
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

API for Code Generation and Refactoring

Jakub Nesveda

Supervisor: Ing. Jan Vraný, Ph.D.

5th February 2015

Acknowledgements

Many thanks to my supervisor Ing. Jan Vraný, Ph.D. for his leadership and
support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 5th February 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Jakub Nesveda. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nesveda, Jakub. API for Code Generation and Refactoring. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2015.

Abstrakt

Při vývoji softwaru se může programátor setkat s d́ılč́ımi úlohami, které se
velmi často opakuj́ı, např́ıklad přejmenováńı proměnné, implementace metod
pro existuj́ıćı rozhrańı nebo tvorba testovaćıch př́ıpad̊u. To může být únavné
a časově náročné, a proto jsme navrhli a implementovali API pro generováńı
kódu a refaktoring v prostřed́ı Smalltalk/X. Přestože STX již obsahuje takové
nástroje, jejich API neńı př́ılǐs uživatelsky př́ıvětivé. V této práci prezen-
tujeme, jak je API navrženo a jak programátor může použ́ıt toto API k
vytvořeńı generátor̊u kódu nebo refaktorováńı.

Kĺıčová slova API pro generováńı kódu, API pro refaktoring, Smalltalk/X,
Podpora programováńı

Abstract

During coding a programmer can face many repetitive tasks such as renaming
variables, creating methods to implement an interface or creating test cases.
This can be tedious and time consuming so we designed and implemented API
for code generation and refactoring in Smalltalk/X. Although STX contains
tools for such a task, they do not provide much user-friendly API. In this work

ix

we present how is API designed and how a programmer can use this API to
create code generators or refactorings.

Keywords Code generation API, Refactoring API, Smalltalk/X, Code As-
sistants

x

Contents

Introduction 1

Motivation . 1

API . 1

Code generation and refactoring . 2

1 Original state 3

1.1 Package structure . 3

1.2 Code generators . 5

1.3 Refactoring . 7

2 Analysis 9

2.1 Integration with IDE . 9

2.2 Class CodeGeneratorTool . 10

2.3 Package Refactory Browser . 13

2.4 Method rewriter . 15

3 API in a nutshell 17

3.1 Usage in the IDE . 17

3.2 Usage inside a code . 18

3.3 Custom code generator . 19

3.4 Custom refactoring . 23

3.5 Overall schematic overview . 24

4 API design 27

4.1 Template class . 27

4.2 Class model . 29

4.3 Context . 30

4.4 Perspective . 32

4.5 Refactoring helper . 32

4.6 Formatter . 33

xi

5 Implementation 35
5.1 Generator or refactoring composition 35
5.2 Integration with IDE . 36
5.3 Class model extensions . 37
5.4 Refactoring helper . 39

6 Testing 41
6.1 Mocks and stubs . 42
6.2 Generators or refactorings tests 43
6.3 Testing summary . 44

Conclusion 45
Future improvements . 45

Bibliography 49

A Acronyms 51

B Contents of enclosed CD 53

xii

List of Figures

1.1 Old code generator class design . 5

3.1 Usage of TestCase setUp method code generator 18
3.2 Context menu building flowchart with marked extension points . . 25
3.3 Code generator or refactoring execution flowchart with marked ex-

tension points . 26

4.1 Code generator or refactoring template class 28
4.2 Class model . 30
4.3 Context and perspective class diagram 31
4.4 CustomRefactoryBuilder class diagram 33

5.1 Shared objects diagram at the point of generator or refactoring
execution . 36

6.1 Code coverage . 42

xiii

Introduction

Automating repetitive programming tasks is key goal to improve productiv-
ity. Within this thesis we are focusing on code generation and refactoring
in Smalltalk/X environment. Primary goal is to design and implement API
which will programmers use to create their own code generators or refactorings
with possibility to integrate them in STX IDE. Secondary goal is to create
bunch of code generators and refactorings in order that we verify the usage of
the API. This chapter briefly describes why the new API was introduced and
explains essential terms related to this work.

Motivation

STX allows creating code which performs a refactoring or generates new source
code. If we would like to create a script which would add a method to existing
class then it is easy as calling one method. This would be fine unless we will
need something more like reuse script via click-able item in STX IDE. Old
fashion way to do it in STX requires direct modification of IDE menu which
hard to maintain and programmer needs to know where the menu definition is
located. The new API solves seamless integration with IDE and other aspects
related with changing source. Creating code to generate e.g. method should
be easy as implement well designed API.

API

Application programming interface [1] is a specification how to use or imple-
ment a software component. We defined interface which should be implemen-
ted by a code generator or refactoring. The interface itself consists of template
class (4.1) which should be inherited and methods to be overridden. Therefore
each code generator or refactoring should be represented by Smalltalk class.

1

Introduction

Another part of API focuses on code generation or doing refactoring itself
and is designed more like a library. STX already offers comprehensive code-
base for this task. We extended existing API to archive better usability and
possibility to provide custom implementation.

We figured out that testing single code generators or refactorings is a bit
complicated when doing from scratch so we created testing API (6.2). With
a few lines of code and without side effects is possible to test modifications in
the source code.

Code generation and refactoring

Both code generation and refactoring are meant to change the source code.
However they have lot in common within our API we distinguish between
them semantically. Code generator should create new code to deliver new
functionality, but refactoring [2] should modify the code without changing its
outer behaviour. In practice this difference is not so strict. We can do, for
example, a refactoring where the original API is kept and we add a little more
functionality. As a result, the behaviour is slightly modified, but API is still
backward compatible. For example, if we replace a constant string with the
translation call then we consider it more like a refactoring in scope of our API.

2

Chapter 1

Original state

STX has variety of options how to automatically create or modify the source
code. Some of them are even usable via click-able menu item in the IDE. We
will describe the API beyond this thesis, because the new API is essentially
based on top of this.

1.1 Package structure

Two main branches coexist together in STX to support codebase modifica-
tions. Both offer similar functionalities which leads to duplication. They will
be probably merged together in the future to make the API more consistent.

The first one lives in packages stx/libbasic, stx/libbasic3, stx/libcomp
where stx/libbasic contains fundamental classes like ClassDescription

with methods to change codebase. Every Smalltalk class inherits from this
class thus we can directly call methods to add a method and class 1.1.

”To add a method”
MyClass compi le : code c l a s s i f i e d : category .

”To add a s u b c l a s s ”
MyClass s u b c l a s s : nameSymbol

instanceVariableNames : instVarNameString
c lassVar iableNames : c l a s s Va rS t r i n g
p o o l D i c t i o n a r i e s : pool
category : cat .

Code 1.1: Creation of a method and class

In fact method ”compile:classified:” is delegated to the compiler class which
is for Smalltalk language located in stx/libcomp along with parser and AST
classes. In order to be complete, STX contains also compilers for other lan-

3

1. Original state

guages like Java or JavaScript. Package stx/libbasic3 has among other
change classes which serve the same purpose as described in subsection 1.1.2.

The second one lives in the package stx/goodies/refactoryBrowser and
provides more extensive API than the branch noticed above. Little inconveni-
ence could be focus on just Smalltalk language. Its API divides into sub-
packages which we briefly describe.

1.1.1 Browser

Refactory Browser library was imported from VisualWorks [3] and this sub-
package mostly contains GUI for performing refactorings. The GUI became
obsolete as the operations were integrated with STX IDE except several GUI
classes like MethodNameDialog.

Important dependency to packages below is class BrowserEnvironment

and its subclasses. They represent the environment (classes and methods) on
which we operate.

1.1.2 Changes

Classes in this sub-package represents codebase modifications. In other words,
when we add/modify a method or class then it is stored in a class instance.
Key API is to perform the change to the system or undo it.

1.1.3 Helpers

This sub-package is the meta-model for classes (RBClass, RBMetaclass) and
methods (RBMethod). Class RBNamespace serves as collector for their in-
stances. Main purpose is to provide Class and Method API which lives in
the Smalltalk environment (i.e. real system classes) with respect to non per-
formed changes. For example, when we add a method to the meta-model and
then ask the class if the method exists then the meta-model class should re-
turn true, but the Smalltalk environment is still without the method until we
actually perform the change.

1.1.4 Lint

Sub-package contains rules which detect bad programming style or probable
coding mistakes. However this sub-package is not much relevant code to this
work, we will notice it, because it is part of Refactory Browser.

1.1.5 Parser

Offers similar Smalltalk language parsing and AST nodes like the parser in
package stx/libcomp, but is enhanced with pattern searching and rewriting.

4

1.2. Code generators

The search pattern looks similar to regular expression pattern, but specializes
in searching source code fragments [4].

1.1.6 Refactoring

Majority of classes represents individual refactoring operations like rename
variable or extract method. These refactorings depend on precondition classes
which validates if the refactoring can be performed.

Search pattern rule classes are also part of this sub-package. They serve
source code search and replace purpose noticed above 1.1.2 .

1.2 Code generators

Code generators are written as single methods in classes CodeGeneratorTool,
SmalltalkCodeGeneratorTool and JavaScriptCodeGeneratorTool. In Fig-
ure 1.1 is simplified class design and important dependencies within STX
(complete specification includes much more methods).

Figure 1.1: Old code generator class design

As you can see, class CodeGeneratorTool is meant to be abstract class
which implementers should be specific for different programming languages
(SmalltalkCodeGeneratorTool and JavaScriptCodeGeneratorTool). Each
metaclass [5, page 40] responds to method codeGeneratorClass which should
return proper generator class for programming language of the class.

Detailed view of code 1.2 shows basic structure of a generator within
method. This concrete example creates method acceptVisitor: for given
class. Source code is built as string with expanded place-holders and then
passed to the method compile:forClass:inCategory:. Here is transformed
into the change object 1.1.2 and then applied to the system. Additional option
canUseRefactoringSupport skips Refactory Browser and uses firstly noted
branch (1.1).

createAcceptVis i torMethod : s e l e c t o r in : aClass
withParameter : withParameter

5

1. Original state

s e l f a s s e r t : (aClass isMeta not) .

(aClass i n c l u d e s S e l e c t o r :# ’ a c c e p t V i s i t o r : ’) i f F a l s e
: [
s e l f

compi le :
((’ a c c e p t V i s i t o r : v i s i t o r %2

”Double d i spatch back to the v i s i t o r , pas s ing my
type encoded in

the s e l e c t o r (v i s i t o r pattern) ”

” stub code automat i ca l l y generated − p l e a s e change
i f r equ i r ed ”

ˆ v i s i t o r %1 s e l f %2
’) bindWith : s e l e c t o r with : (withParameter i fTrue : [’ with :

parameter ’] i f F a l s e : [’ ’]))
f o r C l a s s : aClass
inCategory :# v i s i t i n g .

]

Code 1.2: generates acceptVisitor: method

1.2.1 IDE Integration

Integration with IDE is done directly in the class Tools::NewSystemBrowser.
Pop-up menu item (code example 1.3) holds code generator name, methods to
tell click-ability and execution method – classMenuGenerateAcceptVisitor

which calls the method from class SmalltalkCodeGeneratorTool for each
selected class.

MenuItem
enabled : hasC la s sSe l e c t edHo lde r
l a b e l : ’ V i s i t o r Method ’
itemValue : c lassMenuGenerateAcceptVis i tor
t r a n s l a t e L a b e l : t rue
i s V i s i b l e : hasNonMetaSelectedHolder

Code 1.3: Menu item for acceptVisitor: method code generator

6

1.3. Refactoring

1.3 Refactoring

Refactoring operation (1.1.6) represents a subclass of the class Refactoring

which requires methods preconditions and transform to be implemented.
From required protocol we could sense that preconditions is called first to
check if refactoring can be performed and then transform produces the change
objects (1.1.2). All necessary actions are wrapped within the execute method
which also applies the changes to the system.

Binding with STX IDE resembles to what we described in the section above
(1.2). Interesting difference is that Tools::NewSystemBrowser initializes a
refactoring object with some data like selected class or source and then calls
its method performRefactoring: which applies the changes to the system
(code example 1.4).

codeMenuExtractMethod
s e l f withCurrentMethodsClassAndSelectorDo : [: mClass :

mSelector |
| r e f a c t o r i n g |

r e f a c t o r i n g := (ExtractMethodRefactor ing
e x t r a c t : (s e l f

s e l e c t e d I n t e r v a l)
from : mSelector
in : mClass) .

r e f a c t o r i n g source : s e l f codeView
contentsAsStr ing .

s e l f per formRefactor ing : r e f a c t o r i n g .
]

Code 1.4: Menu action for extract method refactoring

7

Chapter 2

Analysis

Previous chapter gave us an idea how is designed the older API. We will
analyse the disadvantages and inconveniences from our point of view in this
chapter. We identified roles which can treat code generators or refactorings
in different ways.

• The creator (programmer) of generators/refactorings

• The tester of generators/refactorings

• The user who run generators/refactorings from STX IDE

2.1 Integration with IDE

We can see (1.2.1) that we need to add a menu item directly in the par-
ticular method within Tools::NewSystemBrowser. Since the menu is glob-
ally shared between developers it is hard to achieve customization. Further-
more extending the menus requires additional knowledge of MenuItem and
Tools::NewSystemBrowser which is kind of a big bunch of methods (2198 1).

When we already succeed to create a menu item then we need to pass
some data to our code which is, for example, selected classes in the IDE.
Most of them holds Tools::NavigationState which is instance variable of
Tools::NewSystemBrowser. The data can be retrieved from methods of the
browser or directly from its navigation state. This can lead to tight coupling
[6, chapter 2] if we do not have any interlayer. We also need to find appropriate
method between many of them and understand how it works. Code example
1.4 shows how could be the data from the browser retrieved and used. In
conclusion, we can say that it is a bit hard work to extend browser with new
code generator.

1STX version 6.2.5, including extension methods from other packages

9

2. Analysis

2.2 Class CodeGeneratorTool

At first glance this class and its implementation SmalltalkCodeGeneratorTool

looks like the God object 2 anti-pattern which knows all about code genera-
tion. If we take a closer look then we can see that it contains a few utility
methods for code generation and bunch of methods which actually generates
the source code.

Having each code generator written in a method within one class tends to
include all the logic in here. This can lead to overly complicated code which
is hard to test and understand. On the other hand, splitting the code into
more methods would make the class bigger and less understandable. In code
example 2.1 from SmalltalkCodeGeneratorTool we can see that putting all
logic in one method produces complicated code.

Another inconvenience could be with adding new generators. Following
the path outlined by CodeGeneratorTool we would need to define abstract
method and then its implementation in each programming language. Small-
talk allows adding a method to a class from another package and these kind
methods are called extension methods. This makes the task easier, but still
we can sense that bloating the class does not follow good programming prac-
tices. If a programmer decides to bypass it and create its own implementations
somewhere else then we are likely facing incompatibilities and hard to reuse
the code in case of another programmer will do the same thing.

Idea that one abstract code generator (CodeGeneratorTool) specifies all
what can be generated by subclass responsibility [5, page 88] is misleading. We
would expect that every programming language specific implementation will
have required methods, but this cannot be easily achieved. Due to many meth-
ods (61 3) with required implementation, creating a new subclass for another
language is difficult task. Probably part of the required methods will have no
usage for specific language. For example, class JavaScriptCodeGeneratorTool
does not implement all required methods and lots of code is copy from class
SmalltalkCodeGeneratorTool which throws parse exception. Nevertheless,
having same method signature for code generators which actually does the
same thing like generating getter/setter is correct design.

In code example 2.1 we can notice that for source code building is used
string concatenation and expansion. If also many conditionals take the place
then understand what is going to be generated is very difficult. Exposed code
is extreme case. With its five boolean parameters promises 25 versions of
produced source code.

Another inconvenience which could be seen in code example 2.1 is need
for wrapping the generator code with methods startCollectChanges and

2http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-
practices-monster-objects/

3STX version 6.2.5

10

http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/
http://lostechies.com/chrismissal/2009/05/28/anti-patterns-and-worst-practices-monster-objects/

2.2. Class CodeGeneratorTool

executeCollectedChangesNamed:. One may easily forget it and also addi-
tional noise is present in the code which can be omitted.

createAccessMethodsFor : aCollectionOfVarNames in : aClass
withChange : withChange asValueHolder : asValueHolder
readersOnly : readersOnly wr i ter sOnly : wr i te r sOnly
l a z y I n i t i a l i z a t i o n : l a z y I n i t i a l i z a t i o n
| c l a s s e s C l a s s V a r s |

s e l f s ta r tCo l l e c tChanges .

c l a s s e s C l a s s V a r s := aClass theNonMetaclass
al lClassVarNames .

aCollectionOfVarNames do : [: name |
| source varType methodName defaultMethodName argName
|

varType := (c l a s s e s C l a s s V a r s i n c l u d e s : name)
i fTrue : [’ s t a t i c ’]
i f F a l s e : [

(aClass isMeta i fTrue : [’ c l a s s In s tVar ’] i f F a l s e
: [’ in s tance ’])] .

methodName := name .
argName := ’ something ’ .

”/ the GETTER
writer sOnly i f F a l s e : [

l a z y I n i t i a l i z a t i o n i fTrue : [
defaultMethodName := ’ de fau l t ’ , name

asUppercaseF i r s t .
] .

(aClass i n c l u d e s S e l e c t o r : (methodName asSymbol))
i f F a l s e : [

asValueHolder i fTrue : [
source := methodName , ’ \ ’ .
generateComments i fTrue : [

source := source , ’ ” re turn / c r e a t e the
’ ’%2 ’ ’ va lue ho lder (automat i ca l l y
generated) ”\\ ’ .

] .
source := source , ’ %2 i s N i l i fTrue : [\ ’ .

11

2. Analysis

l a z y I n i t i a l i z a t i o n i fTrue : [
source := source

, ’ %2 := s e l f c l a s s %3 asValue . \ ’ .
] i f F a l s e : [

” S im i l a r approx . 100 l i n e s o f code cont inues here ”
] .

s e l f executeCollectedChangesNamed : (’ Add Accessors ’) .

Code 2.1: Method for creating many variations of getter/setter

No direct support for creating classes and methods within one undo-able
change (1.1.2) could be also inconvenient. To achieve this, we would need to
instantiate RBNamespace then define the class here with definition string and
retrieve the class back from the namespace in its object form. Next step would
be adding a method to the class and finally adding the changes (1.1.2) from
the namespace to the local change collector. Other option would be to play
around with the change objects itself (1.1.2). Both options are unnecessarily
complicated and can be simplified.

STX contains support for automatic source code formatting with customiz-
able settings. It would be nice to have this feature built-in for each generator.
User could decide how the code will be formatted so he would not need to
reformat the code after a generator execution.

In some cases, an error can occur while applying code changes (1.1.2)
to the global system. Especially errors during parsing a source code are very
common. Method compile:forClass:inCategory:skipIfSame: implement-
ation 4 allows to add an invalid source code to the changes (1.1.2). This can
lead to partially applied code changes without undo operation so that IDE
user has to manually solve the problem with likely unwanted code leftovers.

Each method which generates some code has different signature. Although
each follows similar naming convention, it is easy to make some mistake. For
example, createWidgetCodeFor: and createUpdateMethodIn: take a class
as argument, but does not follow exactly same naming convention.

Hard-coded references to global class names could be also limitation. For
example, implementation of method executeCollectedChangesNamed: con-
tains reference to class RefactoryChangeManager which affects global col-
lector with undo operations. Modification of it is unwanted behaviour for unit
test cases, because we would have IDE full of mess when running tests. Similar
problem suffers the call of information: method. It is nice to see the text in
a dialog window as user, but this does not allow running tests automatically.

4STX version 6.2.5

12

2.3. Package Refactory Browser

2.3 Package Refactory Browser

Here we describe disadvantages and glitches of package Refactory Browser and
its sub-packages noticed in section 1.1.

This package was ported from VisualWorks to STX 5. These two systems
slightly differ from each other thus some incompatibilities comes as result. For
example, STX supports private classes 6, but ported package lacks API for
them.

2.3.1 Changes

Each method or class in STX can be categorized to packages. The in-
formation what package we would like to have for a new/modified class or
method is transferred via PackageQuerySignal (see code example 2.2). For
some use cases this API is not very comfortable so RefactoryChange has in-
stance variable package. Unfortunately, current changes implementation does
not allow custom modification of this variable. With this behaviour are re-
lated two unpleasant bugs. Package information is lost when creating undo
change (method asUndoOperation) and package value is not respected in class
AddClassChange.

sampleUsageOfPackageQuerySignal
Class packageQuerySignal

answer : #package name
do : [

SomeClass compi le : ’ method code here ˆ s e l f ’
]

Code 2.2: Sample usage of Class packageQuerySignal

2.3.2 Class model

The only way how to define a new class in RBNamespace is with defineClass:

method with class definition string 7. The definition string can be constructed
with help of RBClass or directly written inside a code. First option basic-
ally requires filling all class attributes so that we can retrieve the definition
with definitionString method. If we define the class with definition string
from precisely created RBClass instance then this instance is not stored in
RBNamespace, but another internally created RBClass instance. Second op-
tion is just passing hand written definition string. Code inside a string will

5http://live.exept.de/doc/online/english/programming/goody refact.html
6http://live.exept.de/doc/online/english/programming/namespaces.html
7http://live.exept.de/doc/online/english/getstart/tut 3.html - fifth and sixth im-

age

13

http://live.exept.de/doc/online/english/programming/goody_refact.html
http://live.exept.de/doc/online/english/programming/namespaces.html
http://live.exept.de/doc/online/english/getstart/tut_3.html

2. Analysis

not be highlighted in text editor and we need to escape single quote charac-
ters, which is tedious. Also unavailable code assist (due to code in string) will
make the work even more inconvenient.

Methods in this package works with class names defined as symbol 8. If
someone passes a string instead of symbol to some method as class name then
it does not behave as expected. Since string can be easily converted to the
symbol, there is no barrier to do it internally so that the API can be more
user-friendly.

2.3.3 Parser

Users of code rewriting class ParseTreeRewriter may suffer from reformat-
ting whole method source code after performed replacement. This problem
solves its subclass ParseTreeSourceRewriter 9, but it does work just for
complete methods and not expressions.

2.3.4 Formatter

Although Refactory Browser package (1.1) includes class RBFormatter for
formatting a source code, it has some disadvantages due to its global nature.
Settings how to format the code are stored in class (static) variables therefore
we cannot simply have many custom settings for different use cases. For
instance, if we need to format a source code with some specific setting then
it will be set globally so other formatting actions will be affected. Sample use
case within this thesis is code generator or refactoring test cases. We need the
generated code formatted with predefined settings so that code comparison
can be easily made.

The formatting within another part of STX system is done with reference
to the formatter class stored in class (static) variable. This design is easy to
implement, but introduces difficulties with usage of many formatters within
different scopes of usage.

Source code pattern search and replace functionality from package parser

(1.1.5) performs the replacements by parsing the code to AST nodes and their
modification. Only way to retrieve the new code is to compose it from the
AST tree which is done with help of a formatter class. The formatting process
completely reformats the whole code. This could be unwanted behaviour
especially when our precisely hand-formatted method will be garbled due to
some expression replacement.

8http://live.exept.de/ClassDoc/classDocOf:,Symbol
9with help of class RBReplaceStringInOriginalSource

14

http://live.exept.de/ClassDoc/classDocOf:,Symbol

2.4. Method rewriter

2.4 Method rewriter

Class Tools::MethodRewriter is a tool which opens a new window where we
can write source code search and replace pattern [4]. This code rewriting can
be performed on selected classes which are also part of the window.

Described disadvantages are mostly from IDE user point of view. Search
and rewrite works only over selected classes, but it is possible to have it for
each type of code (e.g. classes, methods, packages, selected source code part,
etc.). Saved rewrite expressions (called as ”templates”) are defined as single
methods in the class so adding a new template is not very intuitive. Rewrite
expression selection and execution can be simplified to single menu item placed
in the IDE context menu like actual code generators (1.2.1).

15

Chapter 3

API in a nutshell

Goal of this chapter is to show how to use the API to create own code gen-
erators and refactorings. After that should be more obvious how and why
API is designed (4) the way it is. On the other hand, this should not supply
complete user manual with all features documented.

3.1 Usage in the IDE

STX 10 IDE (Tools::NewSystemBrowser) can have various arrangements
whereas we present default layout. In Figure 3.1 is system browser with pack-
age view enabled (top menu selection View → Package). Each inner window
shows different part of codebase and is marked in Figure 3.1 by number 1 to
6:

1. List of packages [5, page 28]

2. Method [5, page 54] source code editor

3. List of classes [5, page 277] under selected packages

4. List of instance variable [5, page 81] for selected class

5. List of protocols [5, page 37] for selected class

6. List of methods for selected class

User can select some items from any of the list or part of the source code
and then perform a code generator or refactoring. Figure 3.1 shows how to
use a code generator on a class. The process itself consists of the following
steps:

1. Left-click on the class to select it

10https://swing.fit.cvut.cz/jenkins/job/stx jv/

17

https://swing.fit.cvut.cz/jenkins/job/stx_jv/

3. API in a nutshell

2. Right-click to show pop-up context menu

3. Point mouse cursor over ”Generate - Custom” to show available code
generators

4. Left-click on some menu item to actually perform code changes

Figure 3.1: Usage of TestCase setUp method code generator

3.2 Usage inside a code

Code sample 3.1 creates test case class named SomeClassTests with generator
CustomTestCaseCodeGenerator. Local variable context (4.3) holds a subset
of the codebase (e.g. selected classes, methods, packages, etc.) which we
described here 3.1. Additional generator settings are implemented as accessors
under method protocol named "accessing".

Another code generator or refactoring has the same concept, but can have
different or none accessors for custom settings. Also each of them can make
sense for different context. In other words, some generator uses selected
classes. In contrast, another one uses selected methods.

18

3.3. Custom code generator

sampleUsageOfGenerator
| generato r context |

context := CustomSubContext new .
context s e l e c t e d C l a s s e s : (Array with : SomeClass) .

generato r := CustomTestCaseCodeGenerator new .
”These two l i n e s are custom genera tor s e t t i n g s ”
generato r testClassName : #SomeClassTests .
generato r testSuperName : #SomeClass .
” Wil l c r e a t e the t e s t case c l a s s ”
generato r executeInContext : context .

Code 3.1: Sample usage of a code generator or refactoring

3.3 Custom code generator

To create new code generator we need to add new class which inherits from
CustomCodeGenerator. For this purpose we can use ”New Code Generator”
menu item visible in Figure 3.1. The helper will show pop-up window where
we can enter a name. When we confirm the name then the new class is created
along with required method stubs.

3.3.1 Instance methods

Only one method buildInContext: is required and also contains main func-
tionality – build the source code. On a few examples we will show how to add
new methods and classes.

3.3.1.1 Method creation

Code example 3.2 creates new method isClassName for each selected class.
Instance variable model (4.2) represents class model which acts as mirror to
the global one in Smalltalk with respect to the changes done inside generator.
If we add a method then it is immediately reflected the model, but in global
space are the changes applied afterwards (when all is built successfully). For
example, if we add line ”class includesSelector: (’is’, className) asSymbol”
after the compile call then true should be returned although real class is
unaffected at the moment of the method (includesSelector:) invocation.

Method createMethod returns initialized model method instance where
we can set multiple attributes like owning class, protocol name (i.e. method
category) and the source code. Special feature replace:with: replaces the
place-holders in the source code with variable contents. Search patterns are

19

3. API in a nutshell

special for code matching (detailed documentation can be found here [4])
and replacement should be valid code fragment (expression or method call).
Finally, method compile will actually add the new method and among other
things formats the source code with custom formatter.

bui ldInContext : aCustomContext

aCustomContext s e l e c t e d C l a s s e s do : [: c l a s s |
| className |

className := c l a s s theNonMetaclass name .

model createMethod
c l a s s : c l a s s ;
p r o to co l : ’ t e s t i ng ’ ;
source : (’ ‘ @isClassName

ˆ s e l f theNonMetaclass == ‘ @className
’) ;
r e p l a c e : ’ ‘ @isClassName ’ with : (’ i s ’ , className) ;
r e p l a c e : ’ ‘ @className ’ with : className asS t r i ng ;
compi le

]

Code 3.2: Required sample method which creates isClassName method

Code example 3.3 shows how to add a method with compile:classified:

method call. With this simple call we cannot use the replace functionality and
also custom code formatting is not supported – the reason of weird indentation
in front of ”^ self”.

bui ldInContext : aCustomContext

aCustomContext s e l e c t e d C l a s s e s do : [: c l a s s |
c l a s s

compi le : ’myMethod
ˆ s e l f ’

c l a s s i f i e d : ’ a protoco l ’
]

Code 3.3: Required sample method which creates myMethod method

3.3.1.2 Class creation

Method createClass in code sample 3.4 returns initialized model class where
we can set many attributes like class name, its superclass, list of instance

20

3.3. Custom code generator

variables and category. Method compile will define the class in the model
and then is, for example, accessible via ”model classNamed: #MyClass” or
”model allClassesDo:” .

bui ldInContext : aCustomContext

model c r e a t e C l a s s
name : #MyClass ;
superclassName : #Object ;
instanceVariableNames : #(’myInstVar ’) ;
category : ’My−Category ’ ;
compi le

Code 3.4: Required sample method which creates new class

3.3.1.3 Optional instance methods

Method validateInContext: can be implemented in order to validate the
context. If we need to initialize some additional options then we can implement
configureInContext:. This method is called only if the generator is run in
the interactive mode i.e. a user invokes the generator from IDE pop-up menu.
Therefore we can use it for showing a pop-up window where a user can enter
some additional data like custom class name. Sample method for entering
a class name shows code example 3.5. Variable dialog holds an instance of
class DialogBox wrapper implementation. Class name entered in the dialog

will be stored as instance variable named myClassName. Each configuration
variable like myClassName requires getter and setter method for fluent work
with class AspectAdaptor.

con f igure InContext : aCustomContext

myClassName := s e l f defaultMyClassName .
d i a l o g

addClassNameEntryOn : ((AspectAdaptor forAspect :#
myClassName)

s u b j e c t : s e l f)
l a b e l e d : ’ Class name ’
va l idateBy : n i l .

d i a l o g addButtons ; open .

Code 3.5: Optional sample method which configures dialog for entering class
name

21

3. API in a nutshell

3.3.1.4 Composition with another generator

Code example 3.1 works rather well inside another generator, but the result
might be slightly different from what we would expect. For example, there will
be at least two undo operations after the generator with its inner generator
will be executed. Code sample 3.6 reveals how can be two or more generators
composed together. These methods help to create new sub-generator with the
same set-up (e.g. same formatter, class model, etc.) as in the actual generator.

bui ldInContext : aCustomContext
| subGenerator |

” Creates i n i t i a l i z e d genera tor i n s t anc e with same
s e t t i n g s ”

subGenerator := SomeCodeGenerator
subGeneratorOrRefactor ingOf : s e l f .

subGenerator executeInContext : aCustomContext .

”Shorthand to code above , execute s i n i t i l i z e d
gene ra to r s ”

s e l f executeSubGeneratorOrRefactor ingClasses : {
SomeCodeGenerator .
AnotherCodeGenerator

}
inContext : aCustomContext

Code 3.6: Sample usage of a nested code generator or refactoring withing
another one

3.3.2 Class (static) methods

First three methods (code example 3.7) provides additional information about
the generator. Method description should return detailed description about
what the generator does. Method label should return label which will be
visible in the menu. Optional method group should return a collection of
category names in which the generator belongs. Generators with same group
will grouped together in the menu.

Figure 3.1 shows IDE layout with open context sub-menu filled with gener-
ators. Each inner IDE window (marked with red numbers) contains different
type of code (e.g. classes, methods, packages, etc.) and for each is displayed
different context sub-menu. Method availableInPerspective: determines
in which of these context sub-menus will be the generator present. Code ex-
ample 3.7 shows method isClassPerspective which allows to include the
generator in the context sub-menu inside the IDE class list (number 3. in
Figure 3.1).

22

3.4. Custom refactoring

User selections within IDE (e.g. classes, methods, packages, etc.) are
collected into the context (4.3) and method availableInContext: tells if the
generator can be executed in it. Generators with improper user selection are
visible in the context sub-menu, but they are greyed out and not executable.
Telling the availability for a context (4.3) can be more complex than what is
shown in the code example 3.7. For example, we can check if the class inherits
from certain superclass or whether the class implements some methods.

d e s c r i p t i o n
ˆ ’ Deta i l ed d e s c r i p t i o n o f the generator ’

group
ˆ #(’Group name ’ ’ Subgroup name ’)

l a b e l
ˆ ’ Label o f the generator which w i l l be v i s i b l e in

the menu ’

a v a i l a b l e I n P e r s p e c t i v e : aCustomPerspective
ˆ aCustomPerspective i s C l a s s P e r s p e c t i v e

ava i l ab l e InContext : aCustomContext
ˆ aCustomContext s e l e c t e d C l a s s e s notEmptyOrNil

Code 3.7: Required class methods of code generator or refactoring

3.4 Custom refactoring

Refactoring classes share the same API as described above for generators
(3.3), but should inherit from class CustomRefactoring. Code example 3.8
shows how to use helper refactoryBuilder (4.5) for doing source code re-
placements. This particular example is meant to wrap selected source code
fragment in the IDE editor (number 2. in Figure 3.1) with translation call
”resources string: code selection”. More detailed description of code patterns
search and replacements can be found here [4].

bui ldInContext : aCustomContext

r e f a c t o r y B u i l d e r
r e p l a c e : ’ ‘ @expression ’
with : ’ (r e s o u r c e s s t r i n g : (‘ @express ion)) ’
inContext : aCustomContext

Code 3.8: Required method to replace selected expression with another one

23

3. API in a nutshell

3.5 Overall schematic overview

Template class CustomCodeGeneratorOrRefactoring defines required and
optional methods. The following subsections describe how they are accessed
to achieve desired behaviour with flowchart. Methods which are intended to
be overridden wrap angled brackets – 〈methodName〉.

3.5.1 Context menu building

Figure 3.2 illustrates single steps that are taken to build context menu with
generators or refactorings for IDE (see also Figure 3.1). Method group is
optional; other methods wrapped with angle brackets are required. Menu
building itself is located in the class CustomMenuBuilder while iteration over
generator classes depends on class CustomManager.

3.5.2 Generator or refactoring execution

Figure 3.3 shows how the public generator/refactoring execution point (method
executeInContext:) works from inside. Methods configureInContext: and
validateInContext: are optional; other methods wrapped with angle brack-
ets are required.

24

3.5. Overall schematic overview

Figure 3.2: Context menu building flowchart with marked extension points

25

3. API in a nutshell

Figure 3.3: Code generator or refactoring execution flowchart with marked
extension points

26

Chapter 4

API design

In this chapter we will introduce how is API structured from class perspective
and it solves issues described in the analysis chapter. Simplified class design
is shown in Figure 4.1 (full method API is hidden along with less important
classes). Key idea is that each code generator or refactoring will be realized
as single class with implemented required methods. This allows us to have
benefits like generator composition (5.1), seamless IDE integration (5.2) and
unit test API (6.2).

4.1 Template class

Abstract class CustomCodeGeneratorOrRefactoring acts as template method
design pattern [7] for code generators or refactorings. You can see that com-
plete API is shared for both of them. We decided that separating could be
more disadvantage then advantage, because in its nature both modify code-
base and the difference is more like semantic. As a result, its subclasses
CustomCodeGenerator and CustomRefactoring only categorize their sub-
classes by methods isCustomCodeGenerator and isCustomRefactoring.

Following sections describe each part of the API, because from detailed
view is their purpose slightly different.

4.1.1 Code modification

Public template method executeInContext: applies code modifications as-
sembled inside buildInContext: which has to be implemented by a subclass.
In other words, the first one stands for public execution point and the second
one is meant to be overridden to build custom code changes (1.1.2). With these
two methods we can separate the responsibility to create the code change from
actually applying them to the global system space. Therefore we can profit
from it these advantages:

27

4. API design

Figure 4.1: Code generator or refactoring template class

• Failed building does not affect global space (i.e. changes are not applied)

• No need to apply changes inside each subclass

4.1.2 Receiving input

Smalltalk codebase consists of elements like classes, methods and packages. A
subset of these collects CustomContext instance (4.3) and determines on which
codebase parts should generator or refactoring operate. Majority of them
works with some subset of codebase and the context fits to be standardized
input container for this purpose. Thus it solves the problem with different
method signatures (2.2).

28

4.2. Class model

Data or options which do not fit universal container described above can
be stored as individual instance variables with getters and setters. Variable
dialog holds helper for constructing pop-up window to enter additional data.
More general configuration options stores variable userPreferences (instance
of UserPreferences). Instance of CustomPerspective subclass identifies
type of code (4.4).

4.1.3 Scope limitation

Method availableInPerspective: tells with which type of code (e.g. classes,
methods, packages, etc.) can be a generator or refactoring associated. In fact
this allows to locate a generator or refactoring in the IDE context sub-menus
(3.1). Method availableInContext: determines whether a generator or re-
factoring can be executed for concrete codebase parts (e.g. classes, methods,
packages, etc.). Both methods are defined as static, because there is no need of
any additional local class data. Also selecting generator or refactoring classes
for context and perspective is easier, because creating an instance is not
needed.

4.1.4 Class description

Description methods present the implementer to the end user. Method label

should return short string label, description should return more detailed
description of the class and finally optional group can provide list of group
names in which the class belongs. All these methods are static, because they
relates only to the class itself.

4.2 Class model

Class Smalltalk holds all classes and thus serves as global system namespace.
For similar purpose is in class CustomCodeGeneratorOrRefactoring used
CustomNamespace (child of RBNamespace) stored as instance variable model.
Key goal is to keep code changes local while building them unless they are
applied globally. All this respects the class and namespace API (basically
the reflection API [8]) so the changes are immediately accessible in the local
model. For example, if we create a new class then it will be directly stored
and accessible in the model, but in global namespace Smalltalk will be the
new class when the changes are applied.

Figure 4.2 shows simplified class design of the model. RBNamespace keeps
track of single code changes (1.1.2) along with new, removed and modified
classes. These are represented by RBClass and RBMetaclass with collection
of RBMethod in order to emulate real class reflection API. Instance variable
environment is an instance of BrowserEnvironment or any of its subclass.
The class/subclasses itself have many features, but here are used to access

29

4. API design

real classes within global namespace and eventually convert them to model
classes. BrowserEnvironment allows all real classes to be accessed whereas
most of its subclasses limits the classes with some condition like belonging to
a package, category etc.

Figure 4.2: Class model

Majority of classes and methods comes from Refactory Browser package
(1.1.3). We extended the functionality from two aspects:

• Missing class and method reflection API (5.3.1)

• Helpers to ease code building itself (5.3.2)

4.3 Context

The context design is inspired by Tools::NavigationState (most of the
method names) which holds codebase selections within the STX IDE (classes,
methods, packages etc.). As already mentioned, the purpose is to provide a
codebase subset on which should operate code generators or refactorings. Fig-

30

4.3. Context

ure 4.3 shows abstract class named CustomContext with two implementations
along with CustomPerspective (4.4).

Figure 4.3: Context and perspective class diagram

Since code modifications are intended work with model (4.2), the ref-
erence to RBNamespace helps with converting real classes and methods to
their mirror counterparts from the model inside each context implementa-
tion. Without this utility could be easily done an unwanted change to the
global space. Furthermore, the creator of a generator would need to think
that both real and model classes/methods could be passed as input. For ex-
ample, ”class compile: aCode” will create/modify the method immediately in
the global space with real class whilst model class will register a code change

31

4. API design

(1.1.2) to be applied afterwards.

CustomBrowserContext wraps Tools::NavigationState as partial facade
pattern [7] implementation – only code selections within IDE are covered (see
Figure 3.1). The information from what IDE part was context populated is
held in perspective (4.4).

CustomSubContext stores code selections directly in its instance variables
with getter/setter methods. This becomes useful if we need to populate cus-
tom data and pass them into a code generator or refactoring.

4.4 Perspective

Perspective provides simple marker for each type of code (e.g. classes, meth-
ods, packages, etc.). In usage inside IDE it represents the type of code
the user works with and what is his ”focus” list (i.e. classes, methods,
packages, etc.) window. Class CustomPerspective defines class-type test
method and factory method for each of its subclass which represents a single
perspective. As seen in Figure 4.3, for example, ::Class perspective over-
rides only method isClassPerspective which returns true while its parent
class CustomPerspective defines isClassPerspective returning false as
default value and class (static) method classPerspective returning an in-
stance of ::Class.

4.5 Refactoring helper

Class CustomRefactoryBuilder is inspired by RefactoryBuilder which im-
plements partial facade for single refactoring classes in Refactory Browser
package (1.1.6). Original class does not fit to the described generator/refactor-
ing API design thus we do not reuse as superclass of CustomRefactoryBuilder.
Code changes (1.1.2) are not stored in the same collector and they are not re-
flected in the model (4.2). Without shared change collector cannot be easily
achieved correct order of changes. Outdated model would return wrong data
which can lead to secondary misbehaviour.

In Figure 4.4 is simplified class diagram of CustomRefactoryBuilder with
only methods for performing refactorings. Apart from simple operations like
class category change, the helper offers source code search and replace func-
tionality based on ParseTreeSourceRewriter. How to write code search
patterns is well documented in [4]. Main advantage is that we can operate
directly on codebase subset stored in the context (4.3). This includes ability
to search on selected part of a method source code (e.g. just some expression
within the source code).

32

4.6. Formatter

Figure 4.4: CustomRefactoryBuilder class diagram

4.6 Formatter

To solve the problems listed in section 4.6 we defined abstract formatter
CustomSourceCodeFormatter with required method "formatParseTree:" and
two different implementations. Class CustomRBLocalSourceCodeFormatter

uses internally RBFormatter, but stores formatting settings locally in instance
variable. Class CustomNoneSourceCodeFormatter keeps source code original
formatting.

33

Chapter 5

Implementation

Previous chapter gave us detailed overview of the architecture and most prob-
ably revealed part of obvious implementation. Here we will dig into imple-
mentation details which we considered worth to mention.

5.1 Generator or refactoring composition

Methods for composing generators or refactorings are noticed along with code
example in subsection 3.3.1.4. Class CustomCodeGeneratorOrRefactoring

defines several instance variables which holds initialized components useful
for code generation or refactoring. Most of these need to be shared across all
components during the execution in order to achieve proper behaviour.

Change object (1.1.2) collector (CompositeRefactoryChange) stored in
instance variable compositeChangeCollector should be common for each
part which creates change objects. With this premise can be easily achieved
correct order of changes. First implementation simply put together changes
from various change collectors, but later came out that incorrect order of
changes may produce wrong results. For example, add class change needs
to be before add method change if the method belongs to the class. Current
implementation makes sure that only one change collector will be shared across
all dependencies.

Similar case as noticed above is with model (4.2). If there were at least
two different instances of model within generator or refactoring execution then
one may become obsolete and thus return wrong values. Even context (4.3)
which is given as method argument to the generator or refactoring requires
the same model, because the context itself converts real classes and methods
to their model counterparts (RBClass and RBMethod).

Figure 5.1 illustrates how objects are referenced by each other for instance
of generator or refactoring being executed (executeInContext: method call).
If we strip away aCustomContext instance (which is method argument) from
the diagram then it will show common set-up.

35

5. Implementation

Figure 5.1: Shared objects diagram at the point of during generator or re-
factoring execution. Note: Arrows represent ”contains reference to object”
relation

For generator or refactoring execution is intended to use only method
executeInContext: or its wrappers. Question could be how is then de-
termined when can be changes applied to global system space if the method
is used also for inner generators or refactorings? Instance variable named
compositeChangeNesting holds nesting count. At the end of execution method
is called executeCollectedChangesNamed: which decrements the counter and
on zero (indicates top generator or refactoring) applies the changes.

5.2 Integration with IDE

Functionality described in section 3.1 implements class CustomMenuBuilder

(main part of implementation). Context menu for each IDE inner window
(classes list, source code editor, etc.) can be dynamically modified with
extension methods. Code example 5.1 shows extension method for class
Tools::NewSystemBrowser (IDE implementation) which adds menu item la-
belled ”Generate - Custom”. Annotation menuextension: specifies type of
menu which will be passed as method argument on its invocation. These
menu extension methods are called every time when is context menu shown
(e.g. every time user does right-click). In practice this means that changes
made to the context menu are reflected immediately.

Method customMenuBuilder returns instance of menu builder with pre-
set attributes common for each such extension method. Menu building starts
in method buildMenu which creates menu item with sub-menu containing
menu items assembled from generators or refactorings. Class CustomManager

36

5.3. Class model extensions

provides access for generator or refactoring classes and is used to select ap-
propriate generators or refactorings for the sub-menu. Simplified algorithm is
mentioned in the subsection 3.5.1.

classMenuExtensionCustomGenerators : aMenu
<menuextension : #classMenu>

s e l f customMenuBuilder
p e r s p e c t i v e : CustomPerspective c l a s s P e r s p e c t i v e ;
menu : aMenu ;
submenuLabel : ’ Generate − Custom ’ ;
afterMenuItemLabel led : ’ Generate ’ ;
g e n e r a t o r O r R e f a c t o r i n g F i l t e r : [

: generatorOrRefactor ing |
generatorOrRefactor ing isCustomCodeGenerator] ;

buildMenu .

Code 5.1: Context menu extension for classes list in the IDE

5.3 Class model extensions

5.3.1 Missing reflection API

STX total method (both object and class/static) count for class, method and
namespace model classes is 1489 11. Although all of them do not belong
to the reflection API, this number illustrates that the API is overall huge.
Moreover, this simple sum does take in account other programming language
included in STX (Java [9, chapter 2], JavaScript and Groovy). Rather than
implementing complete API one by one method, we selected only those which
were useful for generators or refactorings we created. One could ask why we
have not simply reused the original. The reason is that the original represents
existing elements (classes, methods and namespaces), but model described
in section 4.2 represents existing, new and modified elements thus requires
different implementation.

Most of the extension methods implementation is trivial so we explain
only interesting ones. Among not so straightforward things we can include
method dictionary. Regular class stores its methods in special collection
– instance of MethodDictionary, but model class keeps track only of new
and removed methods. Method dictionary is built on demand (i.e. call of
methodDictionary) from existing (from real class) and new methods minus
removed ones. This solution does not excel in speed, because every time is

11STX version 6.2.5, classes: Behavior, ClassDescription, Class, Metaclass, PrivateMeta-
class, NameSpace, Smalltalk, CompiledCode, Method

37

5. Implementation

MethodDictionary instantiated and filled from scratch, but is easy to imple-
ment and thus error prone. If we would create the dictionary on model class
initialization (i.e. constructor) then we would need to keep it updated every
time when methods are created and removed along with real class changes.
Similar problem would exist with some caching strategy, because its invalida-
tion (known as cache invalidation) would be complicated.

Due to package origin (2.3), private classes 12 reflection API was completely
missing. Significant difference between private and public class is that private
class belongs to some class (private or public) – the owning class. For newly
created private class is the owning class retrieved from definition string 13. Ex-
isting private class already has its owner and thus is returned. Unlike regular
private class which has implementation in special class PrivateMetaclass,
here we use just RBMetaclass which stands for both private and public class.
This simplifies both usage and implementation, because we can change the
”privacy” just by setting class owner.

5.3.2 Code building helpers

Section 2.3.2 criticizes original possibilities from API user aspect. Factory
method createClass returns instance of RBClass with filled default class at-
tributes. As seen in subsection 3.3.1.2 user can fill custom attributes (e.g.
class name, instance variables, etc.) and then reflect it in model (4.2) with
compile method. Advantage of using factory method instead of direct class
instantiation is more flexible code, because we can easily change the class
without rewriting the code. Default values saves the time when writing code.
For example, majority of classes has none poolDictionaries, but class defin-
ition requires them so we can assume that they will be empty unless user fills
a custom value. On the contrary compile method is a compromise. Although
it eases the usage in comparison with the original implementation, it could
be completely omitted with different implementation. One of possible imple-
mentation could be change tracking (for instance via update:with:from:) in
each setter method and different logic for creating change objects (1.1.2). The
reason why we have not implemented this is due to lack of enough time to do
it properly – biggest challenge would be legacy issues.

In a similar way works method createMethod, but returns initialized in-
stance of RBMethod. Key feature is ability to define code template with place-
holders and replacements (3.3.1.1). Although it is not a full blown template
engine [10], it fulfils some aspects like metalanguage, AST usage and syn-
tax check. In contrast with code building mentioned in section 2.2 this im-
proves generator readability thus we can better understand what is going to

12http://live.exept.de/doc/online/english/programming/
namespaces.html#PRIVATECLASSES

13http://live.exept.de/doc/online/english/getstart/tut 3.html - fifth and sixth im-
age

38

http://live.exept.de/doc/online/english/programming/namespaces.html#PRIVATECLASSES
http://live.exept.de/doc/online/english/programming/namespaces.html#PRIVATECLASSES
http://live.exept.de/doc/online/english/getstart/tut_3.html

5.4. Refactoring helper

be generated when looking on generator code. The metalanguage is taken
from Refactory Browser package (1.1.5). Instance of class CodeGenerator

holds replacements, template source code and also provides API for trans-
forming the template to final source code. The template code is first parsed
with class RBParser and then by traversing AST tree are replaced the place-
holders. Class CustomSourceCodeGenerator follows this implementation and
makes possible method call replacements (instead of only expression) along
with local source code formatter (4.6). Finally RBMethod loosely integrates
the functionality just by exposed replace:with: method where replacements
are performed in compile method.

5.4 Refactoring helper

Here we follow section 4.5 with more detailed implementation description.
Code example 5.2 shows that search and replace are separated into two meth-
ods. Argument named aCustomContext (4.3) can contain various parts of
codebase (e.g. packages, classes, methods, etc.). Pattern searching works on
method source code therefore we need, for example, an algorithm which is able
to search on methods belonging to some packages. Similar algorithm is useful
also for classes or class categories. For each such algorithm is defined private
class 14 of CustomRefactoryBuilder. Search simply iterates over these classes
and calls their method search:inContext:withResultDo:.

The user who browses through codebase with IDE has usually selected mul-
tiple types of code (e.g. packages, classes, methods, etc.) at once. All these
selections are present in the context (4.3) as well. With described behaviour
above would be all these selections subject of search and replacement, but
from user point of view is this inappropriate feature. To solve this glitch, each
private class implements class (static) method availableInPerspective:

which tells on what type of code the class operates (4.4). This helps to search
only on focused user selection. For example, if user selects a class and executes
search then only methods in this class are searched (instead of all selections
in the IDE).

Instance of class CustomSourceCodeSelection is passed as result of match-
ing search pattern to method which performs the replacement. This class rep-
resents container for selected source code fragment in method and can contain
either whole code or, for example, just some expression. The replace method
executeReplace:with:inCodeSelection: firstly performs a replacement on
the selected source code and if whole method is not selected then the new
code is injected into the method’s source. Finally whole new method source
code is compiled to the class using model (4.2).

14http://live.exept.de/doc/online/english/programming/
namespaces.html#PRIVATECLASSES

39

http://live.exept.de/doc/online/english/programming/namespaces.html#PRIVATECLASSES
http://live.exept.de/doc/online/english/programming/namespaces.html#PRIVATECLASSES

5. Implementation

r e p l a c e : searchPattern with : r ewr i t ePat t e rn inContext :
aCustomContext

” Searches f o r g iven pattern in methods source code or
s e l e c t e d code fragments and i f source code matches
then execute s replacement ”

s e l f s earch : searchPattern
inContext : aCustomContext
withResultDo : [: s o u r c e S e l e c t i o n |

s e l f executeReplace : searchPattern
with : r ewr i t ePat t e rn
inCodeSe l e c t i on : s o u r c e S e l e c t i o n

]

Code 5.2: Method for souce code search and replace

40

Chapter 6

Testing

The development process consisted of writing new generators or refactorings
along with underlying API. To verify that the developed code behaves as
expected is used sunit test framework 15 which represents classic xUnit frame-
work 16. Each class has a test case class which name ends with Tests and
its category ends with -Tests. Tests for extension methods (i.e. methods
for existing classes outside this project) are located in test case classes named
Custom<ClassName>Tests.

Main levels of testing [6, chapter 4] are unit, integration and system tests.
If we consider unit as method, class or even whole package then the written
tests are mixed unit and integration tests (depends on concrete test method).
For instance, testing that code generator creates a method involves nearly
all dependent components (Refactory Browser, Compiler, etc.) to create real
existing method. Many tests relate to codebase modification therefore they are
integration tests. According to [11] (if we omit tabloid/offensive phrases) our
integration tests suffer from slower execution time and also the fact that we are
not testing only our package isolated from other packages. When something
wrong comes out from outer packages then it is hard to find out where the
error/misbehaviour comes from. On the other hand, the tests are written per
method as the unit and follow multiple execution paths which keep the code
coverage [6, chapter 4, subsection 4.2.1.] high (Figure 6.1). However, what
stands for best unit size and isolation level is questionable [12] and depends on
project nature. In most of the tests the code goes through parser and compiler
which we consider valuable.

Created generators or refactorings were manually tested through UI on
Linux and Windows environment which can be considered as system tests.
Nevertheless, none of created code is intended to be platform dependent. Since
we have Jenkins job 17 it would be nice to have repeatable (regression) system

15http://live.exept.de/doc/online/english/tools/misc/testfram.htm
16http://www.martinfowler.com/bliki/Xunit.html (JUnit, NUnit, PHPUnit, etc.)
17https://swing.fit.cvut.cz/jenkins/job/custom refactorings reports/

41

http://live.exept.de/doc/online/english/tools/misc/testfram.htm
http://www.martinfowler.com/bliki/Xunit.html
https://swing.fit.cvut.cz/jenkins/job/custom_refactorings_reports/

6. Testing

Figure 6.1: Code coverage

tests, but after searching the web it does not seem that exists easy to use
prepared solution.

UAT tests [6, chapter 4, subsection 2.2.1.] should check if end user re-
quirements are satisfied. The only known end users were the thesis supervisor
and me thus we evaluated how user-friendly the API is. If the API will be
presented to the Smalltalk programmers community then probably someone
will be willing to provide valuable feedback, but this was not realized so far.

6.1 Mocks and stubs

At the time of writing this thesis there was no mock/stub 18 framework in STX
and none of existing solutions in other Smalltalk dialects does not seem to be
suitable 19 20 21. Mocks/stubs for test cases are created with class CustomMock
which is ”poor man’s” mocking helper. Code example 6.1 shows basic usage.
Implementation simply creates new subclass with generated name and allows
to compile methods without modification of change file (i.e. text file where are
stored code changes). To be complete, Jan Vraný created class (static) meth-
ods with mocking possibilities into the class MessageTracer under protocol
"method mocking". These methods are designed to be thread safe (consid-
ering test method isolation) and could possibly replace CustomMock in many

18http://www.martinfowler.com/articles/mocksArentStubs.html
19http://www.squeaksource.com/Mocketry.html
20http://codedaemon.com/sMock/
21https://joachimtuchel.wordpress.com/2011/12/31/yet-another-mock-object-

framework-for-va-smalltalk/

42

http://www.martinfowler.com/articles/mocksArentStubs.html
http://www.squeaksource.com/Mocketry.html
http://codedaemon.com/sMock/
https://joachimtuchel.wordpress.com/2011/12/31/yet-another-mock-object-framework-for-va-smalltalk/
https://joachimtuchel.wordpress.com/2011/12/31/yet-another-mock-object-framework-for-va-smalltalk/

6.2. Generators or refactorings tests

places, but the solution is less powerful, because it attaches method per class
therefore it cannot be simply used for different mocks/stubs of a single class.

All mocks/stubs used within this thesis could be done also with real classes
and methods (i.e. existing classes/methods which exist during whole project
lifetime), but it would require more effort writing tests and all mock classes
and methods would make codebase bigger thus less understandable. On the
other hand, this mock/stub implementation would fasten the tests execution
speed.

sampleUsageOfCustomMock
| mockHelper mock |

mockHelper := CustomMock new .
” Creates i n s t ance o f Object mock”
mock := mockHelper mockOf : Object .
” Creates / o v e r r i d e s method”
mock compileMockMethod : ’ s e l e c t o r ˆ true ’ .
”Check i f method works as expected ”
s e l f a s s e r t : mock s e l e c t o r = true .
”Removes a l l mocks”
mockHelper unmockAll .

Code 6.1: Sample usage of CustomMock

6.2 Generators or refactorings tests

They have the same interface and basically do the same thing – codebase modi-
fication. This means that also the tests will follow very similar patterns. Spe-
cialized test case class CustomCodeGeneratorOrRefactoringTestCase along
with generator for creating such test case classes aims to simplify the testing.
Code example 6.2 shows how can be tested that particular method is correctly
generated.

Template test case class for generators or refactorings provides common
configuration inside setUp method where are initialized generator or refact-
oring instance variables (4) along with input context (4.3). To make testing
independent of global user settings which can vary and thus make the testing
difficult, local instance of user settings is created with predefined values. Same
case is with source code formatter (4.6). Local change (1.1.2) manager allows
making code changes without affecting undo/redo menu in IDE along with
cancelling code changes in tearDown method. Also change file modification is
prevented with help of "Class withoutUpdatingChangesDo:" 22. This helps
with real classes and methods testing in that IDE is without code leftovers.

22These are different changes from the changes in the undo/redo menu

43

6. Testing

During testing generators or refactorings became apparent that some as-
sertions and context are constantly repeating. Specialized assert methods
are located under protocol "asserting" and methods creating context tem-
plates are under protocol "context templates". Code example 6.2 contains
call of executeGeneratorInContext: method with context template name
(method name) as argument. At the end of outlined test is called method
assertMethodSource:atSelector: which checks source code of method un-
der given selector for class created inside method preparing context (i.e. the
context template method).

t e s t s imp le s e t t e r method genera ted wi thout comments
| expectedSource |

u s e r P r e f e r e n c e s generateCommentsForSetters : f a l s e .

expectedSource := ’ i n s t anc eVar i ab l e : something
in s t anc eVar i ab l e := something ’ .

s e l f executeGeneratorInContext :
#c la s sWith Ins tanceVar iab l e .

s e l f assertMethodSource : expectedSource
a t S e l e c t o r : #in s tanceVar i ab l e :

Code 6.2: Test case method for generator which creates setter method

6.3 Testing summary

The tests were very valuable, because some parts of the project were reworked
multiple times. Without tests, refactoring would be hard and very vulnerable
to introducing new bugs. However, the tests do not make sure that the project
is completely free of bugs.

44

Conclusion

We have presented API for creating code generators or refactorings along with
testing API. By meeting goals stated at the thesis beginning, our work offers
following major benefits:

• Hidden implementation details of IDE integration (5.2) from program-
mer

• Standardized interface (4.1) and inputs (4.3) of created generators or
refactoring

• Class and method creation factories along with template-like definition
of source code (5.3.2)

• Testing API with test case generator (6.2)

Code generators and refactorings were created during the whole develop-
ment process in order to design, improve and verify the API. Part of them
consists of rewritten existing generators in STX. Others are created for devel-
opment purposes within this work. Test case class/method generators were
the most helpful and made the testing process easier.

Future improvements

There are many potential improvements/features which could make code gen-
erating or refactoring better.

Switch to generated code in IDE

When a new class or method is generated then IDE user can have automat-
ically opened new IDE tab window with selected newly generated class or
method.

45

Conclusion

Comments inside new code

Some generators have the option to generate methods with or without method.
Code example 6.3 shows how are comments included or excluded from source
code. However, comments on/off switching can be also done with rewriteOn

and rewriteSavingCommentsOn parser and scanner setting which could com-
pletely remove the if-branch and thus simplify the code.

sourceForClass : aClass variableName : aName
” Returns s imple g e t t e r method source code f o r g iven

c l a s s and v a r i a b l e name”

| methodName comment |

methodName := s e l f methodNameFor : aName .
comment := ’ ’ .

u s e r P r e f e r e n c e s generateCommentsForGetters i fTrue : [
| varType |

varType := s e l f varTypeOf : aName c l a s s : aClass .
comment := ’” re turn the %1 v a r i a b l e ’ ’%2 ’ ’ (

automat i ca l l y generated) ” ’ .
comment := comment bindWith : varType with : aName .

] .

ˆ s e l f sourceCodeGenerator
source : ’ ‘@methodName
‘”comment

ˆ ‘ variableName ’ ;
r e p l a c e : ’ ‘@methodName ’ with : methodName asSymbol ;
r e p l a c e : ’ ‘ variableName ’ with : aName asS t r i ng ;
r e p l a c e : ’ ‘ ” comment ’ with : comment ;
newSource .

Code 6.3: Current implementation how are comments enabled/disabled in
source code

General purpose codebase iterator

Refactoring helper (4.5) iterates through set of methods based on context

(4.3) to perform search operation. This iteration is implemented directly
within the helper. However, similar iterator would be useful also for other
code types like classes, protocols, packages, etc. which could be used outside

46

Future improvements

the helper. Class BrowserEnvironment with its subclasses implements such
iterator and can be possibly used to some extent, but its usage inside gener-
ators or refactorings is rather complicated and some features may be missing.
Desired API could be that context (4.3) will implement method returning
initialized iterator which will offer methods like classesDo:, methodsDo:,
protocolsDo: and filtering options.

Keyboard shortcut bindings

Currently are generators or refactorings executable via menu items (3.1) or by
method call (3.2). Frequently used ones could be also executable with press
of a keyboard shortcut (e.g. F6, Ctrl+l, etc.) which could be assigned in user
preferences. This would allow better usage for more than one programmer
using a generator or refactoring.

Keyboard shortcut can be assigned to a menu item with shortcutKey:

method. This seems like possible implementation for generators or refactorings
even if the menu for them is built dynamically, because it is rebuilt on each
keyboard shortcut key press.

Integration with SmallSense

SmallSense 23 is programmer productivity plugin for STX. Features include
code-completion 24 which shows list of possible code elements as programmer
type. Extending this list with custom items each with custom action could
help a programmer to be more productive. For example, if a programmer
often uses expression ifTrue:[] then extending the list in a way that after
writing just letter ”i” it will offer the expression at first position, would be
helpful. The completion action could be more complex than just insert static
piece of code.

API for interactive code changes confirmation

Some refactorings may create a lot of changes in existing code. Part of them
may not meet the programmer’s requirements. In such a case it would be bet-
ter to display a confirmation window with old and new code for each change.

Progress-bar for long time refactorings

With previous subsection relates possible long time execution of refactoring.
In such case would be good to show progress-bar were will be visible how much
work has been completed and how much work remains to finish the operation.

23https://bitbucket.org/janvrany/stx-goodies-smallsense
24http://code-recommenders.blogspot.cz/2010/05/its-all-about-intelligent-

code.html

47

https://bitbucket.org/janvrany/stx-goodies-smallsense
http://code-recommenders.blogspot.cz/2010/05/its-all-about-intelligent-code.html
http://code-recommenders.blogspot.cz/2010/05/its-all-about-intelligent-code.html

Conclusion

Class model setters with changes creation

Section 5.3.2 describes the reason of compile method and suggestion how
could be implementation changed. In other words, all model (4.2) setter meth-
ods which shadow real class and method interface could create changes (1.1.2)
on the fly. For instance, RBClass method category: can create class category
change object if the class is defined. Unfortunately, the class model is used
also outside this thesis scope thus this improvement should be aware of legacy
issues.

Visibility in user preferences

Many generators and refactorings in the context menu can be confusing and
hard to use, especially when the menu is bigger than the display screen. Pos-
sibility to limit list of generators and refactorings in user preferences would be
more user-friendly than direct code modification of particular generator/re-
factoring – especially when it will be shared across many programmers.

Class CustomManager has instance variable which is the source for gener-
ators or refactorings. Here can be injected an object implementing method
generatorsAndRefactoringsDo:.

Multiple programming language support

STX primarily focuses on Smalltalk programming language, but to some ex-
tent supports Java, Groovy and JavaScript 25. This thesis is built with heavy
usage of Refactory Browser package (1.1) which focuses also on Smalltalk
therefore creating code generators or refactorings for other programming lan-
guages is very limited.

We were interested in how this could be implemented. First task is ability
to assign code generator or refactoring to concrete programming languages
in order to show only relevant ones in context menus. Template class for
generators or refactorings (4.1) contains class (static) method returning list
of supported programming languages 26 and method which tells availability
for programming languages 27 within context (4.3). We also created two
prototype code generators for JavaScript and Java so we can provide early
observations. JavaScript in STX is different in comparison to well known
web-browser implementation and resembles to the Smalltalk class structure
(e.g. separated class definition and methods). Each JavaScript method is
compiled separately thus works better with changes package (1.1.2), but fails
with parsing the source code. In contrast, Java code is compiled as whole
class with methods.

25Currently included in https://swing.fit.cvut.cz/jenkins/job/stx jv/, STX version
6.2.5

26availableForProgrammingLanguages
27availableForProgrammingLanguagesInContext:

48

https://swing.fit.cvut.cz/jenkins/job/stx_jv/

Bibliography

[1] Application programming interface [online]. Wikipedia, The Free En-
cyclopedia. October 2014, page last edited 2014-09-02 [cit. 2014-10-
11]. Available from: http://en.wikipedia.org/w/index.php?title=
Application programming interface&oldid=623906555

[2] Fowler, M. Refactoring. Improving the Design of Existing Code. Addison-
Wesley, 1999, ISBN 0-201-48567-2.

[3] Refactory Browser [online]. ST/X Smalltalk Online Documentation. Oc-
tober 2014, [cit. 2014-10-22]. Available from: http://live.exept.de/
doc/online/english/programming/goody refact.html

[4] Code Search Patterns [online]. ST/X Smalltalk Online Documentation.
October 2014, [cit. 2014-10-23]. Available from: http://live.exept.de/
doc/online/english/help/Browser/RBSearchPatterns.html

[5] Andrew P. Black, O. N., Stéphane Ducasse; Pollet, D. Pharo by Example.
Square Bracket Associates, Switzerland, 2009, ISBN 978-3-9523341-4-0.
Available from: http://pharobyexample.org/

[6] Bourque, P.; R.E. Fairley, e. Guide to the Software Engineering Body
of Knowledge, Version 3.0. IEEE Computer Society, 2014, ISBN 978-0-
7695-5166-1. Available from: www.swebok.org

[7] Gamma, E.; Helm, R.; Johnson, R.; et al. Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995, ISBN 0-201-63361-2.

[8] Smalltalk reflective model [online]. Mariano Martinez Peck.
April 2011, [cit. 2015-01-10]. Available from: https://

marianopeck.wordpress.com/2011/04/30/smalltalk-reflective-
model/

49

http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=623906555
http://en.wikipedia.org/w/index.php?title=Application_programming_interface&oldid=623906555
http://live.exept.de/doc/online/english/programming/goody_refact.html
http://live.exept.de/doc/online/english/programming/goody_refact.html
http://live.exept.de/doc/online/english/help/Browser/RBSearchPatterns.html
http://live.exept.de/doc/online/english/help/Browser/RBSearchPatterns.html
http://pharobyexample.org/
www.swebok.org
https://marianopeck.wordpress.com/2011/04/30/smalltalk-reflective-model/
https://marianopeck.wordpress.com/2011/04/30/smalltalk-reflective-model/
https://marianopeck.wordpress.com/2011/04/30/smalltalk-reflective-model/

Bibliography

[9] Hlopko, M. Java implementation for Smalltalk/X VM. Master’s thesis,
Czech Technical University in Prague, 2011. Available from: https://

dip.felk.cvut.cz/browse/pdfcache/hlopkmar 2011dipl.pdf

[10] Jeroen Arnoldus, A. S. J. B., Mark van den Brand. Code Gen-
eration with Templates. Atlantis Press, Paris, France, 2012, ISBN
978-94-91216-56-5. Available from: http://books.google.cz/books?id=
UvC0MJHSqjkC&source=gbs navlinks s

[11] Rainsberger, J. B. Integrated Tests are a Scam: Part 1 [online].
March 2010, [cit. 2015-01-18]. Available from: http://www.jbrains.ca/
permalink/integrated-tests-are-a-scam-part-1

[12] Martin Fowler, D. H. H., Kent Beck. Is TDD Dead? [online]. May 2014,
[cit. 2015-01-18]. Available from: http://martinfowler.com/articles/
is-tdd-dead/

50

https://dip.felk.cvut.cz/browse/pdfcache/hlopkmar_2011dipl.pdf
https://dip.felk.cvut.cz/browse/pdfcache/hlopkmar_2011dipl.pdf
http://books.google.cz/books?id=UvC0MJHSqjkC&source=gbs_navlinks_s
http://books.google.cz/books?id=UvC0MJHSqjkC&source=gbs_navlinks_s
http://www.jbrains.ca/permalink/integrated-tests-are-a-scam-part-1
http://www.jbrains.ca/permalink/integrated-tests-are-a-scam-part-1
http://martinfowler.com/articles/is-tdd-dead/
http://martinfowler.com/articles/is-tdd-dead/

Appendix A

Acronyms

API Application programming interface

STX Smalltalk/X

IDE Integrated development environment

AST Abstract syntax tree

UI User interface

UAT User acceptance tests

51

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

jn.....................................implementation source codes
thesis..............the directory of LATEX source codes of the thesis

stx...................the directory with STX including implementation
bin the directory with executables
lib...........................the directory of complete source codes

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

53

	Introduction
	Motivation
	API
	Code generation and refactoring

	Original state
	Package structure
	Code generators
	Refactoring

	Analysis
	Integration with IDE
	Class CodeGeneratorTool
	Package Refactory Browser
	Method rewriter

	API in a nutshell
	Usage in the IDE
	Usage inside a code
	Custom code generator
	Custom refactoring
	Overall schematic overview

	API design
	Template class
	Class model
	Context
	Perspective
	Refactoring helper
	Formatter

	Implementation
	Generator or refactoring composition
	Integration with IDE
	Class model extensions
	Refactoring helper

	Testing
	Mocks and stubs
	Generators or refactorings tests
	Testing summary

	Conclusion
	Future improvements

	Bibliography
	Acronyms
	Contents of enclosed CD

