
Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Master's thesis

Regular tree expression and its derivatives

Bc. Jan Ko�sa�r

Supervisor: Ing. Radom��r Pol�ach

4th May 2015

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic �nal thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the \Work"), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-pro�t purposes) that does not detract from
its value. This authorization is not limited in terms of time, location and
quantity.

In Prague on 4th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c 2015 Jan Ko�sa�r. All rights reserved.
This thesis is school work as de�ned by Copyright Act of the Czech Republic.

It has been submitted at Czech Technical University in Prague, Faculty of

Information Technology. The thesis is protected by the Copyright Act and its

usage without author's permission is prohibited (with exceptions de�ned by the

Copyright Act).

Citation of this thesis

Ko�sa�r, Jan. Regular tree expression and its derivatives. Master's thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2015.

Abstrakt

Pr�ace p�redstavuje novou metodu pro rozpozn�av�an�� stromov�ych (nebo i bezkon-
textov�ych) jazyk�u za pou�zit�� derivac�� regul�arn��ch stromov�ych v�yraz�u. Tato
metoda je zobecn�en��m p�revodu regul�arn��ch v�yraz�u na kone�cn�y automat po-
moc�� derivac��. Pr�ace d�ale rozeb��r�a dal�s�� mo�znosti parsov�an�� stromov�ych a
obecn�e bezkontextov�ych jazyk�u a p�redev�s��m srovn�av�a p�redstavenou metodu
derivac�� stromov�ych regul�arn��ch v�yraz�u s LR parsery.

Kl���cov�a slova parsery, stromov�e jazyky, bezkontextov�e jazyky, regul�arn��
v�yrazy, regul�arn�� stromov�e v�yrazy

Abstract

Thesis proposes a new method for recognition of tree (or generally context-
free) languages using derivatives of regular tree expression. This method is a
generalization of conversion of a regular expression to a �nite state automaton
using derivatives. The thesis also discusses other options of parsing tree and
generally context-free languages and mainly compares introduced method of
derivatives of regular tree expressions with LR parsers.

Keywords parsers, tree languages, context-free languages, regular expres-
sions, regular tree expressions

vii

Contents

Introduction 1

Thesis contributions . 1

1 Basic notions 3

1.1 Language . 3
1.2 Grammar . 3
1.3 Language classes . 4
1.4 Language parsing . 6
1.5 Tree . 7
1.6 Bar notation . 8
1.7 Regular expressions . 9
1.8 Partial derivatives of regular string expressions 13
1.9 Construction of parser from a regular string expression 15
1.10 LR parser . 16

2 Derivatives of regular tree expressions 21

2.1 First version: rules to derivate substitution and tree iteration . 22
2.2 Second version: derivatives generating pushdown automaton . . 23
2.3 Third version: Extension solving nondeterministic behavior . . 30

3 Comparison of methods for parsing tree languages 35

3.1 Similarities between method of derivatives and LR parsers . . . 35
3.2 Grammar classes and parsers 41
3.3 Tree languages . 43

Conclusion 45

Method of derivatives . 45
Similarity with LR parser . 45
Further research . 46

Bibliography 49

A Contents of enclosed CD 51

ix

List of Figures

1.1 Example of a grammar with 3 rules 4

1.2 Examples of how a word can be generated by the grammar from
�gure 1.1 . 4

1.3 Chomsky hierarchy of formal languages 5

1.4 Language hierarchy relations . 5

1.5 Hierarchy of LR and LL languages 6

1.6 Example of a graph . 7

1.7 Example of a (rooted) tree . 7

1.8 Pre�x and post�x notations example 8

1.9 Bar notation example . 8

1.10 Substitution symbol in bar notation 9

1.11 Example grammar and a respective graph of LR item sets 17

1.12 Example of construction of item set closure 17

1.13 LR parser from �gure 1.11 parsing an input 19

2.1 Notions for substitution and tree iteration derivatives 22

2.2 Example of in�nite automaton created by �rst version of algorithm 23

2.3 Two pushdown automaton states and a transition 23

2.4 Grouping of stack symbols { derivatives of (A�B)�;� �� C 25

2.6 Longer stack symbol { derivation of (A�BCDEF)�;� �� X 26

2.5 Grouping of di�erent stack symbols { derivatives of (A�B+C�D)�;���
E . 27

2.7 Longer stack symbol { derivatives of (AB�C(D + E))�;� �� F . . . 28

2.8 Example of derivation of expression with ambiguous stack operations 31

2.9 Example of derivation of stack symbol containing " 32

3.1 First example { derivatives of (A�B)�;� �� C 36

3.2 First example { LR parser for (A�B)�;� �� C 36

3.3 Second example { derivatives of AB�CD�EF �� XY 37

3.4 Second example { LR parser for AB�CD�EF �� XY 38

xi

3.5 Third example { derivatives of (AB�CD)�;� �� XY 38
3.6 Third example { LR parser for (AB�CD)�;� �� XY 39
3.7 Third example { LR parser for (A�B +C�D)�;� (equivalent reg-

ular expression derivation is in �gure 2.5) 39
3.8 Derivatives of (A�aB�bC)

�;�a ��a E ��b D 40
3.9 LR parser for (A�aB�bC)

�;�a ��a E ��b D 40
3.10 Hierarchy of LR and LL languages 41
3.11 Hierarchy of languages parsable using regular tree expression deriva-

tives . 42

xii

Introduction

This thesis intends to broaden knowledge of computer science in domain of
formal language parsers.

Chomsky hierarchy states four basic types of formal languages: regular

languages, context-free languages, context-sensitive languages and recursively

enumerable languages. This thesis focuses only on regular languages and
context-free languages. We further consider tree languages which are sub-
set of context-free languages. Analysis of tree languages will be done later in
this thesis.

Parsing of regular languages is quite explored �eld of study today. Cre-
ation of �nite-state machine from grammar of a regular language is straight-
forward { typically done using regular expressions, or through construction of
nondeterministic �nite state automaton and its determinization.

Parsing of context-free languages is slightly more interesting. There are
several subclasses inside the class of grammars of context-free languages and
there are several methods for parsing these subclasses. Each method is suitable
for parsing of di�erent language subclass.

Thesis contributions

Derivation of regular tree expressions

First contribution of this work to mentioned theories will be a proposition
of a new method for parsing of context-free languages { using derivatives of
regular tree expressions. This method is based on regular expressions for
regular languages, but is generalized so it can be used for parsing of context-
free languages with emphasis on tree languages.

Simple version of this method is only suitable for speci�c subset of context-
free languages, however its extension that provide it with the ability to parse
all context-free languages will be proposed too.

This will be broadly explained in chapter 2.

1

Introduction

Comparison of methods for parsing tree languages

To better understand how tree languages and their derivatives work, it would
be appropriate to compare the language to other languages and derivation
method for their parsing with other parsing methods.

Pushdown automaton created using method of derivatives of regular tree
expressions and LR parsing will be compared.

This issue will be covered in chapter 3.

2

Chapter 1

Basic notions

In this chapter all basic notions will be properly de�ned. One does not need
to read it too thoroughly since most mentioned notions are generally known
as part of formal language parsing theory.

1.1 Language

A language is a set of words. That means, that for a given language, there is
a given set of words, that can be formed within this language. A word is a set
of symbols from an alphabet.

The notion word is slightly misleading here. It can be for example a whole
source code which is given as input to a compiler. Or it can be whole text
that is passed to a regular expression matcher.

Particular language is not usually speci�ed as a listing of valid words.
Language is typically de�ned by grammar rules, which describe, how the words
are formed from basic components into whole words. It can also be speci�ed
by a regular expression.

As mentioned above, each language has an alphabet. An alphabet is a set
of symbols from which the words of a language may be formed. The alphabet
is usually denoted with upper-case sigma: �.

While alphabets usually have �nite number of symbols, languages can have
in�nite number of valid words.

1.2 Grammar

Grammar is a set of rules that together de�ne, how the words in a language
are composed. Each rule consists of left hand side and right hand side.

Both left and right hand sides are strings of symbols from sets � and N . �
contains so called terminal symbols { symbols that will make up the �nal word
{ it is the alphabet of the target language. N contains nonterminal symbols {

3

1. Basic notions

used to construct the string. Nonterminal symbols are usually denoted with
upper-case letters while terminal symbols are usually lower-case letters.

Left hand side of rules in grammars of context-free languages consist only
from one nonterminal symbol (symbol from set N).

S ! E
E ! a E b
E ! c

Figure 1.1: Example of a grammar with 3 rules

S => E => c
S => E => aEb => acb

S => E => aEb => aaEbb => aaaEbbb => aaacbbb

Figure 1.2: Examples of how a word can be generated by the grammar from
�gure 1.1

Grammar describes how the resulting word is constructed. Initially the
word only contains one nonterminal symbol S. Grammar rules are then ap-
plied to the word repeatedly until the word does not contain any nonterminal
symbols.

Applying the grammar rule to the word means, that a single occurrence of
left hand side of the rule in the word is replaced with right hand side of that
rule. Rule can not be applied if word does not contain the left hand side.

1.3 Language classes

1.3.1 Chomsky hierarchy

Formal languages can be assigned to di�erent language classes depending on
their complexity and on the way they can be parsed.

Basic hierarchy of languages is so called Chomsky hierarchy. It assigns
languages into 4 classes. These 4 classes relate to grammar form and the type
of automaton that recognizes it.

1.3.2 Parsing of context-free languages

Because tree languages are subset of context-free languages, we should look
closer on classi�cation of context-free languages. Although all context-free
languages can be easily parsed using nondeterministic pushdown automaton,
we are actually more interested in construction of deterministic automatons.

4

1.3. Language classes

Grammar Languages Automaton Production rules
(constraints)

Type-0 Recursively
enumerable

Turing machine �! � (no restrictions)

Type-1 Context-sensitive Linear-bounded
non-deterministic
Turing machine

�A� ! ��

Type-2 Context-free Non-deterministic
pushdown
automaton

A!

Type-3 Regular Finite state
automaton

A! a
A! aB

Figure 1.3: Chomsky hierarchy of formal languages

Regular � Context-free � Context-sensitive � Recursively enumerable

Figure 1.4: Language hierarchy relations

There are various methods for construction of deterministic pushdown au-
tomatons from language grammars and these methods do not usually work
for every context-free language.

Some of the methods are LL (top-down) parser, LR (bottom-up) parser
and its version (SLR, LR(n), SLR, LALR). Context-free languages and their
grammars can be separated in subclasses (LL languages, LR languages, SLR
languages etc.) depending on which method is able to turn them into push-
down automaton.

Figure 1.5 shows some grammar types and explains relations between these
types.

1.3.3 Regular tree expressions

Regular tree expressions can express languages from all classes mentioned in
1.3.2. Tree languages have nevertheless some limitations. For example, there
is no left or right recursion in grammars of tree languages. Wider explanation
of attributes of regular tree expressions will be discussed in section 3.3.

5

1. Basic notions

Figure 1.5: Hierarchy of LR and LL languages

1.4 Language parsing

To make computer understand input language { for example to compile pro-
gram source code or to perform search in text using regular expression { we
need to create parser for given language.

Typical way to do it is to �rst take the language speci�cations and trans-
form it into an automaton.

Most typical way to de�ne particular language is using language grammar

(1.2). There also exist other methods to specify a language, including regular
expressions. Regular expressions (both regular string expressions and regular
tree expressions) can be transformed into language grammar and vice versa.

Di�erent types of automatons will be created depending on the input lan-
guage, grammar type, and parser creation method. This thesis takes into
account only pushdown automatons and �nite state automatons.

Regular string expressions can be parsed using only �nite state automa-

tons, but to parse languages de�ned with regular tree expressions we will need
to use pushdown automatons.

There are plenty of methods of parsing regular languages. They typically
belong to two categories: regular expression derivation and automaton compo-
sition. Derivation of regular expressions is explained later in the text (section
1.8).

The methods of automaton composition are usually used to search patterns
in text. These methods typically build automatons accepting some patterns
(some text with possible don't-care symbols) and then join these automatons
together. Sometimes, determinization of the resulting automaton is required.

6

1.5. Tree

1.5 Tree

A tree is a special case of a graph. Graph is a data structure that consists of
nodes and edges.

Node is a �eld that has typically a label and can contain various data. Two
nodes can by connected together with an edge. Single node can be connected
with multiple other nodes using respective number of edges. Nodes and edges

can therefore create complex structure of relations between nodes which looks
like a network.

Figure 1.6: Example of a graph

As mentioned above, a tree is a special case of a graph. Tree is a graph

that does not contain any cycles. It means that from each node in the tree,
there is only one path to every other node.

a

g

h

i j

c

d e

f

Figure 1.7: Example of a (rooted) tree

When we talk about a tree, we usually mean (as in this thesis) a rooted

tree. A rooted tree is a tree, where one node is marked as root node. Any tree

can be turned into rooted tree by marking any of its nodes as root node. Root
is something like main node of the tree, direct neighbour of the root are its
children which have their own children and so on.

7

1. Basic notions

1.6 Bar notation

The design of language grammars suggests and methods of converting gram-
mars into parsers expects, that a word is a string. In our case of tree languages
we want to encode the trees into strings.

a

b c

d e
Pre�x notation: (a (b) (c (d) (e)))

Post�x notation: ((b) ((d) (e) c) a)

Figure 1.8: Pre�x and post�x notations example

Usual method to serialize trees is to use pre�x, in�x, or post�x notations.
Generally, nodes of a tree can have arbitrary number of children, therefore we
can not use in�x notation, we also need to use explicit parentheses in pre�x

or post�x notations.

We will de�ne a speci�c pre�x and post�x notation { each node will have
its own pair of parentheses { so nodes without children will have its own
parentheses, for example (a).

When we look on the examples of our pre�x and post�x notations, we can
observe an interesting fact { each letter representing a node has exactly one
left parenthesis on the left in pre�x notation and right parenthesis on the right
in the post�x notation. There is the same count of left parentheses (or right
parentheses respectively) as nodes.

a

b c

d e
Pre�x bar notation: a b j c d j e j j j
Post�x bar notation: j j b j j d j e c a

Figure 1.9: Bar notation example

So we can drop the usage of symbol `(` in pre�x notation and symbol `)` in
post�x notation. The second parenthesis will be replaced with a bar symbol:
`j`. This allows us to use parentheses for other purposes in regular expressions.

Symbols downarrow (#) for pre�x notation and uparrow (") for post�x
notation are sometimes used instead of the bar symbol (j).

In this thesis, we will use post�x notation and bar symbol instead of right
parenthesis. Everything should be similar if pre�x notation was to be used.

8

1.7. Regular expressions

1.6.1 Substitution symbol

The substitution symbols �i (introduced in section 1.7.2) only occur in trees
as leafs. By saying, that a node is a leaf, we mean that it has no children.

There is always a `j` right before (in post�x notation) or right after (in
pre�x notation) every leaf.

The substitution symbol marks position, where another tree can be placed.
Because this another tree already contains its `j` symbol, we should not write
`j` before (after) the substitution symbol.

Figure 1.10 illustrates this. Note that in pre�x notation, there is `j` after
each child of root `a` except for the substitution symbol �. Equivalently in
post�x notation.

a

b c d � e
Pre�x bar notation: a b j c j d j � e j j
Post�x bar notation: j j b j c j d � j e a

Figure 1.10: Substitution symbol in bar notation

1.7 Regular expressions

A regular expression is a string that is aside from language grammar another
way to specify a language. Regular expressions are basically strings consisting
of symbols of language alphabet connected with binary operators. These oper-
ators specify, how the resulting word can be constructed from given symbols.

Basic regular expressions contain only 3 basic operations These 3 oper-
ators allow regular expressions to recognize regular languages (alternation,
concatenation, iteration). Regular expressions are often extended with more
operations to provide better user experience or to extend set of recognizable
languages.

Regular tree expressions use trees instead of strings as operands and use 3
di�erent operators (alternation, substitution, tree iteration). In this section,
we consider operands to be trees expressed as strings using bar notation (sec-
tion 1.6). This assumption allows us to consider regular tree expressions to
be extension of regular string expressions { to be string expressions with 5
operators (alternation, concatenation, iteration, substitution, tree iteration).
These 5 operators allow us to recognize all context-free languages.

9

1. Basic notions

1.7.1 Regular string expressions

� alternation { A+B

Alternation denotes something like OR operator. To accept the word, it
has to be described either by regular expression A or regular expression
B.

Example: abc + cd { Resulting language contains words abc and cd, so
the parser should accept input abc or input cd.

� concatenation { A �B or AB

Concatenation operation concatenates two regular expressions A and
B. First regular expression A have to be accepted and then regular
expression B have to be accepted.

Example: abc { Resulting language contains only word abc. Parser needs
to read a, then b and then c.

� iteration { A�

Iteration of regular expression A means that there should be arbitrary
number (including 0) of occurrences of A concatenated together. This
operation typically creates languages with in�nite number of words.

Example: a� { Resulting language contains words consisting of arbitrary
number of symbols a, for example a, aa, aaa, aaaa, etc.

Parts of regular expressions can be enclosed into parentheses (`(`, `)`) to
denote order of operations.

Example: abc(d+ e)� { Resulting language contains words beginning with
string abc followed by string of arbitrary length consisting of symbols d and
e, for example abc, abce, abcd, abceededde, abceeeed, abcdddd, etc.

Basic notions:

� � { alphabet of a language

� Ei 2 (� [f"; ;;+; �;� g)� { some regular expression

� w 2 �� { word is a string of alphabet symbols

� Li � �� { language is a set of words

� l(E) = L { L is a language de�ned by regular expression E

10

1.7. Regular expressions

Operations:

� l(E1 � E2) = l(E1) � l(E2)

� l(E1) � l(E2) = L3 j a 2 E1 ^ b 2 E2 =) ab 2 L3

� l(E1 + E2) = l(E1) [l(E2)

� l(E�) = l("+ E � E�)

Basic relations:

� l(;) = ;

� l(") = f"g

� l(a) = fag j a 2 �

� l(E1 � ") = l(E1)

� l(E1 + ;) = l(E1)

� l(E1 � ;) = ;

The regular expressions can contain a special symbol " which means no
symbol (string of length 0). This basically means that regular expression "aa"a
describes the same language as aaa. Symbol " can be really useful sometimes.

Another special symbol used in regular expressions is ;. This symbol
denotes empty language fg and is usually used as result of an invalid operation
(mainly in derivatives when we try to derivate expression in respect to a
symbol that this expression can not be derived in respect to).

1.7.2 Tree operations

Regular tree expressions basically extend string expressions with two opera-
tions { substitution and tree iteration. Symbols from new set K now can also
be part of regular tree expressions. These symbols are denoted �i and they
indicate location for substitution or tree iteration operations to take place.

� substitution { A ��1
B

Substitution operator replaces all occurrences of symbol �1 in expression
A with expression B.

� tree iteration { A�;�1

Tree iteration denotes arbitrary number of applications of substitution
operator on self. This operation typically creates language with in�nite
number of words. Additionally, this operation causes language described
by the regular tree expression to be context-free language.

11

1. Basic notions

Formal de�nition:

� Ei 2 (�[K[f"; ;;+; �;� ; ��i
;�;�i g)� j �i 2 K { regular expressions may

now contain boxes, substitution operator and tree iteration operator

� l(E1 ��1
E2) = l(E3) where E3 is E1 with all occurrences of symbol �1

replaced with expression E2

� l(E�;�1) = l(�1 + E ��1
E�;�1)

1.7.3 Examples of trees and regular tree expressions

� empty tree: "

� only substitution symbol as root: �1

� ordinary tree: a

b �1 d

� alternation: a

b c

d

+ a

b c

� substitution: a

b c

�

�� (a

b

+ g)

� iteration: (a

�

)�;� �� b

� another iteration: (a

�1 �2

)�;�1 ��1
b ��2

c

12

1.8. Partial derivatives of regular string expressions

1.8 Partial derivatives of regular string expressions

Method for derivation of regular tree expressions, which will be proposed in
chapter 2, is based on derivatives of regular string expressions. In this section,
the generally known method for derivation of regular string expressions and
its notions will be presented.

Derivatives of regular expressions are basically partial derivatives. So when
we want to derivate expression E1, we need to say in respect to which symbol
we want to derivate it.

Lets say we want to derivate expression E1 in respect to symbol a. The
symbol has to be in the alphabet of the respective language. Expression E1

de�nes a language L1 { that basically means, that we will read a sequence of
input symbols (input word) and we need to decide, if this sequence belongs
to language L1. This can be done by reading �rst symbol (in our case symbol
a) and then constructing another regular expression E2 which will describe,
which symbols can be read next. We call this operation partial derivation and
E2 is partial derivative of expression E1 in respect to symbol a.

This new expression E2 de�nes another language L2 which contains all
words from L1 that are beginning with symbol a but in this new language,
the initial a is skipped:

� aX 2 l(E) =) X 2 l(
dE

da
)

In general, derivative of expression E1 in respect to a symbol from an
alphabet can result in 3 types of regular expressions E2:

� ; :

This result means that given expression E1 can not be derived in respect
to given symbol.

� expression E2 for which applies " 2 l(E2) :

If resulting expression contains ", it means that if no more symbols are
in the input, then a word from given language was successfully accepted.

� other expressions :

If the derivative is an expression that is not ; and does not contain ",
then more input symbols have to be read.

13

1. Basic notions

1.8.1 Algorithm for partial derivation of a regular string
expression

There is a simple algorithm how to derivate a regular expression. For each
operator (alternation, concatenation and iteration) and some basic regular
expressions there is de�ned equation describing how it can be derived.

The equation describing derivation of concatenation operator requires knowl-
edge, if the language of the �rst operand contains ". Therefore it is required to
know, how to �nd out, if the language of a given regular expression contains
". The equations to �nd it out are included below.

Operators:

�
dE1 + E2

da
=
dE1

da
+
dE2

da

�
dE1 � E2

da
=
dE1

da
� E2 j " =2 l(E1)

�
dE1 � E2

da
=
dE1

da
� E2 +

dE2

da
j " 2 l(E1)

�
dE�

da
=
dE

da
� E�

Basic equations:

�
da

da
= "

�
da

db
= ; j b 6= a

�
da

d"
= a

�
d"

da
= ;

�
d;

da
= ;

Epsilon in a language

� " 2 l(E1 + E2), " 2 l(E1) _ " 2 l(E2)

� " 2 l(E1 � E2), " 2 l(E1) ^ " 2 l(E2)

� " 2 l((E1)
�), >

� " 2 l("), >, " 2 l(a), ?, " 2 l(;), ?

14

1.9. Construction of parser from a regular string expression

1.9 Construction of parser from a regular string

expression

How to parse input string W using regular expression E? We can just read
input wordW symbol by symbol and continuously derivate regular expression
in respect to input symbols. At the end of the input, we will check if resulting
regular expression contains " and in that case, we will say that the input
string W belongs to the language de�ned by regular expression E. Otherwise
(typically when the last derivative is ;) we would say that the input string W
does not belong to given language.

To make this method more e�cient and stable (in terms of time com-
plexity), we will create automaton doing it. Each state of the automaton
represents one derivative and transitions represent derivations. If there is
transition a from state A to state B, then regular expression represented by
B is a derivative of regular expression represented by A in respect to input
symbol a.

1.9.1 Algorithm for construction of �nite state automaton
using derivatives of a regular string expression

To do this, we will take given regular expression E and derivate it consecutively
in respect to each input symbol for which the result is not ;. The original
regular expression E represents initial state of the �nite state automaton,
its derivatives represent other states of the �nite state automaton. When one
regular expression E1 has derivative E2 in respect to symbol a, then transition
for symbol a from state represented by expression E1 to state represented
by expression E2 will be added to the �nite state automaton. One should
then repeatedly derivate expressions representing new states, which will add
another new states and so on. Considering regular languages, this should stop
after some time { the �nite state automaton is done.

For formal de�nition of the algorithm, we need to �rst de�ne �nite state
automaton.

Finite state automaton is de�ned as (�; S; s0; �; F), where:

� � { input alphabet

� S { �nite set of states

� s0 { initial state

� � : S � �! S { transition function

� F { set of �nal states

15

1. Basic notions

Formal de�nition: We are constructing �nite state automaton (�; S; s0; �; F)
from regular expression E:

� s0 = E

� Ei 2 S ^
dEi

dx
6= ; ^ x 2 � =)

dEi

dx
2 S ^ (Ei; x;

dEi

dx
) 2 �

� Ei 2 S ^ " 2 l(Ei) =) Ei 2 F

1.10 LR parser

LR parser is an usual method of parsing context-free languages. In chapter
3, the method of derivatives of regular tree expressions be compared with LR
parsers.

There are many di�erent versions of LR parser, mainly SLR, LALR, full
LR parser etc. To fully understand, how LR parsers work, I would suggest
to read something else [1]. Only basics needed to understand the comparison
with method of derivatives will be covered in this thesis.

The algorithm for construction of graph of LR item sets and the way how
to use this graph to do the parsing will be explained.

1.10.1 How to construct graph of LR item sets

Before we can create LR item sets, we need the language grammar (section
1.2). A LR item is a grammar rule with a dot symbol : somewhere in the
right-hand side of the rule (for example S ! a:bc). LR item set is a set of
LR items. There are transitions (directed edges) between item sets. Each
transition is labeled with an input symbol with an index (for example A1).

Each item set has kernel items and closure items.

Item set, that represents the initial state, will contain all the rules that
have initial nonterminal symbol S on the left-hand side of the rule. These
items will have dot on the beginning of the right-hand side of the rule. For
example, if there is only one rule having initial nonterminal symbol S on the
left-hand side which is S ! abc, then the item set representing the initial
state will have only one kernel item { [S ! :abc].

Each item set, including the item set representing the initial state, will have
closure items, that are created from kernel items and other closure items.

Closure items

A closure item will be added to the item set if the item set contains an item,
that has the dot symbol right before a nonterminal symbol (for example item
[S ! a:Ab]). If an item set contains item with the dot symbol exactly before
nonterminal symbol A, all rules from the grammar that have symbol A on

16

1.10. LR parser

Figure 1.11: Example grammar and a respective graph of LR item sets

left-hand side of the rule will be added to the item set. The new items will
have dot symbol on the beginning of the right-hand side of the rule.

Closure items should be added even when other, just created closure item
contains dot symbol before a nonterminal symbol.

Figure 1.12: Example of construction of item set closure

17

1. Basic notions

1.10.2 Constructing other item sets

For each item that has the dot symbol somewhere else than at the end of the
right-hand side of the rule, we will create an edge (transition) to another item
set. This transition will be labeled with the symbol that is right after the dot
symbol. For example if we have an item [S ! a:Ab], we will create transition
labeled with symbol A.

Kernel items of the new item set will be created by taking the original
item and shifting the dot symbol by one symbol to the right. If we create new
item set from an old item set using transition labeled A, we have to include
all items from the old item set that have dot right before the symbol A.

After kernel items are created, the closure of this item set will be created.
If we would create exactly the same item set as an already existing item

set, we do not create it again, but we just create the transition leading to this
item set.

1.10.3 How to use graph of LR item sets to parse the input

The parser reads input symbols, stores them on the stack and then applies
rules on them, which changes set of terminals and nonterminals into one ter-
minal. The right-hand side of the rule is popped from the stack while the left-
hand side (single nonterminal) is pushed to the stack. This is called bottom-up
parsing.

Di�erent type of parsing is top-down parsing, used by LL parsers. Top-
down parsing expands nonterminal symbols (pops left-hand side of the rule
and pushes right-hand side of the rule) and reads the terminals from input.

Nevertheless, the LR parser starts in initial state, which is denoted with
symbol #. The state of the automaton is given by the top symbol on the
stack. So stack starts only with symbol #.

The parser can do two actions: shift and reduce.
The shift operation reads next input symbol. The automaton changes state

{ from current state traverses to next state using transition that is labeled with
the read input symbol. New state is put onto stack.

The reduce operation applies a grammar rule. First thing is to decide,
what grammar rule to apply. Di�erent versions of LR parsers use di�erent
methods to determine, which rule should be applied and whether shift or
reduce operation should be preformed.

So the reduce operation pops one stack symbol for each symbol in the
selected rule in the reverse order (the items on the right side of the right-
hand side of the rule is popped �rst). This causes the automaton to use
transitions in the opposite direction (automaton is returning to states where
it was before). When the whole right-hand side of the rule is popped, the
symbol on the left-hand side of the rule is pushed onto the stack in the same
way the shift operation does it.

18

1.10. LR parser

The automaton con�guration is represented by couple: (stack, input). The
symbol denotes bottom of the stack. The input to be read is abbcb. State
of the automaton is de�ned by the symbol on top of the stack.

(#; abbcb) shift symbol a (automaton moves to state a1)
! (#a1; bbcb) shift symbol b
! (#a1b1; bcb) shift symbol b
! (#a1b1b2; cb) shift symbol c
! (#a1b1b2c1; b) reduce with rule B ! c
! (#a1b1b2B1; b) shift symbol b
! (#a1b1b2B1b3; ") reduce with rule A! bbBb
! (#a1A1; ") reduce with rule S ! aA
! (#S; ")

Figure 1.13: LR parser from �gure 1.11 parsing an input

19

Chapter 2

Derivatives of regular tree

expressions

In this chapter, method for derivation of regular tree expressions will be pro-
posed. This method reads regular tree expression and creates deterministic
pushdown automaton accepting language de�ned by that regular tree expres-
sion.

Three versions of this method will be presented. Each version is an exten-
sion of the previous one and is capable of processing wider set of languages
than the previous version.

First version extends basic method for creation of �nite state automaton
from regular string expression. This version creates �nite state automatons
and will create automatons of in�nite size when processing regular tree ex-
pression describing non-regular language.

Second version improves the �rst method by adding ways to create push-
down automatons. This will always create �nite state automatons or push-
down automatons of �nite size, but it may produce nondeterministic pushdown
automatons for some context-free languages. Regular tree expressions describ-
ing tree languages will always create deterministic pushdown automaton.

The third version solves the problem with non-determinicity as it should
always create pushdown automaton that is deterministic.

Generalization to context-free languages

Tree languages are languages (section 1.1) where each word is a tree (section
1.5). We can specify a tree language using a regular tree expression.

Trees can be expressed as strings using bar notation (section 1.6). In that
case, the tree languages are a subset of context-free languages.

In this chapter, we will consider regular tree expressions to be capable of
describing all context-free languages, not only tree languages. All statements

21

2. Derivatives of regular tree expressions

about regular tree expressions presented in this chapter are meant to apply to
this generalized de�nition of regular tree expressions.

2.1 First version: rules to derivate substitution

and tree iteration

Lets say we have a regular expression E and we want to derivate it. Regular
expressions generally consist of alphabet symbols connected with operators.

There can be 5 operators: alternation, concatenation, iteration, substitu-
tion and tree iteration. The �rst tree operations { alternation, concatenation
and iteration { will be derived in the same way as in regular string expressions
(section 1.8).

Now we just need to write similar equations describing how to derivate
substitution and tree iteration.

�
de1 ��1

e2
dx

=
de1
dx

��1
e2 +

de2(
de1
d�1

��1
e2)

dx
j x 6= �1

�
de1 ��1

e2
d�1

=
de2(

de1
d�1

��1
e2)

d�1

�
de�;�1

dx
=

de

dx
��1

e�;�1 j x 6= �1

�
de�;�1

d�1

= (
de

d�1

)� ��1
e�;�1

Figure 2.1: Notions for substitution and tree iteration derivatives

Application of these equations will result in valid derivatives. So the equa-
tions are valid. There is however a problem. If we try to use this method of
derivatives to construct an automaton from a regular tree expression which
describes language that is not regular, it will create �nite state automaton of
in�nite size (so it will not really be a �nite state automaton).

It is apparent that we need to generalize the derivatives to be able to create
pushdown automatons.

22

2.2. Second version: derivatives generating pushdown automaton

Figure 2.2: Example of in�nite automaton created by �rst version of algorithm

2.2 Second version: derivatives generating

pushdown automaton

While creating �nite state automaton from a regular string expression, transi-
tion labeled `a` leading from state E1 to E2 is created when E2 is a derivative
of E1 in respect to input symbol a. Transitions in pushdown automatons have
to be labeled not only with input symbol, but with triplet (input symbol j
popped symbol ! pushed symbol).

When the transition is used by pushdown automaton, one input symbol is
read from input, one stack symbol may be popped from stack and one stack
symbol may be pushed to stack. If no symbol is to be pushed to stack or
popped from stack, the symbol " is used instead of an ordinary stack symbol.

This transition reads symbol x from input and puts symbol y on stack.

Figure 2.3: Two pushdown automaton states and a transition

To create pushdown automatons using derivatives, we have to derivate
not only in respect to an input symbol but in respect to the triplet (input

symbol j popped symbol ! pushed symbol). That means that derivative of an
expression E in respect to (a j b ! ") will be di�erent than the derivative in
respect to (a j "! ") because while using the transition corresponding to the

23

2. Derivatives of regular tree expressions

�rst derivation, the automaton modi�ed stack, but the second derivation does
not modify stack.

Four types of transitions (derivatives) can be distinguished (ordered by
their priority { see next subsection 2.2.1):

1. a j "! b { This transition reads input symbol a from input and pushes
stack symbol b on stack.

This transition type shows up when deriving substitution operation.

2. a j b! " { Automaton reads input symbol a from input and pops stack
symbol b from stack.

This is complement of previous transition type. Rest of the right operand
to substitution operation is read.

3. a j " ! " { This transition reads input symbol a from input and stack
is not changed.

This is equivalent to transitions in �nite state automatons and is used
usually by equations derivating basic operations (concatenation, alter-
nation, iteration) as presented is section 1.8.1.

4. " j "! c { Automaton pops stack symbol c from stack without reading
any input.

This transition will be used in the third version of this algorithm. It
is used only when a regular expression belonging to the stack symbol c
contains " { therefore it can be popped without reading any input.

2.2.1 Transition ambiguity { implicit transition priorities

There are some expressions that can be derived both using transitions modify-
ing stack and transitions not modifying stack. In this situation, two problems
arise:

� Automaton has to decide, which transition to use.

� Transitions that do not modify stack would create automaton of in�nite
size (as in �gure 2.2).

Both these problems will be solved by giving implicit priorities to tran-
sitions. Each type of transition mentioned above (section 2.2) will have its
priority. When an expression has for example two transitions, �rst of type
a j "! " and second of type a j "! b, the second transition will be used.

Only reachable states (taking these priorities into account) should be in-
cluded in resulting automaton.

Implicit transition priorities can cause another problem { automaton that
does not accepts whole language described by regular expression might be

24

2.2. Second version: derivatives generating pushdown automaton

created sometimes. This is caused by automaton not knowing in some cases,
if it should pop stack symbol immediately or if it should do it later.

This problem does not occur in tree languages (only in context-free lan-
guages). Version three of this algorithm solves the problem (section 2.3).

2.2.2 Stack symbols

To be able to derivate regular expressions in such way that it results in cre-
ation of pushdown automaton, we will use stack symbols as part of regular
expressions apart from just symbols of input alphabet.

Each stack symbol represents a regular expression that should be read after
that stack symbol is popped. Position of stack symbol in a regular expression
marks position, where this stack symbol can be popped. If the stack symbol
is popped, automaton will read expression associated with that stack symbol.

Notion: E

Example: abc+ ef

2.2.3 Grouping of identical stack symbols

The reason, why second version of this method constructs automatons of �nite
size while �rst version constructs in�nite automatons, is that we can group
identical stack symbols together in such way that whenever there is a con-
catenation of two or more identical stack symbols, we can turn them into one.
Original number of these symbols is saved in the stack anyway.

We state the equation: Ei Ei , Ei .

Figure 2.4: Grouping of stack symbols { derivatives of (A�B)�;� �� C

25

2. Derivatives of regular tree expressions

2.2.4 Grouping of di�erent stack symbols

Some regular expression such as (A�1B+C�1D)�;�1 ��1
E need stack symbols

to group even if the symbols are di�erent. In this particular case, concatena-
tion of multiple B and D symbols will be generated.

The concatenation of multiple di�erent stack symbols is equivalent to con-
catenation of stack symbols such that each stack symbol is there only once.
Again, stack will store information about number and order of stack symbols.

E1 E2 , E2 E1

2.2.5 Stack symbols with longer associated regular
expressions

So far, only simple stack symbols consisting only from one input symbol were
show as examples. This example shows how a regular tree expression with
more complex associated expression is derived.

Figure 2.6: Longer stack symbol { derivation of (A�BCDEF)�;� �� X

26

2.2. Second version: derivatives generating pushdown automaton

Figure 2.5: Grouping of di�erent stack symbols { derivatives of (A�B +
C�D)�;� �� E

27

2. Derivatives of regular tree expressions

Figure 2.7: Longer stack symbol { derivatives of (AB�C(D + E))�;� �� F

2.2.6 Modi�ed concatenation operator

Sometimes it is necessary to keep stack symbols in regular expression while
deriving it. When there is for example regular expression a b c and we derive
it in respect to b j b ! " it should result in the same expression a b c (the a
should remain in the new expression).

It would be hard to achieve this with the usual derivation of concatenation
operator. Therefore the concatenation operator has to be rede�ned. The new
de�nition is listed in following text (section 2.2.7).

The de�nition contains a new function denoted with letter sigma: �. There
are 3 similar � functions (�", �push, �pop). Particular sigma function is selected
according to performed stack operation (no operation, push operation or pop
operation).

These functions are de�ned in section 2.2.7. Equations describing � (with-
out a subscript) apply on all three � functions.

Input to this function is a regular expression and result is typically ; or ".
" is returned if language of the regular expression contains " and ; is returned
otherwise.

28

2.2. Second version: derivatives generating pushdown automaton

In some cases when stack symbols are in the regular expression, something
more expressive may be returned. This happens in those cases, when an
expression can not be just skipped as ". So when the expression is to be
skipped as ", the result of � function is placed in its place.

2.2.7 Equations

Substitution:

�
dE1 ��1

E2

dx j "! dE1

d�1
��1

E2

=
dE2

dE1

d�1
��1

E2

dx

�
dE1 ��1

E2

dx j "! y
=
dE2(

dE1

d�1j"!y
��1

E2)

dx

�
dE1

dx j E1 ! "
=
dE1E1

dx

�
dE1

db j "! "
= ;

� a a , a

� a b , b a

Alternation and iteration:

�
dE1 + E2

dx j y ! z
=

dE1

dx j y ! z
+

dE2

dx j y ! z

�
dE�

1

dx j y ! z
=

da

dx j y ! z
� a�

Concatenation:

�
dE1 � E2

dx j "! "
=

dE1

dx j "! "
� E2 + �"(E1) �

dE2

dx j "! "

�
dE1 � E2

dx j "! y
=

dE1

dx j "! y
� E2 + �push(E1) �

dE2

dx j "! y

�
dE1 � E2

dx j y ! "
=

dE1

dx j y ! "
� E2 + �pop(E1) �

dE2

dx j y ! "

29

2. Derivatives of regular tree expressions

Sigma functions:

� �(x) = ; j x 2 �

� �(") = "

� �(;) = ;

� �(E1 + E2) = �(E1) + �(E2)

� �(E1 � E2) = �(E1) � �(E2)

� �(�1) = �1 j �1 2 K

� �(E1 ��1
E2) = �(E1) ��1

�E2

� �(E�;�1

1
) = �(E1)

�;�1

� �"(E1) = "

� �push(E1) = "

� �pop(E1) = E1

2.3 Third version: Extension solving

nondeterministic behavior

Previous (second) version does not create working automatons for some reg-
ular tree expressions. These wrong automatons do not accept whole language
described with the regular expression.

The core of the problem is that the created pushdown automaton might
get into situation, when it does not know, when to pop the stack symbols.
Our pushdown automatons will always pop stack symbols as soon as possible
because of the transition priorities presented in section 2.2.1. This may be
sometimes the wrong decision.

This problem probably does not occur with regular tree expressions that
are constructed only from trees in post�x or pre�x bar notation. This third
version of algorithm is only required if we generalize regular tree expressions
to context-free languages, where any string can be operand to a regular tree
expression.

There are two basic types of regular expressions in relation to stack sym-
bols:

� Regular expression that begin with a stack symbol

They have to be derived using transition of type a j b! " { given stack
symbol is popped.

For example AB CD will be derived in respect to A j AB ! ").

30

2.3. Third version: Extension solving nondeterministic behavior

� Regular expression that begin with an input symbol

These expressions will be derived using transition of type a j " ! " {
stack is unchanged.

We will have problem if regular expression contains alternation or " sym-
bols in such way that the regular expression begins with both stack symbol
and input symbol.

There are two particular cases of this problem:

1. Stack symbol can be popped too soon

2. Stack symbol can be popped through " transition

2.3.1 Stack symbol may be popped too soon

This situation arises when there is an alternation in the regular expression
in such way that an input symbol can be accepted both with and without
popping a stack symbol.

To solve this, we will pop the stack symbol and put there alternation
where one possibility is that it should have been popped initially and the
other possibility is that should be popped later. There is of course possibility,
that there is not the desired stack symbol on the stack and in that case,
nothing will be popped and the part of regular expression that does not need
to pop the stack symbol will be used.

Figure 2.8: Example of derivation of expression with ambiguous stack opera-
tions

31

2. Derivatives of regular tree expressions

An example of such regular expression: (BC + ")BC .

We introduce new unary operator which can be added to a regular ex-
pression: ap. This operator denotes position in regular expression, where the
stack symbol a was popped, but it did not came into e�ect yet.

This operator will stay in regular expression, when using transition that
does not change stack and will be removed when using transition that changes
stack.

2.3.2 Stack symbol can be popped through " transition

This situation may only occur if language described by regular expression
associated with a stack symbol contains ". Automaton might not know, if it
should pop some of these stack symbol using " transitions or if it should wait
for them to be accepted as usually { with transitions that read input.

Example of regular expression with that problem: B + " B. This regular
expression already contains stack symbol. We can pretend that it is a deriva-
tive of some bigger regular expression and this part is used only to give clear
example.

Figure 2.9: Example of derivation of stack symbol containing "

To solve this, we introduce yet another unary operator: a". This oper-
ator marks position, where the stack symbol a can be popped using only "
transition.

This operator will stay in regular expression, when using transition that
does not change stack and will be removed when using transition that changes
stack.

This also means that we have to create " j E1 ! " transitions from states
that begin with stack symbol which contains ".

32

2.3. Third version: Extension solving nondeterministic behavior

2.3.3 Equations

We use all the notions from section 2.2.7 and add some new ones:

Sigma functions:

� �"(E1p
) = E1p

� �push(E1p
) = ;

� �pop(E1p
) = ;

� �"(E1"
) = E1"

� �push(E1"
) = "

� �pop(E1"
) = "

� �"(E1) = E1"
j " 2 l(E1)

Epsilon transitions:

�
dE1

d" j E1 ! "
= E1 j " 2 l(E1)

�
dE1"

d" j E1 ! "
= E1"

j " 2 l(E1)

Early stack pop:

�
dE1

dx j E2 ! "
=
dE2p

� E1

dx

�
dE1p

� E2

dx j "! "
=

dE1 � E2

dx j "! "
j

dE2

dE1 j E1 ! "
6= ;

33

Chapter 3

Comparison of methods for

parsing tree languages

This chapter intends to cover characteristics of some methods that can be
used to recognize tree languages with some generalizations to context-free
languages. Characteristics of tree languages and the way they a�ects parsing
process will be discussed.

3.1 Similarities between method of derivatives and

LR parsers

In this section, automatons created using regular tree expression derivatives
and automatons created using a common parsing method { LR parsing { will
be compared.

Basic similarities and di�erences of the two approaches will be shown on
few examples.

We will compare pushdown automaton created by method of regular tree
expression derivatives and graph of LR items of LR parser for the same lan-
guage.

To create LR parser, one needs grammar for particular language. It is usu-
ally quite simple to convert regular tree expression into a grammar describing
the same language. Formal de�nition of this conversion will not be presented
in this thesis though (because formal de�nition would not be that simple).

35

3. Comparison of methods for parsing tree languages

3.1.1 First example { simple automaton

This is example of a simple regular tree expression (A�B)�;� �� C. Derivation
parser is in �gure 3.1, LR parser is in �gure 3.2.

As seen on the examples, there are some similarities. Particularly, the
triangle containing edges C1 and C2 is similar in both graphs.

This similarity occurs because both methods work the same way when
parsing single grammar rule (single substitution or tree iteration in regular tree
expression). As seen in next example, the di�erence appears when we will try
to create parser from grammar with more grammar rules (more substitutions
in regular tree expression).

Figure 3.1: First example { derivatives of (A�B)�;� �� C

Figure 3.2: First example { LR parser for (A�B)�;� �� C

36

3.1. Similarities between method of derivatives and LR parsers

3.1.2 Second example { di�erences in substitution

The main di�erence between LR parser and derivation method can be seen
on example of substitution operation on longer string.

Regular tree expression AB�CD�EF ��XY and corresponding grammar
S ! AB�CD�EF ;�! XY are turned into parsers in �gures 3.3 and 3.4.

As seen on the images, both parsers create the same automaton for deriva-
tion of strings AB, CD, EF and XY. There is however di�erence in the way
they are joined.

Method of derivatives joins these parts in the order in which they are read.
This causes that each of both sequences of XY is read by di�erent part of the
automaton.

Figure 3.3: Second example { derivatives of AB�CD�EF �� XY

The LR parser on the contrary has di�erent approach based on under-
standing the language as a grammar. Grammar has rules and nonterminal
symbol from which the language is composed. This corresponds with the abil-
ity of the parser to go back in the graph when reduction (applying a grammar
rule) is performed. This ability can also sometimes work as a cycle.

37

3. Comparison of methods for parsing tree languages

Figure 3.4: Second example { LR parser for AB�CD�EF �� XY

3.1.3 Third example { tree iteration and cycles

On example of regular tree expression (AB�CD)�;� ��XY and its correspond-
ing grammar, we can see that method of derivatives creates more cycles in the
graph than the method of LR parsing.

Figure 3.5: Third example { derivatives of (AB�CD)�;� �� XY

In this example, the parser �rst needs to read arbitrary number of left
parts of recursion AB, then it reads symbols XY and then it reads the same
number of right parts of recursion CD.

38

3.1. Similarities between method of derivatives and LR parsers

Figure 3.6: Third example { LR parser for (AB�CD)�;� �� XY

It is interesting to look closer on the di�erence in how both methods handle
this situation and why LR parser needs only one cycle in graph while method
of derivatives needs two cycles.

The LR parser �rst reads all occurrences of AB in the input using the cycle
in the graph of LR items. Then it reads input symbols XY and then it comes
to read all the right parts of recursion CD. The parser each time recalls, what
it has read earlier (by applying the grammar rule �! AB�CD) and then it
reads what is required by applied rule.

In this case it either reads next CD or it stops the parsing (accepts the
input). This is more apparent in example of �gures 2.5 and 3.7.

Figure 3.7: Third example { LR parser for (A�B + C�D)�;� (equivalent
regular expression derivation is in �gure 2.5)

39

3. Comparison of methods for parsing tree languages

3.1.4 Conclusion

The important thing to note is, that the LR parser uses stack to store infor-
mation about what has been read, while derivatives automaton uses stack to
store what should be read in the future.

This means that LR parser needs to go back in the graph sometimes (while
doing reduction) to recall what he has read and then he can continue read-
ing. Derivation automaton does not have to return back because it has the
information about what should be read on the stack.

3.1.5 Extra example: two di�erent substitution operators

This is just another example comparing derivatives and LR parsers, this time
for more complex language. Regular tree expression contains two di�erent
substitution operators.

Figure 3.8: Derivatives of (A�aB�bC)
�;�a ��a E ��b D

Figure 3.9: LR parser for (A�aB�bC)
�;�a ��a E ��b D

40

3.2. Grammar classes and parsers

3.2 Grammar classes and parsers

This section should review methods for parsing context-free languages, classify
languages by their ability to be processed by these parsers and provide most
accurate relations between these classes.

We will in fact not classify languages but grammars or regular tree expres-
sions by their ability to be parsed by di�erent parsers. Most languages can
be described with di�erent grammars from di�erent classes (or with di�erent
regular tree expressions).

Methods for parsing context-free languages

� LL parsing { top down application of grammar rules

� LR parsing { bottom up parser using language grammar

� regular tree expression derivatives { method proposed in chapter 2

� regular tree expression automaton composition { method proposed in
citation [2]

3.2.1 LR and LL parsers

Following �gure shows relations of some LR and LL parsing methods.

Figure 3.10: Hierarchy of LR and LL languages

41

3. Comparison of methods for parsing tree languages

3.2.2 Regular tree expression derivatives

This �gure shows relations between three versions of algorithm creating de-
terministic pushdown automatons from regular tree expression as described
in chapter 2.

Figure 3.11: Hierarchy of languages parsable using regular tree expression
derivatives

3.2.3 Regular tree expression automaton composition

This method will not be deeply covered in this thesis. Regular tree expressions
are usually smaller trees connected with operators alternation, substitution
and tree iteration. This method constructs automatons that accept these small
trees and then connects the automatons together according to used operators.
This produces nondeterministic automatons which needs to be determinized
afterwards.

This method should be able to parse all languages that can be described
using regular tree expressions.

3.2.4 Relations between LR languages and regular tree
expression derivatives

There seems to be no simple relation between languages that can be parsed
by di�erent LR or LL parsers and languages that can by parsed using regular
tree expression derivatives.

As we know, languages can belong to any subset of LR languages but
knowing it will give us no information about which version of algorithm using
derivatives should be used and vice versa.

42

3.3. Tree languages

3.3 Tree languages

In this section, we discuss attributes of tree languages { languages that are
composed of trees connected with alternation, substitution and tree iteration
operators.

3.3.1 Language (grammar) class according to method of
derivatives

The second version of algorithm using derivatives (section 2.2) should be prob-
ably enough to parse all tree languages.

There are two situations, when a regular tree expression can not be parsed
only using second version of mentioned algorithm and the third version is
required. The third version is needed if one of these two patterns appear in
some point during construction of the automaton:

� (A + ")[A] { expression may be derived using the same input symbol
both with and without popping the stack

This expression can result for example from initial expression
j �a �� (j a+ j). This is not realy a tree expression because one of it
operands (j) is not a tree.

� [A+ "]A { stack symbol may be popped without reading input symbol

This results for example from (j �a+ j �)�;�. The operand j � is not a
valid tree.

This pattern can not appear in a true regular tree expression, because
tree in post�x bar notation always has at least one symbol after� (unless
it is only � as a root, but that is not a problem either).

So the second pattern can not appear in tree languages and we think that
the second pattern probably neither. Tree languages should be parsable by
second version of algorithm of regular tree expression derivatives (section 2.2).

3.3.2 Right and left iteration

If we restrict regular tree expressions to contain only trees in post�x/pre�x
notation as operands, then the languages described by these regular tree ex-
pressions can not contain right or left iteration.

Example of a right iteration: (AB�)�;�, left iteration: (�AB)�;�.

This would require tree to have substitution symbol � entirely on the right
or on the left of the bar notation representation of the tree. The only tree,
that can have that is tree that has the substitution symbol as a root of the
tree: �.

43

3. Comparison of methods for parsing tree languages

If the tree has root other than the substitution symbol �, for example A,
then it has the bar symbol j on one end of the string and name of the root,
for example A, on the other side.

Pre�x bar notation: A ::: j
Post�x bar notation: j ::: A

44

Conclusion

Tree languages have many interesting characteristics. We went through some
approaches to tree and context-free languages recognition, mainly LR parser

and method of derivatives, which is a new algorithm proposed in this thesis.

Method of derivatives

Method of derivatives which was proposed in the thesis is a new algorithm
for recognition of tree and context-free languages. This method is based on
derivations of regular tree expressions, which is a generalization of method
used for parsing of regular languages. This generalization allows us to create
pushdown automatons.

The method of derivatives seems to be simple enough to be considered
useful in some cases. The main disadvantage of this method when comparing
to LR parser is that it does not fully recognizes the structure of input word
{ it only tells us, if the word belongs to given language de�ned by regular
expression or not.

The main advantage of method of derivatives is that it behaves like usual
regular expression matcher. It can be modi�ed to save speci�c parts of input
word while matching it to regular expression. Parts of this method can also
be used to enhance capabilities of simple regular expression matchers.

Similarity with LR parser

Pushdown automatons created with the method of derivatives are similar to
graphs of LR item sets (part of LR parsers), but they also di�er in some
important points. It would be probably not simple, neither perspective to try
to convert graph of LR items to deterministic automaton similar to the one
created by method of derivatives.

45

Conclusion

Di�erence between LR parser and the method of derivatives

The di�erence is in the way these two parsers use stack.

LR parser uses stack to store information about history { what was read
in the past. So when the LR parser wants to read next input, it will �rst recall
what was read before (with reduction action) and then read the input.

On the other side, the automaton resulting from method of derivatives
of regular tree expression uses stack to store information about what should
be read. Every time the automaton pops a stack symbol, a part of regular
expression speci�ed by the stack symbol is added to the beginning of the
regular expression and then the automaton reads it.

Further research

There are some topics that might be considered for further research. They
are related to each other and are generally meant to broaden knowledge of
regular expressions and context-free languages.

Better formalization of method of derivatives

The method of derivatives of regular tree expression proposed in this thesis
could surely be improved. We tried to provide formal de�nitions of three
di�erent versions of algorithm of derivatives in similar way, in which common
regular expressions are de�ned.

It might be bene�cial to try to clean and simplify the de�nitions. Choosing
di�erent approach than the one used by common regular expressions might
help.

Implementation of proposed method of derivatives

It was initially intended to implement the proposed method as part of the the-
sis. It however showed up, that it is harder to recognize context-free languages
than expected, so there was no time left to implement the algorithm.

A sample implementation should help to improve the algorithm, because
some inaccuracies in presented equations might be found.

Conversion between language grammar and regular tree
expression

It is usually fairly easy to convert language grammar to regular tree expression
and vice versa just by hand. It would be probably more complicated to create
an algorithm that can do this. Construction of such algorithm could help to
explain more deeply, how regular expressions work.

46

Further research

Modifying the method of derivatives to recognize structure of
input word

Method of derivatives can recognize given context-free languages, but it is not
good at recognizing the structure of particular word.

Output of LR parser and LL parser is a sequence of grammar rules in the
order they would be applied to form the input word. This gives us a good way
to understand the structure of the word. Method of derivatives only tells us,
if the input word is in language de�ned by the regular expression or not.

It might be bene�cial to �nd out, if there are any ways to get more infor-
mation about input word, than just accepted/unaccepted.

One way to get some information about input word could be to use match
groups similar to regex implementations in many programming languages.
Parts of the regular expression would be enclosed in parentheses and matcher
then returns array containing which input symbols were used to match these
parts of the regular expression.

47

Bibliography

[1] Melichar, B.; Janou�sek, J.; Vagner, L. Syntaktick�a anal�yza a p�reklad. Czech
Technical University in Prague, Faculty of Information Technology, 2010.

[2] Pol�ach, R. Tree Pattern Matching and Tree Expressions. Master`s thesis,
Czech Technical University in Prague, Faculty of Electrical Engineering,
2011.

[3] Knuth, D. On the Translation of Languages from Left to Right. Informa-

tion and Control, volume 8, 1965: pp. 607{639.

[4] Brzozowski, J. A. Derivatives of Regular Expressions. Journal of the ACM,
volume 11, no. 4, Oct. 1964: pp. 481{494.

49

AppendixA

Contents of enclosed CD

latex-source/.........the directory of LATEX source codes of the thesis
images/..................................bitmap versions of images
svg/...svg versions of images
DP Ko�sa�r Jan 2015.tex............................LATEX source �le
makefile.........................make�le build script for the thesis
README...........instructions how to build the PDF �le from sources

DP Ko�sa�r Jan 2015.pdf................text of the thesis in PDF format

51

	Introduction
	Thesis contributions

	Basic notions
	Language
	Grammar
	Language classes
	Language parsing
	Tree
	Bar notation
	Regular expressions
	Partial derivatives of regular string expressions
	Construction of parser from a regular string expression
	LR parser

	Derivatives of regular tree expressions
	First version: rules to derivate substitution and tree iteration
	Second version: derivatives generating pushdown automaton
	Third version: Extension solving nondeterministic behavior

	Comparison of methods for parsing tree languages
	Similarities between method of derivatives and LR parsers
	Grammar classes and parsers
	Tree languages

	Conclusion
	Method of derivatives
	Similarity with LR parser
	Further research

	Bibliography
	Contents of enclosed CD

