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Abstract—Unexpected stimuli are a challenge to any machine learning algorithm. Here, we identify distinct types of unexpected

events when general-level and specific-level classifiers give conflicting predictions. We define a formal framework for the

representation and processing of incongruent events: Starting from the notion of label hierarchy, we show how partial order on labels

can be deduced from such hierarchies. For each event, we compute its probability in different ways, based on adjacent levels in the

label hierarchy. An incongruent event is an event where the probability computed based on some more specific level is much smaller

than the probability computed based on some more general level, leading to conflicting predictions. Algorithms are derived to detect

incongruent events from different types of hierarchies, different applications, and a variety of data types. We present promising results

for the detection of novel visual and audio objects, and new patterns of motion in video. We also discuss the detection of Out-Of-

Vocabulary words in speech recognition, and the detection of incongruent events in a multimodal audiovisual scenario.

Index Terms—Novelty detection, categorization, object recognition, out-of-vocabulary words.
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1 INTRODUCTION

TYPICALLY, machine learning algorithms build models of
the world using training data from the application

domain and prior knowledge about the problem. The
models are later applied to data in order to estimate the
current state of the world. An implied assumption is that
the future is stochastically similar to the past. The approach
fails when the system encounters situations that are not
anticipated from the past experience. In contrast, successful
natural organisms quite readily identify new unanticipated
stimuli and situations, and frequently generate an appro-
priate response. How this can be done is one of the
questions motivating the current work.

By definition, an unexpected event is one whose
probability of confronting the system is low, based on the
data that has been observed previously. In line with this
observation, much of the computational work on novelty
detection focused on the probabilistic modeling of known
classes, identifying outliers of these distributions as novel
events (see, e.g., [1], [2] for recent reviews).

To advance beyond the detection of outliers, we observe
that there are many different reasons why some stimuli
could appear novel. In Section 2, we focus on those
unexpected events, which are defined by the incongruence
between a prediction induced by prior experience (training
data) and the evidence provided by the sensory data. To
identify an item as incongruent, we use two parallel
classifiers. One of them is strongly constrained by specific
knowledge (either prior knowledge or data-derived during
training), the other classifier is more general and less
constrained. Both classifiers are assumed to yield class-
posterior probabilities in response to a particular input
signal. A sufficiently large discrepancy between posterior
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probabilities induced by input data in the two classifiers is
taken as evidence that an item is incongruent.

Thus, in comparison with most existing work on novelty
detection, one new and important characteristic of our
approach is that we look for a level of description where the
novel event is sufficiently probable. Rather than simply
responding to an event which is rejected by all classifiers,
which often requires no special attention (as in pure noise),
we construct and exploit a hierarchy of representations. We
attend to those events which are recognized (or accepted) at
some more abstract levels of description in the hierarchy
while being rejected by the classifiers at the more specific
(concrete) levels.

Our approach to the detection of incongruent novel
events is general and can be applied to many engineering
and biological domains. However, depending on the
application—the properties of the hierarchy and the type
of data—a different algorithm will be called for to
implement the approach.

In Section 3, we assume a disjunctive tree-like hierarchy,
where each class is linked to a number of more specific
subclasses (as in human categorization), and develop
algorithms which are designed to detect unexpected audio
and visual novel objects given a set of related known objects.
We train the more general, less constrained classifier using a
larger more diverse set of stimuli (e.g., the facial images of
many individuals). The constrained (specific) classifier is
built from a family of classifiers, each trained with positive
examples from a single object (e.g., the set of one individual’s
facial images). An incongruous item (e.g., a new individual)
could then be identified by some significant discrepancy
between the low confidence of the specific classifier and the
high confidence of the general classifier. To conclude the
treatment of tree-like hierarchies, in Section 4 we discuss a
conjunctive hierarchy, where different modalities (visual and
audio) provide different part descriptions of the target object.

In Section 5, we discuss general hierarchies. In one case,
the hierarchy is less diverse—a simple chain of inclusion
relations, where the motivating application is the detection
of out-of-vocabulary lexical items in speech. In this case, the
more general classifier is engineered to identify a more
generic pattern—speech sounds unconstrained by langua-
ge—while the more constrained classifier is trained to
classify a specific pattern—using language-dependent
models of phonemes. An incongruent object is detected
when some noticeable discrepancy exists between the two
classifiers. In the second case discussed in this section, the
hierarchy includes both disjunctive and conjunctive nodes,
and the motivating application is the detection of new
patterns of motion in video.

One motivation for our work is the way biological
systems are more adept at handling unexpected events. In
Section 6, we return to this point, describing experiments
with gerbils that investigate knowledge transfer from
known stimuli to a novel modality in a biological system,
where the transfer occurs between sensory modalities.

Prior work. Often, novelty is detected based on generative
models of known objects, when new data are rejected by all
these models. Previous work may estimate a spherically
shaped boundary around a single class data set [3], learn a
hyperplane which separates the class data set from the rest of

the feature space (one class SVM) [4], or utilize the
nonparametric Parzen-window density estimation approach
[5]. A few methods use a multiclass discriminative approach,
as, for example, [6] for the detection of novel objects in videos
and [7] for the specific task of face verification. To our
knowledge, all novelty detection approaches which do not
rely on samples of outliers or otherwise model the outliers
distribution detect novelty by rejecting normality (i.e.,
novelty is detected when all classifiers of known objects fail
to accept a new sample). There are many studies on novelty
detection in biological systems [8], often focusing on regions
of the hippocampus [9].

We assume in this work that the hierarchical relations
between categories is given, at least to some extent. There
has been some recent interest in the learning of object
hierarchies [10], [11], and these algorithms can be effectively
integrated into our approach. In addition, the notion of
hierarchical organization of object classes has been ac-
knowledged and used in several recent visual object class
recognition papers, such as [12], [13], [14]. Otherwise, a
number of different methods have been developed to detect
and recognize object classes, trained and tested on a wide
range of publicly available data sets (see, e.g., [15], [16],
[17]). These algorithms are trained to recognize images of
objects from a known class.

2 INCONGRUENT EVENTS

We now define the concept of incongruent events as
induced by a classification process that can, in general,
correspond to partial order on sets of event classes. This
partial order, represented by a directed graph (DAG) that
captures subset-superset relations among sets (as in algebra
of sets), can also be interpreted in terms of two category-
forming operations: conjunctive and disjunctive hierarchies,
as described in Section 2.1. We provide a unified definition
in Section 2.2, and analyze its implication for the two cases.

2.1 Label Hierarchy and Partial Order

The set of labels (or concepts) represents the knowledge
base about the stimuli domain, which is either given (by a
teacher) or learned. In cognitive systems, such knowledge is
hardly ever a set; often, in fact, labels are given (or can be
thought of) as a hierarchy.

In general, a hierarchy can be represented by a directed
graph where each label (a set of objects) corresponds to a
single node in the graph. A directed edge exists from label
(specific child concept) a to (general parent concept) b iff a
corresponds to a smaller set of events or objects in the world
which is contained in the set of events or objects correspond-
ing to label b, i.e., a � b. In this way, the edges represent a
partial order defined over the set of labels or concepts.

Because the graph is directed, it defines for each concept a
two distinct sets of concepts (parent-child) related to it:
disjunctive concepts, which are smaller (subsets) according to
the partial order, i.e., they are linked to node a by incoming
edges converging on a; and conjunctive concepts, which are
larger (supersets) according to the partial order, i.e., they
are linked to node a by outgoing edges diverging from a. If
the DAG of partial order is a tree, only one of these sets is
nontrivial (larger than 1).
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We consider two possible tree-like hierarchies, which
correspond to two interesting intuitive cases:

Conjunctive hierarchy. Modeling part membership, as in
biological taxonomy or speech. For example, eyes, ears, and
nose combine to form a head; head, legs, and tail combine to
form a dog (see left panel of Fig. 1); and sequences of
phonemes constitute words and utterances. In this case, each
node has a single child and possibly many parents.

Disjunctive hierarchy. Modeling class membership, as
in human categorization—where objects can be classified at
different levels of generality, from subordinate categories
(most specific level), to basic level (intermediate level), to
superordinate categories (most general level). For example,
a beagle (subordinate category) is also a dog (basic level
category), and it is also an animal (superordinate category);
see the right panel of Fig. 1. In this case, each node has a
single parent and possibly many children.

The sets of disjunctive and conjunctive concepts induce
constraints on the observed features in different ways.
Accordingly, the set of objects corresponding to a given
label (node) is included in the intersection of the objects in its
set of conjunctive concepts. Thus, in the example shown in the
left panel of Fig. 1, the concept of Dog requires the
conjunction of parts as in DOG � LEGS \HEAD \ TAIL.
To the contrary, the set of objects corresponding to a given
label (node) contains the union of objects in its set of disjunctive
concepts. In the example shown in the right panel of Fig. 1, the
class of dogs requires the disjunction of the individual
members as in DOG � AFGHAN [BEAGLE [ COLLIE.

2.2 Definition of Incongruent Events

2.2.1 Multiple Probabilistic Models for Each Concept

For each node a, define As ¼ fb 2 G; b � ag—the set of
disjunctive concepts, corresponding to all nodes more specific
(smaller) than a in accordance with the given partial order.
Similarly, define Ag ¼ fb 2 G; a � bg—the set of conjunctive
concepts, corresponding to all nodes more general (larger)
than a in accordance with the given partial order.

For each node a and training data T , we hypothesize
three probabilistic models which are derived from T in
different ways in order to determine whether a new data
point X can be described by concept a:

. QaðXÞ: A probabilistic model of class a, derived from
training data T unconstrained by the partial order
relations in the graph.

. Qs
aðXÞ: A probabilistic model of class a which is

based on the probability of concepts in As, assuming
their independence from each other. Typically, the
model incorporates a simple disjunctive relation
between concepts in As.

. Qg
aðXÞ: A probabilistic model of class a which is

based on the probability of concepts in Ag, assuming
their independence from each other. Here, the model
typically incorporates a simple conjunctive relation
between concepts in Ag.

2.2.2 Examples

To illustrate, consider again the simple examples shown in
Fig. 1, where our concept of interest a is Dog.

In the Conjunctive hierarchy (left panel), jAgj ¼ 3 (Head,
Legs, Tail) while jAsj ¼ 1. We derive two different models
for the class Dog:

1. QDog—Obtained using training pictures of dogs and
not dogs without body part labels.

2. Qg
Dog—Obtained using the outcome of models for

Head, Legs, and Tail which have been derived from
the same training set T with body part labels only. If
we further assume that concept a is the conjunction
of its part member concepts as defined above and
assuming that these part concepts are independent
of each other, we get

Qg
Dog ¼

Y

b2Ag

Qb ¼ QHead �QLegs �QTail: ð1Þ

In the disjunctive hierarchy (right panel), jAsj ¼ 3
(afghan, beagle, collie) while jAgj ¼ 1. We therefore derive
two models for the class Dog:

1. QDog—Obtained using training pictures of dogs and
not dogs without breed labels.

2. Qs
Dog—Obtained using the outcome of models for

afghan, beagle, and collie which have been derived
from the same training set T with dog breed labels
only. If we further assume that class a is the
disjunction of its subclasses as defined above and
once again assume that these subclasses are inde-
pendent of each other, we get

Qs
Dog ¼

X

b2As

Qb ¼ QAfghan þQBeagle þQCollie:

2.2.3 Incongruent Events

In general, we expect the different models to provide
roughly the same probabilistic estimate for the presence of
concept a in data X. A mismatch between the predictions of
the different models may indicate that something new and
interesting is being observed, unpredicted by the existing
knowledge of the system. In particular, we are interested in
the following discrepancy:

Definition. Observation X is incongruent if there exists a
concept “a” such that

Qg
aðXÞ � QaðXÞ or QaðXÞ � Qs

aðXÞ: ð2Þ
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Fig. 1. Examples. Left: Conjunctive hierarchy, the concept of a dog
requires the conjunction of parts, including head, legs, and tail. Right:
Disjunctive hierarchy, the concept of a dog is defined as the disjunction
of more specific concepts, including afghan, beagle, and collie.



In other words, observation X is incongruent if a
discrepancy exists between the inference of two classifiers,
where the more general classifier is much more confident in
the existence of the object than the more specific classifier.

Classifiers come in different forms: They may accept or
reject, they may generate a (possibly probabilistic) hypoth-
esis, or they may choose an action. For binary classifiers that
either accept or reject, the definition above implies one of
two mutually exclusive cases: Either the classifier based on
the more general descriptions from level g accepts X while
the direct classier rejects it, or the direct classifier accepts X
while the classifier based on the more specific descriptions
from level s rejects it. In either case, the concept receives
high probability at some more general level (according to
the partial order), but much lower probability when relying
only on some more specific level.

2.2.4 Discussion: Why This Definition?

We first note one underlying assumption—that all the
models and derived classifiers are veridical and able to
capture the state of affairs as seen in the training data.
Discrepancies between classifiers may occur due to errors
when one of the three classifiers simply fails to recognize an
object where it exists or recognizes the object where it does
not. We do not provide theoretical analysis of these cases,
but rather provide empirical evidence that our method is
robust to such errors, which are present in our experiments
with real data.

Another underlying assumption is that the assumed
hierarchy is correct. Once again, discrepancies may occur if
we got the hierarchy wrong when building the three
classifiers. Specifically, discrepancies where

Qg
aðXÞ � QaðXÞ or QaðXÞ � Qs

aðXÞ ð3Þ

are not considered here as they correspond to some logical
contradiction with the partial order, implying errors in the
models, the partial order, or both.

If discrepancies occur while our assumptions hold—the
models are correct and the hierarchy is veridical—then we
may conclude that something new is being observed, not
present in the training data. These cases are captured by our
definition.

To illustrate, consider the following examples where our
definition seems to capture interesting “surprises”:

1. In the left panel of Fig. 1, we have

Qg
Dog ¼ QHead �QLegs �QTail � QDog:

In other words, while the probability of each part is high
(since the multiplication of those probabilities is high), the
more specific Dog classifier is rather uncertain about the
existence of a dog in this data.

How can this happen? Maybe the parts are configured in
an unusual arrangement for the object as seen in the
training data (e.g., my 3-legged cat), or we may have
encountered an unusual part combination (e.g., the donkey
with a cat’s tail from Shrek 3). Those are two examples for
the kind of unexpected events we are interested in. But
since we assume that our dog classifier is correct and
therefore there is no dog in the image, we must conclude
that we are seeing something new, possibly as trivial as an

occluded dog never seen before in the training data. More
interestingly, we may be seeing something whose parts are
familiar from other objects, but the whole is new.

2. In the right panel of Fig. 1, we have

Qs
Dog ¼ QAfghan þQBeagle þQCollie � QDog:

In other words, while the probability of each subclass is low
(since the sum of these probabilities is low), the generic Dog
classifier is certain about the existence of a dog in this data.

How may such a discrepancy arise? Maybe we are seeing
a new breed of dog that we haven’t seen before—a pointer.
The dog model, which is assumed to correctly capture the
notion of dogness, should be able to identify this new object,
while models of previously seen dog breeds (afghan,
beagle, and collie) correctly fail to recognize the new object.

2.3 How to Use the Proposed framework

Our framework presented above is rather general and in
principle can be applied to any partial order. In order to
use it for a given application, one needs first to establish
the relevant hierarchical relations between objects or
events. Given the type of existing relations, one may
proceed as follows:

Disjunctive hierarchies. A concept is defined by its own
labeled examples, as well as the disjunction of subconcepts
each defined by more specific labels. To implement our
framework, we need at least two classifiers, one more general
than the other. We may define the two classifiers as follows
(see Section 3): First is the vanilla classifier Qconcept, which is
trained using the concept labels as positive examples. Second
is a more specific classifierQs

concept, which is trained using the
subconcept labels as positive examples (in our implementa-
tion in Section 3, this second classifier is trained discrimina-
tively). When Qconcept accepts a new example and Qs

concept

does not, we identify the example as incongruent.
Conjunctive hierarchies. A concept is defined by its own

labeled examples, as well as the conjunction of super-
concepts, each defined by more general labels. We may
define the two classifiers as follows (see Section 4): Qconcept is
defined and trained as above. We then train a classifier for
each superconcept and define Qg

concept as the conjunction of
these classifiers. As before, when Qg

concept accepts a new
example and Qconcept does not, we identify the example as
incongruent.

General hierarchies. When a concept has multiple
views, both as the disjunction of subconcepts and the
conjunction of superconcepts, we may combine the two
schemes as illustrated in Section 5.2.

3 DISJUNCTIVE HIERARCHIES

We now adopt the framework described above to the
problem of novel class detection when given a Disjunctive
Hierarchy. We assume a rich hierarchy, with nontrivial (i.e.,
of size larger than 1) sets of disjunctive concepts; see the right
panel of Fig. 1. This assumption enables the use of
discriminative classifiers.

As discussed in Section 2.2 and specifically in the second
example there, in a disjunctive hierarchy we have two
classifiers for each label or concept: the more general classifier
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Qconcept and the specific disjunctive classifier Qs
concept. The

assumed classification scenario is multiclass, where

several classes are already known.
Next, we describe two closely related algorithms for two

applications: an algorithm to detect a new visual object in

Section 3.1 and a similar algorithm to detect a new auditory

object in Section 3.2.

3.1 Novel Subclasses of Visual Objects

In order to identify novel classes, our algorithm detects a

discrepancy between Qconcept and Qs
concept. The classifier

Qconcept is trained in the usual way using all the examples of

the object, while the specific classifier Qs
concept is trained to

discriminatively distinguish between the concepts in the set

of disjunctive concepts of the object. Our approach is general

in the sense that it does not depend on the specifics of the

underlying object class recognition algorithm.
We tested the algorithm experimentally on the set of

motorbike classes from the Caltech256 benchmark data set.

We found that discriminative methods which capture

distinctions between the related known subclasses perform

significantly better than generative methods. We demon-

strate in our experiments the importance of modeling the

hierarchical relations tightly. Finally, we compare the

performance of the proposed approach to results obtained

from novelty detection based on one-class SVM outlier

detection.

3.1.1 Algorithm for Novel Class Detection

Algorithm 1 is formally described below.

Algorithm 1. Unknown Class Identification

Input:
x test image

Cg general level classifier

Cj specific level classifiers, j ¼ 1::jknown sub-classesj
V c
Ci

average certainty of train or validation examples

classified correctly as Ci
V w
Ci

average certainty of train or validation examples

classified wrongly as Ci (zero if there are none)

1) Classify x using Cg

2) if accept

Classify x using all Cj classifiers and obtain a set of

certainty values VCjðxÞ
Let i ¼ arg maxj VCjðxÞ
Define SðxÞ ¼ ðVCiðxÞ 	 V w

Ci
Þ=ðV c

Ci
	 V w

Ci
Þ

a) if SðxÞ > 0:5

label x as belonging to a known class
b) else label x as belonging to a novel (unknown)

class

3) else label x as a background image

Basic Object Class Classifiers. To verify the generality of our

approach, we tested it using two different embedded object

class representation methods. For conciseness, we only

describe results with method [15]; the results with method

[16] are comparable but slightly inferior, presumably due to

the generative nature of the method and the fact that it does

not use negative examples when training classifiers.

The object recognition algorithm of [15] learns a generative
relational part-based object model, modeling appearance,
location, and scale. Location and scale are described relative
to some object location and scale, as captured by a star-like
Bayesian network. The model’s parameters are discrimina-
tively optimized (given negative examples during the
training phase) using an extended boosting process. Based
on this model and some simplifying assumptions, the
likelihood ratio test function is approximated (using the
MAP interpretation of the model) by

F ðxÞ ¼ max
C

XP

k¼1

max
u2QðxÞ

log pðujC; �kÞ 	 �; ð4Þ

with P parts, threshold �, C denoting the object’s location
and scale, and QðxÞ the set of extracted image features.

General Category Level Classifier. In order to learn the
general classifier Qconcept, we consider all the examples from
the given subclasses as the positive set of training examples.
For negative examples, we use either clutter or different
unrelated objects (none of which is from the known
siblings). As we shall see in Section 3.1.3, this general
classifier demonstrates high acceptance rates when tested
on the novel subclasses.

Specific Category Level Classifier. The problem of learning
the specific classifier Qs

concept is reduced to the standard
novelty detection task of deciding whether a new sample
belongs to any of the known classes or not. However, the
situation is somewhat unique and we take advantage of
this: While there are multiple known classes, their number
is bounded by the degree of the graph of partial orders
(they must all be subclasses of a single abstract object). This
suggests that a discriminative approach could be effective.

The algorithm is formally described in the next section.

3.1.2 Algorithm for Subclass Detection

The discriminative training procedure of the specific level
classifier is summarized in Algorithm 2, with details
subsequently provided.

Algorithm 2. Train Known versus Unknown Specific Class

Classier

1) For each specific class, build a discriminative classifier

with:
positive examples: all images from the specific class

negative examples: images from all sibling classes

2) Compute the Normalized Certainty function, and

choose classification threshold for novel classes.

3) Accept iff the normalized certainty is larger than the

fixed threshold.

Step 1, Discriminative Multiclass Classification. The specific
level object model learned for each known class is
optimized to separate the class from its siblings. A new
sample x is classified according to the most likely
classification (max decision) Ci. The output of the learned
classifier (4) provides an estimate for the measure of
classification certainty VCiðxÞ.

Step 2, Normalized Certainty Score. Given VCiðxÞ, we seek a
more sensitive measure of certainty as to whether or not the
classified examples belongs to the group of known
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subclasses. To this end, we define a normalized score
function which normalizes the certainty estimate VCiðxÞ
relative to the certainty estimates of correct classification
and wrong classification for the specific-class classifier, as
measured during training or validation.

Specifically, let V c
Ci

denote the average certainty of train
or validation examples classified correctly as Ci, and let V w

Ci
denote the average certainty of train or validation exam-
ples from all other subclasses classified wrongly as
belonging to class Ci. The normalized score SðxÞ of x is
calculated as follows:

SðxÞ ¼
ðVCiðxÞ 	 V w

Ci
Þ

ðV c
Ci
	 V w

Ci
Þ : ð5Þ

If the classes can be well separated during training, that is,
V c
Ci
� V w

Ci
, and both groups have low variance, the normal-

ized score provides a reliable certainty measure for the
multiclass classification.

Step 3, Choosing a threshold. Unlike the typical learning
scenario, where positive (and sometimes negative) exam-
ples are given during training, in the case of novelty
detection no actual positive examples are known during
training (since, by definition, novel objects have never been
observed before). Thus, it becomes advantageous to set
more conservative limits on the learned classifiers, more so
than indicated by the training set. Specifically, we set the
threshold of the normalized certainty measure, which lies in
the range [0..1] to 0.5.

3.1.3 Experiments

Data Sets. In the current set of experiments, we used images
from a subset of classes extracted from the Caltech256 data
set and corresponding to some crude notion of natural
hierarchy.

Specifically, in the chosen hierarchy, the general parent
category level is “Motorbikes”; see Fig. 2. Twenty-two
object classes, taken from [19], were added in order to serve
together with the original data set as a joint pool of object
classes from which the unseen-objects are sampled.

Method. All experiments were repeated at least 25 times
with different random sampling of test and train examples.
We used 39 images for the training of each specific level
class. Three conditions were simulated, leaving each of the
classes out as the unknown (novel) class.

Basic Results. Fig. 3 shows classification rates for the
different types of test examples: Known—new examples from
all known classes during the training phase; Unknown—
examples from the unknown (novel) class which belong to

the same General level as the Known classes but have been
left out during training; Background—examples not belonging
to the general level which were used as negative examples
during the General level classifier training phase; and
Unseen—examples of objects from classes not seen during
the training phase, neither as positive nor as negative
examples. The three possible types of classification are:
Known—examples classified as belonging to one of the
known classes; Unknown—examples classified as belonging
to the unknown class; and Background—examples rejected by
the General level classifier.

The results in Fig. 3 show the desired effects: Each set of
examples—Known, Unknown, and Background—has the
highest rate of correct classification in its own category. As
desired, we also see similar recognition rates (or high
acceptance rates) of the Known and Unknown classes by
the general level classifier, indicating that both are regarded
as similarly belonging to the same general level. Finally,
examples from the Unseen set are rejected correctly by the
general level classifier.

Discriminative specific classifiers improve performance. We
checked the importance of using a discriminative approach
by comparing our approach for building discriminative
specific-level classifiers to nondiscriminative approaches.
Note that the general level classifier remains the same
throughout.

We varied the amount of discriminative information
used when building the specific level classifiers, by
choosing different sets of examples as the negative training
set: 1) 1vsSiblings—Exploiting knowledge of sibling relations,
the most discriminative variant, where all train examples of
the known sibling classes are used as the negative set when
training each specific known class classifier. 2) 1vsBck—No
knowledge of siblings relations, a less discriminative variant,
where the negative set of examples is similar to the one
used when training the general level classifier.

Results are given in Fig. 4, showing that discriminative
training with the sibling classes as negative examples
significantly enhances performance.

Novel class detector is specific. To test the validity of our
novel class detection algorithm, we checked two potential
false misclassification as novel subclass when given either
low-quality images or totally unrelated novel classes (unseen

in Fig. 3). For the second case, Fig. 3 shows that by far the
most unseen examples are correctly rejected by the general
level classifier.
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Fig. 3. Classification ratios for four groups of labels: Known Classes,
Unknown Class, Background, and unseen classes. Bars corresponding
to the three possible classification rates are shown: The left bar shows
the known classification rate, the middle bar shows the unknown
classification rate, and the right bar shows the background classification
rate (rejection by the general level classifier). Left panel—Cross
Motorbikes are left out as the unknown class; right panel—Sport
Motorbikes are left out as the unknown class (similar results were
obtained with the Road Motorbikes class left out).

Fig. 2. Examples from the object classes and clutter images used to train
and test the different Category level models of the “Motorbikes”
hierarchy. The more specific offspring levels are: “Sport-Motorbikes,”
“Road-Motorbikes,” and “Cross-Motorbikes.” These images are taken
from the Caltech-256 [19] data set. Clutter images are used as negative
examples.



To test the recognition of low-quality images, we took
images of objects from known classes and added increasing
amounts of Gaussian white noise to the images. With this
manipulation, background images continued to be correctly
rejected by the general level classifier as in Fig. 3, while the
fraction of known objects correctly classified decreased as
we increased the noise.

We further examined the patterns of change in the
misclassification of examples from the known class with
increasing levels of noise—do they get misclassified as
novel class or as background? Our experiments show the
latter—raised levels of noise increase misclassification as
background. As hoped for, our model does not falsely
identify these images as coming from a novel class.

How veridical should the hierarchy be. In order to explore
the significance of the hierarchy in our proposed scheme,
we followed the procedure described in Section 3.1.1 using
different hierarchies imposed on the same set of classes,
where the different hierarchies are less faithful to the actual
similarity between classes in the training set. The least
reliable should be the random hierarchy, obtained by
assigning classes together in a random fashion. We expect
to see reduced benefit to our method as the hierarchy
becomes less representative of similarity relations in the
data. On the other hand, if our method maintains any
benefit with these sloppy hierarchies, it will testify to the
robustness of the overall approach.

We therefore compared the reliable hierarchy used above
to the random hierarchy, obtained by randomly putting
classes together regardless of their visual similarity. As
expected, our comparisons show a clear advantage to the
reliable hierarchy. In order to gain insight into the causes of
the decrease in performance, we separately analyzed the
general and specific level classifiers. The comparison of
acceptance rate by the general level classifier using the
veridical hierarchy versus random hierarchy is shown in
Fig. 5. For examples that were accepted by the general level
classifier, correct unknown classification versus false un-
known classification is shown in Fig. 4, for both the
veridical and random hierarchy.

Results are clearly better in every aspect when using the
veridical hierarchy. The performance of the learned general
level classifier is clearly better (Fig. 5). The distinction
between known classes and the unknown class by the

specific classifier is improved (Fig. 4). We actually see that

when using a discriminative approach based on the random

hierarchy, the accuracy of this distinction decreases to the
level of the nondiscriminative approach with the veridical

hierarchy. Combining both the general level classifier and

the specific level classifier, clearly Algorithm 1 for the

identification of unknown classes performs significantly
better with the veridical hierarchy.

Comparison to alternative methods. Novelty detection is
often achieved with single class classifiers. In the experi-

ments above, we used 1vsBck classifiers as proxy to single

class classifiers and compared their performance to our

approach in Fig. 4. In order to compare our approach to some
standard novelty detection method, we chose the one class

SVM [4]. Note that this is only a partial comparison since one

class SVM (like any novelty detection method which is based

on rejecting the known) does not provide the distinction
between novel object class and background, as we do.

For technical reasons, in order to conduct this compar-
ison we need to create a single vector representation for
each instance in our data set. To achieve this goal, we
followed the scheme presented in [12], describing each
image by a single vector whose components are defined by
the object class model of the general level class. Given this
image representation, we modified our algorithm and
replaced the specific level classifier with a binary SVM
classifier, basing the final decision on a voting scheme.

We conducted this experiment on audiovisual data
collected by a single Kyocera camera with fish-eye lens

and an attached microphone. In the recorded scenario,

individuals walked toward the device and then read aloud

identical text; we acquired 30 sequences with 17 speakers.

We tested our method by choosing six speakers as members
of the trusted group, while the rest were assumed

unknown. The comparison was done separately for the

audio and visual data. Fig. 6 shows the comparison of our

discriminative approach to the one class SVM novelty
detection approach using the visual data; clearly, our

approach achieves much better results (similar improve-

ment was obtained when using the auditory data).
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Fig. 4. ROC curves showing True-Unknown classification rate on the
vertical axis versus False-Unknown Classification rate on the horizontal
axis. We only plot examples accepted by the General level classifier.
1vsSiblings denotes the most discriminative training protocol, where
specific class object models are learned using the known siblings as the
negative set. 1vsBck denotes the less discriminative training protocol
where the set of negative examples is the same as in the training of the
General level classifier. Random Hierarchy denotes the case where the
hierarchy was built randomly, as described in the text. Left panel—Cross
Motorbikes are left out as the unknown class; right panel—Sport
Motorbikes are left out as the unknown class (similar results were
obtained with the Road Motorbikes class left out).

Fig. 5. General level classifier acceptance rates, comparing the use of
the reliable and random hierarchies. Six bars show, from left to right,
respectively: reliable hierarchy known classes (“Known”), random
hierarchy known classes (“Rnd-Known”), reliable hierarchy unknown
class (“Unknown”), random hierarchy unknown class (“Rnd-Unknown”),
reliable hierarchy background (“Background”), random hierarchy back-
ground (“Rnd-Background”). Results are shown for the cases where the
Cross-Motorbikes, Sport-Motorbikes, or Road-Motorbikes are left out as
the unknown class, from left to right, respectively.



3.2 Novel Subclasses of Audio Objects

We use Algorithm 1 with an application from the domain of
audio object classification in order to evaluate the proposed
framework in a different modality under systematically
controlled noise levels. Here, the general classifier CG
detects the presence (or absence) of a general audio object
(“acoustic blob”) in a background of real recorded environ-
mental noise. Each specific classifier Cj discriminatively
detects the identity of a certain object once the general
classifier has detected an acoustic blob.

The task is to discriminate known from novel audio
objects appearing in an ambient sound background of a
typical office environment. Hence, the inputs fall into three
broad groups: pure background noise (ambient environ-
mental sounds such as ventilation noise recorded in an
office room) with no specific audio object, known audio
object embedded in background noise at a certain signal-to-
noise ratio (SNR), and novel audio object embedded in the
background at some SNR. For each SNR, ranging from 	20
to 20 dB on the logarithmic decibel (dB) scale, analysis was
carried out considering four classes of objects: door opening
and closing, keyboard typing, telephone ringing, and
speech. The nonspeech sounds and the noise background
were recorded on-site; speech was taken from the TIMIT
database [20]. The continuous audio signals were cut into
1 second long frames on which the analysis described below
was carried out.

In analogy to the experiments performed in Section 3.1,
performance is evaluated in a leave-one-out procedure, i.e.,
each of the office objects is defined as novel once and left
out of the training set. The performance of the proposed
approach is compared to results obtained from novelty
detection based on one-class SVM outlier detection.

3.2.1 General and Specific Detector Architecture

The architecture of the general “acoustic blob” detector is
based on the observation that the most general feature of
sound objects are fluctuations in sound pressure level
(amplitude modulations) that separate them from a less
variable background noise floor. The implementation is
based on psychophysically motivated RASTA-PLP ampli-
tude modulation features [21] that are combined with
temporal and spectral integration to yield a single con-
fidence score for audio object presence. Subsequent to the
ROC analysis, the detector is tuned to 5 percent false
positive rate [22], cf. Fig. 7.

The specific detectors use amplitude modulation spec-
trograms (AMS, [23]) as input features. The AMS extracts
the temporal modulation of the signal by applying a short-
term Fourier transformation in each of 17 Bark-scaled
frequency bands. This results in a 493-dimensional feature
space (17 frequency bands, 29 modulation frequencies from
2 to 30 Hz). Using these features, a radial basis function
SVM was trained with a 1-versus-all approach for each of
the known object subclasses.

3.2.2 Detection of Novel Events

Novelty of an acoustic event is detected when the general
classifier accepts the input data as containing an object
and the confidence score (signed distance from margin) of
the best-matching specific classifier remains below a
threshold �. By varying �, ROC curves are obtained that
display the tradeoff between correct novelty detection and
false alarms of a known event being classified as novel.
Evaluating the performance at the equal error rate (EER)
point of the ROC curves, novel event detection accuracy as
a function of SNR is obtained.

Outlier detection based on one-class support vector
machines is used as a baseline algorithm to compare the
performance of our algorithm with. In the same leave-one-
out fashion used for the proposed method, one SVM model
is trained for each of the known classes. Varying a threshold
on the best matching (highest confidence score) SVM
model, ROC curves and performance at equal error rate
for detection of novel-class objects are derived. Results
reported here correspond to the best post hoc choice of one-
class SVM parameters, in effect giving an upper bound
estimate on their outlier detection performance.

3.2.3 Results

Performance of novelty detection by the specific classifiers,
assuming an ideal general classifier that perfectly detects
the presence of acoustic objects, is shown in Fig. 8. Since the
physical characteristics of the various signals differ con-
siderably, also the degree to which novelty is detected
reliably shows a corresponding variability. For beneficial
signal-to-noise ratios of 20 dB, novelty is detected reliably.
When the SNR decreases, performance degrades gracefully
until it reaches chance level at about 	20 dB.

Combining the general classifier with the specific
classifiers for the full implementation of Algorithm 1, the
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Fig. 6. True Positive versus False Positive rates when detecting
unknown versus trusted individuals. The unknown are regarded as
positive events. Results are shown for our proposed method (solid line)
and one class SVM (dashed line). Fig. 7. ROC performance of the general acoustic model (“blob detector”).

False alarm rate of 5 percent is selected for subsequent experiments.



resulting performance levels at equal error rate are
displayed in Fig. 9. Here, the performance is bounded from
above by the (arbitrary) choice of 5 percent false positive
rate for the tuning of the general classifier. At SNR levels of
	5 dB or better, the performance of the reference one-class
SVM approach is lower than the proposed method’s for all
investigated conditions. The results of the proposed
approach at 	10 dB SNR (and below, not shown) are
predominantly influenced by the large performance drop of
the general classifier at 	10 dB and below (cf. Fig. 7),
effectively rendering the general classifier unable to detect
the presence of objects embedded in the corresponding
adverse noise levels. Results demonstrate that novelty
detection based on a hierarchy of classifiers is possible in
the acoustic domain and its performance depends on the
type of novel signal and SNR.

4 CONJUNCTIVE HIERARCHIES

We present an example of a conjunctive hierarchy in audio-
visual processing. As before, alternative detectors (i.e.,
discriminative classifiers) are used to model events in a
hierarchical manner; see Fig. 10.

We concentrate on the single audiovisual event of a
human speaker in a scene and model it in two alternative
ways. We assume a scene observed by a camera with wide
view-field and two microphones. Visual processing detects
the presence and position of a human. Sound processing
detects the intensity of sound and its direction of arrival
(see [24] for technical details).
Qconcept is the direct human speaker detector QAV ; it is

obtained by training a discriminative RBF SVM classifier on
audio-visual features extracted from manually labeled
training data of human speakers versus background. The
detector QAV is evaluated on all spatial windows of
meaningful size across the view-field, thus implicitly
providing the positions of its decisions; see Fig. 11.
Qg
concept, the more general classifier, is the conjunctive

human speaker detector Qg
AV ; it is a composite detector,

obtained by the conjunction of the direct visual detector QV

and the direct audio detector QA, i.e., Qg
AV ¼ QV �QA (see (1)).

Unlike QAV , Qg
AV does not exploit the information about

where QA and QV are active in the view-field. In effect, it
looks to see whether they are active, irrespective of
position; see Fig. 12.

By construction, Qg
AV returns a positive outcome when

observing a human body and human sound in different
positions in the view-field. Detector QAV , on the other hand,
is passive in this situation since it has been trained only on
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Fig. 8. ROC performance of the specific object classifiers for detecting
novel audio objects at different signal-to-noise ratios. The hit and false
alarm rates when classifying an object as “new” are displayed for four
different novel objects.

Fig. 9. Accuracy of novelty detection (Algorithm 1) for our approach
(solid lines) and one-class SVM (dashed lines). One curve per type of
novel audio object (see legend). The accuracy is taken at the EER point
(equal false alarm and miss rates). Note that the accuracy of our
approach has an upper bound due to the choice of 5 percent false
positive rate for the general classifier.

Fig. 10. (a) Direct and general (composite) audio-visual detectors
provide alternatives for the speaker event modeling in (b).

Fig. 11. Direct audio-visual detector QAV .



colocated human sound and visual examples. Thus, there is
an incongruence where Qg

AV � QAV appears; see Fig. 13.
Table 1 presents the quantitative evaluation of the

incongruence detection on real data shown in Fig. 13,
consisting of M ¼ 462 images. The threshold on incongru-
ence detection was set to the smallest value achieving zero
falsely detected incongruences, i.e., FP ¼ 0. With this
setting, we obtained recall ðTP=ðTPþ FNÞÞ of 96.2 percent
and accuracy ððTPþ TNÞ=MÞ of 97.6 percent.

The concept of incongruence, as defined in Section 2, also
signifies the insufficiency of the composite general classi-
fier. This is an interesting functionality in systems which
build and maintain a structured model of events and
behaviors. The composite model aims at explaining ob-
servations by a combination of simple processing blocks. It
can be viewed as modeling our ability to explain the
observation in terms of simple known concepts. Direct
detectors, on the other hand, can be seen as a mechanism for
efficient memorization and outlier rejection. Incongruence
in this case may serve to signify that the model of the
environment should be updated.

5 GENERAL HIERARCHIES

Here, we discuss two applications where general hierarchies
are involved. In Section 5.1, we detect Out-Of-Vocabulary

words in speech recognition, and in Section 5.2 we detect
new patterns of motion from video. In the first application,
the hierarchy is very simple (a chained list). In the second
application, the hierarchy is richer than we have seen before,
including both disjunctive and conjunctive nodes.

5.1 Out-of-Vocabulary Words

In speech recognition, one may consider a simple minimal
hierarchy where, in effect, only a single class is given for
each of the specific and general concepts. Thus, the
hierarchy is really a chained list of more and more general
concepts, rather than a tree as we have seen above. In this
case, when trying to adapt the framework described in
Section 2 to the problem of novel class detection, a
generative approach proves more useful. Specifically, we
build two generative classifiers for each concept: Qconcept—a
classifier trained with examples of the concept, and
Qg
concept—a classifier trained with examples of the more

general concept according to the partial order.

5.1.1 OOV Detection Method

We define an OOV word as a word whose pronunciation
does not match the pronunciation dictionary. An OOV word
can contain an incongruent phoneme—e.g., when someone
has mispronounced a word or, more generally, the pronun-
ciation of the word is not present in the dictionary. The
specific classifier Qconcept introduces constraints from top-
down knowledge by using a longer ranging word language
model, forcing constraints on the possible phoneme strings
and using the context of the neighboring words. The general
classifier Qg

concept computes event probability based on the
independent parts, e.g., not conditioned on the language and
not considering the order of parts in time. We realize the
general classifier as a phoneme recognizer using only short
acoustic context, which allows a wide range of (or all
possible) phoneme combinations. Thus, the strongly con-
strained classifier in our case is a Large Vocabulary
Continuous Speech Recognizer (LVCSR).

Initially [25], we performed the comparison of posterior
probability vectors on a frame-by-frame basis, using vectors
of phoneme posteriors from both classifiers. We used the
Kullback-Leibler divergence between the posterior prob-
ability vectors from the respective systems as a measure of
the agreement between the models. Later [26], we introduced
another classifier based on a multilayer perceptron that was
trained on phoneme posterior data labeled with in-vocabu-
lary and out-of-vocabulary word labels. In [27], we trained a
neural network to learn to distinguish different classes of
events, and this latter classifier is extended and used here.

Fig. 14 shows an example when processing a speech
sample containing the Out-of-Vocabulary word “BELGIUM”
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Fig. 13. A scene with a human speaker and a loudspeaker. (a) The
congruent event is detected when the human speaker speaks and the
loudspeaker is silent, i.e., the direct audio detector QA (the magenta bar
under A), the direct visual detector QV (blue bar under V), the composite
human speaker detector Qg

AV (cyan bar under &), and the direct human
speaker detector QAV (green bar under AV), are all active. (b) The
incongruent event (red bar under I) appears when the person is silent
and the loudspeaker emits speaker sounds. Notice that the direct
human speaker detector QAV is not active, i.e., Qg

AV � QAV (no green
bar under AV).

TABLE 1
Contingency Table for Detecting Incongruent Audio-Visual

Events in the Sequence Shown in Fig. 13 Consisting of
462 Images (TP—True Positive, FP—False Positive,

FN—False Negative, TN—True Negative)

Fig. 12. General (composite) audio-visual detector Qg
AV .



[27]. In correctly recognized speech segments, we generally
find

. agreement between the general and the specific
recognizers,

. high certainty about predicted phonemes in the
specific recognizer.

In the part covered by OOV input, we tend to find

. disagreement between the specific and the general
recognizers,

. low posterior probability reflected in high entropy
of posterior distribution from the constrained
recognizer.

5.1.2 Experiments

Both specific (constrained by language model) and un-
constrained (acoustic) recognizers were trained on conver-
sational telephone speech and tested on the Call Home
English (CHE) corpus.1 To introduce OOV words, the
vocabulary was restricted to the 2,860 most frequent words
from the language model training texts, leaving the
remaining words unknown to the specific recognizer. The
evaluation set consists of 1.33 hours.

In our experiments, we used a realistic spontaneous
speech telephone data (CHE) because most real-world data
has similar characteristics like distortions, noise, low audio
quality or sloppy speakers. When using these data, it turned
out to be beneficial to train the neural network in a four class
paradigm (instead of the binary OOV versus rest), as follows:

. sil—silence, no speech at all,

. ivcorr—correctly recognized speech (in-vocabulary),

. ivincorr—misrecognized speech (in-vocabulary),

. oov—misrecognized speech due to out-of-vocabulary
content.

Table 2 shows the improvement in equal error rate of
OOV detection gained on CHE and WSJ data using three or
four classes in our neural net classifier. The classifier,
trained on one database (CHE), clearly generalizes very
well to the WSJ data.

In addition, we tested the generalization of our system
by replacing the complex and powerful LVCSR system that
we used before with a faster and more rudimentary LVCSR
system (without adaptations, using one pass decoding). We
saw that it only resulted in a modest decrease in OOV
detection performance of about 1 percent EER on CHE.

In the initial experiments, roughly 40 percent of the OOV
word types appeared in both the training and testing data at
least once, possibly allowing the classifier to learn to detect
specific OOV words. In order to address this issue, we
composed a new test set based on 10 hours of Fisher data2

(conversational telephone speech), containing only OOV
types which neither appeared in the training text of the
language model nor in the training set of the neural net
classifier. In this experiment, the OOV token rate was about
4 percent and the EER in OOV detection was about
22.5 percent, a result which lies in the same range as the
previously reported results (21.73 percent). While the
numbers are not directly comparable since different test sets
were used, the results still show that the learned patterns are
generalizable, i.e., our technique is able to detect OOV words
which have never been seen during training.

5.2 Novel Patterns of Motion

In this application of video surveillance, we are interested
in monitoring the well-being of elderly people in their
homes and show how the notion of incongruence helps
greatly in the detection of surprising or unusual events. As
before, the general idea is to arrange a set of trackers in a
hierarchical structure. The output of each tracker acts as a
classifier and is analyzed as described in Section 2. Here, we
rely on a fixed hierarchy of motion patterns, which is richer
than we have seen before, including both disjunctive and
conjunctive nodes.

5.2.1 Tracker Tree

Visual trackers in general incorporate a certain amount of
information about the normal situations they are applied to.
For example, an articulated body motion tracker is highly
tuned to a walking person and exploits strong priors for
successful tracking, whereas a simple blob tracker relies on
very weak assumptions. We propose to arrange multiple
different trackers in a tree-like hierarchy, where the location
of each tracker is based on the information it relies on.
Trackers further up in the tree have been trained for a narrow
set of actions—e.g., specific to the walking style of one person,
whereas trackers closer to the root node are able to track a
broad variety of motion patterns. The implemented tracker
tree for elderly care applications is visualized in Fig. 15.
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Fig. 14. Input and output of the OOV word detection system. Left top:
Phoneme posteriors from strongly and weakly constrained recognizers,
used as input features for the neural net classifier. Left bottom: Output
score of neural net classifier—recognized words and their classification
(green: correct, red: OOV). Right: Schematic illustration of the neural
network classifier, with one hidden layer and four outputs for the
estimation of frame level class posteriors.

TABLE 2
EER (in Percent) of NN-Based MISREC/OOV Detection

1. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC97S42.

2. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2004T19.



At the root of the tree lies the most general concept, a
foreground blob tracker Qg2

Blob. It will track any object
moving through the scene. Since we want to monitor
humans, a person detector QPerson is the stage that
immediately follows the generic blob tracker, one level
up. Since a more detailed analysis of the actual visibility of
body parts is important for the interpretation of incon-
gruences, this tracker tree also contains, apart from the
disjunctive hierarchy structures higher up in the tree, a
conjunctive part (black box) near the bottom. We now
describe these disjunctive and conjunctive parts of the tree
in a bit more detail.

As a disjunctive example from the tree, a person (general
level) can perform different actions, which are modeled by
different action trackers (specific level; here, walking,
sitting, and picking object up from floor actions). Thus,
the more specific concept is

Qs1
Action ¼ QWalk þQSit þQPickup: ð6Þ

In the same vein, individual walking trackers Qs2
Individual

provide subconcepts to the generic walking tracker and
model the gait pattern of individual people known to the
system.

On the other hand, when moving down in the tree, the
trackers inside the black box in Fig. 15 form a conjunctive
hierarchy that considers the person as composed of body
parts. Separate detectors check whether legs, upper body,
and body shoulder patterns are found. In case the person is
fully visible and in an expected pose, all three parts should
be detected. From the conjunctive perspective, the indica-
tion strength of finding a person amounts to

Qg1
Body ¼ QHead �QUpperBody �QLowerBody: ð7Þ

One advantage of such a tree with multiple hierarchical
levels is the possibility of semantic reasoning. From the
location in the tree where the novel pattern appears, we can
deduce an interpretation on the nature of the incongruence.
For instance, if walking is detected, but the gait does not
correspond to any of the known individuals, an intruder—
or at least someone not observed before—seems to be in the
house. As elderly people often are the victims of scams, this

would indeed be noteworthy and a sufficient condition to
activate some remote attention by an assistant.

Occlusion handling. Partial occlusions occur frequently in
in-house surveillance scenarios, e.g., furniture partially
blocking the view of a person. In the tracker tree, this means
thatQPerson is valid, but at least one ofQg1

Body fails. As discussed
in Section 2.2.4, without proper training (including training
images of occlude objects) occlusion leads to rejection.

To prevent an irregular classification of this situation in
the in-house scenario, we propose a different interpretation
which considers the body part trackers as conditioners for
the action trackers. Since the actions (Qs1

Action) are trained on
examples of fully visible people, the validity of any of these
trackers cannot be expected to hold when the person is only
partly visible. In the case of occlusion by a sofa, for example,
the lower body part is missing and therefore no action is
expected to be classified as valid as all action-specific
trackers are critically dependent on the visibility of relevant
body parts. For instance, the walking detector needs to see
the legs.

To address this problem, occlusions are learned from the
training data and incorporated into the model, and are
therefore not detected as incongruent activity patterns. The
detected incongruence of observing a person (yellow
detector) but not all of his parts blocks incongruences higher
up in the tree from being signaled if the absence of that body
part precludes action detectors from functioning properly.

5.2.2 Experiments

The tracker tree as depicted in Fig. 15 is constructed with
different state-of-the-art trackers. The root node tracker is a
simple color-based blob tracker [28], whereas the person
tracker (yellow) is based on a tracking-by-detection
approach [29]. The body part trackers and the action
trackers all rely on generative low-dimensional representa-
tions, as described in [30]. These trackers were trained in an
offline procedure with approximately 3,000 images in
which the different actions were segmented manually.
The footage was recorded with a static camera at 15 frames
per second in VGA resolution. The images are background
subtracted and silhouettes serve as input features. Actions
were segmented manually for each action tracker.

We evaluate the tracker tree on a video sequence which
was recorded in a living-room environment. A single
person is monitored and incongruent events are spotted.
The test video of about 1,000 images contains diverse
“everyday” actions such as walking, walking behind
occluding objects, sitting on different chairs, or picking up
small objects. It also contains abnormal events, e.g., when
the person falls, limps, jumps over the sofa, or when an
intruder enters the room.

In Fig. 16, we present the output scores of the different
trackers for a short piece of the video sequence. The plotted
curves depict the confidence of the individual trackers. The
horizontal line indicates the threshold that is used for
classification of the tracker scores. The reasoning in the tree
is then performed and the detected incongruent events are
highlighted in red.

In Fig. 17, we show exemplary result frames where the
active trackers are visualized as bounding boxes in
corresponding colors. As long as the person behaves
according to expectation (walks, picks up an object, or
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Fig. 15. The tracker tree with a different tracker at each node. Each
tracker acts as concept Qa, where the QPerson is the concept of interest in
our application. More specific (disjunctive) concepts lie in the top of the
tree, more general (conjunctive) ones rest toward the bottom.



walks behind the sofa), the tracker tree accepts the situation.
When an incongruence in the motion pattern is detected, an
abnormal event is detected and the frame is marked in red
(fall, limping, intruder).

In the following, we analyze the performance of the
tracker tree for abnormal event detection and compare it to
state-of-the-art methods. To this end, we sweep the thresh-
old that is applied to the tracker confidence scores and
compare the tree’s output with the ground truth annotation
of the test sequence. As baseline comparison, we learn a
Gaussian Mixture Model (GMM) from the training data
using the EM algorithm [31]. Similarly to most of our
trackers (cf. [30]), GMMs are used for tracking and outlier
detection, but with no hierarchical structure.

The results are displayed as ROC curve in Fig. 18. Note
that the ROC curve for the tracker tree has a particular
shape and does not reach full recognition since the
nonlinear classifier reasoning is applied after fixing the
threshold. Due to the reasoning in the hierarchy, the tracker
tree outperforms GMM outlier detection regardless of the
number of mixture components.

6 BIOLOGICAL EVIDENCE

Our approach to the detection of incongruent events is
motivated in part by evidence from biological systems
indicating the existence of special mechanisms mediating
top-down incongruence detection that can be differentiated
from mere novelty detection. Neuronal mechanisms under-
lying novelty detection are hypothesized to be based on the
increased neuronal responses to deviant stimuli presented in
the context of repeated, so-called “standard,” stimuli. This

phenomenon is fundamentally a consequence of stimulus-
specific adaptation, i.e., the decaying neuronal response
strengths with repeated presentation of identical stimuli
(e.g., [32]) that is now known from various brain systems. To
dissociate such bottom-up mechanisms of novelty detection
from top-down mechanisms that may underlie incongruence
detection, we have designed an experiment investigating
“semantic” deviants, i.e., incongruence based on the attrib-
uted meaning to stimuli as opposed to incongruence
resulting from the presentation statistics.

In this experiment, two groups of rodents (gerbils) were
trained to categorize four vowels from human speech in
two orthogonally different ways, using a Go/NoGo
procedure, thereby establishing different semantic contexts
for identical features. The Go/NoGo procedure is a
standard technique in behavioral and cognitive neu-
roscience in which a subject signals a binary response by
either performing a predefined trained action (Go) or
refraining from doing so (NoGo). Fig. 19a schematically
shows the positions of the four vowels in the feature space
spanned by the first formant (F1) and the spectral distance
between the first and second formant (F2-F1). This space
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Fig. 17. Selected frames from one sequence. The active trackers are
visualized by the bounding box using the color code of Fig. 15.
Incongruent events (falling, limping, intruder) are marked in red.

Fig. 18. ROC curve evaluation of abnormal action detection using the
tracker tree. Due to the hierarchical reasoning, tracker trees outperform
comparable state-of-the-art methods based on GMM.

Fig. 16. Segment from a tracked sequence: The tracker output scores
are plotted over time; the color code of Fig. 15 is used. The individual
walking trackers are omitted and the indicated threshold is applied for
classification. For illustration, incongruent patterns are highlighted.

Fig. 19. Dissociation of bottom-up and top-down incongruence detection
in rodent psychophysics. a) Schematic depiction of the positions of four
vowels in a suitable feature space formed by the first two formants of the
vowels, F1 and F2 (cf. [33]). b) Table showing the various tested
combinations of standard stimuli and two types of corresponding
deviants. c) Detection of significantly different spatiotemporal activity
patterns in the auditory cortex electrocorticogram for semantic and
nonsemantic deviants using a classification technique. Note the
occurrence of significant (p < 10	3) classifications in the time window
0.3-0.5 s after stimulus onset only in the case of semantic deviants.



basically conforms to the classical vowel feature space
described by [33], but was shown to be physiologically
realized in mammalian auditory cortex [34].

One group of gerbils was trained to categorize these
stimuli according to category boundary A, while the other
group was trained according to boundary B. After training,
classical novelty-detection or odd-ball experiments were
performed on both groups by presenting one vowel
repeatedly as the standard stimulus and a second vowel
as the infrequent deviant. Note that, given the previous
training, this second vowel could be selected either to be a
member of the same category as the standard stimulus or to
be a member of the opposite category (associated with the
opposite meaning for the required Go/NoGo behavior).
Fig. 19 shows the different combinations of standard and
deviants used in the posttraining tests. We recorded
multichannel electrocorticograms from auditory cortex as
these signals have been demonstrated to provide physiolo-
gical correlates of category formation during learning [35].

Spatial patterns of electrocorticograms were used to
classify vowel identity, and classification performance was
analyzed in consecutive time bins of 120 ms (stepped in
20 ms steps) by comparing the number of correct classifica-
tions across all experimental trials with the expected
number of correct classifications by chance (for details of
the method see [36]). For each empirically found number of
correct classifications, Fig. 19c shows the probability of
observing this number of correct classifications by chance
(H0), separately for deviants being a member of the same
meaning class (nonsemantic deviants) and for deviants
being a member of the opposite meaning class (semantic
deviants).

Significantly (p < 10	3) different electrocorticogram pat-
terns were found for both types of deviants at stimulus
onset, but only for semantic deviants during an additional
time window 0.3-0.5 s after stimulus onset. This latter result
may indicate the existence of a well-separable physiological
process mediating the detection of a top-down outlier
because of a deviant meaning context, in addition to the
bottom-up outlier because of a deviant with respect merely
to stimulus occurrence statistics. Moreover, this result is in
accordance with our general scheme in that it may be
brought about by the mismatch between general level
classifiers (vowel detectors) and more specific level classi-
fiers (vowels of class A or B).

7 SUMMARY AND DISCUSSION

Unexpected novel events are typically identified by their
low posterior probability. In this paper, we employed a
hierarchy of generality to obtain a few probability values for
each event, which allowed us to discriminate and identify
different types of unexpected events. We described how our
approach can be used to design new algorithms, which
detect “interesting” unexpected situations in a variety of
applications and data types, including real audio, speech,
image, and video data.

Incongruent events are characterized by some discre-
pancy between the response of two classifiers, which can
occur for a number different reasons. Out of Context is one
such example. In a given context such as the English
language, a sentence containing a Czech word is assigned

low probability. In the visual domain, in a given context
such as a street scene, an elephant is unlikely to appear.
Another example is the recognition of novel objects, when a
new object is encountered of some known generic type but
unknown specifics.
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