


 

Czech Technical University in Prague 
Faculty of Electrical Engineering 

Department of Computer Science and Engineering 
 
 
 

 

 

 

 

Bachelor’s Thesis  

Archive and Access Control in the Integration Portal 

Eldar Iosip 

 

 

 

 

 

 

 

 

 

Supervisor: Ing. Ondřej Macek Ph.D. 

 

Study programme: Software Engineering and Management 

Specialisation: Software Engineering 

January 12, 2016 



 

iv  

  



 

v  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements 
I would like to thank my supervisor Ing. Ondřej Macek Ph.D. for his useful advice during the 
development process and his corrections during the writing of this thesis and also I would like 
to thank Bc. Radek Ježdík for introducing me to the server side of the project. And last but not 
least I would like to thank my family for their support. 



 

vi 

  



 

vii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Declaration  
I hereby declare that I completed this thesis without any improper help and I have listed all 
sources and publications used in compliance with the act “Metodický pokyn č. 1/2009”. 

 

 

In Prague, January 12, 2016                .............................................................  



 

viii 

 

  



 

 

 

 

 

 

Abstract  
Primary goal of this thesis is to extend current functionality for Integration portal by implement-
ing access control mechanisms and policies related to data archival on the server side of the 
application. This work aims to describe analysis, design, implementation and testing processes 
during the development. The last topic provides a study of files’ security.   

Keywords: bachelor’s thesis; java; acl; archival; integration portal; cesnet 

 

 

 

 

Abstrakt 
Předmětem této práce je návrh a rozšíření stávající funkcionality Integračního portálu o moduly 
spravující proces archivace a přístupová práva, včetně analýzy možných bezpečnostních vylep-
šení při ukládání souborů na fyzická média. V práci jsou prezentovány jednotlivé etapy analýzy, 
návrhu, implementace a testování. Implementace bude probíhat na serverové části portálu.   

Klíčová slova: bakalářská práce; java; přístupová práva; archivace; integrační portál; cesnet 

Překlad názvu: Archivace a přístupová práva v rámci Integračního Portálu 

 

 

 

 

 

 

 

 ix 



 

x 

  



 

 

 

Contents 

 
1	 Introduction ......................................................................................................................... 1	

1.1	 Access control module ................................................................................................ 2	

1.2	 Policy module ............................................................................................................. 2	

1.3	 Security ....................................................................................................................... 2	

2	 Refactoring .......................................................................................................................... 3	
2.1	 Common parent for FileMetadata and Folder classes ................................................. 4	

2.1.1	 Implementation ................................................................................................... 4	

2.2	 The Adjacency List ..................................................................................................... 5	

2.2.1	 About................................................................................................................... 5	

2.2.2	 Hibernate ORM ................................................................................................... 6	

3	 Analysis............................................................................................................................... 7	
3.1	 ACL module ................................................................................................................ 8	

3.1.1	 Expected output .................................................................................................. 8	

3.1.2	 Roles ................................................................................................................... 8	

3.1.3	 Requirements ...................................................................................................... 8	

3.1.3.1	 Functional requirements .................................................................................. 9	

3.1.3.2	 Nonfunctional requirements ............................................................................ 9	

3.1.3.3	 General considerations .................................................................................. 10	

3.1.4	 Domain model ................................................................................................... 10	

3.1.4.1	 Class explanation .......................................................................................... 11	

3.1.4.1.1	 FileMetadata ........................................................................................... 11	

3.1.4.1.2	 Folder ...................................................................................................... 11 

xi 



 

xii 

3.1.4.1.3	 Node ....................................................................................................... 11	

3.1.4.1.4	 UserDetails ............................................................................................. 12	

3.1.4.1.5	 Group ...................................................................................................... 12	

3.1.4.1.6	 Access Control Entry .............................................................................. 12	

3.1.4.1.7	 Access Control Permission ..................................................................... 12	

3.2	 Policy module ........................................................................................................... 12	

3.2.1	 Expected output ................................................................................................ 12	

3.2.2	 Roles ................................................................................................................. 13	

3.2.2.1	 Functional requirements ................................................................................ 13	

3.2.2.2	 Nonfunctional requirements .......................................................................... 13	

3.2.3	 Domain model ................................................................................................... 13	

3.2.3.1	 Class explanation .......................................................................................... 14	

3.2.3.1.1	 Policy ...................................................................................................... 14	

3.2.3.1.2	 Policy Type ............................................................................................. 15	

3.2.3.1.3	 Policy State ............................................................................................. 15	

4	 Design ............................................................................................................................... 16	
4.1	 ACL module .............................................................................................................. 16	

4.1.1	 Terminology ...................................................................................................... 16	

4.1.2	 Calculation of the ACL parent .......................................................................... 16	

4.1.3	 Possible recalculations of ACL parent .............................................................. 17	

4.1.3.1	 Node created inside a space root ................................................................... 17	

4.1.3.2	 Node created in the file system tree on level deeper than 1 .......................... 18	

4.1.4	 Creating a new ACE ......................................................................................... 19	

4.1.5	 Updating an existing ACE ................................................................................ 20	

4.1.6	 Copying a Node from other space .................................................................... 21	

4.1.7	 Removing a Node ............................................................................................. 21	

4.1.8	 Conclusion ........................................................................................................ 21	

4.2	 Policy module ........................................................................................................... 22 



 

xii 

4.2.1	 CRON service ................................................................................................... 22	

4.2.2	 Target node ....................................................................................................... 22	

4.2.3	 Node policy state ............................................................................................... 23	

4.2.4	 API .................................................................................................................... 23	

5	 Testing ............................................................................................................................... 24	
5.1	 Controller .................................................................................................................. 25	

5.2	 Service ....................................................................................................................... 25	

5.3	 Mock objects ............................................................................................................. 25	

5.4	 Additional tests ......................................................................................................... 25	

5.5	 Results ....................................................................................................................... 26	

6	 File security ....................................................................................................................... 27	
6.1	 Terminology .............................................................................................................. 28	

6.2	 Current transfer mechanism ...................................................................................... 28	

6.3	 Types of encryption .................................................................................................. 28	

6.4	 General assumptions ................................................................................................. 29	

6.5	 Java libraries ............................................................................................................. 29	

6.5.1	 Java Cryptography Extension ........................................................................... 29	

6.5.2	 Bouncy Castle Cryptography Library ............................................................... 29	

6.5.3	 Java Simplified Encryption (jasypt) .................................................................. 29	

6.6	 Concept ..................................................................................................................... 30	

7	 Conclusion ........................................................................................................................ 31	
8	 Bibliography ..................................................................................................................... 32	
9	 Acronyms .......................................................................................................................... 34	
Appendix A ............................................................................................................................... 35	
 

 

  



 

xiv 

 

  



 

 

 

List of Figures 

 
Figure 3.1.1: ACL Domain Model ............................................................................................ 11	

Figure 3.2.1: Policy Domain Model ......................................................................................... 14	

Figure 4.1.1.2: ACL Parent calculation .................................................................................... 17	

Figure 4.1.2: Node created inside a space root ......................................................................... 18	

Figure 4.1.3a: Node moved into another folder ........................................................................ 18	

Figure 4.1.5: Creating a new ACE ............................................................................................ 20	

Figure 4.2.1: CRON service ...................................................................................................... 22	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xv 



 

xvi 

  



 

 

 

List of Tables 

 
Table 2.2.1: Adjacency List structure ......................................................................................... 5	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xvii



 

xviii 



1 

 

 

1 Introduction 

These days many people use several major storage providers to help them organize their docu-
ments and also to get instant access from different electronic devices, such as mobile phones, 
laptops and PC’s, smart televisions etc. In other words, from every device that is capable of 
browsing web pages.  

Unfortunately, the amount of space initially reserved for each user account is limited and pos-
sible expansion may incur an extra fee. Because for most customers it is not hard to choose an 
alternative solution, for instance registering a new account or applying to a different service 
from another provider, their documents are spread across all these services and this makes them 
harder to maintain. 

The main target of this thesis is a software called “Integration portal” funded under the grant, 
translated from its original title, “Integration of CESNET data services for science teaching 
groups”. It eliminates the problems described earlier and also adds new features, such as data 
archival, integration with CTU (Czech Technical University) authentication system, labels for 
files and folders. 

Work continues on previous bachelor’s and master’s theses written by Petr Strnad [1], Kateřina 
Hašlarová [2], Jiří Blažek [3] and Vlastimil Fengl [4]. 

Final product is divided into two separate projects, one for server-side code (a codebase for the 
current thesis) providing an API (Application Programming Interface) for the second project, 
which contains client-side code (a single-page application). Both projects are under the GIT 
version control1.  

Expected output of the current thesis is analysis, implementation and testing of an access control 
mechanism for files and folders stored within a portal, together with policies and actions related 
to data archival, and an examination of the files’ security enhancements of the current system. 

Following subsections will introduce each module in more detail. 

 

                                                        
1 https://git-scm.com 



2 

1.1 Access control module 

A typical use-case for the authenticated user is that he wants to share his documents with other 
users and groups within the system. Assuming that all the files are private by default, said user 
should create access rules, allowing the selected group of people to initiate the selected group 
of actions. This rules are customizing the way that user and group members are allowed to ma-
nipulate the file or folder (e.g. view, download, upload, modify its metadata, share with other 
system users and also delete). Created access rules are managed in the system for the whole 
lifecycle of the file or folder (from creation, followed by a possible shift within the file system 
structure, ending by its removal or archival processing). 

A list of rules which define access to a file or folder is known as Access Control List (ACL). 
Each rule of this list is described as Access Control Entry (ACE) and holds the different combi-
nations of Access Control Permission (ACP) instances. Within Integration portal, ACL has the 
same meaning as described below, but also with an extended functionality for user groups and 
folders. 

 

1.2 Policy module 

As mentioned earlier, there is a state of the file, when the archival processing should be acti-
vated. This is a particular task which also could have variable pre-processing and post-pro-
cessing actions, e.g. to notify a user about successful task accomplishment or about an error 
occurred somewhere in between. The defined use-cases brings us to the Policy module. 

Policy itself is a sort of action that is triggered on a specific Node instance and then the prede-
fined rules modify its state. The implementation of each action defines how the node’s state will 
change – if it gets removed, archived or only updated. 

 

1.3 Security 

Integration portal may store a big amount of private files and as they are physically stored on 
external servers they have to be secured from unauthorized access. In this thesis are described 
possible security enhancements in storing files on the external servers with respect to the cur-
rently used frameworks and libraries. The general consideration is that Integration portal is stor-
age-agnostic and the only way to handle the data would be solely through the system’s interface. 
Data stored on the second end have to be unreadable if an attacker gets access to that storage 
media. 

  



3 

 

 

2 Refactoring 

This chapter describes the modifications implemented in the system compared to the initial state 
of the application.  

Main goal of all modifications was to preserve the backward compatibility and functionality of 
the affected parts of the system. To ensure its functionality, by the end of the refactoring it was 
always tested by the integration tests written earlier by the previous project maintainers [1] [4]. 

Refactoring process played the main role in familiarization with the system. It helped in discov-
ering a flow through every layer of an application, when particular classes are called and how 
the exception handling works, and in writing new code. 

  



4 

2.1 Common parent for FileMetadata and Folder classes 

In previous implementation there were two separate model classes describing file and folder - 
FileMetadata and Folder. 

That seems to be sufficient for the purpose of the previous system modules, but not for the future 
ones being implemented - ACL and Policy modules. They require an abstraction over 
FileMetadata and Folder classes. That’s the reason for creating a common parent class, called 
Node.  

Node holds all common attributes and relations, so the concrete classes became lighter in their 
definitions. It also allows DAO (Data Access Object) to query the parent class in situations when 
business logic does not care about the concrete instances of the retrieved classes. 

The ACL module stores the list of ACE instances inside each node, and the Policy module stores 
selected policies for further processing.  

Obviously, the inheritance strategy should be as fast as possible and it should also avoid unnec-
essary overhead in queries, due to the main role of the file and folder instances in the system. 

 

2.1.1 Implementation 
As an abstraction layer over the database, system uses Java Persistence API specification, 
shortly called JPA. As the specific implementation of this standard, project is configured with 
Hibernate ORM (Object-Relational Mapping). 

The most important part of the implementation was to correctly decide between different inher-
itance strategies, considering the ease-of-use with respect to the performance. 

As a requirement, there should be a common table in the underlying database so other tables 
have only one foreign key, e.g. ACE table. 

Choice is somewhere in between of the following three strategies: JOINED, 
TABLE_PER_CLASS and SINGLE_TABLE [5]. Next paragraph describes each strategy and 
general considerations, either using it for the implementation or not. A MappedSuperclass an-
notation is not preferable, because it does not create a common table but only injects its attributes 
into concrete class. The last strategy is the selected one.  

JOINED strategy corresponds to the inheritance type, where the parent class and all its sub-
classes has its own tables in a database. The parent class holds the attributes common to all 
members of the inheritance, so the uncommon attributes could be found only in subclasses [6]. 
The disadvantage of this strategy for the purposes of the system is a big amount of SQL Join 
operations when selecting subclasses. It can negatively affect the performance of such an often-
used query as selecting files or folders independently. 



5 

TABLE_PER_CLASS strategy corresponds to the inheritance type, where parent class and each 
subclass has its own tables in a database. This approach is different from the previous strategy, 
because it copies all common attributes from the parent class into every subclass [7]. The dis-
advantage of this strategy is a big amount of data duplicated across the database tables and the 
worst performance in queries (using SQL Union [8]). 

SINGLE_TABLE strategy corresponds to the inheritance type, where only one table is created 
in a database and it holds all attributes, that all classes - parent and all children - define [9]. To 
distinguish subclasses, it uses a special column called Discriminator. This column holds the 
identifier for every subclass, so an ORM could efficiently query them. Due to the fact that 
FileMetadata and Folder classes have lots of attributes in common, it would be proper to select 
this strategy. 

 

2.2 The Adjacency List 

This section describes the current database schema which holds a virtual file system structure, 
presented to the end user, and also its advantages and disadvantages in terms of performance 
and amount of queries targeted to the database. Further section will describe another approach 
to this problem, comparing it to the current implementation described below. 

 

2.2.1 About 
The main principle of the Adjacency List is that each member holds a reference to its parent, 
where topmost elements are indicated by the parent reference set to NULL [10]. It is fairly 
simple to represent the model graphically, but from the view of the relational database it could 
problematic to make it work efficiently without additional algorithms being applied. Table 2.2.1 
provides an example of this structure.  

 

 

ID Parent 
1 NULL 
2 1 

Table 2.2.1: Adjacency List structure 

 



6 

2.2.2 Hibernate ORM 
As the abstract layer over a database, system uses a Hibernate ORM2 on top of PostgreSQL3. 
Hibernate provides a JPA interface described earlier, so developers don’t have to manage the 
database schema by hand, which makes code simpler to maintain. 

For the selected topic it is important to understand the underlying process of retrieving collection 
elements. Hibernate has many different strategies for Lazy entity loading [11]. These strategies 
enable efficient retrieval of entities with big collections inside, in our particular case it is a Node 
entity. The Node holds a collection of its children on the file system – files and folders. In most 
situations, directories are created to store a big amount of files inside of them and probably other 
folders and so on. But what if after the file retrieval, system will use only folder’s name and 
other attributes and collections stay unused? In that case, a developer should select an appropri-
ate collection fetching strategy, depending on the defined use-cases [12]. 

Usually, fetching strategy is set to default in mapping files and a custom strategy is used within 
a selected transaction [13]. 

 

  

                                                        
2 http://hibernate.org/orm/ 
3 http://www.postgresql.org/about/ 



7 

 

 

3 Analysis 

This chapter is divided into 3 sections, where each of them represents an analysis of each module 
introduced in 1.1 and 1.2. It defines the requirements and possible restrictions that may occur 
during the implementation. Subsections may vary depending on the analyzed module. 

Implemented modules should not break the existing functionality but rather extend it with the 
use-cases defined further. There is an assumption that newly created modules would be imple-
mented using the existing project structure and library dependencies for developing and testing. 

All the modules logic has to be stored on business and database layers of the system, and behave 
as a mediator between the Integration portal and the CESNET storage, managing the permis-
sions before the user get access to the physical media. In other words, no special settings related 
to the ACL and Policy modules and possible security improvements will be made in the 
CESNET file system. 

  



8 

3.1 ACL module 

Further sections introduce the module’s problem domain. Starting from the requirement analysis 
with a detailed explanation of each case, followed by the domain model with an explanation of 
each class represented inside. 

 

3.1.1 Expected output 
ACL module should cover all pre-defined manipulations with the stored files and folders de-
scribed by the use-cases below, while also preventing unauthorized access. Each use-case 
should be tested to ensure modules functionality in a possible further refactoring process. 

 

3.1.2 Roles 
The following section describes everyone who will use ACL modules functionality, which could 
also be another system outside of the Integration portal. 

Registered user – this is the most general role in the system and it provides user credentials 
that ACL module could use to reference the ownership to the other registered users. The purpose 
of the ACL module is to give every registered user a tool to manage their files’ access permis-
sions. 

Node owner – a concrete role that gives its owner the ability to manage ACL with all its avail-
able features. Assumes that it is possible to be a folder owner, but the content of said folder 
could be owned by different owners with whom the folder was shared. 

Granted user – it could be a group or one particular user who has privileges to interact with a 
node, in other words “ACE target”. Depending on the selected ACP, the user could modify a 
node’s state or share it with others. If the target of an ACE is a group, all of its members have 
the same privileges, excluding those targeted explicitly in another ACE of the same node. To 
these users apply the most restrictive rules from both sets. 

 

3.1.3 Requirements 
Requirement is a textual representation of a condition or capability needed by a user to solve a 
problem [14]. Each requirement could be a member of either functional or nonfunctional cate-
gory [15].  

For all categories, regardless of their type, a unique identifier exists. It is composed from a 
combination of letters, describing the module name, and also its numeric order, created for a 
better referencing in further parts of the thesis.  

The content of each requirement should be at least SMART [16]. 



9 

3.1.3.1 Functional requirements 

Functional requirements are written in a format also known as a “user story” [17]. Each story 
contains a brief description of the selected functionality, available to the target user, optionally 
expanded by an explanation of its benefit.  

Following requirements are not ordered by the priority but rather by the user role it targets. 

REQ-A-001 – As a file owner, I want to share the file with a selected user so he could see the 
file in his “Shared” section. 

REQ-A-002 – As a file owner, I want to share the file with a selected group of users, so they 
can see the file in their “Shared” section. 

REQ-A-003 – As a file owner, I want to restrict the permissions for selected user or group. 

REQ-A-004 – As a folder owner, I want to restrict the permissions for selected user or group 
for all of the folder’s contents. 

REQ-A-005 – As a file owner, I want to restrict the permissions only for one selected user of 
the group, so I can narrow down selected permissions. 

REQ-A-006 – As a folder owner, I want to restrict the permissions only for one selected user of 
the group, for the folder and its contents, so I can narrow down selected permissions. 

REQ-A-007 – As a node owner, I want to restrict permitted users from modifying my own 
permissions for the node, so others could not restrict my access to the node. 

REQ-A-008 – As a granted user, I want to edit permissions for the shared file/folder. 

REQ-A-009 – As a granted user, I want to copy file/folder to my own space, without original 
permissions, so I can create a local copy and become the owner. 

REQ-A-010 – As a registered user, I want to view all the files and folders shared with me. 

REQ-A-011 – As a registered user, I want to view all the folders shared with me in the system 
in the first level of the “Shared” folder. 

 

3.1.3.2 Nonfunctional requirements 

The following requirements are perceived as system features not visibly available to the end 
users. They have to be considered in the early phases of the module’s architecture and be re-
spected in the implementation phase [18]. 

REQ-800 – User permissions are more preferable than permissions defined for a group, that the 
user is member of. 

The general purpose of this requirement is to explicitly extend or restrict access only for the 
selected group members. It may be useful in situations when group member is a student and 
information in a folder is private to teachers he works with – so folder owner will store an empty 
ACE for this student and he won’t see it in his shared files.  



10 

REQ-801 – User cannot assign any permissions to his space root, so other members could sub-
scribe to the updates of his file structure. Space root is always the private place for the currently 
logged user. Otherwise every newly created file or folder will be shared with some group of 
users, which may cause an unwanted leak of information. 

REQ-802 – Only the file/folder owner or a user with a relevant right set of permissions has an 
ability to modify the list of permissions, no matter if they are newly created or modified existing 
ones. It means that on every such request, system needs to check this condition. 

REQ-803 – Moving a file/folder within the same folder should be ignored, so there is no un-
wanted calculations with the same result. 

REQ-804 – If the user is a part of a large amount of groups with different permissions to the 
node, then the most restrictive permission set should be picked. 

 

3.1.3.3 General considerations 

Assuming that every part of the system is behind a security mechanism, it is possible to rely on 
the existence of the user profile for each request that has been received by the RESTful API 
(excluding the unauthorized attempts) [19]. 

Each Node should be capable to return the list of all user and group entries having any kind of 
permissions targeted to its instance. 

If the list of ACE on a particular node is empty, it means that only its owner could access and 
manipulate the node. 

To reduce the amount of database queries, and speed up the whole process of retrieving the 
permissions by the selected Node, there should exist a direct reference to the parent, holding 
permissions inherited by the node. This strategy allows to jump to the parent faster than by a 
standard traversal - going upwards by the file system parent reference and so on. 

 

3.1.4 Domain model 
From the requirements defined earlier, it is now possible to build a domain model and illustrate 
the appearing classes with all the relations between them. The ACL module has its own bound-
ary so it is possible to see how the module interacts with other classes, implemented earlier. 



11 

 

Figure 3.1.1: ACL Domain Model 

 

3.1.4.1 Class explanation 

Following subsections describe each class and its important attributes represented above, to-
gether with other classes and relationships between them. Some of the classes are taken over 
from the previous implementation – FileMetadata, Folder, UserDetails and Group. Their attrib-
utes were optionally refactored (as described in 2.1) to make them compatible with an ACL 
module. 

 

3.1.4.1.1 FileMetadata  
Holds a detailed information about the file, such as file size, mime type, lifecycle timestamps, 
reference to the parent folder and others. 

 

3.1.4.1.2 Folder 
Container for the FileMetadata and other Folder instances. 

 

3.1.4.1.3 Node  
Common class for FileMetadata and Folder classes. It makes it possible to write some common 
operations that could work with concrete classes without knowing about their type. 

For the purposes of the ACL module, Node holds the reference not only to his parent in a file 
system tree but also to parent, holding the ACE instances. We will take a closer look into this 
structure in the next chapter. 



12 

3.1.4.1.4 UserDetails  
Holds the information about the user in the system, such as record about his membership in 
particular organizational unit and other common information that user can provide. 

 

3.1.4.1.5 Group 
Containers, for the particular amount of UserDetails instances. Each group has its own name 
and an owner who can manage its members. 

 

3.1.4.1.6 Access Control Entry 
Holds a set of the Access Control Permission instances. It also targets to the selected Node and 
UserDetails/Group. 

 

3.1.4.1.7 Access Control Permission 
Set of the available permissions, which the user can assign to the ACE instance.  

Available options are: 

o READ_NODE - view a node from the own space 
o WRITE_NODE - create new nodes in folder 
o REMOVE_NODE - remove nodes 
o EDIT_NODE _PERMISSIONS – allow to modify node’s ACL list 

 

3.2 Policy module 

Following subsections, with a common structure as provided in ACL module analysis, will in-
troduce policy mechanism inside the Integration portal. Policy and ACL modules do not provide 
any shared functionality, only common classes for both domain models can be referenced in 
section 3.1.4.1, where they were already described.   

 

3.2.1 Expected output 
Policy module should extend the functionality for the Node instances and operate under the 
control of CRON (Command Run On), managing the state of files and folders by the rules of 
the selected policy strategy. Policy module should be extensible in term of creating new policies. 

 



13 

3.2.2 Roles 
Basically, the only person who can manage a list of policies for the selected node, is the node 
owner himself. In future implementations it may be connected with an ACL module, to share a 
privilege to manage policies with another user in the system. 

 

3.2.2.1 Functional requirements 

Functional requirements are written in the same format as it was described earlier in 3.1.3.1. To 
reflect a possible further connection with an ACL module, role name in each requirement is 
generalized from “node owner” into “registered user”. 

REQ-P-001 - As a registered user, I want to create a new policy for the node, so after the defined 
period of time it will be removed. 

REQ-P-002 - As a registered user, I want to update the date of created policy on the selected 
node. 

REQ-P-003 - As a registered user, I want to remove created policy.  

REQ-P-004 - As a registered user, I want to show all policies saved with a node. 

REQ-P-005 - As a registered user, I want to add multiple policies ordered by the date they need 
to be executed. 

REQ-P-006 - As a registered user, I want to get a notification before any policy start to process, 
so I always stay informed about all impeding changes to files I own. 

 

3.2.2.2 Nonfunctional requirements 

REQ-700 – Count all unsuccessful attempts to process a policy. 

REQ-701 – Make a Policy module extendable in terms of new policy types. 

REQ-702 – Remove all policies after the node removal. 

 

3.2.3 Domain model 
Figure 3.2 presents a domain model for Policy module. 



14 

 

Figure 3.2.1: Policy Domain Model 

 

3.2.3.1 Class explanation 

The classes explained earlier in this text could be found starting from 3.1.4.1.1. A new classes 
created for a Policy module are described further. 

 

3.2.3.1.1 Policy 
Holds the policy type and several other attributes, such as activeAfter and attempts. 

• activeAfter - is a date object, describing when the selected policy becomes active and 
can be dispatched by the system. 
 

• attempts - holds the number of unsuccessful attempts to dispatch the selected policy. 
Could be used as a counter to indicate that something went wrong and fall back to an-
other policy if possible. 

 



15 

3.2.3.1.2 Policy Type 
Set of the available policy types. They define the action that will be triggered, when the active-
After date will be relevant. 

Available options are: 

• REMOVE – remove a node recursively when the activeAfter expires. 
 

• NOTIFY – inform a user that next policy will be executed in near future. It makes pos-
sible to report upcoming actions, via portal’s frontend or by summary email sent to the 
end user.  
 

3.2.3.1.3 Policy State 
Set of the available states obtainable by a node when affected by the policy. This value is stored 
as an attribute of the Node class so it can be presented to the user, to provide a relevant feedback 
about its state. 

Available states are: 

• AWAITING_REMOVAL - it means that node is affected by the Remove policy. 
 

• FAILED_REMOVAL - after a few unsuccessful attempts node could not be removed, 
therefore it is an indication of failure. Could inform the owner so he could do it manually 
or report an error. This state may be created when some of the external services are 
offline. 

 

  



16 

4 Design 

This chapter describes the design process where the selected, early introduced requirements 
were considered and implemented. As the design process took the largest part of the time, the 
following text will describe all the initial thoughts from the analysis part, optionally followed 
by pseudo code snippets implemented in the system. 

 

4.1 ACL module 

Having lots of different manipulations inside an ACL tree, sometimes it is hard to describe all 
attributes that should be set when node moves; therefore, these descriptions are accompanied by 
pictures visualizing nodes state and its next position. 

 

4.1.1 Terminology 
Following list contains all shortcuts invented during the design process illustrated below.  

ACL parent – it is a node with a list of ACE instances. 

ACL tree – it is a virtual tree (virtual because it doesn’t have any representation media it applies 
on, like file system tree has). There are 2 types of nodes in this tree. First, which defines his own 
ACE and behave as an ACL parent for its children nodes and second, which inherits ACE from 
its ACL parent (so its ACE list is empty). 

ACL subroot – it is a first type of node described in ACL tree shortcut above. 

 

4.1.2 Calculation of the ACL parent 
As it was described in 3.1.4.1.3 and 3.1.3.3 a Node has to know about its ACL parent, placed in 
upper levels of the ACL tree. 

The following pseudo code shows a calculation of the new ACL parent. A detailed explanation 
could be found in following sections starting from 4.1.3.1. 

get ACL parent by file system (parent) { 
    IF parent is NULL 
        return NULL 
    IF parent ACL is not empty 
        return parent; 
    ELSE 
        return parents ACL parent 
} 



17 

 
 

Figure 4.1.1.2: ACL Parent calculation 

 

4.1.3 Possible recalculations of ACL parent  
The following cases are illustrated to demonstrate possible use-cases that may occur when using 
an ACL module’s functionality. All manipulations presume that they are inside the same user 
space. Extra case when node is copied into another space is described in a last subsection. 

4.1.3.1 Node created inside a space root 

Whether a created node is an instance of FileMetadata or Folder, neither can have any subnodes 
on their creation, so there is no need to propagate any ACL inside the node.  



18 

 

Figure 4.1.2: Node created inside a space root 

 

4.1.3.2 Node created in the file system tree on level deeper than 1 

Assuming that space root depth inside the file system tree equals to zero, the computations pro-
cessed are the most trivial in terms of the ACL module described earlier in 4.1.3.1. In tree depth 
greater than zero more complicated situations regarding ACL parent recalculations can be 
found. 

Node moved into another folder with inherited ACL 

On every new file or folder added into already created node, parent’s ACL should be automati-
cally inherited. Assuming that node is placed into another folder affected by a different ACL, 
the previous ACL should be truncated and replaced by a new one. A reference to the ACL is 
calculated from the destination file system parent. 

IF ACL parent of node file system parent is NULL 
      return file system parent instance 
ELSE  
      return ACL parent of file system parent 
 

 
 

Figure 4.1.3a: Node moved into another folder 



19 

Node moved from folder into the space root 

This is a special case, because space root can’t have any ACL for the whole space, as specified 
earlier in 3.1.3.2 at REQ-801. So every node moved or copied from the deeper levels of the file 
system tree becomes private to the current user (ACL is removed when file changes its destina-
tion), setting its ACL parent to NULL. 

 

 

Figure 4.1.3.2b: Node moved from folder into the space root 

 

4.1.4 Creating a new ACE 
Creation of a new ACE instance requires the knowledge about the target node and user/group 
to which the node owner wants to modify access. According to the selected combination of ACP 
entries, created ACE instance could affect its underlying nodes reducing or extending access 
control permissions for the target user or group. 

For the most cases, when ACE is created inside the file system tree (in levels between 1 and n, 
where n is the current maximum depth of the file system tree), the current node copies whole 
ACL from its referenced ACL parent as presented in Figure 4.1.4.  



20 

 

Figure 4.1.4: Creating a new ACE 

 

This approach was intended to solve a problem with a big amount of requests targeted to a 
database, caused by a wide spread of ACE entries in the ACL tree where each node affected by 
the ACL holds a list of its ACE instances. Problem occurs at the moment when system wants to 
know if selected user has access to the requested node. On this type of request, it will traverse 
an ACL tree upwards to find all ACP for user and also for groups he is member of. This is an 
extremely demanding process assuming how frequent the ACL querying is. So the approach 
with the ACE copy was selected for the implementation.  

The downside of the selected solution are possible duplicates and overhead on ACE update, 
traversing downwards the file system tree, but the read operation becomes faster, assuming that 
most of the queries will read, rather than write. 

 

4.1.5 Updating an existing ACE 
The updating process of an ACE is the same as on its creation, depending only on the stored 
ACL parent. The only optimization of this case, that if node has no any ACE records after the 
update, ACL tree under that node get recursively recalculated, removing unnecessary ACL 
subroots (Fig. 4.1.5), to boost performance on future read requests. 



21 

 

Figure 4.1.5: Updating an existing ACE 

 

4.1.6 Copying a Node from other space 
When current user wants to copy node into his own space, a strategy that will be used for an 
ACL copy must be selected. User can choose whether to keep original ACE entries or remove 
them. First strategy requires a recursive traversal with possible merge of each ACE from the 
original source with a new ACL parent. The second only requires the knowledge of the destina-
tion folder. In both cases, newly created node inherits an ACL from the upper nodes, by process 
already described in 4.1.3.2. 

Implicit action for copying is to ignore original ACL, to keep the meaning of the operation clean 
and eliminate an ambiguous result. 

 

4.1.7 Removing a Node 
In general ACL is stored as a collection of ACE instances inside a Node and by the enabled 
cascade should be removed recursively as well as the Node instance. This step should manage 
the ORM (Object-Relational Mapping) with an appropriate setting by itself. 

 

4.1.8 Conclusion 
In the simplest case of the permission retrieval is a θ(1) and the worst is θ(k), where k is the 
amount of levels having nodes with a custom ACL. The worst case scenario is θ(n) under the 
assumption that each folder modifies the set of the allowed users and groups, so it become a 
new subroot from the ACL point of view. An optimization of the worst case scenario was de-
scribed in 4.1.4. 



22 

4.2 Policy module 

This section describes how the Policy functionality was implemented. Because it was a second 
module from the list of the expected output and refactoring was already done, the system was 
already prepared for the new module. 

 

4.2.1 CRON service 
System defines a service for all CRON tasks that may occur in portal’s flow. Each method of 
the service is annotated by the annotation called Scheduled. It takes a string parameter with a 
CRON expression defining when the annotated method should be executed [20]. 

For the purposes of Policy module, CRON task is scheduled to run every day at 6:00 am, so the 
user can get a notification before another task removes archived files.  

A notation is “0 6 * * * ?”. 

Following diagram (Fig. 4.2.1) illustrates a process that CRON service initiates. 

 

Figure 4.2.1: CRON service 

 

4.2.2 Target node 
Each policy irrespective of its type has to be targeted on a particular Node instance and hold a 
reference to its owner. The Node can have various policies ordered by date in an ascending 
order.  



23 

4.2.3 Node policy state 
After CRON finishes its task, any node with DELETE policy will indicate its state as 
AWAITING_REMOVAL and any node with NOTIFY policy will change its policy state into 
AWAITING_NOTIFICATION, so other system modules, e.g. Notification module, will pull 
the nodes by this state and notify their owners about upcoming event. 

Task that will remove the nodes will run last, and no other policies or states will be set. 

 

4.2.4 API 
As most parts of the system, policy module has its own role in implemented API. It defines 
CRUD controller actions in NodeController class. It uses node as a resource and policy as mod-
ule operation on it. Each action has the same URL but different HTTP method. E.g., if user 
wants to add a new policy, he sends a request using the POST method, and when he wants to 
delete he uses the DELETE method. It makes API URL clear and easy to understand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

 

5 Testing 

During the introduction period it was very important to understand how each system component 
works and behaves. Already written tests helped understand what to expect from the output of 
each Service method or Controller response being tested.  

In the current project, tests are divided by their target application layer – Controller and Service. 

  



25 

5.1 Controller 

Controller tests target the API of the Integration portal and check if backend returns expected 
response (including http status code and content passed in its body) from the various requests 
that may be passed from the frontend application. As frontend application uses a JSON format 
for communication between its API level and backend’s API endpoints, Unit tests have to un-
derstand the provided response and parse it, to be able to check selected major attributes, that 
confirm the response is valid. For that case Spring has a method jsonPath that tests if the selected 
JSON attribute matches an expected value. 

 

5.2 Service 

Service tests target specific service methods, and thus simplifies the whole process of finding 
possible errors, because of a smaller amount of code being executed. It may be useful in situa-
tions when a module has complicated business logic under one API call and requires many 
dependencies and mock instances to return a valid response. It is also very important to test how 
service methods cooperate with each other – they may do correct computations and serve valid 
responses on their own, but when some sort of aggregation logic with additional input parame-
ters is needed, the methods may break. 

 

5.3 Mock objects 

Tests are based on mock objects that are defined statically in XML files. They have a simple 
structure and are used during database setup. Springockito4 library provides a small extension 
that simplifies the process of creating mock objects and also provides several methods for man-
aging the way mocks get reinitialized after the tests completion (e.g. after each method execu-
tion, after testing class finished its tests). A mocked file structure that handles different manip-
ulations with an ACL was constructed for the purposes of testing the ACL module. 

 

5.4  Additional tests 

From the very beginning of the implementation, testing was handled manually. Manual testing 
helped discover every layer of the application step by step using a debugger tool, integrated in 
IDE.  

                                                        
4 https://github.com/springockito/springockito 



26 

For manual testing a REST client called Paw5 was selected, that helps organize various API 
calls into different groups and projects. For every tested request a JSON object is constructed, 
derived from the representation objects stored on backend, and with an appropriate method it 
sends a request to server. Response is parsed and provided to the tester. Advantage of this solu-
tion is that every call is stored within a project, it could be exported and it is possible to emulate 
a real usage of the API. 

For automated testing an existing solution was used, as described in previous sections. ACL 
module has more complicated tests because it affects several nodes at once, so every changed 
state needs to be checked. 

5.5 Results 

ACL module was covered at 70% by automated tests and 40% by manual requests on API stored 
in a separate project (10 unit tests and 15 manual). 

Policy module was covered at 80% by automated tests (5 unit tests). 

12 unit tests that cover creation and manipulation of files and folders were also added. Correct 
assignment of an ACL parent is also checked during the test. 

All calculations reflect a part of implemented tests against the amount of defined requirements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
5 https://luckymarmot.com/paw 



27 

 

 

6 File security 

Nowadays, the biggest part of the information is transported and stored on a variety of storage 
media in its digital form, so the data that may contain sensitive information should be properly 
secured. Primary target of the following text is to analyze current design of file exchange be-
tween Integration portal and CESNET storage and find additional libraries that could provide 
useful tools for securing files, stored on a physical media. 

  



28 

6.1 Terminology 

Following terms will be often used in further text, as they are part of the Cryptography basics. 

• Plaintext – plain text data in a readable format. 
• Ciphertext – result of the encryption, something that appears to be meaningless. 
• Encryption – process of translating plaintext into ciphertext. 
• Decryption – process of transforming ciphertext back to plaintext. 
• Key – secured parameter of the encryption algorithm. 

 

6.2 Current transfer mechanism    

As it was introduced earlier in 0, the Integration portal uses a storage media provided by 
CESNET. The communication between portal and storage server is handled via SFTP (Secure 
File Transfer Protocol) which enables secure network transfer between two points and also file 
system management capabilities (e.g. resuming interrupted file transfers, navigating within re-
mote directories etc.) [21]. 

As it was mentioned in 1.3, Integration portal architecture allows to switch between different 
storage providers that may provide different capabilities in term of data encryption and may 
allow direct access to the files from their own interface that could be vulnerable to attacks. 
Further text will consider these situations and analyze possible solutions that could be imple-
mented in specified context. 

 

6.3 Types of encryption 

There are two types of encryption: symmetric and asymmetric.  

Symmetric encryption uses only one key (which is private) for encryption and decryption, and 
is often used in situations when there is only one endpoint, e.g. when files are encrypted and 
decrypted on the same machine (not counting combination solutions when used with asymmet-
ric encryption). Comparing to the asymmetric encryption, symmetric encryption is much faster 
and it may have an advantage in database systems where performance is an issue [22]. 

 

Asymmetric type uses a pair of keys for its encryption activity, where first key is called public 
and second is private. Comparing to the symmetric encryption, asymmetric is often described 
as being more secure by not requiring a secure channel for initial exchange [23]. 

For both types of encryption, security depends only on keeping the private key private [24]. 



29 

6.4 General assumptions 

As the primary content of each user space is a collection of files, they can be in various sizes 
and formats. Every file on its creation should be encrypted with a random key. That key should 
never be derived from the user’s password. If so, with an appropriate amount of iterations, a 
long re-encrypting process may be required, considering the possibility of the user storing giga-
bytes of data in his space.  

 

6.5 Java libraries 

Following sections contain the information about available libraries and extensions that could 
be used in implementation.  

 

6.5.1 Java Cryptography Extension 
As the system is written in Java, it has a big amount of security components related to authenti-
cation, secure communication, cryptography and others [25]. One of them is JCE (Java Cryp-
tography Extension) which provides an API for the implementation of wide range of security 
providers [26]. For historic reasons, default key size in standard installation equals to 128 bit, 
in situations when a 256-bit key needed, it could be extended by a couple of jar files [27]. Added 
dependency creates a new step in deployment process that may be inappropriate for some envi-
ronments. 

 

6.5.2 Bouncy Castle Cryptography Library  
It is very powerful, open-source cryptography library with a various implemented generators 
and can be used as a provider for JCE [28]. It also provides a light-weight API that is useful in 
situations when the basic configuration meets the requirements and added abstraction level 
could simplify the whole implementation. For the 256-bit key it is a prerequisite to install JCE 
from 6.5.1. 

 

6.5.3 Java Simplified Encryption (jasypt) 
It is a Java library which allows the developer to add basic encryption capabilities to project 
with minimum effort [29]. Could be used on top of Bouncy Castle library introduced in 6.5.2. 
It provides a support for binary encryption and integrates with Spring and Hibernate. 



30 

6.6 Concept 

For the current implementation it would be correct to obscure property files so they don’t get 
accidentally stored under version control or viewed by an authorized person. Such an occurrence 
may allow direct access to CESNET storage and lead to the information leak. 

Privacy of the stored information should also be considered, and an appropriate encryption al-
gorithm selected, that will secure data on the storage media with respect to the frequency with 
which files get encrypted and decrypted. 

Libraries that were mentioned in 6.5.2 and 6.5.3 provide a different level of abstraction, but both 
work with byte arrays, so file encryption is possible. The fact that file encryption and decryption 
should be used when file leaves and approaches the Integration portal should be considered 
during the implementation – big files should be processed efficiently, without unreasonable 
memory usage that may occur when working with streams and byte arrays. 

  



31 

7 Conclusion 

During the development of several additional features – ACL and Policy modules, provided in 
thesis guideline, the refactoring process provided a large advantage. It helped to get in touch 
with the system faster than by traversing code, that was previously maintained by several devel-
opers [1] [4]. 

To be compatible with previous implementations, a custom algorithm was chosen for the ACL 
module that can provide basic ACL functionality. As there are two types of users in the system 
– standard users and group members, there was a non-functional requirement that user’s ACL 
is more valuable comparing to his group ACL. It was successfully implemented and validated 
by several integration tests in 5.5. 

The Policy module was implemented to provide different management capabilities for the end 
user. Module was written as an add-on to a file and folder instance. It should be easily extended 
with additional policies that may provide additional functionality. The module was successfully 
tested with unit tests. 

The code was written in accordance to the project’s semantics and every created method is com-
mented with an appropriate description. 

For future development, the analysis part could help with further optimizations. Provided re-
quirements may be extended for additional user roles in the system and access to the files may 
be categorized by them. 

  

  



32 

8 Bibliography 

	

[1]  P. Strnad, "Integrační portál pro sdílení a zálohování dat," ČVUT FEL, 2015. 

[2]  K. Hašlarová, "Front-end pro portál pro sdílení souborů," ČVUT FEL, 2015. 

[3]  J. Blažek, "Dokončení klientské části Integračního portálu," ČVUT FEL, 2015. 

[4]  V. Fengl,  ČVUT FEL, 2015. 

[5]  "37.2 Entity Inheritance," [Online]. Available: 
https://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm. 

[6]  "37.2.4.3 The Joined Subclass Strategy," [Online]. Available: 
https://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm#JEETT00681. 

[7]  "37.2.4.2 The Table per Concrete Class Strategy," [Online]. Available: 
https://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm#JEETT00680. 

[8]  "7.4. Combining Queries," [Online]. Available: 
http://www.postgresql.org/docs/9.0/static/queries-union.html. 

[9]  "37.2.4.1 The Single Table per Class Hierarchy Strategy," [Online]. Available: 
https://docs.oracle.com/javaee/7/tutorial/persistence-intro002.htm#JEETT00679. 

[10]  T. Cormen, "Representations of graphs," in Introduction to Algorithms, 3rd Edition ed.  

[11]  "Lazy loading," [Online]. Available: https://en.wikipedia.org/wiki/Lazy_loading. 

[12]  "20.1. Fetching strategies," [Online]. Available: 
http://docs.jboss.org/hibernate/orm/4.3/manual/en-US/html/ch20.html#performance-fetching. 

[13]  "Improving performance," [Online]. Available: 
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html#performance-
fetching-custom. 

[14]  "Software requirements," [Online]. Available: 
https://en.wikipedia.org/wiki/Software_requirements. 

[15]  "Differentiating between Functional and Nonfunctional Requirements," [Online]. Available: 
http://searchsoftwarequality.techtarget.com/answer/Differentiating-between-Functional-and-
Nonfunctional-Requirements. 

[16]  B. K. Mike Mannion, "SMART Requirements," April 1995. [Online]. Available: 
http://www.win.tue.nl/~wstomv/edu/2ip30/references/smart-requirements.pdf. 



33 

[17]  S. W. Ambler, "User Stories: An Agile Introduction," [Online]. Available: 
http://www.agilemodeling.com/artifacts/userStory.htm. 

[18]  "Non-functional requirement," [Online]. Available: https://en.wikipedia.org/wiki/Non-
functional_requirement. 

[19]  "Representational state transfer," [Online]. Available: 
https://en.wikipedia.org/wiki/Representational_state_transfer. 

[20]  "33.4.2 The @Scheduled Annotation," [Online]. Available: 
http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/scheduling.html#scheduling-annotation-support-scheduled. 

[21]  "What is SFTP, and how do I use it to transfer files?," 12 11 2015. [Online]. Available: 
https://kb.iu.edu/d/akqg. 

[22]  "Symmetric & Asymmetric Database Encryption," [Online]. Available: 
https://en.wikipedia.org/wiki/Database_encryption. 

[23]  "Asymmetric Encryption," [Online]. Available: https://support.microsoft.com/en-us/kb/246071. 

[24]  "Public-key cryptography," [Online]. Available: https://en.wikipedia.org/wiki/Public-
key_cryptography. 

[25]  "Java SE Security," [Online]. Available: 
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html. 

[26]  Oracle, "3 Basic Security Architecture," [Online]. Available: 
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html. 

[27]  Oracle, "Import Limits on Cryptographic Algorithms," [Online]. Available: 
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html 

[28]  "The Bouncy Castle Crypto Package For Java," [Online]. Available: 
https://github.com/bcgit/bc-java. 

[29]  "Java Simplified Encryption," [Online]. Available: http://www.jasypt.org/index.html. 

 

 

 

 

 

 

 



34 

 

 

9 Acronyms 

 

CESNET Czech Education and Scientific NETwork 

ACL   Access Control List 

ACE  Access Control Entry 

ACP  Access Control Permission 

SQL  Structured Query Language 

REST  Representational State Transfer 

API  Application Programming Interface 

URL  Uniform Resource Locator 

HTTP  Hypertext Transfer Protocol 

IDE  Integrated Development Environment 

JSON  JavaScript Object Notation 

CRUD  Create, Read, Update, Delete 

  



35 

 

 

Appendix A  

Package Structure  

 
Path About 
portal/src/main/java/cz/cvut/fel/integracniportal/* Portal’s main source 
portal/src/test/java/cz/cvut/fel/integracniportal/* Mocks and Service unit tests. 
thesis.pdf Thesis PDF file 

 

 


