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Abstract—We present a method for solving systems of polynomial equations appearing in computer vision. This method is based on

polynomial eigenvalue solvers and is more straightforward and easier to implement than the state-of-the-art Gröbner basis method

since eigenvalue problems are well studied, easy to understand, and efficient and robust algorithms for solving these problems are

available. We provide a characterization of problems that can be efficiently solved as polynomial eigenvalue problems (PEPs) and

present a resultant-based method for transforming a system of polynomial equations to a polynomial eigenvalue problem. We propose

techniques that can be used to reduce the size of the computed polynomial eigenvalue problems. To show the applicability of the

proposed polynomial eigenvalue method, we present the polynomial eigenvalue solutions to several important minimal relative pose

problems.

Index Terms—Structure from motion, relative camera pose, minimal problems, polynomial eigenvalue problems.

Ç

1 INTRODUCTION

PROBLEMS of estimating relative or absolute camera pose
[12] from image correspondences can be formulated as

minimal problems and solved from a minimal number of
image points [9]. These minimal solutions [29], [38], [36], [9],
[2], [3] are used in many applications such as 3D
reconstruction [34], [33] and structure from motion since
they are very effective as hypothesis generators in RANSAC
paradigm [9] or can be used for initializing the bundle
adjustment [12].

Many new minimal problems [36], [37], [38], [11], [15],
[2], [3], [13], [18], [4] which have been solved recently lead
to nontrivial systems of polynomial equations. A popular
method for solving such systems is based on polynomial
ideal theory and Gröbner bases [6]. The Gröbner basis
method was used to solve almost all previously mentioned
minimal problems including the well-known 5-pt relative
pose problem [38], the 6-pt equal focal length problem [36],
the 6-pt problem for one fully calibrated and one up to focal
length calibrated camera [3], or the problem of estimating
relative pose and one parameter radial distortion from 8-pt
correspondences [15].

The Gröbner basis approach is general but not always
straightforward and often cannot be easily used to create new
solvers or to reimplement the existing ones. This is mainly
because the existing general Gröbner basis algorithms [6]

cannot be directly used to create efficient solvers for
computer vision problems and therefore special algorithms
for concrete problems have to be designed to achieve
numerical robustness and computational efficiency. An
automatic generator of Gröbner basis solvers proposed in
[16] can be used as a black-box and helps considerably in
constructing new solvers. However, additional expert
knowledge is often necessary when dealing with more
difficult problems to generate a useful solution.

In this paper, we present an alternative method for solving
systems of polynomial equations appearing in computer
vision based on polynomial eigenvalue solvers [1]. This
method is in some sense more straightforward and easier to
implement than the Gröbner basis method since eigenvalue
problems are well studied, easy to understand, and efficient
and robust algorithms for solving these problems [1] can be
directly used to solve concrete computer vision problems.

The polynomial eigenvalue method was previously used
to solve several problems in computer vision, like the
problem of autocalibration of one-parameter radial distor-
tion from 9 point correspondences [10], or to estimate
paracatadioptric camera model from image matches [28].

Motivated by these examples, we provide here a char-
acterization of problems that can be efficiently solved as
polynomial eigenvalue problems (PEPs) and present a
resultant-based method for transforming a system of poly-
nomial equations to a polynomial eigenvalue problem. The
resultant-based method presented in this paper is not as
general as the Gröbner basis method, but is very simple and
straightforward and can be applied to many systems of
polynomial equations. We also propose techniques for
reducing the size of polynomial eigenvalue problems and
suggest how transforming of systems of polynomial equation
to polynomial eigenvalue problems can be done in general.

To show the applicability of our approach, we present
polynomial eigenvalue solutions to several minimal relative
pose problems. We show that the 5-pt relative pose
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problem, the 6-pt equal focal length problem, the 6-pt
problem for one calibrated and one up to focal length
calibrated camera, and the problem of estimating relative
pose and one parameter radial distortion from 8 point
correspondences can be solved robustly and efficiently as
polynomial eigenvalue problems. These solutions are fast
and more stable than previous solutions [29], [38], [36], [15].
They are in some sense also more straightforward and
easier to implement since these solvers only require
collecting some coefficient matrices and then calling an
existing efficient eigenvalue solver.

This paper extends [17], [3], [15], [19]. The main
contribution is in proposing a resultant-based method for
transforming a large class of systems of polynomial
equations to a polynomial eigenvalue problem, presenting
two techniques for reducing the size of this polynomial
eigenvalue problem, and providing more efficient poly-
nomial eigenvalue solutions to the problems presented in
[17], [3], and [15].

The paper is organized as follows: First, we introduce
the polynomial eigenvalue problems and show how they
can be transformed to generalized eigenvalue problems
(GEPs) and solved. Then, we provide the resultant-based
method for transforming systems of polynomial equations
to polynomial eigenvalue problems. Methods for reducing
the size of the polynomial eigenvalue problems are
described in Section 2.3. In Sections 3.1 and 3.2,
we formulate the relative pose problems and summarize
previous solutions to these problems. In Section 4, we
provide polynomial eigenvalue solutions to these pro-
blems. The final section is dedicated to experiments. In
Appendix A, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.228, we present an example of a
system of polynomial equations and how can it be
transformed to a polynomial eigenvalue problem.

2 POLYNOMIAL EIGENVALUE PROBLEMS

Polynomial eigenvalue problems are problems of the form

Cð�Þv ¼ 0; ð1Þ

where v is a vector of monomials in all variables except for
� and Cð�Þ is a matrix polynomial in variable � defined as

C �ð Þ � �lCl þ �l�1Cl�1 þ � � � þ �C1 þ C0; ð2Þ

with n� n coefficient matrices Cj [1].
We next describe how these problems can be solved by

transforming them to the generalized eigenvalue problems.

2.1 Transformation to the Standard Generalized
Eigenvalue Problem

Polynomial eigenvalue problems (1) can be transformed to
the standard generalized eigenvalue problems:

A y ¼ � B y: ð3Þ

GEPs (3) are well-studied problems and there are many
efficient numerical algorithms for solving them [1]. A very
useful method for dense and small or moderate-sized GEPs
is the QZ algorithm [1], with time complexity Oðn3Þ and
memory complexity Oðn2Þ. Different algorithms are usually
used for large scale GEPs. A common approach for large

scale GEPs is to reduce them to standard eigenvalue
problems and then apply iterative methods.

Algorithms for solving GEPs and standard eigenvalue
problems are available in almost all mathematical software
and libraries, for example in LAPACK, ARPACK, or
MATLAB, which provides the polyeig function for solving
polynomial eigenvalue problems (1) of arbitrary degree
(including their transformation to the generalized eigenvalue
problems (3)).

2.1.1 Quadratic Eigenvalue Problems (QEPs)

To see how a PEP (1) can be transformed to a GEP (3) let us
first consider an important class of polynomial eigenvalue
problems, the quadratic eigenvalue problems of the form

ð�2C2 þ �C1 þ C0Þv ¼ 0; ð4Þ

where C2, C1, and C0 are coefficient matrices of size n� n, �
is a variable called an eigenvalue, and v is a vector of
monomials in all variables except � called an eigenvector.

QEP (4) can be transformed to the generalized eigenva-
lue problem (3) with

A ¼ 0 I

�C0 �C1

� �
; B ¼ I 0

0 C2

� �
; y ¼ v

�v

� �
: ð5Þ

Here, 0 and I are n� n null and identity matrices,
respectively. GEP (3) with matrices (5) gives equations �v ¼
�v and �C0v� �C1v ¼ �2C2v, which is equivalent to (4).
Note that this GEP (5) has 2 n eigenvalues and therefore by
solving it we obtain 2 n solutions to the QEP (4).

2.1.2 Higher Order Eigenvalue Problems

Higher order PEPs of degree l,

ð�lCl þ �l�1Cl�1 þ � � � þ �C1 þ C0Þv ¼ 0; ð6Þ

can be also transformed to the generalized eigenvalue
problem (3). Here,

A ¼

0 I 0 . . . 0

0 0 I . . . 0

. . . . . . . . . . . . . . .

�C0 �C1 �C2 . . . �Cl�1

0
BBB@

1
CCCA;

B ¼

I

. . .

I

Cl

0
BBB@

1
CCCA; y ¼

v

�v

. . .

�l�1v

0
BBB@

1
CCCA:

ð7Þ

For higher order PEPs, one has to work with larger
matrices with n l eigenvalues. Therefore, for larger values of
n and l convergence problems when solving these problems
may appear [1].

Note that if the leading matrix Cl is nonsingular and well
conditioned, then we can consider a monic matrix polynomial

C �ð Þ ¼ C�1
l C �ð Þ; ð8Þ

with coefficient matrices Ci ¼ C�1
l Ci, i ¼ 0 . . . l� 1. Then, the

PEP (6) can be transformed directly to the eigenvalue
problem

Ay ¼ �y; ð9Þ

1382 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012



where

A ¼

0 I 0 . . . 0
0 0 I . . . 0

. . . . . . . . . . . . . . .
�C0 �C1 �C2 . . . �Cl�1

0
BB@

1
CCA: ð10Þ

In this case, the matrix A (10) is sometimes called the block
companion matrix.

It happens quite often that the leading matrix Cl is
singular, but the last matrix C0 is regular and well
conditioned. Then, either the described method which
transforms PEP (6) to the GEP (7) or the transformation
� ¼ 1=� can be used. The transformation � ¼ 1=� reduces
the problem to finding eigenvalues of the matrix

A ¼

0 I 0 . . . 0
0 0 I . . . 0

. . . . . . . . . . . . . . .
�C�1

0 Cl �C�1
0 Cl�1 �C�1

0 Cl�2 . . . �C�1
0 C1

0
BB@

1
CCA: ð11Þ

In some cases, other linear rational transformations which
improve the conditioning of the leading matrix can be
used [1].

Now, we know how the polynomial eigenvalue pro-
blems (1) can be transformed to generalized (3) and classical
eigenvalue problems (9) and solved using standard numer-
ical methods. We will next describe a resultant-based
method which can be used to transform a system of
polynomial equations to a polynomial eigenvalue problem.

2.2 Transformation of Systems of Polynomial
Equations to a PEP

Consider a system of equations

f1 xð Þ ¼ � � � ¼ fm xð Þ ¼ 0; ð12Þ

which is given by a set ofm polynomials F ¼ ff1; . . . ; fmj fi 2
CC½x1; . . . ; xn�g in n variables x ¼ ðx1; . . . ; xnÞ over the field of
complex numbers. Let this system have a finite number of
solutions.

If we are lucky, like in the case of three from the four
minimal relative pose problems considered in this paper,
then for some xj, let say x1, (12) can directly be rewritten to
a polynomial eigenvalue problem:

C x1ð Þv ¼ 0; ð13Þ

where Cðx1Þ is a matrix polynomial with square m�m
coefficient matrices and v is a vector of s monomials in
variables x2; . . . ; xn, i.e., monomials of the form x� ¼
x�2

2 x
�3

3 . . .x�nn . In this case, the number of monomials s is
equal to the number of equations m, i.e., s ¼ m.

Unfortunately, not all systems of polynomial equations
(12) can be directly transformed to a PEP (13) for some xj.
This happens when, after rewriting the system to the form
(13) we remain with fewer equations than monomials in
these equations, i.e., s > m, and therefore we do not have
square coefficient matrices Ci. In such a case, we have to
generate new equations as polynomial combinations of
initial equations (12). This has to be done in a special way to
get as many equations as monomials after rewriting the
system to the form (13). Then, we can treat each monomial
as a new variable and look at this system as at a linear one.

Therefore, we sometimes say that we “linearize” our system
of equations.

Here, we present one method which can be used to
“linearize” a system of polynomial equations (12) and is
based on multipolynomial resultants [6], [25], [26]. This
method constructs resultant matrices, whose determinants
express nontrivial multiples of the resultant polynomial [6]
and which “linearize” a nonlinear polynomial system (12)
in terms of matrix polynomials. This method takes a system
of nonlinear polynomial equations (12) and reduces it to a
system of the form (13). After constructing resultant
matrices, we directly obtain a polynomial eigenvalue
formulation of our problem and we can solve it using the
methods described in Section 2.1.

Next, we describe the resultant-based method [6] for
transforming a system of polynomial equations to a PEP (1).
It is based on the Macaulay formulation of the resultant,
which does not work for all systems of polynomial
equations. Therefore, we next describe a modification of
this method which enlarges its applicability and improves
its numerical stability. Finally, we suggest a generalization
of this method which can be applied to all systems of
polynomial equations.

2.2.1 Resultant-Based Method

The resultant-based method for solving systems of poly-
nomial equations, which reduces the problem to an
eigenvalue problem, is well studied [6], [25], [26], [40].
The method was originally developed for a system of
n polynomial equations in n unknowns, respectively,
n homogeneous polynomial equations in nþ 1 unknowns.
However, it can also be applied to m � n general
polynomial equations (12) in n unknowns.

First consider a system of n polynomial equations in
n unknowns:

f1ðx1; . . . ; xnÞ ¼ � � � ¼ fnðx1; . . . ; xnÞ ¼ 0: ð14Þ

Assume that we want to formulate these equations as a
PEP (1) for x1. “Hide” x1 in the coefficient field, i.e.,
consider these equations as n equations in n� 1 variables
x2; . . . ; xn and coefficients from CC½x1�:

f1; . . . ; fn 2 ðCC½x1�Þ½x2; . . . ; xn�: ð15Þ

Let the degrees of these equations in variables x2; . . . ; xn
be d1; d2; . . . ; dn, respectively. Now consider a system of
n homogeneous polynomial equations in n unknowns:

F1ðx2; . . . ; xnþ1Þ ¼ � � � ¼ Fnðx2; . . . ; xnþ1Þ ¼ 0;

F1; . . . ; Fn 2 ðCC½x1�Þ½x2; . . . ; xn; xnþ1�;
ð16Þ

which we obtain from the system (15) by homogenizing it
using a new variable xnþ1, i.e., Fi ¼ xdinþ1 fið x2

xnþ1
; . . . ; xn

xnþ1
Þ. Set

d ¼
Xn
i¼1

ðdi � 1Þ þ 1 ¼
Xn
i¼1

di � nþ 1: ð17Þ

For instance, when ðd1; d2; d3Þ ¼ ð2; 2; 1Þ, then d ¼ 3.
Now take the set of all monomials x� ¼ x�2

2 x
�3

3 . . .x�nn x
�nþ1

nþ1

in variables x2; . . . ; xnþ1 of total degree d, i.e., j�j ¼Pnþ1
i¼2 �i ¼ d, and partition it into n subsets:
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S1 ¼
�
x� : j�j ¼ d; xd1

2 jx�
�
;

S2 ¼
�
x� : j�j ¼ d; xd1

2 6 j x� but xd2
3 j x�

�
;

. . .

Sn ¼
�
x� : j�j ¼ d; xd1

2 ; . . . ; xdn�1
n 6 j ; x� but xdnnþ1 j x�

�
;

ð18Þ

where xdij j x� means that xdij divides monomial x� and
xdij 6 j x� means that it does not.

Note that every monomial of total degree d in variables
x2; . . . ; xnþ1 lies in one of these sets and these sets are
mutually disjoint. Moreover, if x� 2 Si, then xdiiþ1 j x� and
x�=xdiiþ1 is a monomial of total degree d� di.

We can now create a system of equations that generalizes
system (16)

x�=xd1
2 F1 ¼ 0 for all x� 2 S1

. . .

x�=xdnnþ1 Fn ¼ 0 for all x� 2 Sn:
ð19Þ

This system has some special properties. Since Fi are
homogeneous polynomials of total degree di, polynomials
x�=xdiiþ1 Fi are of total degree d for all i ¼ 1; . . .n and
therefore can be written as a linear combination of
monomials of degree d in n variables x2; . . . ; xnþ1. There
exist nþd�1

d

� �
monomials of degree d in n variables.

The total number of equations in the system (19) is equal
to the number of elements in sets S1; . . .Sn, which is also
nþd�1

d

� �
because these sets contain all monomials of degree d

in variables x2; . . .xnþ1. Thus, the system of polynomial
equations (19) consists of nþd�1

d

� �
homogeneous equations in

s � nþd�1
d

� �
monomials (all of degree d) in variables

x2; . . . ; xnþ1. Note that the coefficients of these equations
are polynomials in x1.

We can next dehomogenize equations (19) by setting
xnþ1 ¼ 1. This dehomogenization does not reduce the
number of monomials in these equations. This is because
there are no monomials of the form x� ¼ x�2

2 x
�3

3 . . .x�nn x
�nþ1

nþ1

among monomials of total degree d which differ only in the
power �nþ1.

Therefore, we obtain a system of nþd�1
d

� �
equations in

s � nþd�1
d

� �
monomials up to degree d in n� 1 variables

x2; . . . ; xn. Note that the number of monomials up to degree d
in n� 1 variables is

Pd
k¼0

nþk�2
k

� �
¼ nþd�1

d

� �
, which is exactly

the number of monomials of degree d in n variables.
The system obtained after dehomogenization is equiva-

lent to the initial system (14), i.e., has the same solutions,
and can be written as

Cðx1Þv ¼ 0; ð20Þ

where Cðx1Þ is a matrix polynomial and v is a vector of
s � nþd�1

d

� �
monomials in variables x2; . . . ; xn.

For many systems of polynomial equations, we are able
to choose s � nþd�1

d

� �
linearly independent polynomials

(including all initial polynomials (14)) from the generated
nþd�1

d

� �
polynomials (19). In that case the coefficient

matrices Cj in the matrix polynomial Cðx1Þ are square and
the formulation (20) is directly a polynomial eigenvalue
formulation of our system of polynomial equations (14).

Unfortunately, it may sometimes happen that between
nþd�1

d

� �
polynomials (19) there are less than s linearly

independent polynomials or that, after rewriting these
polynomials into the form (20), all coefficient matrices Cj

are close to singular. This may happen because the
presented Macaulay resultant-based method is not de-
signed for general polynomials but for dense homogeneous
ones, i.e., for polynomials whose coefficients are all nonzero
and generic, and it constructs a minimal set of equations
that is necessary to obtain square matrices for these specific
polynomials [6].

Therefore, we will use here a small modification of this
Macaulay resultant-based method. This modified method is
very simple and differs from the standard method only in
the form of the sets Si (18) and produces a higher number of
polynomial equations.

2.2.2 Modified Resultant-Based Method

We again consider all monomials x� ¼ x�2

2 . . .x�nþ1

nþ1 in
variables x2; . . . ; xnþ1 of total degree d; however, here the
sets Si have the form

S1 ¼ fx� : j�j ¼ d; xd1
2 j x�g;

S2 ¼ fx� : j�j ¼ d; xd2

3 j x�g;
. . .

Sn ¼ fx� : j�j ¼ d; xdnnþ1 j x�g:

ð21Þ

This means that in the extended set of polynomial equations:

x�=xd1
2 F1 ¼ 0 for all x� 2 S1;

. . .

x�=xdnnþ1 Fn ¼ 0 for all x� 2 Sn;
ð22Þ

we multiply each homogeneous polynomial Fi of degree di,
i ¼ 1; . . . ; n, with all monomials of degree d� di. This is
because the set of monomials

fx�=xdiiþ1; xdiiþ1 2 Sig; ð23Þ

contains all monomials of degree d� di in variables
x2; . . . ; xnþ1. Therefore, the extended system of polynomial
equations (22) consists of all possible homogeneous
polynomials of degree d which can be obtained from the
initial homogeneous polynomials Fi (16) by multiplying
them by monomials.

After creating this extended system of polynomial
equations, the method continues as the previously de-
scribed standard resultant-based method, i.e., we dehomo-
genize all equations from (22) and rewrite them to the form

C x1ð Þv ¼ 0; ð24Þ

where Cðx1Þ is a matrix polynomial and v is a vector of
s � nþd�1

d

� �
monomials up to degree d in variables

x2; . . . ; xn.
Since in this case we generate more polynomial equa-

tions, in fact all possible of degree d which can be generated
in the presented way, we are able to choose s � nþd�1

d

� �
linearly independent polynomials (including all initial
polynomials (14)) more frequently from them. Moreover,
when we have more than s linearly independent poly-
nomials, we can select polynomials from them to obtain
well-conditioned coefficient matrices Cj and we can in this
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way improve numerical stability of the polynomial eigen-
value formulation (24).

Of course this modified resultant-based method is still
not completely general and cannot be used to transform all
systems of polynomial equations to a PEP (1), but it is
conceptually very simple and sufficient for many problems.

In general it can be proven that any system of polynomial
equations can be transformed to a PEP (1). One way to
prove this is using the Shape Lemma [6]. According to this
lemma, in the ideal generated by initial polynomials [6]
there exists a basis of the form gi ¼ xi þ hiðxnÞ, i ¼ 1; . . . ; n,
where hi are polynomials in xn. After hiding xn in this basis,
we obtain a polynomial eigenvalue formulation of the initial
problem. Using this formulation would be, however, very
inefficient since for obtaining polynomials from this basis a
huge number of new polynomials usually needs to be
generated. Nevertheless, the existence of this basis simply
shows that there exists at least one polynomial eigenvalue
formulation of any system of polynomial equations with a
finite number of solutions.

To obtain a more efficient polynomial eigenvalue for-
mulation of some system of polynomial equations, it is
sufficient to systematically generate all polynomials from the
ideal, not only monomial multiples of the initial polynomials,
like in the presented method, and stop when we already have
sufficiently many polynomials for the formulation.

We can systematically generate new polynomials from the
ideal, for example, by multiplying all new generated
polynomials or, in the first step, all initial polynomials of
degree < d by all individual variables and reducing them
each time by the Gauss-Jordan (G-J) elimination. After each
G-J elimination we can check if we already have a polynomial
eigenvalue formulation. If no new polynomials of degree< d
were generated and no polynomial eigenvalue formulation
was obtained, then we increase the degree d. By checking if
we already have a polynomial eigenvalue formulation we
mean checking if there exists i polynomials containing j < i
monomials in the set of already generated polynomials.

In the presented approach, we were considering system
(14) of n equations in n unknowns. However, this method
can be easily extended to a system (12) of m � n equations
in n unknowns.

In the case of the modified resultant-based method it is
sufficient to multiply each homogeneous polynomial Fi of
degree di with all monomials of degree d� di, which is
independent of the number of polynomials.

For the standard resultant-based method presented in
Section 2.2.1, all what we need to do is to select n equations
from the initial m equations with largest degrees di. Then,
we can apply the presented method to these n equations in
n unknowns. In this way, we will generate nþd�1

d

� �
equations in s � nþd�1

d

� �
monomials up to degree d in n�

1 variables x2; . . . ; xn and with polynomial coefficients in x1.
Adding the remaining m� n original equations may
increase the number of monomials. It is because some
monomials contained in these equations do not have to be
contained in the generated and the selected equations.
However, this number will not be greater then nþd�1

d

� �
because the degree of these m� n equations is smaller than
or equal to the degree of the selected equations and

therefore also smaller than d. Moreover, we can add also
all multiples of these remaining equations up to degree d. In
both cases, the resulting system of equations will contain
only monomials up to degree d in variables x2; . . . ; xn and
there are at most nþd�1

d

� �
such monomials.

2.2.3 Problem Relaxation

Note that the polynomial eigenvalue formulation (13) is a
relaxed formulation of the original problem of finding all
solutions to the system of polynomial equations (12). This is
because polynomial eigenvalue formulation (13) does not
consider potential dependencies in the monomial vector v
and solves for general eigenvalues x1 and general eigenvec-
tors v. However, after transforming the system of poly-
nomial equations (12) to PEP (13), coordinates of the vector v
are in general dependent, e.g., v ¼ ðx2

3; x2x3; x
2
2; x3; x2; 1Þ,

and therefore vð1Þ ¼ vð4Þ2, vð2Þ ¼ vð4Þvð5Þ, etc.
This implies that after solving PEP (13) one has to check

which of the computed eigenpairs ðx1;vÞ satisfy the original
polynomial equations (12). This can be done either by
testing all monomial dependencies in v or by substituting
the solutions to the original equations and checking if they
are satisfied.

2.3 Reducing the Size of the Polynomial Eigevalue
Problem

2.3.1 Removing Unnecessary Polynomials

The modified resultant method presented in Section 2.2.2
usually does not lead to the smallest polynomial eigenvalue
formulation of the initial system of polynomial equations
(12) and, for larger systems with larger degrees, it may
generate large polynomial eigenvalue problems which are
not practical. Therefore, we present here a method of
removing unnecessary polynomials from the generated
polynomial eigenvalue formulation.

Assume that we have the polynomial eigenvalue for-
mulation (24) of the system (14) of n polynomial equations
in n unknowns x1; . . . ; xn, and that the vector v in this
polynomial eigenvalue formulation (24) consist of s mono-
mials and the coefficient matrices Cj in the matrix poly-
nomial Cðx1Þ have size s� s. Then, we can remove
unnecessary polynomials using the following procedure:

i 1

while i � s� n do

if there exist i monomials x�, between monomials of the
vector v, which are contained only in k � i polynomials

of (24), excluding the initial polynomials, from our s

polynomials, then

remove these k polynomials

s s� k
i 1

else

i iþ 1

end if

end while

In each cycle of this algorithm, we remove more or as many
monomials as polynomials from (24), or we remove nothing.
Therefore, after each cycle the coefficient matrices Cj are
square or contain more rows than columns and can be
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therefore transformed to square matrices by omitting
some rows. Moreover, there remain at least initial
polynomial equations at the end of this algorithm.
Therefore, using this procedure, we obtain a polynomial
eigenvalue formulation of the initial system of polynomial
equations (14) which is not larger than the starting
formulation (24).

This algorithm may have higher impact when it is
performed on an eliminated system of polynomial equa-
tions, i.e., a system of polynomial equations eliminated by
the G-J elimination. For example, the G-J elimination may
help in cases when the system contains some monomials
which, after “hiding” a variable in the coefficient field, e.g.,
x1, have only numerical (constant) coefficients, i.e., coeffi-
cients not containing x1. Such monomials may then be
directly eliminated, not depending on in how many
polynomials they appear. This is because the application
of the G-J elimination on all polynomials with suitable
ordered monomials, before “hiding” x1, may eliminate
these monomials from all equations except for one
equation. Therefore, such monomials will be contained in
only one polynomial and will be eliminated using the
presented algorithm.

2.3.2 Removing Zero Eigenvalues

It often happens that matrices Cj in the polynomial
eigenvalue formulation (6) contain zero columns. A zero
column in a matrix Ci means that the monomial correspond-
ing to this column and to �i does not appear in the
considered system of equations. Moreover, it also happens
quite often that this monomial does not appear in the
system for all �j, where j > i. Then, the column correspond-
ing to this monomial is zero in all matrices Cj for j > i
including the highest order matrix Cl, which is in this case
singular. We will call such monomials which produce zero
columns in matrices Cj “zero” monomials.

In the case of singular matrix Cl, the transformation of the
PEP to the eigenvalue problem (9) will produce matrix A in
the form (11). This matrix will contain for each such “zero”
monomial a zero column, a column in the block corre-
sponding to �C�1

0 Cl. This zero column will result in a zero
eigenvalue which is, in this case, not the solution to our
original problem. Therefore, we can remove this column
together with the corresponding row from the matrix A and
in this way remove this zero eigenvalue.

Removing the row will remove 1 from the column
corresponding to the same monomial as the “zero”
monomial in the �C�1

0 Cl block but in this case in the block
�C�1

0 Cl�1. This means that if this “zero” monomial multi-
plied by �l�1 does not appear in the system of polynomial
equations we again have the zero column resulting in the
zero eigenvalue. Therefore, we can also remove this zero
column and the corresponding row of the matrix A. This can
be repeated until the first matrix Ci which contains, for this
“zero” monomial, the zero column.

In this way, we can often remove most of the “parasitic”
zero eigenvalues and therefore solve a considerably smaller
eigenvalue problem, which may significantly improve the
computational efficiency and the stability of the solution.
This is because the eigenvalue computation is the most
time-consuming part of final solvers.

3 RELATIVE POSE PROBLEMS

To show the applicability of the previously described

polynomial eigenvalue method, we present here polyno-

mial eigenvalue solutions to four important minimal

relative pose problems.

3.1 Problems Formulations

Consider a pair of cameras P and P0. It is known [12] that in

the case of fully calibrated cameras points xj and x0j, which

are projections of 3D point Xj, are geometrically con-

strained by the epipolar geometry constraint

x0Tj E xj ¼ 0; ð25Þ

where E is a 3� 3 rank-2 essential matrix with two equal

singular values. These constraints on E can be written as

detðEÞ ¼ 0; ð26Þ

2 E E>E� traceðE E>ÞE ¼ 0: ð27Þ

Equation (26) is called the rank constraint and (27) the

trace constraint.
The usual way [29], [38] to compute the essential

matrix is to linearize relation (25) into the form M X ¼ 0,

where vector X contains nine elements of the matrix E

and M contains products of image measurements. Essen-

tial matrix E is then constructed as a linear combination

of the conveniently reshaped null space vectors of the

matrix M. The dimension of the null space depends on the

number of point correspondences used. Additional con-

straints (26) and (27) are used to determine the coeffi-

cients in the linear combination of the null space vectors

or to project an approximate solution to the space of

correct essential matrices.
Fundamental matrix F describes uncalibrated cameras

similarly as essential matrix E does for calibrated cameras

(25), i.e.,

x0Tj F xj ¼ 0; ð28Þ

and can be computed in an analogous way.
In this paper, we also consider a camera pair with

unknown but equal focal length f and a camera pair with

one fully calibrated and one up to focal length calibrated

camera. In both cases, all other calibration parameters are

assumed to be known. In such a case the calibration

matrix K [12] is a diagonal matrix diagð½f f 1�Þ.
Therefore, for two cameras with unknown, but equal

focal length, the essential matrix E ¼ K> F K ¼ K F K since K

is diagonal. Since K is regular, we have

detðFÞ ¼ 0; ð29Þ

2 F QF>QF� traceðF QF>QÞ F ¼ 0: ð30Þ

Equation (30) is obtained by substituting the expression for

the essential matrix into the trace constraint (27), applying

the substitution Q ¼ K K, and multiplying (27) by K�1 from

left and right. Note that the calibration matrix can be

written as K ’ diagð½1 1 1=f �Þ to simplify equations.
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For the case with one fully calibrated and one up to the
focal length calibrated camera, we have E ¼ K F and we
obtain constraints

detðFÞ ¼ 0; ð31Þ

2 F F>QF� traceðFF>QÞ F ¼ 0: ð32Þ

Equation (32) is obtained similarly as (30).
Since almost all consumer camera lenses, in particular

wide angle lenses, suffer from some radial distortion, we
also consider here the problem of estimating relative pose of
two uncalibrated cameras with one parameter radial
distortion.

Here, we assume the one-parameter division model
proposed by Fitzgibon [10], which is given by the formula

pu 	 pd=ð1þ kr2
dÞ; ð33Þ

where k is the distortion parameter, pu ¼ ½xu; yu; 1�>,
respectively, pd ¼ ½xd; yd; 1�>, are the corresponding undis-
torted, respectively, distorted, image points, and rd is the
radius of pd w.r.t. the distortion center. We assume that the
distortion center is in the center of the image, i.e.,
r2
d ¼ x2

d þ y2
d.

Since the epipolar constraint (28) contains undistorted
image points xi, but we measure distorted ones, we need to
put the relation (33) into (28). Let xi ¼ ½xi; yi; 1� be the
ith measured distorted image point and let r2

i ¼ x2
i þ y2

i .
Then, xi ¼ ½xi; yi; 1þ kr2

i � and the epipolar constraint for the
uncalibrated cameras has the form

½x0i; y0i; 1þ kr20
i �F ½xi; yi; 1þ kr2

i �
> ¼ 0: ð34Þ

In this problem, we also have the singularity constraint on
the fundamental matrix, i.e., the equation

detðFÞ ¼ 0: ð35Þ

These are the basic equations which define all four
relative pose problems considered in this paper and which
we will use to formulate these problems as polynomial
eigenvalue problems and solve them using the method
presented in Section 2. Let us first review previous solutions
to all the considered problems.

3.2 Previous Solutions

3.2.1 Five-Point Problem

The 5-pt calibrated relative pose problem was already
studied by Kruppa [14], who has shown that it has at most
11 solutions. Maybank and Faugeras [8] then sharpened
Kruppa’s result by showing that there are at most
10 solutions. Recently, Nister et al. [30] have shown that
the problem really requires solving a 10 degree polynomial.

The state-of-the-art methods of Nister [29] and
Stewénius et al. [38], which obtain the solutions as the
roots of a 10th-degree polynomial, are currently the most
efficient and robust implementations for solving the 5-pt
relative pose problem.

In both methods [29], [38], the five linear epipolar
constraints were used to parameterize the essential matrix
as a linear combination of a basis E1; E2; E3; E4 of the space of
all compatible essential matrices:

E ¼ x E1 þ y E2 þ z E3 þ E4: ð36Þ

Then, the rank constraint (26) and the trace constraint (27)
were used to build 10 third-order polynomial equations in
three unknowns and 20 monomials. These equations can be
written in a matrix form:

M X ¼ 0; ð37Þ

with a coefficient matrix M reduced by the G-J elimination
and the vector of all monomials X.

The method [29] used relations between polynomials (37)
to derive three new equations. The new equations were
arranged into a 3� 3 matrix equation AðzÞ Z ¼ 0 with
matrix AðzÞ containing polynomial coefficients in z and Z

containing the monomials in x and y. The solutions were
obtained using the hidden variable resultant method [6] by
solving the 10th-degree polynomial detðAðzÞÞ, finding Z as a
solution to a homogeneous linear system, and constructing
E from (36). Note that this hidden variable formulation is, in
fact, a polynomial eigenvalue formulation, solved, however,
using polynomial determinants.

The method [38] follows another classical approach to
solving systems of polynomial equations. First, a Gröbner
basis [6] of the ideal generated by equations (37) is found.
Then, a multiplication matrix [35] is constructed. Finally,
the solutions are obtained by computing the eigenvalues
and the eigenvectors of the multiplication matrix [6]. This
approach turned out to lead to a particularly simple
procedure for the 5-pt problem since the particular
Gröbner basis used and the 10� 10 multiplication matrix
can be constructed directly from the reduced coefficient
matrix M.

Another technique based on the hidden variable resul-
tant for solving the 5-pt relative pose problem was
proposed in [22]. This technique is somewhat easier to
understand than [38], but is far less efficient and Maple was
used in [22] to evaluate large determinants.

The first polynomial eigenvalue solution to this problem
was proposed in [17]. This solution is similar to the solution
presented in this paper; however, since the reduction of the
size of the PEP was not used in [17], the solution [17] was
rather inefficient and resulted in eigenvalue computation of
a 30� 30 matrix.

3.2.2 Six-Point Equal Focal Length Problem

The problem of estimating relative camera pose for two
cameras with unknown, but equal, focal length from minimal
number of 6 point correspondences has 15 solutions [36].

The first minimal solution to this problem proposed by
Stewénius et al. [36] is based on the Gröbner basis
techniques and is similar to the Stewénius solution to the
5-pt problem [38]. Using the linear epipolar constraints, the
fundamental matrix is parameterized by two unknowns as

F ¼ x F1 þ y F2 þ F3: ð38Þ

Using the rank constraint for the fundamental matrix (29)
and the trace constraint for the essential matrix (30) then
brings 10 third and fifth-order polynomial equations in
three unknowns x, y, and w ¼ f�2, where f is the unknown
focal length.

KUKELOVA ET AL.: POLYNOMIAL EIGENVALUE SOLUTIONS TO MINIMAL PROBLEMS IN COMPUTER VISION 1387



The Gröbner basis solver [36] starts with these 10 poly-

nomial equations, which can be represented by a 10� 33

matrix M. Since this matrix does not contain all necessary

polynomials for creating a multiplication matrix, several

new polynomials, monomial multiples of the initial poly-

nomials, are added.
The resulting solver therefore consists of three G-J

eliminations of three matrices of size 12� 33, 16� 33, and

18� 33. The eigenvectors of the multiplication matrix
provide the solutions to the three unknowns x, y, and

w ¼ f�2.
Another Gröbner basis solver to this problem was

proposed in [5]. This solver uses only one G-J elimination

of a 34� 50 matrix and uses a special technique for

improving the numerical stability of Gröbner basis solvers
by selecting a suitable basis of the quotient ring modulo the

ideal generated by the Gröbner basis. In this paper, it was

shown that this solver gives more accurate results than the

original solver [36].
A Gröbner basis solver with single G-J elimination of a

31� 46 matrix, which was generated using the automatic

generator, was presented in [16]. This solver is also more
accurate than the original solver proposed by Stewénius [36].

Yet another solution based on the hidden variable
resultant method was proposed in [21], but it has similar

problems with efficiency as the hidden variable solution to

the 5-pt problem [22].
Like in the 5-pt relative pose problem, the first poly-

nomial eigenvalue solution to this problem was proposed in

[17] and we will discuss it in more detail in Section 4.2.

3.2.3 Six-Point One Calibrated Camera Problem

The problem of estimating relative camera pose for one

fully calibrated and one up to the focal length calibrated

camera from a minimal number of 6 point correspondences

was solved only recently in [3].
This problem was previously studied in [39], where a

nonminimal solution was proposed. First, the 7 point

algorithm [12] was used for computing the fundamental
matrix and then the focal length was estimated in a closed-

form solution using Kruppa equations.
In [3], two new minimal solutions to this problem were

proposed. The first solution is based on the Gröbner basis

techniques and is similar to the Stewénius’ solution to the

6-pt equal focal length problem [36]. The fundamental

matrix is again parameterized by two unknowns, as in (38).
Then, the rank constraint for the fundamental matrix (31)

and the trace constraint for the essential matrix (32) are

used. This gives 10 third and fourth-order polynomial

equations in three unknowns x, y, and w ¼ f�2 and

20 monomials. The final solver in this case consists of one
G-J elimination of a 21� 30 coefficient matrix M which

contains coefficients arising from concrete image measure-

ments and the eigenvalue and eigenvector computation of a

9� 9 multiplication matrix.
The second solution to this problem, which was

presented in [3], was based on the polynomial eigenvalue

formulation and we will discussed it in more detail in
Section 4.3.

3.2.4 Eight-Point Radial Distortion Problem

The first nonminimal solution to the problem of simulta-
neous estimation of the epipolar geometry and the one
parameter radial distortion division model was proposed
by Fitzgibbon [10]. In this solution, the algebraic constraint
det F ¼ 0 on the fundamental matrix has not been used
and therefore 9 point correspondences were necessary to
solve the problem. Thanks to neglecting this algebraic
constraint, the resulting nine equations from the epipolar
constraint (34) could be directly formulated as a quadratic
eigenvalue problem and quite easily solved using standard
numerical methods.

Li and Hartley [20] solved the same problem from
9 point correspondences using the hidden variable
resultant technique. The quality of the result was compar-
able to [10]; however, the hidden variable technique was
considerably slower than the polynomial eigenvalue
technique used in [10] since in [20] Maple was used to
evaluate large determinants.

The first minimal solution to the problem of estimating
epipolar geometry and one parameter division model was
proposed in [15]. This solution used det F ¼ 0 and therefore
the minimal number of 8 point correspondences were
sufficient to solve it. In this solution, the initial nine
polynomial equations (28) and (35) in nine unknowns were
first transformed to three polynomial equations in three
unknowns. Then, these equations were solved using the
Gröbner basis method [6]. The final solver consists of three
G-J eliminations of the 8� 22, 11� 30, and 36� 50 matrices
and the eigenvalue computation of the 16� 16 matrix.

The improved version of solver [15], which was
generated using the automatic generator of Gröbner basis
solvers and consists of only one elimination of the 32� 48
was proposed in [16].

The polynomial eigenvalue solution to this problem was
proposed in [19]. This solution is in fact equivalent to the
solution presented in this paper. In Section 4.4, we will
show how this solution can be easily obtained using the
modified resultant-based method presented in Section 2.2.2
and in this way illustrate the usefulness of our method.

4 POLYNOMIAL EIGENVALUE SOLUTION TO THE

RELATIVE POSE PROBLEMS

In this section, we describe our solutions to the four relative
pose problems. We show that the 5-pt relative pose
problem, the 6-pt equal focal length problem, the 6-pt
problem for one fully and one up to focal length calibrated
camera, and the 8-pt problem for estimating relative pose
and one parameter radial distortion can be formulated as
the polynomial eigenvalue problems (1) of degree three,
two, one, and four.

4.1 Five-Point Problem

To obtain the polynomial eigenvalue solution to the 5-pt
relative pose problem, we use the same formulation as it
was used in [29] and [38].

In this formulation, we first use linear equations from
the epipolar constraint (25) for 5 point correspondences to
parametrize the essential matrix with three unknowns x, y,
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and z (36). Using this parameterization, the rank (26) and

the trace constraints (27) lead to 10 third-order polynomial

equations in three unknowns and 20 monomials and can be

written in the matrix form

M X ¼ 0; ð39Þ

where M is a 10� 20 coefficient matrix and X ¼ ðx3; yx2,

y2x; y3; zx2; zyx; zy2; z2x; z2y; z3; x2; yx; y2; zx; zy; z2; x; y; z; 1Þ>

is the vector of all monomials. There are all monomials in all

three unknowns up to degree three. So we can use any

unknown to play the role of � in (1). For example, taking

� ¼ z, these 10 equations (39) can be rewritten as

ðz3C3 þ z2C2 þ z C1 þ C0Þv ¼ 0; ð40Þ

where v is a 10� 1 vector of monomials, v ¼ ðx3; x2y;

xy2; y3; x2; xy; y2; x; y; 1Þ> and C3, C2, C1, and C0 are 10� 10

coefficient matrices:

C3 � ð0 0 0 0 0 0 0 0 0 m10Þ;
C2 � ð0 0 0 0 0 0 0 m8 m9 m16Þ;
C1 � ð0 0 0 0 m5 m6 m7 m14 m15 m19Þ;

and

C0 � ðm1 m2 m3 m4m11 m12 m13 m17 m18 m20Þ;

where mj is the jth column from the coefficient matrix M.
Since C3, C2, C1, and C0 are known square matrices, the

formulation (40) is a cubic PEP and can be solved using

standard efficient algorithms presented in Section 2.
In this case, the rank of the matrix C3 is only one, while

the matrix C0 is regular. Therefore, we use the transforma-

tion � ¼ 1=z and reduce the cubic PEP (40) to the problem of

finding the eigenvalues of the 30� 30 matrix:

A ¼
0 I 0
0 0 I

�C�1
0 C3 �C�1

0 C2 �C�1
0 C1

0
@

1
A: ð41Þ

After solving this eigenvalue problem we obtain 30 eigen-

values, solutions for � ¼ 1=z, and 30 corresponding eigen-

vectors v from which we extract solutions for x and y.
However, there are 20 zero eigenvalues among these

30 eigenvalues. These zero eigenvalues can be easily

eliminated since they correspond to the 20 zero columns

of the matrices �C�1
0 C3, �C�1

0 C2, and �C�1
0 C1, as described in

Section 2.3.2. Therefore, to solve the 5-pt relative pose

problem, it is sufficient to find the eigenvalues and the

eigenvectors of the 10� 10 matrix, which we obtain from

the matrix (41) by removing columns corresponding to the

zero columns of the matrices �C�1
0 C3, �C�1

0 C2, and �C�1
0 C1

and removing the corresponding rows of this matrix (41).
Note that this 10� 10 matrix is in fact the multiplication

matrix used in the Gröbner basis solver [38], which was

obtained directly from the polynomial eigenvalue formula-

tion without any knowledge about the Gröbner bases or the

properties of these multiplication matrices. The size of this

matrix equals the dimension of the problem, which was

proven to be 10 [30].

4.2 Six-Point Equal Focal Length Problem

Our polynomial eigenvalue solution to the 6-pt equal focal
length problem starts with the parameterization of the
fundamental matrix with two unknowns x and y (38) which
is obtained from the epipolar constraint (28) for 6 point
correspondences. Substituting this parameterization into
the rank constraint for the fundamental matrix (29) and the
trace constraint for the essential matrix (30) gives 10 third
and fifth-order polynomial equations in three unknowns x,
y, and w ¼ f�2, where f is the unknown focal length. This
formulation is the same as the one used in [36], [21] and can
be again written in a matrix form

M X ¼ 0; ð42Þ

where M is a 10� 30 coefficient matrix and

X ¼ ðw2x3; w2yx2; w2y2x;w2y3; wx3; wyx2;

wy2x;wy3; w2x2; w2yx; w2y2; x3; yx2; y2x; y3;

wx2; wyx; wy2; w2x;w2y; x2; yx; y2; wx; wy;w2; x; y; w; 1Þ>

is a vector of 30 monomials. Variables x and y appear in
degree three and w only in degree two. Therefore, we have
selected � ¼ w in the PEP formulation (1). Then, these
10 equations can be rewritten as

ðw2C2 þ w C1 þ C0Þv ¼ 0; ð43Þ

where v is a 10� 1 vector of monomials, v ¼ ðx3; x2y;

xy2; y3; x2; xy; y2; x; y; 1Þ> and C2, C1, and C0 are 10� 10
coefficient matrices.

C2 � ðm1 m2 m3 m4 m9 m10 m11 m19 m20 m26Þ;
C1 � ðm5 m6 m7 m8 m16 m17 m18 m24 m25 m29Þ;

and

C0 � ðm12 m13 m14 m15 m21 m22 m23m27 m28 m30Þ;

wheremj is the jth column from the coefficient matrix M (42).
The formulation (43) is directly the QEP, which can again

be solved using the methods presented in Section 2. After
solving this QEP (43) by transforming it to a GEP, we obtain
20 eigenvalues, solutions for w ¼ f�2, and 20 corresponding
eigenvectors v from which we extract solutions for x and y.
To do this we normalize solutions for v to have the last
coordinate 1 and extract values from v that correspond to x
and y, in this case vð8Þ and vð9Þ. Then, we use (38) to
compute F.

Again, there are zero eigenvalues, solutions to 1=w, like in
the 5-pt case. However, in this case, these eigenvalues cannot
be so easily eliminated since here we do not have zero
columns corresponding to these eigenvalues. Therefore, this
polynomial eigenvalue solver delivers 20 solutions, which is
more than the number of solutions of the original problem.
This is caused by the fact that we are solving a relaxed version
of the original problem as described in Section 2.2.3. There-
fore, the solution contains not only all vectors v that (within
limits of numerical accuracy) satisfy the constraints induced
by the problem, i.e., vð1Þ ¼ vð8Þ3, but also additional vectors
v that do not satisfy them. Such vectors v need to be
eliminated, e.g., by verifying the monomial dependences as
described in Section 2.2.3.
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4.3 Six-Point One Calibrated Camera Problem

The polynomial eigenvalue solver to the third problem, the
6-pt relative pose problem for one fully and one up to the
focal length calibrated camera, uses the same parameteriza-
tion of the fundamental matrix as the previous 6-pt
problem. In this case, this parameterization is substituted
into (31) and (32), as described in Section 3.1, and results in
10 equations in three unknowns x, y, and w ¼ f�2. These
equations can be rewritten into the matrix form

M X ¼ 0; ð44Þ

where M is a 10� 20 coefficient matrix and

X ¼ ðwx3;wyx2; wy2x;wy3; x3; yx2; y2x; y3;

wx2; wyx; wy2; x2; yx; y2; wx; wy; x; y; w; 1Þ>

is a vector of 20 monomials.
Unknowns x and y appear in degree three, but w appears

only in degree one. Therefore, we can select � ¼ w and
rewrite these 10 equations as

ðw C1 þ C0Þv ¼ 0; ð45Þ

where v ¼ ðx3; yx2; y2x; y3; x2; yx; y2; x; y; 1Þ> is a 10� 1

vector of monomials and C1, C0 are 10� 10 coefficient
matrices such that

C1 � ðm1 m2 m3 m4 m9 m10 m11 m15m16 m19Þ;
C0 � ðm5 m6 m7 m8 m12 m13 m14 m17 m18m20Þ;

where mj is the jth column from the coefficient matrix M.
The formulation (45) is directly the generalized

eigenvalue problem (3), respectively, a polynomial eigen-
value problem of degree one with the regular matrix C0,
and can be easily solved by finding the eigenvalues of the
matrix �C�1

0 C1.
After solving (45), we obtain 10 eigenvalues, solutions for

w ¼ f�2, and 10 corresponding eigenvectors v from which
we extract solutions for x and y. Then, we use (38) to get
solutions for F.

4.4 Eight-Point Radial Distortion Problem

The solver to the problem of estimating the relative pose of
two uncalibrated cameras together with the one parameter
division model from 8 point correspondences starts with
nine equations in nine variables, i.e., eight equations from
the epipolar constraint (34) and one from the singularity
constraint on F (35).

In the first step we simplify these equations by
eliminating some variables. We use the same elimination
method as was used in [15].

Let the elements of the fundamental matrix be fi;j.
Assuming f3;3 ¼ 1, the epipolar constraint (34) gives eight
equations with 15 monomials ðf1;3k; f2;3k; f3;1k; f3;2k; k

2; f1;1;

f1;2; f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; k; 1Þ and 9 variables ðf1;1; f1;2;

f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; kÞ. These monomials can be reor-
dered such that monomials containing f1;1, f1;2, f2;1, f2;2, f1;3

and f2;3 are at the beginning. Reordered monomial vector
will be X ¼ ðf1;1; f1;2; f2;1; f2;2; f1;3k; f1;3; f2;3k; f2;3; f3;1k; f3;2k;

k2; f3;1; f3;2; k; 1Þ>. Then, eight equations from the epipolar
constraint can be written in a matrix form M X ¼ 0, where M

is the coefficient matrix and X is this reordered monomial

vector.
After computing the G-J elimination M0 of M we obtain

eight equations M0X ¼ 0 of the form

pi ¼ LT ðpiÞ þ giðf3;1; f3;2; kÞ ¼ 0; ð46Þ

where LT ðpiÞ is the leading term of the polynomial pi [6]

which is, in our case, LT ðpiÞ ¼ f1;1; f1;2; f2;1; f2;2; f1;3k; f1;3;

f2;3k and f2;3 for i ¼ 1; 2; 3; 4; 5; 6; 7; 8. Polynomials

giðf3;1; f3;2; kÞ are second-order polynomials in three vari-

ables f3;1, f3;2, k. Next, we can express six variables,

f1;1; f1;2; f1;3; f2;1; f2;2; f2;3 as the following functions of the

remaining three variables f3;1; f3;2; k:

f1;1 ¼ �g1ðf3;1; f3;2; kÞ; ð47Þ

f1;2 ¼ �g2ðf3;1; f3;2; kÞ; ð48Þ

f1;3 ¼ �g6ðf3;1; f3;2; kÞ; ð49Þ

f2;1 ¼ �g3ðf3;1; f3;2; kÞ; ð50Þ

f2;2 ¼ �g4ðf3;1; f3;2; kÞ; ð51Þ

f2;3 ¼ �g8ðf3;1; f3;2; kÞ: ð52Þ

We can substitute expressions (47)-(52) into the remain-

ing two equations p5 and p7 from the epipolar constraint

(46) and also into the singularity constraint (35) for F. In

this way, we obtain three polynomial equations in three

unknowns (two third-order polynomials and one fifth-

order polynomial)

kð�g6ðf3;1; f3;2; kÞÞ þ g5ðf3;1; f3;2; kÞ ¼ 0; ð53Þ

kð�g8ðf3;1; f3;2; kÞÞ þ g7ðf3;1; f3;2; kÞ ¼ 0; ð54Þ

det
�g1 �g2 �g6

�g3 �g4 �g8

f3;1 f3;2 1

0
@

1
A ¼ 0: ð55Þ

If we take the unknown radial distortion parameter k to

play the role of � in PEP (1), we can rewrite these three

equations as

ðk4C3 þ k3C3 þ k2C2 þ kC1 þ C0Þv ¼ 0; ð56Þ

where v ¼ ðf3
3;1; f

2
3;1f3;2; f3;1f

2
3;2; f

3
3;2; f

2
3;1; f3;1f3;2; f

2
3;2; f3;1; f3;2;

1Þ> is a 10� 1 vector of monomials and C4, C3, C2, C1, and C0

are 3� 10 coefficient matrices.
Polynomial eigenvalue formulation (1) requires having

square coefficient matrices Cj. Unfortunately, in this case,

we do not have square coefficient matrices. We only have

three equations and 10 monomials in the vector v. There-

fore, we will use the method of transforming the system of

polynomial equations to the PEP described in Section 2.2.2.

The standard resultant-based method from Section 2.2.1

also produces a polynomial eigenvalue formulation of this

problem but the modified method, Section 2.2.2, improves

the numerical stability of the final solver a little bit.
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Equations (53) and (54) are equations of degree one when
considered as polynomials form ðCC½k�Þðf3;1; f3;2Þ, while (55)
is an equation of degree three. Therefore, the degree d (17),
defined in this method as d ¼

Pn
i¼1ðdi � 1Þ þ 1, is equal to

three. This means that the sets Si (21) will consist of
monomials

S1 ¼ ff3
3;1; f

2
3;1f3;2; f3;1f

2
3;2; f

2
3;1; f3;1f3;2; f3;1g;

S2 ¼ ff3
3;2; f

2
3;1f3;2; f3;1f

2
3;2; f

2
3;2; f3;1f3;2; f3;2g;

S3 ¼ f1g;

after the dehomogenization (see Section 2.2.2).
The extended system of (22), which is equivalent to the

initial system of (53)-(55), will therefore consist of 13 equa-
tions, i.e., (53) and (54) multiplied with the monomials
f2

3;1; f3;1f3;2; f
2
3;2; f3;1; f3;2; 1 and (55), and will contain only

10 monomials. Therefore, this system can be rewritten to the
polynomial eigenvalue form (56) with coefficient matrices Cj

of size 13� 10.
Since we have more equations than monomials, we can

select 10 equations from them such that the resulting system
will have a small condition number. The resulting formula-
tion will be a PEP of degree four.

After solving this PEP (56), we obtain 40 solutions for �
and 40 corresponding eigenvectors v from which we extract
solutions to f3;1 and f3;2.

Also in this case, the eigenvalue problem results in
several zero eigenvalues. Eleven of these zero eigenvalues
correspond to zero columns of the coefficient matrices Cj
and can be removed using the method describe in
Section 2.3.2. This means that we reduce the original 40�
40 eigenvalue problem to a 29� 29 eigenvalue problem. We
still obtain more solutions than the number of solutions to
the original system of polynomial equations, which is in this
case 16. Therefore, we need to eliminate these “parasitic”
solutions by, e.g., verifying monomial dependencies, see
Section 2.2.3.

After finding the solutions to k, f3;1, and f3;2, we can use
(47)-(52) to get solutions for the fundamental matrix F.

5 EXPERIMENTS

In this section, we evaluate our solutions and compare them
with the existing state-of-the-art methods. Since all methods
are algebraically equivalent and solvers differ only in the
way of solving problems, we have evaluated them on
synthetic noise-free data only. We aimed at studying the
numerical stability and speed of the algorithms. The
properties of the individual problems in different config-
urations and under different noise contaminations are
studied in [29], [38], [36], [3], [15], and [19].

5.1 Numerical Stability

In all our experiments, the scenes were generated using 3D
points randomly distributed in a 3D cube. Each 3D point
was projected by a camera with random feasible orientation
and position and random or fixed focal length. For the
radial distortion problem, the radial distortion using the
division model [10] was added to all image points.

For the calibrated 5-pt problem, we extracted camera
relative rotations and translations from estimated essential

matrices. From the four possible choices of rotations and
translations, we selected the one where all 3D points were
in front of the canonical camera pair [12]. Let R be an
estimated camera relative rotation and Rgt the correspond-
ing ground-truth rotation. The rotation error is measured
as the angle in the angle axis representation of the relative
rotation R R�1

gt and the translation error as an angle
between ground-truth and estimated translation vectors.
Fig. 1 top-left compares results of different 5-pt solvers:
gb5pt denotes Stewenius Gröbner basis solver [38],
nongb5pt—Nister’s [29], peig5pt—the polyeig solver pre-
sented in [17], and fpeig5pt denotes the fast polyeig solver,
with removed zero eigenvalues proposed in this work. The
rotation error is displayed with solid line and the
translation error with dashed line. The numerical stability
of all solvers is very good.

In evaluations of both 6-pt problems, we focused on the
value of estimated focal length. We measured the relative
focal length error ðf � fgtÞ=fgt, where f is the estimated
focal length and fgt denotes the ground truth. Fig. 1 top-
right compares the 6-pt solvers for a pair of cameras with a
constant focal length. In this figure, gb6pt denotes the
Stewenius Gröbner basis solver [36], 1elim6pt—the Gröbner
basis solution with single elimination created using the
automatic generator [16], and peig6pt denotes the polyeig
solver presented in this paper. The polynomial eigenvalue
solver outperforms both Gröbner basis solvers.

Solvers for a pair of an internally calibrated camera
and a camera with unknown focal length are compared in
Fig. 1 bottom-left. Again, the polynomial eigenvalue
solver (peig6pt on-off) is a little bit more stable compared
to the Gröbner basis solver (6pt on-off) described in [3].

Finally, the bottom-right plot in Fig. 1 compares 8-pt
solvers for two cameras with unknown constant radial
distortion. Here, the Gröbner basis solver [15] (rd8pt)
provides less stable solutions compared to both polyeig
solvers. Moreover, the polyeig solver with reduced zero
eigenvalues (fprd8pt) outperforms the not-reduced solver
both in precision and speed.

5.2 Computational Complexity

We have implemented all solvers presented in this paper in
C++. In all our implementations, we have decided to
transform the resulting polynomial eigenvalue problems to
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the standard eigenvalue problems (11), as described in
Section 2.1, and use standard numerical eigenvalue meth-
ods to solve them.

All presented solvers are easy to implement since in each
solver only a few matrices are filled with appropriate
coefficients extracted from the input equations. Then, matrix
(11), which is the input to some standard numerical

eigenvalue algorithm, is constructed using these matrices.
We have implemented our own eigenvalue solver according
to [32]; however, LAPACK eigenvalue routine or other well-
known algorithms can also be used [1].

We next compare the computational complexity of the
solvers presented in this paper with the state-of-the-art
methods.

In the case of the 5-pt relative pose problem, the
presented polynomial eigenvalue method requires comput-
ing the inverse of one 10� 10 matrix and then computing

eigenvalues of the matrix of the same size. This is
equivalent to the number and type of the operations used
in the Gröbner basis solver [38]. The difference is only in the
method used for obtaining the resulting 10� 10 matrix.

For this 5-pt problem, we have found that it is more
efficient to directly compute the characteristic polynomial of
the 10� 10 matrix, using the Faddeev-Leverrier method [7],
and to find solutions by computing the roots of this 10th-
order characteristic polynomial using the Sturm sequences

[23] than to use standard eigenvalue algorithms.
Compared to the state-of-the-art solver from [29], the

polyeig solver presented in this paper is a little bit less
efficient. This is because the solver from [29] requires
computing the inverse of one 10� 10 matrix and then
creates the 10th-order polynomial by computing one 3� 3

polynomial determinant. This is more efficient than the
computation of this polynomial used in our case because
the characteristic polynomial formula [7] requires comput-

ing trace of a 10� 10 matrix to power 10.
Comparing the speed of the solvers, our solver runs on

Intel i7 Q720 notebook about 31 �s while the only available
implementation of the solver from [38] runs about 244 �s.
However, since the Gröbner basis solver [38] consists of
the same operations as our proposed solver, the same time
as ours can be achieved. The optimized version of the
solver from [29] should be even faster; however, it is not
publicly available.

In the case of the 6-pt equal focal length problem, the

polynomial eigenvalue method requires computing the
inverse of one 10� 10 matrix and then computing eigenva-
lues of the 20� 20 matrix. This solver runs on the same
hardware as the 5-pt solver, about 182 �s. The best available
implementation of the Gröbner basis solver from [16]
requires performing G-J elimination of a 31� 46 matrix
and to compute eigenvalues of the 15� 15 matrix and runs
about 650 �s.

The polynomial eigenvalue solver for the 6-pt problem

for one calibrated and one up to focal length calibrated
camera requires computing the inverse of one 10� 10

matrix and then eigenvalues of the 10� 10 matrix. The
solver runs about 30 �s. The Gröbner basis solver from [3]
requires performing G-J elimination of a 21� 30 matrix and

computing eigenvalues of the 9� 9 matrix. Its implementa-
tion from [3] runs about 259 �s.

Finally, the polynomial eigenvalue solution to the 8-pt
radial distortion problem requires computing the inverse of
one 10� 10 matrix and eigenvalues of the 29� 29 matrix.
This solver runs about 685 �s. The best available imple-
mentation of the Gröbner basis solver from [16] requires
performing G-J elimination of a 32� 48 matrix and
computing eigenvalues of the 16� 16 matrix and runs
about 640 �s; however, this time can still be reduced by a
better implementation of this solver.

Note that all mentioned Gröbner basis solvers [38], [16],
[3] are partially implemented in MATLAB and therefore
their running times can be further improved. However, the
problem is that most of these solvers are quite complicated
to understand and without some knowledge of algebraic
geometry they cannot be easily reimplemented.

About 90 percent of the time of all presented polynomial
eigenvalue solvers is spent in the eigenvalue and eigenvector
computation. This will also be the most consuming part in
cleverly reimplemented Gröbner basis solvers [38], [16], [3].

6 CONCLUSION

In this paper, we have presented the polynomial eigenvalue
method for solving systems of polynomial equations
appearing in computer vision. Compared to the state-of-
the-art Gröbner basis method, the presented method is
more straightforward and easier to implement since
eigenvalue problems are well studied, easy to understand,
and efficient and robust algorithms for solving these
problems are available. We have shown this by presenting
very simple, fast, stable, and easy to implement solutions to
four important minimal relative pose problems.

Moreover, we have characterized the problems that can
be efficiently solved as polynomial eigenvalue problems
and presented a resultant-based method for transforming
a system of polynomial equations to a polynomial
eigenvalue problem. Finally, we have proposed some
useful techniques for reducing the size of the computed
polynomial eigenvalue problems.
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