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1 Introduction

This work presents the theory for understanding the geometry of perspective cameras
within the scope of computer vision and robotics. It provides a complete and self-
contained material updating and refining some of the most fundamental elements
from the excellent previous expositions of the topic [1, 2, 3] as well as providing new
results and insights.

We cover the geometry of single perspective camera and relationships between
two perspective images of a general as well as a planer scene, including the re-
construction of 3D scenes from two images. We mostly concentrate on situations
when cameras are internally calibrated [2], which proved to be particularly useful in
practical applications [4].

1.1 Contributions

Let us point to the main contribution of this work.

• We depart from the classical approach to explaining the theory of perspective
cameras on the basis of classical projective geometry [5]. Instead, we base our
exposition on plain linear algebra and, where useful, on elementary algebraic
geometry. In particular, we explicitly treat all projective elements as subspaces
of a linear space and represent them with full detail. Unlike in [2], we never
use ~y “ ~x to say that two vectors are equal up to a non-zero scale but always
include explicit forms such as ~y “ α~x, α ‰ 0. This, seemingly minor variation
proved to be instrumental in deriving and understanding results in full detail
and with necessary rigor.

• We pay attention to keeping track about the coordinate systems we are using
to model physical reality with vector calculus. Hence, we always write ~xβ
when talking about the coordinates of vector ~x w.r.t. a basis β. This, for
instance, allowed to grasp the camera model, Chapter 7, and the subtleties of
its calibration, in greater depth than before. In particular, we have identified
a need for distinguishing between classical camera calibration matrices [2] and
newly introduced image calibration matrices, allowing to represent physical
dimensions in of the camera itself.

• We are carefully distinguishing between representations of points by vectors
and one-dimensional linear subspaces of a linear space and representations of
lines and planes by linear subspaces in the dual space. This makes the expo-
sition fully consistent and facilitates rigorous description and manipulation of
problems.

• We concentrate on problems involving internally calibrated cameras [2] and
present analysis and solutions to classical problems with calibrated cameras in
a new way. In particular,

1



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

– We present a new method for finding absolute pose of a calibrated cam-
era, Section 7.3, which uses the approach borrowed from computational
algebraic geometry [6]. Our approach leaves the tedious discussion of
the cases to a general algorithm for solving linear equations as is, e.g.,
Gaussian elimination.

– We analyze various situations of imaging a plane in the scene with cali-
brated cameras and show, Paragraph § 46, that every homography matrix
can be interpreted as originating from observing a plane in the scene with
a pair of calibrated cameras. We present a new simple proof of this fact.
We also show how to obtain the decomposition by solving relatively sim-
ple system of algebraic equations.

– We present, Section 11.4, a new way how to construct a 3D reconstruction
from the essential matrix [2] of two calibrated images that provides every
step as consisting of a simple algebraic formula, and if necessary, of solving
a set of linear equations.

– We present, Section 11.5, a new method based on our result [7] for com-
puting the essential matrix of two calibrated images from five image cor-
respondences, which requires only eigenvalue computation.

Our understading of the geometry of perspective cameras, as presented in this
work, has been instrumental to formulating and solving many new problems in
computer vision and robotics, which we have published in last ten years [8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62].
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2 Notation

H . . . the empty set [63]
expU . . . the set of all subsets of set U [63]
U ˆ V . . . Cartesian product of sets U and V [63]
Z . . . whole numbers [63]
Q . . . rational numbers [64]
R . . . real numbers [64]
i . . . imaginary unit [64]
pS,`, q . . . space of geometric scalars
A . . . affine space (space of geometric vectors)
pAo,‘,dq . . . space of geometric vectors bound to point o
pV,‘,dq . . . space of free vectors
A2 . . . real affine plane
A3 . . . three-dimensional real affine space
P2 . . . real projective plane
P3 . . . three-dimensional real projective space
~x . . . vector
A . . . matrix
Aij . . . ij element of A
AJ . . . transpose of A
|A| . . . determinant of A
I . . . identity matrix
R . . . rotation matrix
b . . . Kronecker product of matrices

β “ r~b1,~b2,~b3s . . . basis (an ordered triple of independent generator vectors)
β‹, β̄ . . . the dual basis to basis β
~xβ . . . column matrix of coordinates of ~x w.r.t. the basis β
~x ¨ ~y . . . Euclidean scalar product of ~x and ~y (~x ¨ ~y “ ~xJ

β ~yβ in an

orthonormal basis β)
~xˆ ~y . . . cross (vector) product of ~x and ~y
r~xsˆ . . . the matrix such that r~xsˆ ~y “ ~xˆ ~y

}~x} . . . Euclidean norm of ~x (}~x} “
?
~x ¨ ~x)

orthogonal vectors . . . mutually perpendicular and all of equal length
orthonormal vectors . . . unit orthogonal vectors
P ˝ l . . . point P is incident to line l
P _Q . . . line(s) incident to points P and Q
k ^ l . . . point(s) incident to lines k and l

3



3 Linear algebra

We rely on linear algebra [65, 66, 67, 68, 69, 70]. We recommend excellent text
books [68, 65] for acquiring basic as well as more advanced elements of the topic.
Monograph [66] provides a number of examples and applications and provides a link
to numerical and computational aspects of linear algebra. We will next review the
most crucial topics needed in this text.

3.1 Change of coordinates induced by the change of basis

Let us discuss the relationship between the coordinates of a vector in a linear space,
which is induced by passing from one basis to another. We shall derive the relation-
ship between the coordinates in a three-dimensional linear space over real numbers,
which is the most important when modeling the geometry around us. The formulas
for all other n-dimensional spaces are obtained by passing from 3 to n.

§ 1 Coordinates Let us consider an ordered basis β “
”

~b1 ~b2 ~b3

ı

of a three-

dimensional vector space V 3 over scalars R. A vector ~v P V 3 is uniquely expressed
as a linear combination of basic vectors of V 3 by its coordinates x, y, z P R, i.e.
~v “ x ~b1 ` y ~b2 ` z~b3, and can be represented as an ordered triple of coordinates,

i.e. as ~vβ “
“

x y z
‰J

.
We see that an ordered triple of scalars can be understood as a triple of coor-

dinates of a vector in V 3 w.r.t. a basis of V 3. However, at the same time, the set

of ordered triples
“

x y z
‰J

is also a three-dimensional coordinate linear space R3

over R with
“

x1 y1 z1
‰J `

“

x2 y2 z2
‰J “

“

x1 ` x2 y1 ` y2 z1 ` z2
‰J

and

s
“

x y z
‰J “

“

s x s y s z
‰J

for s P R. Moreover, the ordered triple of the
following three particular coordinate vectors

σ “

»

–

»

–

1
0
0

fi

fl

»

–

0
1
0

fi

fl

»

–

0
0
1

fi

fl

fi

fl (3.1)

forms an ordered basis of R3, the standard basis, and therefore a vector ~v “
“

x y z
‰J

is represented by ~vσ “
“

x y z
‰J

w.r.t. the standard basis in R3. It is noticeable
that the vector ~v and the coordinate vector ~vσ of its coordinates w.r.t. the standard
basis of R3, are identical.

§ 2 Two bases Having two ordered bases β “
”

~b1 ~b2 ~b3

ı

and β1 “
”

~b 1
1
~b 1
2
~b 1
3

ı

leads to expressing one vector ~x in two ways as ~x “ x ~b1 ` y ~b2 ` z ~b3 and ~x “
x1~b 1

1
` y1~b 1

2
` z1~b 1

3
. The vectors of the basis β can also be expressed in the basis β1

4
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using their coordinates. Let us introduce

~b1 “ a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3

~b2 “ a12~b
1
1 ` a22~b

1
2 ` a32~b

1
3 (3.2)

~b3 “ a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

§ 3 Change of coordinates We will next use the above equations to relate the
coordinates of ~x w.r.t. the basis β to the coordinates of ~x w.r.t. the basis β1

~x “ x ~b1 ` y ~b2 ` z ~b3

“ x pa11~b 1
1 ` a21~b

1
2 ` a31~b

1
3q ` y pa12~b 1

1 ` a22~b
1
2 ` a32~b

1
3q ` z pa13~b 1

1 ` a23~b
1
2 ` a33~b

1
3q

“ pa11 x` a12 y ` a13 zq~b 1
1 ` pa21 x` a22 y ` a23 zq~b 1

2 ` pa31 x` a32 y ` a33 zq~b 1
3

“ x1~b 1
1 ` y1~b 1

2 ` z1~b 1
3 (3.3)

Since coordinates are unique, we get

x1 “ a11 x` a12 y ` a13 z (3.4)

y1 “ a21 x` a22 y ` a23 z (3.5)

z1 “ a31 x` a32 y ` a33 z (3.6)

Coordinate vectors ~xβ and ~xβ 1 are thus related by the following matrix multiplication

»

–

x1

y1

z1

fi

fl “

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl

»

–

x

y

z

fi

fl (3.7)

which we concisely write as

~xβ1 “ A ~xβ (3.8)

The columns of matrix A can be viewed as vectors of coordinates of basic vectors,
~b1,~b2,~b3 of β in the basis β1

A “

»

–

| | |
~b1β1

~b2β1
~b3β1

| | |

fi

fl (3.9)

and the matrix multiplication can be interpreted as a linear combination of the
columns of A by coordinates of ~x w.r.t. β

~xβ1 “ x~b1β1 ` y~b2β1 ` z~b3β1 (3.10)

Matrix A plays such an important role here that it deserves its own name. Matrix
A is very often called the change of basis matrix from basis β to β1 or the transition
matrix from basis β to basis β1 [66, 71] since it can be used to pass from coordinates
w.r.t. β to coordinates w.r.t. β1 by Equation 3.8.

However, literature [67, 72] calls A the change of basis matrix from basis β1 to β,
i.e. it (seemingly illogically) swaps the bases. This choice is motivated by the fact
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that A relates vectors of β and vectors of β1 by Equation 3.2 as

”

~b1 ~b2 ~b3

ı

“
”

a11~b
1
1 ` a21~b

1
2 ` a31~b

1
3 a12~b

1
1 ` a22~b

1
2 ` a32~b

1
3

a13~b
1
1 ` a23~b

1
2 ` a33~b

1
3

ı

(3.11)

”

~b1 ~b2 ~b3

ı

“
”

~b 1
1
~b 1
2
~b 1
3

ı

»

–

a11 a12 a13
a21 a22 a23
a31 a32 a33

fi

fl (3.12)

(3.13)

and therefore giving

”

~b1 ~b2 ~b3

ı

“
”

~b 1
1
~b 1
2
~b 1
3

ı

A (3.14)

or equivalently

”

~b 1
1
~b 1
2
~b 1
3

ı

“
”

~b1 ~b2 ~b3

ı

A´1 (3.15)

where the multiplication of a row of column vectors by a matrix from the right in
Equation 3.14 has the meaning given by Equation 3.11 above. Yet another variation
of the naming appeared in [69, 70] where A´1 was named the change of basis matrix
from basis β to β1.

We have to conclude that the meaning associated with the change of basis matrix
varies in the literature and hence we will avoid this confusing name and talk about
A as about the matrix transforming coordinates of a vector from basis β to basis β1.

There is the following interesting variation of Equation 3.14

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ A´J

»

—

–

~b1
~b2
~b3

fi

ffi

fl
(3.16)

where the basic vectors of β and β1 are understood as elements of column vectors.
For instance, vector ~b 1

1
is obtained as

~b 1
1 “ a‹

11
~b1 ` a‹

12
~b2 ` a‹

13
~b3 (3.17)

where ra‹
11
, a‹

12
, a‹

13
s is the first row of A´J.

§ 4 Example We demonstrate the relationship between vectors and bases on a
concrete example. Consider two bases α and β represented by coordinate vectors,
which we write into matrices

α “
“

~a1 ~a2 ~a3
‰

“

»

–

1 1 0
0 1 1
0 0 1

fi

fl (3.18)

β “
”

~b1 ~b2 ~b3

ı

“

»

–

1 1 1
0 0 1
0 1 1

fi

fl , (3.19)
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and a vector ~x with coordinates w.r.t. the basis α

~xα “

»

–

1
1
1

fi

fl (3.20)

We see that basic vectors of α can be obtained as the following linear combinations
of basic vectors of β

~a1 “ `1~b1 ` 0~b2 ` 0~b3 (3.21)

~a2 “ `1~b1 ´ 1~b2 ` 1~b3 (3.22)

~a3 “ ´1~b1 ` 0~b2 ` 1~b3 (3.23)

(3.24)

or equivalently

“

~a1 ~a2 ~a3
‰

“
”

~b1 ~b2 ~b3

ı

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl “
”

~b1 ~b2 ~b3

ı

A (3.25)

Coordinates of ~x w.r.t. β are hence obtained as

~xβ “ A ~xα, A “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (3.26)

»

–

1
´1
2

fi

fl “

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl

»

–

1
1
1

fi

fl (3.27)

We see that

α “ β A (3.28)
»

–

1 1 0
0 1 1
0 0 1

fi

fl “

»

–

1 1 1
0 0 1
0 1 1

fi

fl

»

–

1 1 ´1
0 ´1 0
0 1 1

fi

fl (3.29)

The following questions arises: When are the coordinates of a vector ~x (Equation 3.8)
and the basic vectors themselves (Equation 3.16) transformed in the same way? In
other words, when A “ A´J. We shall give the answer to this question later in
paragraph 3.4.

3.2 Determinant

Determinat [65] of a matrix A, denoted by |A|, is a very interesting and useful concept.
It can be, for instance, used to check the linear independence of a set of vectors or
to define an orientation of the space.

3.2.1 Permutation

A permutation [65] π on the set rns“ t1, . . . , nu of integers is a one-to-one function
from rns onto rns. The identity permutation will be denoted by ǫ, i.e. ǫpiq “ i for
all i P rns .

7
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§ 5 Composition of permutations Let σ and π be two permutations on rns. Then,
their composition, i.e. πpσq, is also a permutation on rns since a composition of two
one-to-one onto functions is a one-to-one onto function.

§ 6 Sign of a permutation We will now introduce another important concept re-
lated to permutations. Sign, sgnpπq, of a permutation π is defined as

sgnpπq “ p´1qNpπq (3.30)

where Npπq is equal to the number of inversions in π, i.e. the number of pairs ri, js
such that i, j P rns, i ă j and πpiq ą πpjq.

3.2.2 Determinant

Let Sn be the set of all permutations on rns and A be an n ˆ n matrix. Then,
determinant |A| of A is defined by the formula

|A| “
ÿ

πPSn

sgnpπq A1,πp1q A2,πp2q ¨ ¨ ¨ An,πpnq (3.31)

Notice that for every π P Sn and for j P rns there is exactly one i P rns such that
j “ πpiq. Hence

tr1, πp1qs, r2, πp2qs, . . . , rn, πpnqsu “
 

rπ´1p1q, 1s, rπ´1p2q, 2s, . . . , rπ´1pnq, ns
(

(3.32)
and since the multiplication of elements of A is commutative we get

|A| “
ÿ

πPSn

sgnpπq Aπ´1p1q,1 Aπ´1p2q,2 ¨ ¨ ¨ Aπ´1pnq,n (3.33)

Let us next define a submatrix of A and find its determinant. Consider k ď n and two
one-to-one monotonic functions ρ, ν : rks Ñ rns, i ă j ñ ρpiq ă ρpjq, νpiq ă νpjq.
We define k ˆ k submatrix Aρ,ν of an nˆ n matrix A by

A
ρ,ν
i,j “ Aρpiq,νpjq for i, j P rks (3.34)

We get the determinant of Aρ,ν as follows

|Aρ,ν | “
ÿ

πPSk

sgnpπq Aρ,ν
1,πp1q A

ρ,ν
2,πp2q ¨ ¨ ¨ Aρ,ν

k,πpkq (3.35)

“
ÿ

πPSk

sgnpπq Aρp1q,νpπp1qq Aρp2q,νpπp2qq ¨ ¨ ¨ Aρpkq,νpπpkqq (3.36)

Let us next split the rows of the matrix A into two groups of k and m rows and
find the relationship between |A| and the determinants of certain k ˆ k and m ˆ m

submatrices of A. Take 1 ď k,m ď n such that k ` m “ n and define a one-to-one
function ρ : rms Ñ rk` 1, ns “ tk ` 1, . . . , nu, by ρpiq “ k` i. Next, let Ω Ď exp rns
be the set of all subsets of rns of size k. Let ω P Ω. Then, there is exactly one
one-to-one monotonic function ϕω from rks onto ω since rks and ω are finite sets
of integers of the same size. Let ω “ rnszω. Then, there is exactly one one-to-one
monotonic function ϕω from rk ` 1, ns onto ω. Let further there be πk P Sk and

8
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πm P Sm. With the notation introduced above, we are getting a version of the
generalized Laplace expansion of the determinant [73, 74]

|A| “
ÿ

ωPΩ

¨

˝

ź

iPrks,jPrk`1,ns
sgnpϕωpjq ´ ϕωpiqq

˛

‚|Aǫ,ϕω |
ˇ

ˇ

ˇ
Aρ,ϕωpρq

ˇ

ˇ

ˇ
(3.37)

3.3 Vector product

Let us look at an interesting mapping from R3ˆR3 to R3, the vector product in R3 [68]
(which it also often called the cross product [66]). Vector product has interesting
geometrical properties but we shall motivate it by its connection to systems of linear
equations.

§ 7 Vector product Assume two linearly independent coordinate vectors

~x “
“

x1 x2 x3
‰J

and ~y “
“

y1 y2 y3
‰J

in R3. The following system of linear
equations

„

x1 x2 x3
y1 y2 y3



~z “ 0 (3.38)

has a one-dimensional subspace V of solutions in R3. The solutions can be written
as multiples of one non-zero vector ~w, the basis of V , i.e.

~z “ λ ~w, λ P R (3.39)

Let us see how we can construct ~w in a convenient way from vectors ~x, ~y.
Consider determinants of two matrices constructed from the matrix of the sys-

tem (3.38) by adjoining its first, resp. second, row to the matrix of the system (3.38)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
x1 x2 x3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
y1 y2 y3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 (3.40)

which gives

x1 px2 y3 ´ x3 y2q ` x2 px3 y1 ´ x1 y3q ` x3 px1 y2 ´ x2 y1q “ 0 (3.41)

y1 px2 y3 ´ x3 y2q ` y2 px3 y1 ´ x1 y3q ` y3 px1 y2 ´ x2 y1q “ 0 (3.42)

and can be rewritten as

„

x1 x2 x3
y1 y2 y3



»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “ 0 (3.43)

We see that vector

~w “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl (3.44)

solves Equation 3.38.
Notice that elements of ~w are the three two by two minors of the matrix of the

system (3.38). The rank of the matrix is two, which means that at least one of the
minors is non-zero, and hence ~w is also non-zero. We see that ~w is a basic vector of
V . Formula 3.44 is known as the vector product in R3 and ~w is also often denoted
by ~xˆ ~y.
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§ 8 Vector product under the change of basis Let us next study the behavior of
the vector product under the change of basis in R3. Let us have two bases β, β 1 in

R3 and two vectors ~x, ~y with coordinates ~xβ “
“

x1 x2 x3
‰J

, ~yβ “
“

y1 y2 y3
‰J

and ~xβ 1 “
“

x 1
1

x 1
2

x 1
3

‰J
, ~yβ “

“

y 1
1

y 1
2

y 1
3

‰J
. We introduce

~xβ ˆ ~yβ “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl ~xβ 1 ˆ ~yβ 1 “

»

–

x 1
2
y 1
3

´ x 1
3
y 1
2

´x 1
1
y 1
3

` x 1
3
y 1
1

x 1
1
y 1
2

´ x 1
2
y 1
1

fi

fl (3.45)

To find the relationship between ~xβ ˆ~yβ and ~xβ 1 ˆ~yβ 1 , we will use the following fact.

For every three vectors ~x “
“

x1 x2 x3
‰J

, ~y “
“

y1 y2 y3
‰J

, ~z “
“

z1 z2 z3
‰J

in R3 there holds

~zJp~xˆ ~yq “
“

z1 z2 z3
‰

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

x1 x2 x3
y1 y2 y3
z1 z2 z3

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ

~yJ

~zJ

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(3.46)

We can write

~xβ 1 ˆ ~yβ 1 “

»

–

r1 0 0s p~xβ 1 ˆ ~yβ 1q
r0 1 0s p~xβ 1 ˆ ~yβ 1q
r0 0 1s p~xβ 1 ˆ ~yβ 1q

fi

fl “

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β 1

~yJ
β 1

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

1 0 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 1 0

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β A

J

~yJ
β A

J

0 0 1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r1 0 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 1 0s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

~xJ
β

~yJ
β

r0 0 1s A´J

fi

fl AJ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl

J

“

»

–

r1 0 0s A´Jp~xβ ˆ ~yβq
r0 1 0s A´Jp~xβ ˆ ~yβq
r0 0 1s A´Jp~xβ ˆ ~yβq

fi

fl

ˇ

ˇAJˇ
ˇ

“ A´J

|A´J| p~xβ ˆ ~yβq (3.47)

§ 9 Vector product as a linear mapping It is interesting to see that for all ~x, ~y P R3

there holds

~xˆ ~y “

»

–

x2 y3 ´ x3 y2
´x1 y3 ` x3 y1
x1 y2 ´ x2 y1

fi

fl “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl

»

–

y1
y2
y3

fi

fl (3.48)

and thus we can introduce matrix

r~xsˆ “

»

–

0 ´x3 x2
x3 0 ´x1

´x2 x1 0

fi

fl (3.49)

and write
~xˆ ~y “ r~xsˆ ~y (3.50)
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Notice also that r~xsJ
ˆ “ ´ r~xsˆ and therefore

p~xˆ ~yqJ “ pr~xsˆ ~yqJ “ ´~yJ r~xsˆ (3.51)

The result of § 8 can also be written in the formalism of this paragraph. We can
write for every ~x, ~y P R3

rA ~xβsˆ A ~yβ “ pA ~xβq ˆ pA ~yβq “ A´J

|A´J| p~xβ ˆ ~yβq “ A´J

|A´J| r~xβsˆ ~yβ (3.52)

and hence we get for every ~x P R3

rA ~xβsˆ A “ A´J

|A´J| r~xβsˆ (3.53)

3.4 Dual space and dual basis

Let us start with a three-dimensional linear space L over scalars S and consider
the set L‹ of all linear functions f : L Ñ S, i.e. the functions on L for which the
following holds true

fpa ~x` b ~yq “ a fp~xq ` b fp~yq (3.54)

for all a, b P S and all ~x, ~y P L.
Let us next define the addition `‹ : L‹ ˆ L‹ Ñ L‹ of linear functions f, g P L‹

and the multiplication ¨‹ : S ˆL‹ Ñ L‹ of a linear function f P L‹ by a scalar a P S
such that

pf `‹ gqp~xq “ fp~xq ` gp~xq (3.55)

pa ¨‹ fqp~xq “ a fp~xq (3.56)

holds true for all a P S and for all ~x P L. One can verify that pL‹,`‹, ¨‹q over
pS,`, q is itself a linear space [65, 68, 67]. It makes therefore a good sense to use
arrows above symbols for linear functions, e.g. ~f instead of f .

The linear space L‹ is derived from, and naturally connected to, the linear space
L and hence deserves a special name. Linear space L‹ is called [65] the dual (linear)
space to L.

Now, consider a basis β “ r~b1,~b2,~b3s of L. We will construct a basis β‹ of L‹,
in a certain natural and useful way. Let us take three linear functions ~b‹

1
,~b‹

2
,~b‹

3
P L‹

such that
~b‹
1
p~b1q “ 1 ~b‹

1
p~b2q “ 0 ~b‹

1
p~b3q “ 0

~b‹
2
p~b1q “ 0 ~b‹

2
p~b2q “ 1 ~b‹

2
p~b3q “ 0

~b‹
3
p~b1q “ 0 ~b‹

3
p~b2q “ 0 ~b‹

3
p~b3q “ 1

(3.57)

where 0 and 1 are the zero and the unit element of S, respectively. First of all,
one has to verify [65] that such an assignment is possible with linear functions
over L. Secondly one can show [65] that functions ~b‹

1
,~b‹

2
,~b‹

3
are determined by this

assignment uniquely on all vectors of L. Finally, one can observe [65] that the triple
β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s forms an (ordered) basis of ~L. The basis β‹ is called the dual basis

of L‹, i.e. it is the basis of L‹, which is related in a special (dual) way to the basis
β of L.

11
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§ 10 Evaluating linear functions Consider a vector ~x P L with coordinates ~xβ “
rx1, x2, x3sJ w.r.t. a basis β “ r~b1,~b2,~b3s and a linear function ~h P L‹ with coordi-
nates ~hβ‹ “ rh1, h2, h3sJ w.r.t. the dual basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s. The value ~hp~xq P S

is obtained from the coordinates ~xβ and ~hβ‹ as

~hp~xq “ ~hpx1~b1 ` x2~b2 ` x3~b3q (3.58)

“ ph1~b‹
1 ` h2~b

‹
2 ` h3~b

‹
3qpx1~b1 ` x2~b2 ` x3~b3q (3.59)

“ h1~b
‹
1p~b1qx1 ` h1~b

‹
1p~b2qx2 ` h1~b

‹
1p~b3qx3

`h2~b‹
2p~b1qx1 ` h2~b

‹
2p~b2qx2 ` h2~b

‹
2p~b3qx3 (3.60)

`h3~b‹
3p~b1qx1 ` h3~b

‹
3p~b2qx2 ` h3~b

‹
3p~b3qx3

“
“

h1 h2 h3
‰

»

—

–

~b‹
1
p~b1q ~b‹

1
p~b2q ~b‹

1
p~b3q

~b‹
2
p~b1q ~b‹

2
p~b2q ~b‹

2
p~b3q

~b‹
3
p~b1q ~b‹

3
p~b2q ~b‹

3
p~b3q

fi

ffi

fl

»

–

x1
x2
x3

fi

fl (3.61)

“
“

h1 h2 h3
‰

»

–

1 0 0
0 1 0
0 0 1

fi

fl

»

–

x1
x2
x3

fi

fl (3.62)

“
“

h1, h2, h3
‰

»

–

x1
x2
x3

fi

fl (3.63)

“ ~h
J

β‹ ~xβ (3.64)

The value of ~h P L‹ on ~x P L is obtained by multiplying ~xβ by the transpose of ~hβ‹

from the left.
Notice that the middle matrix on the right in Equation 3.61 evaluates into the

identity. This is the consequence of using the pair of a basis and its dual basis.
The formula 3.64 can be generalized to the situation when bases are not dual by
evaluating the middle matrix accordingly. In general

~hp~xq “ ~h
J

β̄
r~̄bip~bjqs ~xβ (3.65)

where matrix r~̄bip~bjqs is constructed from the respective bases β, β̄ of L and L‹.

§ 11 Changing the basis in a linear space and in its dual Let us now look at what
happens with coordinates of vectors of L‹ when passing from the dual basis β‹ to
the dual basis β 1‹ induced by passing from a basis β to a basis β 1 in L. Consider
vector ~x P L and a linear function ~h P L‹ and their coordinates ~xβ, ~xβ 1 and ~hβ‹ , ~hβ 1‹

w.r.t. the respective bases. Introduce further matrix A transforming coordinates of
vectors in L as

~xβ 1 “ A ~xβ (3.66)

when passing from β to β 1.
Basis β‹ is the dual basis to β and basis β 1‹ is the dual basis to β 1 and therefore

~h
J

β‹ ~xβ “ ~hp~xq “ ~h
J

β 1‹ ~xβ 1 (3.67)

for all ~x P L and all ~h P L‹. Hence

~h
J

β‹ ~xβ “ ~h
J

β 1‹ A ~xβ (3.68)
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for all ~x P L and therefore
~h

J

β‹ “ ~h
J

β 1‹ A (3.69)

or equivalently
~hβ‹ “ AJ~hβ 1‹ (3.70)

Let us now see what is the meaning of the rows of matrix A. It becomes clear from
Equation 3.69 that the columns of matrix AJ can be viewed as vectors of coordinates
of basic vectors of β 1‹ “ r~b 1

1
‹,~b 1

2
‹,~b 1

3
‹s in the basis β‹ “ r~b‹

1
,~b‹

2
,~b‹

3
s and therefore

A “

»

—

–

~b 1
1

‹
β‹

J

~b 1
2

‹
β‹

J

~b 1
3

‹
β‹

J

fi

ffi

fl
(3.71)

which means that the rows of A are coordinates of the dual basis of the primed dual
space in the dual basis of the non-primed dual space.

Finally notice that we can also write

~hβ 1‹ “ A´J~hβ‹ (3.72)

which is formally identical with Equation 3.16.

§ 12 When do coordinates transform the same way in a basis and in its dual basis
It is natural to ask when it happens that the coordinates of linear functions in L‹

w.r.t. the dual basis β‹ transform the same way as the coordinates of vectors of L
w.r.t. the original basis β, i.e.

~xβ 1 “ A ~xβ (3.73)

~hβ 1‹ “ A~hβ‹ (3.74)

for all ~x P L and all ~h P L‹. Considering Equation 3.72, we get

A “ A´J (3.75)

AJA “ I (3.76)

Notice that this is, for instance, satisfied when A is a rotation [66]. In such a case,
one often does not anymore distinguish between vectors of L and L‹ because they
behave the same way and it is hence possible to represent linear functions from L‹

by vectors of L.

§ 13 Coordinates of the basis dual to a general basis We denote the standard
basis in R3 by σ and its dual (standard) basis in R3‹

by σ‹. Now, we can further
establish another basis γ “

“

~c1 ~c2 ~c3
‰

in R3 and its dual basis γ‹ “
“

~c ‹
1
~c ‹
2
~c ‹
3

‰

in R3‹
. We would like to find the coordinates γ‹

σ‹ “
“

~c ‹
1σ‹ ~c ‹

2σ‹ ~c ‹
3σ‹

‰

of vectors
of γ‹ w.r.t. σ‹ as a function of coordinates γσ “

“

~c1σ ~c2σ ~c3σ
‰

of vectors of γ
w.r.t. σ.

Considering Equations 3.57 and 3.64, we are getting

~c i
‹
σ‹

J
~cjσ “

"

1 if i “ j

0 if i ‰ j
for i, j “ 1, 2, 3 (3.77)
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which can be rewritten in a matrix form as

»

–

1 0 0
0 1 0
0 0 1

fi

fl “

»

—

–

~c1
‹
σ‹

J

~c2
‹
σ‹

J

~c3
‹
σ‹

J

fi

ffi

fl

“

~c1σ ~c2σ ~c3σ
‰

“ γ‹
σ‹

J γσ (3.78)

and therefore
γ‹
σ‹ “ γ´J

σ (3.79)

§ 14 Remark on higher dimensions We have introduced the dual space and the
dual basis in a three-dimensional linear space. The definition of the dual space is
exactly the same for any linear space. The definition of the dual basis is the same
for all finite-dimensional linear spaces [65]. For any n-dimensional linear space L
and its basis β, we get the corresponding n-dimensional dual space L‹ with the dual
basis β‹.

3.5 Operations with matrices

Matrices are a powerful tool which can be used in many ways. Here we review a
few useful rules for matrix manipulation. The rules are often studied in multi-linear
algebra and tensor calculus. We shall not review the theory of multi-linear algebra
but will look at the rules from a phenomenological point of view. They are useful
identities making an effective manipulation and concise notation possible.

§ 15 Kronecker product Let A be a k ˆ l matrix and B be a mˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1l
a21 a22 ¨ ¨ ¨ a2l
...

...
. . .

...
ak1 ak2 ¨ ¨ ¨ akl

fi

ffi

ffi

ffi

fl

P Rkˆl and B P Rmˆn (3.80)

then kmˆ l n matrix

C “ A b B “

»

—

—

—

–

a11 B a12 B ¨ ¨ ¨ a1l B

a21 B a22 B ¨ ¨ ¨ a2l B
...

...
. . .

...
ak1 B ak2 B ¨ ¨ ¨ akl B

fi

ffi

ffi

ffi

fl

(3.81)

is the matrix of the Kronecker product of matrices A, B (in this order).
Notice that this product is associative, i.e. pA b Bq b C “ A b pB b Cq, but it

is not commutative, i.e. A b B ‰ B b A in general. There holds a useful identity
pA b BqJ “ AJb BJ.

§ 16 Matrix vectorization Let A be an mˆ n matrix

A “

»

—

—

—

–

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

...
. . .

...
am1 am2 ¨ ¨ ¨ amn

fi

ffi

ffi

ffi

fl

P Rmˆn (3.82)
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We define operator vp.q : Rmˆn Ñ Rmn which reshapes an m ˆ n matrix A into a
mnˆ 1 matrix (i.e. into a vector) by stacking columns of A one above another

vpAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

a11
a21
...

am1

a12
a22
...

am2

a1n
a2n
...

amn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ (3.83)

Let us study the relationship between vpAq and vpAJq. We see that vector vpAJq
contains permuted elements of vpAq and therefore we can construct permutation
matrices [66] Jmˆn and Jnˆm such that

vpAJq “ Jmˆn vpAq
vpAq “ Jnˆm vpAJq

We see that there holds

Jnˆm Jmˆn vpAq “ Jnˆm vpAJq “ vpAq (3.84)

for every mˆ n matrix A. Hence

Jnˆm “ J´1

mˆn (3.85)

Consider a permutation J. It has exactly one unit element in each row and in
each column. Consider the i-th row with 1 in the j-th column. This row sends the
j-th element of an input vector to the i-th element of the output vector. The i-the
column of the transpose of J has 1 in the j-th row. It is the only non-zero element
in that row and therefore the j-th row of JJ sends the i-th element of an input
vector to the j-th element of the output vector. We see that JJ is the inverse of J,
i.e. permutation matrices are orthogonal. We see that

J´1

mˆn “ JJ
mˆn (3.86)

and hence conclude
Jnˆm “ JJ

mˆn (3.87)

We also write vpAq “ JJ
mˆn vpAJq.

§ 17 From matrix equations to linear systems Kronecker product of matrices
and matrix vectorization can be used to manipulate matrix equations in order to

15



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

get systems of linear equations in the standard matrix form A x “ b. Consider, for
instance, matrix equation

A X B “ C (3.88)

with matrices A P Rmˆk, X P Rkˆl, B P Rlˆn, C P Rmˆn. It can be verified by direct
computation that

vpA X Bq “ pBJb Aq vpXq (3.89)

This is useful when matrices A, B and C are known and we use Equation 3.88 to
compute X. Notice that matrix Equation 3.88 is actually equivalent to mn scalar
linear equations in k l unknown elements of X. Therefore, we should be able to write
it in the standard form, e.g., as

M vpXq “ vpCq (3.90)

with some M P Rpmnqˆpk lq. We can use Equation 3.89 to get M “ BJ b A which yields
the linear system

vpA X Bq “ vpCq (3.91)

pBJb Aq vpXq “ vpCq (3.92)

for unknown vpXq, which is in the standard form.
Let us next consider two variations of Equation 3.88. First consider matrix

equation

A X B “ X (3.93)

Here unknowns X appear on both sides but we are still getting a linear system of
the form

pBJb A ´ Iq vpXq “ 0 (3.94)

where I is the pmnq ˆ pk lq identity matrix.
Next, we add yet another constraints: XJ “ X, i.e. matrix X is symmetric, to get

A X B “ X and XJ “ X (3.95)

which can be rewritten in the vectorized form as

pBJb A ´ Iq vpXq “ 0 and pJmˆn ´ Iq vpXq “ 0 (3.96)

and combined it into a single linear system

„

Jmˆn ´ I

BJb A ´ I



vpXq “ 0 (3.97)
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4 Motion

Let us introduce a mathematical model of rigid motion in three-dimensional Eu-
clidean space. The important property of rigid motion is that it only relocates
objects without changing their shape. Distances between points on rigidly moving
objects remain unchanged. For brevity, we will use “motion” for “rigid motion”.

4.1 Change of position vector coordinates induced by

motion

X Y

~x

~x 1

~y

~y 1

O

O 1

´~o “ ~o 1

~b1

~b2

~b 1
1

~b 1
2

Figure 4.1: Representation of motion.

§ 18 Alias representation of motion1. Figure 4.1 illustrates a model of motion using
coordinate systems, points and their position vectors. A coordinate system pO, βq
with origin O and basis β is attached to a moving rigid body. As the body moves to a
new position, a new coordinate system pO 1, β 1q is constructed. Assume a pointX in a
general position w.r.t. the body, which is represented in the coordinate system pO, βq
by its position vector ~x. The same point X is represented in the coordinate system
pO 1, β 1q by its position vector ~x 1. The motion induces a mapping ~x 1

β 1 ÞÑ ~xβ. Such a
mapping also determines the motion itself and provides its convenient mathematical
model.
1The terms alias and alibi were introduced in the classical monograph [75].
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Let us derive the formula for the mapping ~x 1
β 1 ÞÑ ~xβ between the coordinates

~x 1
β 1 of vector ~x 1 and coordinates ~xβ of vector ~x. Consider the following equations:

~x “ ~x 1 ` ~o 1 (4.1)

~xβ “ ~x 1
β ` ~o 1

β (4.2)

~xβ “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

~x 1
β 1 ` ~o 1

β (4.3)

~xβ “ R ~x 1
β 1 ` ~o 1

β (4.4)

~x 1
β 1 “ R´1

`

~xβ ´ ~o 1
β

˘

(4.5)

Vector ~x is the sum of vectors ~x 1 and ~o 1, Equation 4.1. We can express all vectors
in (the same) basis β, Equation 4.2. To pass to the basis β 1 we introduce matrix

R “
”

~b 1
1β

~b 1
2β

~b 1
3β

ı

, which transforms the coordinates of vectors from β 1 to β,

Equation 4.4. Columns of matrix R are coordinates ~b 1
1β
,~b 1

2β
,~b 1

3β
of basic vectors

~b 1
1
,~b 1

2
,~b 1

3
of basis β 1 in basis β.

§ 19 Alibi representation of motion. An alternative model of motion can be de-
veloped from the relationship between the points X and Y and their position vectors
in Figure 4.1. The point Y is obtained by moving point X altogether with the mov-
ing object. It means that the coordinates ~y 1

β 1 of the position vector ~y 1 of Y in the
coordinate system pO 1, β 1q equal the coordinates ~xβ of the position vector ~x of X in
the coordinate system pO, βq, i.e.

~y 1
β 1 “ ~xβ

~yβ 1 ` ~oβ 1 “ ~xβ

R´1 p~yβ ` ~oβq “ ~xβ

~yβ “ R ~xβ ´ ~oβ (4.6)

~yβ “ R ~xβ ` ~o 1
β (4.7)

Equation 4.6 describes how is the point X moved to point Y w.r.t. the coordinate
system pO, βq.

4.2 Rotation matrix

Motion that leaves at least one point fixed is called rotation. Choosing such a fixed
point as the origin leads to O “ O 1 and hence to ~o “ ~0. The motion is then fully
described by matrix R, which is called rotation matrix.

§ 20 Two-dimensional rotation. To understand the matrix R, we shall start with
an experiment in two-dimensional plane. Imagine a right-angled triangle ruler as
shown in Figure 4.2(a) with arms of equal length and let us define a coordinate
system as in the figure. Next, rotate the triangle ruler around its tip, i.e. around the
origin O of the coordinate system. We know, and we can verify it by direct physical
measurement, that thanks to the symmetry of the situation, the parallelograms
through the tips of ~b 1

1
and ~b 1

2
and along ~b1 and ~b2 will be rotated by 90 degrees. We
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~b1 ~b1

~b2 ~b2

~b 1
1

~b 1
2

a11

a11

a21

´a21O O

(a) (b)

Figure 4.2: Rotation in two-dimensional space.

see that

~b 1
1 “ a11~b1 ` a21~b2 (4.8)

~b 1
2 “ ´a21~b1 ` a11~b2 (4.9)

for some real numbers a11 and a21. By comparing it with Equation 4.3, we conclude
that

R “
„

a11 ´a21
a21 a11



(4.10)

We immediately see that

RJR “
„

a11 a21
´a21 a11

 „

a11 ´a21
a21 a11



“
„

a2
11

` a2
21

0
0 a2

11
` a2

21



“
„

1 0
0 1



(4.11)

since pa2
11

` a2
21

q is the squared length of the basic vector of b1, which is one. We
derived an interesting result

R´1 “ RJ (4.12)

R “ R´J (4.13)

Next important observation is that for coordinates ~xβ and ~x 1
β 1 , related by a rotation,

there holds

px1q2 ` py1q2 “ ~x 1
β 1

J
~x 1
β 1 “ pR ~xβqJ R ~xβ “ ~xJ

β

`

RJR
˘

~xβ “ ~xJ
β ~xβ “ x2 ` y2 (4.14)

Now, if the basis β was constructed as in Figure 4.2, in which case it is called an
orthonormal basis, then the parallelogram used to measure coordinates x, y of ~x is a
rectangle and hence x2 ` y2 is the squared length of ~x by the Pythagoras theorem.
If β 1 is related by rotation, then also px1q2 ` py1q2 is the squared length of ~x, again
thanks to the Pythagoras theorem.

We see that ~xJ
β ~xβ is the squared length of ~x when β is orthonormal and that this

length is preserved by computing it in the same way from the new coordinates of ~x
in the new coordinate system after motion. The change of coordinates induced by
motion is modeled by rotation matrix R, which has the desired property RJR “ I,
when the bases β, β 1 are both orthonormal.
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Figure 4.3: A three-dimensional coordinate system.

§ 21 Three-dimensional rotation. Let us now consider three dimensions. It would
be possible to generalize Figure 4.2 to three dimensions, construct orthonormal bases
and use rectangular parallelograms to establish the relationship between elements of
R in three dimensions. However, the figure and the derivations would become much
more complicated.

We shall follow a more intuitive path instead. Consider that we have found that
with two-dimensional orthonormal bases, the lengths of vectors could be computed
by the Pythagoras theorem since the parallelograms determining the coordinates
were rectangular. To achieve this in three dimensions, we need (and can!) use bases
consisting from three orthogonal vectors. Then, again, the parallelograms will be
rectangular and hence the Pythagoras theorem for three dimensions can be used
analogically as in two dimensions, Figure 4.3.

Considering orthonormal bases β, β 1, we require the following to hold for all

vectors ~x with ~xβ “
“

x y z
‰J

and ~x 1
β 1 “

“

x1 y1 z1 ‰J

px1q2 ` py1q2 ` pz1q2 “ x2 ` y2 ` z2

~x 1
β 1

J
~x 1
β 1 “ ~xJ

β ~xβ

pR ~xβqJ R ~xβ “ ~xJ
β ~xβ

~xJ
β

`

RJR
˘

~xβ “ ~xJ
β ~xβ

~xJ
β C ~xβ “ ~xJ

β ~xβ (4.15)

Equation 4.15 must hold true for all vectors ~x and hence also for special vectors such
as those with coordinates

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

1
1
0

fi

fl ,

»

–

1
0
1

fi

fl ,

»

–

0
1
1

fi

fl (4.16)

Let us see what that implies, e.g., for the first vector

“

1 0 0
‰

C

»

–

1
0
0

fi

fl “ 1 (4.17)

c11 “ 1 (4.18)
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Taking the second and the third vector leads similarly to c22 “ c33 “ 1. Now, let’s
try the fourth vector

“

1 1 0
‰

C

»

–

1
1
0

fi

fl “ 2 (4.19)

1 ` c12 ` c21 ` 1 “ 2 (4.20)

c12 ` c21 “ 0 (4.21)

Again, taking the fifth and the sixth vector leads to c13 ` c31 “ c23 ` c32 “ 0. This
brings us to the following form of C

C “

»

–

1 c12 c13
´c12 1 c23
´c13 ´c23 1

fi

fl (4.22)

Moreover, we see that C is symmetric since

CJ “
`

RJR
˘J “ RJR “ C (4.23)

which leads to ´c12 “ c12, ´c13 “ c13 and ´c23 “ c23, i.e. c12 “ c13 “ c23 “ 0 and
allows us to conclude that

RJR “ C “ I (4.24)

Interestingly, not all matrices R satisfying Equation 4.24 represent motions in three-
dimensional space.

Consider, e.g., matrix

S “

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl (4.25)

Matrix S does not correspond to any rotation of the space since it keeps the plane
xy fixed and reflects all other points w.r.t. this xy plane. We see that some matrices
satisfying Equation 4.24 are rotations but there are also some such matrices that
are not rotations. Can we somehow distinguish them?

Notice that |S| “ ´1 while |I| “ 1. It might be therefore interesting to study
the determinant of C in general. Consider that

1 “ |I| “
ˇ

ˇpRJRq
ˇ

ˇ “
ˇ

ˇRJˇ
ˇ |R| “ |R| |R| “ p|R|q2 (4.26)

which gives that |R| “ ˘1. We see that the sign of the determinant splits all
matrices satisfying Equation 4.24 into two groups – rotations, which have a positive
determinant, and reflections, which have a negative determinant. The product of
any two rotations will again be a rotation, the product of a rotation and a reflection
will be a reflection and the product of two reflections will be a rotation.

To summarize, rotation in three-dimensional space is represented by a 3 ˆ 3
matrix R with RJR “ I and |R| “ 1. The set of all such matrices, and at the same
time also the corresponding rotations, will be called SOp3q, for special orthonormal
three-dimensional group. Two-dimensional rotations will be analogically denoted as
SOp2q.
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4.3 Coordinate vectors

We see that the matrix R induced by motion has the property that coordinates
and the basic vectors are transformed in the same way. This is particularly useful
observation when β is formed by the standard basis, i.e.

β “

¨

˝

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl

˛

‚ (4.27)

For a rotation matrix R, Equation 3.16 becomes

»

—

–

~b 1
1

~b 1
2

~b 1
3

fi

ffi

fl
“ R

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

–

r11 r12 r13
r21 r22 r23
r31 r32 r33

fi

fl

»

—

–

~b1
~b2
~b3

fi

ffi

fl
“

»

—

–

r11~b1 ` r12~b2 ` r13~b3

r21~b1 ` r22~b2 ` r23~b3

r31~b1 ` r32~b2 ` r33~b3

fi

ffi

fl
(4.28)

and hence

~b 1
1 “ r11~b1 ` r12~b2 ` r13~b3 “ r11

»

–

1
0
0

fi

fl ` r12

»

–

0
1
0

fi

fl ` r13

»

–

0
0
1

fi

fl “

»

–

r11
r12
r13

fi

fl(4.29)

and similarly for ~b 1
2
and ~b 1

3
. We conclude that

”

~b 1
1
~b 1
2
~b 1
3

ı

“

»

–

r11 r21 r31
r12 r22 r32
r13 r23 r33

fi

fl “ RJ (4.30)

This also corresponds to solving for R in Equation 3.14 with A “ R

»

–

1 0 0
0 1 0
0 0 1

fi

fl “
”

~b 1
1
~b 1
2
~b 1
3

ı

R (4.31)
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5 Image coordinate system

Digital image Im is a matrix of pixels. We assume that Im is obtained by measuring
intensity of light by sensors (pixels) arranged in a grid, Figure 5.1.

We will work with images in two ways. First, we will work with intensity values,
which are stored in the memory as a three-dimensional array of bytes indexed by
the row index i, the column index j, and the color index k, Figure 5(a). Color index
attains three values 1, 2, 3, with 1 corresponding to red, 2 corresponding to green
and 3 corresponding to blue colors.

In Matlab, image Im is accessed using the row index i, the column index j and
the color index k as >>Im(i,j,k). The most top left pixel has row as well as column
index equal to 1. The red channel of the pixel with row index 2 and column index
3 is accessed as >>Im(2,3,1).

§ 22 Image coordinate system For geometrical computation, we introduce an im-
age coordinate system as in Figure 5(b). The origin of the image coordinate system is
chosen to assign coordinates 1, 1 to the center of the most top left pixel. Horizontal
axis ~b1 goes from left to right. The vertical axis ~b2 goes from top down. The pixel
that is accessed as >>Im(i,j,k) is in the image coordinate system represented by
the vector ~u “ rj, isJ. A digital image with H rows and W columns will be in in-
dexed in Matlab as >>Im(1:H,1:W,1:3) and >>size(Im) will return [H W 3]. The
center of the most bottom right pixel will have coordinates rW,HsJ in the image
coordinate system.

The image coordinate system coincides with the Matlab coordinate system image,
i.e. commands

>> axis image

>> plot(j,i,’.b’)

plot a blue dot on the pixel accessed as Im(i,j,k);
The image coordinate system is non-standard in two dimensions since it is a

left-handed system. The reason for such a unnatural choice is that this system will
be next augmented into a three-dimensional right-handed coordinate system in such
a way that the ~b3 vector will be pointing towards the scene.
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Figure 5.1: Image is digitized by a rectangular array of pixels

i

j

2

3

2

3~b1

~b2

(a) Image Im is a matrix of pixels.
In Matlab, it is accessed using the
row index i, the column index j and
color index k as >>Im(i,j,k). The
most top left pixel has row as well
as column index equal to 1. The red
channel of the pixel with row index
2 and column index 3 is accessed as
>>Im(2,3,1).

(b) The image coordinate system is
defined with horizontal axis ~b1 and
vertical axis ~b2. The origin of the co-
ordinate system is chosen to to assign
coordinates 1, 1 to the most top left
pixel. Notice that pixel, which is ac-
cessed as >>Im(2,3,1), is represented
in the image coordinate system by the
vector ~u “ r3, 2sJ.

Figure 5.2: Image coordinate system.
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6 Perspective camera

Modern photographic camera, Figure 6.1, is an interesting and advanced device.
We shall abstract from all physical and technical details of image formation and will
concentrate solely on its geometry. From the point of view of geometry, a perspective
camera projects point X from space into an image point x by intersecting the line
connecting X with the projection center (red) and a planar image plane (green),
Figure 6.1(b).

6.1 Perspective camera model

Let us now develop a mathematical model of the perspective camera. The model
will allow us to project space point X into image point x and to find the ray p in
space along the which point X has been projected.

§ 23 Camera coordinate system Figure 6.2 shows the geometry of the perspective
camera. Point X is projected along ray p from three-dimensional space to point x
into two-dimensional image. Point x is obtained as the intersection of ray p with
planar image plane π. Ray p is constructed by joining point X with the projection
center C. The plane through the projection center C, which is parallel to the image
plane is called the principal plane.

The image plane is equipped with an image coordinate system (§ 22), po, αq,
where o is the origin and α “ r~b1,~b2s is the basis of the image coordinate system.
Notice that the basis α is shown as non-orthogonal. We want to develop a general
camera model, which will be applicable even in the situation when image coordinate
system is not rectangular. Point x is represented by vector ~u in po, αq

~u “ u~b1 ` v~b2 i.e. ~uα “
„

u

v



(6.1)

Three-dimensional space is equipped with a world coordinate system pO, δq, where
O is the origin and δ “ r~d1, ~d2, ~d3s is a three-dimensional orthonormal basis. Point
X is represented by vector ~X in pO, δq. The camera projection center is represented
by vector ~C in pO, δq.

Let us next define the camera coordinate system. The system will be derived
from the image coordinate system to make the construction of coordinates of the
direction vector ~x of p extremely simple.

Camera coordinate system pC, βq has the origin in the projection center C and
its basis β “ r~b1,~b2,~b3s is constructed by re-using the two basis vectors of α and
adding the third basic vector ~b3, which corresponds to vector

ÝÑ
Co. We see that

vectors in β form a basis when point C is not in π, which is satisfied for every
meaningful perspective camera. Notice also that the camera coordinate system is
three-dimensional.
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(a) (b)

Figure 6.1: Perspective camera (a) is geometrically a point (red) and an image plane
(green) (b).

Image points o and x are in plane π, which is in three-dimensional space, and
therefore we can consider them as points of that space too. Point x is in pC, βq
represented by vector ~x, which is the direction vector of the projection ray p along
which point X has been projected into x. We see that vectors ~u, ~x, ~b3 form a triangle
such that

~x “ ~u`~b3 (6.2)

“ u~b1 ` v~b2 ` 1~b3 (6.3)

and therefore

~xβ “ ~xr~b1,~b2,~b3s “

»

–

u

v

1

fi

fl “
„

~uα
1



. (6.4)

Notice that basis β has been constructed in a very special way to facilitate con-
struction of ~xβ . We can use u, v directly since β re-uses vectors of α and the third

coordinate is always 1 by the construction of ~b3. Although we do not know exact
position of C w.r.t. the image plane, we know that it is not in the plane π and hence
a meaningful camera coordinate system constructed this way exists.

Notice next that the camera coordinate system is right-handed. This is because
when looking at a scene from a point C through the image plane, the image is
constructed by intersecting image rays with the image plane, which is in front and
hence the vector ~b3 points towards the scene. We see that vectors of β form a
right-handed system.

Let us mention that we have used deeper properties of linear and affine spaces.
In particular, we were making use of the concept of free vector in the following way.
We look at vectors ~b1, ~b2 and ~u as on a free vectors. Therefore, coordinates of the
representative of ~u beginning in o with respect to representatives of ~b1, ~b2 beginning
in o equal the coordinates of the representative of ~u beginning in C with respect
to representatives of ~b1, ~b2 beginning in C. Hence u, v reappear as the first two
coordinates of ~x.

For usual consumer cameras, vector~b3 is often much longer than vectors~b1,~b2 and
often not orthogonal to them. Therefore, basis β is in general neither orthonormal
nor orthogonal! This has severe consequences since we can’t measure angles and
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O

C

o

X

p

~X

~C

x

~x

~u

π

~d1

~d2

~d3

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

Figure 6.2: Coordinate systems of perspective camera.
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distances in the space using β, unless we find out what are the lengths of its vectors
and what are the angles between them.

§ 24 Perspective projection Point X has been projected along p into x. Since ~x
is a direction vector of p, point X can be represented in pC, βq by

η ~x (6.5)

for some real non-negative1 η. The value of η corresponds to the scaled depth of X,
i.e. the distance of X from the plane passing through C and generated by ~b1, ~b2 in
units equal to the distance of C from π. Value η is not known since it “has been
lost” in the process of projection2 but will serve us to parametrize the projection
ray in order to get coordinates of all possible points in space that could project into
x.

Let us now relate the coordinates ~uα, which are measured in the image, to the
coordinates ~Xδ, which are measured in the world coordinate system. First consider
vectors ~X, ~C and ~x. They are coplanar and we see that there holds

η ~x “ ~X ´ ~C (6.6)

To pass to coordinates, we will use the camera coordinate system, in which we can
write

η ~xβ “ ~Xβ ´ ~Cβ (6.7)

η

„

~uα
1



“ ~Xβ ´ ~Cβ (6.8)

Next we shall pass to the coordinates w.r.t. basis δ on the right hand side of Equa-
tion 6.8 by introducing a matrix A, which transforms coordinates of a general vector
~y from basis δ to basis β, i.e.

~yβ “ A ~yδ (6.9)

We know from linear algebra (§ 3) that such a matrix exists. We write

η

„

~uα
1



“ A p ~Xδ ´ ~Cδq

η

„

~uα
1



“ A
”

I | ´ ~Cδ

ı

„

~Xδ

1



(6.10)

η

„

~uα
1



“ Pβ

„

~Xδ

1



(6.11)

η ~xβ “ Pβ

„

~Xδ

1



(6.12)

with 3 ˆ 4 image projection matrix

Pβ “
”

A | ´ A ~Cδ

ı

(6.13)

1Here we choose ~x such that η is non-negative. Considering negative η, as in [2], may be necessary
if it is not clear how has the image coordinate systems been defined or how has ~x been chosen.
For instance, if ~x has been chosen to point along ray p away from X, η would have to be negative.

2It can be recovered when a point X is observed by two cameras with different projection centers.
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§ 25 Projection equation Equation 6.11 describes the relationship between mea-
surement ~uα in the image and measurement ~Xδ in space. It says that ~Xδ is projected
into ~uα since there exists η such that Equation 6.11 holds. Notice that η multiple of
the vector on the left of Equation 6.11 is obtained by a linear mapping represented
by matrix Pβ from vector ~Xδ on the right.

When computing ~uα from ~Xδ, we actually eliminate η using the last row of the
(matricidal) equation (6.11)

~uα “

»

—

—

—

–

pJ
1
X

pJ
3
X

pJ
2
X

pJ
3
X

fi

ffi

ffi

ffi

fl

(6.14)

where we introduced rows of p1, p2, p3 of P and a 4 ˆ 1 vector X as follows

Pβ “

»

–

pJ
1

pJ
2

pJ
3

fi

fl and X “
„

~Xδ

1



(6.15)

Notice that the projection equation is not linear. It is a rational function of the first
order polynomials in elements of X.

§ 26 Projection ray Having an image point ~uα, we can construct its projection ray
p in space. The ray consists of all points ~Y that can project to ~uα. In pC, βq, the
ray is emanating from the origin C. We parametrize it by real η and express it in
pO, δq by vector ~Xδ

~Yβ “ η

„

~uα
1



“ η ~xβ

~Xδ “ η A´1~xβ ` ~Cδ (6.16)

Notice that ~Xδ (6.16) can also be obtained for a given η by solving the system of
linear equations (6.12) for ~Xδ.

6.2 Computing image projection matrix from images of six

points

Let us now consider the task of finding the Pβ from measurements. We shall consider
the situation when we can measure points in space as well as their projection in the
image. Consider a pair of such measurements rx, y, zsJ corrØ ru, vsJ. There holds

λ

»

–

u

v

1

fi

fl “ Q

»

—

—

–

x

y

z

1

fi

ffi

ffi

fl

“ Q X (6.17)

for some real λ, 3 ˆ 4 matrix Q and 4 ˆ 1 coordinate vector X. Notice that we intro-
duced new symbols λ and Q to emphasize that they are determined by Equation 6.17
up to a non-zero scale

Q “ ξ Pβ (6.18)
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We will see that this will have further consequences.
Introduce symbols for rows of Q

Q “

»

–

qJ
1

qJ
2

qJ
3

fi

fl (6.19)

and rewrite the above matrix equation as

λu “ qJ
1 X (6.20)

λ v “ qJ
2 X (6.21)

λ “ qJ
3 X (6.22)

Eliminate λ from the first two equations using the third one

pqJ
3 Xqu “ qJ

1 X (6.23)

pqJ
3 Xq v “ qJ

2 X (6.24)

move all to the left hand side and reshape it using xJy “ yJx

XJq1 ´ pu XJq q3 “ 0 (6.25)

XJq2 ´ pv XJq q3 “ 0 (6.26)

Introduce vector of parameters (which are elements of Q)

q “
“

qJ
1

qJ
2

qJ
3

‰J
(6.27)

and express the above two equations in matrix form

„

x y z 1 0 0 0 0 ´ux ´u y ´u z ´u
0 0 0 0 x y z 1 ´v x ´v y ´v z ´v



q “ 0

M q “ 0 (6.28)

Every correspondence rx, y, zsJ corrØ ru, vsJ brings two rows into the matrix
M (6.28). We need therefore at least 6 correspondences in general position to obtain
11 linearly independent rows in Equation 6.28 to obtain a one-dimensional space of
solutions.

If Q is a solution to Equation 6.28, then τ Q is also a solution and both determine
the same projection for any positive τ since

pτ Qq X “ τ pQ Xq “ τ pλ~xβq “ pτλq ~xβ (6.29)

Assuming Pβ “ τ Q leads to λ “ η{τ . We see that we can’t recover Pβ but only
its non-zero multiple. Therefore, when solving Equation 6.28, we are looking for
one-dimensional subspace of 3 ˆ 4 matrices of rank 3. Such a subspace determines
one projection. Also note that the zero matrix does not represent any interesting
projection.
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Notice that when considering more correspondences, M becomes

M q “

»

—

—

—

—

—

—

—

—

–

x1 y1 z1 1 0 0 0 0 ´u1x1 ´u1y1 ´u1z1 ´u1
x2 y2 z2 1 0 0 0 0 ´u2x2 ´u2y2 ´u2z2 ´u2

...
0 0 0 0 x1 y1 z1 1 ´v1x1 ´v1y1 ´v1z1 ´v1
0 0 0 0 x2 y2 z2 1 ´v2x2 ´v2y2 ´v2z2 ´v2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

q “ 0

(6.30)
Matrix M can be more concisely rewritten as

M “

»

—

—

—

—

—

—

—

—

—

–

XJ
1

0J ´u1 XJ
1

XJ
2

0J ´u2 XJ
2

...
0J XJ

1
´v1 XJ

1

0J XJ
2

´v2 XJ
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.31)

with 0J “ r0, 0, 0, 0s.

§ 27 A more general procedure for computing Q We shall next develop and al-
ternative formulation for finding matrix Q. Let us come back to Equation 6.17

λ~u “ Q X (6.32)

Above, we have eliminated λ assuming ~u3 “ 1. Let us now present an alternative
procedure for eliminating λ, which works for any non-zero ~u “ ru, v, wsJ, i.e. even
when w “ 0. The trick is to realize that

0 “ ~uˆ pλ~uq “ ~uˆ Q X “ r~usˆ Q X (6.33)

This gives three equations for each ~u Ø X correspondence. However, only two of
them are linearly independet since r~usˆ has rank two. Now, we are in the position
to employ Equation 3.92, which gives

r~usˆ Q X “ 0 (6.34)

XJQJ r~usJ
ˆ “ 0J (6.35)

vpXJQJ r~usJ
ˆq “ vp0Jq (6.36)

pr~usˆb XJq vpQJq “ vp0Jq (6.37)
¨

˝

»

–

0 ´w v

w 0 ´u
´v u 0

fi

flb XJ

˛

‚vpQJq “ vp0Jq (6.38)

»

–

0J ´w XJ v XJ

w XJ 0J ´u XJ

´v XJ u XJ 0J

fi

fl vpQJq “ vp0Jq (6.39)
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For more correspondences numbered by i, we then get

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w1 X
J
1

v1 X
J
1

0J ´w2 X
J
2

v2 X
J
2

...
w1 X

J
1

0J ´u1 XJ
1

w2 X
J
2

0J ´u2 XJ
2

...
´v1 XJ

1
u1 X

J
1

0J

´v2 XJ
2

u2 X
J
2

0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpQJq “ 0 (6.40)

which if, for w “ 1, is equivalent to Equation 6.30. Notice that vpQJq “ q from
Equation 6.30.
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7 Camera calibration

Let us now look at a useful interpretation of image projection matrix in space and
image equipped with cartesian coordinate systems.

7.1 Camera pose

The projection formula 6.10 reveals that the perspective projection depends on ma-
trix A and vector ~Cδ. The vector ~Cδ represents the position of the camera projection
center w.r.t. the world coordinate system. Columns of matrix A are coordinates of
the basic vectors of δ in the basis β

A “
”

~d1β
~d2β

~d3β

ı

(7.1)

To recover the orientation of the camera, we will introduce the focal length f

as the distance of the camera projection center C from its projection plane π (in
the world units) and replace the product f A by the product of two 3ˆ 3 matrices K
and R

f A “ K R (7.2)

We will see that this seemingly artificial construction is indeed justified.
Rotation matrix R determines the orientation of the camera in space and alto-

gether with ~Cδ defines the camera pose. The camera calibration matrix K does not
change when moving its camera in the space.

To obtain K and R, we define, Figure 7.1, the camera cartesian coordinate system
pC, γq with center (again) in the camera projection center C and with basis γ “
r~c1,~c2,~c3s such that

~c1 “ k11~b1

~c2 “ k12~b1 ` k22~b2 (7.3)

~c3 “ k13~b1 ` k23~b2 ` 1~b3

Parameters kij are determined to make the basis γ orthogonal. Notice that vector
~c3 is orthogonal to π since it is orthogonal to ~c1,~c2, which span π, by construction.
Also notice that γ is (in general) not an orthonormal basis since the length of its
vectors equals the distance of C from π, i.e. the focal length f in the world units.

Equations 7.3 define matrix K as

K “
“

~c1β ~c2β ~c3β
‰

“

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl (7.4)

By this construction, we have

~xβ “ A ~xδ “ K ~xγ (7.5)

~xγ “ “ 1

f
R ~xδ (7.6)
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The world cartesian coordinate system has basic vectors of unit length. The camera
cartesian coordinate system pC, γq has basic vectors of length equal to f . Therefore,

”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
R “

»

—

–

rJ
1

{f
rJ
2

{f
rJ
3

{f

fi

ffi

fl
(7.7)

for some 3 ˆ 3 orthonormal matrix R with rows rJ
1
, rJ

2
, rJ

3
.

Consider that

A “
”

~d1β
~d2β

~d3β

ı

“ K
”

~d1γ
~d2γ

~d3γ

ı

“ 1

f
K R (7.8)

We can view the matrices 1

f
R and K as coordinate transformation matrices, which

transform a general vector ~y from the coordinates w.r.t. δ to γ and then to β, i.e.

~yβ “ K ~yγ “ 1

f
K R ~yδ (7.9)

The basis γ is orthogonal and all basic vectors have the same length, which is equal
to f . It follows from the orthogonality of the basis γ that ~c1 ¨ ~c1 “ f2, ~c1 ¨ ~c2 “ 0
and ~c2 ¨ ~c2 “ f2 and hence using Equation 7.3 leads, for a positive f , to

k11 }~b1} ´ f “ 0

k211 k22 p~b1 ¨~b2q ` k12 f
2 “ 0 (7.10)

k211 k
2
22 }~b2}2 ´ pk212 ` k211q f2 “ 0

Let us solve Equations 7.10 for k11, k12 and k22. The first equation in (7.10) provides
k11. Substituting the square of f from the first equation into the second one and
dividing it by k2

11
gives the second equation of (7.11), which allows to compute k12

from k22. To get k22, we construct the third equation of (7.11) as follows. We express
k11 from the first equation of (7.10) and k12 from the second equation of (7.11)
and substitute them into the third equation of (7.10), which we then multiply by
||~b1||4{f2. Altogether, we get

k11 }~b1} ´ f “ 0

k12 }~b1}2 ` k22 p~b1 ¨~b2q “ 0 (7.11)

k222 p}~b1}2 }~b2}2 ´ p~b1 ¨~b2q2q ´ f2 }~b1}2 “ 0

Looking at the third equation of (7.11) we see that

k222 “ f2}~b1}2

}~b1}2}~b2}2 ´ p~b1 ¨~b2q2
“ f2

}~b2}2 ´ }~b2}2 cos2=p~b1,~b2q
(7.12)

and since γ was constructed to make k22 positive, we obtain

k22 “ f

}~b2} sin=p~b1,~b2q
(7.13)
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C

f

o

π

~u0

~b1

~b1

~b2

~b2

~b3

~c1

~c2

~c3

=p~b1,~b2q

Figure 7.1: Camera internal parameters are related to the geometry of basis β.
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The second equation of (7.10) now gives

k12 “ ´k22
~b1 ¨~b2
}~b1}2

“ ´k22
}~b2} cos=p~b1,~b2q

}~b1}
(7.14)

“ ´ f cos=p~b1,~b2q
}~b1} sin=p~b1,~b2q

(7.15)

Finally k11 follows from (7.11)

k11 “ f

}~b1}
(7.16)

Considering Figure 7.1 and Equation 7.3, we see that the coordinates of the
vector ~u0, corresponding to the principal point, which is the perpendicular projection
of C onto π, are in β

~u0β “

»

–

k13
k23
0

fi

fl , i.e. ~u0α “
„

k13
k23



(7.17)

The horizontal pixel size corresponds to }~b1}. Quantity k11 can thus be under-
stood as f expressed in the horizontal image units. The angle between the image
axes ~b1,~b2 is obtained from k11{k12 “ ´ tan=p~b1,~b2q. The ratio of the lengths of the
image axes is determined by }~b2}{}~b1} “

a

k11 pk11 ` k12q{k22.
Let us now return to Equation 6.11 and substitute there the above results to

arrive at the final projection equation

η ~xβ “ Pβ

„

~Xδ

1



(7.18)

η

„

~uα
1



“ A p ~Xδ ´ ~Cδq (7.19)

f η

„

~uα
1



“ f A p ~Xδ ´ ~Cδq (7.20)

f η

„

~uα
1



“ K R p ~Xδ ´ ~Cδq (7.21)

ζ

„

~uα
1



“ K R p ~Xδ ´ ~Cδq (7.22)

ζ

„

~uα
1



“ K R
”

I | ´ ~Cδ

ı

„

~Xδ

1



(7.23)

We have introduced a new parameter ζ “ f η, which is the depth of X in the world
units. We conclude that

Pβ “
”

1

f
K R | ´ 1

f
K R ~Cδ

ı

(7.24)

Notice that the last row aJ
3
of A provides f since

A “

»

–

aJ
1

aJ
2

aJ
3

fi

fl “ 1

f

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

»

–

rJ
1

rJ
2

rJ
3

fi

fl “ 1

f

»

–

k11r
J
1

` k12r
J
2

` k13r
J
3

k22r
J
2

` k23r
J
3

rJ
3

fi

fl (7.25)
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and hence }aJ
3

} “ 1

f
. Therefore }Pβp3, 1 : 3q} “ 1

f
.

Equation 7.23 is very important in many practical situations when we do not
have access to physical dimensions of the camera but only to images. Then, it is

possible to recover matrix K R
”

I | ´ ~Cδ

ı

but not image projection matrix Pβ . This

is so important the we introduce the camera projection matrix

P “
”

K R | ´ K R ~Cδ

ı

(7.26)

which is related to the image projection matrix as

P “ f Pβ (7.27)

In this text, it would be more consistent to asociate subscript ν with the camera
projection matrix but we will not do that since we want to use the nomenclature
of [2] here whenever possible.

Let us write K explicitely,

K “

»

—

—

–

f

}~b1}
´ f cos=p~b1,~b2q

}~b1} sin=p~b1,~b2q
u0

0 f2

}~b2}2´}~b2}2 cos2=p~b1,~b2q
v0

0 0 1

fi

ffi

ffi

fl

(7.28)

where ~u0α “
“

u0 v0
‰J

. We see that we can neither recover f nor }~b1} from P.
Let us introduce image calibration matrix

Kβ “ 1

f
K (7.29)

to have
Pβ “

”

Kβ R | ´ Kβ R ~Cδ

ı

(7.30)

Writing image calibration matrix Kβ explicitely,

Kβ “ 1

f
K “

»

—

—

–

1

}~b1}
´ cos=p~b1,~b2q

}~b1} sin=p~b1,~b2q
u0

f

0 f

}~b2}2´}~b2}2 cos2=p~b1,~b2q
v0
f

0 0 1

f

fi

ffi

ffi

fl

(7.31)

shows that it is possible to recover both

}~b1} “ 1

Kβ11
and f “ 1

Kβ33
(7.32)

from image calibration matrix.
There is an important difference between Kβ and K regarding the representation

of internal camera calibration information. Image calibration matrix Kβ , and also
image projevction matrix Pβ , captures all calibration information about a perspective
image whereas camera calibration matrix K, and also camera projection matrix P,
captures only the calibration information that can be recovered by auto-calibration
from images as we will see later. When the focal length is known in world units
or when pixel sizes are known in world units, it is more apropriate to use image
calibration Kβ , or image projection matrix Pβ , to represent full internal calibration
information.
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π
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~b3
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f
R

K

(a) β “ r~b1,~b2,~b3s, δ “ r~d1, ~d2, ~d3s: ~yβ “ A ~yδ (b) γ “ r~c1,~c2,~c3s: ~yγ “ 1

f
R ~yδ

~yβ “ K ~yγ

O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b2

~b3

~e1
~e2

~e3

~n1

~n2

~n3

R

K

O

C

~d1

~d2

~d3

o

π

~b1

~b2

~b1

~b2

~b3

~c1

~c2

~c3

~k1

~k2

~k3

R´1

K´1

(c) ǫ “ r~e1, ~e2, ~e3s: ~yǫ “ R ~yδ, (d) κ “ r~k1,~k2,~k3s: ~yγ “ K´1 ~yβ ,
ν “ r~n1, ~n2, ~n3s: ~yν “ K ~yǫ ~yκ “ R´1 ~yγ

Figure 7.2: Coordinate systems generated by applying 1

f
R, K, R, R´1 and K´1.
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§ 28 Coordinate systems generated by applying K R to ~yδ and R´1K´1 to ~yβ We
have seen that the decomposition of A to K and R introduced the camera cartesian
coordinate system pC, γq, Figure 7.2(b)

~yγ “ 1

f
R ~yδ (7.33)

~yβ “ K ~yγ (7.34)

There are three more coordinate systems to consider when looking at how ma-
trices R, K, and their inverses R´1, K´1, apply to vectors ~yδ and ~yβ , Figure 7.2.

Let us first consider coordinates of a vector ~y w.r.t. basis δ and apply successively
R and K. Coordinate vector R ~yδ can be interpreted as coordinates of ~y w.r.t. a new
basis ǫ “ r~e1, ~e2, ~e3s, Figure 7.2(c). Applying further K to ~yǫ gives the coordinate vec-
tor K ~yǫ, which can be interpreted as ~y w.r.t. yet another new basis ν “ r~n1, ~n2, ~n3s.
We get from ν to β by using 1

f
I

~yǫ “ R ~yδ (7.35)

~yν “ K ~yǫ (7.36)

~yβ “ 1

f
I ~yν (7.37)

We have introduced two new coordinate systems pC, νq, ν “ r~n1, ~n2, ~n3s and pC, ǫq,
ǫ “ r~e1, ~e2, ~e3s.

Next we consider coordinates of a vector ~y w.r.t. basis β and apply successively
K´1 and R´1. Coordinate vector K´1 ~yβ gives ~yγ . Coordinate vector R´1 ~yγ can be

interpreted as coordinates of ~y w.r.t. a new basis κ “ r~k1,~k2, ~k3s, Figure 7.2(d). To
get from ~yκ to ~yδ we need to employ fI

~yγ “ K´1 ~yβ (7.38)

~yκ “ R´1 ~yγ (7.39)

~yδ “ fI ~yκ (7.40)

We have thus introduced a new coordinate system pO, κq, κ “ r~k1,~k2, ~k3s.
Figure 7.3 summarizes the relationship between coordinates of a vector and be-

tween bases associated with a perspective camera.
We can now see why we have chosen to denote the image projection matrix as Pβ

and the camera projection matrix as P. The image projection matrix provides the
ray direction vector ~x in basis β while the camer aprojection matrix provides the
ray direction vector ~x in basis ν.

§ 29 Recovering camera pose from its projection matrix Let us next consider
that we have already computed the camera projection matrix

Q “ ξ P “ ξ K R rI | ´ ~Cδs (7.41)

consisting of a 3 ˆ 3 matrix M and 3 ˆ 1 vector m

Q “ rM | ms (7.42)

39



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

~yα

~yβ

~yγ

~yδ

~yǫ

~yν

~yκ

fA
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K

„
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0 1 0



1

f
R

1

f

1

f

1

f

α

β

γ

δ

ǫ

ν

κ

1

f
A´1

R´1

R´1

K´1

K´1

»

–

1 0

0 1

0 0

fi

fl

f R´1

f

f

f

(a) (b)

Figure 7.3: Relationships between (a) coordinates in different bases. e.g. ~yβ “ K ~yγ
and (b) bases themselves, e.g. β “ γ K´1, associated with a perspective
camera.

To recover camera pose from Q, we need to get ~Cδ from m and to decompose Q into
the product of K in the form of (7.4) and R such that RJR “ I and |R| “ 1. Consider
M in the form

M “

»

–

mJ
1

mJ
2

mJ
3

fi

fl (7.43)

Next we notice that the last row of K R has unit norm since it is equal to the last row of
rotation R. Therefore, we need to divide M by the norm of its last row to get a matrix
decomposable into the product of K R. Moreover, it follows from the construction
of β that k11 ą 0 and k22 ą 0. Thus, determinant |K R| “ |K| |R| “ k11 k22 ą 0.
Therefore, we also need to multiply M by the sign of its determinant to get a matrix
decomposable into K R.

sign |M|
}m3} M “ sign |M|

}m3}

»

–

mJ
1

mJ
2

mJ
3

fi

fl “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

»

–

rJ
1

rJ
2

rJ
3

fi

fl (7.44)
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which provides the following set of equations

mJ
2
m3

}m3}2 “ k22 r
J
2 r3 ` k23 r

J
3 r3 “ k23 (7.45)

mJ
1
m3

}m3}2 “ k13 (7.46)

mJ
2
m2

}m3}2 “ k222 ` k223 (7.47)

mJ
1
m2

}m3}2 “ k12 k22 ` k13 k23 (7.48)

mJ
1
m1

}m3}2 “ k211 ` k212 ` k213 (7.49)

from which k11, k12, k13, k22, k23 can be easily computed considering that the most
of consumer digital cameras have k11 ą 0, k22 ą 0, k13 ą 0, k23 ą 0.

Having kij computed, we recover R from M as

R “ K´1 sign |M|
}m3} M (7.50)

Camera projection center can be computed in two ways. Either we get

~Cδ “ ´ M´1m (7.51)

or we obtain it by finding a basis c of the one-dimensional right null space of matrix
Q, i.e. solving

Q c “ 0 (7.52)

and then computing
„

~Cδ

1



“ 1

c4
c (7.53)

where c4 is the fourth coordinate of vector c.

7.2 Camera calibration and angle between projection rays

We have introduced matrices P, R and K, and vector ~Cδ which determine the pro-
jection from space to images. However, since K is introduced with K33 “ 1, the
triplet (K, R, ~Cδ) does not contain all information about the camera, which can be
obtained by direct measurement of its physical components in a world coordinate
system equipped with a known world unit length 1W . The missing element is the
scale of P, which is equivalent to knowing the value of the focal length or the size of
pixels, i.e. f , }~b1} or }~b2}, in 1W .

Knowing K and f allows to recover }~b1} from Equations 7.3 as }~b1} “ f{k11.
Knowing K and }~b1}, on the other hand, gives f “ }~b1} k11.

Therefore, full calibration of the camera is encoded in matrix Pβ , Equation 7.24,

or, e.g., in one of the following tuples: (Kβ , R, ~Cδ), (K, R, ~Cδ, f), (K, R, ~Cδ, }~b1}) or
(K, R, ~Cδ, }~b2}).

We defined the camera calibration matrix K with K33 “ 1 because we often do not
have access to the world unit when working with images without knowing anything
about the camera which was used to make them. Moreover, a number of important
tasks can be done without knowing the world unit.
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Figure 7.4: A calibrated camera pose can be computed from projections of three
known points.

§ 30 Angle between projection rays Consider two image points ~u1α and ~u2α. The
direction vectors of the rays are in β given by

~x1β “
„

~u1α
1



, ~x2β “
„

~u2α
1



(7.54)

To obtain the angle between the direction vectors by evaluating the scalar product
of the vectors, we need to pass to an orthogonal basis. The “closest” orthogonal
basis is γ. Hence

cos=p~x1, ~x2q “
~xJ
1γ~x2γ

}~x1γ}}~x2γ} “
~xJ
1β K

´JK´1~x2β

}K´1~x1β}}K´1~x2β} (7.55)

Notice that we could use the orthogonal basis γ to measure angles instead of, e.g., the
closest orthonormal basis ǫ since the unknown scale factor f cancels in the following
formula

cos=p~x1, ~x2q “ ~xJ
1ǫ~x2ǫ

}~x1ǫ}}~x2ǫ}
“

pf ~xJ
1γqpf ~x2γq

}f ~x1ǫ}}f ~x2γ} “
~xJ
1γ~x2γ

}~x1γ}}~x2γ} (7.56)

We conclude that we do not need to know f to measure angles between projection
rays.

7.3 Calibrated camera pose computation

We have seen how to find (uncalibrated) perspective camera pose from projections
of known six points. In fact, we have recovered the calibration of the camera. Next
we shall show that when the calibration is known, we are able to find the pose of
the camera from projections of three points. This is a very classical problem which
has been known since [76].
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Figure 7.4 shows a camera with center C, which projects three points X1, X2 and
X3, represented by vectors ~X1δ, ~X2δ and ~X3δ in pO, δq, into image points represented
by ~x1β , ~x2β and ~x3β .

§ 31 Classical formulation of the calibrated camera pose computation We in-
troduce distances between pairs of points as

d12 “ || ~X2δ ´ ~X1δ||, d23 “ || ~X3δ ´ ~X2δ||, d31 “ || ~X1δ ´ ~X3δ|| (7.57)

Since we see three different points, we know that all distances are positive.
Points X1, X2 and X3 are in pC, γq represented by vectors

ηi
~xiγ

||~xiγ || “ ηi
K´1~xiβ

||K´1~xiβ || , i “ 1, 2, 3 (7.58)

with ηi representing the distance from C to Xi. Distances ηi are positive since
otherwise we could not see the points.

§ 32 Computing distances to the camera center Calibrated perspective camera
measures angles between projection rays

cij “ cos=p~xi, ~xjq “
~xJ
iβ K

´JK´1~xjβ

}K´1~xiβ}}K´1~xjβ} , i “ 1, 2, 3, j “ pi´ 1q mod 3 ` 1 (7.59)

Hence we have all quantities ηi, cos=p~xi, ~xjq and dij , which we need to construct
a set of equations using the rule of cosines d2ij “ η2i ` η2j ´ 2 ηi ηj cos=p~xi, ~xjq, i.e.

d212 “ η21 ` η22 ´ 2 η1 η2 c12 (7.60)

d223 “ η22 ` η23 ´ 2 η2 η3 c23 (7.61)

d231 “ η23 ` η21 ´ 2 η3 η1 c31 (7.62)

with cij “ cos=p~xi, ~xjq.
We have three quadratic equations in three variables. We shall solve this system

by manipulating the three equations to generate one equation in one variable, solving
it and then substituting back to get the remaining two variables.

§ 33 A classical solution Let us first get two equations in two variables. Let us
generate new equations by multiplying the left hand side of (7.60) and (7.62) by the
right hand side of (7.61) and right hand side of (7.60) and (7.62) by the left hand
side of (7.61)

d212 pη22 ` η23 ´ 2 η2 η3 c23q “ d223 pη21 ` η22 ´ 2 η1 η2 c12q (7.63)

d231 pη22 ` η23 ´ 2 η2 η3 c23q “ d223 pη23 ` η21 ´ 2 η3 η1 c31q (7.64)

We could have made three different choices which equation to use twice but since all
dij ‰ 0, and hence all sides of the equations are nonzero, all the choices are equally
valid.

43



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

We have now two equations with three variables but since the equations are
homogeneous, we will be able to reduce the number of variables to two by dividing
equations by (e.g.) η2

1
(which is non-zero) to get

d212
`

η212 ` η213 ´ 2 η12 η13 c23
˘

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.65)

d231
`

η212 ` η213 ´ 2 η12 η13 c23
˘

“ d223
`

1 ` η213 ´ 2 η13 c31
˘

(7.66)

with η12 “ η2
η1

and η13 “ η3
η1
. Notice that we have a simpler situation than before

with only two quadratic equations in two variables. Let us proceed further towards
one equation in one variable.

We rearrange the terms to get a polynomials in η13 on the left and the rest on
the right

d212 η
2
13 ` p´2 d212 η12 c23q η13 “ d223

`

1 ` η212 ´ 2 η12 c12
˘

´ d212η
2
12

pd231 ´ d223q η213 ` p2 d223 c31 ´ 2 d231 η12 c23q η13 “ d223 ´ d231 η
2
12 (7.67)

to get two quadratic equations

m1 η
2
13 ` p1 η13 “ q1 (7.68)

m2 η
2
13 ` p2 η13 “ q2

in η13 with

m1 “ d212 (7.69)

p1 “ ´2 d212 η12 c23 (7.70)

q1 “ d223
`

1 ` η212 ´ 2 η12 c12
˘

´ d212η
2
12 (7.71)

m2 “ d231 ´ d223 (7.72)

p2 “ 2 d223 c31 ´ 2 d231 η12 c23 (7.73)

q2 “ d223 ´ d231 η
2
12 (7.74)

We have “hidden” the variable η12 in the new coefficients. We can now look upon
Equations 7.68 as on a linear system

„

m1 p1
m2 p2

 „

η2
13

η13



“
„

q1
q2



(7.75)

The matrix of the system (7.75) either is or is not singular.

§ 34 Case A If it is not singular, we can solve the system by Cramer’s rule [67, 68,
66]

η213

ˇ

ˇ

ˇ

ˇ

„

m1 p1
m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

q1 p1
q2 p2

ˇ

ˇ

ˇ

ˇ

(7.76)

η13

ˇ

ˇ

ˇ

ˇ

„

m1 p1
m2 p2

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„

m1 q1
m2 q2

ˇ

ˇ

ˇ

ˇ

(7.77)

giving

η213 pm1 p2 ´m2 p1q “ q1 p2 ´ q2 p1 (7.78)

η13 pm1 p2 ´m2 p1q “ m1 q2 ´m2 q1 (7.79)

44



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

Eliminating η13 (by squaring the second equation, multiplying the first one by
m1 p2 ´m2 p1, which is non-zero, and comparing the left hand sides) yields

pm1 p2 ´m2 p1q pq1 p2 ´ q2 p1q “ pm1 q2 ´m2 q1q2 (7.80)

Substituting Formulas 7.69-7.74 into Equation 7.80 yields

0 “ a4 η
4
12 ` a3 η

3
12 ` a2 η

2
12 ` a1 η12 ` a0 (7.81)

with coefficients

a4 “ ´d823 ´ d412 d
4
23 ´ d423 d

4
31 ´ 2 d212 d

4
23 d

2
31 ` 2 d623 d

2
31 ` 2 d212 d

6
23 (7.82)

`4 d212 c
2
23 d

4
23 d

2
31

a3 “ 4 d412 d
4
23 c31 c23 ´ 4 d212 d

6
23 c12 ´ 4 d212 c23 d

6
23 c31 ` 4 d423 c12 d

4
31 (7.83)

`4 d823 c12 ´ 4 d212 d
4
23 c31 d

2
31 c23 ´ 8 d212 c

2
23 d

4
23 d

2
31 c12 ´ 8 d623 c12 d

2
31

`4 d212 d
4
23 c12 d

2
31

a2 “ 8 d623 c
2
12 d

2
31 ` 4 d623 d

2
31 ´ 2 d423 d

4
31 ` 2 d412 d

4
23 ´ 4 d412 d

4
23 c

2
31 (7.84)

´4 d823 c
2
12 ´ 4 d412 c

2
23 d

4
23 ´ 2 d823 ` 8 d212 c23 d

6
23 c31 c12

`4 d212 c
2
23 d

4
23 d

2
31 ´ 4 d423 c

2
12 d

4
31 ` 4 d212 d

6
23 c

2
31 ` 8 d212 d

4
23 c31 d

2
31 c23 c12

a1 “ 4 d423 c12 d
4
31 ` 4 d212 d

6
23 c12 ` 4 d823 c12 ´ 4 d212 c23 d

6
23 c31 (7.85)

´8 d212 d
6
23 c

2
31 c12 ´ 4 d212 d

4
23 c31 d

2
31 c23 ´ 4 d212 d

4
23 c12 d

2
31

`4 d412 d
4
23 c31 c23 ´ 8 d623 c12 d

2
31

a0 “ 2 d623 d
2
31 ` 2 d212 d

4
23 d

2
31 ´ d423 d

4
31 ´ d412 d

4
23 ` 4 d212 d

6
23 c

2
31 (7.86)

´d823 ´ 2 d212 d
6
23

We will use eigenvalue computation to find a numerical solution to Equation 7.81.
Construct the following companion matrix

C “

»

—

—

—

–

0 0 0 ´a0
a4

1 0 0 ´a1
a4

0 1 0 ´a2
a4

0 0 1 ´a3
a4

fi

ffi

ffi

ffi

fl

(7.87)

and observe that

| η12 I ´ C | “ η412 ` a3

a4
η312 ` a2

a4
η212 ` a1

a4
η12 ` a0

a4
(7.88)

Therefore, a numerical approximation of η12 can be obtained by computing, e.g.,
>>eig(C) in Matlab. Complex solutions are artifacts of the method and should
not be further considered. For every real solution, we can then substitute back to
Equation 7.79 to obtain the corresponding

η13 “ m1 q2 ´m2 q1

m1 p2 ´m2 p1
(7.89)

“ d2
12

pd2
23

´ d2
31
η2
12

q ` pd2
23

´ d2
31

q pd2
23

p1 ` η2
12

´ 2 η12 c12q ´ d2
12
η2
12

q
2 d2

12
pd2

23
c31 ´ d2

31
c23 η12q ` 2 pd2

31
´ d2

23
q d2

12
c23 η12

To get η1, η2 and η3, we consider Equation 7.60, which can be rearranged as

d212 “ η21 p1 ` η212 ´ 2 η12 c12q (7.90)
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and hence yields positive

η1 “ d12
a

1 ` η2
12

´ 2 η12 c12
(7.91)

η2 “ η1 η12 (7.92)

η3 “ η1 η13 (7.93)

§ 35 Case B Let us now look at what happens when the matrix of the system (7.75)
is singular. Then, after substituting m1, m2, p1 and p2 from Equations 7.69–7.74,
we have

m1 p2 ´m2 p1 “ 0 (7.94)

´2 d212 d
2
23 pη12 c23 ´ c31q “ 0 (7.95)

η12 c23 “ c31 (7.96)

We used the fact that neither d12 ‰ 0 nor d23 ‰ 0.

§ 36 Case B1 When c23 ‰ 0, then we get

η12 “ c31

c23
(7.97)

Substituting it to Equations 7.65 we get

d212

ˆ

pc31
c23

q2 ` η213 ´ 2
c31

c23
η13 c23

˙

“ d223

ˆ

1 ` pc31
c23

q2 ´ 2
c31

c23
c12

˙

(7.98)

d212
`

c231 ` c223 η
2
13 ´ 2 c31 c

2
23 η13

˘

“ d223
`

c223 ` c231 ´ 2 c31 c23 c12
˘

(7.99)

and after some more manipulation obtain a quadratic equation

pd212 c223q η213 ` p´2 d212 c
2
23 c31q η13 ` d212 c

2
31 ´ d223 c

2
23 ´ d223 c

2
31 ` 2 d223 c12 c23 c31 “ 0

(7.100)
in η13. We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 37 Case B2 When c23 “ 0, then it follows from Equation 7.96 that c31 “ 0 as
well. Returning back to equations 7.65, 7.66 provides

d212
`

η212 ` η213
˘

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.101)

d231
`

η212 ` η213
˘

“ d223
`

1 ` η213
˘

(7.102)

Expressing η13 from Equation 7.102 gives

pd223 ´ d231q η213 “ d231 η
2
12 ´ d223 (7.103)

§ 38 Case B2.1 When d2
23

‰ d2
31
, then we can write

η213 “ d2
31
η2
12

´ d2
23

d2
23

´ d2
31

(7.104)
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to substitute it into Equation 7.101

d212

ˆ

η212 ` d2
31
η2
12

´ d2
23

d2
23

´ d2
31

˙

“ d223
`

1 ` η212 ´ 2 η12 c12
˘

(7.105)

which we further manipulate to get a quadratic equation in η12
`

d212 ´ d223 ` d231
˘

η212 ` 2 c12 pd223 ´ d231q η12 ` d231 ´ d212 ´ d223 “ 0 (7.106)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 39 Case B2.2 Finally, when d2
23

“ d2
31
, then we get from Equation 7.103

η12 “ 1 (7.107)

and from Equation 7.101

η213 “ d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.108)

and hence the positive

η13 “
d

d2
23

d2
12

p2 ´ 2 c12q ´ 1 (7.109)

We get η1, η2 and η3 from Equations 7.91, 7.92, 7.93.

§ 40 Selecting solutions The above process of ηi computation often delivers several
solutions. It is important to notice that some of them may not satisfy the original
Equations 7.62–7.60. For instance, we always obtain solutions for the case A as well
as for some of the cases B but only one of the cases is actually valid. Hence, we need
to select only the solutions that satisfy Equations 7.62–7.60 and are meaningful, i.e.
are real and positive.

§ 41 A modern (more elegant) solution The classical solution is perfectly valid
but it was quite tedious to derive it. Let us now present another, somewhat more
elegant, solution, which exploits some of more recent results of algebraic geometry [6,
77].

Let us consider Equations 7.60, 7.61, 7.62 and proceed to Equations 7.65, 7.66,
but, this time, using all three pairs to get three equations in η12, η13

f1 “ d212
`

η212 ` η213 ´ 2 η12 η13 c23
˘

´ d223
`

1 ` η212 ´ 2 η12 c12
˘

“ 0 (7.110)

f2 “ d231
`

η212 ` η213 ´ 2 η12 η13 c23
˘

´ d223
`

1 ` η213 ´ 2 η13 c31
˘

“ 0 (7.111)

f3 “ d212
`

1 ` η213 ´ 2 η13 c31
˘

´ d231
`

1 ` η212 ´ 2 η12 c12
˘

“ 0 (7.112)

It is known [6, 77] that solutions to a set of k algebraic equations

fipx1, . . . , xnq “ 0, i “ 1 . . . , k (7.113)

in n variables, which have a fininte number of solutions, can always be obtained
by deriving a polynomial gpxnq “ 0 in the last variable by the following procedure.
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If the system, does not have any solution, the procedure will generate polynomial
gn “ 1, i.e. a non-zero constant, leading to the contradiction 1 “ 0.

The procedure is as follows. First generate new equations by multiplying all fi
by all possible monomials up to degree m

x1, . . . , xn, x
2
1, x1 x2, . . . , x

2
n, x

3
1, x

2
1 x2, . . . , x

m
n (7.114)

to get equations

f1 “ 0, . . . , fn “ 0, x1f1 “ 0, . . . , xnfn “ 0, x21f1 “ 0, x1 x2f1 “ 0, . . . , xmn fn “ 0
(7.115)

The degree m needs to be chosen such that the next step yields the desired result.
It is always possible to choose such m but it may sometimes be found only by
using more and more monomials until the Gaussian elimination of the matrix of
coefficients, which combine monomials, does not produce a row corresponding to an
equation in xn only. Let us demonstrate this process by solving our problem.

We use the following four monomials of maximal degree two

η12, η13, η12 η13, η
2
12 (7.116)

Notice that we did not include the second degree monomial η2
13

since it turns out that
equations generated by that monomial are not necessary. We obtain 15 “ 3 ` 4 ˆ 3
equations

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

f1
f2
f3

η12 f1
η12 f2
η12 f3
η13 f1
η13 f2
η13 f3

η12 η13 f1
η12 η13 f2
η12 η13 f3
η2
12
f1

η2
12
f2

η2
12
f3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

η12 η
3

13

η3
13

η2
12
η2
13

η2
13
η12

η2
13

η3
12
η13

η13 η
2

12

η13 η12
η13
η4
12

η3
12

η2
12

η12
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ M m “ 0 (7.117)

with

M “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2

0 0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2

0 0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6

0 0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0

0 0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0

0 0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0

0 m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0

0 m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0

0 ´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0

m1 0 ´m7 0 0 m4 m8 ´m2 0 0 0 0 0 0

m5 0 m9 ´m10 0 ´m3 0 m2 0 0 0 0 0 0

´m1 0 0 m11 0 m3 ´m12 m6 0 0 0 0 0 0

0 0 m1 0 0 ´m7 0 0 0 m4 m8 ´m2 0 0

0 0 m5 0 0 m9 ´m10 0 0 ´m3 0 m2 0 0

0 0 ´m1 0 0 0 m11 0 0 m3 ´m12 m6 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7.118)
and

m1 “ d2
12

m4 “ d2
12

´ d2
23

m7 “ 2 d2
12
c23 m10 “ 2 d2

23
c31

m2 “ d2
23

m5 “ d2
23

´ d2
31

m8 “ 2 d2
23
c12 m11 “ 2 d2

12
c31

m3 “ d2
31

m6 “ d2
31

´ d2
12

m9 “ 2 d2
31
c23 m12 “ 2 d2

31
c12
(7.119)
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Matrix M contains coefficients and vector m contains the monomials.
Notice in Equation 7.117 that the last five monomials contain only on η12. We

have deliberately ordered monomials to achieve this. Next, we do Gaussian elimi-
nation (with pivoting) of matrix M and get a new matrix M1.

One can verify that that the 10th row of M1 has the first nine elements equal to
zero. Therefore

M1
10,: m “ 0 (7.120)

is a polynomial only in η12. In fact, it is exactly a non-zero multiple of polynomials
obtained in cases A, B1, B2.1 and B2.2 above.

Discussion of the cases happens in the Gaussian elimination with pivoting, which
avoids dividing by elements close to zero. The resulting polynomial may be of degree
four (case A) but will have lower degrees in other cases.

§ 42 Computing camera orientation and camera center Having quantities η1,
η2, η3, we shall compute camera projection center ~Cδ and camera rotation R from
Equation 7.24.

The three points X1, X2 and X3 are represented in the world coordinate system
pO, δq by vectors ~X1δ, ~X2δ and ~X3δ. With known η1, η2, η3, we can represent them
also in the camera (orthonormal) coordinate system pC, ǫq by vectors

~Yiǫ “ ηi ~yiǫ “ ηi
~xiǫ

||~xiǫ||
“ ηi

f ~xiγ

||f ~xiγ || “ ηi
~xiγ

||~xiγ || , i “ 1, 2, 3 (7.121)

Coordinate vectors ~Xiδ are related to coordinate vectors ~Yiǫ as follows

~Y1ǫ “ R p ~X1δ ´ ~Cδq (7.122)

~Y2ǫ “ R p ~X2δ ´ ~Cδq (7.123)

~Y3ǫ “ R p ~X3δ ´ ~Cδq (7.124)

There are three vector equations in R3, which is nine scalar equations, and 12 un-
knowns in R and ~Cδ. Additional seven equations are provided by the fact that R is
an orthonormal matrix, i.e. RJR “ I and |R| “ 1.

To compute R, we shall next eliminate ~Cδ from Equations 7.122–7.124

~Y2ǫ ´ ~Y1ǫ “ R p ~X2δ ´ ~X1δq (7.125)

~Y3ǫ ´ ~Y1ǫ “ R p ~X3δ ´ ~X1δq (7.126)

and use the property (Equation 3.47 in Section 3.3)

~Xǫ ˆ ~Yǫ “ R´J

|R´J| p ~Xδ ˆ ~Yδq “ R p ~Xδ ˆ ~Yδq (7.127)

of the vector product of any two vectors ~X, ~Y in R3 and an orthonormal matrix R

to write

p~Y2ǫ ´ ~Y1ǫq ˆ p~Y3ǫ ´ ~Y1ǫq “
´

R p ~X2δ ´ ~X1δq
¯

ˆ
´

R p ~X3δ ´ ~X1δq
¯

(7.128)

“ R
´

p ~X2δ ´ ~X1δq ˆ p ~X3δ ´ ~X1δq
¯

(7.129)
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which provides a triplet of independent vectors expressed in the two bases

~Z2ǫ “ ~Y2ǫ ´ ~Y1ǫ, ~Z2δ “ ~X2δ ´ ~X1δ (7.130)

~Z3ǫ “ ~Y3ǫ ´ ~Y1ǫ, ~Z3δ “ ~X3δ ´ ~X1δ (7.131)

~Z1ǫ “ ~Z2ǫ ˆ ~Z3ǫ, ~Z1δ “ ~Z2δ ˆ ~Z3δ (7.132)

Rotation R can then be recovered from
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı

“ R
”

~Z1δ
~Z2δ

~Z3δ

ı

(7.133)

as

R “
”

~Z1ǫ
~Z2ǫ

~Z3ǫ

ı ”

~Z1δ
~Z2δ

~Z3δ

ı´1

(7.134)

With known R we get ~Cδ as

~Cδ “ ~Xiδ ´ RJ~Yiǫ, i “ 1, 2, 3 (7.135)

T.Pajdla. Geometry of Computer Vision, Graphics and Robotics
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8 Homography

We shall next investigate the relationship between projections of 3D points by two
perspective cameras into two images. In general, the projections depend on the
shape of the scene and camera poses and this relationship may be very difficult to
describe. However, there are several very important situations when the relationship
can be given in a form of a special image transform, the homography.

Let us first consider the situation when two (different) cameras share a common
projection center. That means, the cameras may have different coordinate systems,
different orientations but must have the same projection center. This situation often
arises when photographing with a camera rotating around its projection center, e.g.,
when taking images for constructing a panorama capturing wide view angle. We
shall see that the corresponding projections will be related by a homography.

Next, we shall look at a different situation when the cameras are unconstrained,
i.e. they can be anywhere in the space and with completely different poses and
coordinate systems, but 3D points are forced to lie in a single plane not containing
the camera centers. This situation arises, e.g., when photographing a flat screen, a
poster or a facade from different viewpoints. Again, the corresponding projections
of the points in the plane (but not the projections of the points out of the plane)
will be related by a homography.

8.1 Homography between images with the same center

Let us consider two perspective cameras with identical projection centers C “ C 1,
which project point X from space to their respective image planes π and π1, Fig-
ure 8.1. We introduce image coordinate systems po, αq with α “ r~b1,~b2s in π

and po1, α1q with α1 “ r~b 1
1
,~b 1

2
s in π1 and use them to construct the correspond-

ing camera coordinate systems pC, βq with β “ r~b1,~b2,~b3 “ ÝÑ
Cos and pC, β1q with

β1 “ r~b 1
1
,~b 1

2
,~b 1

3
“ ÝÑ
Co1s.

Point X is projected to image points along the projection rays, which are inter-
sected with π and π1. The projection of X in π is represented by vector ~uα “ ru, vsJ.
The projection of X in π1 is represented by vector ~u1

α1 “ ru1, v1sJ.
Vectors ~x and ~x 1 are two direction vectors of the same ray and hence are linearly

dependent. Since they are both non-zero for X ‰ C, their linear dependence is
equivalent with

Dλ P R : λ~x 1 “ ~x (8.1)

To arrive at the relationship between the available coordinates of vectors ~x and
~x1, we shall now pass from vectors to their coordinates. There holds

λ~x 1 “ ~x (8.2)

λ~x 1
β 1 “ ~xβ 1 (8.3)

λ~x 1
β 1 “ H ~xβ (8.4)
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π

π1

o

o1

~u

~u 1

~x

~x 1

~b1

~b2

~b3 ~b 1
1

~b 1
2

~b 1
3

C “ C 1

X

Figure 8.1: Cameras share a projections center. Image projections are related by a
homography.

for some 3 ˆ 3 real matrix H with rank H “ 3, which transforms coordinates of a
vector from basis β to basis β1.

Considering the choices of camera coordinate systems, we see that

λ~x 1
β 1 “ H ~xβ (8.5)

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u

v

1

fi

fl (8.6)

We have obtained an interesting relationship. The above equations tell us that
the image projections are related by a transformation, which depends only on image
projections, and to find it, we do not need to know actual posiitons of points X in
space. This is the consequence of having C “ C 1.

§ 43 Relating homography matrix to camera projection matrix Matrix H is re-
lated to camera projection matrices. Consider two camera projections given by
Equation 6.12

ζ ~xβ “ P

„

~Xδ

1



“
”

K R | ´ K R ~Cδ

ı

„

~Xδ

1



“ K R p ~Xδ ´ ~Cδq (8.7)

ζ 1~x 1
β 1 “ P 1

„

~Xδ

1



“
”

K1 R1 | ´ K1R1 ~Cδ

ı

„

~Xδ

1



“ K1 R1 p ~Xδ ´ ~Cδq (8.8)
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σ

π

~x

~u ~y

~b1

~b2~b3

~d1

~d2
~d3

C

O
X

~X

Figure 8.2: All 3D points are in a single plane. Coordinates in the plane and in the
image are related by a homography.

for all ~Xδ P R3, which gives

ζ RJ K´1 ~xβ “ ~Xδ ´ ~Cδ (8.9)

ζ 1 R1JK1´1
~x 1
β 1 “ ~Xδ ´ ~Cδ (8.10)

and therefore

ζ 1 R1JK1´1
~x 1
β 1 “ ζ RJ K´1 ~xβ (8.11)

ζ 1

ζ
~xβ 1 “ K1 R1 RJK´1 ~xβ (8.12)

for all corresponding pairs of vectors ~xβ, ~x 1
β 1 . Let us now compare Equation 8.12

with Equation 8.5, i.e. with
λ~x 1

β 1 “ H ~xβ (8.13)

We see that

H “ K1 R1 RJK´1 when λ “ ζ 1

ζ
(8.14)

This is particularly useful when K “ K1 since then

H “ K R1 RJK´1 (8.15)

which implies that H is similar [66] to a rotation, i.e.

K´1H K “ R1 RJ (8.16)

and hence has one eigenvalue equal to one, the other two eigenvalues are complex
conjugate with modulae [64] equal to one.
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§ 44 Homographies conjugated to rotations Let us study homographies H con-
jugated to rotations S “ R1 R as in Equation 8.16. We shall first check that such
homographies are characterized by the following condition

eigpHq “ p1, x` i y, x´ i yq for some real x, y such that x2 ` y2 “ 1 (8.17)

Eigenvalues of a rotation S can be written as p1, x ` i y, x ´ i yq for some real x, y
such that x2 ` y2 “ 1. Consider

|H ´ λ I| “
ˇ

ˇK´1
ˇ

ˇ |H ´ λ I| |K| “
ˇ

ˇK´1 H K ´ K´1 λ I K
ˇ

ˇ “ |S ´ λ I| (8.18)

an therefore eigenvalues of H are equal to eigenvalues of S.
Next, assume that eigenvalues of H are equal to eigenvalues of a rotation S. Then

we can write
S U “ U Λ and H V “ V Λ (8.19)

for a matrix Λ with the eignvalues on the diagonal and matrices U, resp. V, of eigen-
vectors of S, resp. H. Now, if y ‰ 0, the eigenvalues are pairwise distinct. Then it is
possible [65, 66] to construct matrices U, V from the respective eigenvectors of unit
length such that they are regular and we can write

Λ “ Λ (8.20)

V´1H V “ U´1S U (8.21)

U V´1H V U´1 “ S (8.22)

Q´1 K´1H K Q “ S (8.23)

K´1H K “ Q S Q´1 (8.24)

We introduced an upper triangular matrix K and a rotation Q such that V U´1 “
K Q, which is always possible by the Gramm-Schmid orthogonalization process [66].
Matrix Q S Q´1 is a rotation and thus H is similar to a rotation by an upper triangular
matrix.

If y “ 0 then the eigenvalues are either p1, 1, 1q or p1,´1,´1q. In the former
case, S “ I and hence K´1H K “ I implies H “ I, and hence H is a rotation. In the
latter case, S is a rotation by 180˝ and H is thus similar to a rotation.

Let us now characterize the homographies conjugated to a rotation algebraicly.
The characteristic polynomial of H is as follows

ppλq “ |λ I ´ H| “ pλ´ 1q pλ´ x´ y iq pλ´ x` y iq (8.25)

“ λ3 ´ p2x` 1qλ2 ` p2x` 1qλ´ 1 (8.26)

“ λ3 ´ trace Hλ2 ` pH11 ` H22 ` H33qλ´ |H| (8.27)

since x2 ` y2 “ 1. Symbols Hij denote minors after removing row i and column j.
We are thus getting two algebraic constraints on H

trace H “ H11 ` H22 ` H33 and |H| “ 1 (8.28)

which are polynomials of degre two and three in elements of H, respectively, which
is a representative of the homography. Clearly, any-nonzero multiple of H satisfying
Equation 8.28 also represents the same honography and therefore rank three matrices
sonstrained by the forst equation in Equation 8.28 are permissible representatives of
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homographies between image obtained by a rotating camera with constant internal
calibration.

Finally, when K “ K 1 “ I, then H “ S, i.e. a rotation, is a representative of such
homograpy and hence all non-zero multiples of rotations are permissible representa-
tives of homographies between images obtained by a rotating calibrated camera.

8.2 Homography between images of a plane

8.2.1 Image of a plane

Let study the relationship between the coordinates of 3D points X, which all lie in
a plane σ, and their projections into an image, Figure 8.2. Coordinates of points X
are measured in a coordinate system pO, δq with δ “ r~d1, ~d2, ~d3s. Vectors ~d1, ~d2 span
plane σ and therefore

~Xδ “

»

–

x

y

0

fi

fl (8.29)

for some real x, y.
The pointsX are projected by a perspective camera with projection matrix P into

image coordinates ~uα “ ru, vsJ, w.r.t. an image coordinate system po, αq with α “
r~b1,~b2s. The corresponding camera coordinate system is pC, βq with β “ p~b1,~b2,~b3q.

To find the relationship between the coordinates of ~Xδ and ~uα, we project points
X by P into projections ~xβ as

ζ

»

–

u

v

1

fi

fl “ ζ ~xβ “ P

„

~Xδ

1



“
“

p1 p2 p3 p4
‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4
‰

»

–

x

y

1

fi

fl “ H ~yτ

(8.30)
where p1, p2, p3, p4 are the columns of P.

Notice that 3 ˆ 1 matrix ~yτ “ rx, y, 1sJ represents point X in the coordinate
system pC, τq with the basis τ “ p~d1, ~d2, ~d4q, where the ~d4 “ ÝÝÑ

CO is the vector
assigned to the pair of points pC,Oq. If point C is not in σ, then vectors ~d1, ~d2, ~d4
are independent and hence form a basis. Therefore, matrix

H “
“

p1 p2 p4
‰

(8.31)

represents a change of coordinates and has rank 3.
When we think about pair pC, σq as about a camera that shares its projection

center with camera pC, πq and imagine that points X are all (accidentally) in the
projection plane σ, we see that we have recovered the relationship between cameras
sharing their projection center.

8.2.2 Two images of a plane

We shall now consider the situation when all points in the scene are in a single plane.
Then, as we shall see, the projections of the 3D points which are in the plane are
again related by a homography even when the camera centers are located at different
points in the space.
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~u 1
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~b 1
1

~b 1
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~b 1
3

~d1

~d2
~d3

C

C 1

O
X

~X

Figure 8.3: All 3D points are in a single plane. Two images of the points are related
by a homography.

Let us consider a plane σ and two perspective cameras with (in general different)
projection centers C and C 1, which do not lie in σ and corresponding projection
matrices P and P1

P “
“

p1 p2 p3 p4
‰

(8.32)

P1 “
“

p 1
1

p 1
2

p 1
3

p 1
4

‰

(8.33)

where pi P R3 and p 1
i P R3, i “ 1, . . . , 4 stand for the columns of P, P1.

We establish coordinate systems pO, δq, pC, βq, pC 1, β1q in the standard way, see
Figure 8.3 to get

~Xδ “

»

–

x

y

0

fi

fl (8.34)

for some real x, y.
Point X P σ is projected to the cameras as

ζ ~xβ “ P

„

~Xδ

1



“
“

p1 p2 p3 p4
‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p1 p2 p4
‰

»

–

x

y

1

fi

fl “ G ~yτ

ζ 1 ~x 1
β 1 “ P1

„

~Xδ

1



“
“

p 1
1

p 1
2

p 1
3

p 1
4

‰

»

—

—

–

x

y

0
1

fi

ffi

ffi

fl

“
“

p 1
1

p 1
2

p 1
4

‰

»

–

x

y

1

fi

fl “ G1 ~y 1
τ 1
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for some ζ, ζ 1 P Rzt0u and two new coordinate systems pC, τq with τ “ p~d1, ~d2, ~d4q,
where the ~d4 “ ÝÝÑ

CO and pC 1, τ 1q with τ 1 “ p~d1, ~d2, ~d 1
4
q, where the ~d 1

4
“ ÝÝÑ
CO1.

We see that there are two different vectors, ~y and ~y 1, which appear on the right
hand side of the equations but they are in different bases, i.e. as ~yτ and ~y 1

τ 1

ζ ~xβ “ G ~yτ (8.35)

ζ 1~x 1
β 1 “ G1~y 1

τ 1 (8.36)

with G “ rp1, p2, p4s and G1 “ rp 1
1
, p 1

2
, p 1

4
s.

Coordinate systems pC, τq and pC 1, τ 1q are so special that

~yτ “ ~y 1
τ 1 (8.37)

for all points in σ. Consider that

~yτ “ p ~X ` ÝÝÑ
COqτ “ ~Xτ ` ~d4τ “ ~Xp~d1,~d2,~d4q ` ~d

4p~d1,~d2,~d4q “

»

–

x

y

1

fi

fl (8.38)

~y 1
τ 1 “ p ~X ` ÝÝÑ

C 1Oqτ 1 “ ~Xτ 1 ` ~d 1
4τ 1 “ ~Xp~d1,~d2,~d 1

4
q ` ~d 1

4p~d1,~d2,~d 1
4

q “

»

–

x

y

1

fi

fl (8.39)

and therefore, when C R σ and C 1 R σ, we get

ζ 1~x 1
β 1 “ G1 G´1ζ ~xβ (8.40)

which we can write as
λ~x 1

β 1 “ H ~xβ (8.41)

for λ “ ζ1

ζ
and H “ G1 G´1. Clearly, H P R3ˆ3, rank H “ 3.

We could interpret this situation also such that two images of a plane are related
by the homography, which is a combination of the homographies relating the plane
to its two images.

8.2.3 Homography between images of a plane by cameras with the
same center

In the derivation of Equation 8.41, we have never asked for centers C, C 1 be different.
Indeed, Equation 8.40 is perfetly valid even when C “ C 1. At the same time,
however, there also holds Equation 8.14, and thus we have

H “ G1 G´1 (8.42)

“
“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1

(8.43)

H “ K1 R1 RJK´1 (8.44)

“
“

p 1
1

p 1
2

p 1
3

‰ “

p1 p2 p3
‰´1

(8.45)

Let us see now purely algebraic argument why the above holds true. Since the

cameras have the same projection center ~Cδ “
“

c1 c2 c3
‰J

, we can write

p4 “ K R ~Cδ and p 1
4 “ K 1 R 1 ~Cδ (8.46)
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and hence

H “ G1 G´1 (8.47)

“
“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1

(8.48)

“ K 1 R 1
”

i j ~Cδ

ı ”

i j ~Cδ

ı´1

RJK´1 (8.49)

“ K1 R1 RJK´1 (8.50)

with i “
“

1 0 0
‰J

and j “
“

0 1 0
‰J

. We see that there always hods

“

p 1
1

p 1
2

p 1
4

‰ “

p1 p2 p4
‰´1 “

“

p 1
1

p 1
2

p 1
3

‰ “

p1 p2 p3
‰´1

(8.51)

for two cameras with the same projection center irrespectively of where actually
the points in space are since we would get the same images for points obtained by
intersecting the rays with the plane z “ 0 in the coordinate system pO, δq.

8.2.4 Homographies induced by a plane in the scene

Let us look at Equation 8.40 in more detail. We can write

ζ 1

ζ
~x 1
β 1 “ G1 G´1 ~xβ “ rp 1

1, p
1
2, p

1
4s rp1, p2, p4s´1~xβ (8.52)

“ A 1

»

–

1 0
0 1
0 0

´ ~C 1
δ

fi

fl

»

–

1 0
0 1
0 0

´ ~Cδ

fi

fl

´1

A´1~xβ (8.53)

“ A 1

»

–

1 0 ´x1

0 1 ´y1

0 0 ´z1

fi

fl

»

–

1 0 ´x
0 1 ´y
0 0 ´z

fi

fl

´1

A´1~xβ (8.54)

We have introduced new symbols to represent vectors

~Cδ “
“

x y z
‰J

and ~C 1
δ “

“

x1 y1 z1 ‰J
(8.55)

and have written the homography as a product of four matrices. Let us next compute
the product of the two middle matrices

ζ 1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 z1{z

fi

fl A´1~xβ (8.56)

We see that the middle matrix on the right looks almost as the identity plus some-
thing. Let’s express it in that way

ζ 1

ζ
~x 1
β 1 “ A 1

»

–

1 0 px1 ´ xq{z
0 1 py1 ´ yq{z
0 0 1 ` pz1 ´ zq{z

fi

fl A´1~xβ (8.57)
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We can now further rearrange expressions as follows

ζ 1

ζ
~x 1
β 1 “ A 1

¨

˝I `

»

–

px1 ´ xq{z
py1 ´ yq{z
pz1 ´ zq{z

fi

fl

“

0 0 1
‰

˛

‚A´1~xβ (8.58)

“ A 1

˜

I ` p~C 1
δ ´ ~Cδq 1

~Cδp3q
“

0 0 1
‰

¸

A´1~xβ (8.59)

“ A 1 A´1

˜

I ´ p~Cβ ´ ~C 1
βq 1

~Cδp3q
“

0 0 1
‰

A´1

¸

~xβ (8.60)

We denoted the third coordinate of ~Cδ by ~Cδp3q.
Vector 1

~Cδp3q

“

0 0 1
‰

A´1 has a geometrical interpretation. Consider the equa-

tion of plane σ in coordinate system pO, δq

“

0 0 1 0
‰

„

~Xδ

1



“ 0 (8.61)

where r0 0 1sJ is the normal vector of plane σ containing point ~Xδ written w.r.t.
pO, δq, i.e. ~nJ

δ̄
“ r0 0 1s, where δ̄ is the dual basis to basis δ, Chapter 3.

Next, consider the camera coordinate system pC, βq with ~Yβ “ A p ~Xδ ´ ~Cδq. We
see that

“

0 0 1 0
‰

„

A´1 ~Yβ ` ~Cδ

1



“ 0 (8.62)

”

“

0 0 1
‰

A´1 ~Cδp3q
ı

„

~Yβ
1



“ 0 (8.63)

provides the unit normal ~n of plane σ in the dual basis β̄ to basis β

~nJ
β̄

“
“

0 0 1
‰

A´1 (8.64)

We have obtained the following formula for the homography between points ~xβ,
~x 1
β 1 in the two images, which is generated by the plane σ

ζ 1

ζ
~x 1
β 1 “ A 1 A´1

˜

I ` p~C 1
β ´ ~Cβq 1

~Cδp3q
~nJ
β̄

¸

~xβ (8.65)

where ~nβ̄ is the normal vector of σ in β̄, ~Cδp3q is the distance of σ from the camera
center C, and ζ, ζ 1 are the distances of points from the respective principal planes
in multiples of the respective focal lengths.

§ 45 One fully calibrated camera We will now consider Equation 8.65 for the
situation when the first camera is fully calibrated, i.e.

P1 “
”

I | ´ ~Cδ

ı

and P2 “
“

A 1 | a 1 ‰ “
”

A 1 | ´ A 1 ~C 1
δ

ı

(8.66)
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Then, bases β1 and δ become identical and Equation 8.65 can be written as

τ 1~x 1
β 1 “ A 1

˜

I ` p~C 1
δ ´ ~Cδq

~nJ
δ̄

d

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ̄

¸

~xδ “
˜

A 1 ´
~tβ 1

d
~nJ
δ

¸

~xδ

(8.67)
where ~tβ 1 are the coordinates of the vector from C to C 1 in β 1. Notice that we
have used the fact that δ is the standard basis and therefore ~nδ̄ transforms by the
same matrix as ~Xδ when chaning a basis. To stress that, we use ~nδ instead of ~nδ̄.
Sumbol d stands for the (non-zero) distance of the plane σ from the center of the
first camera, and a non-zero τ 1 “ ζ 1{ζ.

§ 46 Two internally calibrated cameras Let us next have a look at the situation
when K “ K 1 “ I. Matrices A, A 1 become rotations, which we stress by writing

P1 “
”

R | ´ R ~Cδ

ı

and P2 “
”

R 1 | ´ R 1 ~C 1
δ

ı

(8.68)

with orthonormal matrices R, R 1. Equation 8.65 now becomes

τ 1~x 1
γ 1 “ R 1 R´1

˜

I ` p~C 1
γ ´ ~Cγq 1

~Cδp3q
~nJ
γ̄

¸

~xγ “
˜

R 1 R´1 `
~tγ 1

d
~nJ
γ̄

¸

~xγ (8.69)

A question arises here. Does every rank three real 3 ˆ 3 matrix represent a homog-
raphy between two calibrated images induced by a plane in the scene? We see from
the following that the answer is yes.

Let us consider a real 3 ˆ 3 marix H and its SVD decomposition [66, p. 411]

H “ U

»

–

a

b

c

fi

fl VJ (8.70)

Now, if |H| ą 0, then we may ask for a ě b ě c ě 0 and |U| “ |V| “ 1. Otherwise,
we replace c by ´c to have a ě b ą 0 ą c and |U| “ |V| “ 1. Next, when any two of
a, b, c are equal, e.g. a “ b, then we can write the decomposition as follows

H “ U

»

–

a

b

c

fi

fl VJ “ U

»

–

b

b

c

fi

fl VJ (8.71)

“ U

¨

˝b

»

–

1
1

1

fi

fl `

»

–

0
0

c´ b

fi

fl

“

1 0 0
‰

˛

‚VJ (8.72)

“ b U VJ ` U

»

–

0
0

c´ b

fi

fl

“

1 0 0
‰

VJ (8.73)

Hence, we need to consider only the situation when a, b, c are pairwise distinct. We
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can write

H “ b U S VJ ` U u vJ VJ “ b R ` t nJ

S “

»

—

–

a c`b2

b pa`cq 0 ´
?
b2´c2

?
a2´b2

b pa`cq
0 1 0?

b2´c2
?
a2´b2

b pa`cq 0 a c`b2

b pa`cq

fi

ffi

fl

u “

»

—

–

?
a2´b2

a`c

0
´

?
b2´c2

a`c

fi

ffi

fl

vJ “
“?

a2 ´ b2 0
?
b2 ´ c2

‰

(8.74)

Notice that b is non-zero since it must be greater than c else we would have b “ c,
which we excluded. Moreover, a ` c ą 0 since they are either both positive or
|a| ą |c| and a is positive. Hence all the formulas above are meaningful. It is easy
to verify that SJS “ I and |S| “ 1 and therefore R “ U S VJ is a rotation.

Consider a rank three real 3 ˆ 3 matrix H. We see that it must be possible to
write a non-zero multiple of H as S` ~vγ 1 ~nJ

γ̄ for some rotation S and vectors ~vγ̄ P R3

and unit ~nγ̄ P R3. Hence, the following equations

`

ξ H ´ ~vγ 1 ~nJ
γ̄

˘J `

ξ H ´ ~vγ 1 ~nJ
γ̄

˘

“ I,
ˇ

ˇ

`

ξ H ´ ~vγ 1 ~nJ
γ̄

˘ˇ

ˇ “ 1, ~nJ
γ̄ ~nγ̄ “ 1 (8.75)

have to be satisfied for some real ξ and some vectors ~vγ 1 P R3 and unit ~nγ̄ P R3.
This is a set of eight algebraic equations in seven variables. Clearly, the constraint
~nJ
γ̄ ~nγ̄ “ 1 can be replaced by

“

0 0 1
‰

~nγ̄ “ ´1 to enforce that the plane normal
faces the first camera. To get polynomial equations, we multiply the left equation
by ψ2 “ 1{ξ2 and the middle equation in Equation 8.75 by ψ3 “ 1{ξ3 to get

`

H ´ ~uγ 1 ~nJ
γ̄

˘J `

H ´ ~uγ 1 ~nJ
γ̄

˘

“ ψ2I,
ˇ

ˇ

`

H ´ ~uγ 1 ~nJ
γ̄

˘ˇ

ˇ “ ψ3,
“

0 0 1
‰

~nγ̄ “ ´1 (8.76)

with ~uγ1 “ ψ~vγ1 . Interestingly, this system has1 12 solutions in general. Even more
interestingly, there are only four real solutions but with only two oposite values

1The following Maple [78] run demontrates the structure of solutions to the system of equa-
tions 8.76.

Linear algebra shortcuts

>with(ListTools):with(LinearAlgebra):with(Groebner):

>E:=LinearAlgebra[IdentityMatrix](3):

>det:=LinearAlgebra[Determinant]:

>trn:=LinearAlgebra[Transpose]:

>M2L:=proc(M) convert(convert(M,Vector),list); end proc:

>X :=proc(u) <<0|-u[3]|u[2]>,<u[3]|0|-u[1]>,<-u[2]|u[1]|0>> end proc:

>c2R:=c->simplify((E-X (c)).MatrixInverse(E+X (c))):

All solutions to a triangular Groebner Basis

>TriangularGBSolve:=proc(Eq,So)

local s, so, Si;

if nops(Eq)>0 then

Si:=[];

if nops(So)=0 then

Si:=[solve([Eq[1]])];

else

for so in So do

s:=[solve(subs(so,[Eq[1]]))];
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for ψ. Taking into account that point scales ζ, ζ 1 have to be positive, we get only
two solutions with only one positive ψ and two corresponding solutions. Hence, the
relative orientation of two calibrated cameras can be in a generic situation obtained
from four coplanar points up to two solutions.

Si:=[op(Si),op(map(f->f union so,s))];

end do;

end if;

TriangularGBSolve(Eq[2..],Si);

else

So;

end if

end proc:

Simulate a calibrated homography

>R0:=c2R(RandomVector(3,generator=-10..10)):

>t0:=RandomVector(3,generator=-10..10):

>n0:=<-1,-2,-2>/3:

>s0:=3:

>H0:=s0*(R0+t0.trn(n0));

H0 :“

»

–

´ 25

31
` 30

31
` 129

31

´ 300

31
´ 539

31
´ 560

31
84

31
´ 14

31
` 70

31

fi

fl

Formulas for H and R

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=H0-t.trn(n):

>H:=R+t.trn(n):

Equations

>eq:=convert(convert(expand([op(M2L(trn(R).R-s2*E)),det(R)-s3,n3+1]),set),list);

eq :“ rn3`1, 3151{31` p50{31q ˚ t1˚n1`n12 ˚ t12 ` p600{31q ˚n1˚ t2`n12 ˚ t22 ´ p168{31q ˚n1˚
t3`n12˚t32´s2, 9407{31´p60{31q˚t1˚n2`n22˚t12`p1078{31q˚n2˚t2`n22˚t22`p28{31q˚n2˚
t3`n22˚t32´s2, 10811{31´p258{31q˚t1˚n3`n32˚t12`p1120{31q˚n3˚t2`n32˚t22´p140{31q˚
t3˚n3`n32 ˚ t32 ´s2, 5154{31` p25{31q ˚ t1˚n2´ p30{31q ˚ t1˚n1`n1˚n2˚ t12 ` p300{31q ˚n2˚
t2` p539{31q ˚n1˚ t2`n2˚n1˚ t22 ´ p84{31q ˚n2˚ t3` p14{31q ˚n1˚ t3`n2˚n1˚ t32, 5505{31`
p25{31q˚t1˚n3´p129{31q˚t1˚n1`n1˚n3˚t12`p300{31q˚n3˚t2`p560{31q˚n1˚t2`n3˚n1˚t22´
p84{31q˚t3˚n3´p70{31q˚n1˚t3`n3˚n1˚t32, 9830{31´p30{31q˚t1˚n3´p129{31q˚t1˚n2`n2˚
n3˚t12`p539{31q˚n3˚t2`p560{31q˚n2˚t2`n2˚n3˚t22`p14{31q˚t3˚n3´p70{31q˚n2˚t3`n2˚
n3˚t32,´p725{31q˚t3˚n3`p840{31q˚t1˚n2`p126{31q˚n1˚t2`p1470{31q˚t1˚n1´p1701{31q˚
n1˚t3`p406{31q˚n2˚t2`p1700{31q˚n2˚t3´p70{31q˚n3˚t2´p1596{31q˚t1˚n3`7014{31´s3s

The number of solutions

>G:=Groebner[Basis](eq,plex(op([t1,t2,t3,n1,n2,n3,s]))):

>Id:=PolynomialIdeals[PolynomialIdeal]([op(G)]):

>print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Id));

>print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Id));

”Hilbert dimension =”, 0
”The number of solutions =”, 12

Solve it

>S:=TriangularGBSolve(G,[]):

and substite the solutions to get s, R, n, t and select the real solutions only

>sRnt:=map(f->evalf(subs(f,[s,R/s,n,t/s])),S):

>select(f->foldl(‘and‘,true,op(MTM[isreal]~(f))),sRnt);
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8.3 Spherical image

Consider a camera rotating around a center C and collecting n images all around
such that every ray from C is captured in some image. We can choose one camera,
e.g. the first one, and relate all other cameras to it as

λi ~xβ1
“ Hi ~xβi

, i “ 1, . . . , n (8.77)

Since all vectors ~x were captured, there inevitably will appear a vector with coordi-
nates

~xβ1
“

»

–

x

y

0

fi

fl (8.78)

Such vector does not represent any point in the affine image plane π1 of the first
camera because it does not have the third coordinate equal to one. To be able to
represent rays in all directions, we have to introduce spherical image, which is the
set of all unit vectors in R3 (also called omnidirectional image). We sometimes use
only a subset of the sphere, typically a cylinder, to capture panoramic image. In
such a case, we can remap pixels onto such cylinder and then unwarp the cylinder
into a plane. Notice however, that in such a representation, straight lines in space
do not project to straight lines in images.

All equations we have developed so far work with minor modifications also for
vectors with last zero coordinate. We will come back to it later when studying pro-
jective plane which is somewhere between the affine image plane and full a spherical
image.

8.4 Homography – summary

Let us summarize the findings related to homography to see where it appears.
Let us encounter one of the following situations

1. Two images with one projection center Let ru, vsJ and ru1, v1sJ be co-
ordinates of the projections of 3D points into two images by two perspective
cameras with identical projection centers;

»

– `3.0

»

–

´0.610 ´0.220 0.761
´0.152 ´0.910 ´0.385
0.778 ´0.350 0.522

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

´0.626
5.640

´0.230

fi

fl

fi

fl

»

– `3.0

»

–

´0.602 ´0.344 0.720
´0.559 ´0.462 ´0.688
0.570 ´0.817 0.860

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

´0.667
5.330

´0.667

fi

fl

fi

fl

»

– ´3.0

»

–

0.737 0.421 ´0.529
´0.517 ´0.153 ´0.842
´0.435 0.894 0.105

fi

fl

»

–

´0.545
´0.867
´1.000

fi

fl

»

–

0.858
´6.860
0.858

fi

fl

fi

fl

»

– ´3.0

»

–

0.636 0.411 ´0.654
´0.765 ´0.809 ´0.583
´0.768 0.421 ´0.483

fi

fl

»

–

´0.500
´1.000
´1.000

fi

fl

»

–

0.734
´6.600
0.270

fi

fl

fi

fl
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2. Image of a plane. Let ru, vsJ be coordinates of 3D points all in one plane
σ, w.r.t. a coordinate system in σ and ru1, v1sJ coordinates of their projections
by a perspective cameras with projection center not in the plane σ;

3. Two images of a plane Let ru, vsJ and ru1, v1sJ be coordinates of the pro-
jections of 3D points all in one plane σ, into two images by two perspective
cameras with projection centers not in σ;

then there holds

D H P R3ˆ3, rank H “ 3, so that @ ru, vsJ corrØ ru1, v1sJ Dλ P R : λ

»

–

u1

v1

w1

fi

fl “ H

»

–

u

v

w

fi

fl

(8.79)
where w “ w1 “ 1 for perspective images and may be general for spherical images.

In all three cases, coordinates of points are related by a homography.
We have used linear algebra to derive the relationship between the coordinates

of image points in the above form. The homography can be also represented in a
different way.

To see that, we shall eliminate λ as follows

λ

»

–

u1

v1

1

fi

fl “ H

»

–

u

v

1

fi

fl “

»

–

h11 h12 h13
h21 h22 h23
h31 h32 h33

fi

fl

»

–

u

v

1

fi

fl (8.80)

λu1 “ h11 u` h12 v ` h13 (8.81)

λv1 “ h21 u` h22 v ` h23 (8.82)

λ1 “ h31 u` h32 v ` h33 (8.83)

u1 “ h11 u` h12 v ` h13

h31 u` h32 v ` h33
(8.84)

v1 “ h21 u` h22 v ` h23

h31 u` h32 v ` h33
(8.85)

We see that mapping h obtained as

„

u1

v1



“ h

ˆ„

u

v

˙

“
«

h11 u`h12 v`h13

h31 u`h32 v`h33

h21 u`h22 v`h23

h31 u`h32 v`h33

ff

(8.86)

is a mapping from a subset of R2 to R2 but it is not linear! It contains fractions of
affine functions.

Although we can understand the homography as a linear mapping in certain
sense, it is not a linear mapping in the standard sense.

Matrix H represents a linear mapping from R3 to R3. However, we are not
interested in the individual vectors in R3 but in complete one-dimensional subspaces,
which correspond to the direction vectors representing projection rays.
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Notice that λ can accommodate for any change of the length of
“

u v 1
‰J

(except for making it zero) since it can be split into ξ, ξ1 and used as

ξ1

»

–

u1

v1

1

fi

fl “ H ξ

»

–

u

v

1

fi

fl (8.87)

x1 “ H x (8.88)

We can now think about x and x1 as about one-dimensional subspaces of R3

generated by ~x and ~x 1. The “equation”2

x1 “ H x (8.89)

then actually means

D~x P x and D~x 1 P x 1 such that ~x 1 “ H ~x (8.90)

Thus the homography can be seen as a mapping between one-dimensional subspaces
of R3. While R3 itself is a linear space, the set of its one-dimensional subspaces, in
the way we use them, is not a linear space and therefore the homography is not a
linear mapping although it is represented by a matrix H, which is used to multiply
vectors.

It is also important to notice the true relationship between homographies and
3 ˆ 3 real matrices. Any 3 ˆ 3 real matrix of rank 3 represents a homography but
many different matrices represent the same homography. Let’s see why.

Let us consider H P R3ˆ3 and G P R3ˆ3 such that ξ H “ G for some ξ ‰ 0. We can
write

ξ1 ~x1 “ H ~x (8.91)

ξ ξ1 ~x1 “ ξ H ~x (8.92)

ξ ξ1 ~x1 “ G ~x (8.93)

λ1 ~x1 “ G ~x (8.94)

We see that H and G represent the same homography. Indeed, two matrices related
by a non-zero multiple represent the same homography. Hence, it suggests itself to
associate homographies with one-dimensional subspaces of 3 ˆ 3 matrices.

8.5 Computing homography from image matches

Let us turn to the computational aspect of the homography relationship between
images. Our goal is to find the homography mapping from a few pairs of corre-
sponding image points. We shall see that this problem leads to solving a system of
linear equations.

2Monograph [2] very often uses “=” exactly in this sense of equality of one-dimensional subspaces.
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8.5.1 General perspective cameras

Our goal is to find matrix H in Equation 8.79 without assuming any knowledge about
cameras. Let us introduce symbols for rows of homography H

H “

»

—

–

hJ
1

hJ
2

hJ
3

fi

ffi

fl
and for the vector x “

»

–

u

v

1

fi

fl (8.95)

and rewrite the above matrix Equation 8.79 as

λu1 “ hJ
1 x (8.96)

λ v1 “ hJ
2 x (8.97)

λ “ hJ
3 x (8.98)

Eliminate λ from the first two equations using the third one

phJ
3 xqu1 “ hJ

1 x (8.99)

phJ
3 xq v1 “ hJ

2 x (8.100)

(8.101)

move all to the left hand side and reshape it using xJy “ yJx

xJh1 ´ pu1xJq h3 “ 0 (8.102)

xJh2 ´ pv1xJq h3 “ 0 (8.103)

(8.104)

Introduce notation
h “

“

hJ
1

hJ
2

hJ
3

‰J
(8.105)

and express the above two equations in a matrix form

„

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1



h “ 0 (8.106)

Every correspondence ru, vsJ corrØ ru1, v1sJ brings two rows to a matrix

»

—

–

u v 1 0 0 0 ´u1u ´u1v ´u1

0 0 0 u v 1 ´v1u ´v1v ´v1

...

fi

ffi

fl
h “ 0 (8.107)

M h “ 0 (8.108)

If ξ G “ H, ξ ‰ 0 then both G, H represent the same homography. We are therefore
looking for one-dimensional subspaces of 3ˆ3 matrices of rank 3. Each such subspace
determines one homography. Also note that the zero matrix, 0, does not represent
an interesting mapping.

We need therefore at least 4 correspondences in a general position to obtain rank
8 matrix M. By a general position we mean that the matrix M must have rank 8 to
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provide a single one-dimensional subspace of its solutions. This happens when no 3
out of the 4 points are on the same line.

Notice that M can be written in the form

M “

»

—

—

—

—

—

—

—

—

–

u1 v1 1 0 0 0 ´u1
1
u1 ´u1

1
v1 ´u1

1

u2 v2 1 0 0 0 ´u1
2
u2 ´u1

2
v2 ´u1

2

...
0 0 0 u1 v1 1 ´v1

1
u1 ´v1

1
v1 ´v1

1

0 0 0 u2 v2 1 ´v1
2
u2 ´v1

2
v2 ´v1

2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.109)

with indices naming different points, which can be rewritten more concisely as

M “

»

—

—

—

—

—

—

—

—

—

–

xJ
1

0J ´u1
1
xJ
1

xJ
2

0J ´u1
2
xJ
2

...
0J xJ

1
´v1

1
xJ
1

0J xJ
2

´v1
2
xJ
2

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.110)

with 0J “ r0, 0, 0s.

§ 47 A more general procedure for computing H Let us next give a more general
procedure for computing H, which will be analogical to the general procedure for
computing Q in § 27.

We start from Equation 8.79

λ x 1 “ H x (8.111)

with x “ ru, v, wsJ and x 1 “ ru 1, v 1, w 1sJ and follow the derivation in § 27 to get

λ x 1 “ H x (8.112)
“

x 1‰
ˆ H x “ 0 (8.113)

xJHJ “

x 1‰J
ˆ “ 0J (8.114)

vpxJHJ “

x 1‰J
ˆq “ vp0Jq (8.115)

p
“

x 1‰
ˆb xJq vpHJq “ vp0Jq (8.116)

¨

˝

»

–

0 ´w 1 v 1

w 1 0 ´u 1

´v 1 u 1 0

fi

flb xJ

˛

‚vpHJq “ vp0Jq (8.117)

»

–

0J ´w 1xJ v 1xJ

w 1xJ 0J ´u 1xJ

´v 1xJ u 1xJ 0J

fi

fl vpHJq “ vp0Jq (8.118)
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For more correspondences numbered by i, we then get
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0J ´w 1
1
xJ
1

v 1
1
xJ
1

0J ´w 1
2
xJ
2

v 1
2
xJ
2

...
w 1
1
xJ
1

0J ´u 1
1
xJ
1

w 1
2
xJ
2

0J ´u 1
2
xJ
2

...
´v 1

1
xJ
1

u 1
1
xJ
1

0J

´v 1
2
xJ
2

u 1
2
xJ
2

0J

...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpHJq “ 0 (8.119)

which is, for w “ 1, equivalent to Equation 6.30. Notice that vpHJq “ h from
Equation 8.108.

8.5.2 Calibrated cameras

Let us now look at some situations when cameras have constant intternal calibration
or are fully calibrated.

§ 48 Homography induced by rotating a calibrated camera This is a simple situ-
ation. Let us construct a rotation matrix representing a homography from one and
half matching image points. Consider two distinct image points x, y in the first im-
age that are mapped on points x 1, y 1 in the second image as

“

x 1{||x 1|| y 1{||y 1||
‰

“
R
“

x{||x|| y{||y||
‰

by a rotation R. We can decompose R into a composition of two
simple rotations R “ R2 R1 such that

“

x 1{||x 1|| y 1{||y 1||
‰

“ R2

»

–

0 0
0 ξ 1

1 ψ 1

fi

fl ,

»

–

0 0
0 ξ

1 ψ

fi

fl “ R1
“

x{||x|| y{||y||
‰

(8.120)

with ξ, ψ such that ξ2 ` ψ2 “ ξ 12 ` ψ 12 “ 1. Write

R1 “
“

r11 r12 r13
‰J

and R2 “
“

r21 r22 r23
‰

(8.121)

to see that

r11 “ s1 px{||x|| ˆ y{||y||q{||px{||x|| ˆ y{||y||q|| (8.122)

r12 “ px{||x|| ˆ r11q{||px{||x|| ˆ r11q|| (8.123)

r13 “ r11 ˆ r12 (8.124)

r21 “ s2 px 1{||x 1|| ˆ y 1{||y 1||q{||px 1{||x 1|| ˆ y 1{||y 1||q|| (8.125)

r22 “ px 1{||x 1|| ˆ r21q{||px 1{||x 1|| ˆ r21q|| (8.126)

r23 “ r21 ˆ r22 (8.127)

where the signs s1, s2 P t`1,´1u are chosen to make, e.g., ξ ą 0, ξ 1 ą 0. Notice
the this procedure sets R even when vectors

“

x{||x|| y{||y||
‰

can’t be exactly trans-
formed to vectors

“

x 1{||x 1|| y 1{||y 1||
‰

by a rotation, which is often the case when
they are estimated form noisy measurements. Nevertheless, if the error affecting the
vectors is small, R so obtained is still close to the true rotation between the cameras.
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§ 49 Homography induced by rotating a camera with constant internal calibration

Consider a point x “
“

x y 1
‰J

in the first image that is mapped on a point

x 1 “
“

x1 y1 1
‰J

in the second image by λ x 1 “ K´1R K x with rotation R and a
camera calibration matrix K.

We have seen, Equation 8.28, that the following two equations have to be satisfied

0 “ trace H ´ H11 ` H22 ` H33

“ h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

1 “ |H| (8.128)

“ h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31

with hij , i, j “ 1, 2, 3 denoting the elements of H. It is easy to check in the Maple [78]
computer algebra system3 that the Hilbert dimension [6] of the system 8.128 is equal
to seven. Therefore, we will need seven independent linear equations to reduce the

3Maple [78] script analyzing the computation of a homography induced by a rotating camera with
constant internal parameters. We note that some of the functions used here have been defined
in previous Maple examples.

Setup the equations

>H:=<<h11|h12|h13>,<h21|h22|h23>,<h31|h32|h33>>:

>Heq:=[det(H)-1,simplify(det(H-E),[det(H)=1])];

>HilbertDimension(Heq);

7

Simulate projections

>K:=<<10|1|5>,<0|12|6>,<0|0|1>>:

>R1:=c2R(<1,2,3>): R2:=c2R(<3,4,5>): t:=<<2,1,3>>:

>P1:=K.<R1|-R1.t>: P2:=K.<R2|-R2.t>:

>X:=<<0|1|1|0>,<0|0|1|1>,<0|0|0|0>,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]):

Check eigenvalues of H0

e:=Eigenvalues(H0),abs~(trn(e));
»

–

1
77

85
´ 36

85
i

77

85
` 36

85
i

fi

fl ,
“

1 1 1
‰

Add two independent linear equations per a corresponding pair of image points

eq:=[op(Heq), op(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))];

eq :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h11 ` h22 ` h33 ´ h11 h22 ´ h11 h33 ` h12 h21 ` h13 h31 ´ h22 h33 ` h23 h32

h11 h22 h33 ´ h11 h23 h32 ´ h12 h21 h33 ` h12 h23 h31 ` h13 h21 h32 ´ h13 h22 h31 ´ 1

´ 22

5
h21 ` 54252

565
h31 ´ 74

5
h22 ` 182484

565
h32 ´ h23 ` 2466

113
h33

` 22

5
h11 ´ 24068

565
h31 ` 74

5
h12 ´ 80956

565
h32 ` h13 ´ 1094

113
h33

´ 52

7
h21 ` 7176

35
h31 ´ 18h22 ` 2484

5
h32 ´ h23 ` 138

5
h33

` 52

7
h11 ´ 832

7
h31 ` 18h12 ´ 288h32 ` h13 ´ 16h33

´ 23

5
h21 ` 9522

41
h31 ´ 126

5
h22 ` 52164

41
h32 ´ h23 ` 2070

41
h33

` 23

5
h11 ´ 16261

205
h31 ` 126

5
h12 ´ 89082

205
h32 ` h13 ´ 707

41
h33

´ 53

35
h21 ` 130698

2765
h31 ´ 666

35
h22 ` 1642356

2765
h32 ´ h23 ` 2466

79
h33

` 53

35
h11 ´ 31853

2765
h31 ` 666

35
h12 ´ 400266

2765
h32 ` h13 ´ 601

79
h33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Solve it

>Basis(eq,plex(op(indets(H))));

r3825h11 ´ 3319, 450h12 ´ 43, 3825h13 ´ 7337, 85h21 ` 36, 5h22 ´ 4, 85h23 ´ 522, 3825h31 `
38, 450h32 ` 11, 3825h33 ´ 4376s
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Hilbert dimension to zero and thus obtain a finite number of solutions ??. We
see that we can use four points to add eight independent linear equations and so
obtain a single solution. However, if point measurements in images were affected
by measurement noise, using all eight equations would almost surely produce an
inconsistent system. Therefore, it make sense to use only seven linear equations,
which give six solutions and produce six homographies conjugated to a rotation
for any four (or more precisely, 3 ` 1

2
) points in two images. If the error in the

measuerement is small, one of the so obtained H is close to the actual homography
between the images.

§ 50 Homography induced by a plane observed by a moving calibrated camera

Let us first consider a point x “
“

x y 1
‰J

in the first image that is mapped on a

point x 1 “
“

x1 y1 1
‰J

in the second image by λ x 1 “ pR ` u nJq x with rotation R,
unit real vector n and a vector u.

Paragraph § 46 shows how to decompose a homoghraphy, represented by H, be-
tween two calibrated images induced by a plane in the scene into R, ~tγ1{~Cδ and ~nγ̄ .
Let us now show how to estimate a decomposable H directly from image data. We

We are getting one solution but we have used eight linear equations although seven

linear equations should be sufficient to get a finite number of solutions. Let us

use seven linear equations only.

>Basis(eq[1..nops(eq)-1],plex(op(indets(H)))):

We see that we are getting a degree six polynomial in h33

>B[1];

1384905521719726207524518830400390625h6

33 `4889332606744002799184541025140000000h5

33 ´
3004780464450070944458597429463562500h4

33´62963310535984882573971620665889376000h3

33´
1098716737305688573847805032564563200h2

33`231760248490986847248483050694397009920h33´
176966810281848547933751731455841501184

and six solutions for H

>S:=TriangularGBSolve(B,[]):

>dg:=Digits: eDigits:=10:

>Sr:=convert (map(s->evalf(subs(s,H)),S),rational);

>Digits:=dg:
»

—

—

–

3319

3825

43

450

7337

3825

´ 36

85
4{5 522

85

´ 38

3825
´ 11

450

4376

3825

fi

ffi

ffi

fl

,

»

—

—

–

27989

113075

11116

68877

46056

11543

´ 55317

33688

29162

29109

62207

6739

´ 4819

93927
´ 3479

158824

9932

7517

fi

ffi

ffi

fl

,

»

—

—

–

´ 51941

3866

174177

144175

213038

5423

´ 40431

1690

36210

11627

710577

12973

´ 57914

70849

6959

87760

43100

19401

fi

ffi

ffi

fl

»

—

—

–

40441

1236
´ 20953

8193
´ 69409

809

132430

2457
´ 26276

4897
´ 1327299

11857

72875

39356
´ 5270

22337
´ 94659

37021

fi

ffi

ffi

fl

,

»

—

—

–

91103

21006
´ 63957

17956
i ´ 19612

29061
` 16799

28267
i ´ 137213

6863
` 23642

1355
i

178138

16263
´ 43433

4596
i ´ 114375

43187
` 27263

11331
i ´ 78611

2342
` 135829

4558
i

15541

42367
´ 5675

17974
i 3263

533530
´ 4388

462787
i ´ 24252

8569
` 122693

46803
i

fi

ffi

ffi

fl

»

—

—

–

91103

21006
` 63957

17956
i ´ 19612

29061
´ 16799

28267
i ´ 137213

6863
´ 23642

1355
i

178138

16263
` 43433

4596
i ´ 114375

43187
´ 27263

11331
i ´ 78611

2342
´ 135829

4558
i

15541

42367
` 5675

17974
i 3263

533530
` 4388

462787
i ´ 24252

8569
´ 122693

46803
i

fi

ffi

ffi

fl

Notice that the first solution is equal to the simulated homography, while

the othter solutions (shown only up to 10 digits precision to avoid too long

expressions) are ‘‘artifacts’’ of the formulation.
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will parameterize rotations using the Cayley parameterization []

Rpc1, c2, c3q “

»

—

—

—

–

c2
1

´c2
2

´c2
3

`1

c2
1

`c2
2

`c2
3

`1

2 pc1 c2`c3q
c2
1

`c2
2

`c2
3

`1

2 pc1 c3´c2q
c2
1

`c2
2

`c2
3

`1

2 pc1 c2´c3q
c2
1

`c2
2

`c2
3

`1

´c2
1

`c2
2

´c2
3

`1

c2
1

`c2
2

`c2
3

`1

2 pc2 c3`c1q
c2
1

`c2
2

`c2
3

`1

2 pc1 c3`c2q
c2
1

`c2
2

`c2
3

`1

2 pc2 c3´c1q
c2
1

`c2
2

`c2
3

`1

´c2
1

´c2
2

`c2
3

`1

c2
1

`c2
2

`c2
3

`1

fi

ffi

ffi

ffi

fl

(8.129)

for c1, c2, c3 P R, which excludes rotations by 180˝, since two perspective cameras
can’t look the opposite directions when seeing a non-degenerate piece of a plane in
space. Similarly, we will assume that ~nγ̄3 “ 1 since the first (as well as the second)
camera has to look at the plane. We are free to orient the plane normal towards the
first camera to remove unnecessary ambiguity and to reduce the number of solutions
to one half.

When the data is exact, we see that we are getting 11 solutions in general, out
of which three are real4. The ideal generated by the equations from four co-planar

4Maple [78] script analyzing the computation of a homography between two cali-
brated images induced by a plane in a scene observed by the cameras. We note
that some of the functions used here have been defined in previous Maple exam-
ples.

Constraints on a homography induced by a plane between calibrated images

>n:=<n1,n2,n3>:

>t:=<t1,t2,t3>:

>R:=c2R(<c1,c2,c3>):

>H:=R+t.trn(n);

H :“

»

—

–

c12´c22´c3
2`1

c12`c22`c32`1
` t1n1 2 c1 c2`c3

c12`c22`c32`1
` t1n2 2 c1 c3´c2

c12`c22`c32`1
` t1n3

2 c1 c2´c3
c12`c22`c32`1

` t2n1 ´ c12´c22`c32´1

c12`c22`c32`1
` t2n2 2 c2 c3`c1

c12`c22`c32`1
` t2n3

2 c1 c3`c2
c12`c22`c32`1

` t3n1 ´2 ´c2 c3`c1
c12`c22`c32`1

` t3n2 ´ c12`c22´c32´1

c12`c22`c32`1
` t3n3

fi

ffi

fl

Simulate projections
>R1:=c2R(<1,2,3>): C1:=<<2,1,3>>: P1:=<R1|-R1.C1>:

>R2:=c2R(<3,4,5>): C2:=<<2,3,1>>: P2:=<R2|-R2.C2>:

>H0:=P2[..,[1,2,4]].inv(P1[..,[1,2,4]]);

>X:=<<0|10|10|0>,<0|0|10|10>,<0|0|0|0 >,<1|1|1|1>>:

>x1:=a2h(h2a(P1.X)):

>x2:=a2h(h2a(P2.X)):

Setup equations
>eq:=[n3+1,op(numer(normal(Flatten(

map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])

))))]:

Solve them

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

and analyze the ideal

>Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));

”Hilbert dimension =”, 0
”The number of solutions =”, 11
”Is radical =”, true
”Is prime =”, false
”Is primary =”, false
”Is maximal =”, false
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points is radical but it is not prime [6]. We see that the corresponding variety is
a union of three irreducible variaties, each consisting of a single real point, and a
component consisting of eight non-real points.

When the data are affected by measurement noise, however, the same formulation

We see that the ideal can be obtained as an intersection of four prime ideals

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],
BB);

[[0, 1], [0, 1], [0, 1], [0, 8]]

which consists of single and eight points, respectively. There are 11 solutions

for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s

Let us get solutions to all variables

>S:=TriangularGBSolve(B,[]): nops(S);

11

We see that we are also getting 11 solutions. Let’s select the real ones and

substitute back to H, R, n, t

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

3

to see that we are left with only three solutions. Let’s compare it to the

simulation.

>[H0,R0,-n0/n0[3],-t0*n0[3]];
»

–

»

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

fl

»

–

145

153

40

153

28

153

´ 232

765

701

765

40

153

´ 76

765
´ 232

765

145

153

fi

fl

»

–

´ 2

5

´ 14

5

´1

fi

fl

»

–

´ 8

153
14

51

´ 22

153

fi

fl

fi

fl

>convert(sH,rational);
»

–

»

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

fl

»

–

145

153

40

153

28

153

´ 232

765

701

765

40

153

´ 76

765
´ 232

765

145

153

fi

fl

»

–

´ 2

5

´ 14

5

´1

fi

fl

»

–

´ 8

153
14

51

´ 22

153

fi

fl

fi

fl

»

–

»

–

´ 247

255
´ 104

255
´ 4

17
316

765
´ 113

765

2

153
32

765
´ 76

765
´ 167

153

fi

fl

»

–

´ 37

45
´ 428

765
´ 16

153

´ 16

45

496

765
´ 103

153
4

9
´ 79

153
´ 112

153

fi

fl

»

–

´ 28

25
29

25

´1

fi

fl

»

–

20

153

´ 35

51
55

153

fi

fl

fi

fl

»

—

—

–

»

—

—

–

247

255

104

255

4

17

´ 316

765

113

765
´ 2

153

´ 32

765

76

765

167

153

fi

ffi

ffi

fl

»

—

—

–

2249

3825

3068

3825
´ 16

153

´ 596

765

403

765
´ 52

153

´ 832

3825

1076

3825

143

153

fi

ffi

ffi

fl

»

—

—

–

´ 28

25

29

25

´1

fi

ffi

ffi

fl

»

—

—

–

´ 52

153

´ 50

153

´ 8

51

fi

ffi

ffi

fl

fi

ffi

ffi

fl

We see that the first solution equals the sumulation. Let’s next add noise of

about 0.1% of the measurement range.

>x1:=x1+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>x2:=x2+<RandomMatrix(2,4,generator=rand(-1..1)/1000),<0|0|0|0>>:

>eq:=[n3+1,op(numer(normal(Flatten(map(i->M2L((X (x2[..,i]).H.x1[..,i])[1..2]),[1,2,3,4])))))]:

and analyze the ideal

>B:=Basis(eq,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)):

Bi:=PolynomialIdeals[PolynomialIdeal]([op(B)]):

print("Hilbert dimension =",PolynomialIdeals[HilbertDimension](Bi));

print("The number of solutions =",PolynomialIdeals[NumberOfSolutions](Bi));

print("Is radical =",PolynomialIdeals[IsRadical](Bi));

print("Is prime =",PolynomialIdeals[IsPrime](Bi));

print("Is primary =",PolynomialIdeals[IsPrimary](Bi));

print("Is maximal =",PolynomialIdeals[IsMaximal](Bi));
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produces 12 solutions, out of which, now, four are real. The ideal generated by
corrupted measurements is now prime, primary and maximal [6].

We also see that for small noise, one of the four solutions is reasonably close to
the true simulated solution.

”Hilbert dimension =”, 0
”The number of solutions =”, 12
”Is radical =”, true
”Is prime =”, true
”Is primary =”, true
”Is maximal =”, true
We see that the ideal is prime and consists of a single component of 12 points

>Bd:=PolynomialIdeals[PrimeDecomposition](Bi):

BB:=map(i->Basis(i,plex(c1,c2,c3,n1,n2,n3,t1,t2,t3)),[Bd]):

map(b->[HilbertDimension(b),

PolynomialIdeals[NumberOfSolutions](PolynomialIdeals[PolynomialIdeal](b))],

BB);

[[0, 12]]

There are 12 solutions for t3

>PolyVarMonomials([B[1]],plex(op(indets(B[1]))));

rt312, t311, t310, t39, t38, t37, t36, t35, t34, t33, t32, t3, 1s
>S:=TriangularGBSolve(B,[]): nops(S); map(f->simplify(eval(B,f)),S);

12
out of which four are real

>sH:=map(f->evalf([subs(f,H),subs(f,R),subs(f,n),subs(f,t)]),S):

>sH:=select(f->MTM[isreal](f[1]),sH): nops(sH);

4
Let’s compare them to the simulation.

>[evalf[3](H0),evalf[3](R0),evalf[3](-n0/n0[3]),evalf[3](-t0*n0[3])];
»

–

»

–

0.969 0.408 0.235
´0.413 0.148 ´0.013
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.261
´0.099 ´0.303 0.948

fi

fl

»

–

´0.400
´2.800
´1.000

fi

fl

»

–

´0.052
0.274

´0.144

fi

fl

fi

fl

>map(f->print(evalf[3](f)),sH):
»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.833 0.543 0.105
0.543 0.767 0.342
0.105 0.342 ´0.934

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

0.342
0.328
0.158

fi

fl

fi

fl

»

–

»

–

´0.969 ´0.410 ´0.237
0.413 ´0.147 0.014
0.042 ´0.099 ´1.090

fi

fl

»

–

´0.820 ´0.563 ´0.104
´0.358 0.646 ´0.674
0.446 ´0.516 ´0.731

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

0.133
´0.688
0.361

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.948 0.261 0.183
´0.303 0.916 0.262
´0.099 ´0.304 0.948

fi

fl

»

–

´0.398
´2.790
´1.000

fi

fl

»

–

´0.053
0.276

´0.145

fi

fl

fi

fl

»

–

»

–

0.969 0.410 0.237
´0.413 0.147 ´0.014
´0.042 0.099 1.090

fi

fl

»

–

0.568 0.803 ´0.105
´0.780 0.525 ´0.342
´0.219 ´0.282 0.934

fi

fl

»

–

´1.120
1.150

´1.000

fi

fl

»

–

´0.341
´0.328
´0.158

fi

fl

fi

fl

We see that the third solution corresponds to the simulation.
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9 Projective plane

9.1 Motivation – perspective projection in affine space

§ 51 Geometric model of perspective projection in affine space The perspective
projection of a point X by a camera with projection center C can be obtained
geometrically in 3D affine space by taking all lines passing through the points C and
X and finding the intersections with the (affine) image plane π.

Three different situations may arise, Figure 9.1.

1. If X “ C, then there is an infinite number of lines passing through C “ X,
which intersect π in all its points, and therefore the projection of X contains
the whole plane π.

2. If point Y ‰ C lies in the plane σ, which is parallel to π and passing through
C, then the line passing trough C and Y (which there is exactly one) does not
intersect the projection plane π, and therefore, the projection of X is empty.

3. If X does not lie in the plane σ, then there is exactly one line passing through
points C and X and this line intersects the projection plane π in exactly one
point x. Hence the projection of X contains exactly one point x.

Let us compare this affine geometrical model of the perspective projection with the
algebraic model of the perspective projection, which we have developed before.

§ 52 Algebraic model of perspective projection in affine space The projection
~xβ of ~Xδ by a perspective camera with image projection matrix

Pβ “
”

A | ´ A ~Cδ

ı

(9.1)

is

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Xδ

1



(9.2)

for some η P R.
We shall analyze the three situations, which arise with the geometrical model of

affine projection.

1. If X “ C, then

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Cδ

1



“ ~0 (9.3)

i.e. we obtain the zero vector. What does it say about ~xβ? Clearly, ~xβ can be
completely arbitrary (even the zero vector) when we set η “ 0. Alternatively,
we can choose η ‰ 0 and thus enforce ~xβ “ ~0. Both choices are possible. We
shall use the latter one since we will see that it better fits the other cases. We
will use ~xβ “ ~0 to (somewhat strangely) represent all non-zero vectors in R3.
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C

X

Y
x

π

σ

~x

~y

Figure 9.1: Geometric model of perspective projection in affine space. Point C has
infinite (i.e. not unique) projection, point X has exactly one projection
x. Point Y has no projection.

2. If point Y ‰ C lies in the plane σ, then

η ~xβ “
”

A | ´ A ~Cδ

ı

„

~Yδ
1



“ A p~Yδ ´ ~Cδq (9.4)

which, taking into account rank A “ 3, implies

η A´1~xβ “ ~Yδ ´ ~Cδ (9.5)

Matrix A´1 transforms ~xβ into ~xδ and therefore its columns

A´1 “
”

~b1δ ~b2δ ~b3δ

ı

(9.6)

are the basic vectors of the camera coordinate system in the world basis δ.
Hence

η
”

~b1δ ~b2δ ~b3δ

ı

~xβ “ ~Yδ ´ ~Cδ (9.7)

which means that vector ~Yδ ´ ~Cδ can be written as a linear combination of the
camera coordinate system basic vectors

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Yδ ´ ~Cδ (9.8)

with p, q, r P R. Now, since Y lies in a plane parallel to π, vector ~Yδ ´ ~Cδ can
be written as a linear combination of the first two basic vectors of the camera
coordinate system, and therefore r “ 0, i.e.

~xβ “

»

–

p

q

0

fi

fl (9.9)

We also see that η ‰ 0 since otherwise we would get the zero vector on the
left but that would correspond to Y “ C, which we have excluded.

75



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

Table 9.1: Comparison of the geometrical and algebraic projection models in affine
space.

Point position Projection

Geometrical model in aff. space Algebraic model in aff. space

X R σ one point of π η ‰ 0, ~xβ “

»

–

u

v

1

fi

fl, (~xβ ‰ ~0)

C ‰ X P σ no point η ‰ 0, ~xβ “

»

–

u

v

0

fi

fl, ~xβ ‰ ~0

X “ C all points of π η ‰ 0, ~xβ “ ~0

3. If X does not lie in the plane σ, then the coefficient r P R in the linear
combination

η A´1 ~xβ “ ~Xδ ´ ~Cδ (9.10)

η p~b1δ ` η q~b2δ ` η r~b3δ “ ~Xδ ´ ~Cδ (9.11)

is non-zero. In that case we can write

η

»

–

p

q

r

fi

fl “ A p ~Xδ ´ ~Cδq (9.12)

pη rq

»

—

–

p
r
q
r
1

fi

ffi

fl
“ A p ~Xδ ´ ~Cδq (9.13)

η1

»

–

u

v

1

fi

fl “ A p ~Xδ ´ ~Cδq (9.14)

As in the case two, η ‰ 0 since otherwise we would get the zero vector on the
left and that would correspond to X “ C, which we have excluded.

The comparison of the two models of perspective projection, Table 9.1 shows that

1. We can always assume η ‰ 0.

2. The “projection” of C is represented by the zero vector while the projections
of all other points are represented by non-zero vectors.

3. The algebraic projection model can represent projections of all points in the
affine space.

4. The geometrical projection model is less capable than the algebraic projection
model since it can’t model the projection of points in σ different from C.
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(e)(c)(b)(a) (d)

A2A2A2
A2A2

A3 A3 A3 A3A3

O OOO

Figure 9.2: (a) Two dimensional affine plane A2 can be (b) embedded in the three
dimensional affine space A3. There is a point O P A3, O R A2. (c) For
each point X in A2, there is exactly one line through X and O in A3. (d)
There is exactly one pencil of lines through O, which do not correspond
to any point in A2, in A3. (e) Each line in the pencil corresponds to a
set of parallel lines with the same direction in A2.

The previous analysis clearly shows that the affine geometrical model of the per-
spective projection is somewhat deficient. It can’t model projections of some points
in the space. This deficiency leads to inventing a generalized model of the geometry
around us in order to model the perspective projection completely by intersections
of geometrical entities. This generalization of the affine space is called the projective
space.

Let us look at the most important projective space, which is the projective plane.
We shall first develop a concrete projective plane by improving the affine plane
exactly as much as necessary to achieve what we want, i.e. to be able to distinguish
projections of all points in the space. In fact, this will be extremely easy since we
have already done all the work, and we only need to “upgrade” the notion of point,
line, intersection and join (i.e. making the line from two distinct points). Later, we
shall observe that such an “upgrade” will also lead to an interesting simplification
and generalization of the principles of geometry.

9.2 Real projective plane

9.2.1 Geometrical model of the real projective plane

A real affine planeA2 can be imagined as a subset of a real affine spaceA3, Figure 9.2.
There is a point O in A3, which is not in A2. For each point X in A2, there is exactly
one line in A3, which passes through X and O. Now, there is a set of lines in A3,
which pass through O but do not pass through any point of A2. This is the set of
lines parallel to A2 that pass through O. These lines fill the plane of A3, which is
parallel to A2 and which contains the point O.

The set of all lines in A3 passing through O will be called the real projective
plane and denoted as P2. The lines of A3 passing through O will be called the points
of the real projective plane.1

1The previous definition can be given without referring to any affine plane. We can take a point
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Figure 9.3: Algebraic model of the real projective plane.

The lines in A3 passing through O, which intersect A2, are in one-to-one cor-
respondence with points in the affine plane A2 and hence will be called the affine
points of the projective plane2 of the projective plane. The set of lines in A3 passing
through O, which do not intersect A2, are the “additional” points of the projective
plane and will be called the ideal points of the projective plane3.4

To each ideal point P (i.e. a line l of A3 through O parallel to A2), there corre-
sponds exactly one set of parallel lines in A2 which are parallel to l in A3. Different
sets of parallel lines in A2 are distinguished by their direction. In this sense, ideal
points correspond to directions in A2 and can also be understood as points where
parallel lines of A2 intersect. Notice that the parallel lines of A2 do not intersect in
A2, because P is not in A2, but they intersect in the real projective plane obtained
as the extension of A2.

9.2.2 Algebraic model of the real projective plane

We shall now move from the geometrical model in A3 to an algebraic model in R3

which allows us to do computations.
Let us choose a coordinate system pO,~b1,~b2,~b3q in A3 with the origin in O, with

basic vectors~b1,~b2 from the coordinate system po,~b1,~b2q inA2 and with~b3 “ ϕpO, oq,
Figure 9.3.

Lines in A3, which pass through O, correspond to one-dimensional subspaces of

O in A3 and the set of all lines in A3 passing through O and call it a projective plane. In the
above example, however, we have obtained the projective plane as an extension of a given affine
plane A2. In such a case, we can distinguish two sets of points – affine points and ideal points
– in the projective plane.

2Vlastńı body in Czech. Finite points in [2].
3Nevlastńı body in Czech. Points at infinity in [2].
4Notice that words “point” and “line” actually need to be accompanied by adjectives for the above
to make sense beacause lines of A3 become points of A2. Also notice that this division of the
points of the projective plane makes sense only when we start with a given affine plane or when
we start with a projective plane and select one plane of lines in A3 as the set of ideal points.

78



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

R2

R3

~0

~b1

~b2

~b3

X
Y

Figure 9.4: Points of the real projective plane are represented by one-dimensional
subspaces of R3. One selected two-dimensional affine subspace deter-
mines the ideal points.

R3 and therefore, in R3, points of the real projective plane will be represented by
one-dimensional subspaces.

The real projective plane is the set of all one-dimensional subspaces of R3.
The affine plane is a subset of the set of all one-dimensional subspaces of R3,

which we obtain after removing all one-dimensional subspaces that lie in a two-
dimensional subspace of R3.

There are (infinitely) many possible choices of sets of one-dimensional subspaces
which can model the affine plane within the real projective plane. The choice of a
particular subset, which will model a concrete1 affine plane, can be realized by a
choice of a basis in R3.

Let us select a basis β “ p~b1,~b2,~b3q of R3. Then, all the one-dimensional sub-
spaces generated by vectors

~xβ “

»

–

x

y

1

fi

fl x, y P R (9.15)

will represent affine points, point X in Figure 9.4, and all the one-dimensional sub-
spaces generated by vectors

~xβ “

»

–

x

y

0

fi

fl x, y P R, x ‰ 0 or y ‰ 0 (9.16)

will represent the ideal points, e.g. point Y in Figure 9.4.
It is clear that the affine points are in one-to-one correspondence with all points

in a two-dimensional affine space (plane) and the ideal points are exactly what we
need to add to the affine points to get all one-dimensional subspaces of R3.

9.2.3 Lines of the real projective plane

Let us look at lines now. Lines, e.g. l in Figure 9.5, in the affine plane contain points
represented by one-dimensional subspaces generated, e.g., by ~x and ~y. This set of
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~x
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Figure 9.5: Lines of the real projective plane correspond to two-dimensional sub-
spaces of R3 but can be also represented by one-dimensional subspaces
of R3.

one-dimensional subspaces of points on l fills almost a complete two-dimensional
subspace of R3 with the exception of one one-dimensional subspace, generated by ~z,
which represents an ideal point. After adding the subspace generated by ~z to the set
of all one-dimensional subspaces representing points on l, we completely fill a two-
dimensional subspace of R3, which hence corresponds to the projective completion
of the affine line l, which we will further call line, too.

Hence, in the real projective plane, lines correspond to two-dimensional subspaces
of R3.

We would like to do calculations with lines as we do calculations with points.
Let us develop a convenient representation of lines now. A straightforward way how
to represent a two-dimensional subspace in R3 is to select a basis (i.e. two linearly
independent vectors) of the subspace, e.g. ~x and ~y for the line l. There are many
ways how to choose a basis and therefore the representation is far from unique.
Moreover, having two bases, it is not apparent whether they represent the same
subspace.

For instance, two pairs of linearly independent vectors p~x1, ~y1q and p~x2, ~y2q rep-
resent the same line if and only if they generate the same two-dimensional subspace.
To verify that, we, for instance, may check whether

rank
“

~x1β ~y1β ~x2β ~y2β
‰

“ 2 (9.17)

where we write all the four vectors ~x1, ~y1, ~x2, ~y2 w.r.t. a basis β of R3.
Yet, there is another quite convenient way how to represent a two dimensional

subspace in R3. Since 3 “ 2`1, we can find for each two-dimensional subspace, spec-
ified by a basis p~x, ~yq, exactly one one-dimensional subspace of the three-dimensional
dual linear space. Call the basis of this new one-dimensional subspace ~l. Then there
holds

~l
J

β̄

“

~xβ ~yβ
‰

“ 0 (9.18)
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A2

O

~l8

Figure 9.6: The ideal line is the set of all projective points (i.e. all lines of A3 through
C, which have no intersection with A2. It is a plane σ. There is exactly
one, which is perpendicular to sigma, which is generated by vector l8.

where β̄ is the dual basis to β. Therefore, we can represent lines in the real projective
plane by one-dimensional subspaces in this way.

We have developed an interesting representation of points and lines where both
points and lines are represented by one-dimensional subspaces of R3. Points are
represented by one-dimensional subspaces of V “ R3, which is connected by ϕ to
the three-dimensional space A3 of the geometrical model of the real projective plane.
The lines are represented by one-dimensional subspaces of the space V̄ , which is the
space dual to V . Using the basis β̄ in V̄ , which is dual to basis β in V , the coordinates
~lβ̄ as well as coordinates of ~xβ become vectors in R3 which satisfy Equation 9.18.

The line ofA3 generated by~l in Figure 9.5 is shown as perpendicular5 to the plane
generated by ~x, ~y. Indeed, in the geometrical model of the real projective plane,
we can use the notion of perpendicularity to uniquely construct the (perpendicular)
line to the plane corresponding to l in A2.

9.2.4 Ideal line

The set of all one-dimensional subspaces of R3, which do not correspond to points
in the affine plane, i.e. the set of all ideal points, forms itself a two-dimensional
subspace of R3 an hence a line in the projective plane, which is not in the affine
plane. It is the ideal line6 of the projective plane associated with the selected affine
plane in that projective plane. It is represented by vector ~l8 in Figure 9.6.

For each affine plane, there is exactly one ideal line (a two-dimensional sub-
space of R3). Conversely, by selecting one line in a projective plane (i.e. one two-

5In A3, line and plane are perpendicular when they contain the right angle. The right angle is one
quarter of a circle.

6Nevlastńı př́ımka in Czech, line at infinity in [2].
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dimensional subspace of R3) the associated affine plane is determined as the set of
all points (one-dimensional subspaces of R3) which are not contained in the selected
ideal line (two-dimensional subspace).

9.2.5 Homogeneous coordinates

Once a coordinate system is fixed in an affine plane, every point of the affine plane
has unique coordinates, which are the coordinates of its vector in the basis of the
coordinate system.

A point in a real projective plane is represented by a one-dimensional subspace
of R3. One-dimensional subspaces are represented by their bases consisting of a
single non-zero vector. There are infinitely many bases representing the same one-
dimensional subspace. Two basic vectors of the same one-dimensional subspace are
related by a non-zero multiple.

Hence, when talking about coordinates of a point in the projective space, we
actually talk about coordinates of a particular basic vector of the one-dimensional
subspace that represents the point.

For instance, vectors
»

–

1
0
1

fi

fl and

»

–

2
0
2

fi

fl (9.19)

are basic vectors of the same one-dimensional subspace since they are related by a
non-zero multiple. These are two different “coordinates” of the same point in the
real projective plane.

Hence, the “coordinates” of a point in the real projective plane are not unique.
This is so radically departing from the fundamental property of coordinates, their
uniqueness, that it deserves a new name. To distinguish the coordinates of a point in
the affine plane, which are unique, from the “coordinates” of a point in the projective
plane, which are not unique, we shall introduce new name homogeneous coordinates.

Homogeneous coordinates of a point in the real projective plane are the coordi-
nates of a basic vector of the one-dimensional subspace, which represents the point.

Homogeneous coordinates of a line in the real projective plane are the coordinates
of a basic vector of the one-dimensional subspace, which represents the line.

A point in an affine plane can be represented by affine as well as by homogeneous
coordinates. Let us see the relationship between the two.

Let us have a point X in a two-dimensional real affine plane, which is represented
by coordinates

„

x

y



(9.20)

By extending the real affine plane to the real projective plane with the ideal line
identified with the two-dimensional subspace z “ 0, we can represent point X by a
one-dimensional subspace of R3 generated by its basic vector

»

–

x

y

1

fi

fl (9.21)

Thus, X has affine coordinates
“

x y
‰J

and homogeneous coordinates
“

u v w
‰J

,
where u “ λx, v “ λ y, and w “ λ 1 for some λ P R, λ ‰ 0.
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Figure 9.7: A point x is incident with a line l if and only if it can generate the line
with another point y. Lines in A3 representing the point and the line
are perpendicular to each other.

Ideal points do not have affine coordinates. Their homogeneous coordinates are
“

x y 0
‰J

(9.22)

where x, y P R and either x ‰ 0 or y ‰ 0.
The zero vector ~0 is not a basis of any one-dimensional space and thus represents

neither a point nor a line.

9.2.6 Incidence of points and lines

We say that a point x is incident with line l if and only if it can generate the line
with another point y, Figure 9.7. In the representation of subspaces of R3, it means
that

~l
J

β̄
~xβ “ 0 (9.23)

This means that the one-dimensional subspace of R3 representing the line is orthogo-
nal to the one-dimensional subspace of R3 representing the point w.r.t. the standard
(Euclidean) scalar product. In the geometrical model of the real projective plane it
means that the line of A3 representing x is perpendicular to line of A3 representing l.

Let us write explicitly the coordinates of the bases generating the one-dimensional
subspaces as

~xβ “

»

–

x

y

z

fi

fl
~lβ̄ “

»

–

a

b

c

fi

fl

then we get
a x` b y ` c z “ 0

and for affine points represented with z “ 1 this formula reduces to

a x` b y ` c “ 0

which is the familiar equation of a line in the two dimensional real affine plane.
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Figure 9.8: The join of two distinct points is the unique line passing through them.

9.2.7 Join of points

Every two distinct points x and y in the real projective plane are incident with
exactly one line l. The join of two distinct points is the unique line passing through
them.

In the real projective plane, two distinct points are represented by two different
one-dimensional subspaces with bases ~x and ~y.

The homogeneous coordinates of this line, i.e. the coordinates of the basic vectors
of the one-dimensional subspace representing the line, can be obtained by solving
the following system of homogeneous equations for coordinates of the vector ~l

~l
J

β̄
~xβ “ 0 (9.24)

~l
J

β̄
~yβ “ 0 (9.25)

w.r.t. β and β̄ in R3. The set of solutions forms the one-dimensional subspace that
represents the line l.

We have seen in Section 3.3 that vector ~lβ̄ can be conveniently constructed by
the vector product as

~lβ̄ “ ~xβ ˆ ~yβ (9.26)

Notice, that in the real projective plane as well as in the real affine plane, there is
exactly one line incident with two distinct points.

9.2.8 Meet of lines

Every two distinct lines k and l in a projective plane are incident exactly to one
point x. The meet of two distinct lines is the unique point incident with them.

In the real projective plane, two distinct lines are represented by two different
one-dimensional subspaces with bases ~k and ~l.

The homogeneous coordinates of this point, i.e. the coordinates of the vectors in
the one-dimensional subspace representing the point, can be obtained by solving the
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Figure 9.9: The meet of two distinct lines is the unique point incident with them.

following system of homogeneous equations for coordinates of the vector ~x w.r.t. β
in R3

~k
J

β̄
~xβ “ 0

~l
J

β̄
~xβ “ 0

The set of solutions forms the one-dimensional subspace that represents point x. To
get one basic vector in the subspace, we may again employ the vector product in R3

and compute

~xβ “ ~kβ̄ ˆ~lβ̄

Notice, that in the real projective plane there is exactly one point incident to two
distinct lines.

This is not true in an affine plane because there are (parallel) lines that have no
point in common!

9.3 Line coordinates under homography

Let us now investigate the behavior of homogeneous coordinates of lines in projective
plane mapped by a homography.

Let us have two points represented by vectors ~xβ, ~yβ . We now map the points,
represented by vectors ~xβ, ~yβ , by a homography, represented by matrix H, to points
represented by vectors ~x 1

β 1 , ~y 1
β 1 such that there are λ1, λ2 P R, λ1λ2 ‰ 0

λ1 ~x
1
β 1 “ H ~xβ (9.27)

λ2 ~y
1
β 1 “ H ~yβ (9.28)

Homogeneous coordinates ~pβ̄ of the line passing through points represented by ~xβ,
~yβ̄ and homogeneous coordinates ~p 1

β̄ 1 of the line passing through points represented

85



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

by ~x 1
β 1 , ~y 1

β 1 are obtained by solving the linear systems

~pJ
β̄
~xβ “ 0 and ~p 1

β̄ 1

J
~x 1
β 1 “ 0 (9.29)

~pJ
β̄
~yβ “ 0 ~p 1

β̄ 1

J
~y 1
β 1 “ 0 (9.30)

for a non-trivial solutions. Writing down the incidence of points and lines, we get

λ1 ~p
J
β̄
H´1 ~x 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~x 1

β 1 “ 0

λ2 ~p
J
β̄
H´1 ~y 1

β 1 “ 0 ô ~pJ
β̄
H´1 ~y 1

β 1 “ 0

We see that ~p 1
β̄ 1 and H´J~pβ̄ are solutions of the same set of homogeneous equations.

When ~xβ , ~yβ are independent, then there is λ P R such that

λ ~p 1
β̄ 1 “ H´J~pβ̄ (9.31)

since the solution space is one-dimensional. Equation 9.31 gives the relationship
between homogeneous coordinates of a line and its image under homography H.

9.3.1 Join under homography

Let us go one step further and establish formulas connecting line coordinates con-
structed by vector products. Construct joins as

~pβ̄ “ ~xβ ˆ ~yβ and ~p 1
β̄ 1 “ ~x 1

β 1 ˆ ~y 1
β 1 (9.32)

and use Equation 3.47 to get

~xβ 1 ˆ ~yβ 1 “ H´J

|H´J| p~xβ ˆ ~yβq (9.33)

pλ1 ~x 1
β 1q ˆ pλ2 ~y 1

β 1q “ H´J

|H´J| p~xβ ˆ ~yβq (9.34)

~x 1
β 1 ˆ ~y 1

β 1 “ H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq (9.35)

~p 1
β̄ 1 “ H´J

λ1 λ2 |H´J| ~pβ̄ (9.36)

9.3.2 Meet under homography

Let us next look at the meet. Let point ~x be the meet of lines ~p and ~q with line
cordinates ~pβ̄, ~qβ̄ , which are related by a homography H to line coordinates ~p 1

β̄ 1 and

~q 1
β̄ 1 by

λ1 ~p
1
β̄ 1 “ H´J ~pβ̄ (9.37)

λ2 ~q
1
β̄ 1 “ H´J ~qβ̄ (9.38)

for some non-zero λ3, λ4. Construct meets as

~xβ “ ~pβ̄ ˆ ~qβ̄ and ~x 1
β 1 “ ~p 1

β̄ 1 ˆ ~q 1
β̄ 1 (9.39)

and, similarly as above, use Equation 3.47 to get

~x 1
β 1 “ pH´Jq´J

λ1 λ2 |pH´Jq´J| ~xβ “ H

λ1 λ2 |H| ~xβ (9.40)
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9.3.3 Meet of join under homography

We can put the above together to get meet of join under homography. We consider
two pairs of points represented by their homogeneous coordinates ~xβ , ~yβ , and ~zβ,
~wβ and the corresponding pairs of points with their homogeneous coordinates ~x 1

β 1 ,
~y 1
β 1 , and ~z 1

β 1 , ~w 1
β 1 related by homography H as

λ1 ~x
1
β 1 “ H ~xβ , λ2 ~y

1
β 1 “ H ~yβ , λ3 ~z

1
β 1 “ H~zβ , λ4 ~w

1
β 1 “ H ~wβ (9.41)

Let us now consider point

~v 1
β 1 “ p~x 1

β 1 ˆ ~y 1
β 1q ˆ p~z 1

β 1 ˆ ~w 1
β 1q (9.42)

“
ˆ

H´J

λ1 λ2 |H´J| p~xβ ˆ ~yβq
˙

ˆ
ˆ

H´J

λ3 λ4 |H´J| p~zβ ˆ ~wβq
˙

(9.43)

“ H |H|
λ1 λ2 λ3 λ4

p~xβ ˆ ~yβq ˆ p~zβ ˆ ~wβq (9.44)

“ H |H|
λ1 λ2 λ3 λ4

~vβ (9.45)

9.3.4 Note on homographies that are rotations

First notice that homogeneous coordinats of points and lines constructed as com-
binations of joins and meets indeed behave under a homography as homogeneous
coordinates constructed from affine coordinates of points.

Secondly, when the homography is a rotation and homogeneous coordinates are
unit vecors, all λ’s become equal to one, the determinant of H is one and H´J “ H.
Therefore, all homogeneous coordinates in the previous forulas become related just
by H.

9.4 Vanishing points

When modeling perspective projection in the affine space with affine projection
planes, we meet somewhat unpleasant situations. For instance, imagine a projection
of two parallel lines K,L, which are in a plane τ in the space into the projection
plane π through the center C, Figure 9.10.

The lines K,L project to image lines k, l. As we go with two points X,Y along
the lines k, l away from the projection plane, their images x, y get closer and closer
to the point v in the image but they do not reach point v. We shall call this point
of convergence of lines K, L the vanishing point7.

9.5 Vanishing line and horizon

If we take all sets of parallel lines in τ , each set with a different direction, then all
the points of convergence in the image will fill a complete line h.

The line h is called the vanishing line or the horizon8 when τ is the ground plane.

7Úběžńık in Czech.
8Horizont in Czech
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C

X

Y
x

y

v

K

L

l

k τ

π

Figure 9.10: Vanishing point v is the point towards projections x an y tend as X
and Y move away from π but which they never reach.

C
h

τ

π

Figure 9.11: Vanishing line (horizon) h is the line of vanishing points.
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Now, imagine that we project all points from τ to π using the affine geometrical
projection model. Then, no point from τ will project to h. Similarly, when projecting
in the opposite direction, i.e. π to τ , line h has no image, i.e. it does not project
anywhere to τ .

When using the affine geometrical projection model with the real projective plane
to model the perspective projection (which is equivalent to the algebraic model in
R3), all points of the projective plane τ (obtained as the projective completion of
the affine plane τ) will have exactly one image in the projective plane π (obtained as
the projective completion of the affine plane π) and vice versa. This total symmetry
is useful and beautiful.
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10 Camera auto-calibration

Camera auto-calibration is a process when the parameters of image formation are
determined from properties of the observed scene or knowledge of camera motions.
We will study camera auto-calibration methods and tasks related to metrology in
images. We have seen in Chapter 7 that to measure the angle between projection
rays we needed only matrix K. Actually, it is enough to know matrix1

ω “ K´JK´1

to measure the angle between the rays corresponding to image points ~x1β , ~x2β as

cos=p~x1, ~x2q “
~xJ
1β K

´JK´1~x2β

}K´1~x1β}}K´1~x2β} “
~xJ
1β ω ~x2β

b

~xJ
1β ω ~x1β

b

~xJ
2β ω ~x2β

(10.1)

Knowing ω is however (almost) equivalent to knowing K since K can be recovered
from ω up to two signs as follows.

§ 53 Recovering K from ω Let us give a procedure for recovering K from ω. As-
suming

K “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl (10.2)

we get

K´1 “

»

–

k11 k12 k13
0 k22 k23
0 0 1

fi

fl

´1

“

»

—

—

–

1

k11

´k12
k11k22

k12 k23´k13 k22
k11 k22

0 1

k22

´k23
k22

0 0 1

fi

ffi

ffi

fl

“

»

–

m11 m12 m13

0 m22 m23

0 0 1

fi

fl

(10.3)
for some real m11,m12,m13,m22 and m23. Equivalently, we get

K “

»

—

–

1

m11

´m12

m11m22

m12 m23´m13 m22

m11 m22 m23

0 1

m22

´m23

m22

0 0 1

fi

ffi

fl
(10.4)

Introducing the following notation

ω “ K´JK´1 “

»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl (10.5)

1In [2], ω is called the image of the absolute conic.
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yields

»

–

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

fi

fl “

»

–

m2
11

m11m12 m11m13

m11m12 m2
12

`m2
22

m12m13 `m22m23

m11m13 m12m13 `m22m23 m2
13

`m2
23

` 1

fi

fl

(10.6)
which can be solved for K´1 up to the sign of the rows of K´1 as follows. Equation 10.6
provides equations

ω11 “ m2
11 ñ m11 “ s1

?
ω11

ω12 “ m11m12 ñ m12 “ ω12{ps1
?
ω11q “ s1 ω12{?

ω11

ω13 “ m11m13 ñ m13 “ ω13{ps1
?
ω11q “ s1 ω13{?

ω11

ω22 “ m2
12 `m2

22 ñ m22 “ s2

b

ω22 ´m2
12

“ s2

b

ω22 ´ ω2
12

{ω11

ω23 “ m12m13 `m22m23 ñ m23 “ s2 pω23 ´ ω12 ω13{ω11q{
b

ω22 ´ ω2
12

{ω11

“ s2 pω11 ω23 ´ ω12 ω13q{
b

ω2
11
ω22 ´ ω11 ω

2
12

which can be solved for mij with s1 “ ˘1 and s2 “ ˘1. Hence

K “

»

—

–

s1
?
ω11 s1 ω12{?

ω11 s1 ω13{?
ω11

0 s2
a

ω22 ´ ω2
12

{ω11 s2 pω23 ´ ω12 ω13{ω11q{
a

ω22 ´ ω2
12

{ω11

0 0 1

fi

ffi

fl

´1

(10.7)

Signs s1, s2 are determined by the choice of the image coordinate system. The
standard choice is s1 “ s2 “ 1, which corresponds to k11 ą 0 and k22 ą 0.

Notice that
?
ω11 is never zero for a real camera since m11 “ 1

k11
‰ 0. There also

holds true

b

ω22 ´ ω2
12

{ω11 “
b

m2
11

´m2
12

“
d

1

k2
11

´ k2
12

k2
11
k2
22

“ 1

k11 k22

b

k2
22

´ k2
12

‰ 0

(10.8)
since |k12| is much smaller than |k22| for all real cameras.

10.1 Constraints on ω

Matrix ω is a 3ˆ3 symmetric matrix and by this it has only six independent elements
ω11, ω12, ω13, ω22, ω23 and ω33. Let us next investigate additional constratints on ω,
which follow from different choices of K.

§ 54 Constraints on ω for a general K Even a general K yields a constraint on ω.
Equation 10.6 relates the six parameters of ω to only five parametersm11,m12,m13,m22

and m23 and hence the six parameters of ω can’t be independent. Indeed, let us see
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that the following identity holds true

pω2

23
´ ω2

13
ω2

12

ω2

11

´ pω22 ´ ω2

12

ω11

q pω33 ´ ω2

13

ω11

´ 1qq2 ´ 4
ω2

13
ω2

12

ω2

11

pω22 ´ ω2

12

ω11

q pω33 ´ ω2

13

ω11

´ 1q

“
ˆ

pm12m13 `m22m23q2 ´ pm11m13q2pm11m12q2
m4

11

´pm2

12
`m2

22
´ pm11m12q2

m2

11

qpm2

13
`m2

23
` 1 ´ pm11m13q2

m4

11

´ 1q
˙2

´ 4
pm11m13q2pm11m12q2

m4

11

pm2

12
`m2

22
´ pm11m12q2

m2

11

qpm2

13
`m2

23
` 1 ´ pm11m13q2

m4

11

´ 1q

“
`

pm12m13 `m22m23q2 ´ pm12m13q2 ´ pm22m23q2
˘2 ´ 4 pm12m13q2pm22m23q2

“ p2 pm12m13qpm22m23qq2 ´ 4 pm12m13q2pm22m23q2

“ 0 (10.9)

Since ω11 ‰ 0, we get the following equivalent identity

pω2
11ω

2
23 ´ ω2

13 ω
2
12 ´ pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11qq2

´ 4ω2
13 ω

2
12 pω11ω22 ´ ω2

12q pω11ω33 ´ ω2
13 ´ ω11q “ 0 (10.10)

which is a polynomial equation of degree eight in elements of ω.
We shall see next that it makes sense to introduce a new matrix

Ω “

»

–

1 o12 o13
o12 o22 o23
o13 o23 o33

fi

fl “

»

—

—

–

1 ω12

ω11

ω13

ω11

ω12

ω11

ω22

ω11

ω23

ω11

ω13

ω11

ω23

ω11

ω33

ω11

fi

ffi

ffi

fl

(10.11)

which contains only five unknowns, and use Equation 10.10 to get the positive ω11

from Ω by solving the following quadratic equation

a2 ω
2
11 ` a1 ω11 ` a0 “ 0 (10.12)

with

a2 “ ´4 o23
2o13

2o12
2 ` o23

4 ´ 2 o23
2o22 o33 ` 2 o13

2o12
2o22 o33 (10.13)

´2 o22
2o33o13

2 ` o12
4o33

2 ` 2 o23
2o22 o13

2 ` 2 o23
2o12

2o33

`o222 o134 ` o22
2o33

2 ´ 2 o22 o33
2o12

2

a1 “ 2 o13
2o12

2 o22 ` 2 o23
2o22 ´ 2 o22

2 o33 ´ 2 o12
4 o33 (10.14)

`4 o22 o33o12
2 ´ 2 o23

2o12
2 ` 2 o22

2o13
2

a0 “ ´2 o22 o12
2 ` o22

2 ` o12
4 (10.15)

§ 55 Constraints on ω for K from square pixels Cameras have often square pixels,
i.e. }~b1} “ |~b2} “ 1 and =p~b1,~b2q “ π{2, which implies, Equations 7.13, 7.15, 7.16, a
simplified

K “

»

–

k11 0 k13
0 k11 k23
0 0 1

fi

fl (10.16)
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σ

π

K
Lk

l

C

~v σ

π

K1

L1

K2

L2k1 l1

k2

l2C

~v1

~v2

(a) (b)

Figure 10.1: (a) Parallel lines K, L are projected to lines k, l with vanishing point
represented by ~v. Vector ~v is parallel to k, l. (b) Vectors ~v1, ~v2 contain
the same angle as pairs of lines K1, K2 or L1, L2.

This gives also simpler

ω “ 1

k2
11

»

–

1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (10.17)

We see that we get the following three identities

ω12 “ 0 (10.18)

ω22 ´ ω11 “ 0 (10.19)

ω2
13 ` ω2

23 ´ ω11ω33 ` ω11 “ 0 (10.20)

We also get simpler

Ω “

»

–

1 0 o13
0 1 o23
o13 o23 o33

fi

fl “ k211 ω “

»

–

1 0 ´k13
0 1 ´k23

´k13 ´k23 k2
11

` k2
13

` k2
23

fi

fl (10.21)

and use Equation 10.21 to get

k211 “ o33 ´ o213 ´ o223 (10.22)

k13 “ ´o13 (10.23)

k23 “ ´o23 (10.24)

10.2 Camera calibration from angles between projection
rays

We will now show how to calibrate a camera by finding the matrix ω “ K´JK´1.
In general, matrix ω is constrained by knowing angles contained between pairs

of projection rays. Consider two projection rays with direction vectors ~x1, ~x2. Then
the angle between them is related to ω and Ω by

cos=p~x1, ~x2q “
~xJ
1β ω ~x2β

b

~xJ
1β ω ~x1β

b

~xJ
2β ω ~x2β

“
~xJ
1β Ω ~x2β

b

~xJ
1β Ω ~x1β

b

~xJ
2β Ω ~x2β

(10.25)
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π

~x1

~x2

~x3

~b1

~b2

~b 1
3

~d1

~d2

~d3

d12
d23

d31

O “ o

C

~C X1

X2

X3

~X2

Figure 10.2: Images of three points with known angles between their rays can be used
to calibrate cameras with square pixels. The position of image center
~Cδ 1 can be computed in the ortogonal coordinate system po, δ 1q using
the absolute pose problem from Chapter 7.3. Matrix K is composed
from coordinates of ~Cδ 1 .

Squaring the above and clearing the denominators gives

pcos=p~x1, ~x2qq2p~xJ
1β Ω ~x1βq p~xJ

2β Ω ~x2βq “ p~xJ
1β Ω ~x2βq2 (10.26)

which is a second order equation in elements of Ω. To find Ω, which has five inde-
pendent parameters for a general K, we need to be able to establish five pairs of rays
with known angles and solve a system of five quadratic equations 10.26 above.

§ 56 Camera with square pixels A simpler situation arises when the camera has
square pixels. Then, we can use constraints from § 55 to recover ω and K from three
pairs of rays containing known angles. That ammounts to solving three second order
equations 10.26 in o13, o23, o33.

However, this is actually exactly the same problem as we have already solved in
Section 7.3. Figure 10.2 shows an image plane π with a coordinate system po, δ 1q
with δ 1 “ p~b1,~b2,~b 1

3
q derived from the image coordinate system po, αq. Having square

pixels, vectors ~b1, ~b2 can and complemented by ~b 1
3
to form an orthogonal coordinates

system pO “ o, δ 1q. Next, we choose the global orthonormal coordinate system,
pO “ o, δq, δ “ p~d1, ~d2, ~d3q, such that

~d1 “
~b1

||~b1||
, ~d2 “

~b2

||~b1||
, and ~d3 “

~b 1
3

||~b1||
(10.27)
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and hence

~xδ “

»

—

–

||~b1|| 0 0

0 ||~b1|| 0

0 0 ||~b1||

fi

ffi

fl
~xδ 1 (10.28)

We know angles =p~x1, ~x2q, =p~x2, ~x3q and =p~x3, ~x1q. We also know image points
~u1α “ ~X1δ 1 , ~u2α “ ~X2δ 1 , ~u3α “ ~X3δ 1 and thus we can compute distances d12 “
|| ~X2δ 1 ´ ~X1δ 1 ||, d23 “ || ~X3δ 1 ´ ~X2δ 1 || and d31 “ || ~X3δ 1 ´ ~X1δ 1 ||. Having that, we
can find the pose ~Cδ 1 “ rc1, c2, c3sJ of the camera center C in pO, δ 1q by solving the
absolute pose problem from Chapter 7.3. We will select a solution with c3 ă 0 and,
if necessary, use a fourth point in π to choose the right solution among them. To
find K, we can form the following equation

»

–

0
0
1

fi

fl “ 1

f

”

K R | ´ K R ~Cδ

ı

»

—

—

–

0
0
0
1

fi

ffi

ffi

fl

(10.29)

since point o is represented by r0, 0, 1sJ in β and by r0, 0, 0sJ in δ. Coordinate
system pO, δq is chosen such that R “ I and ~Cδ “ ||~b1|| ~Cδ 1 and thus we get

K´1

»

–

0
0
1

fi

fl “ ´||~b1||
f

~Cδ 1 (10.30)

Now, let us consider matrix K as in Equation 10.16 and use the intepretation of
elements of K from Chapter 7, Equations 7.16, 7.17. We can write

K “

»

—

–

f

}~b1}
0 k13

0 f

}~b1}
k23

0 0 1

fi

ffi

fl
an thus K´1 “

»

—

–

}~b1}
f

0 ´ }~b1}
f
k13

0 }~b1}
f

´ }~b1}
f
k23

0 0 1

fi

ffi

fl
(10.31)

and use it in Equation 10.30 to get

»

—

–

k13
k23

´ f

}~b1}

fi

ffi

fl
“

»

–

c1
c2
c3

fi

fl (10.32)

and thus

K “

»

–

´c3 0 c1
0 ´c3 c2
0 0 1

fi

fl (10.33)

10.3 Camera calibration from vanishing points

Let us first make an interesting observation about parallel lines in space an its
corresponding vanishing point in an image. Let us consider a pair of parallel lines
K, L in space as shown in Figure 10.1(a). There is an affine plane σ containing the
lines. The lines K, L are projected to image plane π into lines k, l, respectively.
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Now, first extend affine plane σ to a projective plane Σ using the camera center
C. Then, define a coordinate system pC, δq with orthonormal basis δ “ p~d1, ~d2, ~d3q
such that vectors ~d1, ~d2 span affine plane σ.

Let ~Kδ̄,
~Lδ̄ be homogeneous coordinates of lines K, L w.r.t. δ̄. Then

~wδ “ ~Kδ̄ ˆ ~Lδ̄ (10.34)

are homogeneous coordinates of the intersection of lines K, L in Σ.
Next, extend the affine plane π to a projective plane Π using the camera center

C with the (camera) coordinate system pC, βq.
Let ~kβ̄ ,

~lβ̄ be homogeneous coordinates of lines k, l w.r.t. β̄. Then

~vβ “ ~kβ̄ ˆ~lβ̄ (10.35)

are homogeneous coordinates of the intersection of lines k, l in Π.
Now, consider Equation 8.14 for planes Σ and Π. Since δ is orthonormal, we

have K 1 “ I and thus that there is a homoghraphy

H “ K R (10.36)

which maps plane Σ to plane Π. Matrices K and R of the cemera are here w.r.t. the
world coordinate system pC, δq.

We see that there is a real λ such that there holds

λ~vβ “ K R ~wδ (10.37)

true.

§ 57 Pairs of “orthogonal” vanishing points and camera with square pixels Let
us have two pairs of parallel lines in space, Figure 10.1(b), such that they are also
orthogonal, i.e. letK1 be parallel with L1 andK2 be parallel with L2 and at the same
time let K1 be orthogonal to K2 and L1 be orthogonal to L2. This, for instance,
happens when lines K1, L1,K2, L2 form a rectangle but they also may be arranged
in the three-dimensional space as non-intersecting.

Let lines k1, l1, k2, l2 be the projections of K1, L1,K2, L2, respectively, repre-
sented by the corresponding vectors ~k

1β̄ ,
~l
1β̄ ,
~k
2β̄ ,
~l
2β̄ in the camera coordinates sys-

tem with (in general non-orthogonal) basis β. Lines k1 and l1, resp. k2 and l2,
generate vanishing points

~v1β “ ~k
1β̄ ˆ~l

1β̄

~v2β “ ~k
2β̄ ˆ~l

2β̄

The perpendicularity of ~w1 to ~w2 is, in the camera orthogonal basis δ, modeled
by

~wJ
1δ ~w2δ “ 0 (10.38)

We therefore get from Equation 10.37

~vJ
1β K

´JR´JR´1K´1~v2β “ 0 (10.39)

~vJ
1β K

´JK´1~v2β “ 0 (10.40)

~vJ
1β ω~v2β “ 0 (10.41)
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which is a linear homogeneous equation in ω. Assuming further square pixels, we
get, § 55,

~vJ
1β ω~v2β “ 0

~vJ
1β Ω~v2β “ 0

“

v11 v12 v13
‰

»

–

1 0 o13
0 1 o23
o13 o23 o33

fi

fl

»

–

v21
v22
v23

fi

fl “ 0

“

v23 v11 ` v21 v13 v23 v12 ` v22 v13 v23 v13
‰

»

–

o13
o23
o33

fi

fl “ ´pv21 v11 ` v22 v12q

Now, we need only 3 pairs of perpendicular vanishing points, e.g. to observe 3
rectangles not all in one plane to compute o13, o23, o33 and then

k13 “ ´o13
k23 “ ´o23
k11 “

b

o33 ´ k2
13

´ k2
23

10.4 Camera calibration from images of squares

Let us exploit the relationship between the coordinates of points X, which all lie in
a plane π and are measured in a coordinate system pO, ~d1, ~d2q in π, Figure 8.2. The
points X are projected by a perspective camera with the camera coordinate system

is pC, βq, β “ p~b1,~b2,~b3q and projection matrix P into image coordinates
“

u v
‰J

,

w.r.t. an image coordinate system po,~b1,~b2q, Equation 8.30. See paragraph § 28 to
recall that the columns of P can be writen as

P “
”

K R | ´ K R ~Cδ

ı

“
”

~d1ν ~d2ν ~d3ν ´~Cν

ı

(10.42)

and therefore we get the columns

h1 “ p1 “ ~d1ν (10.43)

h2 “ p2 “ ~d2ν (10.44)

h3 “ p4 “ ´~Cν (10.45)

of the homography H mapping σ to π as defined in Equation 8.31.
Now imagine that we are observing a square with 4 corner points X1, X2, X3

and X4 in the plane σ and we construct the coordinate system in σ by assigning
coordinates to the corners as

~X1δ “
“

0 0 0
‰

(10.46)

~d1δ “ ~X2δ “
“

1 0 0
‰

(10.47)

~d2δ “ ~X3δ “
“

0 1 0
‰

(10.48)

~X4δ “
“

1 1 0
‰

(10.49)
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We see that we get two constraints on ~d1δ, ~d2δ

~dJ
1δ
~d2δ “ 0 (10.50)

~dJ
1δ
~d1δ ´ ~dJ

2δ
~d2δ “ 0 (10.51)

which lead to

~dJ
1ν K

´J K´1 ~d2ν “ 0 (10.52)

~dJ
1β K

´J K´1 ~d1β ´ ~dJ
2ν K

´J K´1 ~d2ν “ 0 (10.53)

by using ~diν “ K R ~diδ for i “ 1, 2, and RJ R “ I.
These are two linear equations on ω and hence also, see § 54, on Ω

~dJ
1ν Ω

~d2ν “ 0 (10.54)

~dJ
1ν Ω

~d1ν ´ ~dJ
2ν Ω

~d2ν “ 0 (10.55)

on ω in terms of estimated λ H

hJ
1 Ω h2 “ 0 (10.56)

hJ
1 Ω h1 ´ hJ

2 Ω h2 “ 0 (10.57)

One square provides two equations and therefore three squares in two planes in
a general position suffice to calibrate full K. Actually, such three squares provide one
more equations than necessary since Ω has only five parameters. Hence, it is enough
observe two squares and one rectangle to get five constraints. Similarly, one square
and one rectangle in a plane then suffice to calibrate K when pixels are square.

Notice also that we have never used the special choice of coordinates of ~Xδ.
Indeed, point X4 could be anywhere provided that we know how to assign it coor-
dinates in pO, ~d1, ~d2q.

To calibrate the camera, we first assign coordinates to the corners of the square
as above, then find the homography H from the plane to the image

λi ~xiβ “ H ~Xiδ (10.58)

for αi “ 1, . . . , 4 and finally use columns of H the find Ω.
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11 Two-view scene reconstruction

Imagine two cameras giving two images of the space from two different view points.
We will next investigate how to (re-)construct camera projection matrices and mean-
ingful coordinates of points in the space such that the reconstructed cameras and
the reconstructed points generate the images.

11.1 Epipolar geometry

Figure 11.1 shows two cameras with different centers C1, C2 and image planes π1,
π2, observing a general point X as u1, u2. Base line b connecting image centers C1,
C2 intersects π1, π2 in epipoles e1, e2. Points C1, C2 and X form epipolar plane
σ, which intersects π1 in epipolar line l1 and π2 in epipolar line l2. Epipolar line
l1 passes through epipole e1 and through image point u1. Epipolar line l2 passes
through epipole e2 and through image point u2.

Let us next find the relationship between image points, epipoles, epipolar lines
as a function of camera parameters, Figure 11.2.

Assume a world coordinate system pO, δq and cameras C1, C2 with camera pro-
jection matrices

P1 “
”

K1R1 | ´ K1R1 ~C1δ

ı

and P2 “
”

K2R2 | ´ K2R2 ~C2δ

ı

(11.1)

Point X is projected to image planes π1, π2, with respective coordinate systems
po1, β1q, po2, β2q, as

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(11.2)

for some ζ1 ą 0 and ζ2 ą 0, which then leads to

ζ1 ~x1β1
“ K1R1p ~Xδ ´ ~C1δq and ζ2 ~x2β2

“ K2R2p ~Xδ ´ ~C2δq (11.3)

ζ1 R
J
1 K

´1

1
~x1β1

“ ~Xδ ´ ~C1δ ζ2 R
J
2 K

´1

2
~x2β2

“ ~Xδ ´ ~C2δ (11.4)

Consider now that vectors ~Xδ ´ ~C1δ, ~Xδ ´ ~C2δ and ~C2δ ´ ~C1δ form a triangle and
hence

~C2δ ´ ~C1δ “ p ~Xδ ´ ~C1δq ´ p ~Xδ ´ ~C2δq (11.5)

~C2δ ´ ~C1δ “ ζ1 R
J
1 K

´1

1
~x1β1

´ ζ2 R
J
2 K

´1

2
~x2β2

(11.6)

with ζ1 ą 0 and ζ2 ą 0 for the standard choice of camera coordinate systems.
We shall next eliminate depths ζ1, ζ2 by exploiting the vector product identities,

see Paragraph 3.3,

~0 “ ~xˆ ~x “ r~xsˆ ~x (11.7)

~0 “ ~yJp~xˆ ~yq “ ~yJ r~xsˆ ~y (11.8)
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π1 π2

σ

C1 C2
b

u1 u2

l1 l2

e1 e2

X

Figure 11.1: Epipolar geometry of two cameras.

for all ~x, ~y P R3.
We first vector-multiply Equation 11.6 by ~C2δ ´ ~C1δ from the left to get

0 “
”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1

1
~x1β1

´
”

~C2δ ´ ~C1δ

ı

ˆ
ζ2 R

J
2 K

´1

2
~x2β2

(11.9)

and then multiply Equation 11.9 by ζ2 ~x
J
2β2

K´J
2

R2 from the left to get

0 “ ζ2 ~x
J
2β2

K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
ζ1 R

J
1 K

´1

1
~x1β1

(11.10)

which, since ζ1 ‰ 0 and ζ2 ‰ 0, is equivalent with

0 “ ~xJ
2β2

K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
~x1β1

(11.11)

0 “ ~xJ
2β2

K´J
2

E K´1

1
~x1β1

(11.12)

0 “ ~xJ
2β2

F ~x1β1
(11.13)

where we introduced the essential matrix E P R3ˆ3 as

E “ R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 (11.14)

and the fundamental matrix F P R3ˆ3 as

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(11.15)

Let us next introduce epipoles to pass from vectors in δ to vectors in β1, β2,
which are measurable in images.

The projection e1 of the the camera center ~C2 to the first image as well as the
projection e2 of the the camera center ~C1 to the second image are obtained as

ζ1 ~e1β1
“ P1

„

~C2δ

1



“ K1R1p~C2δ ´ ~C1δq (11.16)

ζ2 ~e2β2
“ P2

„

~C1δ

1



“ K2R2p~C1δ ´ ~C2δq (11.17)
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π1 π2

C1 C2

~x1 ~x2

~l1 ~l2

~e1 ~e2

X

~C2 ´ ~C1

~X ´ ~C1

~X ´ ~C2

Figure 11.2: Vectors of the epipolar geometry.

for some ζ1 ą 0 and ζ2 ą 0.
We can now substitute Equation 11.16 into Equation 11.15 to get

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(11.18)

“ K´J
2

R2
“

ζ1 R
J
1 K

´1

1
~e1β1

‰

ˆ RJ
1 K

´1

1
(11.19)

“ ζ1K
´J
2

R2
pRJ

1
K´1

1
q´J

ˇ

ˇpRJ
1
K´1

1
q´J

ˇ

ˇ

r~e1β1
sˆ (11.20)

“ ζ1

|K1|K
´J
2

R2R
J
1 K

J
1 r~e1β1

sˆ (11.21)

We used the result from § 8, which shows how the vector product behaves under the
change of a basis.

Analogically, we substitute Equation 11.17 into Equation 11.15 to get

F “ K´J
2

R2

”

~C2δ ´ ~C1δ

ı

ˆ
RJ
1 K

´1

1
(11.22)

“ K´J
2

R2
“

´ζ2 RJ
2 K

´1

2
~e2β2

‰

ˆ RJ
1 K

´1

1
(11.23)

“
´

“

ζ2 R
J
2 K

´1

2
~e2β2

‰

ˆ RJ
2 K

´1

2

¯J
RJ
1 K

´1

1
(11.24)

“
ˆ

ζ2

|K2|R
J
2 K

J
2 r~e2β2

sˆ

˙J
RJ
1 K

´1

1
(11.25)

“ ´ ζ2

|K2| r~e2β2
sˆ K2R2R

J
1 K

´1

1
(11.26)

We used additional properties of the linear representation of the vector product
from § 9.

We see from Equations 11.21 and 11.26 that it is possible to recover homogeneous
coordinates of the epipoles from F by solving equations

F~e1β1
“ 0 and FJ~e2β2

“ 0 (11.27)
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for a non-zero multiples of ~e1β1
, ~e2β2

. We also see that matrix F has rank smaller

than three since it has a non-zero null space ~e1β1
. Since, rank of

”

~C2δ ´ ~C1δ

ı

ˆ
is

two for non-zero ~C2δ ´ ~C1δ, F has rank two when camera centers do not coincide.
Let us look at the epipolar lines. Epipolar lines pass through the corresponding

points in images and the epipoles, i.e. l1 “ x1 _ e1 and l2x “ x2 _ e2. Consider that
there holds

~xJ
2β2

F~e1β1
“ 0 and ~xJ

1β1
FJ~e2β2

“ 0 (11.28)

~xJ
2β2

F ~x1β1
“ 0 ~xJ

1β1
FJ~x2β2

“ 0 (11.29)

(11.30)

and therefore homogeneous coordinates ~l
1β̄1

~l
2β̄2

of epipolar lines generated by ~x2β2

and ~x1β1
, respectively, are obtained as

~l
1β̄1

“ FJ~x2β2
and ~l

2β̄2
“ F ~x1β1

(11.31)

for ~x2β2
‰ ~e2β2

and ~x1β1
‰ ~e1β1

.

11.2 Computing epipolar geometry from image matches

Let us look at how to compute the epipolar geometry between images from im-
age matches. Our goal is to find matrix G “ τF for some real non-zero τ using
Equation 11.13. Let us introduce

G “

»

–

g11 g12 g13
g21 g22 g23
g31 g32 g33

fi

fl (11.32)

and write Equation 11.13 as

0 “ ~xJ

2iβ2
G ~x1iβ1

“
“

u2i v2i w2i

‰

»

–

g11 g12 g13
g21 g22 g23
g31 g32 g33

fi

fl

»

–

u1i
v1i
w1i

fi

fl (11.33)

0 “
“

u2i u1i u2i v1i u2i w1i v2i u1i v2i v1i v2i w1i w2i u1i w2i v1i w2i w1i

‰

»

—

—

—

–

g11
g12
...
g33

fi

ffi

ffi

ffi

fl

for the i-th pair of the corresponding points ~x1iβ1
, ~x2iβ2

in the two images. Notice
that we can work even with ideal points when w1i “ 0 or w2i “ 0.

We can solve this way for a non-zero multiple of F from eight correspondences in
a general position, i.e. not all on a plane or on some special quadrics passing through
camera centers [2]. If there is noise in image coordinates, we in general get a rank
three matrix.

To avoid this problem, we can use only seven point correspondences to compute
a two dimensional space of solutions

G “ G1 ` α G2 (11.34)
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generated form its basis G1, G2 by α. Then we use the constraint

0 “ |G| “ |G1 ` α G2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

–

g111 g112 g113
g121 g122 g123
g131 g132 g133

fi

fl ` α

»

–

g211 g212 g213
g221 g222 g223
g231 g232 g233

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(11.35)

to find α by solving a third order polynomial

0 “ a3 α
3 ` a2 α

2 ` a1 α ` a0 (11.36)

a3 “ |G2|
a2 “ g221 g232 g113 ´ g221 g212 g133 ` g211 g222 g133 ` g231 g112 g223

`g231 g212 g123 ´ g211 g223 g132 ´ g231 g122 g213 ´ g231 g222 g113

´g211 g123 g232 ` g121 g232 g213 ` g221 g132 g213 ` g131 g212 g223

´g121 g212 g233 ´ g111 g223 g232 ´ g221 g112 g233 ` g211 g122 g233

`g111 g222 g233 ´ g131 g222 g213

a1 “ g111 g122 g233 ` g111 g222 g133 ` g231 g112 g123 ´ g121 g112 g233

´g211 g123 g132 ´ g221 g112 g133 ´ g231 g122 g113 ` g211 g122 g133

`g121 g132 g213 ` g121 g232 g113 ` g131 g212 g123 ´ g121 g212 g133

´g131 g222 g113 ` g221 g132 g113 ´ g111 g123 g232 ´ g131 g122 g213

`g131 g112 g223 ´ g111 g223 g132

a0 “ |G1|

That will give us up to three rank two matrices G.
Notice that we assumed that G was constructed with a non-zero coefficient at G1.

We therefore also need to check G “ G2 for a solution.

11.3 Ambiguity in two-view reconstruction

The goal of scene reconstruction from its two views is to find camera projection
matrices P1, P2, and coordinates of points in the scene ~Xδ such that the points ~Xδ

are projected by cameras P1, P2 to observed image points ~x1β1
, ~x2β2

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(11.37)

for some positive real ζ1, ζ2.
Assume that there are some cameras P1, P2, and coordinates of points in the

scene ~Xδ such that Equation 11.43 holds true. Then, for every 4 ˆ 4 real regular
matrix H we can get new camera matrices P 1

1
, P 1

2
and new point coordinates ~X 1

δ as

P 1
1 “ P1 H

´1 P 1
2 “ P2 H

´1

„

~X 1
δ

1



“ H

„

~Xδ

1



(11.38)

which also project to the same image points

ζ1 ~x1β1
“ P1

„

~Xδ

1



“ P1 H
´1H

„

~Xδ

1



“ P 1
1

„

~X 1
δ

1



(11.39)

ζ2 ~x2β2
“ P2

„

~Xδ

1



“ P2 H
´1H

„

~Xδ

1



“ P 1
2

„

~X 1
δ

1



(11.40)
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We see that in general we can reconstruct the cameras and the scene points only
up to some unknown transformation of the space. We also see that the transforma-
tion is more general than just changing a basis in R3 where we represent affine points
~Xδ. Matrix H acts in the three-dimensional affine space exactly as homography on
two-dimensional affine space.

Let us next look at a somewhat simpler situation when camera calibration matri-
ces K1, K2 are known. In such a case we can make sure that H has a special form which
corresponds to a special change of a coordinate system in the three-dimensional affine
space.

11.4 Reconstruction from two calibrated views

Let us further assume that camera calibration matrices K1, K2 are known. Hence we
can pass from F to E using Equations 11.14, 11.15 as

E “ KJ
2 F K1 (11.41)

then recover the relative pose of the cameras, set their coordinate systems and finally
reconstruct points of the scene.

11.4.1 Camera computation

To simplify the setting, we will first pass from “uncalibrated” image points ~x1β1
,

~x2β2
using K1, K2 to “calibrated”

~x1γ1 “ K´1

1
~x1β1

and ~x2γ2 “ K´1

2
~x2β2

(11.42)

and then use camera projection matrices as follows

ζ1 ~x1γ1 “ P1γ1

„

~Xδ

1



and ζ2 ~x2γ2 “ P2γ2

„

~Xδ

1



(11.43)

Matrix H allows us to choose the global coordinate system of the scene as pC1, ǫ1q.
Setting

H´1 “
„

RJ
1

~C1δ

~0J 1



(11.44)

we get from Equation 11.38

P1γ1 “
“

I |~0
‰

(11.45)

P2γ2 “
”

R2 R
J
1

| ´ R2 p~C2δ ´ ~C1δq
ı

“
”

R2 R
J
1

| ´ R2R
J
1

p~C2ǫ1 ´ ~C1ǫ1q
ı

(11.46)

“
”

R | ´ R ~Cǫ1

ı

(11.47)

and the corresponding essential matrix

E “ R
”

~Cǫ1

ı

ˆ
(11.48)

From image measurements, ~x1γ1 , ~x2γ2 , we can compute, Section 11.2, matrix

G “ τ E “ τ R
”

~Cǫ1

ı

ˆ
(11.49)
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and hence we can get E only up to a non-zero multiple τ . Therefore, we can recover
~Cǫ1 only up to τ .

We will next fix τ up to its sign s1. Consider that the Frobenius norm of a
matrix G

}G}F “

g

f

f

e

3
ÿ

i,j“1

G2ij “
b

trace pGJGq “
d

trace

ˆ

τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ

˙

“
d

τ2 trace

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ

˙

(11.50)

“ |τ |
b

2 }~Cǫ1}2 “ |τ |
?
2 }~Cǫ1} (11.51)

We have used the following identities

GJG “ τ2
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“ τ2

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
(11.52)

“ τ2

»

–

0 x ´y
´x 0 x

y ´x 0

fi

fl

»

–

0 ´x y

x 0 ´x
´y x 0

fi

fl “ τ2

»

–

y2 ` z2 ´x y ´x z
´x y x2 ` z2 “ y z

´x z ´y z x2 ` y2

fi

fl

We can now construct normalized matrix Ḡ as

Ḡ “
?
2 G

b

ř

3

i,j“1
G2ij

“ τ

|τ | R
«

~Cǫ1

}~Cǫ1}

ff

ˆ

“ s1 R
“

~tǫ1
‰

ˆ (11.53)

with new unknown s1 P t`1,´1u and ~tǫ1 denoting the unit vector in the direction
of the second camera center in ǫ1 basis.

We can find vector ~vǫ1 “ s2~tǫ1 with new unknown s2 P t`1,´1u by solving

Ḡ~vǫ1 “ 0 subject to }~vǫ1} “ 1 (11.54)

to get

Ḡ “ s1 R

„

1

s2
~vǫ1



ˆ
“ s1

s2
R r~vǫ1sˆ (11.55)

s Ḡ “ R r~vǫ1sˆ (11.56)
“

s g1 s g2 s g3
‰

“ R
“

v1 v2 v3
‰

(11.57)

with unknown s P t`1,´1u, unknown rotation R and known matrices
“

g1 g2 g3
‰

“
Ḡ and

“

v1 v2 v3
‰

“ r~vǫ1sˆ.
This is a matricial equation. Matrices Ḡ, r~vǫ1sˆ are of rank two and hence do

not determine R uniquely unless we use RJR “ I and |R| “ 1. That leads to a set
of polynomial equations. They can be solved but we will use the property of vector
product, § 8, to directly construct regular matrices that will determine R uniquely
for a fixed s.

Consider that for every regular A P R3ˆ3, we have, § 8,

pA ~xβq ˆ pA ~yβq “ ~xβ 1 ˆ ~yβ 1 “ A´J

|A´J| p~xβ ˆ ~yβq (11.58)
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which for R gives

pR ~xβq ˆ pR ~yβq “ R p~xβ ˆ ~yβq (11.59)

Using it for i, j “ 1, 2, 3 to get

ps giq ˆ ps gjq “ pR viq ˆ pR vjq (11.60)

s2 pgi ˆ gjq “ R pvi ˆ vjq (11.61)

pgi ˆ gjq “ R pvi ˆ vjq (11.62)

i.e. three more vector equations. Notice how s disappeared in the vector product.
We see that we can write

“

s g1 s g2 s g3 g1 ˆ g2 g2 ˆ g3 g1 ˆ g3
‰

“
“ Rs

“

v1 v2 v3 v1 ˆ v2 v2 ˆ v3 v1 ˆ v3
‰

(11.63)

There are two solutions R` for s “ `1 and R´ for s “ ´1. We can next compute two
solutions ~t`ǫ1 “ `~vǫ1 and ~t´ǫ1 “ ´~vǫ1 and combine them together to four possible
solutions

P2γ2`` “ R`
“

I | ´ ~t`ǫ1

‰

(11.64)

P2γ2`´ “ R`
“

I | ´ ~t´ǫ1

‰

(11.65)

P2γ2´` “ R´
“

I | ´ ~t`ǫ1

‰

(11.66)

P2γ2´´ “ R´
“

I | ´ ~t´ǫ1

‰

(11.67)

The above four camera projection matrices are compatible with Ḡ. The one which
corresponds to the actual matrix can be selected by requiring that all reconstructed
points lie in front of the cameras, i.e. that the reconstructed points are all positive
multiples of vectors ~x1ǫ1 and ~x2ǫ2 for all image points.

11.4.2 Point computation

Let us assume having camera projection matrices P1, P2 and image points ~x1β1
, ~x2β2

such that

ζ1 ~x1β1
“ P1

„

~Xδ

1



and ζ2 ~x2β2
“ P2

„

~Xδ

1



(11.68)

We can get ~Xδ, and ζ1, ζ2 by solving the following system of (inhomogeneous) linear
equations

„

~x1β1

~0 ´P1
~0 ~x2β2

´P2



»

—

—

–

ζ1
ζ2
~Xδ

1

fi

ffi

ffi

fl

“ 0 (11.69)
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11.5 Calibrated relative camera pose computation

In the previous chapter, we had first computed a multiple of the fundamental matrix
from seven point correspondences and only then used camera calibration matrices
to recover a multiple of the essential matrix. Here we will use the camera calibration
right from the beginning to obtain a multiple of the essential matrix directly from
only five image correspondences. Not only that five is smaller than seven but using
the calibration right from the beginning permits all points of the scene generating
the correspondences to lie in a plane.

We start from Equation 11.42 to get ~x1γ1 and ~x2γ2 from Equation 11.43 which
are related by

~xJ
2β2

K´J
2

E K´1

1
~x1β1

“ 0 (11.70)

~xJ
2γ2

E ~x1γ1 “ 0 (11.71)

The above equation holds true for all pairs of image points p~x1γ1 , ~x2γ2q that are in
correspondence, i.e. are projections of the same point of the scene.

11.5.1 Constraints on E

Matrix E has rank two, and therefore there holds

|E| “ 0 (11.72)

true.
We will now derive additional constraints on E. Let us consider that we can

write, Equation 11.48,

E “ R
”

~Cǫ1

ı

ˆ
(11.73)

Let us introduce ~Cǫ1 “
“

x y z
‰J

and evaluate

EJE “
ˆ

R
”

~Cǫ1

ı

ˆ

˙J
R
”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ
RJR

”

~Cǫ1

ı

ˆ
“
”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
(11.74)

“

»

–

0 z ´y
´z 0 x

y ´x 0

fi

fl

»

–

0 ´z y

z 0 ´x
´y x 0

fi

fl “

»

–

z2 ` y2 ´x y ´x z
´x y z2 ` x2 ´y z
´x z ´y z y2 ` x2

fi

fl

“

»

–

x2 ` y2 ` z2

x2 ` y2 ` z2

x2 ` y2 ` z2

fi

fl ´

»

–

xx x y x z

x y y y y z

x z y z z z

fi

fl

“ }~Cǫ1}2I ´ ~Cǫ1
~CJ
ǫ1

(11.75)

We can multiply the above expression by E from the left again to get an interesting
equation

E EJE “ E
´

}~Cǫ1}2I ´ ~Cǫ1
~CJ
ǫ1

¯

“ }~Cǫ1}2E “ 1

2
trace pEJEq E (11.76)

or equivalently
2 E EJE “ trace pEJEq E (11.77)
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which provides nine equations on elements of E.
For real E, these equations also imply |E| “ 0. Consider that Equation 11.77

implies
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (11.78)

For Equation 11.78 to hold true, either E can’t have full rank, i.e. |E| “ 0, or
2 E EJ ´ trace pEJEq I “ 0. The latter case gives

0 “ trace p2 E EJ ´ trace pEJEq Iq “ 2 trace pE EJq ´ 3 trace pEJEq (11.79)

“ 2
3
ÿ

i,j“1

E2ij ´ 3
3
ÿ

i,j“1

E2ij “ ´
3
ÿ

i,j“1

E2ij (11.80)

and thus implies E “ 0 for a real E and hence also |E| “ 0.
Let us now look at constraints on matrix G “ τ E, for some non-zero real τ . We

can multiply Equation 11.78 by τ3 to get

τ3
`

2 E EJ ´ trace pEJEq I
˘

E “ 0 (11.81)
`

2 pτ Eq pτ EJq ´ trace ppτ EJq pτ Eqq I
˘

pτ Eq “ 0 (11.82)
`

2 G GJ ´ trace pGJGq I
˘

G “ 0 (11.83)

Clearly, rank pGq “ rank pτ Eq “ rank pEq “ 2.
We conclude that constraints on E and G are the same.

11.5.2 Geometrical interpretation of Equation 11.77

~y

~C

~C ˆ ~y

~C ˆ p~C ˆ ~yq
~C ˆ p~C ˆ p~C ˆ ~yqq

Figure 11.3: Identity ~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq.

Let us provide a geometrical interpretation of Equation 11.77. We will mutiply
both sides of Equation 11.77 by a vector ~y P R3 and write

2 E EJE ~y “ trace pEJEq E ~y (11.84)

2 R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ıJ

ˆ

”

~Cǫ1

ı

ˆ
~y “ 2 }~Cǫ1}2 R

”

~Cǫ1

ı

ˆ
~y (11.85)

´R
”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ R }~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (11.86)

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ

”

~Cǫ1

ı

ˆ
~y “ ´}~Cǫ1}2

”

~Cǫ1

ı

ˆ
~y (11.87)
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Now, we use that for every two vectors ~x, ~y P R3 there holds r~xsˆ ~y “ ~x ˆ ~y true to
get

~Cǫ1 ˆ p~Cǫ1 ˆ p~Cǫ1 ˆ ~yqq “ ´}~Cǫ1}2p~Cǫ1 ˆ ~yq (11.88)

which is a familiar identity of the vector pruduct in R3, Figure 11.3.

11.5.3 Characterization of E

Let us next see that a non-zero 3ˆ 3 real matrix satisfying Equation 11.77 has rank
two and can be written in the form of Equation 11.73 for some rotation R and some
vector Cǫ1 .

Consider a real 3 ˆ 3 matrix E such that Equation 11.77 holds true. We will
make here use of the SVD decomposition [66, p. 411] of real matrices. We can write

E “ U

»

–

a

b

c

fi

fl VJ (11.89)

for some real non-negative a, b, c and some orthogonal real 3 ˆ 3 matrices U, V, such
that UJ U “ I, and VJ V “ I [66, p. 411]. One can see that UJ U “ I, and VJ V “ I

implies |U| “ ˘1, |V| “ ˘1.
Using Equation 11.89 we get

E EJ “ U

»

–

a2

b2

c2

fi

fl UJ, and EJE “ V

»

–

a2

b2

c2

fi

fl VJ (11.90)

and hence we can rewrite Equation 11.77 as
¨

˝2 U

»

–

a2

b2

c2

fi

fl UJ ´ pa2 ` b2 ` c2q I

˛

‚U

»

–

a

b

c

fi

fl VJ “ 0 (11.91)

2 U

»

–

a3

b3

c3

fi

fl VJ ´ pa2 ` b2 ` c2q U

»

–

a

b

c

fi

fl VJ “ 0 (11.92)

Matrices U, V are regular and thus we get the following three equations

a3 ´ a b2 ´ a c2 “ a pa2 ´ b2 ´ c2q “ 0 (11.93)

b3 ´ b a2 ´ b c2 “ b pb2 ´ c2 ´ a2q “ 0 (11.94)

c3 ´ c a2 ´ c b2 “ c pc2 ´ a2 ´ b2q “ 0 (11.95)

We see that there are the following two exclusive cases:

1. If any two of a, b, c are zero, then the third one is zero too. For instance,
if a “ b “ 0, then Equation 11.95 gives c3 “ 0. This can’t happen for a
non-zero E.

2. If any two of a, b, c are non-zero, then the two non-zero are equal and the third
is zero. For instance, if a ‰ 0 and b ‰ 0, then Equations 11.93, 11.94 imply
c2 “ 0 and thus a2 “ b2, which gives a “ b since a, b are non-negative, i.e.
rank pEq “ 2.
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We thus conclude that E can be written as

E “ U

»

–

a

a

0

fi

fl VJ “ U

»

–

0 1 0
´1 0 0
0 0 1

fi

fl

»

–

0 ´a 0
a 0 0
0 0 0

fi

fl VJ (11.96)

“ W

»

–

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W

»

–VJV

»

–

0
0
a

fi

fl

fi

fl

ˆ

VJ “ W
pVJq´J

|pVJq´J|

»

–V

»

–

0
0
a

fi

fl

fi

fl

ˆ

(11.97)

“ psign p|W|qq2 W VJ sign p
ˇ

ˇVJˇ
ˇq ra v3sˆ (11.98)

“ sign p|W|q W VJ sign p
ˇ

ˇVJˇ
ˇq rsign p|W|q a v3sˆ (11.99)

“ R rsign p|U|q a v3sˆ (11.100)

for some non-negative a and the third column v3 of V. Parameter a is zero for
E “ 0 and positive for rank two matrices E. We introduced a new matrix W in
Equation 11.97, which is the product of U and a rotation round the z axis. We also
used VJV “ I, and finally Equation 3.53. In Equation 11.98 we used psign p|W|qq2 “ 1,
V´J “ V for VJV “ I. Matrix R “ sign p|pWq|q W VJ sign p

ˇ

ˇVJˇ
ˇq in Equation 11.100 is

a rotation since sign p|pWq|q W as well as VJ sign p
ˇ

ˇVJˇ
ˇq are both rotations. Finally, we

see that sign p|W|q “ sign p|U|q.

11.5.4 Computing a non-zero multiple of E

Let us now disscuss how to compute a non-zero multiple of matrix E from image
matches.

11.5.4.1 Selecting equations

Every pair of image matches p~x1γ1 , ~x2γ2q provides a linear constratint on elements of
E in the form of Equation 11.71 and matricial Equation 11.77 gives nine polynomial
constraints for elements of E.

We have already seen in Paragraph 11.2 that a non-zero multiple of E can be
obtained from seven absolutely accurate point correspondences using the constraint
|E| “ 0. The solution was obtained by solving a set of polynomial equations out of
which seven were linear and the eighth one was a third order polynomial.

Let us now see how to exploit Equation 11.77 in order to compute a non-zero
multiple of E from as few image matches as possible.

An idea might be to use Equations 11.77 instead of |E| “ 0. It would be motivated
by the fact that Equations 11.77 imply equation |E| “ 0 for real 3 ˆ 3 matrices E.
Unfortunately, this implication does not hold true when we allow complex numbers
in E1, which we have to do if we want to obtain E as a solution to a polynomial

1Equation |E| “ 0 can’t be generated from Equations 11.77 as their algebraic combination, i.e.
|E| “ 0 is not in the ideal [6] generated by Equations 11.77. It means that there might be
some matrices E satisfying Equations 11.77 which do not satisfy |E| “ 0. We know that such
matrices can’t be real. The proof of the above claim can be obtained by the following program
in Maple [78]

>with(LinearAlgebra):

>with(Groebner):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:
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system without using any additional constraints. We have to therefore use |E| “ 0
as well.

The next question is whether we have to use all nine Equations 11.77. It can be
shown similarly as above that indeed none of the equations 11.77 is in the ideal [6]
generated by the others2. Therefore, we have to use all Equations 11.77 as well as
|E| “ 0. Hence we have altogether ten polynomial equations of order higher than
one.

We have more equations than unknowns but they still do not fully determine
E. We have to add some more equations from image matches. To see how many
equations we have to add, we evaluate the Hilbert dimension [6] of the ideal generated
by Equations 11.77 and |E| “ 0. We know [6] that a system of polynomial equations
has a finite number of solutions if and only if the Hilbert dimension of the ideal
generated by the system is zero.

>eq:=expand(convert(convert(eM,Vector),list)):

>v:=indets(eq):

>mo:=tdeg(op(v)):

>G:=Basis(eq,mo):

>Reduce(Determinant(E),G,mo);

e11 e22 e33 - e11 e23 e32 + e21 e32 e13 - e21 e12 e33 + e31 e12 e23 - e31 e22 e13

which computes the Gr obner basis G of the ideal generated by Equations 11.77 and verifies that
the remainder on division of |E| by G is non-zero [6].

2To show that none of the equations 11.77 is in the ideal generated by the others, we run the
following test in Maple.

>with(LinearAlgebra):

>with(Groebner):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>

>ReduceEqByEqn:=proc(eq,eqn)

local mo,G;

mo:=tdeg(op(indets(eqn)));

G:=Basis(eqn,mo);

Reduce(eq,G,mo);

end proc:

>

>for i from 1 to 9 do

ReduceEqByEqn(eq[i],eq[[op({$1..9} minus {i})]]);
end;

e113 ` e11 e122 ` e11 e132 ` e11 e212 ` 2 e21 e12 e22 ` 2 e21 e13 e23 ` e11 e312 ` 2 e31 e12 e32 ` 2 e31 e13 e33 ´ e11 e222 ´
e11 e322 ´ e11 e232 ´ e11 e332

e112 e21 ` 2 e11 e12 e22 ` 2 e11 e13 e23 ` e213 ` e21 e222 ` e21 e232 ` e21 e312 ` 2 e31 e22 e32 ` 2 e31 e23 e33 ´ e21 e122 ´
e21 e322 ´ e21 e132 ´ e21 e332

e112 e31 ` 2 e11 e12 e32 ` 2 e11 e13 e33 ` e212 e31 ` 2 e21 e22 e32 ` 2 e21 e23 e33 ` e313 ` e31 e322 ` e31 e332 ´ e31 e122 ´
e31 e222 ´ e31 e132 ´ e31 e232

e12 e112 ` e123 ` e12 e132 ` 2 e22 e11 e21 ` e12 e222 ` 2 e22 e13 e23 ` 2 e32 e11 e31 ` e12 e322 ` 2 e32 e13 e33 ´ e12 e212 ´
e12 e312 ´ e12 e232 ´ e12 e332

2 e12 e11 e21 ` e122 e22 ` 2 e12 e13 e23 ` e22 e212 ` e223 ` e22 e232 ` 2 e32 e21 e31 ` e22 e322 ` 2 e32 e23 e33 ´ e22 e112 ´
e22 e312 ´ e22 e132 ´ e22 e332

2 e12 e11 e31 ` e122 e32 ` 2 e12 e13 e33 ` 2 e22 e21 e31 ` e222 e32 ` 2 e22 e23 e33 ` e32 e312 ` e323 ` e32 e332 ´ e32 e112 ´
e32 e212 ´ e32 e132 ´ e32 e232

e13 e112 ` e13 e122 ` e133 ` 2 e23 e11 e21 ` 2 e23 e12 e22 ` e13 e232 ` 2 e33 e11 e31 ` 2 e33 e12 e32 ` e13 e332 ´ e13 e212 ´
e13 e312 ´ e13 e222 ´ e13 e322

2 e13 e11 e21 ` 2 e13 e12 e22 ` e132 e23 ` e23 e212 ` e23 e222 ` e233 ` 2 e33 e21 e31 ` 2 e33 e22 e32 ` e23 e332 ´ e23 e112 ´
e23 e312 ´ e23 e122 ´ e23 e322

2 e13 e11 e31 ` 2 e13 e12 e32 ` e132 e33 ` 2 e23 e21 e31 ` 2 e23 e22 e32 ` e232 e33 ` e33 e312 ` e33 e322 ` e333 ´ e33 e112 ´

e33 e212 ´ e33 e122 ´ e33 e222
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The Hilbert dimension of the ideal generated by Equations 11.77 and |E| “ 0 is
equal to six3. An extra linear equation reduces the Hilbert dimension by one [6].
Hence, five additional (independent) linear equations from image matches will reduce
the Hilbert dimension of the system to one.

Since all equations 11.71, 11.77 and |E| “ 0 are homogeneous, we can’t reduce the
Hibert dimension below one by adding more equations 11.77 from image matches.
This reflects the fact that E is fixed by image measurements only up to a non-zero
scale.

To conclude, five independent linear equations 11.71 plus Equations 11.77 and
|E| “ 0 fix E up to a non-zero scale.

The scale of E has to be fixed in a different way. For instance, one often knows
that some of the elements of E can be set to one. By doing so, an extra independent
linear equation is obtained and the Hilbert dimension is reduced to zero. Alterna-
tively, one can ask for }E}2 “ 1, which adds a second order equation. That also
reduces the Hilbert dimension to zero but doubles the number of solutions for E.

11.5.4.2 Solving the equations

We will next describe one way how to solve equations

~xJ
i,2γ2

E ~xi,1γ1 “ 0,
`

2 E EJ ´ trace pEJEq I
˘

E “ 0, |E| “ 0, i “ 1, . . . , 5
(11.101)

We will present a solution based on [7], which is somewhat less efficient than [79, 80]
but requires only eigenvalue computation.

First, using Equation 3.92 from Paragraph 3.5, we can write

»

—

—

—

—

—

—

–

~xJ
1,1γ1

b ~xJ
1,2γ2

~xJ
2,1γ1

b ~xJ
2,2γ2

~xJ
3,1γ1

b ~xJ
3,2γ2

~xJ
4,1γ1

b ~xJ
4,2γ2

~xJ
5,1γ1

b ~xJ
5,2γ2

~aJ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

vpEq “

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(11.102)

to obtain a 6 ˆ 9 matrix of a system of linear equations on vpEq. Row ~aJ can be
chosen randomly to fix the scale of vpEq. There is only a negligible chance that it
will be chosen in the orthogonal complement of the span of the solutions to force
the solutions be trivial. If so, it can be detected and a new ~aJ generated.

Assuming that the rows of the matrix of the system are linearly independent,
we obtain a 3-dimensional affine space of solutions. After rearranging the particu-
lar solution, resp. the basis of the solution of the associated homogeneous system,

3The Hilber Dimension of the ideal is computed in Maple as follows

>with(LinearAlgebra):

>E:=<<e11|e12|e13>,<e21|e22|e23>,<e31|e32|e33>>:

>eM:=2*E.Transpose(E).E-Trace(Transpose(E).E)*E:

>eq:=expand(convert(convert(eM,Vector),list)):

>with(PolynomialIdeals):

>HilbertDimension(<op(eq),Determinant(E)>);

6

112



T. Pajdla. 2015-12-8 (pajdla@cmp.felk.cvut.cz)

back to 3 ˆ 3 matrices G0, resp. G1, G2, G3, we will get all solutions compatible with
Equation 11.102 in the form

G “ G0 ` x G1 ` y G2 ` z G3 (11.103)

for x, y, z P R.
Now, we can substitute G for E into the two remaining equations in 11.101. We

get ten trird-order polynomial equations in three unknowns and with 20 monomials.
We can write it as

M m “ 0 (11.104)

where M is a constant 10 ˆ 20 matrix4 and

mJ “ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s
(11.105)

is a vector of 20 monomials.
Next, we rewrite the system 11.105 as

pz3C3 ` z2C2 ` z C1 ` C0q c “ 0 (11.106)

with

C “ z3C3 ` z2C2 ` z C1 ` C0 (11.107)

containing 10 monomials. Matrices C0, . . . , C4 are constant 10 ˆ 10 matrices

C0 “
“

m1 m2 m3 m4 m11 m12 m13 m17 m18 m20
‰

(11.108)

C1 “
“

0 0 0 0 m5 m6 m7 m14 m15 m19
‰

(11.109)

C2 “
“

0 0 0 0 0 0 0 m8 m9 m16
‰

(11.110)

C3 “
“

0 0 0 0 0 0 0 0 0 m10
‰

(11.111)

where mi are columns of M.
Since m contains all monomials in x, y, z up to degree three, we could have written

similar equations as Equation 11.106 with x and y.
Equation 11.106 is known as a Polynomial Eigenvealue Problem (PEP) [81] of de-

gree three. The strandard solution to such a problem is to relax it into a generelized
eigenvalue problem of a larger size as follows.

4Matric M can be obtained by the following Maple [78] program

>with(LinearAlgebra):

>G0:=<<g011|g012|g013>,<g021|g022|g023>,<g031|g032|g033>>:

>G1:=<<g111|g112|g113>,<g121|g122|g123>,<g131|g132|g133>>:

>G2:=<<g211|g212|g213>,<g221|g222|g223>,<g231|g232|g233>>:

>G3:=<<g311|g312|g313>,<g321|g322|g323>,<g331|g332|g333>>:

>trc:=E->simplify((2*E.Transpose(E)-Trace(Transpose(E).E)*IdentityMatrix(3,3)).E):

>eq:=[op(convert(trc(G),listlist)),Determinant(G)]:

>mo:=tdeg(x,y,z);

>m:=PolyVarMonomials(eq,mo);

m :“ rx3, y x2, y2x, y3, z x2, z y x, z y2, z2x, z2y, z3, x2, y x, y2, z x, z y, z2, x, y, z, 1s

>M:=PolyCoeffMatrix(eq,m,mo):

>M[1,1];

2 g122 g112 g121`2 g133 g113 g131´g1232 g111´g1222 g111`2 g132 g112 g131´g1322 g111`g1312 g111`g1122 g111`

g1113 ` 2 g123 g113 g121 ´ g1332 g111 ` g1212 g111 ` g1132 g111
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We can write z2c “ z pzcq and zc “ z pcq altogether with Equation 11.106 in a
matrix form as

»

–

0 I 0

0 0 I

´C0 ´C1 ´C2

fi

fl

»

–

c

zc

z2c

fi

fl “ z

»

–

I 0 0

0 I 0

0 0 C3

fi

fl

»

–

c

zc

z2c

fi

fl (11.112)

A v “ z B v (11.113)

This is a Generelized Eigenvalue Problem (GEP) [81] of size 30 ˆ 30, which can
be solved for z and v. Values of x, y can be recovered from v as x “ c8{c10 and
x “ c9{c10. It provides 30 solutions in general.

When C0 is regular, we can pass to a standard eigenvalue problem for a non-zero
z by inverting A and using w “ 1{z

»

–

´C´1

0
C1 ´C´1

0
C2 ´C´1

0
C3

I O 0

0 I 0

fi

fl

»

–

w2c

wc

c

fi

fl “ w

»

–

w2c

wc

c

fi

fl (11.114)
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