
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Intelligent home control system

Bc. Jiř́ı Adamec

Supervisor: Ing. Vratislav Zima

4th May 2015

Acknowledgements

I would like to thank my supervisor who gave me great advices and helped
me a lot with my thesis. I would also like to thank my fiancee for her support
and my family for their support and funding my education.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 4th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Jǐŕı Adamec. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Adamec, Jǐŕı. Intelligent home control system. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2015.

Abstrakt

Tato práce se zabývá tvorbou prototypu aplikace pro platformu Android a An-
droid Wear. Tato aplikace je určena k ovládáńı domovńıho systému, takzvaného
chytrého domu. Aplikace je spustitelná na mobilńım telefonu a také na chytrých
hodinkách. V této diplomové práci je popsáno jaké technologie jsou použity,
dále jak prob́ıhala analýza a návrh aplikace, realizace a také testováńı.

Kĺıčová slova Android, Wear, chytrý d̊um, chytré hodinky

Abstract

This work deals with the creation of prototype application for the Android
and Android Wear platforms. The application is designed to control a house
system, the so-called smart house. The application is running on the mobile
phone and also on the smart watches. In this master’s thesis is described
which technologies are used, how the analysis and application design were
done and also implementation and testing.

Keywords Android, Wear, smart house, smart watch

ix

Contents

Introduction 1

Definition of the task . 2

Requirements . 2

Review of similar services . 3

1 State-of-the-art 5

1.1 Android . 5

1.2 Android Wear . 16

1.3 Android Studio . 19

1.4 WebSocket . 20

1.5 JSON . 22

2 Analysis and design 25

2.1 Analysis ot the server API . 25

2.2 Design of data classes . 28

2.3 Design of user interface . 30

3 Realisation 35

3.1 Used libraries . 35

3.2 Implementation of the mobile application 39

3.3 Implementation of the wearable application 42

3.4 Communication between wearable and mobile applications . . . 43

4 Testing 47

4.1 Testing on Android . 47

4.2 Usability testing . 47

Conclusion 53

Bibliography 55

xi

A Acronyms 57

B Contents of enclosed CD 59

xii

List of Figures

1.1 Android versions . 6
1.2 Android architecture . 10
1.3 Activity lifecycle . 12
1.4 Fragment lifecycle . 14
1.5 Service lifecycle . 15
1.6 Android Studio project . 21

2.1 ELAN RF . 25
2.2 Data classes . 29
2.3 Screen relation . 31
2.4 Loading screen . 32
2.5 Settings screen . 32
2.6 Room list screen . 33
2.7 Room screen . 33
2.8 Bulb off . 34
2.9 Bulb on . 34
2.10 Thermostat . 34
2.11 Thermostat opened . 34

3.1 Color picker . 38
3.2 State change from wearable . 44
3.3 State change from WebSocket . 45

4.1 The Android testing framework. 48
4.2 Number of problems found depending on number of users. 49

xiii

List of Tables

1.1 Gartner research . 5
1.2 Versions share . 6

xv

Introduction

Nowadays we are experiencing large expansion of smart electronics to all parts
of our everyday life. From our smartphones to smart fridges that send us an
SMS about running low on food. A lot of people is interested in control-
ing their house devices like bulbs, sockets and thermostats from computer or
smartphone. These systems that are in control of the whole house and provide
control from computer or smartphone are called smart house systems.

This thesis is about designing and implementing a prototype client ap-
plication for smart house system made by ELKO EP s.r.o. company. The
application is developed for Android and Android Wear platforms, in order to
provide functionality to smart phones and smart watches.

The thesis contains six chapters. The first chapter is this Introduction, that
describes the task of this thesis, all requirements and also contains review of
similar smart house systems.

In the chapter named State-of-the-art are described current technologies
that are used to implement the application. The first section 1.1 describes the
Android platform, its history, architecture and its core components. Second
section 1.2 contains description of the Android Wear platform with its API
and functionality that it offers. In section 1.3, named Android Studio, is in-
formation about the new IDE designed for developing applications for Android
platform. The section 1.4 describes the WebSocket protocol, that is used to
receive notifications from server. Last section 1.5 is about JSON format.

Second chapter Analysis and design describes how the analaysis and design
of the application were done. In first section 2.1 is described how the server
part is implemented and what API it provides. Next section 2.2 contains
definition of data classes designed according to the server API and server
resources. Last section 2.3 describes design of the user interface, the design is
created by the Android standards.

The third chapter Realisation contains all information about implementa-
tion of the application. Description of all used libraries is in first section 3.1.
Second section 3.2 describes the implementation of the mobile application

1

Introduction

and the next section 3.3 is about implementation of the wearable application.
Last section 3.4 contains description of communication between the mobile
and wearable applications.

In chapter Testing is described all testing of the application that was done.
First section 4.1 offers information about possibilities of testing on Android
platform and second section 4.2 describes usability testing. The usability
testing is performed by usability heuristic and also user testing.

Last chapter Conclusion contains a summary of the whole thesis. In Con-
clusion, there is also described how the clients were satisfied with the applic-
ation.

Definition of the task

The objective of this master thesis is to desing and implement a prototype
of android client application for existing smart house system made by ELKO
EP s.r.o. company. The prototype will include application for Android Wear
platform in order to provide possibility of controling the smart house by using
smart watches.

Requirements

Functional requirements

1. Allow users to control following devices on phone:

• simple light

• dimmable light

• RGB light

• blinds

• thermostat

2. Allow users to control these devices on smart watches.

3. Allow users to open current room from phone on smart watch.

Non-functional requirements

1. Application will be compatible with Android 4.0.3 and newer.

2. Application will include Czech and English localization.

2

Review of similar services

Review of similar services

Loxone

Loxone[1] is a company that develops smart home system based on their Lox-
one Miniserver. The Miniserver is designed for a single family home, but it
keeps plenty of capacity in reserve. Up to 30 extensions can be connected
to a single Miniserver which translates to an extra 492 inputs and 372 out-
puts. The Miniserver has a powerful 400 MHz processor and 64MB of memory
(RAM). The operating system uses approximately 10 MB of memory, so the
remaining free memory is available to the program and all the communication
tasks.

Loxone provides control of all important appliances in home, like lights,
blinds, heating, alarm etc.. The system takes care about energy consumption
by automatic temperaturte setting or blinds control. This helps keep your
house heated in winter and cool in summer. With the help of a central func-
tion, Loxone can stop the electricity being drained away by devices left on
standby.

One of the great functions that Loxone has is mobile app developed to
control the system. Their app is made for Android and iOS platforms. The
mobile application contains light control, automatic blinds control, intelligent
temperature control, alarm system etc.. It is also possible to control the whole
system over web interface or wall-mounted tablet.

NEST Thermostat

The NEST Thermostat is designed to lower heating and cooling bills up 20%.
The termostat learns your day schedule, programs itself and can be controled
from mobile phone. The Nest Thermostat learns what temperatures user like
and builds a personalized schedule[2]. It learns efficient temperatures for a
few days and, within a week, it will start setting them on its own.

With Auto-Away function, the Nest Thermostat automatically turns to an
energy-efficient Away temperature when the user is gone. Auto-Away works
in 90% of homes, even if your Nest is in a spot user do not pass on your way
out the door.

The mobile and web application is used to control the thermostat remotely.
Users can change actual temperature and their schedule or put NEST into
Away mode. The application also provides detailed Energy History, so users
can see how the termostat really saves their money.

NuBryte

The NuBryte is a smart home console designed to automate your lighting and
security capabilities, and provide you with updated energy and weather re-
ports, plus an array of other household management features[3]. The NuBryte

3

Introduction

system controls the lights in each room where a console is installed. However,
some features, such as the intercom, require at least two units in order to func-
tion properly. Unfortunately, the NuBryte console does not provide ability to
control lights through any mobile app at this moment.

4

Chapter 1

State-of-the-art

1.1 Android

1.1.1 Introduction to Android

Android is the most widely used operating system for smartphones. It gained
absolute majority on a smartphone market, as you can see in table 1.1 from
IDC research[4] published in February 2015. Android holds this majority for
about three years and is very likely to continue in his domination.

1.1.2 History of Android

Android, Inc. was founded by Andy Rubin, Rich Miner, Nick Sears and
Chris White in Palo Alto, California in October 2003. At first, the wanted
to create system for smart cameras. However after the Apple inc. released
their first iPhone, Andy Rubin saw big opportunity in smartphone market
and started to think about targeting the Android to smartphones. They gave
themselves a task to create smarter mobile devices that are more aware of its
owner’s location and preferences[5], but after a year of creating a new mobile
operating system, they ran out of money. Fortunately, Steve Perlman, a close
friend of Rubin, brought him $10,000 in an envelope and refused a stake in the
company. After nearley two years of existence, on August 17, 2005, Android

Period Android iOS Windows Phone BlackBerry OS Others

Q4 2014 76.6 % 19.7 % 2.8 % 0.4 % 0.5 %

Q4 2013 78.2% 17.5% 3.0% 0.6% 0.8%

Q4 2012 70.4% 20.9% 2.6% 3.2% 2.9%

Q4 2011 52.8% 23.0% 1.5% 8.1% 14.6%

Table 1.1: Smartphone operating systems market shares

5

1. State-of-the-art

Figure 1.1: Share of devices running a given version of the Android from April
6, 2015[7].

Version Codename Distribution

2.2 Froyo 0.4%

2.3.3 - 2.3.7 Gingerbread 6.4%

4.0.3 - 4.0.4 Ice Cream Sandwich 5.7%

4.1.x Jelly Bean 16.5%

4.2.x Jelly Bean 18.6%

4.3 Jelly Bean 5.6%

4.4 KitKat 41.4%

5.0 Lollipop 5.0%

5.1 Lollipop 0.4%

Table 1.2: Share of Android platform versions

with all employees was bought by Google, Inc. which was planning to enter
the mobile phone market.

1.1.3 Versions of Android

Since the first public Android release, 22 more updates has been released. The
newest version of Android, 5.1 Lollipop was released in February 2015. The
following list of versions contains main features which they included[6]. The
actual share of Android platform versions is show inf figure 1.1 and table 1.2.

• Beta version - The first Android beta version was released on 5 Novem-
ber 2007 and after one week, on 12 November 2007 was released SDK[?].

6

1.1. Android

• Android 1.0 (API Level 1) - On 23 September 2008 Google released
first commercial version of Android, after one month HTC announced a
first smartphone running Android, it was the HTC Dream also known
as T-Mobile G1. HTC Dream was equiped with a hardware QWERTY
keyboard, because the first version of Android did not contain any soft-
ware keyboard. This version included several Google services such as
Android market, the official store with applications, Gmail, Google cal-
endar, Google Maps, YouTube.

• Android 1.1 (API level 2) - Released on 9 February 2009, initialy
for HTC Dream only, resolved a couple of issues and improved system
stability. This version also brought new features e.g. support for saving
attachments from MMS.

• Android 1.5 Cupcake (API level 3) - On 30 April 2009, the An-
droid 1.5 update was released, it was the first release to use a codename
based on a dessert item. The new version brought the ability of creating
application widgets on home screen, the media framework was improved
providing raw audio recording and playback, video recording API and
media search. It was also added a couple of localizations including czech
language.

• Android 1.6 Donut (API level 4) - Released on 15 September 2009.
In Donut were introduced new feature such as quick search box provid-
ing search across multiple sources e.g. browser history, contacts, apps,
directly on home screen, VPN support, battery usage indicator or better
and faster interface for camera and camcorder.

• Android 2.0 – 2.1.x Eclair (API level 5-7) - The Android 2.0 was
released on 26 October 2009 bringing ability to add multiple accounts
for email and contacts synchronization. The camera application was
improved and included support for built-in flash, digital zoom, scene
modes, white balance and color effects. Browser now supported HTML5
features such as application cache, database api, geolocation api and
<video> tag in fullscreen mode.

• Android 2.2.x Froyo (API level 8) - Released on 20 May 2010 bring-
ing better Exchange support, Exchange administrators can remotely re-
set the device to factory defaults, Exchange calendars can be synced in
the Calendar application. The application Camera was upgraded, videos
can be shot with LED flash on. This version also brought a great new
feature, which is the possibility to turn the device into a portable Wi-Fi
hotspot.

• Android 2.3.x Gingerbread (API level 9-10) - On 6 December
2010, the Android 2.3 was released with new functions such as one-touch

7

1. State-of-the-art

word selection and copy/paste, improved power management, NFC sup-
port and also support for multiple cameras. The Android soft keyboard
was redesigned and optimized for faster text input and editing.

• Android 3.x Honeycomb (API level 11-13) - The first tablet-only
Android version was released on 22 February 2011. The UI was optim-
ized for tablets. The system bar was placed on the bottom of screen
including software button. This version introduced Action Bar which
provides a better navigation in applications. For the first time, de-
velopers could use Fragments in their applications. Fragments provide
better user experience. The Android keyboard was redesigned to make
writting faster. Multiple tabs replaced browser windows and a new ”in-
cognito” mode allows anonymous browsing. The first device running
Honeycomb was Motorola Xoom.

• Android 4.0.x Ice Cream Sandwich (API level 14-15) - The An-
droid 4.0.1 was released on 19 October 2011 was designed for unification
of Android for phones and tablets running Honeycomb. The UI was
redesigned for ideal performance on phones and tablets a new typeface
brought better readability on larger screens. Widgets were now interact-
ive, users can flip trough their calendars, check emails and more. Mul-
tiple system apps were improved for example voice search, spell checker,
data usage controls and camera which received panorama mode. The
new Android supports Wi-Fi Direct technology which provides peer to
peer connection between devices.

• Android 4.1.x – 4.2.x Jelly Bean (API level 16-17) - First Jelly
Bean was released on 9 July 2012 with the primary aim of improving the
functionality and performance of the user interface. The performance
improvement involved ”Project Butter”, which uses touch anticipation,
triple buffering, extended vsync timing and a fixed frame rate of 60
fps to create a fluid and ”buttery-smooth” UI. New version brought
a great feature for users sharing one device with others. These users
can now switch between multiple Google accounts on one device and
use a separate environment, including their own homescreens, widgets,
accounts, settings, files, and apps, and the system keeps these separate.

• Android 4.3 Jelly Bean (API level 18) - The last Jelly Bean ver-
sion was released on 24 July 2013. Google aimed on better battery per-
formance. This version brought several small fixes and improvements.
For example right-to-left languages support. With this version, Google
brought Google Now function, which informs users about importatnt in-
formation that he may use. Such as weather, filght times, sport results,
many of the information Google gets from users Gmail.

8

1.1. Android

• Android 4.4 KitKat (API level 19-20) - KitKat version is the first
version named after commercial product. Google made deal with Nestle
company about rights to use this name. This version brought memory
optimisations in project called ”Project Svelte”. The required mimimum
of memory is 340MB. The biggest inovation is ART (Android Runtime)
which replaces Dalvik. ART uses ahead of time compilation, which
results in better application permormance and speed. Unfortunately
ART was not enabled by default, but could be only enabled in developer
options. The API level 20 brought support for Wearable devices.

• Android 5.0 - 5.1 Lollipop (API level 21 - 22) - The Lollipop was
released on November 12, 2014. In this version, ART definitely replaces
Dalvik. Google introduced Material design, responsive design pattern
used in all Google applications. Lollipop brought a lot of improvements,
unforutnately also few bugs, the biggest bug was a memory leak in
system applications causing the device to almost run out of memory.
The new Android improved notifications, they are now shown on lock
screen and important notifications show up as pop up on the top of the
screen. Google Play Services now contains Smart Lock feature which
holds device unlocked if user sets safe locations or safe device to which
is phone paired.

1.1.4 Android Architecture

The architecture is divided into several layers, as you can see in figure 1.2,
the bottom layer is a Linux kernel with device drivers. First Android systems
were using Linux kernel version 2.6.x and since Ice Cream Sandwich the 3.x
kernel version has been used. Above the kernel lays a HAL1. HAL provides
standard interface to access device drivers without need to know low-level
implementation.

Application framework prodvides a rich collection of components simplify-
ing applications development such as set of Views that can be used to build an
application. The views are including lists, buttons, text boxes, layouts, etc..
Content Providers are enabling applications to access data from other applic-
ations. The access to non-code resources such as localized strings, graphics,
and layout files is providing Resource Manager. Developers have access to
multiple System Services like Location Service, Bluetooth Service, Notifica-
tions Service etc.. Usage of these Services is permited by requiring permissions
in application manifest.

Every Android application runs in its own process, with its own instance of
the virtual machine. Until the version KitKat, Android used Dalvik as virtual
machine. Dalvik has been written so that a device can run multiple VMs

1Hardware Abstraction Layer - interface to call into device driver layer

9

1. State-of-the-art

Figure 1.2: Android architecture

10

1.1. Android

efficiently. The Dalvik VM is register-based, and runs classes compiled by a
Java language compiler that have been transformed into the .dex format. Since
the Android 2.2 Dalvik uses JIT2. From version KitKat, Dalvik was replaced
by ART (Android Runtime). ART intorduced AOT3 compilation which uses
little bit more storage space on device, but nowadays devices storage space has
grown so it is not a big problem. ART brings faster execution of applications,
improved memory allocation and garbage collection mechanisms.

1.1.5 Core components of Android

1.1.5.1 Activity

An Activity[8] is an application component that provides a screen with which
users can interact in order to do something. Each activity is given a window
in which to draw its user interface. The window typically fills the screen, but
may be smaller than the screen and float on top of other windows. Every
Activity has to be declared in application manifest in order to be accessible
to the system:

<manifest ... >

<application ... >

<activity android:name=".MainActivity" />

...

</application ... >

...

</manifest >

Typically, one activity in an application is specified as the ”main” activity,
which is presented to the user when launching the application for the first time.
Every activity can start another activity in order to perform different actions
and show different interface. Each time a new activity starts, the previous
activity is stopped, but the system preserves the activity in a stack (the ”back
stack”). When a new activity starts, it is pushed onto the back stack and
takes user focus.

When an activity is stopped because a new activity starts, it is notified of
this change in state through the activity’s lifecycle callback methods. There
are several callback methods that an activity might receive, due to a change in
its state—whether the system is creating it, stopping it, resuming it, or des-
troying it—and each callback provides you the opportunity to perform specific
work that’s appropriate to that state change. For instance, when stopped, your
activity should release any large objects, such as network or database connec-
tions. When the activity resumes, you can reacquire the necessary resources

2Just In Time compilation - compilation to bytecode only when it is necessary
3Ahead of Time compilation - compilation to bytecode during application instalation

11

1. State-of-the-art

and resume actions that were interrupted. These state transitions are all part
of the activity lifecycle shown in figure 1.3.

Figure 1.3: Activity lifecycle

12

1.1. Android

1.1.5.2 Fragment

A Fragment[9] represents a behavior or a portion of user interface in an Activ-
ity. You can combine multiple fragments in a single activity to build a multi-
pane UI and reuse a fragment in multiple activities. A fragment must always
be embedded in an activity and the fragment’s lifecycle (shown in figure 1.4)
is directly affected by the host activity’s lifecycle.

When you add a fragment as a part of your activity layout, it lives in
a ViewGroup inside the activity’s view hierarchy and the fragment defines
its own view layout. You can insert a fragment into your activity layout by
declaring the fragment in the activity’s layout file, as a <fragment> element, or
from your application code by adding it to an existing ViewGroup. However,
a fragment is not required to be a part of the activity layout; you may also
use a fragment without its own UI as an invisible worker for the activity.

Android introduced fragments in Android 3.0, primarily to support more
flexible UI designs on large screens, such as tablets. Because a tablet’s screen
is much larger than that of a handset, there is more room to combine and
interchange UI components. Fragments allow such designs without the need
for you to manage complex changes to the view hierarchy. By dividing the
layout of an activity into fragments, you become able to modify the activity’s
appearance at runtime and preserve those changes in a back stack that is
managed by the activity.

1.1.5.3 Service

A Service[10] is an application component that can perform long-running op-
erations in the background and does not provide a user interface. Another
application component can start a service and it will continue to run in the
background even if the user switches to another application. There are essen-
tially two types of services:

• Started - A service is ”started” when an application component (such
as an activity) starts it by calling startService(). Once started, a
service can run in the background indefinitely, even if the component
that started it is destroyed. Usually, a started service performs a single
operation and does not return a result to the caller. For example, it
might download or upload a file over the network. When the operation
is done, the service should stop itself.

• Bound - A service is ”bound” when an application component binds to
it by calling bindService(). A bound service offers a client-server inter-
face that allows components to interact with the service, send requests,
get results, and even do so across processes with interprocess communic-
ation (IPC). A bound service runs only as long as another application

13

1. State-of-the-art

Figure 1.4: Fragment lifecycle

14

1.1. Android

component is bound to it. Multiple components can bind to the service
at once, but when all of them unbind, the service is destroyed.

Like activities, all services must be declared in the application’s manifest
file:

<manifest ... >

<application ... >

<service android:name=".DataService" />

...

</application ... >

...

</manifest >

The lifecycle of a service is much simpler than that of an activity. However,
it is even more important that developer should pay close attention to how the
service is created and destroyed, because a service can run in the background
without the user being aware. Figure 1.5 describes the lifecycle of a service.

Figure 1.5: Service lifecycle

15

1. State-of-the-art

1.2 Android Wear

Android Wear is a subversion of Google’s Android platform designed for smart-
watches and other wearables. Wear devices can be paired with devices running
Android 4.3 and newer. Android Wear integrates Google Now technology and
mobile notifications into a smartwatch form. Users can perform voice searches
using ”OK Google” voice command. New applications can be installed to
watch using phone and Google Play Store.

In many ways, Android Wear seems to be based on the experience from
Google Glass project. The operating system looks similar to the interface
used by Glass. It is probable that Google has transformed their work from
controversial Glasses to something more usable.

The platform was presented on March 18, 2014 along with release of de-
veloper preview and developer kit. At the same time, manufacturers such as
Motorola, LG, HTC, etc. were announced as partners[11]. At Google I/O on
25 June 2014 the Samsung Gear Live and LG G Watch were launched.

The first version was based on Android 4.4 KitKat and contained API
to handle round and square watch screaens. On December 10, 2014 Google
released new version based on Android 5.0 Lollipop introducing new Watch
Face API, which provides the ability to change watch home screen with custom
watch face.

1.2.1 Android Wear API

Android Wear provides API subset of Android platform but do not support
the following list of API:

• android.webkit

• android.print

• android.app.backup

• android.appwidget

• android.hardware.usb

Wearable Apps should be small in size and functionality compared to hand-
held apps. The should contain only what makes sense on the wearable which
is usualy small subset of handheld app. In general, you should make all op-
erations on handheld and to the wearable send only result. The handheld
should be doing all heavy processing. Also all the network actions can be ac-
cessed only through paired handheld. Wearables provide interface to low-level
hardware such as heartbeat sensor, pedometer, etc..

The system enforces a timeout period. If your activity is displayed and
user do not interact with it, the device goes to sleep. After wake up the

16

1.2. Android Wear

Wear home screen is displayed instead of your activity. When you need to
show something persistent, you should create a notification and send it to the
wearable.

Users do not install apps directly onto their wearables, but install handheld
app which is bundled with wearable app. The system automatically installs
this app to paired wearable. However for developing purposes, you can install
the Wear app directly to the wearable using developer tools.

1.2.2 Android Wear Layouts

The Android Wear platform provides basic layouts and widgets form stand-
ard Android, such as Button, Switch, LinearLayou etc.. The Wear API
also provides layouts for handling the difference between square and round
watch screen which is necessary to display appropriate GUI. The first one
is WatchViewStub which inflates specific layout depending on the shape of
the device’s screen. The second one is BoxInsetLayout that is basically a
FrameLayout that is aware of screen shape and can box its children in the
center square of a round screen.

Other Wear specific layouts are:

• CardFragment - A fragment that presents content within an expandable,
vertically scrollable card.

• CircledImageView - An image view surrounded by a circle.

• ConfirmationActivity - An activity that displays confirmation anim-
ations after the user completes an action.

• DelayedConfirmationView - A view that provides a circular countdown
timer, typically used to automatically confirm an operation after a short
delay has elapsed.

• DismissOverlayView - A view for implementing long-press-to-dismiss.

• DotsPageIndicator - A page indicator for GridViewPager that iden-
tifies the current page in relation to all available pages on the current
row.

• GridViewPager - A layout manager that allows the user to both ver-
tically and horizontally through pages of data. You supply an imple-
mentation of a GridPagerAdapter to generate the pages that the view
shows.

• GridPagerAdapter - An adapter that supplies pages to a GridViewPager.

17

1. State-of-the-art

• FragmentGridPagerAdapter - An implementation of GridPagerAdapter
that represents each page as a fragment.

• WearableListView - An alternative version of ListView that is optim-
ized for ease of use on small screen wearable devices. It displays a
vertically scrollable list of items, and automatically snaps to the nearest
item when the user stops scrolling.

1.2.3 Data synchronization

Communication between handheld and wearable is provided by Wearable Data
Layer API, which is part of Google Play Services. Without Google Play
Services is wearable unable to pair with phone. The API consists of a set of
data objects that the system can send and synchronize between wearable and
handheld. These objects are:

• Data Items - A DataItem API provides data storage and automatic
syncing between the handheld and wearable.

• Messages - The Messages API is good for remote procedure calls (RPC),
such as controling media player or starting activity from wearable on
handheld. Messages are also great for a request/response communica-
tion.

• Asset - Asset objects are designed for sending binary data, mainly im-
ages. The image is attached to data item and system takes care of
the transfer, conserving Bluetooth bandwidth by caching large assets to
avoid re-transmission.

• WearableListenerService - Extending WearableListenerService lets
you listen for important data layer events in a service. The system
manages the lifecycle of the WearableListenerService, binding to the
service when it needs to send data items or messages and unbinding the
service when no work is needed.

• DataListener - Implementing DataListener in an activity lets you listen
for important data layer events when an activity is in the foreground. Us-
ing this instead of the WearableListenerService lets you listen for changes
only when the user is actively using your app.

Google strictly discourages opening low-level bluetooth communication
between handheld and wearable in their developer manual. The correct ap-
proach is to use the API listed above.

18

1.3. Android Studio

1.3 Android Studio

Android Studio is the official IDE for Android application development, based
on IntelliJ IDEA. On top of the capabilities you expect from IntelliJ, Android
Studio offers[12]:

• Flexible Gradle-based build system

• Build variants and multiple apk file generation

• Code templates to help with building common app features

• Rich layout editor with support for drag and drop theme editing

• Lint tools to catch performance, usability, version compatibility, and
other problems

• ProGuard and app-signing capabilities

1.3.1 Android Build System

The biggest change in comparison to Eclipse is the Gradle build system. The
Gradle system provides rich support for customized build scripts. You can
create multiple APKs for you app with different features using the same pro-
ject. The flexibility of the Android build system enables you to achieve all of
this without modifying your app’s core source files.

With the Android build system (based on Gradle), the applicationId at-
tribute is used to uniquely identify application packages for publishing. The
application ID is set in the android section of the build.gradle file in com-
parison to Eclipse where the application ID is set in application manifest, also
the versionCode and versionName should be set in build.gradle file. Here
is an example build file (from my project):

apply plugin: ’com.android.application’

android {

compileSdkVersion 21

buildToolsVersion "21.1.2"

defaultConfig {

applicationId "cz.cvut.adameji4.smarthouse"

minSdkVersion 15

targetSdkVersion 21

versionCode 1

versionName "1.0"

}

19

1. State-of-the-art

buildTypes {

release {

minifyEnabled false

proguardFiles

getDefaultProguardFile(’proguard-android.txt’),

’proguard-rules.pro’

}

}

}

1.3.2 Android Studio Project

The project structure appearance is changed in comparison to Eclipse, that
was previous official IDE for developing Android applications. Each instance
of Android Studio contains a project with one or more application modules.
Each application module folder contains the complete source sets for that
module, including src/main directories, resources, build file and the Android
manifest. For the most part, you will need to modify the files under each
module’s src/main directory for source code updates, the gradle.build file
for build specification. In figure 1.6 you can see my Android project.

1.4 WebSocket

WebSocket is a protocol providing full-duplex communication channel over a
TCP connection. The protocol was standardized as RFC 6455[13] in 2011, and
the WebSocket API in Web IDL is being standardized by the W3C. The goal
of this technology is to provide a mechanism for browser-based applications
that need two-way communication with servers that does not rely on opening
multiple HTTP connections (e.g., using XMLHttpRequest or <iframe> and
long polling).

The WebSocket is desinged to be used in web browsers and web servers, but
can be used in any client-server application. The protocol is an independent
TCP-based protocol. The only relationship to HTTP is that its handshake is
recognized by HTTP servers as an Upgrade request. The WebSocket protocol
brings better possibility of communication between browser and web server,
facilitating live content and real-time gaming. This is psossible by providing
a standardized way for the server to send content to browser and allowing for
messages to be pushed both ways, from server to client and from client to
server.

Standard WebSocket communication is done over TCP port 80, which is
benefit for environments which block non-web connections by firewall.

To establish a WebSocket connection, the client initiates a WebSocket
handshake request, for which the server returns a WebSocket handshake re-

20

1.4. WebSocket

Figure 1.6: Example of Android Studio project structure

sponse, as you can see in following example, the example is taken from the
RFC web-page:

Client request:

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Origin: http://example.com

21

1. State-of-the-art

Server response:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

Sec-WebSocket-Protocol: chat

The client sends a Sec-WebSocket-Key which is a random value that has
been base64 encoded. To form a response, the GUID 258EAFA5-E914-47DA

-95CA-C5AB0DC85B11 is appended to this base64 encoded key. The base64
encoded key will not be decoded first. The resulting string is then hashed
with SHA-1, then base64 encoded. Finally, the resulting reply occurs in the
header Sec-WebSocket-Accept.

When the connection is established, the client and server can send Web-
Socket data or text frames back and forth in full-duplex mode. The data
is only minimally framed, with a small header followed by payload. Web-
Socket transmissions are described as ”messages”, where a single message can
optionally be split across several data frames. This can allow for sending of
messages where initial data is available but the complete length of the message
is unknown.

1.5 JSON

JSON is a shorthand for JavaScript Object Notation. It is an open standard
format for human-readable text used to transmit data objects consisting of
key-value pairs. JSON is primarily used to transmit data between a server
and web application. The JSON format was originally designed by Douglas
Crockford as an alternative to XML. JSON is currently described in RFC
7159[14] standard. The official internet media type is application/json.

1.5.1 Data types and format

JSON’s basic types are following:

• Number — a signed decimal number that may contain a fractional part
and may use exponential E notation.

• String — a sequence of zero or more Unicode characters. Strings are
delimited with double-quotation marks and support a backslash escaping
syntax.

• Boolean — either of the values true or false

22

1.5. JSON

• Array — an ordered list of zero or more values, each of which may be
of any type. Arrays use square bracket notation with elements being
comma-separated.

• Object — an unordered collection of key-value pairs where the keys are
strings. Since objects are intended to represent associative arrays, it is
recommended, that each key is unique within an object. Objects are
delimited with curly brackets and use commas to separate each pair,
while within each pair the colon ’:’ character separates the key from its
value.

• null — An empty value, using the word null

JSON generally ignores any whitespace around or between syntactic ele-
ments but not within a string value. JSON does not provide or allow any sort
of comment syntax. The following example shows usage of JSON representing
JSON object. The example is taken from the RFC page.

{

"Image": {

"Width": 800,

"Height": 600,

"Title": "View from 15th Floor",

"Thumbnail": {

"Url": "http://www.example.com/image/481989943",

"Height": 125,

"Width": 100

},

"Animated" : false,

"IDs": [116, 943, 234, 38793]

}

}

23

Chapter 2

Analysis and design

2.1 Analysis ot the server API

The hardware and its server API is provided by ELKO EP s.r.o company.
Their product is named ELAN RF and acts as local server which directs all
requests from clients to a particular devices and controls their states. The
ELAN RF is small embedded system with ARM processor running custom
version of linux. API for ELAN RF is running on HTTP server, which handles
all request in JSON format.

The server API is based on REST architecture. Root resource of the
server is /api which provides info about current API used on local ELAN RF
and links to other resources available to client. In my application prototype,
the mainly used resources are /api/rooms and /api/devices. The API also
provides address to WebSocket service running on ELAN RF, that provides

Figure 2.1: ELAN RF device (picture provided by ELKO EP s.r.o company)

25

2. Analysis and design

notifications about state changes.

2.1.1 WebSocket notifications

When the ELAN RF performs any change in its state, such as configuration
change or device state change, the WebSocket service sends to all connected
clients a message containing URL of the resource which state has changed. In
most cases, the changed resource is device’s state. The client should immedi-
ately fetch the new state and make appropriate changes in his user interface.

2.1.2 Rooms resource

The rooms resource represents all rooms available in a local smart house con-
troled by ELAN RF. The room resource itself contains information about its
type, its label and set of devices placed inside the room. Specific room resource
is on path /api/rooms/<room_id>. The room JSON representation:

{

"floorplan": {},

"room info": {

"type": "bathroom",

"label": "Bathroom"

},

"id": "room00396",

"devices": {

"HeatCoolArea": {

"coordinates": [

0.49686846137046814,

0.4689781069755554

]

},

"RGBBulb": {

"coordinates": [

0.5167014598846436,

0.46715328097343445

]

},

"Blinds": {

"coordinates": [

0.7223381996154785,

0.4197080135345459

]

}

}

}

26

2.1. Analysis ot the server API

2.1.3 Devices resource

In devices resource on path /api/devices are listed all devices available in
a local smart house. Specific device info is located on path /api/devices/

<device_id>. Every device is described by its type, product type and la-
bel. The main information about every device is what primary and second-
ary action it can perform and information about that action. For example
simple bulb has primary action on and secondary actions delayed on and
delayed off. Unfortunately the API does not guarantee that the type as-
signed to a device is correct, so the decision about correct device type is based
on what actions can the device perform. The following JSON represents dim-
mable light:

{

"device info": {..},

"actions info": {

"brightness": {

"type": "int",

"min": 0,

"max": 100,

"step": 10

}

},

"primary actions": ["brightness"],

"secondary actions": ["brightness"],

"settings": {},

"id": "RFDA11B"

}

As you can see, the device provides action brigthness which type is in-
teger. Minimal value is 0, maximal 100 and step is 10. The action is executed
by sending PUT request to the device resource containing following JSON:

{

"brightness": 20

}

If the request was successful, the server returns response with code 204 No
Content. If an internal error occurred, the response has code 500.

Every device provides a resource with information about its state on path
/api/devices/<device_id>/state. For example a dimmable light has fol-
lowing state:

{

27

2. Analysis and design

"brightness": 20,

"locked": false

}

This state means that the bulb is on 20% of its brightness and is not locked
so the client can change its state.

2.2 Design of data classes

After analyzing the server part, I started to design data classes according to
room and device resources from server. The figure 2.2 describes all data classes
and their relations.

2.2.1 Device class

The class Device is an abstract class which contains parameters that are com-
mon for all devices in ELAN RF system. The field deviceId is a unique ID
of a device among local ELAN RF server. Second field type is type of the
device, unfortunately it is not guaranteed that the type is correct so the ap-
plication can not rely on it. Field title contains name of the device and last
field locked defines if the device is in locked state. Locked state menas that
no one can change its state.

2.2.1.1 Light class

Light class describes a simple light which has only one field on. This field
maintains state if the light is switched on or off.

2.2.1.2 DimmableLight class

Dimmable light provides ability to change brightness of a light. It holds only
one field and that is the mentioned brightness.

2.2.1.3 RGBLight class

The RGBLight class is extending a DimmableLight class, so it can change
brightness. The RGBLight also provides functionality to change color of the
light. It has three fields red, green and blue. These three fields define the
color of the light in additive RGB model.

2.2.1.4 Blinds class

Blinds have only one field named roll_up that defines if the blinds are in
rolled up state. Unfortunately the ELAN RF does not provide better status
of blinds. It would be better if blinds had also information about whether

28

2.2. Design of data classes

Figure 2.2: Design of the data classes

they are actually in motion or not and whether they are fully rolled up or
down or in a middle position.

2.2.1.5 Thermo class

The Thermo class describes a Thermostat. Every thermostat has following
fileds: on, temperature, req_temperature and correction. The on field
indicates whether a thermostat is in operation. Temperature stores inform-
ation about actual temperature in a room. Third field req_temperature

contains what temeperature should be in the room according to temperature
plan. Last field correction contains a temperature correction against the
requested temperature.

2.2.2 Room class

Every room in the smart house is represented by Room class. A room is
identified by roomId which is unique among the local ELAN RF server. In
the filed type is stored a room type. Available room type values are: living

29

2. Analysis and design

room, bedroom, kitchen, dining room, child room, guestroom, hall, study,
workroom, bar, garage, garden, bathroom, toilet, laundry, misc, pool, cellar.
The last field title contains a name of the room that has been assigned by
an administrator.

2.3 Design of user interface

After discussion with my supervisor and after reviewing of the similar services,
we agreed to design the user interface as simple as it goes and according to the
standards of Android. I started to design the application interface by sketching
it on the paper and we discussed the sketches with my supervisor. After several
discussions we agrred on final design, that I redrawed in a computer in software
called Wireframe Sketcher.

2.3.1 Mobile application design

The mobile application is designed to reflect Android Material design, the
new design standard that Google introduced with Android Lollipop. Material
design introduced replacement for ActionBar, the Toolbar that can be placed
anywhere in the UI not only on the top of the screen. The Material design
also defines new standard in usage of colors within an application to provide
the best user experience. I followed all these standards.

In the mobile app, there are four screens with which the user interacts,
the relations between all screens are displayed in figure 2.3.

2.3.1.1 Loading screen

The loading screen is the first screen shown to user. This screen shows a
progress during loading of all data from server. When an error occurs, the
user is informed with an alert. User has acces to server settings through
settings button on Toolbar. The design sketch of loading screen is in figure
2.4.

2.3.1.2 Settings screen

The settings screen provides ability to add and remove server addresses. There
are two possibilities of adding new server. The first one is to add manually
new IP address. The second one is to run a search service, that searches the
local LAN for presence of a local server. In this screen the user should pick
which server he wants to control. This screen is shown in fugure 2.5.

30

2.3. Design of user interface

Figure 2.3: The relations between all screens

2.3.1.3 Room list

After all data is loaded, the room list is shown and a user can pick which room
he wants to control. The Toolbar provides two buttons, the first button opens
the wearable application and the second leads to settings. Figure 2.6 shows
the design sketch.

2.3.1.4 Room screen

When a user picks a room he wants to control a Room screen is displayed.
The room is represented by list of all devices that a user can control located
inside the room. Every device has specific view according to actions that the
device can perform.

2.3.2 Wearable application design

The wearable application is just like the mobile part designed according to
Material design. Google recommends to all developers to create wearable
applications with a minimum of control elements. User of a wearable app
should be able to perform all actions within 5 to 10 seconds. The controls
should be big enough to be operated during walk, run etc..

With my supervisor and the client (ELKO EP s.r.o company) we discussed
the requirements for the wearable application. The result of the discussion

31

2. Analysis and design

Figure 2.4: Loading screen Figure 2.5: Settings screen

was, that the main use case of the wearable app is turning on/off the lights.
Therefore the control element for light is a quite large bulb that works as a
toggle. The design is shown in figures 2.8 and 2.9. Other devices with more
difficult controls (such as thermostat) have expandable card with settings.
Figures 2.10 and 2.11 describe closed and opened states.

All devices are in the wearable application displayed as a 2D array. A
row represents a room and its devices. By swiping left or right user selects
device that he wants to control. Swiping up and down changes room. When
a device’s layout is in expanded state, the swiping is disabled in order to
facilitate control of the elements.

32

2.3. Design of user interface

Figure 2.6: Room list screen Figure 2.7: Room screen

33

2. Analysis and design

Figure 2.8: OFF state Figure 2.9: ON state

Figure 2.10: Default state Figure 2.11: Opened state

34

Chapter 3

Realisation

3.1 Used libraries

Before implementation of the application, my supervisor and I have discussed
which libraries will be good to use to avoid writing again things that already
exist and are debugged. The libraries and how are they used are listed in
following subsections.

3.1.1 Gson

Gson is a Java library developed by Google[15], that can be used to convert
Java Objects into their JSON representation. It can also be used to convert
a JSON string to an equivalent Java object. Gson provides:

• Simple toJson() and fromJson() methods to convert Java objects to
JSON and vice-versa.

• Allow pre-existing unmodifiable objects to be converted to and from
JSON.

• Extensive support of Java Generics.

• Custom representations for objects.

• Support arbitrarily complex objects.

At first I was thinking about using Gson library for all serialization and
deserialization tasks in the application. However, during the analysis of the
server I dicovered several issues that made it impossible.

The first issue was, that if you want to deserialize a JSON string into an
Object of abstract class (specifically the Device class) you have to implement
JsonDeserializer interface defined by Gson library and register it to Gson.

35

3. Realisation

The JsonDeserializer will then create correct subclass. It would be possible
if the device type was always correct, but the server does not guarantee it.

Second issue was in JSON representation of a device. The fields primary action

and secondary action are sometimes arrays of strings and sometimes arrays
of array of string. Here are the examples:

Actions for RGB light

"secondary actions": [

[

"red",

"green",

"blue",

"brightness"

],

"demo"

]

Actions for Thermostat

"secondary actions": [

"correction",

"mode",

"on"

]

Last issue was that the device’s JSON representation sent by server con-
tains field indetifiers with whitespace in it. This prevents direct deserialization
into an Object, because no standard Java Object can contain a whitespace
character inside a field name. It is not a fatal issue, because the mapping
between the JSON field and an Object field can be done also by annotating
the Object field with SerializedName anotation.

3.1.1.1 Usage of Gson library

Despite all the issues, the Gson library is used to serialize data transfers
between the mobile and wearable applications, because the serialization works
without issues. However, for the deserialization is used standard JSONObject

class provided by Android system.

3.1.2 Butterknife

The Butterknife library provides powerful View injection support by annota-
tions. Essentially Butterknife allows you to annotate the inflation of your
views and listeners so that you can get back to writing the code that really

36

3.1. Used libraries

matters[16]. Unlike the Roboguice library, Butterknife annotations are pro-
cessed at compile time so there is no performance impact.

The injection is invoked by static method Butterknife.inject(this).
For example in Activity, you should annotate the views to be injected with
@InjectView(R.id.view) annotation and then in Activity’s onCreate metod
call Butterknife.inject(this). The Butterknife takes care about finding
the appropriate view and casting to correct type.

The standard view finding approach

public class MyActivity extends Activity {

private TextView myText;

private Button myButton;

public void onCreate(Bundle state) {

...

myText = (TextView) findViewById(R.id.text);

myButton = (Button) findViewById(R.id.button);

}

}

Approach with Butterknife

public class MyActivity extends Activity {

@InjeectView(R.id.text)

TextView myText;

@InjeectView(R.id.button)

Button myButton;

public void onCreate(Bundle state) {

...

ButterKnife.inject(this);

}

}

3.1.3 Crashlytics

Crashlytics is a complex crash reporting tool for Android and iOS platforms.
It offers detailed report about every crash that happens in your application.
Often, the cause of crashes goes beyond the device model or operating system.
With Crashlytics, you gain even deeper insights – for example, if an app only
crashes in landscape mode, or if the proximity sensor is always on. You
can resolve crashes caused by more complex factors, like rooted or jailbroken
devices, memory, version-specific issues, etc. – factors you would not otherwise
have visibility into. By having this insight, you would be able to ignore an issue

37

3. Realisation

that only occurs on jailbroken devices or focus on how things like orientation
and memory can be indicative of what is causing the crash.

The crashlytics reporting system is used in over one milion applications[17].
It is really fast evolving and expanding report system. Crashlytics also provides
a tool for beta testing called Beta. It allows you to distribute your applica-
tion to selected beta testers. If a beta tester encounters an error, the error is
immediately delivered to your dashboard with crash reports.

3.1.4 Java-WebSocket library

This library offers an impelemtation of an abstract WebSocket client and
server. The client has to implement only four methods to be able to connect
to the server and receive messages. These methods are: onOpen, onClose,
onError and onMessage. The onMessage(String message) is the most im-
portant, becase it is triggered every time a new message is received.

3.1.5 Android Holo ColorPicker

Holo ColorPicker provides implemented color picker in a Holo design created
by Lars Werkman. The library is published under Apache 2.0 license. This
library is used to allow users to pick and change color of RGB light bulbs.
The usage is shown in figure 3.1.

Figure 3.1: Implemetation of the Color picker

38

3.2. Implementation of the mobile application

3.2 Implementation of the mobile application

The mobile application is based on one main activity and four fragments. The
fragments represent screens described in the design subsection 2.3. Important
parts of the application are also two services, which handle data processing
in background and API client that communicates with the server. All the
important parts are described in following subsections.

3.2.1 MainActivity

The MainActivity is the only activity in the mobile application. It is the
main communication link between the frontend application and background
services. The activity takes care about appropriate changing of fragments and
displaying menu.

When the activity is started, in the method onStart it bounds background
service (DataUpdateService) and makes a ServiceConnection to it. The
ServiceConnection is used to communicate with the service and invoke its
methods.

The activity also implements a local broadcast receiver, used to receive
broadcasts from the background service. After a broadcast is received, the
activity handles its content and according to its type performs action. For
example if the Wifi connection is lost, the activity closes all fragments and
shows notification that the user has to be connected to Wifi in order to control
devices.

3.2.2 Fragments

In the mobile application are only four Fragments. The first one called
SplashFragment, is shown at the start of the application and shows a progress
circle and a text that the application is loading data from server. If an error
occurs during the loading, this fragment shows appripriate error message and
gives a user possibility to initiate the loading again.

From this fragment user can navigate to the SettingsFragment. In the
SettingsFragment the user may change the server to which he want to con-
nect. It is possible to start a search through a local network, that will find all
servers connected to it.

The third fragment is RoomListFragment that contains a list of all rooms in
a smart house. User can pick which room to open and get to the RoomFragment
which will show all devices that can be controlled from the application.

3.2.3 WebSocketService

The WebSocketService is an implementation of a WebSocket client provided
by Java-WebSocket library. It defines OnWSMessageListener interface, that
is used to inform about a new WebSocket meesage received by the client.

39

3. Realisation

3.2.4 WearUpdateService

WearUpdateService is subclass of WearableListenerService that is imple-
mented in Google Wear API. The service receives all messages sent from wear-
able to the handheld. During the creation of this service a ServiceConnection
to the DataUpdateService is created, so all messages are redirected to it. If
the ServiceConnection is not created yet and some message is received, the
message is put in a queue and delivered after the creation.

3.2.5 DataUpdateService

DataUpdateService is the main service of the mobile application. This ser-
vice keeps all data about rooms and devices. The data classes are described
in section 2.2 Design of data classes. When the service is created, it starts an
ApiCall(described in subsection 3.2.6) to the server and fetches all informa-
tion about rooms and devices and also an address of the WebSocket server.
The address is used to start a WebSocketService. The DataUpdateService

impelemts OnWSMessageListener interface, so every new WebSocket message
is delivered to it and the service itself handles every message.

The service also handles all messages received from handheld as was de-
scribed in the previous subsection.

3.2.6 ApiCall

An ApiCall is a class that extends AsyncTask and handles all requests to the
local server. Basically it is a HTTP client that takes a Request, executes it
and creates appropriate Response. The main work takes place in a background
thread and the result is sent back in the UI thread.

3.2.6.1 Request

Request is an abstract class that represents a request that should be sent to
a server. It contains:

• address to which it should be sent

• HTTP method that should be used (default GET)

• content type (default set to application/json)

The Request class defines two abstract methods, toBytes which should
return data that will be sent to the server and createResponse whose return
type is an abstract class Response.

40

3.2. Implementation of the mobile application

The following list contains all subclasses of Request.

• GetAPIRequest - A request that retrieves information about API
from the server.

• GetRoomsRequest - Request that retrieves all rooms in the smart
house.

• GetRoomRequest - Request that retrieves information about specific
room.

• GetDeviceRequest - Request that retrieves information about specific
device.

• GetDeviceStateRequest - Request that retrieves information about
device’s state.

• UpdateDeviceRequest - Request that sends new device state to the
server.

3.2.6.2 Response

Response is an abstract class that contains all data retrieved from server after
a specific Request was sent. The Response contains the URL of the request
and HTTP status code. This class defines abstract method parse(String input)

which should handle the input data retrieved from server and parse them into
corresponding data class.

In the following list are all subclasses.

• GetAPIResponse - Response that handles information about server
API and returns APIEndpoints object.

• GetRoomsResponse - Response that returns list of all room’s IDs.

• GetRoomResponse - Response that returns parsed Room object.

• GetDeviceResponse - Response that returns parsed Device object.

• GetDeviceStateResponse - Response that fills Device with inform-
ation about its state.

• UpdateDeviceResponse - Response that returns a new device’s state.

All the parsing is quite trivial except for parsing a Device, because it
is a abstract class. The parsing has to handle creating corresponding sub-
class of the Device class. It is solved in a Device’s static method called

41

3. Realisation

createDeviceFromJson that resolves the appropriate device type from ac-
tions list. As I have described the issues with JSON returned from the server
in the subsection 3.1.1 Gson, the list of actions does not have a fixed structure.
I therefore created a static method addActions that iterates through the ac-
tions list and if the item is also a list, the method recursively calls itselt, if
the item is a String it is added to an output set. After the recursive method
returns the output set, the corresponding subclass is created, depending on
what actions the set contains.

3.3 Implementation of the wearable application

In the wearable application are two activities, MainActivity and RoomActivity,
both extend from BaseActivity. The base parts of the application are also
two services DataUpdateService and WearUpdateService.

3.3.1 BaseActivity

The abstract class BaseActivity contains methods used to bind to the
DataUpdateService and create a ServiceConnection with the same purpose
as MainActivity in the mobile application.

3.3.2 MainActivity

MainActivity is used in the same way as the SplashFragment in the mobile
app. It waits until data is received in the DataUpdateService from the mobile
application. If an error occurs, its description is shown and a restart button
appears. If the wearable is not paired with any handheld, the data load does
not even start.

3.3.3 RoomActivity

After all data is received the RoomActivity is opened. The activity contains
a GridViewPager that is basically a 2D array of Fragments as described in
subsection 2.3.2. Every row represents one room in the smart house. Frag-
ments in a first column of every row contains name of the room and fragment
in the last column contains button that opens the specific room in the mobile
application. Every fragment between the first and last represents one device
and takes care about its control.

The device fragments are:

• LightFragment - Fragment that represents a simple light with on/off
functionality.

42

3.4. Communication between wearable and mobile applications

• DimmableLightFragment - Fragment that represents a light with ad-
justable brightness.

• RGBLightFragment - Fragment that represents a light that can change
colors and brightness.

• BlindsFragment - Fragment that controls blinds. Blinds can roll up,
down or stop the movement.

• ThermoFragment - Fragment that represents a thermostat. It shows
actual temperature in room, requested temperature and allows correc-
tion of the requested temperature from -5◦C to +5◦C.

3.3.4 WearUpdateService

The WearUpdateService has the same purpose as in the mobile application
described in subsection 3.2.4.

3.3.5 DataUpdateService

DataUpdateService from the wearable app is also very similar to the
DataUpdateService from the mobile app, but it does not communicate dir-
ectly with the server. The wearable service communicates with the mentioned
DataUpdateService from the mobile application and it provides the wearable
service all data. The mobile service acts as intermediary in all communication.
If a user of the wearable app wants to switch a light off, a request is sent to
the mobile service and it forwards the request to the server. It is because the
wearable application itself can not open any network connection.

When the wearable DataUpdateService is created, it checks if the wear-
able is paired with a handheld. If it is paired, the wearable service initiates
a data transfer from mobile service by sending an asynchronous request. The
mobile service should send back a response containing all rooms and devices.
If an error occurs the response contains an error code describing what error
happened. If no response is received until a timeout is reached, the wear-
able service assumes that the connection was corrupted and a loading error is
shown.

3.4 Communication between wearable and mobile
applications

The wearable and mobile applications are two separate modules that have
to communicate with each other to be kept informed. The communication
is performed through Google Wear API contained in Google Play Services,
specifically through Messages API. The Messages API offers point to point
message delivery.

43

3. Realisation

Figure 3.2: The procedure of a state change from wearable application.

3.4.1 Device state change

When the device state is changed from the mobile application, the mobile
service sends the state change request to the server. If the request successes,
the mobile service sends a state update to the wearable service if there is a
wearable connected.

If the state is changed from the wearable application, the wearable service
has to send request to the mobile service. The mobile service then sends the
state change request to the server. If the request successes, the mobile service
sends a state update back to the wearable. This procedure is described in the
sequential diagram in figure 3.2.

When the state change happens outside of the wearable and mobile applic-
ations, the mobile WebSocketService should receive a message from ELAN
WebSocket server that a change occurred. The message contains URL of the
resource that has changed state. The mobile service should fetch new state
and then send it to the wearable service if there is a wearable connected.
The procedure initiated by WebSocket message is described in the sequential
diagram in figure 3.3.

44

3.4. Communication between wearable and mobile applications

Figure 3.3: The procedure of a state change from WebSocket message.

45

Chapter 4

Testing

This chapter describes possibilites of testing an Android application and how
the methods were applied. The chapter also contains section about usability
testing of the application on users.

4.1 Testing on Android

The Android SDK provides powerful testing tools based on JUnit, extended
with Instrumentation framework and specific Android testing classes such as
AndroidTestCase or ActivityUnitTestCase[18]. The diagram 4.1 summar-
izes the Android testing framework. The SDK also provides monkeyrunner, an
API for testing devices with Python programs, and UI/Application Exerciser
Monkey, a command-line tool for stress-testing UIs by sending pseudo-random
events to a device.

For testing the application two types of tests were used. First type are
JUnit tests based on base class AndroidTestCase. These tests are targeted
on testing communication with the server, which is performed by ApiCall

class, described in subsection 3.2.6. Second type are Instrumentation tests
based on class ActivityInstrumentationTestCase2. These tests are testing
Fragments and their UI, for example if a Widget responds correctly and is on
right place. Instrumentation testing is independent on Android lifecycle.

4.2 Usability testing

Jakob Nielsen (a usability guru) considers User tests more useful than Usabil-
ity tests. He wrote: Elaborate usability tests are a waste of resources. The best
results come from testing no more than 5 users and running as many small
tests as you can afford [19].

According to the graph 4.2, testing with 5 users reveals about 80% of all
usability problems. With every other user, we learn less about the usability,

47

4. Testing

Figure 4.1: The Android testing framework.

48

4.2. Usability testing

Figure 4.2: Number of problems found depending on number of users.

because the problems will overlap.

4.2.1 Usability Heuristic

Before the testing on actual users I performed a usability heuristic evaluation
that introduced Jakob Nielsen[20]. The heuristic has following points:

• Visibility of system status - The system should always keep users
informed about what is going on, through appropriate feedback within
reasonable time.

• Match between system and the real world - The system should
speak the users’ language, with words, phrases and concepts familiar to
the user, rather than system-oriented terms. Follow real-world conven-
tions, making information appear in a natural and logical order.

• User control and freedom - Users often choose system functions by
mistake and will need a clearly marked ”emergency exit” to leave the
unwanted state without having to go through an extended dialogue.
Support undo and redo.

• Consistency and standards - Users should not have to wonder whether
different words, situations, or actions mean the same thing. Follow plat-
form conventions.

49

4. Testing

• Error prevention - Even better than good error messages is a careful
design which prevents a problem from occurring in the first place. Either
eliminate error-prone conditions or check for them and present users with
a confirmation option before they commit to the action.

• Recognition rather than recall - Minimize the user’s memory load
by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily retrievable
whenever appropriate. (Read full article on recognition vs. recall in
UX.)

• Flexibility and efficiency of use - Accelerators – unseen by the novice
user – may often speed up the interaction for the expert user such that
the system can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.

• Aesthetic and minimalist design - Dialogues should not contain
information which is irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the relevant units of information
and diminishes their relative visibility.

• Help users recognize, diagnose, and recover from errors - Error
messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

• Help and documentation - Even though it is better if the system can
be used without documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search, focused
on the user’s task, list concrete steps to be carried out, and not be too
large.

The only problem in my application is that it does not have Help screen.
However it is quite simple app, so I assume that it is not a fatal error.

4.2.2 User testing

The user testing was performed on six users of different ages and different
technical skills. Testing was also attended by representatives of the client.
The testers received list of tasks and I watched their progress. The tasks
were:

• Start the mobile application and find local server.

• Open Bathroom and change the temperature to 25◦C on mobile phone.

• Change the bulb color to green on mobile phone.

50

4.2. Usability testing

• Turn off the main light in Living room on the smart watch.

• Change the brightness of a bulb to 60% on a smart watch.

The first problem that occurred was that the users were not familiar with
smart watches. At first the had problems with navigation in the wearable
application. However no changes were made, because the navigation is made
according to standards defined by Google. After few minutes of work with
the smart watches the users learned to control the wearable application quite
well. With the mobile application, there were no problems at all.

The testing was quite positive and the representatives of the client were
really pleased by the work that has been done.

51

Conclusion

After a lot of work done on desing and development of this application pro-
totype, the prototype is fully functional. The development of the mobile
and wearable applications was successful and all planned features were imple-
mented. Also all functional and non-functional requirements were met. The
analysis revealed few problems with the server API developed by the client,
but all of them were solved. Durign design of the application, my super-
visor and I discussed a lot about user interface and its correct design, because
the usability on smart wacthes was the most importatnt requirement for the
application.

I have chosen this masters’s thesis topic beacause I wanted to learn how
to develop applications for Android Wear platform. I think that in the near
future the demand for Android Wear developers will grow. Also the topic is
really interesting, it is expected to use the latest technology and develop an
application for high tech fast growing company ELKO EP s.r.o..

When the development was finished and we (my supervisor and I) presen-
ted the final application prototype to the clients, they were really pleased.
They want us to continue to cooperate and participate in the further devel-
opment of a new application based on this prototype.

53

Bibliography

[1] Loxone. THE LOXONE SOLUTION. 2015, [Cited 2015-04-15]. Available
from: http://www.loxone.com/enen/start.html

[2] Nest. 365 Days with Nest. 2015, [Cited 2015-04-15]. Available from:
https://nest.com/thermostat/life-with-nest-thermostat/

[3] Lucis Technologies Inc. NuBryte FAQ. 2015, [Cited 2015-04-15]. Available
from: http://www.nubryte.com/faq

[4] IDC. Smartphone OS Market Share, Q4 2014. February. Available from:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[5] Ben Elgin. Google Buys Android for Its Mobile Arsenal. August 2005,
[Cited 2015-04-10]. Available from: http://www.businessweek.com/
stories/2005-08-16/google-buys-android-for-its-mobile-

arsenal

[6] Google Inc. App Framework. February 2015, [Cited 2015-05-01]. Available
from: http://developer.android.com/about/versions/index.html

[7] Google Inc. Platform Versions. April 2013, [Cited 2015-04-16]. Available
from: http://developer.android.com/about/dashboards/index.html

[8] Google Inc. Activities. 2015, [Cited 2015-04-25]. Available from: http:

//developer.android.com/guide/components/activities.html

[9] Google Inc. Fragments. 2015, [Cited 2015-04-25]. Available from: http:

//developer.android.com/guide/components/fragments.html

[10] Google Inc. Services. 2015, [Cited 2015-04-25]. Available from: http:

//developer.android.com/guide/components/services.html

55

http://www.loxone.com/enen/start.html
https://nest.com/thermostat/life-with-nest-thermostat/
http://www.nubryte.com/faq
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://www.businessweek.com/stories/2005-08-16/google-buys-android-for-its-mobile-arsenal
http://developer.android.com/about/versions/index.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html

Bibliography

[11] Dante D’Orazio. Google reveals Android Wear, an operating system for
smartwatches. March 2014, [Cited 2015-04-17]. Available from: http:

//www.idc.com/prodserv/smartphone-os-market-share.jsp

[12] Google Inc. Android Studio Overview. 2015, [Cited 2015-04-22]. Available
from: http://developer.android.com/tools/studio/index.html

[13] Internet Engineering Task Force (IETF). The WebSocket Pro-
tocol. December 2011, [Cited 2015-04-10]. Available from: http://

tools.ietf.org/html/rfc6455

[14] Internet Engineering Task Force (IETF). The JavaScript Object Nota-
tion (JSON) Data Interchange Format. March 2014, [Cited 2015-04-10].
Available from: http://tools.ietf.org/html/rfc7159

[15] Google Inc. Google-gson. May 2015, [Cited 2015-05-01]. Available from:
https://code.google.com/p/google-gson/

[16] Trey Robinson. 5 Reasons You Should Use Butterknife For An-
droid. September 2013, [Cited 2015-05-01]. Available from: https://

code.google.com/p/google-gson/

[17] Wayne Chang. Milestone Achieved: Over 1 Million Apps! April 2015,
[Cited 2015-05-01]. Available from: http://www.crashlytics.com/blog/
milestone-achieved-over-1-million-apps

[18] Google Inc. Testing. May 2015, [Cited 2015-05-02]. Available from: http:
//developer.android.com/tools/testing/index.html

[19] Jakob Nielsen. Why You Only Need to Test with 5 Users. March 2000,
[Cited 2015-05-01]. Available from: http://www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/

[20] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Janu-
ary 1995, [Cited 2015-05-01]. Available from: http://www.nngroup.com/
articles/ten-usability-heuristics/

56

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://developer.android.com/tools/studio/index.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc7159
https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
http://www.crashlytics.com/blog/milestone-achieved-over-1-million-apps
http://www.crashlytics.com/blog/milestone-achieved-over-1-million-apps
http://developer.android.com/tools/testing/index.html
http://developer.android.com/tools/testing/index.html
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/

Appendix A

Acronyms

GUI Graphical user interface

UI User interface

app Application

apps Applications

API Application programming interface

SDK Software development kit

JSON JavaScript Object notation

RAM Random access memory

VM Virtual machine

IDE Integrated development environment

GUID Globally unique identifier

XML Extensible markup language

REST Representational state transfer

RGB Red, green, blue

HTTP Hypertext transfer protocol

URL Uniform resource locator

FAQ Frequently asked questions

57

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
bin...the directory with binaries
src.......................................the directory of source codes

app...implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

	Introduction
	Definition of the task
	Requirements
	Review of similar services

	State-of-the-art
	Android
	Android Wear
	Android Studio
	WebSocket
	JSON

	Analysis and design
	Analysis ot the server API
	Design of data classes
	Design of user interface

	Realisation
	Used libraries
	Implementation of the mobile application
	Implementation of the wearable application
	Communication between wearable and mobile applications

	Testing
	Testing on Android
	Usability testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

