors introduce a Quality in Use Integrated Mea-

Table 2.5: Comparison of UI evaluation methods

Method Focuses-on Pros Cons

Nielsen heuris-
tics [75]

Usability of
interactive sys-
tems in general

General, famous, used for
heuristic evaluation

Too general for automatic
UI evaluation

Okada et al. [76] Web usability
and accessibility

Automatic evaluation of
effectiveness

Requires user interaction

Gimblett and
Thimbleby [38]

Usability, error
prevention

Can estimate errors
caused by ambiguous
input

Require complete UI,
above AUI level

UsabML [34] Usability re-
porting lan-
guage – Us-
abML

Formalized description of
usability reports

Not an automatic tool

HE-Plus and
HE++ heuris-
tics [19]

Evaluation
of Heuristic
Usability evalu-
ation methods

Focusing on problem areas
improves evaluation

Not an automatic evalua-
tion tool

Sauro and Kind-
lund [92]

Usability met-
rics

Introduction of summated
usability metric (SUM)

Uses questionaries (re-
quires user)

VALUTA tool
[13]

Automatic
usability evalua-
tion on abstract
level

Automatic solution Tailored for web pages

Kurniawan and
Zaphiris [54]

Usability guide-
lines for UI de-
sign for elderly

Example of user-specific
guidlines

Only one user group

Seffah et al. [95] Quality in
Use Integrated
Measurement
(QUIM) model

Integration of usability
evaluation methods

Very complex, require hu-
man evaluation

32 CHAPTER 2. BACKGROUND AND RELATED WORK

surement (QUIM) model that brings together usability factors, criteria, metrics

and data described in various standards in a consistent way. QUIM bring improve-

ments in usability measurement planing as well as calculating metrics of overall

usability goals. However, QUIM archives integration of multiple usability metrics,

most methods require being carried out by human experts.

In this section, we summarized various approaches related to automatic usability

evaluation, see Table 2.5. Some approaches bring only minor level of automation,

e.g. they help with construction of consistent usability reports – [34, 92, 95]. Many

approaches require the presence of human experts – [95, 19] or are based on measured

real user activity [76, 92]). Few approaches that offer true automation of usability

estimation exist – [13, 38]. However, even those approaches are not suitable for

CUI usability estimation, at least not in their current form. VALUTA tool [13]

focuses on discovery of potential usability problems of web applications. Method

by Gimblett and Thimbleby [38] can discover potential issues caused by ambiguous

input, however, it needs complete UI and functional description on a high level of

abstraction.

The evaluation is an integral part of the UI creation process. A best practice

for effective development of usable UIs that respect needs and preferences of their

target users is the User Centered Design (UCD) [2] process. Generally, the UCD

is a design process in which end-users influence how a design takes shape. Various

observation, design and evaluation methods can be used for the UCD, including

user modeling using a Personas technique [66]. UCD process has been standard-

ized by the International Standardization Organization (ISO) [30]. UCD typically

consists of four stages that are iteratively repeated several times to evolve product

that fits the needs and preferences of its users. UCD should be considered during

development of related development support tools, see appendix A. Also, use of

the UiGE Pipeline could make the UCD UI development process more effective by

simplifying UI prototyping and evaluation.

2.6 Conclusion

This chapter summarized approaches and methods related to the objectives of this

thesis stated in section 1.2. Firstly, in section 2.1 we focused on related approaches

for automatic UI generation in general. Many approaches bring interesting meth-

ods suitable for automatic UI generation, like combinatoric optimization brought by

Supple [37], UI consistency preservation (Uniform [72]) or aspect-based transforma-

2.6. CONCLUSION 33

tion (AspectFaces [16]). Supple [37] brought an inspiration for the CUI optimization

method described in this thesis, that is also based on the combinatoric optimiza-

tion. However, most related approaches have limitations emerging from limited UI

adaptation they offer on one hand and complicated development and maintenance

caused by complex coupled input models on the other hand.

Section 2.2 focused on related methods to effectively derive AUIs from other input

models. Analysis of several MDD based approaches resulted into concluding that

they induce problems during adaptation and evolution management. This statement

is in accordance with [67]. The code-inspection and aspect-oriented transformation

turned out to be a promising method for derivation of AUIs in the case of data-

oriented applications. Section 4.3 describes the theoretical background of the use of

code-inspection and aspect-oriented transformation for purposes of AUI derivation.

A practical application of this approach is described in chapter 7.

Our survey of UI markup languages is described in section 2.3. It has shown

that several universal UIDLs does not offer a satisfactory level of abstraction. On

contrary, some languages allow UI definition only on an abstract level. A UIDL

that uses a similar structure and is based on similar concepts on both abstract and

concrete level might simplify our approach from the developer’s perspective.

The Context Model is an important attribute for the CUI generation, section 2.4

focuses on survey of context modeling methods related to our approach. The out-

come is that various context-modeling approaches are suited to a particular domain

(e.g. [22]), many context modeling approaches are also based on complex ontolo-

gies. This complexity can cause development and maintenance difficulties in case of

complex real-world system. For purposes of this thesis, we need a CM that is easy

to maintain on one hand and can model users’ specific abilities in the same way as

their limitations on the other hand.

Last but not least, section 2.5 focuses on methods for automatic evaluation of UIs.

Our CUI generation approach needs a method to assess the quality of the generated

UIs in order to provide optimal results. The outcome of our survey of is that

most methods provide some level of automation, but still require presence of human

experts or need to track the user activity while using a real application. In case of

methods based on heuristic evaluation only those that focus on a specific application

domain (e.g. web) provide a satisfactory level of automation. Our approach should

allow general optimization based on simple metric (e.g. the number of steps to carry

out an action). For specific purposes, specific heuristic rules can be used to provide

better results from the UI usability perspective.

34 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

UI Description and Delivery

This chapter focuses on the realization of the UI delivery method. More precisely,

we focus on the situation when UI described in common CUI language are delivered

to various client platforms. In our case, these client platforms can significantly

differ in operating systems, screen sizes, supported interaction modalities, etc. For

an effective UI generation and delivery it is convenient to have a single internal UI

description language that can be interpreted on different platforms.

The approach described in this thesis in the form of Context-sensitive Automatic

Concrete User Interface Generation Pipeline (UiGE Pipeline), including the auto-

matic CUI generation method, Context Model, and AUI derivation from other input

models is implemented as the UIP Platform. A necessary foundation for these more

advanced methods is the CUI delivery method described in this chapter. Figure 3.1

shows the scope of the UI delivery method as defined for purposes of this thesis. The

steps of the UI generation pipeline realized by the method described in this chapter

are marked by the dashed rectangle in Figure 3.1. The primary focus is on delivery

of CUIs to various client platforms and their final rendering (transformation into

the FUI).

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Figure 3.1: UI delivery method in relation to Context-sensitive Automatic Concrete
User Interface Generation Pipeline (UiGE Pipeline)

35

36 CHAPTER 3. UI DESCRIPTION AND DELIVERY

Client
Application

Logic B

Server
Application

Logic
UI B

UI A

Client
Application

Logic A

(a) Client-server architecture with
thick clients

Client A

Client B

Server
Application

Logic

UI

(b) Client-server architecture with
thin clients and common UI descrip-
tion (our solution)

Figure 3.2: Client-server architecture with thick and thin clients

3.1 UIP Platform

The UIP Platform has been designed to provide an effective foundation for client-

server applications including heterogeneous client platforms and to support ubiqui-

tous computing [4]. It is based on client-server architecture (see Figure 3.2). Whilst

architecture of multi-platform client-server application with thick clients (see Figure

3.2a) introduces splitting of the application logic between various client platforms

and a common server part. Client platforms also often use different UI description

languages. This requires additional effort from developers to deal with multiple

heterogeneous platforms.

The UIP Platform incorporates platform-independent UI description by means

of UIP Protocol. In the case of UIP Platform (see Figure 3.2b), there is common

application logic on the server. Concrete UI definition (CUI) can be delivered and

rendered on any supported client platform. A clear separation of presentation,

model and application logic (which resides on the server by design) is ensured by

the platform design.

UIP Platform also defines communication between client(s) and the server. As

shown in Figure 3.3, only events that are later handled by the server side application

logic are propagated in the direction from a client to the server. In the opposite

direction the server can push interfaces (description of UI structure) and models

(data that are represented to the user through the UI) to a client. As soon as a model

is updated on the server side, this update is propagated to all relevant clients. Such

update is then instantly reflected in the UI using standard data binding mechanism,

see [65].

3.1. UIP PLATFORM 37

UIProtocol
Client

UIProtocol
Server

Interface
Manager

Model
Manager

Event
HandlersEvent
HandlersEvent
Handlers

Interfaces

Models

Events

UIProtocol

Figure 3.3: UIP Protocol communication

UIP Protocol is part a of the UIP Platform. As depicted in Figure 3.4, UIP

Protocol consists of Event Protocol and UI Protocol. The Event protocol describes

the communication using Event Documents, which is typically used for communica-

tion in the direction from UIP client to UIP server. Additionally, Event Protocol is

used for peer-to-peer communication between other distributed UIP Platform com-

ponents. One example is the communication between the UiGE and a UIP client to

determine platform-dependent UI element dimensions and appearance at the client

side. Another example is the communication between the UIP Visual Editor (see

section 4.2) and UIP clients to determine platform-dependent visualization of UI

elements.

Event Protocol UI Protocol

UIP Protocol

Event Document UI Document

Model
Description

User
Interface

Description

Action
Description

AUI
Description

CUI
Description

Event Handling API

User Interface Platform
(UIP)

User Interface
Generator

Figure 3.4: UIP Platform conceptual components and protocols

38 CHAPTER 3. UI DESCRIPTION AND DELIVERY

User Interface

Client Server

Event Hander
Event Hander

Event Handler

Events

Interfaces
Model Updates

Interface
Events

Binding
Updates

Event
Objects

Interface Objects
Model update Objects

UIDocument/EventDocument Objects UIDocument/EventDocument Objects

Interface objects
Model update Objects

Handle Event
Method

Event
Objects

Update Models
Provide/Update Interfaces

UIP Client UIP Server

Channel
Layer

Prococol
Layer

Channel

Protocol Channel Protocol Channel

Channel

Figure 3.5: UIP Protocol reference architecture

UI Protocol describes communication using UI Documents. A UI Document (see

Figure 3.4) describes data Models, and User Interface descriptions. User Interfaces

descriptions sent to a UIP Client are always CUIs. However, User Interface Descrip-

tion can also have the form of an AUI that can be transformed into a CUI using the

UiGE – see chapter 6.

Figure 3.5 depicts the UIP Protocol reference architecture. The Protocol layer

is abstracted from the Channel layer. An object representation only is exchanged

inside a UIP Client and a UIP Server. The UIDocument/EventDocument objects

can be represented differently on the Protocol layer. There is an XML-variant, a

json-variant [23], and a binary variant of the protocol.

Communication in the direction from client to server is carried out as follows:

Firstly, user’s interaction with UI rendered on a UIP client results into the generation

of Interface Events. These events are encapsulated in Event Objects. In the next

step, communication channel transforms them into the EventDocument Objects that

can be transported on the protocol layer. The protocol variant (XML, json, binary)

is already negotiated with the server during the connection handshake. On the server

side, Event Document objects are transformed into an internal object representation

3.2. UIP CLIENTS 39

– Event Objects. Event Objects are handed over to corresponding Event Handers

that implement application logic in the UIP Platform.

In the opposite direction from the server to the client is the communication trig-

gered by EventHandlers. An EventHandler can update data Models, and provide

(update) user Interfaces. Similarly to UIP client, Models and Interfaces have inter-

nal object representation. For purposes of the communication channel are object

transformed into a corresponding UI Document form.

3.2 UIP clients

Various UIP clients have been implemented as part of the UIP Platform. They

differ in their software platforms (Java, .NET, PHP, ASP, Adobe Flash, iOS or

Silverlight) as well as in the type of supported device (PC, generic web, Tablet

PC, Smartphone, or even multitouch tabletop). The UIP Platform then supports

a wide range of clients with different capabilities and software foundation. Using

the capabilities of UIP Protocol a single UI can be rendered on any supported UIP

Client.

Figure 3.6 depicts reference architecture of UIP client. It consists of the Common

UIP client core and UIP Client Platform extensions. The Common UIP Client Core

is consistent for all supported platforms. It is designed to maximally reusable among

all supported platforms. Whereas UIP Client Platform extensions represent part of

client implementation that corresponds to a particular client platform.

UIP Client

Model Manager

Interface Manager

Event Manager UIP Channel
Manager

Event Protocol
Communicator

Native platform
element definitions

Renderer

Common UIP Client corePlatform-extensions

Binding Manager UIP Server

UiGE

UIP Visual
Editor

Final
User Interface

UIP Protocol
Layer

Protocol Channel
Manager

UIP
Event

CUI Model

Model

CUI

UIP
Event

UI
Event

Element
dimensions

Element
bitmap

Render
request

UIProtcol
Objects

Element
definition

Updates

Converters

Converter

Model
up-

dates

Event Protocol
Layer

Element
bitmap

Element
dimensions

Render
request

CUI

CUI

Figure 3.6: Reference architecture of UIP Client

40 CHAPTER 3. UI DESCRIPTION AND DELIVERY

3.2.1 Common UIP Client Core

The Common UIP Client Core communicates with the UIP Server on UIP Pro-

tocol Layer using Protocol Channel Manager. The representation of UI Protocol

Documents on this layer has multiple variants, namely: XML, binary and json.

The standard variant is XML that must be supported by any UIP Client. In the

direction form UIP Client to UIP Server, the UIP Protocol Layer transfers only

UIP Events that are handled by application logic persisting on the Server or for-

warded to other integrated platforms like smart-home hub by means of UIP Server

application logic. In the opposite direction, the UIP Server transits User Interface

definitions, and Data Models. Protocol Chanel Manger transforms UI Protocol Doc-

uments transferred on the UIP Protocol Layer to internal object representation and

vice versa.

UIP Channel Manager encapsulates most of the UIP Client internal logic. It dis-

tributes UIProtocol Objects provided by Protocol Channel Manger to corresponding

UIP Client components. Further, in is responsible for initialization of these compo-

nents and for connection handshake.

Model Manager is responsible for maintaining data Models sent from the UIP

Server. It exposes data contained in the Models to the Binding Manager that up-

dates UI element properties in the platform specific FUI. Model updates are not

necessarily instant, they can be delayed and interpolated. The Model Manager im-

plementation integrates interpolators that implements interpolated model updates.

Among others, interpolated updates can be used for UI animations.

Event Manager is responsible for handling Events. Events typically originate in

user actions while interacting with the FUI. Also, events can be triggered by some

components of a UIP Client (e.g. connection event, interpolation finessed event,

model request event, or interface request event). Generated events are propagated

to the UIP Server by UIP Channel Manager.

Interface Manager handles CUIs provided by the UIP Server. The CUIs are

maintained in cooperation with Model Manger – a specific Model is designed for

storing CUIs on a UIP Client. Interface Manager provides the CUI Renderer with

CUI descriptions.

3.2.1.1 UIP Client Event Protocol Communicator

The Event Protocol Communicator is an additional component of UIP Client that

is not required for its basic function. Its purpose is to provide client-specific in-

3.2. UIP CLIENTS 41

formation about FUI elements, even in a case that a UIP Client is not connected

to any UIP Server. In the current implementation of UIP Platforms there are two

purposes for Event Protocol Communicator on UIP Client :

• Providing information about platform specific UI element dimensions for

UiGE.

• Providing geometrical dimensions and raster image representation of platform

specific UI elements to UIP visual editor.

3.2.2 UIP Client Platform Extensions

Platform Extensions contain platform-specific UIP Client components that are typ-

ically re-implemented for each client platform to be supported. These extensions

have usually the form of a module of more generic UIP Client, i.e. only one UIP

client needs to be implemented for each development platform like .NET or java

whilst each UI platform like .NET Silverlight, .NET WPF, or Java Swing requires

its own implementation of Platform Extensions.

Basic component implemented for each UI platform is Renderer. In terms of

this thesis, it is responsible for the transformation from CUI described in UI Proto-

col into a platform-specific FUI. As the FUI is rendered using platform-specific UI

components, renderer must map UI Protocol properties to platform-specific prop-

erties (e.g. element-width, font-size, list of combo-box options etc.) of individual

FUI components. Also platform specific event triggers (e.g. mouse click, finger tap,

swipe left gesture etc.) must be mapped to UI Protocol event triggers.

In order to provide modular approach, UIP Client Platform Extensions con-

tain Native platform element definitions that represent mapping between UI Proto-

col CUI elements and containers and their platform-specific FUI implementations.

These extensions are typically loaded dynamically, UIP Client provides UIP Server

with actually supported components during the connection handshake. Advanced

components of UIP Platform like UiGE can adapt its functionality to set of UI

elements supported by a current UIP Client.

The Binding manager is responsible for instant connection between the data

Model properties and properties of native UI components of the FUI. Values of UIP

properties represented as strings are type-weak, for most UI platforms it is necessary

to convert these values to values of native UI element properties of various types.

Set of platform-specific Converters needs to be implemented as part of a UIP Client

Platform Extension to provide this conversion.

42 CHAPTER 3. UI DESCRIPTION AND DELIVERY

3.3 UIP Server

The UIP Server is the a central component of the UIP Platform responsible for pro-

viding UIP Clients with user Interfaces, data Models and handling received Events.

It can serve multiple UIP Clients at once and provide them with independent content

as well as perform complex Model and Interface updates for all connected clients.

Architecture of UIP Server is depicted in Figure 3.7.

The main components of the UIP Server are the UIP Server Core, the UIP Ap-

plications and the UIP Server Extensions. The UIP Server Core contains main com-

ponents that are responsible for the basic server runtime functions (configuration,

logging etc.), communication with UIP Clients, management of content described

by UIP Applications and management of UIP Server Extensions.

Similarly to the UIP Client, the communication channel abstracts from actual UI

Protocol representation on the physical communication channel. Core component

responsible for server runtime is UIP Channel Manager that also manages commu-

nication between UIP Clients via Protocol Channel Manager and the rest of UIP

Server components.

The Model Manager is responsible for providing UIP Clients with data Modes

and their updates. Model updates results from application logic or from external

sources connected to the UIP Server. As Modes complexly affects UIP Client behav-

ior, it is necessary to distinguish between Model versions for particular UIP Clients.

UIP Server

Event Protocol
Communicator

UIP Server core

UIP Client UIP Protocol
Layer

Protocol Channel
Manager

UIP
Event

CUIModel

Model Manager

Interface Manager

Event ManagerUIP Channel
Manager

UiGE

UIP Extensions

Persistence
Manager

UIP
Applications

Event Handler
Event Handler

Event Handler

Model
Model

CUI
CUI

CUI

Model

AUI
AUI

AUI

UIProtcol
Objects

UIP Server
Control Service

UIP
Event

Model

UIP
Event

Interface

UIP
Event

Model

Interface

AUI

CUI

Model

Context
Model

Context
Sensors

Optimizer

Templates

Heuristics

Figure 3.7: Reference architecture of UIP server

3.3. UIP SERVER 43

UI Protocol also defines so called Model variants that enables UIP Server to select

Model sufficient for a particular situation (e.g. language mutation). Model variants

are used in front of all for purposes of internationalization(i18n) when each model

variant contains particular language constants. Initial data Modes are stored in UIP

Applications. During the UIP Server runtime, the Model Manager contains actual

data. Only specific (persistent) Model updates are saved as back to a UIP Appli-

cation. Models can be updated from Event Handlers, in this way, the application

logic on server affects behavior of particular UIP Clients.

Event Manager deals with Events received from UIP Clients. Events are typi-

cally propagated to Event Handlers defined in UIP Applications that represent the

application logic. Specific events are handled by the internal logic of UIP Server,

for example connection event, model request event, interface request event etc.. UIP

Server exposes an Event Handling API, see Subsection 3.3.2. Using this API, Event

Handlers in various programming (or scripting) languages can be defined. Currently

there are Event Handlers in .NET, Java and ECMA Script.

Interface Manager is responsible for providing CUIs to UIP Clients. CUI defini-

tion are either part of UIP Applications or generated by the UiGE. In the following

text we describe a method how to program UIP Server – Event Handling API.

3.3.1 Event Handling API

The UIP architecture places the application logic completely on the server. This

fact simplifies both application development and maintenance.

UIP Platform defines the Event Handling API as depicted in Figure 3.8. Ini-

tial version of this concept was presented in [other1]. Each Event dispatched to

the UIP Server is propagated to the Event Manager. Besides special cases, each

Event is propagated to an Event Handler – an instance of a class implementing

IEventHandler Interface. A corresponding Event Handler is selected using the class

attribute of an Event.

A method called HandleEvent is invoked for the selected Event Handler. This

method is provided with three objects as parameters – Client Object, Server Object

and Event Object. Using these objects, the program code implementing an Event

Handler can manipulate Data Models as well as get necessary information. Event

Object contains UIP Properties attached to a particular Event. These properties can

be either defied in an Interface definition (e.g. additional parameters) or attached

automatically by a UIP Client (e.g. class of element that invoked the Event).

44 CHAPTER 3. UI DESCRIPTION AND DELIVERY

Object Client Object Server

Object Event

updateModel(...)
getModelValue(...)
invalidateModel(...)

sendCreatedObjects(...)
logMessage(...)

class
properties

updateModel(...)
getModelValue(...)
invalidateModel(...)

sendCreatedObjects(...)

properties

Interface Builder Abstract Interface Builder

introduce[Interface |
Container | Element |
Action | Bahavior | Style |
Position] (...)
finalize...
createProperty(...)

introduce[Interface |
Container | Element |
Bahavior | Label] (...)
finalize...
createProperty(...)
createRestriction(...)

Event Handling API

IEventHandler

handleEvent(
client,
server,
event)

Figure 3.8: Simplified scheme of Event Handling API

Both Client Object and Server Object have methods to update Model and to

get information stored in a Model. The main difference is that the Client Object

manipulates with data related to a corresponding UIP Client, whilst the Server

Object can manipulate with common data, or with data of other connected UIP

Clients using an advanced client selection mechanism. There are three basic model

update types – Complete, Partial, and Persistent. By setting a corresponding Update

Type, it is possible to update only one property in a Model, completely replace a

Model with updated properties or to perform an update that is permanently stored

(into a corresponding UIP Application or into a database).

Builders are also part of the Event Handling API. The Builders are classes that

can be used to create new UIP Interfaces. There are two types of Builders – Interface

Builder to generate CUIs and Abstract Interface Builder to generate AUIs. These

structures can be used to generate new AUI and CUI structures during the UIP

Server runtime. Client and Server Objects have a method called sentCreatedObjects

that can used to propagate newly generated UI definition to particular UIP Clients.

3.4. CONCLUSION AND CONTRIBUTION 45

3.3.2 UIP Application

Model
Description

Action
Description

Event
Handler

CUI
Description

AUI
DescriptionAUI

DescriptionAUI
Description

CUI
DescriptionCUI

Description

Event
HandlerEvent

Handler

Action
DescriptionAction

Description

Model
DescriptionModel

Description

UIP Application (zip file)

Figure 3.9: Components of a UIP Application

In the text above, we defined particular components of the UIP Platform. An

application consists of multiple source-code documents that should be kept together

in one structure. A UIP Application is a container for Models, Interfaces (CUIs and

AUIs) and Event Handlers. Figure 3.9 illustrates individual components of a UIP

Application. Typically, the UIP Application is implemented as a compressed folder

(zip), with defined internal structure. UIP Server can be configured to load se-

lected UIP Applications. A caching mechanism can be employed in order to decease

starting time of the UIP Server.

3.4 Conclusion and Contribution

This chapter described foundations of the User Interface Platform (UIP) that en-

ables delivery of UIs to various types of client devices that use different UI platforms.

We see the major contribution to the field by methods introduced in this chapter,

namely by following:

• Centralization of application logic on the server side. Seen separately, this

feature is not unique in comparison to the state of the art. However, as a

strict requirement, it simplifies development for multiple client platforms with

different programming languages.

• Use of native UI elements. A single UI description can be rendered on target

platforms with various capabilities using native UI components (widgets).

• Platform extensibility. On the serve-side, the UIP Platform can be easily ex-

tended with additional components. E.g. UiGE CUI generator as the subject

of this thesis is also an extension of the UIP Server.

46 CHAPTER 3. UI DESCRIPTION AND DELIVERY

• Platform modularity. As UIP uses layered model architecture as depicted in

Figure 3.5, it is possible to replace individual layers by another implemen-

tation. E.g. apart from XML variant, other variants like binary (UIP-b) or

JSON [23] (UIP-j) exist.

The UIP Platform as described in this chapter serves as a solid foundation for

many applications, e.g. GraFooSha described in chapter 9 from the UIP Platform

uses only methods described in this chapter. However, complex adaptions of CUIs,

require automatic CUI generation (see chapter 6) that uses Context Model (see

chapter 5).

Chapter 4

Input for User Interface

generation

This chapter focuses on input for Context-sensitive automatic UI generation as de-

fined above. Figure 4.1 shows components described in this chapter in the scope of

general UI generation pipeline. Firstly, actual AUI structure and related UI Protocol

version for AUI description are defined. Further, selected input methods that enable

AUI derivation are described in greater detail.

Figure 4.2 depicts various input methods that can be used for AUI derivation.

Although it is possible to specify input AUIs manually (Figure 4.2-a), in many

cases it is useful to derive from another input model. One possibility is to use UIP

visual editor (Figure 4.2-b) that enables interactive AUI specification in a graphical

manner. Details about UIP Visual Editor are in section 4.2. For data-oriented

applications, Application audit (Code Inspection) (Figure 4.2-c) can be used for very

effective AUI derivation, see section 4.3. Finally, it is possible to transform another

input models into a UIP AUI structure as depicted in Figure 4.2-d. Transformation

of selected input models is described in section 4.4.

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Figure 4.1: Input transformation scope in the Context-sensitive Automatic Concrete
User Interface Generation Pipeline (UiGE Pipeline)

47

48 CHAPTER 4. INPUT FOR USER INTERFACE GENERATION

Code
Inspection

Trans-
formation

UiGE
UI Generator

AUI

AUI

Context Model Client 1

Client 2

Client n

CUI

CUI

CUI

JPA
Application

User 1

User 2

User 3

User 4

User n

UIP
Server

Visual Editor
AUI

AUI

Task Model
UI Socket

OpenHUB

(a) Manual Implementation

(b)

(c)

(d)

Figure 4.2: Input Methods

Figure 4.2 also shows how the UIP User Interface Generator (UiGE) provides

various differentiating client UI platforms with context-adaptive UIs tailored to the

needs and preferences of various users. This chapter concludes by enumeration of

important contributions related to UIP AUI design as well as the statement of its

limitations.

4.1 Abstract User Interface

General purpose of an AUI is to define UI structure in a context-independent man-

ner. A single AUI can be then transformed into many different variants of CUI using

context-sensitive CUI generation. Example of the hierarchical structure of an AUI

is shown in Figure 4.3. The root node of an AUI tree is an Interface. Using the

class attribute, it uniquely identifies an AUI in the scope of a UIP Application. A

particular AUI Interface can be nested into another AUI interface or even into the

CUI interface when necessary.

interface
class= "user.root"

title = "Home
Control"

container

element
public.input

title = "Select room"
importance = "1.0"
Values = "Living

room, Cellar,
Kitchen"

element
public.input

title = "Temerature"
importance = "1.0"
Range = "15-25"

element
public.trigger

title = "OK"
importance = "1.0"
action = "confirm"

container
title = "Set Room

Temperature"

Figure 4.3: Example AUI structure

4.1. ABSTRACT USER INTERFACE 49

Select room Set room temperature
Living room
Cellar
Kitchen

OK

Select room Set room temperature
Living room
Cellar
Kitchen

OK°C (15-18)

Select room Set room temperature

17 OK°C⬇
15
16
17
18

Set room temperture
Celar

°C

Kitchen

17 ⬇ °C17 ⬇ °C17 ⬇

Living-room
Living r ⬇

a) b)

c) d)

Figure 4.4: Functionally equivalent CUI’s

The purpose of the Container node is to aggregate one or more child nodes into

one structure. An Element node corresponds to a single interaction element in the

resulting CUI structure. Figure 4.3 shows the example structure of an AUI that

represents control of a home heating system. Examples a) to c) represent function-

ally equivalent CUIs that can result from the process of automatic CUI generation

as described in this thesis. Example d) in Figure 4.3 represents a structure that

corresponds to a different AUI structure, although even this CUI is still functionally

equivalent to remaining three examples.

Similarly to the UIP CUI, an AUI is typically represented using the XML, al-

though there are other more data-efficient variants. The AUI source XML code that

corresponds to the example home heating system shown in this chapter is in the

appendix B.1.

Any type of AUI node can be accompanied by Label Node. In the case of the AUI,

the Label Node reference necessary information to provide an appropriate concrete

label related to an element as a result of automatic CUI generation. Apart from

the short text label, this element can contain also a longer description of element

meaning or graphical mark of the element. Label Node also incorporates information

that is provided to the user in for purposes of data-validation. Information for

validation includes a label that describes extend of expected values in a human

readable form as well as a label that should be shown in case that the validation

criteria are not followed.

Element nodes can be additionally supplemented with Restrictions Node and

Behaviors Node. Basically, Restrictions Node expresses the limits of element values,

50 CHAPTER 4. INPUT FOR USER INTERFACE GENERATION

in our case possible temperature range that can be set to the home heating system.

Behaviors Node corresponds to UIP Events to be send as a result of interaction

actions corresponding to a particular Element.

4.2 UIP visual editor

The UIP Visual Editor can be used for designing both CUIs and AUIs. Its primary

use is for designing AUIs for cases that exclude the possibility to use an effective

transformation from another input model. UIP Visual Editor supports a visual

method for designing and modifying individual UIP application components: AUIs,

CUIs, Data Models and Event Handlers.

Netbeans IDE

UIP Visual Editor

UIP Application

AUI's

CUI's

Data
models

Event
handlers

AUI
Editor

CUI
Editor

Model
Editor

UIP Client

Client
connector

EH
Editor (JS,

Java, .NET)

request
visuali-
zation

Figure 4.5: Components of UIP visual editor

Figure 4.5 shows the components of the UIP Visual Editor. It is implemented as a

module for the NetBeans IDE [70]. UIP Visual Editor use UIP application structure

(see 3.3.2) for data persistency of AUIs, CUIs, Data Models, and Event Handlers.

As described above, UIP UIs are rendered on UIP clients using platform-native UI

components. Implementation of consistent rendering of many heterogeneous plat-

form elements embedded directly into the UIP Visual Editor would be complicated.

Instead, this issue has been resolved by introducing a client-communication protocol

that allows individual UI elements to be rendered on request directly to connected

UIP Clients (or emulators). The resulting visualization is then transferred back to

4.3. APPLICATION AUDIT AND AUI TRANSFORMATION 51

the UIP Visual Editor.

The UIP Visual Editor has been developed as part of Master’s Thesis [42] that

was advised by this dissertation thesis author. More details about the UIP Visual

Editor are described in section A.2 (appendix A).

4.3 Application audit and AUI transformation

This section focuses on AUI derivation directly from an application source code using

its inspection. Many real-world applications are strongly based on data persistence

and object-relational mapping – ORM [78]. Manual development of UIs for this

class of applications leads to code-replication and is error-prone due to human errors

[imp2]. Multiple target UI platforms make this problem even more serious.

In order to automate the process of AUI derivation, we apply the AspectFaces

(AF) framework [imp2] to the audit application content and data-model. The main

source of information used for basic UI structure is captured by the data models.

This information is normally restated in the UI [15] or in models describing the

UI. This impacts both development and maintenance efforts and can be a source of

errors. To reduce the information restatement, or to even eliminate it, AF applies

data model code-inspection through meta-programming and reflection mechanisms

[36].

Many contemporary statically-typed programming languages have the ability to

describe themselves, which is called Reflection [36]. This gives us an opportunity

to inspect data classes, their fields and constraints. Such inspection considers con-

straints given by field annotations such as the Java Persistence API (JPA) standard

[27], the validation standard [6], or presentation extension [17]. In addition, the

inspection is open to definitions of new extensions captured by annotations, such as

field visibility for a given geo-location, or user profile type, etc. The result of the

inspection is a hierarchical structural model of the given data-model class.

An instance of this structural model, together with the system context, is the

subject of aspect-oriented transformation. Details about the transformation process

are described in [16]. It has four phases, see Figure 4.6. First, it adjusts the

structural model instance accordingly to the runtime context. For example, the data

field ’state’ is eliminated for a given user since he/she is from the Czech Republic

using the AOP Annotation-driven participant pattern. Or a given field constraint

is modified to be read-only for the given use in the UI. This phase updates the

structural model instance.

52 CHAPTER 4. INPUT FOR USER INTERFACE GENERATION

Data
Entity

+
Extension

marks

AUI

1.Code-
inspection

2. Run-time
context

consideration

3. Field
transformation

to DSL

4. DSL
interpretation

DSL
component
templates

Structural
model

Structural
model

instance
Component

tree

Figure 4.6: Code-inspection

The second phase aims to choose an appropriate DSL transformation template

for each data field. Such template is selected by transformation rules. A trans-

formation rule consists of a pointcut that forms the query on the structural model

instance and context and gives advice on the DSL template. In our case, the DSL

template contains the AUI specification for a given field type. The template does not

refer to any specific data, but consists of target language constructs and integration

constructs – composition rules [16].

The third phase occurs when a part of an UI that represents the given data is

requested by a user. At this moment, all corresponding data fields are processed,

resulting into generations of a component tree. Consider the following example of a

data class with a text field. The text field has two annotations enforcing restrictions

on the input: a JPA annotation restricting the text length, and validation annota-

tion restricting email format. In this case a transformation rule for a text field is

activated. On the basis of the pointcut we look for a match with a given property of

the structural model instance and context: e.g. type = ’text’ and length < 100 and

type = ’email’ and userRole 6= ’visitor’. This pointcut uses logical operations and

combines type, length, and email from the structural model instance and userRole

from the context.

Phase four is about interpretation of the DSL within the context and a given

property of the structural model instance. In our case, the templates consist of the

constructs of an AUI and of composition rules. Each composition rule consists of

a pointcut and an advice. The pointcut uses exactly the same constructs as for

the transformation, but the advice aims to integrate additional concerns to the AUI

constructs. For example, in the case of a text-field, we ask whether there is a length

restriction, and if so, we integrate a validation rule. Or we can look at the context

specific part and say that when the user is an administrator, we allow him to submit

4.4. TRANSFORMATION OF SPECIFIC INPUT MODELS 53

the field empty. Other users must nevertheless provide this type of information. The

result of this phase is a an AUI. In this case, AF outputs AUI fragments that fully

reflect the application data model and consider the application context (user roles,

time, user-location, user device, user profile, etc.).

Next, we summarize the benefits: the correlation between the data model and

AUI does not need to be developed, verified and maintained manually. This reduces

the tedious work of UI developers and avoids human errors. Furthermore, consider

that since AUI uses a language with no type-safety, it would be easy to cause an

inconsistency by manual development, and so careful revision would be necessary.

With the use of this automated process, all future changes to the data model are

implicitly applied to the AUI fragments at runtime. Other benefits come from

the AOP process characteristics – separation of concerns, support for systematic

variations, parameterization, reduced code coupling and volume.

4.4 Transformation of specific input models

This section focuses on examples of transformation of selected domain-specific mod-

els into AUIs. Selected industrial standards for implementation of an intelligent

household use specific internal structures to model controlling UIs. On an example

of two different standards, we show how their internal model can be transformed

into an AUI. The first standard discussed is Universal Remote Console (URC) [45].

The other example focuses on Home Automation Bus (openHAB).

4.4.1 Universal Remote Console Sockets

Universal Remote Console is anchored as International Standard ISO/IEC 24752

[45]. This standard specifies communications between a target device that a user

wishes to operate, and a universal remote console (URC). URC presents the user

with a remote UI through which they can discover, select, access and operate target

devices. Each target to be operated exposes a UI Socket that defines controllable

functions of the target device. Structure of URC UI Sockets is compatible to an

AUI structure in the vocabulary of this work. URC UI Sockets are accompanied

by Resource Sheets that contain other information necessary for building a UI, e.g.

language constants, icons etc. URC uses central component to handle communica-

tion between targets and controllers – Universal Control HUB (UCH). This section

describes basics about the URC integration, detailed information about this topic

54 CHAPTER 4. INPUT FOR USER INTERFACE GENERATION

can be found in [61].

Abstract
Interface
Builder

URC Socket

Resource
SheetResource

SheetResource
Sheet

UIP AUI

Event
HandlerEvent

HandlerEvent
Handler

Updates

Figure 4.7: URC integration – derivation of AUI

Figure 4.7 shows a conceptual model of URC Integration. The Abstract Interface

Builder is responsible for analysis of URC internal models, namely, URC Sockets

and Resource Sheets. As a result Abstract Interface Builder generates AUIs and

necessary part of the application logic in a form of Event Handlers. Their main

purpose is to handle communication between UIP Server and URC UCH at runtime.

Abstract Interface Builder

AUI
Element

AUI
ContainerAUI

ElementAUI
Element

AUI
ContainerAUI

Container

AUI
Composer

Socket
Description
Manager

Resource
Manager

Semantic
Analyzer

AUI

URC
UI Socket

URC
ResourceURC

ResourceURC
Resource

Event H.
Event H.

Event H.

Figure 4.8: Abstract Interface Builder for URC

Socket Description Manager as depicted in Figure 4.8 is responsible for extract-

ing relevant information from URC UI Sockets. Each UI Socket socket contains a set

of socket elements and commands. There is also additional information about data

4.4. TRANSFORMATION OF SPECIFIC INPUT MODELS 55

types of elements, sets of legal values, and restrictions expressing at what circum-

stances could be a particular value changed. Furthermore a URC UI socket contains

a hierarchical structure of elements and their grouping into sets of related elements.

Socket Description Manager parses the XML description of given UI Sockets

and provides the extracted relevant information to the Abstract Interface Builder

in an object representation. Resource Manager parses additional information about

UI Socket elements from the resource sheets provided by the UCH API. A Resource

sheet has the form of an XML file, usually bound to a particular UI Socket It contains

information like description of the elements, labels for a particular language, icons

etc. This information is later bound to the AUI and consequently to the FUI.

Purpose of the Semantic Analyzer is to determine some additional knowledge

about the socket elements, in particular, if a resource sheet is unavailable. For

example it recognizes media elements according the content of socket element value.

For example, if a value contains .jpg,.png, or .gif, there is high a probability that

the value refers to an image.

The earlier version of our UIP Platform was integrated with URC in the frame-

work of the i2home project, for more details refer to [wos3] and [scopus4].

4.4.2 OpenHAB

The Open Home Automation Bus (openHAB) [99] project aims at providing a uni-

versal integration platform for home automation. Similarly to URC, OpenHAB ex-

poses control UIs in a form that can be translated into an AUI. In the vocabulary of

OpenHAB, this structure is called Sitemap. Unlike URC Sockets, Sitemap is a com-

OpenHAB REST
API

UiGE

UIP

Model
Manager

Event
Manager

OpenHAB
Sitemap

Data
Model

OpenHab
Events

UIP Client

CUI

UIP
Model

UIP
Events

Context Model

Figure 4.9: Integration of OpenHAB

56 CHAPTER 4. INPUT FOR USER INTERFACE GENERATION

posite structure for all devices and services integrated with the current OpenHAB

system.

Figure 4.9 illustrates integration of OpenHAB and the UIP Platform. An Open-

HAB Sitemap is translated into an AUI in a similar manner to the translation of

a URC Socket mentioned above. This AUI is later transformed into the context-

sensitive CUI using UiGE (see chapter 6). Relevant data are exposed to UIP Clients

and Event Handlers using the connection of Model Manager. This connection can

be implemented using special persistent Event Handler.In the opposite direction,

relevant UIP Events are translated into the OpenHAB events and propagated into

current OpenHAB runtime.

4.5 Conclusion and Contribution

This chapter described multiple methods to derive AUIs – an immediate input for

automatic CUI generation. Various methods were discussed, which shows the ver-

satility of our approach from the input perspective. In general, derivation of AUI

further simplifies implementation of context-sensitive UIs. Furthermore, capabilities

of platforms that support model transformation into UIP AUIs can be effectively

extended by instant support of multiple heterogeneous UI platforms proving context-

sensitive UIs.

Chapter 5

Context Model

This chapter focuses on Context model that corresponds to the requirements of

CUI generation described in this thesis. Figure 5.1 depicts how Context model

relates to the general UI generation pipeline. Most importantly, the Context model

attributes the CUI generation. However, the Context model is accessible from other

components of the UIP Platform, e.g. to enable manual UI adaptations. Additional

information about Context model and its evaluation can be found in [wos4].

5.1 UIP Context Model

This section focuses on the UIP Context Model – UIP CM. UIP CM describes

internal and external factors that affect an appearance of the resulting CUI and its

elements. It consists of four sub-models: the DM, the UM, the EM and the Assistive

Technologies Model (ATM), as depicted in Figure 5.2. The properties in the context

model have a direct relationship with the properties of the UI elements in resulting

CUIs. Property values in UM, DM and EM descriptions are independent. In the

event that any sub-model is missing, the UIP CM still provides a useable default.

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Figure 5.1: Scope of context model in the Context-sensitive Automatic Concrete
User Interface Generation Pipeline (UiGE Pipeline)

57

58 CHAPTER 5. CONTEXT MODEL

Device
Model

User
Model

Environment
Model

Assistive
Technologies

Model

Relative FactorsAbsolute
Values

Available
Interactors

Interactor
Preference

Application
Conditions

Device
Constraints

Figure 5.2: Components of Context Model

In contrast to other approaches for context modeling, the UIP CM focuses is on

individual properties of UIs, such as font-size, element-spacing, sound-volume, etc.,

which are reflected in individual sub-models.

5.1.1 Device Model

DM reflects attributes of actual device that can affect the interactive sessions. Unlike

other sub-models, the DM contains device-specific default values of UI properties in

absolute values (e.g. 10 pixels).

Additionally, DM contains the set of available CUI elements (in some vocabular-

ies called interactions) that can visualize information or provide users’ input. DM

also contains information about device constraints, such as screen width and screen

height, maximum volume, maximum contrast, etc. Example of DM instance is in

appendix B, section B.2.1.

5.1.2 User Model

Unlike the DM, all other sub-models, including the UM contain relative factors

rather than absolute values of UI properties. Example in Figure 5.3 explains this

concept. Furthermore, the UM contains information about user-specific interactor

preference. This information is used as a guideline during the automatic CUI gen-

eration in order to meet users’ preferences. Example of UM instance is in appendix

B, section B.2.2.

In accordance with the ability based design [113], UM describes user abilities

as their effect on the appearance and usage of individual UI components. Some

5.1. UIP CONTEXT MODEL 59

limitations the restrict interaction can be temporary [other4] or even caused by user

fatigue [scopus5].

5.1.3 Environment Model

EM reflects the effects of the current environment on an interactive session. Use of

context sensors (see 5.2) is expected for automated actualization of the EM.

5.1.4 Assistive Technology Model

ATM describes the effects of assistive technologies (assistive aids) to the properties

of CUI elements. E.g. use of prescribe-glasses enables the user to see smaller fonts.

On the contrary, protective gloves require significantly bigger touchable areas in

touch-based UI or prevent touch-based interaction at all.

5.1.5 Computation of final context model property values

The final context-dependent value of a particular UI property can be computed as

the product of properties in individual sub-models. There are absolute values in

DM and relative factors in the other sub-models.

final
value

device
model

user
model

environment
model

Accessible technologies
model

final value
target-size
20x80 px

desktop
target-size
abs. value
20x80 px target-size

factor
1.0 gloves

target-size
factor
1.25

=

smart-phone
target-size
abs. value
60x60 px

target-size
factor
1.25

target-size
factor
1.0

× ××
final value
target-size
94x94 px

=

final value
font-size
33 px

font-size
absolute

value
24 px

font-size
factor
4.5

font-size
factor
1.2

glasses
font-size

factor
0.5

screen magnifier
font-size

factor
0.5

× × × ×=

final value
volume
288 %

volume
abs. value

40%

volume
factor
0.8

volume
factor
3.0

protective earphones volume
factor
3.0

× × ×=

maximum
value
100%

Figure 5.3: Computations of final values of context-sensitive UI properties, example
computation of font-size property (top), volume property (middle) and target-size
property (bottom)

60 CHAPTER 5. CONTEXT MODEL

In the top part, the Figure 5.3 depicts a demonstrative computation of the font-

size property. In DM, there is an absolute value of 24 pixels. This is a default

value that fits the needs of able-bodied persons when using the device in an ideal

environment. The value is defined as an average value measured on able-bodied

users. The UM contains a relative factor of 4.5, meaning that the user needs all

fonts to be 4.5 times bigger than the average. In EM, there is a font-size factor

of 1.2 (bright ambient light detected by a device sensor). There are two assistive

technologies involved in the interaction: glasses and a screen magnifier. Both of

them have a relative font-size factor of 0.5. The total font size is computed as the

product of all relative factors in UM, EM and ATM and the absolute value in the

DM. In this case, the final value is 33 pixels.

Figure 5.3 – bottom depicts computation of the target-size value. Target-size

represents the dimensions of active areas such as buttons that are triggered by

mouse clicks or finger taps. This example shows the differences in the final value

for two different devices – a desktop and a smartphone. The default values in

DMs are different, which affects the final value. In the case of the smartphone,

a constant device movement has been detected. The precision of the tapping is

therefore worsened. This is reflected as a relative factor of 1.5 in EM. The user’s

pointing and tapping ability is normal, so the relative factor in DM is 1.0 (no-effect).

In addition, the user wears gloves because of the cold environment, and this further

decreases the precision of the tapping. Consequently, for the desktop the default

value in DM is used (all factors in the context model are equal to 1.0). In the case

of a smartphone, the final value is 94×94px.

The context model also contains properties that express the users’ cognitive abil-

ity to interact with information in a specific domain. These properties are expressed

as a factor from 0.0 to 1.0, where 0.0 expresses that the user is not able to understand

any information in the specific domain. Factor 1.0 expresses that the user is able

to understand all information in the specific domain. Correspondingly, individual

elements in the AUI can have an information complexity property. This property

indicates the minimal value of the users’ domain specific cognitive ability prop-

erty required for understanding information expressed by a particular AUI element.

During the CUI generation process, elements that express information which is ex-

cessively complex and are not required (the importance property of the AUI element

is not equal to 1) are omitted from the CUI generation process. The intermediate

values on this scale (e.g. 0.7) cause omitting of complex UI elements and function-

ality typical for expert users. The values of the information complexity property

5.2. CONTEXT SENSORS 61

and the domain specific cognitive ability property are currently defined manually by

experts in a given domain. Cognitive ability property can be set manually by user

to reveal more complex functionality.

5.2 Context sensors

Changes in the CM are detected during the application runtime and propagated into

the CUI generator. If a change occurs, e.g. the user stops wearing gloves, the new

CUI is pushed into the client device and rendered. The current position in the UI

(e.g. the active field of a form) is stored in a special data model and it is preserved

after the CUI update. In this way, the possible negative effect of the transition

between two UI representations is reduced. Some changes of context model can be

directly or indirectly detected by device sensors. For example, the intensity of the

ambient light can be detected by smartphone sensors. In an experimental setup, we

used a computer-vision method to identify a user (assign the corresponding UM)

and to detect whether he/she is wearing glasses (in order to assign a corresponding

ATM). The context model was adapted to the situation, and the update resulted in

an update of the currently displayed CUI.

5.3 Conclusion and Contribution

In this chapter, we introduced UIP CM, a context-modeling method that can be

integrated with other components of the UIP Platform, most importantly with the

UiGE. In comparison to current approaches listed in section 2.4, following benefits

of our solution can be noted:

• Novel CM design with independent factors in particular sub-models. This fea-

ture simplified both CM development as well as its later use. Each CM com-

ponent can be developed and maintained separately.

• Our CM focuses on effect to resulting CUI. Unlike other approaches for the

context modeling, our approach model context-factors as their effect on the

result. Many current CMs contain complex sets of various attributes of the

user or environment without direct relationship to UI properties.

• Our CM provides useable default values when any sub-model is missing. Except

the DM, using the concept of relative factors, the CM provides useable default

62 CHAPTER 5. CONTEXT MODEL

if any sub-model is not available.

• Less complex than models based on ontologies. Many approaches for context

modeling bases on ontologies, see section 2.4. However, these approaches can

express complex situations and automatic reasoning is possible, in real-world

situations, they can became really complex. Consequently useable ontology-

based context models are usually hard to develop and maintain. Furthermore,

a complex ontology-based CM can be transformed into our context model,

however, this is subject of the future work.

In the previous chapters, UIP Platform components necessary for context-

sensitive UI generation have been described. The following chapter focuses on the

main topic of this thesis – UIP User Interface Generator (UiGE).

Chapter 6

User Interface Generation and

Optimization

This chapter focuses on the automatic CUI generation. Figure 6.1 shows this phase

in the framework of general UI generation pipeline. In section 6.1, we focus on

the definition of optimization function. Definition of basic optimization function is

followed by description of more sophisticated cases based on its parameterization. In

the second part of this chapter (starting with section 6.2), we focus on the realization

of CUI generation process in the framework of the UIP Platform.

6.1 CUI optimization

In the framework of this thesis, CUI generation is defined as an optimization prob-

lem. It is therefore necessary to define optimization metrics that assess optimality of

generated UIs in order to automatically compose optimal results. Currently, the UIs

are typically evaluated using usability testing with target user audience or by expert

evaluation carried out by human experts based on heuristics. However, for purposes

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Figure 6.1: UIP User Interface Generator in the scope of the Context-sensitive
Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline)

63

64 CHAPTER 6. USER INTERFACE GENERATION AND OPTIMIZATION

of automatic CUI generation, we need an automatic assessment of UI quality. The

current context of use should also be considered.

The aim of the UIP User Interface Generator (UiGE) design is to provide general

solution for transformation of AUIs into CUIs. This transformation should reflect

the usage context and support a wide range of heterogeneous target UI platforms.

In order to achieve such a requirement, the UiGE uses simple basic optimization

function that can be later parametrized by more complex attributes (in our vocabu-

lary called optimization heuristics, see section 6.1.1). The UiGE also communicates

with the target UI device during the process of CUI generation. This method in

accordance with the simple basic optimization function enables UiGE to support

hererogenous target UI platforms. The UiGE core does not need to be modified in

order to support a new target UI platform.

Statement 6.1 defines basic the optimization function for UI Elements. The value

expresses cost that corresponds to user effort estimation. The lower the cost value

is, the lower interaction effort is required from the user.

cost(steps, h) = (1 + steps)×
n∏

i=1

he(i) (6.1)

where steps corresponds to number of integration steps (e.g. mouse click on

certain position) needed to reach the possibility of immediate value selection, he(i)

refers to a value of an applicable heuristic, n is the number of all heuristics that are

applicable to a particular mapping. For non-interactive elements the resulting cost

= 1 in case there are no applicable optimization heuristics.

Simple
mapping

AUI
Node

(Element/
Container)

CUI
Node (Element/

Container)

Cost

Figure 6.2: Simple mapping

Figure 6.2 shows Simple Mapping that determines the relationship between an

AUI Node (AUI Element or Container) and an CUI Node (CUI Element or Con-

tainer). Typically, one AUI Node can be mapped to multiple different CUI Nodes.

Each mapping has a cost value that for Elements corresponds to the optimization

function defined above.

6.1. CUI OPTIMIZATION 65

London ⬇
Prague
Berlin
London
New York

Prague
Berlin
London
New York

London ⬇

choice single
CUI element

choice radio
CUI element

Figure 6.3: Example of simple mapping

The following example illustrates the simple mapping. Let us have an input AUI

element with a restriction property specifying that possible values can be ”Prague”,

”Berlin”, ”London”, or ”New York”. Figure 6.3 shows examples of CUI elements

that can be mapped to this type of AUI element. The first example is mapping

to choice single CUI element (on most UIP clients represented by combo-box, see

left part of Figure 6.3), let us call it combo-box mapping. The second example is a

similar mapping to choice radio CUI element (on most UIP client represented as set

of radio buttons, see right part of Figure 6.3), let us call it radio set mapping.

In the case of combo-box mapping, the value of the basic cost function equals 2 as

user needs one additional step to be able to choose a particular value (e.g. Berlin).

He or she must expand the combo-box element to be able to select a desired value.

In case of radio set mapping, a desired value can be selected immediately (cost = 1).

Often, mappings to elements with lower values of cost result in CUI elements

that are more space-consuming. In nontrivial cases this leads to the necessity to

divide resulting CUI into more screens (e.g. tabs container) or to use scrolling that

also makes the interaction more complex. Therefore also AUI to CUI container

mapping has corresponding cost value.

Statement 6.1 shows computation of optimization function for containers:

costc(steps, costn) = (1 + steps)×
n∏

i=1

hc(i)×
n∑

i=1

costn(i) (6.2)

where steps value corresponds to the estimated average number of integration

steps needed to reveal internal nodes wrapped into a particular Container, he(i)

refers to a value of a heuristic applicable a particular Container. costn(i) is cost value

of particular Node (Element or Container) wrapped into a particular Container.

66 CHAPTER 6. USER INTERFACE GENERATION AND OPTIMIZATION

6.1.1 Optimisation heuristics

Basic optimization function reflects only one a simple metric – the number of in-

teraction steps related a particular UI element. Optimization heuristics enable to

enhance the optimization function with more complex parameters. Figure 6.4 illus-

trates the application of a heuristics rule to the cost function of a mapping. During

the application process, complex heuristic rules can also access the CM. Similarly

to CM value computation, a heuristic rule should affect the cost value by a multipli-

cation factor. A single heuristic rule is applied only once to each mapping (Simple

or Template).

Heuristic
rule

Any
mapping

Cost

Context model

DM UM EM ATM

Figure 6.4: Heuristics rule

In the following text, we will show an example how a heuristic rule can be used

to select better representation for elements with higher importance. Let us have two

AUI elements (A and B) that represent one of N selection (N = 3) and two possible

CUI representations combo-box mapping and radio set mapping. The situation is

illustrated in Figure 6.5. Let us assume, that combo-box mapping has size = 1 in

the resulting CUI, whereas radio set mapping has size = 3. In the basic case, the

cost value of the combo-box mapping will be cost = 2 and for the radio set mapping

cost = 1. The task is to find the optimal combination in case we have to put

all representation into resulting CUI interface (we assume that there is no spacing

between CUI elements).

In the case there is enough space – CUI interface size ≥ 6, the optimal represen-

tation is to use radio set mapping for both AUI elements (variant 0 in Figure 6.5).

In this case the total cost = 2. The minimum CUI interface space is used when we

use a combo-box mapping for both AUI elements, in this case the total size = 2

(Figure 6.5 variant 3). In this case, the total value of cost = 4. In case that the size

is between 2 < size < 6, it is possible to use combo-box mapping either for element

6.1. CUI OPTIMIZATION 67

A-A

A-B

A-C

1

2

3

4

5

6

B-A

B-B

B-C

A-A

A-B

A-C

B-A ⬇

A-A ⬇

6 4 4 2size

position

0 (0,0) 1 (0,1) 2 (1,0) 3 (1,1)variant

a)

b)

B-A

B-B

B-C

B-A ⬇
A-A ⬇

Figure 6.5: Example of importance heuristic.
a) Shows the situation that there are no applicable heuristics (the cost value corre-
sponds just to the number of integration steps).
b) Shows the situation with an importance heuristic applied to cost values of indi-
vidual mappings.

A and radio set mapping for element B or vice-versa. In both cases, the resulting

total cost = 3 (variants 1 and 2).

Let us assume, we want to reflect the importance of elements. Importance is a

value between 0 and 1. The most important element has the importance = 1. In

our case, an importance value is already defined in the AUI. AUI element A has

the importance = 1 and element B has the importance = 0.75. The statement 6.3

defines our heuristic rule to reflect element importance.

he(importace) = importace (6.3)

In this case, each cost value of relevant mapping is multiplied by the heuristic

value, in our case directly with the importance value. In our case it means that less

important elements will also have lesser value of the cost function. Consequently,

mappings with higher basic cost values (number of interaction steps) will be used

for less important elements. The situation is illustrated in Figure 6.5 b). We can

68 CHAPTER 6. USER INTERFACE GENERATION AND OPTIMIZATION

see that variant 1 that prefers better representation for AUI element A is used when

the available space is 2 < size < 6.

6.1.2 Templates

The above described Simple Mapping provides basic AUI to CUI transformation

optimized accordingly to rather simple optimization metrics. In some cases, we

need to configure the transformation process to provide exact results. In the Figure

6.6, we can notice that the Template mapping provides a transformation of more

complex parts of an AUI into more complex CUI structures.

CUI Structure

Template
mapping

AUI Structure

AUI
Container

AUI
Element

AUI
Element

CUI
Container

CUI
Element

CUI
Element

Cost

Context model

DM UM EM ATM

Figure 6.6: Template mapping

6.2 CUI Generation Process

This section describes the realization of context-sensitive CUI generation in the

framework of UIP Platform. Simplified scheme of the CUI generation process is

depicted in Figure 6.7. The resulting CUI reflects the current context and can be

directly rendered on a particular platform.

The input to the automatic CUI generation process is an AUI, which structure

is described in section 4.1. The goal of the UI generation process is to generate UIs

that correspond to optimization metrics. Primary optimization metric is the Basic

optimization function as defined in section 6.1 for UI Elements and Containers. As

described above, the relationship between AUI nodes and components of the CUI is

specified by the mappings. Each mapping provides corresponding cost value that is

used for optimization during the CUI generation.

6.2. CUI GENERATION PROCESS 69

The AUI hierarchy also includes AUI Containers (internal nodes of the AUI

tree) that divide the elements into a hierarchy of groups. The UiGE CUI generator

reflects this structure to visualize element grouping. In some cases, UiGE uses the

AUI hierarchy to to render resulting CUIs using a multi-screen layout, if necessary

(e.g. using tabs or wizard UI).

During this process, the UiGE CUI generator communicates with the corre-

sponding UIP Client in order to get information about the final element repre-

sentation on a particular platform (most importantly its dimensions). Using this

approach, the mapping definitions can be independent of the target client platform.

Dynamic changes in both Context Model and AUIs are reflected by the CUI gener-

ator in runtime, and updated CUIs are propagated to relevant UIP clients.

Next, we provide a description of the UI generation process (see Figure 6.7). At

the beginning, a set of all possible mappings and templates is reduced according

to the current context model to a set of feasible mappings and templates. Both

mappings and templates have their particular cost function value that corresponds

to the estimated user effort while interacting with a particular UI component.

In the next phase, mappings and templates are ordered according their cost value.

This is followed by the optimization process, which finds the optimal mapping, based

on the cost-function values for individual AUI elements with respect to the context

model constraints. Our optimization process uses a branch and bound algorithm [68]

to find an optimal solution. It provides a solution within a few seconds for typical

instances. The product of the UI generation process is a CUI that is immediately

transferred to the particular UIP Client and consequently displayed.

Figure 6.8 depicts the effect of the so-called Small model update. In this case, the

resulting CUI can seamlessly render UI properties that were updated as a result of

AUI Preparation

Templates
+ cost

Mappings
+ cost

CUI
(minimal cost)

Combinatoric
optimisation

Feasible
Templates

+cost

Feasible
Mappings

+ cost

Context
model

Figure 6.7: Simplified scheme of the UI generation process

70 CHAPTER 6. USER INTERFACE GENERATION AND OPTIMIZATION

State A State B
Model A

AUI A

CUI A

Model B

AUI A

CUI A

CM A CM A

Figure 6.8: Small model update

a Model Update. The update is performed on client-side using model-wide binding

(see section 3.2.1).

If a UIP Client is not able to reflect any Model Update, it propagates special

Event to the UIP Server. This event is then routed to the UiGE. As a result, UiGE

re-generates affected part of the resulting CUI structure. This action is illustrated

in Figure 6.9.

State A State B
Model A

AUI A

CUI A

Model B

AUI A

CUI B

CM A CM A

Figure 6.9: Substantial model update

Figure 6.10 illustrates the the situation, when an input AUI changes. Such a

situation is typically triggered by change of another high-level input model. In such

a case, the AUI update triggers the CUI generation process which results into a

corresponding update of resulting CUI.

State A State B
Model A

AUI A

CUI A

Model A

AUI B

CUI B

CM A CM A

Figure 6.10: AUI update

Finally, Figure 6.11 illustrates situation when Context Models changes. If the

change is substantial, it triggers CUI generation process. The resulting CUI then

corresponds to new conditions reflected in the updated CM.

6.3. CONCLUSION AND CONTRIBUTION 71

State A State B
Model A

AUI A

CUI A

Model A

AUI A

CUI B

CM A CM B

Figure 6.11: Context model update

6.3 Conclusion and Contribution

In this chapter, we described our method for automatic CUI generation. In the

first part, we focused on the definition of a corresponding optimization metric. Our

optimization metric reflects the number of steps that need to be carried out to

perform typical operations with resulting UIs. For more complex cases we have

defined optimization heuristics. Using this method the optimization process can

be configured for specific application domains while preserving its generality. The

relationship between AUI and CUI elements is defined by mapping. Apart from

the simple mapping and the container mapping, we have also defined a template

mapping. This type of mapping can be used to configure the UI generation process

to provide predictable results for specified cases while preserving overall generality

of the process.

In the second part of this chapter, we focused on the realization to the UI gen-

eration process. The aim of this process is to find the minimal total value of the

optimization function while reflecting the current instance of the Context Model.

UIP User Interface Generator (UiGE) communicates with the target UIP Client to

determine final dimensions of UI elements and layout. Using this method, we can

support all compatible clients while preserving general realization of the UiGE.

72 CHAPTER 6. USER INTERFACE GENERATION AND OPTIMIZATION

Chapter 7

User Interfaces based on

application source-code audit

Previous chapters focused on the foundations and the methodology and basic prin-

ciples behind the Context-sensitive Automatic Concrete User Interface Generation

Pipeline and its implementation – the UIP Platform. Subsequently, this chapter and

following three chapters focus on various applications of the UIP Platform. The aim

is to show in greater detail methods described in this dissertation thesis. Here we use

real-world applications rather than solely examples based on the theoretical basis.

Furthermore, a variety of the applications based on UIP illustrate the flexibility of

the approach described in this thesis.

At first, this chapter focuses on a use-case of the UIP Platform, where a source-

code analysis method is used to derive AUIs – an immediate input for the UIP User

Interface Generator. This example illustrates the capabilities of our approach well

as the UiGE Pipeline is used to the full extent.

Many applications, mostly business oriented, are based on the data persistence

and on the object-relational mapping – ORM [78]. The manual development of

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input ModelJPA

Application

Aspect Faces UIP

Figure 7.1: Data-driven applications in the scope of the Context-sensitive Automatic
Concrete User Interface Generation Pipeline (UiGE Pipeline)

73

74 CHAPTER 7. SOURCE-CODE AUDIT BASED UIS

UIs for this class of applications leads to code-replication and is error-prone due

to human errors [imp2]. Support for multiple target UI platforms at for a single

application makes this problem even more serious. We suggest a solution where the

input is extracted from the application backend using a code-inspection method.

On an example, we show how to automatically generate context-sensitive UIs for

various target platforms using the code-inspection.

Figure 7.1 shows the UiGE Pipeline and the related scope of the code-inspection

method described in this chapter. Firstly, AUIs are derived using the Aspect Faces

engine. Extraction of data necessary for this type UI generation has been already

described in chapter 4, section 4.3, In the next phase, UIP Platform provides au-

tomatic context-sensitive generation of UIs for various platforms. In this case, the

resulting UIs are represented as forms.

7.1 Application source code audit

In this section, we show on a practical example how the Aspect Faces framework

uses the code-inspection (application source code audit) to derive an AUI. This AUI

is in the next phase used as an input for context-sensitive automatic CUI generation.

Listing 7.1 shows an example of source-code of an application that uses ORM

for data-persistence. Note annotations in the source code (introduced by ”@”).

@Table(name = "person_info")
public class PersonInfo extends EntityObject {

/*fields*/

@Column(name = "first_name", nullable = false)
@Length(max=100) @NotNull
@Pattern(regexp="ˆ[ˆ\\s].*")
public String getFirstName() {return this.firstName;}

@Column(name = "last_name")
@Length(max=100) @NotNull
@Pattern(regexp="ˆ[ˆ\\s].*")
public String getLastName() {return this.lastName;}

@Email @NotNull
@Length(max=255)
public String getEmail() {return this.email;}

}

Listing 7.1: Example data entity used for generation of forms in Figures 7.2 and 7.3

7.2. RESULTING UIS 75

7.2 Resulting UIs

In the following text, we provide two proof-of-concept examples of UIs generated

using the UIP Platform when the application source code audit is used as an input.

The first proof-of-concept example focuses on a case of a population census form.

Its aim is to show the capabilities of our approach to generate context-sensitive,

platform-aware electronic equivalents of real physical forms. This example was de-

rived from a selected form of census in the Czech Republic in 2011. A set of forms for

three different platforms was generated from a single AUI. The AUI was generated

through AspectFaces code-inspection of the underlying JPA application backend.

Figure 7.2-b shows a visualization of a UI generated for a desktop platform. Font-

size, element-size, element spacing and layout are influenced by the context-model.

Using model-wide binding and server-side application logic, the UIP client displays

warnings next to elements with content that does not pass the validation criteria.

The most suitable mapping to actual CUI elements that visualize individual AUI

elements is determined using combinatoric optimization.

Figure 7.2: UIs generated for: a – iPad tablet (left) and b – desktop PC (right),
UI for iPad is generated using templates, UI for desktop PC is generated without
templates

76 CHAPTER 7. SOURCE-CODE AUDIT BASED UIS

Figure 7.3: UI generated for iPhone: a – default context (left), b – for user with
lower vision (middle), c – generated using templates (right)

Figure 7.3 shows the different variants of UIs generated for an iPhone UIP client.

Figure 7.3-a shows a UI generated without templates with the default context model.

Figure 7.3-b depicts a UI that is generated for a user with slightly reduced vision

and with dexterity problems. Note that the size of the labels, and also the size of

the interactive elements, is bigger. Figure 7.3-c shows an iPhone UIP client UI that

is rendered using a complex native structure – UITableView. Because UITableView

is a platform-specific structure, it was necessary to use the UIP template in order

to map part of the AUI to such a structure. Figure 7.2-a shows a UI generated for

an iPad UIP client. As in the case of the iPhone client, a template was used to

generate this UI.

The UIs generated using this approach respect the usage context constraints. An

example of such an interface generated for the iOS operating system is presented in

Figure 7.3-a. In some cases, it is favorable to use specific platform elements. An

example of such a component is an iOS table (UITableView). This structure provides

a very good user experience, but it is a specific component of the iOS platform. It

can be mapped only when the AUI contains a specific structure (a subset of AUI).

The implementation of a mapping that provides the relationship between the AUI

elements and such specific structures will make the UiGE generator too complicated

and too hard to maintain. In order to address this issue, the UiGE is extended to

support UI templates. A UI template is a complex mapping variant that provides

the relationship between a subset of an AUI and a platform-specific structure. An

example of a UI generated using a template is presented in Figure 7.3-c.

7.3. CONCLUSIONS AND CONTRIBUTION 77

7.3 Conclusions and Contribution

In this chapter we have presented an example how the application source-code audit

can be used to generate context-aware UIs at runtime. For data-oriented applica-

tions, our platform is based on effective code inspection and an aspect-oriented ap-

proach. The proposed method significantly reduces the amount of replicated code,

which simplifies both development and maintenance (see section 10.3). Various

client platforms with various capabilities are supported. In contrast to comparable

approaches, UI elements native on individual platforms are used. For more details,

please refer to [scopus2].

78 CHAPTER 7. SOURCE-CODE AUDIT BASED UIS

Chapter 8

Application: Indoor navigation for

users with limited navigation and

orientation abilities

This chapter focuses on an an adaptive indoor navigation system for large indoor

environments. Namely, we focus on a navigation system tailored to the hospital

environment and individuals with limited navigation and orientation capabilities.

Our study [other5] shows navigation problems the senior population has to deal with.

Design of this in-hospital navigation system reflects our experience with this specific

user group, see [wos2]. Initial version of this in-hospital navigation system was

described in [scopus1]. Publication [other3] focuses on details of software realization

of the in-hospital navigation system.

Figure 8.1 highlights stages of the Context-sensitive Automatic Concrete User

Interface Generation Pipeline (UiGE Pipeline) in the relationship to basic compo-

nents of the bellow described hospital navigation system. From the perspective

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

Simple Navigation Terminal

Interactive Haptic Map

Smart Kiosk

Figure 8.1: In-hospital navigation system components in the scope of the Context-
sensitive Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline)

79

80 CHAPTER 8. INDOOR NAVIGATION

of the UiGE Pipeline, the Smart Kiosk represents a navigation system component

that employs the automatic CUI generation. On the contrary, less complex com-

ponents like the Simple Navigation Terminal or the Interactive Haptic Map mostly

employ only the CUI delivery stage of the UiGE Pipeline as marked in the Figure

8.1. However, even those components offer basic context-driven adaptations.

In the recent decades, the use of electronic outdoor navigation systems had spread

significantly. The most important factors that have enabled this growth are the

availability of compact electronic devices and the public accessibility of Global Nav-

igation Satellite Systems (GNSS), such as GPS and Glonass [57]. By contrast, the

development of electronic indoor navigation systems has been considerably slower.

The main reasons have been the lack of a widely-used, globally available and reliable

positioning system like GNSS for use in the indoor environment, and the need to

develop standardized plans (or maps) of indoor environments.

Most present-day electronic indoor navigation systems require their users to carry

a special single-purpose electronic device in order to use them. Many systems also

require special equipment to be installed in the indoor environment, e.g. sensors or

various kinds of ultrasonic, infrared or Bluetooth navigation beacons.

An inappropriate hospital navigation system can cause difficulties for the ma-

jority of visitors, but also for the personnel. Study [26] carried out in a hospital in

the United States showed, that personnel at a 300-bed hospital spends about 4,500

hours annually to assist patients and relatives who cannot find their way.

According to [41], assistive technologies that require users to carry and oper-

ate special equipment that is recognized by the navigation systems place an extra

burden on users with a disability. These individuals would benefit from lightweight

discrete aids that incorporate devices that are popular among the general public, e.g.

mobile phones. Many current ICT solutions struggle to fit people with disabilities

to standard systems, using various assistive technologies. Unlike most present-day

electronic indoor navigation systems, our solution does not rely on any particular

device that the user is required to carry.

A computer-aided hospital navigation system for users with special needs require

a specific infrastructure. This chapter shows how is the UIP platform used to deal

with such requirements.

8.1. NAVIGATION SYSTEM DESIGN 81

8.1 Navigation system design

Our navigation system does not require users to carry any physical object (an elec-

tronic device or even an identification card) to be able to use the system. Instead,

the system uses face recognition to identify a particular user, and provides him/her

with personalized navigation instructions to proceed to the next navigation point,

or to the destination. In addition, the system targets a user audience with limited

navigation and orientation abilities, e.g. visually-impaired persons and seniors. In

order to meet these goals, the navigation system employs various types of adaptive

navigation terminals that will be described below.

(1)
Visit

Preparation

(2)
Trip to

Hospital

(3)
Registration/
Destination
Selection

(4)
Route

overview

(5)
Step-by-step

navigation

Smart
Kiosk

Interactive
Haptic Map

(6)
Destination

Room

Simple
Navigation Terminal

Web Waiting room
Management

Figure 8.2: Navigation procedure with proposed system.

The course of navigation using our approach is depicted in Figure 8.2. In the first

step (1), the user can prepare for his/her visit by using the hospital’s web portal.

This simplifies the subsequent on-site registration, and enables navigation terminals

to adapt their UIs to the user’s needs from the very first moment. After reaching

the hospital (2), the user enters the hospital building and uses Smart Kiosk (3) to

register and to plan his/her actual route through the interior of the hospital. After

authentication, the UI of Smart Kiosk is adapted to the user’s needs and preferences.

Smart Kiosk also takes an image of the user’s face to ensure seamless navigation at a

later stage. The aim of the Interactive Tactile Map (4) is to help users to build their

own mental model of the nearby environment, and also to provide an overview of

the planned route through this space. Interactive Tactile Maps are therefore placed

on central spots in the environment, e.g. on each floor, next to main elevator. The

Simple Navigation Terminals (5) provide short directional instructions for reaching

another navigation terminal or the destination (6). There are frequent Simple Nav-

82 CHAPTER 8. INDOOR NAVIGATION

igation Terminals in the environment that provide navigation instructions at least

at each corridor junction.

In the following text, we describe individual navigation terminals in detail. How-

ever, there are some common features shared by all of them. All terminals are

equipped with a camera and are connected to a central server. Each terminal also

contains a receiver for input from a visually-impaired person’s transmitter [scopus1]

- a standardized device to be used by the visually-impaired person to trigger various

devices in the indoor and outdoor environment. The main purpose is to localize

nearby objects or places rapidly, using sonification approach [53]. In our case, the

use of this transmitter is optional. However, it can make it simple to locate indi-

vidual navigation terminals. Each kind of terminal also provides an option to make

calls for help if there is any difficulty. The user can also request navigation to other

destinations along the route, e.g. to a WC.

As soon as a user approaches any terminal and the corresponding computer vision

software (using a camera embedded in the terminal) recognizes his/her face, the user

is provided with personalized navigation instructions. A simple arrow shown on the

terminal display is sufficient for communicating with most users, but in some cases

other interaction methods need to be used. For example, visually-impaired users

are provided with detailed navigation instructions on how to proceed to the next

navigation point using an audio modality. The change of interaction modality is

preferred automatically in the case the User Model is known.

8.1.1 Smart kiosk

The main function of the Smart kiosk is to register users to the system and link an

image of their face with the corresponding user account. Smart kiosk also provides

Figure 8.3: Early version of Smart Kiosk UI

8.1. NAVIGATION SYSTEM DESIGN 83

Table 8.1: Context model properties relevant for CUI adaption

Property DM UM User A UM User B UM User C

font-height 16 1.0 1.5 2.3
target-size 150x50 1.0 1.8 1.0

limitation – hand-tremble low-sighted

a general preview of the whole route to the destination. The UI is adapted to the

user’s abilities. Figure 8.3 depicts an early variant of Smart kiosk UI. In the default

state, the Smart kiosk shows simple compromise UI that could be used by the vast

majority of users. After user identification, the UI is adapted to the needs and

preferences of individual users in case they already provided information necessary

for User Model specification.

Figure 8.4 shows an example of context-adaptions performed on the Smart kiosk.

In this example, we show adaptions for three users with different needs and abilities.

Table 8.1 describes context-model properties, that are relevant for CUI adaptions

shown in this example. The User A does not require any special adaption, note that

all values in the UM are in this case 1.0. The User B has slightly worsened sight, but

also severe issues with the dexterity – hand tremble. This is reflected in the value of

target-size property, that is in this case 1.8. The User C has moderate issues with

his sight. This situation is reflected by value 2.3 of the font-height property that

causes all fonts are 2.3 times larger for the User C.

(a) User A (b) User B (c) User C

Figure 8.4: Example UI of Smart kiosk prototype

84 CHAPTER 8. INDOOR NAVIGATION

8.1.2 Interactive tactile map

Figure 8.5: Prototype if interactive tactile map

An Interactive tactile map provides topological information about large parts of

the hospital, e.g. one floor. Prototype is depicted in Figure 8.5. The physical design

of the map is tailored for various user groups, in particular for visually-impaired

people and seniors. The user can explore the environment depicted by the map

using both visual and haptic modalities. The actual route is visually highlighted.

Touch sensitive sensors placed along the route are used to detect user interaction –

tactile exploration. Using this method, we can provide additional information useful

for the navigation. This feature focuses primarily to improve the interaction with

visually impaired users.

8.1.3 Simple navigation terminal

(a) Concept (b) Realization

Figure 8.6: Concept and physical realization of final prototype of Simple Navigation
Terminal

8.2. SW AND HW ARCHITECTURE 85

The Simple navigation terminal is the basic building block of our navigation

system. The primary aim of the Simple navigation terminal is to provide simple

directional instructions at the corridor junctions. The interaction with it is carried

out as follows. First, the motion of a potential user is detected (1). In the next step,

a fast face detection algorithm is performed on the captured image (2). If a face is

present in the image, the frame is sent to the server that performs advanced face

recognition, resulting in the identification of a particular person (3). After successful

user recognition, personalized navigation instructions are provided. However, the

visual form is non-intrusive and is adequate for most users. Instructions for visually-

impaired users are provided in the form of voice instructions.

This section has described the general design of our navigation system. In the rest

of this chapter, we focus on hardware and software implementation of the system.

An evaluation follows of the network transmission protocol and face recognition

systems that are used. Other aspects of our system, and also user-evaluations of

individual development stages of the system, are presented in [scopus1].

8.2 Software and Hardware Architecture of Dis-

tributed Navigation System

The UIP client-server architecture as described in this thesis is used for implemen-

tation of the indoor navigation system. UIP Protocol is used for both for network

communication and for a description of the UI. Figure 8.7 shows adaption of the ref-

erence architecture of the UIP Server (for more details see section 3.3) for purposes

of the navigation system.

UIP Server

UIP Server
Core

Navigation
terminal

UIP Client

UIP
Event

Model

EyeDentity Face
Recognition

Engine

CUI

UIP Application
Runtime

Models
Model

Event
Handelers

CUIs

AUIs

UiGE

Context
Model

UM DM

Optimizer

AUI

CUI

UIP
Event

CM

Hospital
Enterprise

Applications
Hospital

Enterprise
Applications

EM

Figure 8.7: Client-server architecture of distributed navigation system

86 CHAPTER 8. INDOOR NAVIGATION

For the purposes of user identification, EyeDentity Face Recognition Engine [33]

is connected to UIP Server. The EyeDentity engine finds correspondences between

the currently provided image and a set of already known images. The latter group

consists of faces to be identified in the incoming video stream. In our case, this

group represents individuals that are currently registered as users our navigation

system.

Simple Navigation Terminal is the basic building block of our navigation system.

Its design, see Figure 8.6 is the result of iterative development based on a user-

centered design method [2]. Figure 8.8 depicts the internal components of this type

of terminal. Four layers can be identified in the terminal. This type of terminal also

connects to UIP Server (UIP Server Layer), but its functionality is limited to a

physical interface. It does not support rendering of UIP Interfaces - instead it binds

the values in data Models to its physical components. UIP Client itself (the UIP

Client Layer) runs on Raspberry Pi 2 [108]. This single-board computer provides

analog and digital interfaces to connect various peripherals.

The software for the Simple Navigation Terminal is implemented using the .NET

framework [107], in this case running within the MONO framework [94]. The ref-

erence implementation of UIP Client has been extended to enable communication

with specific HW components, e.g. Bi-Color Matrix Display. A .NET wrapper for

OpenCV – EmguCV has been used to capture the camera video stream. It also

performs motion detection as well as face pre-detection in the video stream. The

aim of face pre-detection directly on the terminal is to preserve the capacity of the

communication channel and to reduce server utilization.

Raspberry Pi UIP Server

Dual Color
Matrix Display

Camera

Amplifier and
Speaker

Transmitter for
Blind Rx

I2C BUS

UI
P

MIPI

Analog Signals

Buttons

Analog
Layer

Digital
Layer

UIP Client
Layer

UIP Server
Layer

Figure 8.8: Simple Navigation Terminal Components

8.3. CONCLUSION AND CONTRIBUTION 87

8.3 Conclusion and Contribution

In this chapter, we have presented a prototype of in-hospital navigation system

tailored to people with limited navigation and orientation capabilities. This example

shows the use of our approach for purposes of complex distributed systems that

consists of different clients based on different UI platforms. In this example, there is

special focus on adaptive features of our solution and its support for UI accessibility.

88 CHAPTER 8. INDOOR NAVIGATION

Chapter 9

Other applications

This chapter focuses on other applications that are only partially based on meth-

ods developed in the framework of this thesis. Those selected applications use the

methods introduced by this thesis in a novel way that illustrate their flexibility.

Figure 9.1 depicts applications described in this chapter. In section 9.1 we show the

use of our approach for in a use-case of a form-filling solution based on a current

e-governance system. In this case, we show two different methods. Firstly, UIP

CUI s are directly generated from the proprietary format (Form 602). Secondly, full

transformation based on the Context-sensitive Automatic Concrete User Interface

Generation Pipeline (UiGE Pipeline), including the context sensitive UI generation

is employed. GraFooSha (see section 9.2) is a physical product, that was integrated

into the UIP Platform as a special UIP Client. It does not use automatic CUI

generation, but it illustrates the flexibility of our CUI delivery method.

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

GraFooSha

Form 602 CUI

Form 602 AUI

Figure 9.1: Applications described in this chapter in the scope of the Context-
sensitive Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline)

89

90 CHAPTER 9. OTHER APPLICATIONS

9.1 E-governance

In this section, we describe the use of the UIP Platform for the purposes of electronic

form-filling application. In the framework of this project, the input was derived from

the electronic forms description format – Form602 zfo [100] (602zfo), that widely

used in the Czech Republic.

AUIForms602
zfo CUI

602 zfo
UIPA

Tranfomraction
UiGE

Forms602
zfo CUI

602 zfo
UIPA

Tranfomraction
a)

b)

Figure 9.2: Transformation from 602 zfo to UIP CUI and AUI

In Figure 9.2 two ways of integration of 602zfo into the UIP Platform are shown.

It is possible to transform the 602zfo format directly into the CUI as depicted in

Figure 9.2a. The more sophisticated way is to derive an AUI from the 602zfo and

used context-sensitive transformation into CUI by the UiGE Pipeline – Figure 9.2b.

Figure 9.3: Form rendered using original Form Filler Software (Czech variant of
consent form before medical examination)

9.1. E-GOVERNANCE 91

Figure 9.4: Same form rendered using UIP Desktop Client

Figure 9.5: Equivalent form as a result of automatic CUI generation

92 CHAPTER 9. OTHER APPLICATIONS

Figure 9.3 shows an example form that was rendered using the original desktop

application. This can be compared with Figure 9.4, that shows the same form, but

rendered using the UIP Platform, in this case, using desktop client based on .NET

framework. Note the capabilities of UIP Platform clients to render complex UIs

from a single CUI input.

In Figure 9.5, there is depicted a UI that is functionally equivalent to the above

described UIs. In this case, the UI was automatically generated from an AUI de-

scription. In this case, the visual appearance resembling the original paper forms is

not preserved. On the other hand, this solution enables optimization that improves

usability and accessibility of the resulting UI.

This section highlighted the capabilities of our approach from the perspective of

integration of practically used formats. The added value over the legacy solution is

support of various UI platforms in the simple transformation case. The possibility of

complex transformation using the context-sensitive CUI generation brings additional

advantages for the form filling efficiency even for individuals with disabilities.

9.2 GraFooSha: Food Sharing for senior users

GraFooSha [GRAndmaFOOdSHAring] is a device that provides senior users with

access to a food sharing social network. It is a physical device that can be categorized

into the domain of Internet of Things (IoT) [39]. Interaction design of this device

incorporates deep-rooted concepts the target group is familiar with. GraFooSha is an

example of an application that does not employ full automatic CUI generation based

on the UiGE Pipeline. The current version of the UiGE Pipeline does not support

automatic generation of physical UI that can be represented by the GraFooSha as

an example. At this point, instead, we show a technical realization that illustrates

practical capabilities of the UIP Platform. In this case, we show that is is capable

to efficiently control a device in a role of a physical UI.

With the introduction of modern Information and Communication Technolo-

gies (ICT), the social interaction between people moved strongly towards virtual

worlds of software-based social networks (like Facebook) which is hardly accessible

by seniors. Seniors are typically struggling with social exclusion caused by the loss of

friends and relatives and by mobility restrictions determined mainly by their health

status. Complex and inaccessible ICT is further deepening their social exclusion.

Food sharing can be an interesting social activity. Especially senior women are

used to invite relatives and friends to share food and in such way maintain and

9.2. GRAFOOSHA: FOOD SHARING FOR SENIOR USERS 93

a) Conceptual
prototype

b) Interaction
prototype

c) HW and SW
implementation d) Final Product

Figure 9.6: Design developmnet of GraFooSha

develop social relations. As there exist several food sharing projects, not rarely

supported by ICT, we found as an interesting idea to allow senior women to join

such projects without the necessity to learn anything about the ICT and applications

used for facilitating the food sharing activities.

Figure 9.6 depicts development of GraFooSha design. Basic functional require-

ments on the device are following: specify of number of meal portions, specify the

time the meal will be ready, select meal recipe, and provide meal subscription feed-

back. Conceptual prototype (a) was used to determine the physical form-factor of

the device. Interaction prototype (b) was used for development and usability testing

of the corresponding interaction method. Remaining two images – Figure 9.6c-d rep-

resents implementation of GraFooSha mechanical components and the final product.

3D printing was widely used during the development.

9.2.1 Technical realization

Electronic components in GraFooSha implement its interactivity and handles com-

munication with the meal-sharing social network. Block scheme of the electronic

components interconection is in Figure 9.7. The Top Shaft hosts three RGB LEDs

that indicate the selected meal by corresponding color. There are also three RG

94 CHAPTER 9. OTHER APPLICATIONS

Arduino Pro Mini
(ATMega328)

Adafruit RGB
Sensor

LiPo Battery

Bluetooth
Serial Module

RGB LEDs

RG LEDs
RG LEDs

RG LEDs

RGB LEDs
RGB LEDs

Connector

Connector

Buttons
Buttons

Buttons
Buttons

C
on

ne
ct

io
n

Sh
af

t
To

p
Sh

af
t

Bo
tto

m

Sh
af

t

Upper Potentiometer

Lower Potentiometer

Figure 9.7: Internal Electronic Components of GraFooSha Device

(Red + Green) LEDs to indicate the number of portions offered/reserved. The

RG LEDs can be controlled individually. The top part is connected to the central

Connection Shaft using a 10-pin connector. Rotation angle of individual shafts is

measured using two potentiometers (lower and upper). All information is handled

by Arduino Pro Mini micro-controller.

Using a Bluetooth Module, GraFooSha connects to the UIP client gateway via an

emulated serial port. A Lithium Polymer Battery hosted in the Connection Shaft

powers the device. The Bottom Shaft hosts an RGB Sensor and four buttons. The

RGB sensor is used to determine the color that corresponds to a particular meal

recipe in the cookbook. Each meal is represented by corresponding color-code. Color

scanning is activated when press is detected using any of four buttons that detect

click-like motion between Bottom and Central Shaft of the device.

In case of the final product, GraFooSha will be connected to the food-sharing

network via a Bluetooth communication link with its base-station. This base station

will be connected to the Internet and act also as an inductive charger. Currently,

the base station is simulated by a computer. UI of a simulated food-sharing network

is implemented using our UIP Platform.

Figure 9.8 shows the integration of the GraFooSha and the UIP Platform.

GraFooSha uses a serial link communication over the bluetooth link to commu-

9.3. CONCLUSION AND CONTRIBUTION 95

Arduino Pro Mini
(ATMega328)

Analog
peripherals

Bluetooth
Serial Module

Digital
peripherals

UIP Client
gateway

UIP Server

UIP Desktop ClientFood Sharing Network
User Interface

GraFooSha IoT Device

Simulated Food Sharing Service

Figure 9.8: Integration of GraFooSha IoT device into the UIP Platform

nicate with a gateway application. From the perspective of the UIP Platform, this

gateway application represents a UIP Client. Interaction with the physical device,

then results in generation of UIP Events that can be handled on the UIP Server in

the standard manner. In the opposite direction, UIP Model updates affect the states

of the physical device. For example, RGB LEDs on GraFooSha can show any color

code sent by the UIP Server in the form of a UIP Model update.

Another UIP Client has been used to render UI of the simulated food sharing

network as shown in the bottom part of Figure 9.8. This UI corresponded to interac-

tion from the food consumer perspective. In case of this example, the UIP Platform

has been used for rapid development of complex solution consisting of different kinds

of networked devices. For more details about GraFooSha project refer to [other2].

9.3 Conclusion and Contribution

In this chapter, we focused on additional interesting applications of approach in-

troduced in this dissertation thesis. Section 9.1 described a form-filling solution in

the domain of e-governance. UIs rendered using our multi-platform approach are

compared to UIs of a legacy single platform form-filling application. Section 9.2

shows an application of our approach in the domain of Internet of Things (IoT) [39].

However, this application does not employ the full automatic CUI generation. As

a subject of the future work, it would be also possible to develop a transformation

method that will use pre-prepared or 3D-printed components to automatically gen-

erate physical interactive devices that play a role of a User Interface. Using these

examples, we want to highlight communication capabilities and versatility of our

approach. Our approach was used for purposes of more applications, e.g. [scopus3],

in this chapter, we highlighted the most important ones.

96 CHAPTER 9. OTHER APPLICATIONS

Chapter 10

Evaluation

This chapter focuses on evaluation of the methods introduced in the framework of

this dissertation thesis. Firstly, we focus on evaluation of generated UIs from the

perspective of target users. section 10.1 describes the evaluation of the Context

Model. In the next section 10.2, perceived quality of resulting UIs is evaluated.

Follows an evaluation from the perspective of application developers. On a case

of application that uses data-persistence, we compare the development efficiency of

our approach in comparison with a manual development method. An evaluation of

network transfer capabilities of UIP is also part of this chapter. It is described in

section 10.4. This chapter also focuses on performance of complex actions performed

directly on UIP Clients with limited computational power.

10.1 Evaluation of context model adaptions

The goal of this test was to evaluate the design validity of the proposed Context

Model (CM) and to gain the user feedback for its eventual improvements. The

research question was whether it is possible to use separated Context Model (CM)

sub-models (DM, UM, ATM) as described in chapter 5.

The study was conducted with twelve participants (9 male, 3 female, age 23 -

59, mean = 35 years). The study procedure was as follows. Four different CM

properties were the subject of the study:

• Font-size - Size of the font used for common user interface elements like labels,

buttons etc.

• Element-spacing - Minimal distance between particular user interface ele-

ments.

97

98 CHAPTER 10. EVALUATION

• Target-size - Minimal size of interactive areas to be reached by mouse pointing

or tapping.

• Line-width - Minimal width of lines. This value influences both UI components

(e.g. group box, separator) and vector graphics figures.

Phase 1
Device model
specification

Phase 2
UM

specification

Common
UM

Average

DM
desktop DM

iPhone DM
iPad

UM
desktop UM

iPhone UM
iPad

Phase 3
User model
evaluation

Figure 10.1: Plan of the three-phase Context Model (CM) evaluation study.

Three different target devices were used for the study: standard desktop com-

puter, tablet computer (Apple iPad) and smartphone (Apple iPhone). The study

consisted of three phases as depicted in Figure 10.1:

1. Phase 1 - Preparation - Device Model (DM) definition: In this phase the

absolute values in the DM were refined on a sample of 8 users. A particular

10.1. EVALUATION OF CONTEXT MODEL ADAPTIONS 99

Figure 10.2: Example of user interface used in the study

value in DM has been computed as average of values determined by individual

users as best. In this phase the users have no substantial vision or dexterity

impairment and use glasses if necessary.

2. Phase 2 - User Model (UM) and Assistive Technologies Model (ATM) mea-

surement : In this phase all three test devices were presented to 12 users. The

order of tests with particular devices was scrambled to exclude possible bias

(each group of 6 users has all possible permutations). For each device a par-

ticular user was presented with individual tested context properties. At the

beginning, each property has default value for particular devices defined in the

DM. Individual users were asked to set a value of each context property that

preferable fits their preferences and needs. Users that wore glasses were firstly

asked not to use them. Users set optimal values using simple increase/decrease

buttons (see Figure 10.2). In this way the preliminary UM was derived for each

device. Finally, the overall UM was computed as average of preliminary UMs

derived for particular devices. The ATMs of glasses for particular users were

derived in the same manner. Individual properties in the ATM were com-

puted as the ratio between value measured using the glasses and original value

in particular UM (without glasses). For properties like font-size or line-width

is the corresponding value in glasses ATM typically less than 1 - total context

property value can be smaller when using glasses.

100 CHAPTER 10. EVALUATION

3. Phase 3 - User Model (UM) and Assistive Technologies Model evaluation: The

subject of the final phase was to indicate the validity of the Context Model.

This phase focused on degree of user satisfaction and error of the overall UM.

Users were presented with the same device set, but with UM derived for each

individual user in the previous phase. At each step the users were asked to

assess the current value using the criteria shown in Table 10.2. In this phase

two users from each group (see hereinafter) served as control sub-group and

were presented with the original default UM (all properties has value 1.0 - no

effect to default properties in DM).

There were three user groups - users that does not need glasses (Group 1 -

UM evaluation), users that need glasses but currently didn’t use them (Group 2

- UM evaluation) and users that need glasses and used them (Group 3 - UM and

ATM evaluation). The latter two groups consisted of the same people. The UM

and ATM were evaluated against original UMs and ATMs measured for particular

devices before the average overall models were constructed. Figure 10.1 shows the

results. Generally the tested UI properties were well accepted by the user audience

(no rating was worse than 3, average rating was 1.35). The most significant error

was recorded for the font-size property (Group 2, average error 23.67%, maximum

error 57%). This property was assessed as the least-suitable by the users as well

(average rating 1.69, worst rating 3).

The user testing indicated the validity of our Context Model (CM) concept, how-

ever a further study on a larger user audience is necessary for a statistical evaluation.

Follow possible improvements to the context model that emerged from this study.

The font-size and line-width properties should not be computed as average, but the

biggest coefficient measured should be used. The target-size property should be in

Table 10.1: Results of CM evaluation study

Group Tested model Need/Used Glasses Type Evaluation metric Value Font Size Spacing Target size Line Width
Average 2,22% 8,22% 5,22% 9,67%

Preliminary UM deviation
Maximum 13,00% 20,00% 20,00% 27,00%
Average 1,33 1,33 1,25 1,42

Test group
Rating

Maximum 2 2 2 3
Average 1,50 1,83 1,50 1,50

Group 1 NO/NO

Control group Rating
Maximum 2 3 2 2
Average 23,67% 14,33% 16,33% 10,44%

Preliminary UM deviation
Maximum 57,00% 33,00% 40,00% 33,00%
Average 1,69 1,23 1,69 1,23

Test group
Rating

Maximum 3 3 3 2
Rating Average 2,50 1,67 1,83 1,33

Group 2

UM

YES/NO

Control group
Maximum 4 2 3 2

Preliminary UM deviation Average 6,33% 9,87% 17,83% 13,06%
Maximum 30,00% 20,00% 60,00% 33,00%

Rating Average 1,08 1,50 1,25 1,17
Test group

Maximum 2 3 2 2
Average 1,17 1,50 1,00 1,50

Group 3 UM, ATM YES/YES

Control group Rating
Maximum 2 2 1 3

10.2. EVALUATION OF PERCEIVED QUALITY OF GENERATED UIS 101

Table 10.2: Subjective assessment of context model properties

Rating User interface property value is

1 exactly as desired
2 almost as desired
3 usable but it should be rather changed
4 barely usable, it should be substantially changed
5 not usable, it must be dramatically changed

UM and ATM separated into more properties, in this case there should be a specific

property for mouse pointing devices and devices where objects are selected by finger

tapping.

10.2 Evaluation of perceived quality of generated

UIs

The aim of this user study was to compare UIs generated by using the Context-

sensitive Automatic Concrete User Interface Generation Pipeline with manually im-

plemented simple web-based UIs.

The testing procedure was as follows. Twelve participants (10 male, 2 female,

aged 22 - 48, mean = 30 years) were hired to evaluate the quality of UIs generated

using our method. Three different UI platforms were used during the study – desktop

PC, tablet PC and smartphone. At each platform, the participants of the study were

presented with UIs generated using our Context-sensitive Automatic Concrete User

Interface Generation Pipeline and a web UI with a similar functionality. The UIs

were assessed subjectively in terms of comfort, efficiency and aesthetic quality. The

participants of the study were skilled ICT users who use a computer as their primary

work tool. With one exception, all users have a university degree. Each participant

was asked to fill in an ACM-ICPC registration form, using both a web browser and

UIP client on each platform. The order of the tests was scrambled to avoid the

possible bias.

Afterwards, the participants were asked to evaluate all six presented UIs for

comfort, efficiency and aesthetic quality, on the Likert scale [74] (1 to 5, where 1 is

the best score). The Wilcoxon rank-sum test [56] was used to compare the effect of

each UI on comfort, efficiency and aesthetic quality. The Wilcoxon rank-sum test is

102 CHAPTER 10. EVALUATION

Table 10.3: Subjective evaluation of form UIs. M(x) is median of Likert scale
assessments.

Device UI aspect M(web) M(UIP) Statistical result Sig. dif-
ference

Desktop

comfort 2 1 W = 108, p<0.05 yes

efficiency 2 1 W = 100, p>0.05 no

aesthetic quality 4 2 W = 115.5, p<0.05 yes

iPhone

comfort 4 2 W = 121, p<0.005 yes

efficiency 4 2 W = 114, p<0.05 yes

aesthetic quality 4 2 W = 134.5, p<0.001 yes

iPad

comfort 3 2 W = 109, p<0.05 yes

efficiency 3 2 W = 110, p<0.05 yes

aesthetic quality 4 2 W = 126, p<0.005 yes

a statistical test that compares two samples and assesses whether their population

mean ranks differ. It is used as an alternative to the paired Student t-test in cases

when the population cannot be assumed to be normally distributed [40]. The results

of the statistical evaluation are presented in Table 10.3.

The user study showed that the generated UIs provide a better subjective user

experience for comfort, efficiency and aesthetic quality. On the desktop PC, the

usage comfort was evaluated as better for the UIP client (M = 1), though both

UIs provide good results. There is a non-significant difference in efficiency between

UIP client (M = 1) and web UI (M = 2), so their performance can be evaluated as

comparably well. The aesthetic quality was evaluated as significantly better for the

UIP client (M = 2) than for the desktop web UI (M = 4).

Using the iPhone smart phone, all three metrics were evaluated as significantly

better for the UIP client. For all three metrics, the medians of the Likert scale values

were 2 for the UIP client and 4 for the respective web UI. For the iPad tablet, all

three metrics were also evaluated as significantly better for the UIP client. For the

web UI, the medians for comfort and efficiency metrics were 3, and for aesthetic

quality the median was 4. The UIP client provided better results with median = 2

for all evaluated metrics.

Generally, the UiGE Pipeline provided UIs that were highly positively rated in

the user study. The most significant advantage over the web UI was on the iPhone

10.3. DEVELOPMENT AND MAINTENANCE EFFORTS 103

platform. In this case, the UI generated by the UiGE Pipeline was based on an easy-

to-navigate iOS Table View. By contrast, the web page required a lot of scrolling

and zooming, which worsened its usability.

10.3 Development and Maintenance Efforts

This section describes evaluation of our solution based on application source code

audit of data-driven applications as described in chapter 7. The primary focus is on

development effects and amount of information that needs to be restated in either

case.

The study is further evaluated from the perspective of development and mainte-

nance. We consider a manually developed system and compare it with a system built

using our approach. The persistence model of the considered application consists of

7 entities. For both applications considered here, the model consists of 370 physical

lines of code (LOC). With the manual approach, it is necessary to implement XML

forms for the UIP, and it consists of JavaScript (JS) references and a JS library.

The XML forms have 703 LOC, while the JS references and library have 300 and

446 LOC.

With our approach, the persistence model is extended with additional marks,

resulting in 96 additional LOC for the persistence model. Generic UIP configuration,

templates and Event handlers are designed for AspectFaces library, and all these are

applicable to different UIP projects. The UI part is generated through persistence

model inspection and transformation. To deal with text labels, we apply them in

Table 10.4: Comparison of manual and code-inspected approach regards the size of
code.

Component Manual approach (LOC) AF approach (LOC)

Persistence model 370 370

Extension to the persistence
model

- 96

Text label properties - 108

UIP XML forms 703 -

JavaScript library 300 300

JavaScript in view 446 -

104 CHAPTER 10. EVALUATION

the text property file rather than in forms (108 LOC). Table 10.4 summarizes the

efforts. In order to develop the project manually, we need to implement 370 LOC of

the persistence model, 703 LOC of XML with weak type safety, and 746 LOC of JS.

With our approach, we only need to implement 466 LOC of the persistence model,

define text properties (108 LOC) and use 300 LOC of the JS library.

It must be considered that when we develop the UIP project manually, the

entire presentation source code in addition to Event Handlers must be developed.

Especially in the XML part, with forms, there is a burden of restated information in

a weak type safety, so future changes to the persistence model must also be manually

applied in the XML part. By contrast, with our approach the changes take place

only in a single location, the persistence model. We must consider that there is

a reduction not only in the source code, but also in the coupling among different

subsystems. In addition, the time dedicated to both development and maintenance

is reduced, because the UI part adjusts to the information already captured in the

persistence part, and no manual restating takes place.

In this section, we have shown evaluation of fusion solution of UIP Platform

and application source code audit based on Aspect Faces. A synergy effect of this

fusion resulting in further reduction of the amount of necessary source code and

information coupling is clear from the results.

10.4 Evaluation of network transfer protocol

This section presents an evaluation of UIP Protocol from the perspective of data-

transfer over a computer network. The focus is on transfer of bitmap images en-

coded into UIP Events. The corresponding use-case was user identification using

face-recognition for purposes of hospital indoor navigation system (see chapter 8).

Therefore, another evaluated aspect was the performance of face detection (exis-

tence of any face in the image) directly on UIP Client running on Raspberry PI 2

single board computer.

In our experiment, the dependent variables to be observed will be frame size,

frame transfer time and the error rate of the face recognition system. The indepen-

dent variables, which will be altered, are the resolution of the input stream (80x60

to 640x480 pixels, or up to FullHD for a real camera stream) and the existence of

pre-detection of faces in the input stream.

Table 10.5 shows the relationship between frame-transfer time and image resolu-

tion, and also the influence of face pre-detection. The data in Table 10.5 are average

10.4. EVALUATION OF NETWORK TRANSFER PROTOCOL 105

Table 10.5: Frame transfer time (Simulated stream)

Resolution Size [KB] Frame transfer time [ms]
Face pre-detection

Enabled [ms] Disabled [ms]

640×480 32.70 984.67 98.25
320×240 11.91 444.07 32.85
160×120 4.72 339.29 16.42
80×60 2.06 301.28 10.14

Table 10.6: Frame transfer time (Real-time video)

Resolution Time [ms] Size [KB]

1920×1050 850.17 111.76
800×600 221.11 39.30
640×480 151.17 30.63
320×240 56.06 10.74
160×120 31.64 4.25
80×60 31.61 1.91

values from transferring a sequence of 150 frames. The images were stored in UIP

Client flash storage in the form of a sequence of 150 png images. This sequence

was pre-loaded into the operating memory before the transfer began. The current

communication channel transfers each frame separately embedded into a UIP Event.

As UIP is based on XML, the image data must be encoded into a valid form. In our

case, the valid form is Base64 string. The data show that the current communica-

tion channel is sufficient for transferring the video stream up to resolution 640x480

with more than 10 FPS (Frames Per Second). The overhead of Face pre-detection is

significant - it prolongs the frame transfer time 10-fold for resolution 640x480, and

for lower resolution the impact is even greater.

Table 10.6 depicts the frame transfer times and the frame sizes using real-time

video (captured by a camera attached to the UIP Client device). There is another

overhead, in comparison with the simulated stream, because the images have to

be processed by the attached camera. First, the images were re-sized from higher

resolution before the frame was transmitted. It is clear from the data that the current

communication channel is not adequate for transferring the FullHD (1920x1050)

stream. In this case, it can achieve only about 1 FPS.

The first outcome of our experiment is that face pre-detection on relatively slow

devices like Raspberry Pi can cause delays that will have a significant impact on the

interactivity of the system. This is acceptable if there is a need to reduce significantly

106 CHAPTER 10. EVALUATION

the amount of data transferred over a network connection. In our case, we assume

that there is a well-dimensioned network that will be able to transfer streams from

all connected clients.

The second outcome of the evaluation is that the network channel used here

can seamlessly transfer image streams at the frame rate of about 10 FPS for res-

olution up to 640x480. To transfer video streams with higher resolution, it would

be necessary to set up a special network stream rather than using the current UIP

Event infrastructure. A User Datagram Protocol (UDP) protocol stream can be

constructed using the current UIP infrastructure.

10.5 Conclusion

In this chapter, there was described evaluation of our approach from different per-

spectives. section 10.1 focused on evaluation of the Context Model (CM) adaptions

from the user perspective. The outcome of the CM evaluation indicated the validity

of the CM concept as described in chapter 5. However, the evaluation also stated

demand for additional possible improvements of the Context Model.

Section 10.2 describers evaluation of automatically generated UIs on an example

of registration form for international programming contest. Generated UIs have

been compared with standard web application with similar functionality. Generally,

our UiGE Pipeline provided UIs that were in the user study mostly rated better

than web-based UIs.

In section 10.3 we focused on evaluation of our approach from the perspective

of application developers. Our solution based on application-source code audit and

aspect-based AUI derivation proved to be efficient in comparison to a manual ap-

proach.

The test described in section 10.4 evaluates UIP Protocol from the perspective

of data transfer. The outcome is that current UIP Event infrastructure is robust

enough even for transferring real-time videos up to a resolution of 640x480 pixels.

This part of the evaluation also showed lower performance of complex actions carried

out on UIP Clients with limited computational power.

Chapter 11

Conclusions and Future Work

This chapter summarizes the outcomes of this dissertation thesis and proposes pos-

sible future work. The introduction contains the basics about automatic UI genera-

tion, as well as the statement of motivation for this work. The subsequent analysis

resulted in the statement of objectives. A list of those objectives as stated in the

introduction, see section 1.2, follows. Here, we discuss the achievements of this

dissertation thesis in relation to those objectives.

1. Definition of a methodology for an Automatic Context-sensitive Generation of

Concrete User Interfaces.

The primary objective of this thesis was the development of a method-

ology for the Automatic Context-sensitive Generation of CUIs. Chap-

ter 2 summarized related approaches and methods with a similar

aim; many of which bring interesting concepts suitable for auto-

matic CUI generation. However, most of them also have substantial

shortcomings emerging from the limited UI adaptations they offer on

one hand and the complicated development and maintenance caused

by complex coupled input models on the other.

This primary objective has been achieved by the development of the

methodology described in chapters 3 - 6. Our methodology focuses

on the realization of individual stages of the Context-sensitive Auto-

matic Concrete User Interface Generation Pipeline (UiGE Pipeline).

Chapter 4 describes the immediate input to the UIP User Interface

Generator (UiGE) – the AUI structure and methods of its derivation

from other input models. Chapter 5 describes Context Model (CM)

that attributes the automatic CUI generation.

107

108 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

In chapter 6 we focus on the automatic CUI generation itself, and on

the corresponding CUI optimization method. Our CUI generation

approach requires a method to automatically assess the quality of

generated UIs in accordance with optimal metrics. A survey of po-

tentially suitable methods for automated UI evaluation is described

in section 2.5. The result of this survey is that most methods still

require the presence of human experts or need to track user activ-

ity while interacting with a real (final) application. The automated

heuristic evaluation mostly focuses on a specific application domain

(e.g. Web). The process of CUI generation and optimization is de-

scribed in chapter 6. For the purposes of our approach, we have

developed an optimization metric that reflects the number of steps

the user needs to carry out to perform typical operations with the

resulting UIs. For more complex optimization cases we have defined

optimization heuristics. Using this method the optimization process

can be configured for specific application domains while preserving

its generality.

Chapter 3 describes the theoretical foundations of the corresponding

UIP Platform, our User Interface Description Language (UIDL) and

the CUI delivery method.

2. Modeling and Implementation of this methodology in a form of the Context-

sensitive Automatic Concrete User Interface Generation Pipeline (UiGE Pipeline).

The methodology described in chapters 3 - 6 has been implemented

as the UIP Platform. The use of this platform for practical appli-

cation development is described in chapters 7 - 9. Furthermore, the

UIP Portal described in appendix A focuses on supporting devel-

opers that use the UIP Platform as well as to serve as a runtime

engine for UIP Applications.

3. Integration or Development of a Context Model (CM). An existing suitable

Context Modeling method could be adapted. Alternatively a novel context-

modeling method that suits our requirements regarding the development ef-

ficiency and consistency with other UiGE Pipeline components can be devel-

oped.

An important attribute of this dissertation thesis and our CUI gen-

109

eration method is the context-sensitivity. Section 2.4 contains a

survey of related context modeling methods. Various approaches

are suited for specific application domains and these approaches

also often require complex ontological deceptions. Such complex-

ity can cause development and maintenance difficulties. In chap-

ter 5, we introduced our context modeling method. It is suited to

be easily integrated with other components of the Context-sensitive

Automatic Concrete User Interface Generation Pipeline. Individ-

ual sub-models like User Model, Device Model, Environment Model

or Assistive Technologies Model are maximally mutually indepen-

dent. Structure of the Context Model is also less complex than the

structure of most context-models based on ontologies. Our Context

Model can also describe specific abilities of the user in the same way

as their limitations.

4. Integration or Development of a UI Description and Delivery Language/Method.

It should be an integral part of the UiGE Pipeline implementation and support

high development efficiency.

A prerequisite for our approach was a sufficient method for a UI

description on more levels of abstraction. Our survey on UI de-

scription languages has shown that several universal User Interface

Description Languages do not offer a satisfactory level of abstrac-

tion. On the contrary, some languages allow UI definition solely on

the abstract level. Chapter 3 describes our method for UI descrip-

tion and delivery. It enables delivery of UIs to various types of client

devices that use different UI platforms. A major contribution of this

method is that it simultaneously aggregates all application logic on

the server- side, whilst it supports the use of native UI elements on

individually supported platforms. Additionally, our method brings

further advantages in terms of extensibility and modularity. User

Interface Description Language introduced as part of this method

supports client-server communication and UI description on an ab-

stract level, as well as on a concrete level.

In section 4.1, we introduce our Abstract User Interface notation and

focus on several methods of its derivation from other input models.

110 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

5. Minimization of the amount of work required for UI development and mainte-

nance in case of complex multi-platform, context-sensitive UIs.

This objective has been mainly addressed by the principles on which

the Context-sensitive Automatic Concrete User Interface Generation

Pipeline design is based. Our automatic CUI generation method

minimizes the amount of work required from application developers.

See analysis of development efforts in section 10.3. Furthermore, we

supported the developers by addressing the following sub-objectives.

(a) Provide developers with supporting tools and usage guidelines that will

help them to deal with the UiGE Pipeline.

The UiGE Pipeline has been implemented in a form of the UIP

Platform. An important step for enabling general developers to

use the UIP Platform was the definition of the UIP Application

format as described in section 3.3.2. The following tools have

been introduced to support UIP Application developers.

In section A.2, we introduced the UIP Visual Editor that sup-

ports development of UIP Applications on the basis of a visual

development environment. UIP Visual Editor supports both

AUI and CUI design. Further details about the UIP Visual Ed-

itor are in appendix A.2.

Another direction to support developers of UIP Application was

providing a simple solution to manage UIP Applications. UIP

Portal is a web application to support the UIP Platform de-

velopment. It enables management of UIP Applications, man-

agement of the corresponding UIP Server instances that serve

as a runtime for UIP Applications. Furthermore, the UIP Por-

tal contains various resources related to the UIP Platform de-

velopment. Details about the UIP Portal are in appendix A,

section A.1.

(b) Development of an input transformation method for input derivation from

existing models used in practice.

This objective has been addressed by theoretical methods de-

scribed in chapter 4. Motivation for the development of methods

111

to derive AUIs was to further simplify the UI development and re-

duce the amount of information-restatement. Furthermore, the

adaption of exiting established methods used in the industry

might simplify adaption of our approach.

Section 2.2 focuses on related methods to efficiently derive AUIs

from other input models. According to our study, an aspect-

based approach can be used for effective input derivation for

data-oriented applications. Namely, we focus on application

source code audit of data-driven applications using aspect-based

approach, on the theoretical level, this transformation is de-

scribed in section 4.3. Chapter 7 describes the practical ap-

plication of this method. Another direction was to focus on two

different domain-specific input models in the domain of an in-

telligent household. In section 4.4.1 we focused on the URC

platform, and in section 4.4.2 on the OpenHAB platform.

6. Evaluation of the proposed solution.

The theoretical methods behind the UiGE Pipeline and its imple-

mentation – the UIP Platform have been evaluated from different

perspectives. The evaluation of the essential concepts and methods

is described in chapter 10. The following sub-objectives focus on

different perspectives of our approach evaluation.

(a) Demonstration of its usefulness for purposes of practical applications.

Several examples described in this dissertation thesis point to

the validity of our approach and highlight its practical usabil-

ity and utility. In chapter 7, we presented an example of how

the aspect-based application source-code audit can be used to

generate context-aware UIs at runtime. The proposed method

significantly reduces the amount of the replicated source-code,

which simplifies both development and maintenance. This ex-

ample illustrates the use of our approach in the broad extend

form complex input derivation through context-sensitive opti-

mizations to the UI delivery to different UI platforms.

Chapter 8 shows the use of the UiGE Pipeline for purposes of

complex adaptive indoor navigation. More precisely, this ex-

112 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

ample represents an in-hospital navigation system tailored for

people with limited navigation and orientation capabilities. Dif-

ferent types of adaptive navigation terminals based on various

technologies represent UIP Clients in terms of our approach.

This example leverages the adaptive features of our approach

and its versatility.

Finally, chapter 9 lists applications that partially used our ap-

proach. In section 9.1, we highlighted the use of our approach

for a form-filling solution the domain of e-governance. The UIs

rendered using our multi-platform approach are compared to UIs

of a legacy form-filling application. Section 9.2 shows the appli-

cation of our approach in the domain of the Internet of Things

(IoT) [39]. More precisely, this part focuses on the integration

of a physical product that helps senior users to interact with a

food-sharing service. Although this example does not use the

full capabilities of automatic CUI generation, it shows the com-

munication capabilities and versatility of our approach.

(b) Evaluation of generated UIs from the perspective of relevant target users.

This objective has been addressed by the evaluation of the per-

ceived quality of the automatically generated UIs in section 10.2.

This test showed the advantages of our solution over Web with

similar functionality. The practical feasibility of the proposed

Context Model adaptions have been evaluated in section 10.1.

This evaluation pointed to a practical usability of our approach

for generation of context-sensitive CUIs. Practical applications

of our approach have also been evaluated with their respective

target user audience.

(c) Evaluation of related development support tools from the perspective of

their users (the developer perspective).

This objective has been partially addressed by an evaluation of

the development and maintenance efforts described in section

10.3. This test showed that our approach enables a significant

reduction of the amount of source code that needs to be imple-

mented in comparison with the manual approach. Our approach

also enables a reduction of the amount of code that needs to

11.1. FUTURE WORK 113

be restated. This could also reduce the amount of errors during

application development and maintenance.

From the usability testing perspective, only the UIP Visual Edi-

tor (see A.2 in appendix A) has been already evaluated. Details

about its evaluation and development based on the User Cen-

tered Design [2] are in section A.2.1.

This section summarized the results of this dissertation thesis and the extent

to which its particular objectives have been addressed. Most of those objectives

have been addressed fully; however, there is also room for further development and

evaluation. The following section focuses in detail on proposed future development

and a statement of possible subsequent research direction.

11.1 Future Work

The UI generation approach based on UiGE Pipeline introduced in this thesis

presents an effective solution to various modern ICT problems on one hand. On

the other hand, it also implies new research directions, as well as challenges for

technological improvements. This section highlights those that are most important.

Additional evaluation of some methods developed in the framework of our ap-

proach should be conducted. Our concept of UI optimization heuristics should be

evaluated to a broader extent. There is also a need for further qualitative evalua-

tion that compares UIs resulting from our UiGE Pipeline with UIs generated by a

comparable state-of-the-art method.

From a UIP Application developer perspective, further usability evaluation of

supporting tools should be conducted. There is also a need for a statement of

development guidelines and best practices. An effective dissemination strategy of

our approach should be also taken into account.

From a technological point of view, our approach should be integrated with new

promising methods and technologies that have been developed in parallel to our

approach; from our current perspective, the most important is a transition to a cloud

platform [29]. Our approach can be integrated either as Software as a Service (SaaS)

cloud variant. A general cloud-integrated solution open to 3rd party developers can

be provided even as the Platform as a Service (PaaS) cloud variant.

Another research direction is to focus on the efficiency of the UI delivery process.

Complex cloud platforms require an advanced multi-level UI delivery mechanism.

114 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

In our work about the distributed concern delivery described in [imp1] [wos1], we

have shown the direction that could also be followed by the approach described in

this dissertation thesis.

Currently, there is a trending development in the domain of the Internet of Things

(IoT) [39]. We have already shown that it is possible to support solutions from this

category using our platform. However, solutions for the seamless integration of such

devices, as well as network discovery mechanisms, should be developed.

Bibliography

[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shus-

ter. Uiml: an appliance-independent xml user interface language. Computer

Networks, 31(11):1695–1708, 1999.

[2] C. Abras, D. Maloney-Krichmar, and J. Preece. User-centered design. Bain-

bridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage

Publications, 37(4):445–456, 2004.

[3] M. Araki and K. Tachibana. Multimodal dialog description language for rapid

system development. In Proceedings of the 7th SIGdial Workshop on Discourse

and Dialogue, pages 109–116. Association for Computational Linguistics, 2009.

[4] J. Bardram and A. Friday. Ubiquitous computing systems. Ubiquitous Comput-

ing Fundamentals, pages 37–94, 2010.

[5] J. Basek. Webove reseni pro podporu vyvoje v UIProtocolu (in Czech), Bache-

lor’s thesis, Czech Technical University in Prague, 2011.

[6] E. Bernard. JSR 303: Bean validation, available from:

http://jcp.org/en/jsr/detail?id=303, 2009, checked 2015-11-01.

[7] S. Berti, F. Correani, G. Mori, F. Paternò, and C. Santoro. Teresa: a

transformation-based environment for designing and developing multi-device in-

terfaces. In CHI’04 extended abstracts on Human factors in computing systems,

pages 793–794. ACM, 2004.

[8] R. Biswas and E. Ort. The java persistence api-a simpler programming model

for entity persistence. Sun Microsystems, Inc., May, 2006.

[9] M. Blumendorf, G. Lehmann, and S. Albayrak. Bridging models and systems

at runtime to build adaptive user interfaces. In Proc. of the 2nd ACM SIGCHI

115

116 BIBLIOGRAPHY

symposium on Engineering interactive computing systems, pages 9–18. ACM,

2010.

[10] J. Bryant and M. Jones. Responsive web design. In Pro HTML5 Performance,

pages 37–49. Springer, 2012.

[11] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and J. Vander-

donckt. A unifying reference framework for multi-target user interfaces. Inter-

acting with Computers, 15(3):289–308, 2003.

[12] D. Carlson and A. Schrader. Dynamix: An open plug-and-play context frame-

work for android. In Internet of Things (IOT), 2012 3rd International Confer-

ence on the, pages 151–158. IEEE, 2012.

[13] R. Cassino and M. Tucci. Developing usable web interfaces with the aid of

automatic verification of their formal specification. Journal of Visual Languages

& Computing, 22(2):140–149, 2011.

[14] CBS Inc. Study: Number of smartphone users tops 1 billion., avail-

able from: http://www.cbsnews.com/8301-205-162-57534583/study-number-of-

smartphone-users-tops-1-billion/, checked: 2013-06-10.

[15] T. Cerny, V. Chalupa, and M. J. Donahoo. Towards smart user interface design.

In Info. Science and Applications (ICISA), 2012 Int. Conf. on, pages 1–6. IEEE,

2012.

[16] T. Cerny, M. J. Donahoo, and E. Song. Towards effective adaptive user inter-

faces design. In Proc. of the 2013 Research in Applied Computation Symposium

(RACS 2013), October 2013.

[17] T. Cerny and E. Song. Uml-based enhanced rich form generation. In Proc. of

the 2011 ACM Symposium on Research in Applied Computation, pages 192–199.

ACM, 2011.

[18] T. Cerny and E. Song. Model-driven rich form generation. INFORMATION:

An Int. Interdisciplinary Journal, 15(7):2695–2714, July 2012.

[19] J. Chattratichart and G. Lindgaard. A comparative evaluation of heuristic-

based usability inspection methods. In CHI’08 extended abstracts on Human

factors in computing systems, pages 2213–2220. ACM, 2008.

BIBLIOGRAPHY 117

[20] T. Clerckx, K. Luyten, and K. Coninx. The mapping problem back and forth:

customizing dynamic models while preserving consistency. In Proc. of the 3rd

annual conf. on Task models and diagrams, pages 33–42. ACM, 2004.

[21] J. Conrad and J. Viescas. Microsoft R© Access R© 2010 Inside Out. O’Reilly

Media, Inc., 2010.

[22] V. Consortium et al. vcard—the electronic business card—version 2.1—

specifications. Internet citation,[Online] Sep, 18:1–40, 1996.

[23] D. Crockford. The application/json media type for javascript object notation

(json), available from: https://tools.ietf.org/html/rfc4627, 2006,

checked: 2015-10-10.

[24] K. Czarnecki and U. W. Eisenecker. Components and generative program-

ming (invited paper). In Proc. of the 7th European software engineering conf.,

ESEC/FSE-7, pages 2–19, London, UK, UK, 1999. Springer-Verlag.

[25] M. Dalal and A. Ghoda. XAML developer reference. O’Reilly Media, Inc., 2011.

[26] Danish Websearch Webzine. Wayfinding in hospitals, available from:

http://www.dcdr.dk/uk/menu/update/webzine/articles/wayfinding-in-

hospitals. [Online; accessed 24-April-2014].

[27] L. DeMichiel. JSR 317: JavaTM persistence API, version 2.0, available from:

http://jcp.org/en/jsr/detail?id=317, November 2009, checked 2015-08-11.

[28] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon. Gamification. us-

ing game-design elements in non-gaming contexts. In CHI’11 Extended Abstracts

on Human Factors in Computing Systems, pages 2425–2428. ACM, 2011.

[29] T. Dillon, C. Wu, and E. Chang. Cloud computing: issues and challenges. In

Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, pages 27–33. Ieee, 2010.

[30] DIS, ISO. 9241-210: 2010. ergonomics of human system interaction-part 210:

Human-centred design for interactive systems. International Standardization

Organization (ISO). Switzerland, 2009.

[31] B. Dumas, D. Lalanne, and R. Ingold. Description languages for multimodal

interaction: a set of guidelines and its illustration with smuiml. Journal on

multimodal user interfaces, 3(3):237–247, 2010.

https://tools.ietf.org/html/rfc4627

118 BIBLIOGRAPHY

[32] J. Engel, C. Herdin, and C. Märtin. Evaluation of model-based user interface

development approaches. In Human-Computer Interaction. Theories, Methods,

and Tools, pages 295–307. Springer, 2014.

[33] Eyedea recognition Ltd. Eyedenity – forensic software for face detection and

recognition, available from: http://www.eyedea.cz/eyedentity/, 2015, checked:

2015-06-15.

[34] J. Feiner and K. Andrews. Usability reporting with usabml. In Human-Centered

Software Engineering, pages 342–351. Springer, 2012.

[35] K. C. Feldt. Programming Firefox: Building rich internet applications with

XUL. ” O’Reilly Media, Inc.”, 2007.

[36] I. R. Forman and N. Forman. Java Reflection in Action (In Action series).

Manning Publications Co., Greenwich, CT, USA, 2004.

[37] K. Gajos, D. Weld, and J. Wobbrock. Automatically generating personalized

user interfaces with supple. Artificial Intelligence, 174(12-13):910–950, August

2010.

[38] A. Gimblett and H. Thimbleby. Applying theorem discovery to automatically

find and check usability heuristics. In Proceedings of the 5th ACM SIGCHI

symposium on Engineering interactive computing systems, pages 101–106. ACM,

2013.

[39] D. Giusto, A. Iera, G. Morabito, and L. Atzori. The internet of things: 20th

Tyrrhenian workshop on digital communications. Springer Science & Business

Media, 2010.

[40] A. M. Graziano and M. L. Raulin. Research methods: A process of inquiry.

HarperCollins College Publishers, 1993.

[41] L. Hakobyan, J. Lumsden, D. O’Sullivan, and H. Bartlett. Mobile assistive

technologies for the visually impaired. Survey of ophthalmology, 58(6):513–528,

2013.

[42] O. Hauptmann. UIP Applications Visual Editor. Master’s thesis, Czech Tech-

nical University in Prague, 2012.

BIBLIOGRAPHY 119

[43] IMS Global Learning Consortium, Inc. Ims learner information package specifi-

cation, available from: http://www.imsglobal.org/profiles/index.

html, 2008, checked 2015-11-01.

[44] International Organization for Standardization. ISO 9241-11: Ergonomic Re-

quirements for Office Work with Visual Display Terminals (VDTs): Part 11:

Guidance on Usability. International Organization for Standardization, 1998.

[45] ISO. IEC 24752: Information Technology—User Interfaces—Universal remote

console—5 parts. International Organization for Standardization, 2008.

[46] J. Jelinek and P. Slavik. Gui generation from annotated source code. In Proceed-

ings of the 3rd annual conference on Task models and diagrams, pages 129–136.

ACM, 2004.

[47] N. Kaklanis, P. Biswas, Y. Mohamad, M. Gonzalez, M. Peissner, P. Langdon,

D. Tzovaras, and C. Jung. Towards standardisation of user models for simulation

and adaptation purposes. Universal Access in the Information Society, pages 1–

28, 2014.

[48] R. Kennard and J. Leaney. Towards a general purpose architecture for ui

generation. Journal of Systems and Software, 83(10):1896–1906, 2010.

[49] G. Klyne and J. J. Carroll. Resource description framework (rdf): Concepts

and abstract syntax. W3C Recommendation, 2006.

[50] M. Knappmeyer, N. Baker, S. Liaquat, and R. Tönjes. A context provisioning

framework to support pervasive and ubiquitous applications. In Smart Sensing

and Context, pages 93–106. Springer, 2009.

[51] M. Knappmeyer, S. L. Kiani, C. Frà, B. Moltchanov, and N. Baker. Contextml:

a light-weight context representation and context management schema. In Wire-

less Pervasive Computing (ISWPC), 2010 5th IEEE International Symposium

on, pages 367–372. IEEE, 2010.

[52] J. Kolb, P. Hübner, and M. Reichert. Automatically generating and updating

user interface components in process-aware information systems. In On the Move

to Meaningful Internet Systems: OTM 2012, pages 444–454. Springer, 2012.

[53] G. Kramer. Auditory display: Sonification, audification, and auditory inter-

faces. Perseus Publishing, 1993.

http://www.imsglobal.org/profiles/index.html
http://www.imsglobal.org/profiles/index.html

120 BIBLIOGRAPHY

[54] S. Kurniawan and P. Zaphiris. Research-derived web design guidelines for older

people. In Proceedings of the 7th international ACM SIGACCESS conference on

Computers and accessibility, pages 129–135. ACM, 2005.

[55] R. Laddad. AspectJ in action: practical aspect-oriented programming, volume

512. Manning Greenwich, 2003.

[56] F. Lam and M. Longnecker. A modified wilcoxon rank sum test for paired data.

Biometrika, 70(2):510–513, 1983.

[57] W. Lechner and S. Baumann. Global navigation satellite systems. Computers

and Electronics in Agriculture, 25(1):67–85, 2000.

[58] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V. López-Jaquero.

Usixml: a language supporting multi-path development of user interfaces. In

Engineering human computer interaction and interactive systems, pages 200–

220. Springer, 2005.

[59] V. López-Jaquero, F. Montero, and F. Real. Designing user interface adaptation

rules with t: Xml. In Proc. of the 14th int. conf. on Intelligent user interfaces,

pages 383–388. ACM, 2009.

[60] K. Luyten, C. Vandervelpen, J. V. den Bergh, and K. Coninx. Context-sensitive

user interfaces for ambient intelligent environments: Design, development and

deployment.

[61] M. Maćık. User Interface Generator, diploma thesis. Czech Technical University

in Prague, 2009.

[62] I. S. MacKenzie. Fitts’ law as a research and design tool in human-computer

interaction. Human-computer interaction, 7(1):91–139, 1992.

[63] I. Maly and Z. Mikovec. Web applications usability testing with task model

skeletons. In Human-Centred Software Engineering, pages 158–165. Springer,

2010.

[64] D. L. McGuinness, F. Van Harmelen, et al. Owl web ontology language

overview. W3C recommendation, 10(10):2004, 2004.

[65] B. McLaughlin. Java & XML data binding. ” O’Reilly Media, Inc.”, 2002.

BIBLIOGRAPHY 121

[66] T. Miaskiewicz and K. A. Kozar. Personas and user-centered design: How can

personas benefit product design processes? Design Studies, 32(5):417–430, 2011.

[67] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Models@

run.time to support dynamic adaptation. Computer, 42(10):44–51, Oct. 2009.

[68] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature

subset selection. Computers, IEEE Transactions on, 100(9):917–922, 1977.

[69] National Center for Health Statistics (US) and Council on Clinical Classifica-

tions and Commission on Professional and Hospital Activities and World Health

Organization. The International Classification of Diseases, 9th Revision, Clinical

Modification: ICD. 9. CM. Commission on Professional and Hospital Activities,

1978.

[70] Netbeans.org. Swing gui builder (formerly project matisse), available from:

https://netbeans.org/features/java/swing.html, checked: 2015-11-01.

[71] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld,

and M. Pignol. Generating remote control interfaces for complex appliances. In

Proceedings of the 15th annual ACM symposium on User interface software and

technology, pages 161–170. ACM, 2002.

[72] J. Nichols, B. A. Myers, and B. Rothrock. Uniform: automatically generating

consistent remote control user interfaces. In Proceedings of the SIGCHI confer-

ence on Human Factors in computing systems, pages 611–620. ACM, 2006.

[73] G. Nicol, L. Wood, M. Champion, and S. Byrne. Document object model (dom)

level 3 core specification. W3C Working Draft, 13:1–146, 2001.

[74] J. Nielsen. Usability engineering. Morgan Kaufmann, 1993, ISBN 0125184069.

[75] J. Nielsen. Ten usability heuristics, available from: https://www.nngroup.

com/articles/ten-usability-heuristics/, 1995, checked 2016-01-

10.

[76] H. Okada and R. Fujioka. Automated methods for webpage usability & accessi-

bility evaluations. Advancesin Human Computer Interaction, In-Tech Publishing,

chapter21, pages 351–364, 2008.

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

122 BIBLIOGRAPHY

[77] D. R. Olsen Jr, S. Jefferies, T. Nielsen, W. Moyes, and P. Fredrickson. Cross-

modal interaction using xweb. In Proceedings of the 13th annual ACM symposium

on User interface software and technology, pages 191–200. ACM, 2000.

[78] E. J. O’Neil. Object/relational mapping 2008: hibernate and the entity data

model (edm). In Proc. of the 2008 ACM SIGMOD int. conf. on Management of

data, pages 1351–1356. ACM, 2008.

[79] A. Parush and E. Morse. Industry usability reporting and the common industry

format (ansi-ncits 354-2001). The UPA (The Usability Professionals’ Associa-

tion) Voice, 5(1), 2003.

[80] F. Paterno, C. Santoro, and L. D. Spano. Maria: A universal, declarative, mul-

tiple abstraction-level language for service-oriented applications in ubiquitous

environments. ACM Transactions on Computer-Human Interaction (TOCHI),

16(4):19, 2009.

[81] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs.

big’web services: making the right architectural decision. In Proceedings of the

17th international conference on World Wide Web, pages 805–814. ACM, 2008.

[82] M. Peißner, T. Sellner, and D. Janssen. Myui individualization patterns for

accessible and adaptive user interfaces. In SMART 2012, The First International

Conference on Smart Systems, Devices and Technologies, pages 25–30, 2012.

[83] J.-l. Perez-medina, S. Dupuy-chessa, and A. Front. A survey of model driven

engineering tools for user interface design. In In Proc. of 6th Int. workshop on

Task Models and Diagrams (TAMODIA’2007), pages 84–97, Berlin, 7-9 Nov.

2007. Springer.

[84] M. Plesser and D. Lichtenberger. [fleXive] Content Repository. JAVA Magazin,

page 22, 2010.

[85] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd. Icrafter:

A service framework for ubiquitous computing environments. In Ubicomp 2001:

Ubiquitous Computing, pages 56–75. Springer, 2001.

[86] A. Puerta and J. Eisenstein. Ximl: a common representation for interaction

data. In Proceedings of the 7th international conference on Intelligent user in-

terfaces, pages 214–215. ACM, 2002.

BIBLIOGRAPHY 123

[87] A. R. Puerta. A model-based interface development environment. Software,

IEEE, 14(4):40–47, 1997.

[88] L. Razmerita, A. Angehrn, and A. Maedche. Ontology-based user modeling

for knowledge management systems. In User Modeling 2003, pages 213–217.

Springer, 2003.

[89] L. Richardson and S. Ruby. RESTful web services. ” O’Reilly Media, Inc.”,

2008.

[90] R. D. Roberts, H. C. Beh, and L. Stankov. Hick’s law, competing-task perfor-

mance, and intelligence. Intelligence, 12(2):111–130, 1988.

[91] S. Salah and H. Sug. The effectiveness of rapid business application development

using oracle forms. In Advanced Information Management and Service (ICIPM),

2011 7th Int. Conf. on, pages 33–37. IEEE, 2011.

[92] J. Sauro and E. Kindlund. A method to standardize usability metrics into

a single score. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 401–409. ACM, 2005.

[93] M. Schlee and J. Vanderdonckt. Generative programming of graphical user in-

terfaces. In Proceedings of the working conference on Advanced visual interfaces,

pages 403–406. ACM, 2004.

[94] H.-J. Schönig and E. Geschwinde. Mono kick start. Sams Publishing, 2004.

[95] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda. Usability measurement

and metrics: A consolidated model. Software Quality Journal, 14(2):159–178,

2006.

[96] C. S. Sheets. level 2 (css2) specification. W3C Recommendation, 12, 1998.

[97] Q. Z. Sheng and B. Benatallah. Contextuml: a uml-based modeling language

for model-driven development of context-aware web services. In Mobile Business,

2005. ICMB 2005. International Conference on, pages 206–212. IEEE, 2005.

[98] V. Slovacek. Methods for efficient development of task-based applications. In

Human-Centred Software Engineering, pages 206–213. Springer, 2010.

124 BIBLIOGRAPHY

[99] L. Smirek, G. Zimmermann, and D. Ziegler. Towards universally usable smart

homes-how can myui, urc and openhab contribute to an adaptive user interface

platform. In IARIA Conference, Nice, France, pages 29–38, 2014.

[100] Software 602 a.s. Specifikace formátu 602xml formulář̊u (in czech),

available from: http://www.602.cz/datainc/602xml/technical/

602XML_form_popis.pdf, 2010, checked: 2015-10-10.

[101] J.-S. Sottet, G. Calvary, J. Coutaz, and J.-M. Favre. A model-driven en-

gineering approach for the usability of plastic user interfaces. In Engineering

Interactive Systems, pages 140–157. Springer, 2008.

[102] J.-S. Sottet, G. Calvary, and J.-M. Favre. Models at runtime for sustaining

user interface plasticity. In Models@ run. time workshop (in conjunction with

MoDELS/UML 2006 conf.), 2006.

[103] E. Standard. Final draft ETSI ES 202 746 V1. 1.1 (2009-12), 2009.

[104] C. Stephanidis, A. Paramythis, D. Akoumianakis, and M. Sfyrakis. Self-

adapting web-based systems: Towards universal accessibility. In 4th Workshop

on User Interface For All, Stockholm, Sweden, 1998.

[105] P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and

E. Salcher. Declarative interface models for user interface construction tools:

the mastermind approach. In EHCI, pages 120–150. Citeseer, 1995.

[106] V. Tran, M. Kolp, J. Vanderdonckt, Y. Wautelet, and S. Faulkner. Agent-

based user interface generation from combined task, context and domain mod-

els. In Task Models and Diagrams for User Interface Design, pages 146–161.

Springer, 2010.

[107] A. Troelsen. Pro C# 5.0 and the. NET 4.5 Framework. Apress, 2012.

[108] E. Upton and G. Halfacree. Raspberry Pi user guide. John Wiley & Sons,

2014.

[109] A. Van Dam. Post-wimp user interfaces. Communications of the ACM,

40(2):63–67, 1997.

[110] J. Vanderdonckt. Distributed user interfaces: how to distribute user interface

elements across users, platforms, and environments. Proc. of XI Interacción,

pages 20–32, 2010.

http://www.602.cz/datainc/602xml/technical/602XML_form_popis.pdf
http://www.602.cz/datainc/602xml/technical/602XML_form_popis.pdf

BIBLIOGRAPHY 125

[111] M. Wertheimer. Laws of organization in perceptual forms. A source book of

Gestalt psychology, 1938.

[112] C. Wharton, J. Rieman, C. Lewis, and P. Polson. The cognitive walkthrough

method: A practitioner’s guide. In Usability inspection methods, pages 105–140.

John Wiley & Sons, Inc., 1994.

[113] J. Wobbrock, S. Kane, K. Gajos, S. Harada, and J. Froehlich. Ability-based

design: Concept, principles and examples. ACM Transactions on Accessible

Computing (TACCESS), 3(3):9, 2011.

[114] World Health Organization. International classification of functioning, disabil-

ity and health (icf), 2001.

126 BIBLIOGRAPHY

Refereed Publications in Journals

with Impact Factor

[imp1] T. Cerny, M. Macik, M. J. Donahoo, and J. Janousek. On distributed

concern delivery in user interface design. Computer Science and Infor-

mation Systems, 12(2):655–681, 2015, IF = 0.477 (2014). Ratio of author

contribution: 60%, 15%, 15%, 10%.

[imp2] M. Macik, T. Cerny, and P. Slavik. Context-sensitive, cross-platform user

interface generation. Journal on Multimodal User Interfaces, 8(2):217–229,

2014, IF = 0.797 (2014). Ratio of author contribution: 50%, 40%, 10%.

127

128 REFEREED PUBLICATIONS IN JOURNALS WITH IMPACT FACTOR

Refereed Publications in WoS

[wos1] T. Cerny, M. Macik, M. J. Donahoo, and J. Janousek. Efficient description

and cache performance in aspect-oriented user interface design. In Computer

Science and Information Systems (FedCSIS), 2014 Federated Conference on,

pages 1667–1676. IEEE, 2014, ratio of author contriution: 25%, 25%, 25%,

25%.

[wos2] F. Hanzl, M. Macik, V. Slovacek, and M. Klima. Digital household user inter-

faces for seniors. In AMIF, pages 129–136, 2009, ratio of author conribution:

40%, 30%, 25%, 5%.

[wos3] M. Klima, M. Macik, E. Urdaneta, C. Buiza, E. Carrasco, G. Epelde, and

J. Alexandersson. User interfaces for the digital home on the basis of open

industrial standards. In AMIF, pages 144–152. Citeseer, 2008.

[wos4] M. Macik. Context model for ability-based automatic ui generation. In

Cognitive Infocommunications (CogInfoCom), 2012 IEEE 3rd Int. Conf. on,

pages 727–732. IEEE, 2012.

[wos5] M. Macik, I. Maly, Z. Mikovec, and M. Urban. Addinpanel: Adaptive ad-

vertising interactive panel. In Cognitive Infocommunications (CogInfoCom),

2013 IEEE 4th International Conference on, pages 375–380. IEEE, 2013,

ratio of author contriution: 50%, 30%, 10%, 10%.

129

130 REFEREED PUBLICATIONS IN WOS

Refereed Publications in Scopus

[scopus1] K. Fixova, M. Macik, and Z. Mikovec. In-hospital navigation system for

people with limited orientation. In Cognitive Infocommunications (CogIn-

foCom), 2014 5th IEEE Conference on, pages 125–130. IEEE, 2014, ratio

of author contribution: 33%, 33%, 33%.

[scopus2] M. Macik, T. Cerny, J. Basek, and P. Slavik. Platform-aware rich-form

generation for adaptive systems through code-inspection. In Human Fac-

tors in Computing and Informatics, pages 768–784. Springer, 2013, ratio

of author contribution: 55%, 25%, 10%, 10%.

[scopus3] M. Macik, M. Klima, and P. Slavik. Ui generation for data visualisation

in heterogenous environment. In Advances in Visual Computing, pages

647–658. Springer, 2011, ratio of author contribution: 50%, 25%, 25%.

[scopus4] M. Maćık, V. Slováček, and M. Kĺıma. User Interfaces for Intelligent

Household. In Ambient Intelligence European Conference, AmI 2009,

Salzburg, Austria, November 18-21, 2009. Adjunct proceedings., pages 85–

88, Salzburg, 2009, ratio of author contribution: 40%, 40%, 20%. ICT&S

Center, University of Salzburg.

[scopus5] M. Macik and A. J. Sporka. Does user’s fatigue overweight the effect

of practice. In Proceedings of The Tenth IASTED International Confer-

ence on Software Engineering-SE 2011, 2011, ratio of author contribution:

80%, 20%.

131

132 REFEREED PUBLICATIONS IN SCOPUS

Refereed Other Publications

[other1] M. Maćık. Centralized application logic for heterogeneous environment.

In POSTER 2010 - Proceedings of the 14th International Conference on

Electrical Engineering, pages 1–6, Prague, 2010. CTU, Faculty of Electrical

Engineering.

[other2] M. Maćık, A. Kut́ıková, Z. Mı́kovec, and P. Slav́ık. GraFooSha: Food Shar-

ing for Senior Users. In 6th IEEE Conference on Cognitive Infocommunica-

tions CogInfoCom 2015 PROCEEDINGS, pages 267–272, Budapest, 2015.

IEEE Hungary Section, University Obuda.

[other3] M. Macik, E. Lorencova, Z. Mikovec, and O. Rakusan. Software architecture

for a distributed in-hospital navigation system. In Proceedings of the 2015

Conference on research in adaptive and convergent systems, pages 369–375.

ACM, 2015.

[other4] M. Maćık, A. J. Sporka, and P. Slav́ık. An initial study of effects of tempo-

rary disabilities. ACM SIGACCESS Accessibility and Computing, (103):3–

13, 2012.

[other5] P. Slav́ık, Z. Mı́kovec, M. Maćık, and J. Balata. Problémy navigace se-

nior̊u v prostoru. In Stárnut́ı 2014, pages 120–132, Praha, 2014. Univerzita

Karlova v Praze, 3. lékařská fakulta.

133

134 REFEREED OTHER PUBLICATIONS

Unrefereed Other Publications

[otherun1] J. Balata, M. Macik, and Z. Mı́kovec. Context sensitive navigation in

hospitals. 2013.

[otherun2] J. Balata, Z. Mı́kovec, P. Slav́ık, and M. Maćık. Game Aspects in Col-

laborative Navigation of Blind Travelers, pages –. IGI Global, Hershey,

Pennsylvania, 2015.

[otherun3] J. Balata, K. Prazakova, A. Kutikova, M. Macik, and Z. Mikovec. Quido:

Arcade game with thermo-haptic feedback. 2013.

[otherun4] J. Hušek and M. Maćık. Multi-touch Table with Image Capturing. In

CESCG 2011, pages 91–98, Vienna, 2011. Vienna University of Technol-

ogy, Institute for Computer Aided Automation.

[otherun5] M. Maćık and V. Slováček. User interfaces for intelligent household

remote controls. In Proceedings of the 13th Central European Seminar

on Computer Graphics, pages 171–177, Vienna, 2009. Vienna University

of Technology, Institute for Computer Aided Automation.

[otherun6] V. Slováček, M. Maćık, and M. Kĺıma. Development framework for

pervasive computing applications. ACM SIGACCESS Accessibility and

Computing, (95):17–29, 2009.

135

136 UNREFEREED OTHER PUBLICATIONS

Citations

[citations1] E. C. Alonso. Some Contributions to Smart Assistive Technologies. PhD

thesis, The University of Basque Country, 2015.

[citations2] J. Arendsen. Exploring the design space for dynamic interfaces. Institute

for Computing and Information Sciences, 2015.

[citations3] P. Biswas, P. Langdon, J. Umadikar, S. Kittusami, and S. Prashant.

How interface adaptation for physical impairment can help able bodied

users in situational impairment. In Inclusive Designing, pages 49–58.

Springer, 2014.

[citations4] S. M. Butt, M. A. Majid, S. Marjudi, S. M. Butt, A. Onn, and M. M.

Butt. Casi method for improving the usability of ids. Science Interna-

tional, 27(1), 2015.

[citations5] T. Cerny, K. Cemus, M. J. Donahoo, and E. Song. Aspect-driven,

data-reflective and context-aware user interfaces design. ACM SIGAPP

Applied Computing Review, 13(4):53–66, 2013.

[citations6] T. Cerny and M. J. Donahoo. On separation of platform-independent

particles in user interfaces. Cluster Computing, pages 1–14, 2015.

[citations7] T. Cerny and M. J. Donahoo. Separating out platform-independent

particles of user interfaces. In Information Science and Applications,

pages 941–948. Springer, 2015.

[citations8] G. Epelde, X. Valencia, E. Carrasco, J. Posada, J. Abascal, U. Diaz-

Orueta, I. Zinnikus, and C. Husodo-Schulz. Providing universally acces-

sible interactive services through tv sets: implementation and validation

with elderly users. Multimedia tools and applications, 67(2):497–528,

2013.

137

138 CITATIONS

[citations9] T. Nishimori and Y. Kuno. Join token-based event handling: a com-

prehensive framework for game programming. In Software Language

Engineering, pages 119–138. Springer, 2012.

[citations10] M. Pasealekua and M. Lardizabal. Providing universally accessible

interactive services through tv sets: Implementation and validation with

elderly users.

[citations11] J. Porubän, M. Bač́ıková, S. Chodarev, and M. Nosál. Teaching prag-

matic model-driven software development. Computer Science and In-

formation Systems, 12(2):683–705, 2015.

[citations12] G. Radhamani, K. Vanitha, and D. Rajeswari. Classification and han-

dling of anonymity in pervasive middleware. International Journal of

Computer Applications, 17(6):28–31, 2011.

[citations13] M. Tomasek and T. Cerny. On web services ui in user interface gener-

ation in standalone applications. In Proceedings of the 2015 Conference

on research in adaptive and convergent systems, pages 363–368. ACM,

2015.

[citations14] M. Trnka and T. Cerny. Context-aware role-based access control using

security levels. In Proceedings of the 2015 Conference on research in

adaptive and convergent systems, pages 280–284. ACM, 2015.

[citations15] E. Vildjiounaite, G. Gimel’farb, V. Kyllönen, and J. Peltola.

Lightweight adaptation of classifiers to users and contexts: Trends of

the emerging domain. The Scientific World Journal, 2015, 2015.

• Publication Efficient description and cache performance in aspect-oriented

user interface design [wos1] was cited by [citations11].

• Publication Context-sensitive, cross-platform user interface generation [imp2]

was cited by [citations2, citations4, citations6, citations15, citations7, citations13,

citations14].

• Publication Platform-Aware Rich-Form Generation for Adaptive Systems through

Code-Inspection [scopus2] was cited by [citations5, citations3].

• Publication UI generation for data visualisation in heterogenous environment

[scopus3] was cited by [citations5].

CITATIONS 139

• Publication Development framework for pervasive computing applications [otherun6]

was cited by [citations9, citations12].

• Publication User Interfaces for the Digital Home on the basis of Open Indus-

trial Standards. [wos3] was cited by [citations8, citations10, citations1].

140 CITATIONS

Appendix A

Tools for development support

This appendix shows examples of development support tools that have been created

to simplify the work with the Context-sensitive Automatic Concrete User Interface

Generation Pipeline (UiGE Pipeline) and the corresponding UIP Platform. Here,

we show two tools that aim to support developers dealing with it. Firstly, in section

A.1, we describe the UIP Web Portal – a web solution to support the UIP Platform

development. Secondly, in section A.2, we show further details about the UIP Visual

Editor.

(1) Input
Transformation

Abstract User
Interface (AUI)

(2) Context-
sensitive CUI
Generation

Concrete User
Interface (CUI)

(3)
UI Delivery

Final User
Interface (FUI)

Context Model

Device
M. User M. Environ-

ment M.

Input Model
Input Model

Input Model

UIP Web PortalUIP Visual Editor

Model
Description

Event
Handler

CUI
Description

AUI
DescriptionAUI

DescriptionAUI
Description

CUI
DescriptionCUI

Description

Event
HandlerEvent

Handler

Model
DescriptionModel

Description

UIP Server Instance

UIP
Application

UIP
Application

Target Users

UIP Developers

Figure A.1: Scope of the UIP Development Support Tools in the frame-
work of Context-sensitive Automatic Concrete User Interface Generation Pipeline
(UiGE Pipeline)

141

142 APPENDIX A. TOOLS FOR DEVELOPMENT SUPPORT

Figure A.1 depicts the relationship between tools for UIP development support

and the UiGE Pipeline. The estimated user audience of our tools – UIP develop-

ers are expected to have experience with computer programming (preferably Java,

Javascript, .NET) and also to be familiar with the basic concepts behind the UIP

Platform. Note that the UIP Application format, see section 3.3.2 serves as the

exchange format between particular development support tools and the UIP Server.

A.1 UIP Web Portal

In this section, we describe the UIP Web Portal, which aims to support develop-

ers that deal with UIP Platform development. This tool has been created in the

framework of Bachelor’s Thesis [5] advised by this dissertation thesis author.

The original implementation of the UIP Platform can serve as runtime for one

UIP Application on one UIP Server instance at the same time. This is enough for

experimental development and as a runtime for various one-purpose applications.

The runtime configuration of the original UIP Platform is also rather complicated

for new developers dealing with it. This induces the motivation to create a solution

that enables easier interaction with the UIP Infrastructure. Apart from the current

UIP developers, the new tool should also enable new UIP developers to get familiar

with the UIP Platform easier.

Following list summarizes the most important functional requirements to the

UIP Web Portal :

• UIP Application management: The UIP Web Portal should provide an easy

way how to deploy UIP applications and to provide tools how to control cor-

responding UIP application deployments.

• UIP Server instance management: The UIP Web Portal should simplify man-

agement of UIP Server instances that serve as a runtime for deployed UIP

Applications.

• Content Management System: The UIP Web Portal should integrate a Con-

tent Management System to enable publishing news articles related to the UIP

Platform.

• User management: The UIP Web Portal should enable advanced user man-

agement supporting different user roles. Access rights to different UIP Appli-

A.1. UIP WEB PORTAL 143

cations deployed in the UIP Web Portal as well as right to manage other UIP

Web Portal features should be defined.

Figure A.2: UIP Portal – UIP Application management

The above mentioned functional requirements have been addressed by the UIP

Web Portal implementation. This web solution is based on [fleXive] framework

[84]. Figure A.2 shows an example of UIP Web Portal UI. This particular screen

depicts the UIP Application management function. Notice the information about

status of related UIP Server instances. Part of the UIP Web Portal solution is UIP

Server implementation in Java, that enables running UIP Applications in multiple

instances. This solution is even capable of running UIP Server instances simulta-

neously.

It is subject of the future work to perform usability evaluation of the UIP Web

Portal. Part of the documentation described in [5] is a user guide. The UIP Web

Portal solution could also serve as the basis for UIP Platform transition into the

cloud.

144 APPENDIX A. TOOLS FOR DEVELOPMENT SUPPORT

A.2 UIP Visual Editor

The basic information about the UIP Visual Editor has been already described in

section 4.2. The UIP Visual Editor has been developed as part of a Master’s Thesis,

see [42] (advised by this dissertation thesis author). The aim of this development

tool was to simplify work with UIP Applications.

UIP Visual Editor development was based principles of the User Centered Design

(UCD) [2]. The target user audience are developers that are familiar with the basic

concepts behind the UIP Platform like the concepts of Abstract User Interface

(AUI), Concrete User Interface (CUI) and CM. We also expect our users to be

familiar with the Context-sensitive Automatic Concrete User Interface Generation

Pipeline. On the other hand, target users (developers) do not need to deal with

implementation details behind the UIP Platform.

Figure A.3 shows low-fidelity prototype of the UIP Visual Editor. For purposes

of AUI creation and editing, the UIP Visual Editor uses graphical representations

of elements that shows their abstract manner. Graphical representation of AUI

Elements was created to clearly represent an abstract element (e.g. one-from-N

selection) but not to evoke a corresponding CUI representation (e.g. combo-box).

Figure A.4 illustrates the evolution of the low-fidelity prototype of the UIP Visual

Editor, in this case a window for editing element properties.

Figure A.5 shows an example of an AUI visualized by the AUI visual editor.

The representation of the AUI elements depends on the context, and is a result of

Figure A.3: Low-Fidelity prototype of UIP Visual Editor, from [42]

A.2. UIP VISUAL EDITOR 145

Figure A.4: Evolution of property window of the Low-Fidelity prototype of the UIP
Visual Editor, from [42]

Figure A.5: UIP Visual Editor – editing AUI

146 APPENDIX A. TOOLS FOR DEVELOPMENT SUPPORT

the UI generation. Note that the visualization of individual elements is rendered

in a context-independent way. AUI elements are very general – display, input and

trigger. The final representation of these elements can be affected by restriction

properties, e.g. the set of possible values. For example, there are only two possible

values for gender – male and female. Note the different visualization of such an

abstract element in the AUI visual editor.

Figure A.6 shows deployment of a UIP Application from UIP Visual Editor using

the above described UIP Web Portal. The automated deployment should further

simplify the UIP Platform development and bring synergy of the combination of the

UIP Visual Editor and the UIP Web Portal.

A.2.1 UIP Visual Editor Evaluation

The UIP Visual Editor has been evaluated using the cognitive walkthrough method

[112]. The evaluation covered eleven basic editor use-cases, including Creation of a

UIP Project, Reordering of Elements in a CUI, Binding Element Properties, Setup

of the Label of an AUI Element, and Deploy to the UIP Portal.

As an outcome, the evaluation discovered potentially severe issues regarding

developer with little familiarity with the UIP Platform. The level of abstraction

of AUI Elements could still be rather low to isolate developers from the actual

source-code representation in the UIP AUI Format.

It is subject of the future work to preform complex usability evaluation of both,

the UIP Visual Editor and UIP Portal using the corresponding target user audience.

Figure A.6: Deployment of aUIP Application from the UIP Visual Editor, from [42]

Appendix B

Source Code Examples

B.1 UIP AUI Example

1 <XML header>

2 <interfaces>

3 <interface class="cz.ctu.hvac_example.root">

4 <label>

5 <property name="title" value="Home Heating Control">

6 </label>

7 <container>

8 <label>

9 <property name="title" value="Select Room">

10 </label>

11 <element>

12 <label>

13 <property name="title" value="OK">

14 </label>

15 <behaviors>

16 <behavior trigger="action" action="home.temperature.confirm" />

17 </behaviors>

18 </element>

19 </container>

20 <container>

21 <label>

22 <property name="title" value="Set Room Temperature">

23 </label>

24 <element class="public.input">

25 <label>

26 <property name="title" value="Temperature">

27 </label>

28 </element>

29 <element class="public.trigger">

30 <label>

31 <property name="title" value="OK">

32 </label>

33 <behaviors>

34 <behavior trigger="action" action="home.temperature.confirm" />

35 </behaviors>

36 </element>

37 </container>

38 </interface>

39 </interfaces>

Listing B.1: Structure of AUI

147

148 APPENDIX B. SOURCE CODE EXAMPLES

B.2 Context model properties

Following tables B.1 and B.2 illustrate Context Model (CM) parameters that were

used for realization of examples described in chapters 7 - 9. Sets of parameters

represented in the tables bellow were inspired by [103] (User Model). During the

development, some parameters (e.g. key size – element spacing) ware also added to

meet requirements of a particular application use-case.

B.2.1 Device model

Property Example value Description

id cz.ctu.uip.client

.wpf.desktop

UIP Client identifier.

line width 2 px Minimal absolute line width a typical user

can recognize.

target size 150x50 px Minimal absolute target size a typical user

can use.

font height 12 px Minimal absolute font size a typical user can

recognize.

sound volume 60 Minimal absolute sound volume a typical

user can recognize.

speech volume 70 Minimal absolute speech volume a typical

user can recognize.

key size 8 px Minimal absolute key size – minimal spacing

between UI elements.

contrast 0.5 Minimal absolute contrast a typical user can

use (in client device units).

brightness 0.8 Minimal absolute brightness a typical user

can use (in client device units).

key press time 0.2 s Minimal duration of key press that is recog-

nized as positive input (for a typical user).

maximum contrast 1.0 Maximum contrast value the UIP Client de-

vice can provide.

maximum brightness 1.0 Maximum brightness value the UIP Client

device can provide.

B.2. CONTEXT MODEL PROPERTIES 149

maximum volume 255 Maximum volume value the UIP Client de-

vice can provide.

minimal user height 0 cm Minimal user height to interact with the UIP

client device.

v screen width 1024 px Current screen width.

screen height 768 px Current screen height.

screen dpi 150 Current screen dpi.

supported elements public.input.text,

public.trigger

List of supported UIP CUI elements.

is touchscreen false Specifies whether the device is touchscreen.

is multitouch false Specifies whether the device support multi-

touch.

has keyboard false Specifies whether the device physical key-

board.

has mouse true Specifies whether the device physical mouse

or similar input device.

Table B.1: Device model properties

B.2.2 User model

Property Example value Description

id u003 User unique identifier.

line width 1.2 Minimal relative line width the related user

can recognize.

target size 1.5 Minimal relative target size the related user

can use.

font height 1.5 Minimal relative font size the related user can

recognize.

sound volume 1.0 Minimal relative sound volume the related

user can recognize.

speech volume 1.0 Minimal relative speech volume the related

user can recognize.

150 APPENDIX B. SOURCE CODE EXAMPLES

key size 1.0 Minimal relative key size – minimal spacing

between UI elements.

contrast 1.2 Minimal relative contrast the related user

can use (in client device units).

brightness 0.8 Minimal relative brightness the related user

can use (in client device units).

key press time 2.3 Minimal relative duration of key press that

is recognized as positive input.

one hand false Represents whether can only use one hand

for interaction.

no hand false Represents whether can not use any hand for

interaction.

blind false Represents whether user is blind.

body height 168 cm Represents user height.

in wheelchair false Refers to whether user is in wheelchair.

info text 0.9 Text representation quotient (0.0 - impossi-

ble, 1 - no problem).

info picture 0.7 Graphics representation quotient (0.0 - im-

possible, 1 - no problem).

info colors 0.7 Color representation quotient (0.0 - impossi-

ble, 1 - no problem).

info sound 0.5 Sound representation quotient (0.0 - impos-

sible, 1 - no problem).

info speech 0.5 Speech representation quotient (0.0 - impos-

sible, 1 - no problem).

info simple haptic 0.5 Haptic representation quotient (0.0 - impos-

sible, 1 - no problem).

info braile code 0.0 Brail code representation quotient (0.0 - im-

possible, 1 - no problem).

ic quocient 0.7 Information complexity quotient. Refers to

how complex information can user under-

stand.

B.2. CONTEXT MODEL PROPERTIES 151

language.cs 1.0 Language knowledge quotient – Czech lan-

guage (0.0 - no knowledge, 1.0 - prefect

knowledge).

language.en 0.40 Language knowledge quotient – English lan-

guage (0.0 - no knowledge, 1.0 - prefect

knowledge).

language.de 0.25 Language knowledge quotient – German lan-

guage (0.0 - no knowledge, 1.0 - prefect

knowledge).

language.fr 0.20 Language knowledge quotient – French lan-

guage (0.0 - no knowledge, 1.0 - prefect

knowledge).

Table B.2: User model properties

	List of abbreviations
	Introduction
	Motivation
	Dissertation thesis objectives
	Structure of this thesis

	Background and Related Work
	User Interface generation approaches
	Input for automatic UI Generation
	UI description languages and UI delivery
	Context model
	Automatic UI evaluation
	Conclusion

	UI Description and Delivery
	UIP Platform
	UIP clients
	Common UIP Client Core
	UIP Client Event Protocol Communicator

	UIP Client Platform Extensions

	UIP Server
	Event Handling API
	UIP Application

	Conclusion and Contribution

	Input for User Interface generation
	Abstract User Interface
	UIP visual editor
	Application audit and AUI transformation
	Transformation of specific input models
	Universal Remote Console Sockets
	OpenHAB

	Conclusion and Contribution

	Context Model
	UIP Context Model
	Device Model
	User Model
	Environment Model
	Assistive Technology Model
	Computation of final context model property values

	Context sensors
	Conclusion and Contribution

	User Interface Generation and Optimization
	CUI optimization
	Optimisation heuristics
	Templates

	CUI Generation Process
	Conclusion and Contribution

	Source-code audit based UIs
	Application source code audit
	Resulting UIs
	Conclusions an Contribution

	Application: Indoor navigation for users with limited navigation and orientation abilities
	Navigation system design
	Smart kiosk
	Interactive tactile map
	Simple navigation terminal

	SW and HW Architecture
	Conclusion and Contribution

	Other applications
	E-governance
	GraFooSha: Food Sharing for senior users
	Technical realization

	Conclusion and Contribution

	Evaluation
	Evaluation of context model adaptions
	Evaluation of perceived quality of generated UIs
	Development and Maintenance Efforts
	Evaluation of network transfer protocol
	Conclusion

	Conclusions and Future Work
	Future Work

	Tools for development support
	UIP Web Portal
	UIP Visual Editor
	UIP Visual Editor Evaluation
	Source Code Examples
	UIP AUI Example
	Context model properties
	Device model
	User model

