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Abstract In this paper, we present a pipeline for camera
pose and trajectory estimation, and image stabilization and
rectification for dense as well as wide baseline omnidirec-
tional images. The proposed pipeline transforms a set of im-
ages taken by a single hand-held camera to a set of stabilized
and rectified images augmented by the computed camera
3D trajectory and a reconstruction of feature points facili-
tating visual object recognition. The paper generalizes pre-
vious works on camera trajectory estimation done on per-
spective images to omnidirectional images and introduces a
new technique for omnidirectional image rectification that is
suited for recognizing people and cars in images. The per-
formance of the pipeline is demonstrated on real image se-
quences acquired in urban as well as natural environments.

Keywords Omnidirectional vision · Structure from
motion · Image rectification · Object recognition

1 Introduction

Image stabilization using camera poses and trajectory es-
timated by reliable structure from motion (SfM) plays an
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important role in 3D reconstruction (2d3. Boujou 2001;
Hartley and Zisserman 2003; Akbarzadeh et al. 2006; Cor-
nelis et al. 2006; Davison and Molton 2007; Williams et al.
2007), self localization (Goedemé et al. 2007), and reduc-
ing the number of false alarms in detection and recognition
of pedestrians, cars, and other objects in video sequences
(Hoiem et al. 2006; Leibe et al. 2007a, 2007b; Torii et al.
2008).

Contrary to existing SfM algorithms, which solve the
problem when the camera motion is small or once the 3D
structure is initialized, we aim at a more general situa-
tion when neither the relationship between the cameras nor
the 3D structure is available. In such case, 2-view camera
matching and relative motion estimation is a natural starting
point to camera tracking and structure from motion. This is
an approach used by the state of the art wide baseline struc-
ture from motion algorithms, e.g. Brown and Lowe (2003),
Snavely et al. (2006), Martinec and Pajdla (2007), Snavely
et al. (2008), Microsoft (2008), that start with pairwise im-
age matches and epipolar geometries which they next clean
up and make consistent by a large scale bundle adjustment.

The state of the art wide baseline SfM methods often
work with perspective cameras because of the simplicity of
their projection models and the ease of their calibration. On
the other hand, due to the limited field of view of perspec-
tive cameras, occlusions and sharp turns of the camera may
cause consecutive frames to look completely different when
the baseline becomes longer or the change of the view di-
rection becomes larger. These make image feature matching
very difficult (or even impossible) and camera pose and tra-
jectory estimation fails under such conditions. These prob-
lems can be avoided if the SfM method uses omnidirectional
cameras, e.g. fish-eye lens convertors (Mičušík and Pajdla
2006), catadioptric cameras (Geyer and Daniilidis 2001;
Mičušík and Pajdla 2006), or compound cameras (Scara-
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muzza et al. 2008; Tardif et al. 2008). Large field of view
also facilitates the analysis of activities happening in the
scene since moving objects can be tracked for longer time
periods (Leibe et al. 2007b).

The closest related SfM approach (Tardif et al. 2008) em-
ploys guided matching by using epipolar geometries com-
puted in previous frames and estimates camera trajectory
robustly by computing camera orientations and positions in-
dividually. The performance of their SfM is demonstrated
on sufficiently dense image sequences acquired by a car-
mounted Ladybug 2 spherical camera (Point Grey Research
2005).

The main contribution of this paper is to present an in-
tegrated pipeline for camera pose and trajectory estimation
followed by image stabilization and rectification for dense
as well as wide baseline omnidirectional images acquired
by a single hand-held camera. Our wide baseline SfM is ca-
pable of recovering camera poses and trajectories from se-
quences having large and non-smooth camera motions be-
tween consecutive frames. Therefore, the recovery can be
accomplished even from sequences in which some frames
are contaminated by unexpected accidents, e.g. blurred im-
ages, extreme change of the view direction, and lack of fea-
tures to match. Furthermore, we show that the proposed ap-
proach is capable of facilitating visual object recognition by
using the stabilized and rectified images augmented by the
computed camera trajectory and the 3D reconstruction of the
detected feature points.

There are some essential issues for reliable camera pose
and trajectory estimation:

– The choice of camera, its geometric projection model, and
a suitable calibration technique (Sect. 2.1).

– Image feature detection, description (Sect. 2.2), and ro-
bust relative motion estimation (Sect. 2.3).

– Robust 3D structure computation (Sects. 3 and 4).
– The choice of a suitable omnidirectional image stabiliza-

tion and rectification method (Sect. 5).

Moreover, the pipeline has a natural capability to deal
with unorganized images, regarding them as a sequence after
sorting them by an image indexing method based on visual
words and visual vocabulary (Sivic and Zisserman 2006;
Knopp et al. 2009), as described in Sect. 6.2.

Robust Estimation of Relative Camera Poses The state of
the art technique for finding relative camera poses from
image matches first establishes tentative matches by pair-
ing image points with mutually similar features and then
uses RANSAC (Fischler and Bolles 1981; Hartley and Zis-
serman 2003; Chum and Matas 2005) to look for a large
subset of the set of tentative matches which is, within a
predefined threshold ε, consistent with an epipolar geom-
etry (EG) (Hartley and Zisserman 2003). Unfortunately, this

Fig. 1 (Color online) Easy camera motions. (a): The first image (top)
and the second image (bottom). Red ◦ and green � show the true
epipoles and the epipoles computed by soft voting for the position of
the epipole, respectively. Small dots show the matches giving green �.
(b): Voting space for the motion direction in the first image generated
by 50 soft votes cast by the 500-sample PROSAC, visualized on the im-
age plane (top) and as a 3D plot (bottom). White color corresponds to
a large number of votes. The peak corresponds to the green �. (c): The
maximal support for every possible epipole (i.e. CIF image from Nistér
and Engels (2006)). White color corresponds to high support. The im-
age space has been uniformly sampled by 10,000 epipoles and the size
of the support of the best model found by the 500-sample PROSAC has
been recorded for each epipole

strategy does not always recover the epipolar geometry gen-
erated by the actual camera motion, which has been ob-
served in Li and Hartley (2005), Nistér and Engels (2006),
Torii and Pajdla (2008).

It has been demonstrated in Chum and Matas (2005) that
ordering the tentative matches by their similarity may help to
reduce the number of samples in RANSAC. PROSAC (Chum
and Matas 2005) sampling strategy has been suggested
which allows uniform sampling from the list of tentative
matches in descending order by the similarity of their de-
scriptors. The promising samples are drawn first which often
leads into hitting a sufficiently large configuration of good
matches early.

Often there are several models that are supported by a
large number of matches. The chance that the correct model
will be found by running a single RANSAC is then small,
even when it has the largest support. Work of Li and Hartley
(2005) suggested to generate models by randomized sam-
pling as in RANSAC but to use soft (kernel) voting for a
physical parameter, the radial distortion coefficient in their
case, instead of looking for the maximal support. The best
model is then selected as the one with the parameter clos-
est to the maximum in the accumulator space. This strategy
works when the correct, or almost correct, models provide
consistent values of the parameter while the incorrect mod-
els with high support generate different values. Here, as in
Nistér and Engels (2006), we show that this strategy works
also when used for voting in the space of motion directions.
To illustrate the problem, we shall now discuss two inter-
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Fig. 2 Difficult camera motions. See Fig. 1 for description. Notice that
the true motion has the highest support but its peak is very sharp and
thus difficult to find in limited time

esting examples of camera motions which have a gradually
increasing level of difficulty.

Figure 1(a) shows an easy pair of images which can be
solved by a standard RANSAC estimation (Hartley and Zis-
serman 2003). 57%, i.e. 1,400, of tentative matches are con-
sistent with the true motion. Figure 1(c) shows that there is a
dominant peak in the data likelihood p(M|e) of the matches
given the motion direction (Nistér and Engels 2006), mean-
ing that there is only one motion direction which explains
a large number of matches. Figure 1(b) shows the voting
space for the motion direction in the first image generated
by 50 soft votes cast by the result of a 500-sample PROSAC,
visualized on the image plane (top) and as a 3D plot (bot-
tom). White represents a large number of votes. The peak
corresponds to the green �.

Figure 2(a) shows a difficult pair of images since only
1.4%, i.e. 50, tentative matches are consistent with the true
motion. There are many wrong tentative matches on the
bushes where nearly all the local image features are small
and green. Thus many motion directions get high support
from wrong matches. The true motion has the highest sup-
port but its peak is very sharp and thus difficult to find in
limited time. Even this difficult example can be solved cor-
rectly by the technique presented in Sect. 2.

Robust SfM by Detecting Too Small Translations The
problem of detecting too small translation in structure from
motion has been addressed in Martinec and Pajdla (2007).
Camera motions were considered pure rotations if at least
90% of matches verified by an epipolar geometry were
also verified by fitting a pure rotation. Another recent
work (Clipp et al. 2008) looks at a related problem of de-
termining the scale of the motion of a stereo rig with non-
overlapping fields of view.

In Sect. 3, we propose a method providing a reliable de-
tection of too small camera translation from two images and
demonstrate that such capability enhances SfM and object

Fig. 3 (a) Kyocera Finecam M410R camera and Nikon FC-E9
fish-eye lens convertor. (b) The equi-angular projection model. The
angle θ between the casted ray of a 3D point and the optical axis can
be computed from the radius r of a circle in the image circular view
field

recognition from a video sequence taken by a moving cam-
era. Since the scale of the reconstruction cannot be deter-
mined from two images acquired by a moving camera, the
amount of camera translation can be measured only rela-
tively w.r.t. the observed scene. We use the dominant api-
cal angle (DAA) (Torii et al. 2008) of the 3D points recon-
structed from the matches for measuring the amount of cam-
era translation from pairwise image matches.

The apical angle of a 3D point X is the angle under
which the camera centers are seen from the perspective of
the point X. We show on simulated data that the dominant
apical angle is a linear function of the length of the true
translation for general as well as planar scenes and that it
can be reliably estimated in the presence of outliers. Further-
more, we demonstrate in real experiments that the proposed
measure enables robust computation of camera poses and
trajectory even from sequences acquired with the presence
of large changes of motion acceleration.

Hereafter, we describe the details of our pipeline with
some illustrative examples.

2 Robust Estimation of Relative Camera Motion

2.1 Camera Calibration

The setup used in this work is a combination of a Nikon FC-
E9 lens, mounted via a mechanical adaptor, and a Kyocera
Finecam M410R digital camera, see Fig. 3(a). Nikon FC-
E9 is a megapixel omnidirectional add-on convertor with
183◦ view angle which provides high-quality images. Ky-
ocera Finecam M410R delivers 2,272×1,704 pixels large
images at 3 frames per second. The resulting combination
yields a circular view of the diameter slightly under 1,600
pixels in the image.

The calibration of omnidirectional cameras is non-trivial
but crucial for achieving good accuracy of the resulting 3D
reconstruction. We calibrate our camera off-line using the
state of the art technique (Bakstein and Pajdla 2002) and
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Fig. 4 (Color online) Wide baseline image matching. The colors
of the dots correspond to the detectors (red) MSER-Intensity+ and
(blue) MSER-Intensity−. (a) All detected features. (b) Tentative
matches constructed by selecting pairs of features which have the mu-
tually closest descriptors. (c) The epipole (green �) computed by max-
imizing the support. Note that the scene dominated by a single plane
does not induce degeneracy in computing calibrated epipolar geometry
by solving the 5-point minimal relative pose problem

Mičušík’s two-parameter model (Mičušík and Pajdla 2006),
that links the radius of the image point r to the angle θ of its
corresponding rays w.r.t. the optical axis, see Fig. 3(b) as

θ = ar

1 + br2
. (1)

After a successful calibration, we know the correspondence
of the image points to the 3D optical rays in the coordinate
system of the camera. The following steps aim at finding the
transformation between the camera and the world coordinate
systems, i.e. the pose of the camera in the 3D world, using
2D image matches.

2.2 Detecting Features and Constructing Tentative Matches

For computing the 3D structure, a set of tentative matches is
constructed by detecting image features. We have tested sev-
eral feature detectors: Maximally Stable Extremal Regions
(MSER) (Matas et al. 2004), Laplacian-Affine, Hessian-
Affine (Mikolajczyk et al. 2005), Scale-Invariant Feature
Transform (SIFT) (Lowe 2004), and Speeded Up Robust
Features (SURF) (Bay et al. 2008). We can conclude that
the choice of the feature detector is not crucial for the re-
sulting 3D models. We use MSER and SIFT since they have
potential to match features under large changes of view di-
rection and are more efficient than the features from Mikola-
jczyk et al. (2005). Parameters of the detectors were chosen
to limit the number of regions to 1–2 thousands per image.
For MSER, the detected regions are assigned Local Affine
Frames (LAF) (Obdržálek and Matas 2002) and transformed
into the standard positions w.r.t. their LAFs. Discrete Co-
sine Transform (DCT) descriptors (Obdržálek and Matas

2003) are computed for each region in the standard posi-
tion. For SIFT, keypoints are detected based on the Differ-
ence of Gaussians (DoG) and SIFT keypoint descriptors are
created from sets of histograms of the gradient information
computed from the neighbors of the keypoints.

Finally, tentative matches are constructed by searching
the mutually closest descriptors between the given images.
We use Fast Library for Approximate Nearest Neighbors
(FLANN) (Muja and Lowe 2009) which performs approx-
imate nearest neighbors search based on random kd-trees.
Figures 4(a) and (b) show two examples of feature detection
and matching for pairs of wide baseline images.

When all camera motions between consecutive frames
are small and moderate, short baseline matching using sim-
pler image features (Cornelis et al. 2006; Havlena et al.
2009) can be used efficiently under assumptions on the prox-
imity of the consecutive projections. However, in practical
situations, some frames may be contaminated or lost by
unexpected accidents, e.g. an extremely fast camera move-
ment, while acquiring a long sequence. The view point and
direction can change a lot between the usable consecutive
frames and the short baseline matching often fails. By using
wide baseline matching, one can handle such situations as
it is possible to make a link between the non-contaminated
frames.

2.3 Epipolar Geometry Computation by RANSAC+
Soft-voting

3D structure can be robustly computed by RANSAC (Fischler
and Bolles 1981) which searches for the largest subset of
the set of tentative matches which is, within a predefined
threshold ε, consistent with an epipolar geometry (Hart-
ley and Zisserman 2003). We use ordered sampling as sug-
gested in Chum and Matas (2005) to draw 5-tuples from
the list of tentative matches which may help to reduce the
number of samples in RANSAC. From each 5-tuple, rela-
tive pose is computed by solving the 5-point minimal rel-
ative pose problem for calibrated cameras (Nistér 2004a;
Stewénius 2005). Figure 4(c) shows the results of computing
the epipolar geometry for two pairs of wide baseline images.

Ordered Randomized Sampling Samples are drawn from
tentative matches ordered ascendingly by the distance of
their descriptors as suggested in Chum and Matas (2005).
On the other hand, we keep the original RANSAC stopping
criterion (Hartley and Zisserman 2003) and limit the max-
imum number of samples to 1,000. We have observed that
pairs which could not be solved in 1,000 samples got almost
never solved even after many more samples. Using the stop-
ping criterion from Chum and Matas (2005) often leads to
ending the sampling prematurely since the criterion is de-
signed to stop as soon as a large non-random set of matches
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is found. Our objective is, however, to find a globally good
model and not to stop as soon as a local model having a
sufficiently large support is found.

Orientation Constraint A given essential matrix can be de-
composed into four different camera and point configura-
tions which differ by the orientations of the cameras and
points (Hartley and Zisserman 2003, p. 260). Without en-
forcing the constraint that all points have to be observed in
front of the cameras, some epipolar geometries may be sup-
ported by many matches but it may not be possible to recon-
struct all points correctly, i.e. in front of both cameras.

A point X is in front of the perspective camera when it
has a positive z coordinate in the camera coordinate system.
For omnidirectional cameras, the meaning of ‘in front’ is a
generalization of the classical case for perspective cameras:
a point X is in front of the camera if its coordinates can be
written as a positive multiple of the direction vector which
represents the half-ray by which X has been observed.

In general, it is beneficial to use only the matches which
generate points in front of the cameras. However, it takes
time to verify this for all matches. On the other hand, it is
fast to verify whether the five points in the minimal sam-
ple generating the epipolar geometry can be reconstructed
in front of both cameras and to reject such epipolar geome-
tries which do not allow it. Furthermore, the orientation con-
straint on average reduces the computational cost because it
avoids evaluating the residuals corresponding to many in-
correctly estimated camera motions.

Soft Voting In this paper, we vote in a two-dimensional ac-
cumulator for the estimated motion direction. However, un-
like in Li and Hartley (2005), Nistér and Engels (2006), we
do not cast votes directly by each sampled epipolar geom-
etry but by the best epipolar geometries recovered by the
ordered sampling of PROSAC. This way the votes come only
from the geometries that have a very high support. We can
afford to compute more, e.g. 5, epipolar geometries since the
ordered sampling is much faster than the standard RANSAC.
Altogether, we need to evaluate maximally 1,000 × 5 =
5,000 samples to generate 5 soft votes, which is compara-
ble to running a standard 5-point RANSAC for the expected
contamination by 77% of mismatches (Hartley and Zisser-
man 2003, p. 119). Yet, with our technique, we could go up
to 98.5% of mismatches with a comparable effort. Finally,
the relative camera pose with the motion direction closest to
the maximum in the voting space is selected.

The proposed robust estimation of relative camera mo-
tion is summarized as the pseudocode in Algorithm 1 with
the actual parameters used in the real experiments.

Fig. 5 The apical angle τ at the point X reconstructed from the corre-
spondence (x,x′) relatively depends on the length of the camera trans-
lation t and on the distances of X from the camera centers C, C′

3 Measuring the Amount of Camera Translation by the
Dominant Apical Angle

Consider a pair of calibrated cameras with the normalized
camera matrices (Hartley and Zisserman 2003), P = [I|0]
and P′ = [R| − t] and an image point correspondence given
by a pair of homogeneous coordinates (x,x′) represented by
unit direction vectors, i.e. ‖x‖ = ‖x′‖ = 1. There holds

α′x′ = αRx − t, (2)

with real α,α′, rotation R and translation t.
Should there be no noise then pure camera rotation, i.e.

‖t‖ = 0, could be detected by finding out that x′ = Rx holds
true for all the correspondences. However, this does not oc-
cur, even when the physical camera really does rotate, due
to noise in image measurements. Thus, in real situations, a
non-zero essential matrix E can always be computed from
noisy image matches, e.g.by the 5-point algorithm (Nistér
2004a).

Having n matches {(xi ,x′
i )}i=1,...,n and the essential ma-

trix E computed from them, we can reconstruct n 3D points
{Xi}i=1,...,n. Figure 5 shows a point X reconstructed from
an image match (x,x′). For each point X, the apical angle
τ , which measures the length of the camera translation from
the perspective of the point X, is computed. If the cameras
are related by pure rotation, all angles τ are equal to zero.
The larger is the camera translation, the larger are the angles
τ . The closer is the point X to the midpoint of the camera
baseline, the larger is the corresponding τ . In fact, measur-
ing the apical angles is equivalent to measuring disparities
on a spherical retina as the corresponding angle, i.e. the api-
cal angle τ is easily computed with relative rotation R such
that

τ = �(Rx,x′). (3)

For a given E and matches {(xi ,x′
i )}i=1,...,n, one can se-

lect the decomposition of E to R and t, which reconstructs
the largest number of 3D points in front of the cameras. The
apical angle τi , corresponding to the match (xi ,x′

i ), is com-
puted by solving a set of linear equations for the relative
distances αi , α′

i

α′
ix

′
i = αiRxi − t (4)
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Algorithm 1 Robust estimation of relative camera motion

Input Image pair I1, I2.
NV := 5. . . the number of soft votes.
NT := 1000. . . the maximum number of random samples.
ε := 0.1◦. . . the tolerance for establishing matches.
σ := 0.4◦. . . the standard deviation of Gaussian kernel for soft voting.

Output Relative camera motion E∗ and its supports M∗.

1. Detect features and compute descriptors, (MSER-INT±, LAF+DCT) (Obdržálek and Matas 2002, 2003) and
(SIFT) (Lowe 2004).

2. Construct the list M = [m]N1 of tentative matches with mutually closest descriptors (Chum and Matas 2005). Order the
list ascendingly by the distance of the descriptors. N is the length of the list.

3. Find a camera motion consistent with a large number of tentative matches (Torii and Pajdla 2008):

1: Set D to zero. // Initialize the accumulator of camera translation directions.
2: for i := 1, . . . ,NV do
3: t := 0 // The counter of samples.
4: while t ≤ NT do
5: t := t + 1 // New sample.
6: Select the 5 tentative matches M5 of the t th sample from the ordered list M (Chum and Matas 2005)
7: Et := the essential matrix by solving the 5-point minimal problem for M5 (Nistér 2004a; Stewénius 2005).
8: if M5 can be reconstructed in front of the cameras (Hartley and Zisserman 2003, p. 260) then
9: St := the number of matches which are consistent with Et , i.e. the number of all matches m = [u1,u2] for

which max(�(u1,Etu2),�(u2,E�
t u1)) < ε.

10: else
11: St := 0
12: end if
13: NR := log(η)/ log(1 − (

St

5

)
/
(
N
5

)
) // The termination length defined by the maximality constraint (Hartley and

Zisserman 2003, p. 119).
14: NT := min(NT ,NR) // Update the termination length.
15: end while
16: t̂ = argt=1,...,NT

maxSt // The index of the sample with the highest support.
17: Êi := Et̂ , êi := camera motion direction for the essential matrix Et̂ .
18: Vote in accumulator D by the Gaussian with sigma σ and the mean at êi .
19: end for
20: ê := argx∈domain(D) maxD(x) // Maximum in the accumulator.
21: i∗ := argi=1,...,50 min�(ê, êi ) // The motion closest to the maximum.
22: E∗ := Êi∗ // The “best” camera motion.
23: M∗ := [m∗]N∗

1 // The inlier matches supporting E∗. N∗ is the number of the inlier matches.

4. Return E∗ and M∗.

in the least square sense and by using the law of cosines

2αiα
′
i cos(τi) = αi

2 + α′
i
2 − ‖t‖2. (5)

For a small translation w.r.t. the distance to the scene
points, it is natural to use the approximation αi = α′

i . Then,
the apical angle τi becomes a linear function of ‖t‖. This is
instantly proven by using the approximated equation of the
law of cosines

cos(τi) = 1 − ‖t‖2

2α2
i

(6)

and the cosine series expansion

cos(τi) = 1 − τ 2
i

2! + O(τ 4
i ). (7)

If all matches were correct, the largest τ would best rep-
resent the amount of the translation. However, all matches
are rarely correct and thus we need to find a robust mea-
sure of the translation. The distribution of the values of τi

depends on the distribution of the points in the scene and
on mismatches, if present. We have observed that for many
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Algorithm 2 Measuring camera motion by computing the
dominant apical angle

Input The relative camera motion E and its supports
{mi}Ni=1
σ := 0.4◦. . . the standard deviation of Gaussian
kernel for soft voting.

Output Dominant apical angle τ ∗.

1: Decompose E into the rotation R and the translation t
(Hartley and Zisserman 2003, p. 260).

2: for i := 1, . . . ,N do
3: Compute the apical angle τi from the match mi , R

and t (see Sect. 3).
4: end for
5: Compute the 10th percentile q10 and the 90th percentile

q90 from [τ ]N∗
1 . // Lower and upper bounds on apical

angles to exclude outliers.
6: for i := 1, . . . ,N∗ do
7: if q10 < τi < q90 then
8: Vote in accumulator B by the Gaussian with sigma

σ and the mean at τi .
9: end if

10: end for
11: τ ∗ := argy∈domain(B) maxB(y) // Maximum in the accu-

mulator.
12: Return τ ∗.

general 3D as well as planar scenes, the distribution has a
dominant mode

τ ∗ = arg{τi }ni=1
max g(τi) (8)

where g(τ) performs kernel voting with Gaussian smooth-
ing (Li and Hartley 2005), and that the mode τ ∗ predicts
the length of the translation well. The pseudo code of DAA
computation is listed in Algorithm 2.

3.1 Too Small Motion Detection on Simulated Data

Figures 6, 7, and 8 show the results of simulated experi-
ments for three different scenes, different motion directions,
and for the length of the translation increasing from zero to
a large value. The amount of camera translation was com-
puted by the method based on RANSAC (Fischler and Bolles
1981), which is described in Algorithm 1. Notice that we use
a combination of ordered sampling (Chum and Matas 2005)
with kernel voting to maximize the chance of recovering the
correct epipolar geometry (Torii and Pajdla 2008). We also
enforce the reconstructed points to be in front of both cam-
eras before counting the support size in RANSAC.

Figure 6 shows an experiment with a general 3D scene
consisting of 1,000 points uniformly distributed in a hemi-
sphere with the center at (0,0,10)� and radius 25, see F
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Fig. 6(a). The first camera was placed at T1 = (0,0,0)�
looking towards the scene points. Two motions of the sec-
ond camera were tested. The backward motion was con-
structed as T2 = (0,0,−s)�, i.e. the camera was moving
away from the scene. The sideways motion was constructed
as T3 = (s,0,0)�. In both cases, s ranged from 0 to 5.

3D points were projected by normalizing their coordi-
nate vectors, constructed w.r.t. the respective camera coor-
dinate systems, to unit length. To simulate the imprecision
due to image sampling during digitization and image mea-
surement, Gaussian noise with a standard deviation σ = 3◦,
corresponding to 1.3 pixels in a 800 × 800 pixels large im-
age capturing 180◦ field of view, was added to the normal-
ized vectors.

Figure 6(b) shows the dominant apical angle (DAA) as a
function of the length of the true translation. DAA for the
backward motion is shown by the blue line with “+” mark-
ers, whereas DAA for the lateral motion is shown by the red
line with “×” markers, both computed from noisy measure-
ments. The green lines with “◦” and “�” markers, respec-
tively, show the respective DAA of the backward and lateral
motions computed from exact measurements. We see that
the DAA is a linear function of the length of the true motion
for translations longer than 0.25 meters. The slope of the
lateral DAA is slightly larger (2.5◦/meter) than the slope
of DAA for the backward motion (2.0◦/meter) in this case.
DAA of the zero translation computed from noisy matches is
slightly above the zero due to noise in image measurements.
Figure 6(c) shows the difference in the estimated camera ro-
tation Rest w.r.t. the true rotation R evaluated as the angle
of rotation of R−1

estR. Notice that the error is constant for all
lengths of the translation which shows that the rotation is
computed correctly even if the direction of the translation,
Fig. 6(d), cannot be found reliably.

Figures 7 and 8 show the same experiment as above on
a planar scene and on a 3D scene consisting of two planes.
The results are comparable to those shown in Fig. 6. In par-
ticular, we can see that we are able to measure the amount
of translation in all three cases. It is interesting to notice
that the error in rotation is constant for general 3D scenes,
Figs. 6(c) and 8(c), but grows linearly for the planar scene,
Fig. 7(c). This reflects the fact that the angle which is occu-
pied by scene points determines, to a large extent, the qual-
ity of rotation estimation from scenes with shallow depth.
At the same time, we can see that the quality of estimating
the amount of camera translation has not been affected.

4 Sequential Wide Baseline Structure from Motion

Camera poses in a canonical coordinate system are recov-
ered by chaining the EGs of pairs of consecutive images
in a sequence. The essential matrix Eij encoding the rel-
ative camera pose between frames i and j = i + 1 can

Algorithm 3 Keyframe selection

Input N images It .
η. . . the minimum amount of translation.

Output Flags kt initialized as all FALSE.

1: i := 1, ki := TRUE
2: while i < N do
3: j := 0, q := 1
4: while q = 1 ∧ (i + j < N) do
5: j := j + 1
6: Compute the relative motion Ei,i+j between Ii and

Ii+j .
7: Ns := number of supports of Ei,i+j .
8: τ ∗ := DAA computed from Ei,i+j and its sup-

ports.
9: ω∗ := sum of the weighted apical angles computed

from Ei,i+j and its supports.
10: q := (τ ∗ < η) ∧ (ω∗ < Ns)

11: end while
12: if q = 0 then
13: i := i + j

14: ki := TRUE
15: end if
16: end while

be decomposed into Eij = [tij ]×Rij . Although there ex-
ist four possible decompositions, the right one can be se-
lected as that which reconstructs the largest number of 3D
points in front of both cameras. Having the normalized cam-
era matrix (Hartley and Zisserman 2003) of the i-th frame
Pi = [Ri |ti], the normalized camera matrix Pj can be com-
puted by

Pj = [RijRi |Rij ti + γij tij ] (9)

where γij is the scale of the translation between frames i

and j in the canonical coordinate system. This scale can be
computed from any 3D point seen in at least three consec-
utive frames but the precision depends on the uncertainty
of the reconstructed 3D point. Therefore, a robust selec-
tion from the possible candidates of the scales has to be
done while evaluating the quality of the computed camera
pose. The best scale is found by RANSAC maximizing the
number of points that pass the “cone test” (Havlena et al.
2009) which checks the intersection of pixel ray cones, i.e.
the feasibility test of L1- or L∞- triangulation (Kahl 2005;
Ke and Kanade 2007). During the cone test, quarter-pixel
wide cones formed by four planes (up, down, left, and right)
are cast around the matches and we test whether the inter-
section of the cones is empty or not.

Contrary to standard sequential SfM techniques, which
compute camera translation and rotation from the estimated
3D point cloud, we compute camera rotation and translation
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from EG, as it has been shown in Tardif et al. (2008) that
computing camera rotation from EG is more accurate. Con-
trary to the decoupled SfM technique presented in the afore-
mentioned paper, the maximum number of samples in our
scale selection is bounded by the number of 3D points seen
in three consecutive frames because we do not need to draw
pairs of 2D-3D matches to compute the camera translation.

On the other hand, when also recovering the camera
translation from EG, one must take care whether or not a
particular EG contains a sufficient amount of translation.
EGs inaccurately computed from image pairs having too
small translation disturb the chaining of camera poses and
do not contribute by reconstructing new 3D points in the
scene. It is also important that a sufficient number of 3D
points with large apical angles exists in the pairwise recon-
struction for obtaining accurate scales when chaining the
EGs. For producing the EGs capable of stable recovery of
camera poses and trajectory, we propose to use only the im-
ages that satisfy one of the two quality scores computed be-
tween the pairs of consecutive frames. We will call such im-
ages keyframes.

One of the quality scores is the DAA τ ∗, which has been
described in Sect. 3 already. Setting the minimum amount of
DAA to 0.2◦–2◦ enables the detection of too small transla-
tion. The other quality score ω∗ is the sum of the weighted
scores computed based on apical angles. The weighted score
ω for the apical angle τ of a 3D point X is defined by the fol-
lowing formula:

ω = q1 + 4q2 + 20q3, (10)

q1 =
{

1 τ ≥ 5◦
0 otherwise

(11)

q2 =
{

1 τ ≥ 10◦
0 otherwise

(12)

q3 =
{

1 τ ≥ 15◦
0 otherwise

(13)

Quality score ω∗ checks whether there is a sufficient num-
ber of 3D points with sufficiently large apical angles. The
threshold value for ω∗ is set to the number of the recon-
structed 3D points, i.e. either all the reconstructed points
must have the apical angles at least 5◦ or some of them
are having even larger apical angles as the weighting con-
stants set to 4 and 20 are favoring such 3D points. The
pseudocode of keyframe selection is summarized in Algo-
rithm 3. Note that Algorithm 3 may not select the last frame
of the sequence as a keyframe. In that case, we regard the
last keyframe as the end of the sequence.

After recovering the camera poses and 3D points us-
ing only the keyframes, the camera poses corresponding to
the images not selected as the keyframes are estimated by
solving the camera resectioning task (Nistér 2004b). Since
every non-keyframe is interleaved between two keyframes,

Fig. 9 Projection of a pixel u′ of the resulting cylindrical image onto
a pixel u on a unit sphere. Column index u′

i is transformed into angle θ

and row index u′
j into angle φ. These angles are then transformed into

the coordinates ux , uy , and uz of a unit vector. (a) Central cylindrical
projection. (b) Non-central cylindrical projection

the tentative 2D-3D matches are efficiently constructed by
extracting the 3D points associated with the two keyframes.
RANSAC is used to find the camera pose having the largest
support of the tentative 2D-3D matches evaluated by the
cone test again. Local optimization is achieved by repeated
camera pose computation from all the inliers (Schweighofer
and Pinz 2008) via SDP and SeDuMi (Sturm 2006). Camera
resectioning is considered successful when the inlier ratio is
higher than 70%.

In the final step, very distant points, i.e. likely outliers,
are filtered out. Sparse bundle adjustment (Lourakis and Ar-
gyros 2004), modified in order to work with unit vectors,
refines both points and cameras.

5 Omnidirectional Image Stabilization

5.1 Image Rectification Using Camera Pose and Trajectory

The recovered camera poses and trajectory can be used to
rectify the original images to the stabilized ones. If there
exists no constraint on camera motion in the sequence, the
simplest way of stabilization is to rectify images w.r.t. the
up vector in the coordinate system of the first camera and all
the other images will then be aligned with the first one. This
can be achieved by taking the first image with care.

When the sequence is captured by walking or driving
on the roads, the images can be stabilized w.r.t. the ground
plane with a natural assumption that the motion direction is
parallel to the ground plane. For the fixed gravity direction
g and the motion direction t, we compute the normal vector
of the ground plane

d = t × (g × t)
‖t × (g × t)‖ . (14)
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Fig. 10 Omnidirectional image rectification. (a) Original omnidirec-
tional image (equi-angular). (b) Central cylindrical projection. (c) Per-
spective projection. (d) Non-central cylindrical projection. Note the
large deformation at the borders of the perspective image and at the
top and bottom borders of the central cylindrical image. The borders of
the non-central cylindrical image are less deformed

Then, we construct the stabilization and rectification trans-
form Rs for the image point represented as a unit 3D vector
such that Rs = [a,d,b] where

a = (0,0,1)� × d
‖(0,0,1)� × d‖ (15)

and

b = a × d
‖a × d‖ . (16)

This rectification preserves yaw (azimuth) which is suffi-
cient for producing panorama images having the same field
of view as the original images.

5.2 Central and Non-central Cylindrical Image Generation

Having perspective cutouts rectified w.r.t. the ground plane,
an arbitrary object recognition routine designed to work with
images acquired by perspective cameras can be used without
any further modifications. Furthermore, some object recog-
nition methods, e.g. (Leibe et al. 2007a), could benefit from
image stabilization. On the other hand, as a true perspective
image is able to cover only a small part of the available om-
nidirectional view field, we propose to use cylindrical im-
ages which can cover a much larger part of it.

Knowing the camera and lens calibration, we represent
our omnidirectional image as a part of the surface of a unit
sphere, each pixel being represented by a unit vector. It is
straightforward to project such surface on a surface of a unit
cylinder surrounding the sphere using rays passing through
the center of the sphere, see Fig. 9. We transform the column

Fig. 11 (Color online) Camera trajectory of sequence CITY WALK.
(a) The sequence contains moving objects occluding large parts of the
view, rapid changes of illumination, and a natural complex environ-
ment. (b) A bird’s eye view of the city area used for the acquisition of
our test sequence. The trajectory is drawn with a red line. (c) The bird’s
eye view of the resulting 3D model. Red cones represent the keyframe
camera poses recovered by our SfM. Blue cones represent the cam-
era poses of the non-keyframes. Small dots represent the reconstructed
world 3D points

index u′
i of a pixel of the resulting cylindrical image into

angle θ and the row index u′
j into angle φ using

θ =
(

u′
i − IW

2

)
θmax

IW

, (17)

φ = arctan

((
u′

j − IH

2

)
θmax

IW

)
, (18)

where IW and IH are the dimensions of the resulting image
and θmax is the horizontal field of view of the omnidirec-
tional camera. These angles are then transformed into the
coordinates ux , uy , and uz of a unit vector as

ux = cosφ sin θ, uy = sinφ, uz = cosφ cos θ. (19)

Note that the top and bottom of the rectified image look
rather deformed for the vertical field of view reaching π if
the height of the resulting image IH is being increased, see



168 Int J Comput Vis (2011) 91: 157–174

Fig. 12 Results of image transformations in sequence CITY WALK.
The images are stabilized w.r.t. the ground plane and panoramic images
transformed by (a) central cylindrical projection and (b) non-central
cylindrical projection. Note that the pedestrians are less deformed
when using the non-central cylindrical projection while convening a
larger field of view than the central one

Fig. 10. We propose to use a generalization of the stereo-
graphic projection which we call a non-central cylindrical
projection. Projecting rays do not pass through the center of
the sphere but are cast from points on its equator. The de-
sired point is the intersection of the plane determined by the
column of the resulting image and the center of the sphere
with the equator of the sphere. The equation for angle θ re-
mains the same but angle φ is now computed using

φ = 2 arctan

(
(u′

j − IH

2 ) θmax

IW

2

)
. (20)

When generating the images, bilinear interpolation is used
to suppress the artifacts caused by image rescaling.

6 Experimental Results

6.1 Omnidirectional Image Sequences

The experiments with real data demonstrate the use of the
proposed image stabilization method. Five image sequences
of a city scene captured by a single hand-held fish-eye lens
camera are used as our input.

CITY WALK Sequence CITY WALK is 949 frames long
and the distance between consecutive frames is 0.2–1 me-
ters. This sequence is challenging for recovering the camera
trajectory due to sharp turns, objects moving in the scene,
large changes of illumination, and natural complex environ-
ments, see Fig. 11(a).

The camera motions are reasonably recovered by us-
ing the features detected from stationary rigid objects. Fig-
ure 11(c) shows the obtained camera poses and the world 3D
points reconstructed by our SfM. The red cones represent the

keyframe camera poses while the blue cones represent the
non-keyframe camera poses computed by solving camera
resectioning. The reconstructed camera trajectory fits well
the walking trajectory shown in Fig. 11(b).

Since the sequence was captured while walking along a
planar street, all the images were stabilized using the re-
covered camera poses and trajectory w.r.t. the ground plane.
Figure 12 shows the images generated by using the central
and the non-central cylindrical projections. It can be seen
that the non-central cylindrical projection in Fig. 12(b) suc-
cessfully suppresses the deformation at the top and the bot-
tom of the image and makes people standing close to the
camera look much more natural.

GO AND STOP Sequence GO AND STOP is 303 frames
long and the distance between consecutive frames is 0–1
meters. The observer was standing still at a fixed spot in
frames 1–14, 51–68, and 157–170, otherwise walking along
a street. We can detect when the observer was standing by
finding the “too small” DAA on the graph in Fig. 13(e)
which shows the DAAs between every pair of consecutive
frames. In Figs. 13(a)–(d), the green � shows the relative
camera motion direction estimated from pairs of images (a)
and (b), and (c) and (d), respectively. The red and yellow
dots are the tentative matches and the supports of the mo-
tion �. It can be seen that the motion direction is estimated
incorrectly when the motion is too small even though the
size of the support is sufficiently large.

Figures 13(f) and (g) show the camera poses and the
world 3D points reconstructed by our SfM visualized from
two different viewpoints. Again, the red cones represent the
keyframe camera poses and the blue cones represent the
non-keyframe camera poses.

ABNORMAL MOTION Sequence ABNORMAL MOTION
is 410 frames long and the distance between consecutive
frames is 0.2–1 meters. The observer was walking along
a street when performing abnormal motions three times as
spotted in yellow markers in Fig. 14(d). Figures 14(a), (b),
and (c) show the frames 100–115, 333–348, and 381–396
respectively, where the abnormal motions were acted. Fig-
ure 14(d) shows a bird’s eye view of the city area used for
the acquisition and the red dots are the computed camera
poses of the keyframes superposed on it.

Figure 14(e) shows the camera poses of the keyframes
(red cones) and of the non-keyframes (blue cones), and
the world 3D points (color dots). The significant utility
of the wide baseline SfM on large field of view images
can be seen on the reliable recovery of the sequence hav-
ing abnormal motions which are fatal for classic sequential
SfM methods working under the assumption of limited mo-
tions.
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Fig. 13 (Color online) Detection of “too small motion” in sequence
GO AND STOP. (a) and (b) Pair of images with too small motion.
(c) and (d) Pair of images with a sufficiently large motion. The green
� shows the relative camera motion direction estimated from pairs of
images (a) and (b), and (c) and (d), respectively. The red and yellow
dots are the tentative matches and the supports of the motion �. It

can be seen that the motion direction is estimated incorrectly when the
motion is too small even though the size of the support is sufficiently
large. (e) The DAA computed from pairs of consecutive images in the
sequence. (f) and (g). The recovered camera poses and trajectory of
keyframes (red cones) and non-keyframes (blue cones), and the world
3D points (color dots) from two different views

FREE MOTION Sequence FREE MOTION is 187 frames
long and the distance between consecutive frames is 0.2–
1 meters. This sequence is also challenging for recover-
ing the camera poses and trajectory due to the large view
changes caused by extreme camera rotation and translation.
Figure 15(b) shows several examples of the original images
in the sequence. Figure 15(a) shows the camera poses re-
covered by our SfM visualized from a bird’s eye view. Fig-
ure 15(c) shows the panoramic images generated by the non-
central cylindrical projection. As the motion is completely
irrelevant w.r.t. the ground plane, all images are stabilized
w.r.t. the gravity vector in the coordinate system of the first
camera. Figure 15(d) shows the panoramic images stabilized

using the recovered camera poses and trajectory. It can be
seen clearly from this result that even large image rotations
are successfully canceled using the recovered camera poses
and trajectory.

PED DETECTION Sequence PED DETECTION is 404
frames long and the distance between consecutive frames
is 0–1 meters. The images are stabilized w.r.t. the ground
plane by using the estimated trajectory and rectified by
adopting the non-central cylindrical projection, see Fig. 16.
The multi-body pedestrian tracker (Dalal and Triggs 2005;
Ess et al. 2008) is applied to the sequence of the sta-
bilized cylindrical images and the results are shown in
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Fig. 14 (Color online) Camera poses and trajectory of sequence AB-
NORMAL MOTION. The sequence was acquired with abnormal
motions at the frames (a) 100–115, (b) 333–348, and (c) 381–396
while walking along a street. (d) The recovered camera poses of the
keyframes are superimposed on the map of a bird’s eye view. (e) The

recovered camera poses of the keyframes (red cones) and of the non-
keyframes (blue cones), and the world 3D points (color dots) from a
bird’s eye view. See detailed views of the recovered camera poses in
(a), (b), and (c) on the right side
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Fig. 15 Results of our image stabilization and transformation in se-
quence FREE MOTION. (a) The camera poses and the world 3D points
reconstructed by our SfM visualized from a bird’s eye view. Red cones
represent the keyframe camera poses recovered by our SfM. Blue cones
represent the non-keyframe camera poses estimated by solving camera
resectioning. (b) Original images. (c) Non-stabilized images. (d) Sta-
bilized images w.r.t. the gravity vector in the first camera coordinates.
Image rotations are successfully canceled and all images are stabilized
using the recovered camera poses and trajectory

Figs. 16(b)–(e). Thanks to proper image rectification, a
pedestrian detector using Histograms of oriented Gradients
(HoG) (Dalal and Triggs 2005) trained on perspective im-
ages could be used. The tracker used can greatly benefit
from our ability of producing stable image sequences as it
uses the ground plane position to reject false positive de-
tections which is otherwise possible only for sequences ac-
quired by vehicle-mounted cameras.

6.2 Unorganized Omnidirectional Images

We demonstrate the capability of our sequential SfM on un-
organized images by applying an image indexing method
based on visual words and visual vocabulary (Sivic and Zis-

Fig. 16 Result of multi-body pedestrian tracking in sequence PED
DETECTION on the cylindrical images stabilized w.r.t. the ground
plane. (a) The camera poses and the world 3D points reconstructed
by our SfM visualized from a bird’s eye view. In (b), (c), (d), and (e),
the color boxes and curves indicate the positions of pedestrians and
their trajectories estimated by using the previous frames

serman 2006; Knopp et al. 2009) for ordering images into a
sequence. Data set CASTLE ENTRANCE originally con-
sisted of three sequences acquired at different times. To
reveal the ability of wide baseline SfM, we randomly se-
lected 40 out of 109 images of the whole data to make cam-
eras sparser than general sequential images. Furthermore,
10 images of different locations were added as outliers, see
Figs. 17(a)–(d).

For each image, a term frequency–inverse document fre-
quency (tf-idf) vector (Sivic and Zisserman 2006; Knopp
et al. 2009) was computed using a visual vocabulary con-
taining 130,000 words trained from urban area omnidirec-
tional images. Image similarities between the pairs of im-
ages were computed as the cosines of the angles between
the normalized tf-idf vectors. Then, a pseudo-sequence was
constructed by randomly selecting one image as the first
frame and concatenating the most similar image as the suc-
cessive frame. 33 camera poses were successfully recovered
and none of outlier frames were selected. See Fig. 17(e) for
the recovered camera poses of the keyframes (red cones),
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Table 1 Details of the experimental results for all sequences.
(# Frames) The number of frames. (# Keyframes) The number of
keyframes selected and used in our wide baseline SfM. (Min. DAA)
The minimum DAA, i.e. the minimum size of motion, in degrees. The
rest is the computational time in different steps for each sequence in

minutes. (Detection) Feature detection and description. (Matching)
Tentative match construction and EG computation. (SfM) Chaining
EGs, scale estimation, and bundle adjustment. (Resectioning) Estimat-
ing camera poses of non-keyframes

Name # Frames # Keyframes Min. DAA Detection Matching SfM Resectioning

CITY WALK 949 503 1◦ 147 77 3 30

GO AND STOP 303 73 2◦ 41 30 2 35

ABNORMAL MOTION 410 198 1◦ 57 43 4 25

FREE MOTION 187 176 0.2◦ 32 18 3 2

PED DETECTION 404 74 2◦ 54 26 2 51

CASTLE ENTRANCE 50 31 2◦ 6 4 0.5 0.5

Fig. 17 Result of our SfM performed on ordered unorganized omni-
directional images from data set CASTLE ENTRANCE. The data set
consists of 40 typical landmark images of the entrance to the Prague
Castle (a) and (b) and 10 images from other locations acting as out-
liers (c) and (d). (e) The camera poses and the world 3D points recon-
structed from images ordered as a sequence by using image similar-
ity computed based on visual words and visual vocabulary indexing.
(f) Visualization of the camera poses (+) and trajectory (dashed line)
estimated by our method and the camera poses (•) estimated by the
randomized SfM (Havlena et al. 2009)

the non-keyframes (blue cones), and the world 3D points
(color dots).

109 camera poses of the same scene reconstructed by
the state of the art randomized SfM method (Havlena et al.
2009) were used as the ground truth data of evaluating the
accuracy of the camera pose estimation. We measured the er-
ror between the camera poses computed by our method and
those computed by the randomized SfM method after giving
the corresponding image indices and finding the similarity
transform bringing the data into correspondence. The mean
of the translational and rotational errors are 0.024 and 0.031
respectively, where the translational error is the fraction of
the diameter of the smallest sphere containing all cameras

and the rotational error is in radians. Both sets of camera
poses can be seen in Fig. 17(f).

6.3 Details of Experimental Settings and Computations

We used the same parameter values except the minimum
DAA η, i.e. the minimum size of motion, for all sequences.
The actual values used in the experiments are listed in Al-
gorithms 1 and 2, and Table 1. For all sequences but FREE
MOTION, there was no significant difference in the visual
quality of the reconstruction as long as setting the minimum
DAA η between 1◦ and 2◦. In sequence FREE MOTION,
we set the minimum DAA η = 0.2◦ which is smaller than in
other sequences because larger values of the minimum DAA
selected too sparse keyframes due to the lack of matches in
consecutive frames and thus the camera trajectory could not
be recovered stably.

The time spent in different steps of the pipeline having
a MATLAB+MEX implementation running on a standard
Core2Duo PC can be found in Table 1. The average com-
putation time is about 18 seconds per frame and the perfor-
mance can be further improved by using GPU implementa-
tions of feature detection and by speeding up the data stor-
ing processes which are caching all the results used in the
pipeline on a hard drive.

The proposed pipeline is available on-line1 through the
CMP SfM web service (Heller et al. 2010). One can upload
her own images and run the pipeline after being registered
to the site. There is no need to install any code on a client’s
computer and all the computations are performed on our
dedicated computing cluster. The service can be accessed
through a web browser based interface or by a command
line interface based utility.

1http://ptak.felk.cvut.cz/sfmservice

http://ptak.felk.cvut.cz/sfmservice
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7 Conclusions

We presented a pipeline for camera pose and trajectory es-
timation, and image stabilization and rectification, for im-
age sequences acquired by a single omnidirectional cam-
era. The experiments demonstrated that the robust camera
pose and trajectory estimation based on epipolar geometry
is useful to stabilize image sequences. Furthermore, the non-
central cylindrical projection which generates perspective-
projection-like images while preserving a large field of view
can be instantly used as the pre-process for the detection
and tracking techniques (Leibe et al. 2007a, 2007b; Ess et
al. 2008) that assume ground plane positions and have code-
books trained on perspective images.
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