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Abstrakt

Mnoho studií prokázalo, že vzorce lidského pohybu mají vysoký stupeň jak
prostorové, tak i časové pravidelnosti. Tento fakt nás ujišťuje, že je možné
vytvořit model lidského chování pro extrakci vzorů chování a predikci pohybu.
Detektivové vybaveni těmito modely budou schopní odhalit potenciální hrozby
rychleji, stejně jako automaticky odhalit podezřelé chování sledovaných osob.

Implementovali jsme aplikaci umožňující detekci důležitých míst pro jed-
notlivce s následnou možností predikce pohybu mezi těmito místy jen z osobní
historie polohy. Pro detekci důležitých míst byl navržen nový algoritmus Ag-
arClust. Na predikci pohybu byl použit model založnený na rekurentní neur-
onové síti, Neural Turing Machine. Ukázali jsme, že prediktor založený na
NTM je schopný modelovat mnohé vzorce pohybu s přesnosí blížící se max-
imální prediktabilitě. Vytvořená aplikace pomůže zefektivnit práci detektívů
Policie České Republiky pri analýze dat o sledovaných osobách.

Klíčová slova Predikce mobility, Neural Turing Machine, Rekurentní neur-
onové sítě, Detekce zajímavých míst, DBSCAN, LDBSCAN

ix



Abstract

Many studies have shown that human mobility patterns have a high degree
of both spatial and temporal regularity. This fact assures us that it is possible
to create a model of human behaviour for mobility pattern extraction and
location prediction. Detectives empowered with such models will be able to
detect potential threats faster as well as detect suspicious behaviour of suspects
automatically.

We have implemented application for personally important place detection
as well as mobility prediction just from personal location history. For place
detection new algorithm AgarClust has been proposed. Sequence learning
potential of recurrent neural networks has been used for mobility prediction.
We implemented and used Neural Turing Machine to model person‘s behaviour
and to predict his future locations. We showed that NTM predictor is able
to model many mobility patterns with accuracy almost equal to maximum
predictability. Created application will help detectives within Police of the
Czech Republic to notice threats faster and make their work more efficient.

Keywords Mobility prediction, Neural Turing Machine, Recurrent neural
networks, Important place detection, DBSCAN, LDBSCAN
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Introduction

Motivation and objectives

There are not many applications on the market that can be used for personal
behaviour analysis and we did not find any that provide ability to predict per-
son‘s future locations automatically. Potential existence of such application
can simplify and speed up work of detectives when trying to understand be-
haviour patterns of a suspect. We think creating such application is possible
as movement of almost every person is regular to some degree, what means
that this movement can be predicted. Gonzales in his work studied people
movements, based on a sample of 100000 individuals over a six-month time
period and showed that human mobility patterns have a high degree of both,
spatial and temporal regularity [1]. From one‘s position history we can calcu-
late degree of regularity and derive upper-bound for prediction accuracy [2].
There are also many studies showing that person mobility patterns are also
centered around a small number of locations such as home, work, favourite bar
or shop and so on. With this in mind we can imagine many applications of this
prediction in various used-centered or crowd-centered applications. In our case
we will try to use these predictions to model standard behaviour of suspects
and extract places that are visited often or repeatedly as well as identify places
which do not follow suspect‘s standard life cycle. These models will be used by
detectives who will be able to understand suspect‘s behaviour patterns better
and faster.

Problem definition

Our goal is to design, implement and test algorithms that are able to create
easily understandable person‘s behaviour model from GPS and GSM-based
location history. We need to be able to process data very sparse in time, inac-
curate and noisy. Created software should also be as autonomous as possible
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Introduction

and should be able to predict person‘s future locations based only on location
history.

Proposed solution

As we are interested in person‘s model that can be easily interpreted and
understood by detectives we will first identify person‘s important places or
points of interests as well as detect noise in data. Preprocessed locations will
be used to create one‘s behaviour model. The model will be used for prediction
as well as finding person‘s behaviour patterns.

Organisation of the thesis

The thesis is structured as follows: First a state-of-the-art methods for person-
ally important place mining and sequence learning are summarized in Chapter 1
together with quick analysis of solutions currently available for similar pur-
pose as ours. In the next chapter both place detection methods and mobility
prediction methods are proposed. Their implementation details and proof of
concepts are in Chapter 3. Chapter 4 contains experiments done, together
with performance evaluations of all proposed methods.
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Chapter 1

Background and analysis

1.1 State-of-the-art

In the next section we will look at related work in field of personally important
place mining and human location prediction.

1.1.1 Personally important place mining

In mining important places there can be recognised two main families of meth-
ods. The first are geometry-based methods that use location data such as data
from GPS, GSM or other sources as an input and produce coordinates, poly-
gons or circles describing the significant places. On the other hand, fingerprint-
based methods works with list of places where person was, but without no dir-
ect information about geographical location of these places. As we are going
to work with people‘s location history in terms of GPS and GSM location we
will now focus only on geometry-based methods.

1.1.1.1 Geometry-based methods

As mentioned before, geometry-based methods process data with exact loca-
tion and time. This data may be obtained from various sources, which may
significantly differ in accuracy. Quality of input data in terms of both spatial
accuracy and time regularity is the most important factor when deciding what
method to use for important places discovery.

One of the first works on important place extraction was Marmasse and
Schmandt‘s system comMotion [3]. The system extracted indicated important
place when the GPS signal was lost, because it should indicate that person is
inside of a building. This approach cannot identify significant places that are
outdoor (e.g. parks, stadiums). Another disadvantage of the method is that
it is prone to produce false important places when signal is lost in a city as
a result of street canyon effect. It also assumes that we do have information
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1. Background and analysis

about GPS signal strength and is unusable for data from other location data
sources as it is dependant on properties of GPS satellite signals.

Another popular approach to the problem is to detect stay points from
the data as a point or a region where the person stays for a specified amount
of time. Various clustering methods are used on such stay points in order to
detect important places. For example Ashbrook and Starner [4] used variant
of well known k-means algorithm. The basic idea is to take a point and a
radius. All points within the radius are marked and mean of the points is
found. The mean becomes a new center point and the process is repeated
until the mean stops changing. When it no longer moves, all points within
its radius are marked as one cluster (important place) and they are removed
from consideration in next iterations. The procedure repeats until there are
no points left.

Density based clustering approaches are also very popular. DBSCAN was
used by Ester, Kriegel and Xu in [5]. DBSCAN algorithm starts with an arbit-
rary point and retrieves all points within chosen region ε. If number of these
points is sufficiently large with regard to other parameter which defines min-
imum points in one cluster, a cluster is started. All unvisited cluster point‘s ε-
neighbours are then checked for number of points until the whole dense cluster
is found. If number of points in ε-neighbourhood is smaller than minimum
points in cluster the point is marked as noise. The main advantage of this
approach is noise detection. On the other hand it is very sensitive to chosen
parameter values and it can be unusable for larger data sets. However, there
are many variations of DBSCAN which improves its worst case complexity.

Another variant of density based clustering algorithm used for spatial data
clustering is DJ-Cluster, method proposed by Zhou [6]. This method is one
of the attempts to overcome performance problems of DBSCAN. Basic idea of
DJ-Cluster is similar to DBSCAN. Neighbourhood is calculated for each point
as points within distance ε, under the condition that there are more points
than minpoints parameter. If no such neighbourhood is found, the point is
labeled as noise. Otherwise the points are created as a new cluster or joined
with an existing cluster if any of neighbours is in existing cluster.

A bit different view of the problem was introduced recently by Pavan and
his collaborators in [7]. For each important place they define three basic fea-
tures as mapping from stay points. Area of important place is value which
indicates the diagonal extension of the rectangular region that spans over all
points from which stay point was created. Intensity is value which describes
how many times person‘s position has been detected inside position area. Fi-
nally the feature frequency indicates how many times the person came back
for another visit in that location. These three features are used to find the
most important places for person.

All of the approaches using stay points clustering make one important
hidden assumption about the input data. Stay points are series of measured
points when person‘s position does not change within some region for a spe-
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1.2. Clustering methods for place detection

cified amount of time. In other words stay points are points when person‘s
speed is very small or zero in perfect case. To calculate person‘s speed with
reasonable accuracy we need input data that are accurate and the measure-
ments need to be taken very frequently. If we cannot make these assumptions
about the input data, previous approaches could fail.

1.1.2 Person movement prediction

There are many previous works that have discussed the problem of predicting
personal mobility. We will focus on the personalized methods that look on
every person independently.

Most of these works use Hidden Markov Models or some of its derivation
for prediction. Work [8] shows that sequences of important places for person
are Markovian once the data is clustered by the day of the week and time of the
day. They used Hidden Markov Models for prediction in a way that the time
has been observed dimension and for every important place there have been
state defined, with one extra state defined as unknown position. Prediction is
done by use of Viterbi‘s algorithm to define most likely sequence of states.

Similar approach have been taken by Yang, Zheng and Chen in [9]. They
introduce variable order Markov Model which should be accurate as N-order
Markov Model but without performance issues related with it.

These models assume that person does not change his movement patterns
over time. However, it is clear that this assumption is not valid as person
patterns vary over time significantly. People change their jobs, relationship
statuses or even housings or just change patterns temporarily, for example
for holidays or when sick. To address this issue usage of sliding window for
learning was proposed in [10].

1.2 Clustering methods for place detection

In the next section we describe known clustering methods that will be imple-
mented for important place detection in our system.

1.2.1 DBSCAN

DBSCAN is well known density based clustering algorithm proposed by Ester
in [5]. This algorithm was designed to cluster data of arbitrary shapes in the
presence of noise. Main idea of DBSCAN is that for each object in the cluster
the neighborhood of given radius has to contain at least some given number
of objects. The only two parameters of this algorithm are then radius ε and
minimum number of points in neighborhood MinPts.

The complexity of DBSCAN is O(n2) if we do not use any accelerating
index structure that is able to accelerate query on all points within radius.
With this optimization we can achieve runtime complexity of O(nlogn).
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1. Background and analysis

1.2.2 LDBSCAN

LDBSCAN is density-based clustering algorithm proposed in [11]. It is similar
to DBSCAN but is able to cope with uneven density distribution in data space.
We do not set overall threshold density for the whole data space. This threshold
is in LDBSCAN dynamic with regards to local density. It takes advantage of
the local outlier factor metrics proposed in [12] for noise detection.

1.3 Recurrent neural networks for sequence
learning

Recurrent neural networks are able to model sequences very accurately and are
able to learn and carry out very difficult data transformations over extended
periods of time as they have ability to remember and process past information.
Moreover, it is known that recurrent neural networks are Turing-Complete [13].
Despite these facts recurrent neural networks failed to become commonly used
tool for sequence learning tasks due to the problems with efficient training.
Recent studies show that with correctly defined models and carefully chosen
optimization methods it is not impossible.

In [14] Alex Graves successfully used recurrent neural networks for both
prediction of discrete sequential data (text prediction) and prediction of real-
valued sequential data (handwriting prediction). For text prediction he used
LSTM [15] trained with back-propagation through time algorithm.

Graves, Wayne and Danihelka later introduced model called Neural Turing
Machine in [16]. Neural Turing Machine is recurrent neural network with
architecture inspired by both Turing Machine and Von Neumann computer
architecture. All of its parts are differentiable so it can be efficiently trained
with gradient descent. First results show that Neural Turing Machine is able
to infer simple algorithms such as copying, sorting or associative recall just
from input and output examples.

Neural Turing Machine contains two basic components: controller and
memory. Figure 1.1 shows how the controller is connected to memory. Input
to the controller is external input from user and data read from memory from
previous step. In every update cycle controller transforms input to external
output for user and updates the memory.
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1.4. Analysis of current solutions

Figure 1.1: Neural Turing Machine high level architecture. During
every update cycle the controller transforms data from input and data read
from memory to output and memory update which is applied to memory af-
terwards.

The ability to remember data and to have dynamic state is the main at-
tribute of recurrent neural networks. In Neural Turing Machine this ability
is implemented with memory matrix with selective read and write operations.
Basic overview of this implementation is shown on figure 1.2. Memory bank
is matrix N ×M where N is number of memory cells and M is size of cell,
therefore memory cell is a vector. Every head is only an encapsulation of one
part of controller output. For every head there are three vectors defined: add
vector of size M , erase vector of size M and addressing vector. During every
update cycle controller produces output which is interpreted as setting of one
or more heads. For every head, addressing vector is calculated from head set-
tings, addressing vector in last step and memory content. Addressing vector
defines which memory cells will be read and updated. What will be read is
defined only by memory content and what will be written to memory is defined
by erase and add vector. Notice that every part of the Neural Turing Machine
including addressing mechanism have to be differentiable. For more detailed
description of Neural Turing Machine refer to [16].

1.4 Analysis of current solutions

There are not many applications on the market that can be used for personal
behaviour analysis and we did not find any that provide ability to predict
person‘s future locations automatically.

GeoTime5 [17] is one of the few in this area. It is great at integrating
location data about a person from different sources like GPS logs, GSM cell
records or even social networks. The main drawback of this solution is that
it does not provide any automatic behaviour analysis, just extensive visual-
izations of data. Invalid (noise) point detection is done manually based just
on map visualizations what can be overwhelming with large low quality data
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1. Background and analysis

Figure 1.2: Neural Turing Machine memory architecture. During every
update cycle the controller produces output which is interpreted as setting of
one or more heads. For every head addressing vector is calculated from head
settings, addressing vector in last step and memory content. This addressing
vector defines which memory cells will be read and updated. What will be
read is defined only by memory content and what will be written to memory
is defined by erase and add vector.

sets. One of the automated features is so called detection of stationary events.
Besides that, it provides many options of data visualization and reporting.

Another similar application is TrackerPAL [18] from TrackGroup company.
It has very similar features like GeoTime5 but it works only with their propri-
etary tracking devices. This fact makes this solution unusable for our case.

For location data visualization almost any GIS software could be used.
One for them is QGis [19]. It is great open source software for visualizations
on map and for creating custom maps but it lacks any feature for automated
behaviour analysis.
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Chapter 2

Proposed solution

The main goal of this work is to implement system for human mobility predic-
tion using sparse data about person‘s location with variable accuracy. Created
model should be easily interpretable and as autonomous as possible. As shown
in previous chapter, there is no application on the market that could achieve
this goal currently. Our approach to this problem is to detect important places
for a person and model standard person‘s movement between them. The model
is then used for mobility prediction. Every feature will be available through
simple user interface with comprehensive visualization of results.

2.1 Important places detection

If we do not want to predict exact locations in terms of latitude and longitude,
we need to divide all possible locations to places with some meaning for the
person. It is not an easy task to exactly define what is an important place and
what is just movement between the places or noise.

Firstly we need to define what is a place. Place can be defined as area
with exactly defined boundaries. For every location we are able to define if
it belongs to the place. Area of these places can vary and large places can
usually be divided into smaller places. Example of the large place can be a
country. The country can be divided to districts, districts to departments,
departments to cities and so on up to really small places like one house that
can be split even more to rooms. The lower bound of precision we can use is
given by accuracy of input data spatial component.

From all places visited by a person we need to choose only important ones.
Place importance can be derived from the time component of the data. For
each place we can tell approximate total stay time but also other features
like visit frequency and regularity. Example of places visited regularly and
frequently can be work, school or home.

All points that do not belong to any important place are marked as noise
points. These points are typically movements between important places. For
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2. Proposed solution

the prediction purposes we will try to minimize count of these points as these
points in discrete prediction means that we do not really know where the
monitored person is.

In following sections we will describe algorithms implemented for important
places detection in our system. The main requirements for such algorithms are:

• Ability to detect places of arbitrary shapes

• Noise detection capability

• Automatic detection of places count

We can notice two main groups of these algorithms which differ in input data.
The first group takes only set of geographic positions with timestamp. The
second group needs for each position also stay time in the position.

2.1.1 Definitions

In the next section we will define some basic concepts used in important place
detection algorithms. Location is geographic position defined by latitude and
longitude. Point is location with timestamp. It is a triplet containing latitude,
longitude and timestamp. Point with stay time is a quadruplet which contains
latitude, longitude, timestamp and stay duration in the point. Place is a set
of points.

Equirectangular distance has been used for distance calculation between
two points. We can see from algorithm 1 that it is just Pythagoras’ theorem
used on equirectangular projection. We chose this method because it is much
faster than other methods like great-circle distance or spherical law of cosines
with acceptable decrease of accuracy.

Algorithm 1: Equirectangular distance calculation
input : Two geographic locations a and b
output: Distance between a and b

1 function EquirectangularDistance(Location a, Location b)
2 R← Earth radius
3 x← (a.lon− b.lon) ∗ cos(a.lat−b.lat2 )
4 y ← (a.lat− b.lat)
5 return

√
x2 + y2 ∗R

2.1.2 Weighted DBSCAN

We slightly modified DBSCAN algorithm for important place detection. The
main difference is that there is point‘s weight defined on the input as stay
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2.1. Important places detection

time in the point. The consequence is that in weighted DBSCAN we are
counting total stay time of all points in given radius instead of total number
of points. MinPts parameter then changed to MinTime. Unlike original
DBSCAN algorithm this version should be able to deal with data gathered
with unstable sampling frequency. The other advantage of this method over
standard DBSCAN is that parameter MinTime can be interpreted easier as
minimal time spent in some area needed for marking that area as a place.

2.1.3 AgarClust

Apart from DBSCAN and WDBSCAN we defined our own method for import-
ant place detection. AgarClust is iterative method meeting the requirements
defined in previous section. The algorithm is based on moving and merging
of Agar places. Agar place is set of points from input with one well defined
position and weight. Position of a place can be anywhere, not necessarily on
position of some input point. Weight of the place is simply the sum of ap-
proximate stay times of all points in place. The first step is to define Agar
place for every input point with position defined by the point. Then iterations
take place. One iteration of AgarClust consists of two steps. The first step
is place merging. For every place we find all other places with distance from
reference smaller than merge radius. New merged place has position of place
with the largest weight and contains all points of merged places. The second
step is place movement. For every place we calculate the force vector which
is equal to the sum of all interactions between places. Every two places with
distance smaller than max field range parameter interact. The magnitude of
interaction force vector is equal to

F (p1, p2) =
wp1 ∗ wp2
d(p1, p2)2

(2.1)

where wp is weight of a place and the force direction is simply heading from
one place to the other. Every two places are attracted to each other. When all
of the forces are calculated we can apply them to places. Every place changes
its position according to formula

∆L =
F ∗ ε
wp3

(2.2)

where ∆L is place location update vector. These steps are repeated until there
is no interaction between places. Resulting places are then filtered according
to their weight. All places with weight smaller than noise threshold are marked
as noise. Remaining places are important places detected. Main loop is shown
in algorithm 2 and inner methods are shown in algorithm 3.

2.1.4 Hierarchical AgarClust

Hierarchical AgarClust is simple extension of AgarClust algorithm. It was de-
signed for finding places with different areas. It only runs AgarClust clustering
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2. Proposed solution

with different settings of max field range parameter. In first step it runs Ag-
arClust with large max field range parameter to find clusters with large areas.
Then max field range is set to half of its previous value and the AgarClust is
applied recursively on positions of every place found in previous step. This
should find places with smaller area within the larger places. If no place is
found place from previous step is used. If there is one or more place founded we
apply AgarClust again on every place with halved max field range parameter.
When max field range is smaller than minimum field range set the algorithm
ends.

Algorithm 2: AgarClust main loop
input : Set of points D, Merge radius ε, Max field range range, Noise

threshold κ
output: Places found

1 function AgarClust(Set of points D, Distance ε, Distance range,
TimeSpan κ)

2 agarP laces ← Create new agar place for each point in D on its
position

3 repeat
4 forces ← GetForces(agarP laces, range)
5 pointsMoved ← ApplyForces(agarP laces, forces)
6 agarP laces ← MergePlaces(agarP laces)
7 until pointsMoved
8 return agarP laces
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2.1. Important places detection

Algorithm 3: AgarClust inner methods
1 function GetForces(List of agar places agarP laces, Distance range)
2 forces ← empty list
3 foreach p in agarP laces do
4 F ← 0
5 foreach p′ in agarP laces do
6 d ← Distance(p, p′)
7 if p <> p′ AND d ≤ range then
8 d ← Heading(p, p′)
9 m ← p.Weight∗p′.Weight

d2

10 Add new Force with magnitude m in direction d to F

11 Add F to forces

12 return forces

13 function ApplyForces(List of agar places agarP laces, List of forces
forces)

14 pointsMoved ← FALSE
15 foreach p in agarP laces do
16 F ← forces on p ‘s index
17 δ ← F .Magnitude∗STEPSIZE

p.Weight3

18 if δ > 0 then
19 pointsMoved ← TRUE
20 Move p by δ in direction of force F

21 return pointsMoved

22 function MergePlaces(List of agar places agarP laces, Distance ε)
23 mergedP laces ← empty list
24 foreach p in agarP laces do
25 mp ← empty list
26 foreach p′ in agarP laces do
27 if Distance(p, p′ ≤ ε) then
28 Add p′ to mp
29 Remove p′ from agarP laces

30 Add new place to mergedP laces with position equal to position
of place with max weight from mp and all points from all places
in mp

31 return mergedP laces

13



2. Proposed solution

2.2 Mobility prediction

The only input to mobility prediction is person‘s location history. Firstly we
extract important places from the history and then we use preprocessed data
for prediction. The input to mobility prediction methods is then collection of
places in time. The whole process is shown on figure 2.1. We have implemen-
ted two methods for mobility prediction. The first fast, based on K nearest
neighbours and the second using Neural Turing Machine.

Figure 2.1: Mobility prediction process

2.2.1 K nearest neighbours predictor

K nearest neighbours predicts the person‘s position in future time just by
finding similar times in history and using their places as prediction. The main
challenge here is to define what are similar times in history.

Defining distance between two times as the absolute difference between
them is not very suitable in our case as such k-NN predictor would always
predict that person stays in his last known place or few last known places
depending on k chosen.

We need to take advantage of the fact that behaviour of almost everyone
is cyclic. The main cycle is daily cycle. Almost every person sleeps at night,
gets up in the morning and has his own standard daily routine. This daily
routine is often part of the weekly cycle and so on. Some people can have their
own cycles or even live differently every day, but it is not common. Because
of that we define separate features for time in day, day in week and absolute
time. Moreover, to maintain time distances over midnight we map time in a
day to two dimensional vector according to formulas:

x = sin(2π ∗ portionOfDay) (2.3)

y = cos(2π ∗ portionOfDay) (2.4)

As on the clock the distance between 23:00 and 01:00 is same as between
21:00 and 23:00. Using similar principle we encode day in a week so that
distance between every consecutive pair of days is the same. Absolute time
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2.2. Mobility prediction

is normalized to interval from minus one to one, so that the oldest historical
position has absolute time minus one and newest has one.

The distance formula used for comparing times is defined as following.

dα(p, p′) = α
√

(p.x− p′.x)2 + (p.y − p′.y)2 (2.5)

dβ(p, p′) = β
√

(p.v − p′.v)2 + (p.w − p′.w)2 (2.6)

dγ(p, p′) = γ
√

(p.z − p′.z)2 (2.7)

d(p, p′) = dα+ dβ + dγ (2.8)

There are three parameters, time in day importance α, day in week import-
ance β and absolute time importance γ. Optimizing these parameters together
with number of neighbors k for every person independently radically improves
performance of this method. In our implementation we used genetic algorithm
to learn the best parameter settings.

2.2.2 Neural Turing Machine predictor

Neural Turing Machine predictor is based on Neural Turing Machine [16]
trained to predict one‘s position one step after the last position presented
to the network‘s input. This implies that we need to set quantization step in
which historical data will be presented to the network to predict next posi-
tions. The network is trained with back-propagation through time algorithm
with rmsprop weight optimizer. Neural Turing Machine itself has many num-
ber of parameters that significantly change its performance. The parameters
are: size and type of controller network, size of memory and number of heads
used for memory access. The only parameter that is fixed is type of con-
troller network. Our implementation of neural turing machine uses simple
feed-forward neural network with one hidden layer. This simple controller has
been used as more complicated controller networks do not bring significant
performance improvement according to results achieved in [16]. Number of
neurons in that layer as well as other parameters can be set freely.

2.2.3 Input preprocessing

In order to match the prediction with time we need to re-sample the input
sequence to have one predefined sample rate. If we choose sample rate to be 1
hour we will present 24 samples per day to the network and the output place
predicted will be 1 hour after the actual input. In order to produce trustworthy
predictions we need to choose this sample rate wisely with regard to original
input data sample rate. For the re-sampling we use best known current place
method as shown on the figure 2.3.
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Figure 2.2: Neural Turing Machine predictor working schema

Figure 2.3: Best known current place re-sampling method. We can see
that if we choose new sample rate higher than original we are speculating about
points in between original samples (Work at 11:00). On the other hand, if we
choose sample rate lower than original, we lose valuable information (Shop
between 9:00 and 10:00).

We can see that if we choose new sample rate higher than original we
are speculating about points in between original samples which can lead to
untrustworthy predictions. On the other hand, if we choose sample rate lower
than original, we lose valuable information.

Once again, it is very important to choose the new sample rate with regard
to not only the original sample rate but also with other specific details of input
data for example how the data has been gathered. If we used GPS monitoring
unit which produces output only if the person is moving we would be able to
choose higher sample rate even if there were large gaps between samples. In
this case it would mean that person did not change his position and therefore
the last best known position was valid.

On the input we have two pieces of information. Time and position of the
person in terms of place in that time. Good encoding of the input is key to
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the correct network operation. Time is split to two parts, time in a day and
day in a week. The encoding is similar to the one used in KNN predictor. For
the time we therefore have 4 input neurons. The place is encoded as "one-hot"
input vector. That is, in our case that if there are N different places recognised
for the person, and place n is on the input, then nth element of input vector is
set to one and all the other to minus one. To sum up, the input for one step
is vector of length 4 + N where N is number of places that person visited in
the available history. Example of the encoding is shown on figure 2.4.

Figure 2.4: Neural Turing Machine predictor input vector encoding example

2.2.4 Learning

As the Neural Turing Machine is differentiable end to end, it can be effi-
ciently trained by gradient descent. For training we are using method called
back-propagation through time which is generalization of back-propagation
method used for training simple feed-forward networks. As a weight optimiza-
tion method rmsprop is used. Rmsprop is form of stochastic gradient descent
where the gradients are divided by a running average of their recent mag-
nitude. For update equations refer to [14]. The length of sequences presented
to the network in one back-propagation through time training iteration can
be set freely. The sequence length largely affects training speed and memory
consumption. If one uses sequences with length 100 there will be 100 copies of
the network in the memory what can be very limiting.

Data available for network learning are split into training and validation
part. Validation part is taken from the end of the sequence and its length is
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equal to length selected for training sequences. After every n iterations we try
to predict the validation part and save the result. If there is no improvement
on validation part for m iterations, the training is stopped and the machine
with smallest validation error is used for later predictions. This is done to
prevent network over-fitting.

Training recurrent nets can be very difficult without proper weights initial-
ization at the start of learning. Weight initialization can significantly affect
speed of convergence. Without good weight initialization we might also end
up with learning nothing at all. Practically it means that two runs of training
on the same data with the same network settings can end up with significantly
different results. To face this problem we create more random initializations
on the start of training and after every n iterations we discard one with the
worst validation error till we end up with the best initialization found. This
technique decreases variability of learned machines on the end so we end up
with much more stable results.

The last training improvement is preferring to use newer sequences for
learning. The sequence start in the training part of the input data is not taken
from uniform random distribution but from beta distribution with parameters
α = 1.1 and β = 1.0. This setting slightly prefers newer sequences which helps
when dealing with person‘s behaviour changes in the end of training sequence
which leads to better adaptability. See figure 2.5 for comparison of beta dis-
tribution used for selecting learning sequence start with more commonly used
uniform distribution.

Figure 2.5: Comparison of beta and uniform distribution
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2.2. Mobility prediction

2.2.5 Prediction decoding

Neural turing machine used for prediction has number of output neurons equal
to number of possible places. Output value of the nth neuron is considered to
be likelihood of person being in place n. To calculate confidence of being in
that place we simply divide likelihood by the sum of all likelihoods.

Predicting one step in the future is very simple. To predict more steps we
are using values predicted before. If we used the place with highest confidence
as the input for the next step we would end up with totally wrong prediction if
the network was uncertain in the first prediction. To give our predictor better
ability to recover from errors or uncertainties which are natural in human
behaviour we propose algorithm to calculate prediction confidences differently.

The confidence of being in place n in the kth step is defined as weighted
sum of probabilities of all possible paths how person could get to place n.
Calculating all possible paths is unrealistic as the number of paths explodes
with increasing k so we prune the state space and calculate probabilities only
for 100 most probable paths.

2.2.5.1 Prediction decoding example

In the next example we will show how exactly the prediction is calculated
for more than one step to the future with Neural Turing Machine predictor.
Figure 2.6 shows all possible paths for person from its current location to the
third predicted step.

Figure 2.6: Possible paths for person.

Each of this possible paths will bring Neural Turing Machine used for
prediction to different internal state. Different internal state means different
prediction confidences in the next predicted step, therefore, we need to take all
of these possibilities into account. Every path has its probability that is calcu-
lated as joint probability of every step in path. Summing confidences of every
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Path Path probability Step 3 confidence Step 3 probability
Step1 Step2 Total A B C A B C

AA 0.30 0.80 0.24 0.40 0.30 0.30 0.096 0.072 0.072
AB 0.30 0.20 0.06 1.00 0.00 0.00 0.060 0.000 0.000
AC 0.30 0.00 0.00 0.00 1.00 0.00 0.000 0.000 0.000

BA 0.60 0.90 0.54 0.60 0.00 0.40 0.324 0.000 0.216
BB 0.60 0.00 0.00 0.80 0.10 0.10 0.000 0.000 0.000
BC 0.60 0.10 0.06 0.20 0.50 0.30 0.012 0.030 0.018

CA 0.10 0.90 0.09 0.10 0.90 0.00 0.009 0.081 0.000
CB 0.10 0.10 0.01 0.00 0.00 1.00 0.000 0.000 0.010
CC 0.10 0.00 0.00 0.60 0.10 0.30 0.000 0.000 0.000

0.501 0.183 0.316

Table 2.1: Long term prediction example calculation

possible path weighted by probability of the path gives us place confidences
for the next step as shown in table 2.1. Figure 2.7 shows the most probable
path for the person as predicted.

Figure 2.7: Most probable path predicted for the person
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Chapter 3

Implementation and testing

Within the scope of this work we have implemented complete system for be-
haviour analysis of the person. It takes location history as an input and on
the output we have important places for the person and ability to predict his
mobility. The whole system is implemented in C#. The most difficult part was
implementation of Neural Turing Machine library. This library is standalone
and published in GitHub repository github.com/JanTkacik/NTM. In the next
section we will describe its implementation in details.

3.1 Neural turing machine library

Neural turing machine was introduced by Alex Graves, Greg Wayne and Ivo
Danihelka in their work Neural Turing Machines [16]. According to this paper
we have implemented NTM together with learning algorithm. As a controller
we chose feed-forward neural network for its simplicity. Using more complex
controller like LSTM does not bring any significant performance improvement
according to [16]. In our implementation we did not introduce any additional
restrictions on NTM settings. One can choose any size of controller, memory
and any number of heads.

The library is implemented in C# with use of .NET Framework. There are
no other additional dependencies. Every part of NTM has its own class and is
replaceable. It is very easy to make improvements or changes to the library.
The main modules are controller, addressing and memory.

Implementation of controller and memory is straightforward with no
changes compared to what have been proposed in the paper. As mentioned
before we rely on our own implementation of feed-forward neural network as
controller. The more interesting part of implementation is implementation of
addressing mechanism. Overall view of addressing mechanism is on figure 3.1.

As a learning algorithm we chose back-propagation through time with rms-
prop used for weight optimization. In our implementation any weight optimiz-
ation method can be used with back-propagation. Back-propagation through
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3. Implementation and testing

Figure 3.1: Neural Turing Machine addressing mechanism as imple-
mented in NTM library. Content of memory bank, controller output repres-
ented by raw addressing vector and last addressing vector produces addressing
vector for the next step. Convolutional shift implemented allows shifting at
most by one cell.
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time is not very efficient algorithm. For every learning step we need to make
as many copies of underlying NTM as the length of the sequence. Because
of that, learning NTM by using library provided is extremely demanding on
memory. We did not do any optimizations on memory usage so learning large
networks could fail.

We have tested library functionality by implementing learning tasks as
proposed in [16]. We have successfully reproduced results on copy task, repeat
copy task and n-gram task. Implementation of these tests is part of the library.

3.2 Behaviour analysis application

We have implemented software for behaviour analysis of a person. It has been
written in C# with use of .NET Framework. For the GUI we used WPF which
restricts its usage to operating system Windows. This is the only requirement
of the application. Screenshots from the application are in appendix. Its basic
features are:

• Data import from CSV

• Detection of important places for the person

• Ability to examine detected places in detail

• Person mobility prediction

• Map visualizations (Open Street Map)

• Installation and updates through Click-Once technology

3.2.1 Important place detection

All of the proposed methods for place detection are available in GUI. User
can set all of the method parameters freely and experiment with them. Imple-
mentations of DBSCAN, WDBSCAN, LDBSCAN, AgarClust and Hierarch-
ical AgarClust did not require any special libraries. It is very easy to add new
method for important place detection and integrate it with map visualization
environment. User is able to examine details for each cluster detected.

3.2.2 Mobility prediction

For the mobility prediction there are two options available. Fast KNN based
predictor and slower but more accurate NTM predictor. Training of predictors
can take a long time so it runs on background. User can watch predictor
predictions for the validation set. User can again freely set any of the methods
parameters. After the predictor is learned, user can choose number of steps to
predict and show the predictions on heat-map and map.
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3. Implementation and testing

KNN based predictor uses Accord-Framework library for KNN algorithm
implementation as well as genetic algorithm. NTM predictor uses NTM library
described in previous section.
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Chapter 4
Experiments

4.1 Important place detection

To validate proposed important place detection methods and to evaluate their
performance, we have created a dataset containing location history for 6 people
together with manually defined important places for every person. The data
for every person are data taken from android location history service. People
were asked to mark places important for them as polygons on the map with
historical points displayed. Dataset is published on GitHub in repository
github.com/JanTkacik/personal-mobility-dataset.

Performance evaluation of our methods is comparison of two clusterings.
The one detected by the system with the ground truth defined by interviewed
person. As the base evaluation metrics we chose BCubed metrics family pro-
posed by Bagga and Baldwin in [20]. BCubed metrics defines precision and
recall for each point in dataset. The point precision represents how many
points from the same place detected belong to known place defined by inter-
viewed person. Symmetrically, the recall represents how many points from
known place appears in its detected place. For better illustration see figure
4.1. If the point has a high recall we will find most of the points from one
known place in same detected place. On the other hand, if the point has a
high precision there are only a few noisy points in the detected place. Both of
these metrics are important for us because for later movement prediction we
need detected places to be as clean as possible and we also want to cover as
much points from known places as possible.

Another important thing to notice is that we assume that interviewed per-
son does not remember every place visited but the places marked are marked
correctly. This is the reason why we cannot measure quality of noise detection
but only precision and recall of place detection. When calculating BCubed
metrics we omit points that are not in any known polygon and points marked
as noise by place detection algorithm.

As mentioned before, people tend to spend most of their time in a few
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(a) Precision (b) Recall

Figure 4.1: Example calculation of BCubed precision and recall for one point.

places. This fact causes that using just BCubed metrics is insufficient as the
difference between two place detections, one with only a few most frequent
places detected correctly and the other with all places detected correctly will
be very small. To face this issue we define mapping between places defined by
interviewed person and detected places based on BCubed F-Score. For every
place defined by interviewed person we chose zero or one place from detected
places and vice versa. If there are no matching places detected it means that all
points of place in one clustering are defined as noise in the other. In table 4.1
there are defined all possible mapping cardinalities and their interpretations in
place detection performance evaluation context. Please notice that we are not
able to recognise invalid places detected as we assume that interviewed people
did not remember all of the places.

We further defined known places detection precision as

Precision =
3 ∗ Correct+ 2 ∗ Split+ 1 ∗Merged

3 ∗Marked
(4.1)

This measure is invariant to point count distribution between places. It
prefers split places over merged as for prediction purposes it is better to have
place split than merged. If the place is split we can recognize it later and
merge the places but we are not able to split merged place. Parameters of all
proposed methods for place detection have been optimized by particle swarm
optimization method with fitness function defined as average of BCubed F-
Score and known places detection precision for all people in dataset. We did
not optimize parameters for every person separately as we want to find settings
that will work well for many people. Overall results are shown in tables 4.2
and 4.3.
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(a) Correct (b) Split

(c) Merged (d) Mixed

(e) Not Found

Figure 4.2: Place matching possibilities visualization. Red places are
defined by person, blue are detected by the system.
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Manually defined
places count

Detected
places count Interpretation Figure

Correct 1 1 Correctly found
place 4.2a

Split 1 2+
One place
detected as two
or more

4.2b

Merged 2+ 1
Two or more
places detected as
one

4.2c

Mixed 2+ 2+ 4.2d

Not Found 1 0
Two or more
places detected as
one

4.2e

Table 4.1: Place matching possibilities

Figure 4.3: Overall place detection performance - BCubed metrics
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Person Correct Split Merged Mixed Not
found

Accur-
acy

DBSCAN

A 23 3 0 0 0 0.962
B 16 0 0 0 0 1.000
C 10 1 2 0 0 0.872
D 3 1 0 0 0 0.917
E 13 3 0 0 0 0.938
F 14 5 2 0 0 0.857

WDBSCAN

A 23 3 0 0 0 0.962
B 16 0 0 0 0 1.000
C 10 1 2 0 0 0.872
D 3 1 0 0 0 0.917
E 13 3 0 0 0 0.938
F 14 5 2 0 0 0.857

LDBSCAN

A 3 1 18 0 4 0.439
B 2 2 12 0 0 0.458
C 7 2 0 0 4 0.926
D 4 0 0 0 0 1.000
E 3 0 11 0 2 0.476
F 5 0 15 0 1 0.500

AgarClust

A 24 2 0 0 0 0.974
B 14 2 0 0 0 0.958
C 12 1 0 0 0 0.974
D 3 1 0 0 0 0.917
E 13 3 0 0 0 0.938
F 18 3 0 0 0 0.952

Hierarchical
AgarClust

A 25 1 0 0 0 0.987
B 15 1 0 0 0 0.979
C 9 2 2 0 0 0.846
D 3 1 0 0 0 0.917
E 13 3 0 0 0 0.938
F 18 3 0 0 0 0.952

Table 4.2: Overall place detection performance - place matching metrics
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Person Precision Recall FScore

DBSCAN

A 0.918 0.978 0.947
B 0.972 1.000 0.986
C 0.949 0.998 0.973
D 0.992 0.981 0.987
E 0.988 0.992 0.990
F 0.914 0.991 0.951

Average 0.956 0.990 0.972

WDBSCAN

A 0.918 0.978 0.947
B 0.972 1.000 0.986
C 0.949 0.998 0.973
D 0.992 0.981 0.987
E 0.988 0.992 0.990
F 0.914 0.991 0.951

Average 0.956 0.990 0.972

LDBSCAN

A 0.872 0.948 0.909
B 0.794 0.570 0.664
C 0.929 0.853 0.889
D 0.919 0.856 0.887
E 0.962 0.989 0.975
F 0.914 0.940 0.926

Average 0.898 0.859 0.875

AgarClust

A 0.926 0.982 0.954
B 0.991 0.923 0.956
C 0.983 0.998 0.990
D 0.992 0.981 0.987
E 0.992 0.988 0.990
F 0.992 0.992 0.992

Average 0.979 0.977 0.978

Hierarchical
AgarClust

A 0.925 0.980 0.952
B 0.987 0.976 0.981
C 0.950 0.997 0.973
D 0.992 0.981 0.987
E 0.993 0.990 0.992
F 0.991 0.994 0.992

Average 0.973 0.986 0.979

Table 4.3: Overall place detection performance - BCubed metrics
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We can see that there is no difference between DBSCAN and WDBSCAN
as in our dataset most of the data are sampled regularly. WDBSCAN per-
forms better only when there is irregular time interval between samples and
the samples are frequent enough so that we can approximate stay time in point
better. Both of these methods perform very well overall. We can notice that
almost all points that were marked by interviewed person were part of the
some detected place but the places are more noisy than the places detected
by AgarClust method. AgarClust method have similar overall performance as
(W)DBSCAN and there is no noticeable tendency to merge places together
and detect them as one. Hierarchical AgarClust did not bring any significant
improvement over more simple AgarClust method. Result of Hierarchical Ag-
arClust method together with LDBSCAN method proved that (W)DBSCAN
and AgarClust are able to detect places of variable sizes without any modific-
ations.

4.2 Movement prediction

Movement prediction was tested and evaluated on two different dataset. First
dataset contains movement history of ideal artificial people. We created this
dataset to test basic capabilities of our predictive models. Second dataset is
data as described in previous section. This dataset should show us predictive
power of our model on real world data as well as global performance of proposed
system.

4.2.1 Performance testing details

To measure performance for each person we reserved last week for testing pur-
poses. Predictors were learned on the remaining historical data. We used 1
hour sample rate. After learning predictors, we have simulated the following
scenario. Every hour prediction is made for the next 24 hours, correct new
point is saved to the predictor and the next 24 hours are predicted. This scen-
ario should simulate one week of predictor usage without additional training
but with new correct data gathered from the input system. The result is 144
measurements of prediction accuracy each for 24 hours.

We have defined following performance measures. AccSoft@n defines soft
accuracy of prediction on the nth predicted step. AccBest@n defines average
number of matches between real true place of person and the predicted place
with best confidence on the nth step. Example calculation is shown in table
4.4.
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Step 1 Step 2 Step 3
A B C A B C A B C

Truth 1 0 0 1 0 0 0 0 1
Prediction 0.8 0.1 0.1 0.4 0.6 0.0 0.3 0.3 0.4
AccSoft@n 0.8 0.4 0.4
AccBest@n 1 0 1

Table 4.4: Example calculation of AccSoft@n and AccBest@n

AccSoft(n) defines average soft accuracy of prediction through n steps and
AccBest(n) defines average number of matches between real location of person
and the predicted place with best confidence through n steps.

AccSoft(n) =
n∑

i=1

AccSoft@i

n
(4.2)

BestSoft(n) =
n∑

i=1

AccBest@i

n
(4.3)

4.2.1.1 NTM predictor parameters

NTM predictor has 4 basic parameters that can affect its performance (control-
ler size, memory width, memory length and number of heads). Rmsprop used
for its weight optimization has another parameters that affect learning and
another important parameter is sequence length that will be used in learn-
ing process. Moreover two runs with completely same settings may end up
with different results as there is random initialization and random choice of
sequences that will be presented to the NTM throughout learning process. It
is clear that parameter optimization is not a simple task in this case.

Based on a experience with NTM learning we have decided to choose para-
meters of NTM predictor as shown in Table 4.5. We have also experimented
with other NTM predictor settings as well but this one offers best ratio of
prediction accuracy to learning speed.
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Parameter Setting

Learning sequence length 168

Controller size 75
Number of heads 1
Memory size 32 x 16

Learning rate 10−4

Momentum 0.9

Table 4.5: NTM predictor settings used in experiments

4.2.2 Artificial dataset test

4.2.2.1 Dataset description

We have created dataset with location history with 7 simple artificial people.
Each person should test some basic ability of predictors.

The first artificial person, Adam, is absolutely regular and therefore ab-
solutely predictable. This person have 3 basic day cycles and 3 places. The
first day cycle is used for workdays. Every workday Adam go to work exactly
at 9am and come back at 5pm. The second cycle is used for Saturdays. On
Saturday artificial person stays at home whole day. The last, Sunday cycle is
similar to weekday cycle. The only difference is that Adam does not go to work
at 9am for 8 hours but go to church at 10am for 2 hours. Adam should test
that predictors are able to learn weekly and daily cycles that are completely
predictable.

Behaviour of the second artificial person, Bob, is almost exactly the same
as Adam‘s behaviour. The only difference between them is that on weekdays
after work, between 6pm and 9pm, Bob goes to shop with 25% probability.
Bob is therefore not completely predictable, but we can easily prove that his
long term predictability is 97%. Bob should test the ability of predictors to
deal with person‘s randomness. We will also look the accuracy of prediction
and how it approaches the predictability limit.

The third artificial person, Carl, is very similar to Bob. The difference
between them is the way how they visit shop after work. While Bob goes to
shop and home totally randomly, Carl only goes to the shop at random time
but when he is there he always stays there till 9pm. His predictability is 96%.
Carl should test that predictor is able to learn the behaviour rule in form -
person stays in place till specific time regardless of arrival time.

Dan, the fourth artificial person is very similar to Adam. The only dif-
ference between them is that Dan does not go to work exactly at 9am. The
probability that he goes to work is 33% at 7am, 33% at 8am and 33% at 9am.
The only thing that is stable is work time. Dan always stays at work 8 hours
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and then goes straight home. Predictability of Dan is 98%. Dan should test
that predictor is able to learn the behaviour rule in form - person stays in place
for specific amount of time regardless of arrival time.

The fifth artificial person, Earl, behaved exactly like Bob for the one month,
but then he moved and changed his behaviour and now he behaves exactly like
Carl. Earl‘s predictability is now the same as Carl‘s. Earl should test that
predictor is able to adapt to new behaviours and forget the old habits.

Another artificial person, Fred is absolutely predictable like Adam but he
does not have weekly cycle. He lives in four day cycle and visits only 3 places.
On the first day he works from midnight till noon. On the second day he works
from noon till midnight. Later he spends his whole third day at home and on
fourth day he goes to church from 9am till 11am. Then he repeats his 4-day
cycle. Fred should test if predictors are able to learn other than weekly cycles.

The last artificial person is Greg. Greg is very strange person but again
absolutely predictable. His only life cycle last for 7 hours. He is at home for
the first 2 hours of his day then goes to work for 4 hours and then to shop
for 1 hour. Then he repeats this cycle again and again. Greg should test if
predictors are able to learn cycles with period other than 24 hours.

4.2.2.2 Results

Tables 4.6 and 4.7 show overall results of our predictors on artificial dataset
described in previous section. Please notice that results in tables are roun-
ded to 3 decimal places. We can see that both methods were able to model
Adam and Greg perfectly. There were also no problems with modelling Bob
and Carl. Prediction accuracy for both of them was close to the maximum
achievable value. The first noticeable difference between these two methods
was at modelling Dan. KNN predictor unlike NTM predictor was not able to
count number of hours spent at work. NTM is also better at adapting to new
behaviour. We can see it from Earl‘s prediction accuracy results. The biggest
problem for both predictors have been Fred‘s 4-day cycle. KNN cannot learn
cycles with period that is not multiply of 7. The NTM have done better job
but Fred‘s results are not as good as Adam‘s or Greg‘s even through all of
them are completely predictable. The problem is caused by the input encod-
ing which makes learning more common weekly cycles easier for NTM but, on
the other hand, makes learning cycles with other periods harder.
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4.2. Movement prediction

Method Person Predictability AccSoft
1 3 6 12 24

KNN

Adam 1.00 1.000 1.000 1.000 1.000 1.000
Bob 0.97 0.932 0.932 0.932 0.932 0.932
Carl 0.96 0.945 0.945 0.945 0.945 0.945
Dan 0.98 0.930 0.931 0.931 0.931 0.931
Earl 0.96 0.911 0.820 0.763 0.777 0.827
Fred 1.00 0.901 0.837 0.759 0.615 0.511
Greg 1.00 0.973 0.991 0.995 0.998 0.999

NTM

Adam 1.00 1.000 1.000 1.000 1.000 1.000
Bob 0.97 0.951 0.945 0.939 0.934 0.939
Carl 0.96 0.952 0.945 0.942 0.934 0.924
Dan 0.98 0.972 0.956 0.947 0.934 0.924
Earl 0.96 0.897 0.866 0.843 0.832 0.834
Fred 1.00 0.921 0.904 0.894 0.872 0.858
Greg 1.00 1.000 1.000 1.000 1.000 1.000

Table 4.6: Artificial dataset overall prediction results - AccSoft metric

Method Person Predictability AccBest
1 3 6 12 24

KNN

Adam 1.00 1.000 1.000 1.000 1.000 1.000
Bob 0.97 0.932 0.932 0.932 0.932 0.932
Carl 0.96 0.959 0.959 0.959 0.959 0.959
Dan 0.98 0.932 0.932 0.932 0.932 0.932
Earl 0.96 0.911 0.820 0.763 0.777 0.827
Fred 1.00 0.932 0.865 0.785 0.638 0.520
Greg 1.00 0.973 0.991 0.995 0.998 0.999

NTM

Adam 1.00 1.000 1.000 1.000 1.000 1.000
Bob 0.97 0.960 0.958 0.957 0.956 0.961
Carl 0.96 0.951 0.944 0.942 0.936 0.916
Dan 0.98 0.968 0.948 0.938 0.921 0.907
Earl 0.96 0.890 0.861 0.837 0.826 0.830
Fred 1.00 0.952 0.934 0.928 0.905 0.885
Greg 1.00 1.000 1.000 1.000 1.000 1.000

Table 4.7: Artificial dataset overall prediction results - AccBest metric
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4. Experiments

4.2.3 Real world dataset test

4.2.3.1 Dataset description

This dataset contains the same data used for place detection evaluation. For
6 real people there are 3 month history with manually marked places. Other
works mostly use Geolife dataset [21] for similar purposes. It contains recorded
trajectories for 182 people. The only problem is that it does not contain true
information about personally important places. The same problem is with
potential usage of other data sets, for example the one used in [22].

4.2.3.2 Results

Overall results are shown on tables 4.8 and 4.9. We can see that for most
cases NTM predictor is significantly more accurate than KNN predictor. For
real data it is very complicated to calculate predictability or regularity of a
person. The results, however, correlate with what we know about the people.
For example people A and E are both university students with part-time job.
Most of the time they obey some schedule, in school or work, what results
in high expected predictability. On the other hand interviewed person F is
running his own business and likes to travel a lot in his free time. He works
with almost no fixed schedule what results in low expected predictability.

Figure 4.4 shows typical NTM predictor accuracy trend. We can see that
prediction accuracy tends to go down rapidly for the first 5 predicted steps
but remains relatively stable afterwards.

Method Person AccSoft
1 3 6 12 24

KNN

A 0.877 0.829 0.771 0.752 0.747
B 0.842 0.783 0.693 0.607 0.632
C 0.568 0.566 0.564 0.563 0.561
D 0.801 0.566 0.396 0.316 0.293
E 0.735 0.739 0.739 0.740 0.741
F 0.322 0.326 0.328 0.332 0.353

NTM

A 0.813 0.797 0.785 0.776 0.753
B 0.815 0.764 0.719 0.675 0.632
C 0.704 0.600 0.537 0.490 0.460
D 0.457 0.451 0.450 0.437 0.397
E 0.827 0.795 0.781 0.770 0.762
F 0.630 0.584 0.527 0.462 0.442

Table 4.8: Real world dataset overall prediction results - AccSoft metric
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4.2. Movement prediction

Method Person AccBest
1 3 6 12 24

KNN

A 0.877 0.829 0.771 0.744 0.736
B 0.842 0.774 0.689 0.664 0.670
C 0.568 0.566 0.564 0.563 0.561
D 0.801 0.566 0.396 0.316 0.293
E 0.815 0.813 0.817 0.829 0.832
F 0.322 0.326 0.328 0.332 0.353

NTM

A 0.863 0.865 0.849 0.837 0.816
B 0.863 0.831 0.801 0.767 0.721
C 0.884 0.801 0.694 0.579 0.474
D 0.452 0.445 0.445 0.434 0.395
E 0.863 0.831 0.833 0.828 0.819
F 0.699 0.628 0.575 0.522 0.497

Table 4.9: Real world dataset overall prediction results - AccBest metric

Figure 4.4: Neural Turing Machine predictor prediction accuracy trend.
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Chapter 5

Application

Implemented application will be tested by detectives within the Police of the
Czech Republic. Currently, no automated system is used for the behaviour
analysis of suspects. Analysis is done only manually with help of GIS software
used for data visualization or with text reports of raw positional data. It
should help them to find interesting behaviour patters of suspects faster and
easier than today.

The detectives should be able to use gathered location data and get in-
teresting insights within a few minutes. The application supports data usage
from multiple source systems and is optimized for large location histories.

As the whole process from data preprocessing to visualization of results is
available through simple and comprehensive graphical user interface we expect
that it should shorten the time from data gathering to its effective usage and
allow detectives to see more in the data.
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Conclusion

In the thesis we designed and implemented system for behaviour analysis of
individuals that can be easily interpreted and understood by detectives and
therefore used for automated analysis of suspects. The system is able to
identify important places of an individual as well as detect noise in data auto-
matically and create behaviour model of an individual suspect. This model
can be used for prediction which reveals one‘s behaviour patterns. The results
of every part of this process can be visualized on map.

To achieve person‘s model that can be easily interpreted and understood
by detectives, we firstly identify person‘s important places and detect noise
in data. Preprocessed locations are used to create a behaviour model of the
person.

For the place detection we have proposed new algorithm AgarClust and
compared it with DBSCAN and LDBSCAN. The algorithm was able to do
place detection with almost 98% precision on provided dataset. This dataset
is one of the contributions of the thesis as there was no public dataset available
with interesting places marked down before.

We have proposed two methods for personal mobility prediction. The first
uses KNN algorithm with advanced adaptive mechanism to fit every person‘s
mobility patterns individually. The second method uses Neural Turing Ma-
chine — recurrent neural network with random access memory. We validated
functionality of these methods on artificial dataset to understand their pre-
dictive power and also on real world dataset to evaluate overall system per-
formance. We have shown that NTM predictor is able to learn many mobility
patterns as well as adapt to changes in these patterns.

Another contribution of this thesis is implementation of Neural Turing
Machine library in C#. It was later used to implement NTM predictor. The
library is published on GitHub.

There are many possibilities for future work. When in comes to place de-
tection as preprocessing step, it may be beneficial to look at the semantics of
detected places. This knowledge could be used to more precise person‘s mo-
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Conclusion

bility modeling and could help predictors to find a whole new level of mobility
patterns as well as it can help predictors to adapt earlier to new patterns in
personal mobility. As for NTM predictor and NTM itself, there are possib-
ilities to investigate other options for NTM learning as well as other input
encodings for the mobility prediction task.
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Appendix A
Acronyms

BPTT Back-propagation through time

GIS Geographic information system

GUI Graphical user interface

KNN K nearest neighbours

LSTM Long short-term memory

NTM Neural Turing Machine

WPF Windows presentation foundation
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Appendix B

Application screenshots
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B. Application screenshots

Figure B.1: Project creation and data import view. Firstly user need to
create project and select import files that will be used for behaviour analysis.
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Figure B.2: Data parsing view. Every input file need to be parsed for
further usage. User can set delimiter, date-time format, coordinates format
and columns that will be used as input. Online parsing preview is shown for
faster settings.
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B. Application screenshots

Figure B.3: Place detection settings view. On this view user can choose
place detection method, its settings and run the calculation. After calculation
is done user see number of detected places and can show places on map.

52



Figure B.4: Place detection map view. Places detected can be visualized
on map. Open street maps are used for visualization. Double click on detected
place shows place detail view.
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B. Application screenshots

Figure B.5: Place detail view. On place detail view user can see all points
that are in place on map as well as in table with approximate stay times.
Contingency table provides further insight on how person visit the place.
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Figure B.6: Prediction settings view. On prediction settings view user can
choose predictor that will be used. After calculation is done predictor can be
used.
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B. Application screenshots

Figure B.7: Prediction results view. Prediction results are shown as heat-
map with places as columns and predicted times as rows.
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Appendix C

Contents of enclosed CD

readme.txt........................ the file with CD contents description
src..................................... the directory with source codes

ntm..........................................implementation sources
thesis............the directory with LATEX source codes of the thesis

dataset .................................... directory with dataset used
text...........................................the thesis text directory

thesis.pdf ........................... the thesis text in PDF format
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