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A number of minimal problems of structure from motion for cameras with radial distortion have recently
been studied and solved in some cases. These problems are known to be numerically very challenging
and in several cases there were no practical algorithms yielding solutions in floating point arithmetic.
We make some crucial observations concerning the floating point implementation of Gröbner basis com-
putations and use these new insights to formulate fast and stable algorithms for two minimal problems
with radial distortion previously solved in exact rational arithmetic only: (i) simultaneous estimation of
essential matrix and a common radial distortion parameter for two partially calibrated views and six
image point correspondences and (ii) estimation of fundamental matrix and two different radial distor-
tion parameters for two uncalibrated views and nine image point correspondences. We demonstrate that
these two problems can be efficiently solved in floating point arithmetic in simulated and real experi-
ments. For comparison we have also invented a new non-minimal algorithm for estimating fundamental
matrix and two different radial distortion parameters for two uncalibrated views and twelve image point
correspondences based on a generalized eigenvalue problem.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Estimating camera motion and internal calibration parameters
from sequences of images is a challenging computer vision prob-
lem with a broad range of applications [1]. One typically starts
with a noisy set of tentative image point correspondences. The first
step then is to make decisions about correct and incorrect matches
and get a good initial estimate to be able to deploy a more sophis-
ticated optimization algorithm on the set of all correct matches.

Two robust and widely used techniques for this purpose are
RANSAC [2] and kernel voting [3], both relying on solving a large
number of instances of the underlying problem, each with a small
number of point correspondences. There is thus a need to develop
fast and stable algorithms for solving geometric vision problems
with a minimal number of points. This typically amounts to solving
a system of polynomial equations in several variables. These prob-
lems are known to be numerically very challenging and in several
cases there exist no practical algorithms yielding solutions in float-
ing point arithmetic.

Traditionally, minimal problems have been formulated
assuming a linear pin-hole camera model with different restric-
tions on the internal calibration parameters. However, for some
cameras such as fish-eye lenses, this can be insufficient and
ll rights reserved.
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one might need to handle strong radial distortions already from
the outset.

The particularly interesting solution to the simultaneous esti-
mation of the fundamental matrix and single radial distortion
parameter, based on the division model, has been introduced by
Fitzgibbon [4]. His formulation leads to solving a system of alge-
braic equations. Fitzgibbon, however, did not use all the algebraic
constraints on the fundamental matrix. Thanks to neglecting some
of the constraints, he could work with a very special system of
algebraic equations that can be solved numerically by using a qua-
dratic eigenvalue solver (QEP). Micusik and Pajdla [5,6] also ne-
glected the constraints when formulating the estimation of a
paracatadioptric camera model from image matches as a quartic
eigenvalue problem.

Li and Hartley [7] treated the original Fitzgibbon’s problem as a
system of algebraic equations and used the hidden variable tech-
nique [8] to solve them. Their technique thus solves exactly the
same problem as [4] but in a different way.

Solving for the fundamental matrix under different radial dis-
tortions was first studied in [9], where a non-minimal algorithm
based on 15 point correspondences was given for a pair of uncali-
brated cameras.

More recently [10,11], a number of different minimal problems
with radial distortion have been studied and practical solutions
were given in some cases.
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The state-of-the-art method for solving polynomial equations is
based on calculations with Gröbner bases [12] and has many appli-
cations in computer vision, but also in other fields such as cryptol-
ogy [13] and robotics [14]. In [15,16] Gröbner bases were used to
derive a fast algorithm for globally optimal three view triangula-
tion under the L2-norm.

In this paper we further develop the techniques of numerical
Gröbner basis computations. In particular, we (i) note the impor-
tance of obtaining a single elimination step in the Gröbner basis
computation, (ii) give guidelines how this can be achieved and
(iii) we present a new simplified formulation of the Gröbner basis
computation procedure based on LU factorization, which reduces
the computational burden of the elimination step.

Leveraging on these new insights, we formulate fast and
numerically stable algorithms for two minimal problems with ra-
dial distortion previously unsolved in floating point arithmetic:
(i) simultaneous estimation of essential matrix and a common
radial distortion parameter for two partially calibrated views
and six image point correspondences and (ii) estimation of fun-
damental matrix and two different radial distortion parameters
for two uncalibrated views and nine image point correspon-
dences.

We demonstrate the speed and intrinsic numerical stability as
well as robustness to noise of the proposed algorithms using both
synthetic data and real images.

We compare our minimal algorithms with the existing Fitzgib-
bon’s non-minimal algorithm [4] for estimating fundamental ma-
trix F and a single radial distortion from 9 point correspondences
based on QEP, the Gröbner basis minimal algorithm [10] for a sin-
gle radial distortion and 8 point correspondences, which uses
detðFÞ ¼ 0, a linear 16 point algorithm for estimating F and two dif-
ferent radial distortions and finally with the new non-minimal
algorithm for two different radial distortions based on the general-
ized eigenvalue problem proposed in this paper.
2. Review of Gröbner Basis techniques for polynomial equation
solving

Solving systems of polynomial equations is a challenging prob-
lem in many respects and there exist no practical numerically sta-
ble algorithms for the general case. Instead, special purpose
algorithms need to be developed for specific applications. The
state-of-the-art tool for doing this is calculations with Gröbner
bases [8].

Our general goal is to find the complete set of solutions to a
system

f1ðxÞ ¼ 0; . . . ; fmðxÞ ¼ 0; ð1Þ

of m polynomial equations in n variables x ¼ ðx1; . . . ; xn). The poly-
nomials f1; . . . ; fm generate an ideal I in C½x�, the ring of multivariate
polynomials in x over the field of complex numbers defined as the
set

I ¼ fgðxÞ : gðxÞ ¼ RkhkðxÞfkðxÞg; ð2Þ

where the hkðxÞ are any polynomials.
The Gröbner basis method for equation solving essentially

builds on a generalization of polynomial division to the multivari-
ate case. A concept arising in multivariate polynomial division
which does not exist in the univariate case is division by a set of
polynomials. See [8] for details. Division by an ideal as given by
(2) can then be defined as division by the set of generators fk.

The starting point now is to consider the space of all possible
remainders under division by I. This space is denoted C½x�=I and re-
ferred to as the quotient space. It can be seen as a generalization of
the modulo rings Zn to polynomials. A famous result from algebraic
geometry now states that if the set of Eq. (1) has a finite set of
zeros, then C½x�=I will be a finite-dimensional linear space with
dimension equal to the number of zeros of (1) [8].

With the space C½x�=I in hand an elegant trick now yields the
solutions to (1). Consider multiplication by one of the variables
xk. This generates a linear mapping from C½x�=I to itself and since
we are in a finite-dimensional space, by selecting an appropriate
linear basis, this mapping can be represented as a matrix mxk

. This
matrix is known as the action matrix and the eigenvalues of mxk

are
exactly the values of xk on the zeros of (1). Furthermore, the eigen-
vectors of mT

xk
correspond to the vector of monomials evaluated at

the zeros of (1) [8].
The crucial step in the process is to compute the remainder

arithmetic of C½x�=I. Multivariate polynomial division by I is com-
plicated by the fact that it is not well defined for most choices of
generators. Consider the operator P : C½x� ! C½x�=I representing
division by I for some choice of generators. For P to be well defined
we require that Pðf1ðxÞ þ f2ðxÞÞ ¼ Pf1ðxÞ þ Pf2ðxÞ for all
f1ðxÞ; f2ðxÞ 2 C½x�.

Fortunately there exist a canonical choice of generators for
which P is well defined. This set of generators of I is known as
the Gröbner basis of I and allows direct construction of the action
matrix [8]. Calculating the Gröbner basis of I is therefore our main
concern. In general, this is accomplished by Buchberger’s algorithm
which works well in exact arithmetic. However, in floating point
arithmetic it very easily becomes unstable. There exist some at-
tempts to remedy this [17,18], but for more difficult cases the only
reliable approach (so far) is to study a particular class of equations
(e.g. relative orientation for calibrated cameras [19], optimal three
view triangulation [15], etc.) and use knowledge of what the struc-
ture of the Gröbner basis should be to design a special purpose
Gröbner basis solver. This method has been developed by Stewe-
nius and others in a number of papers [12,10,20]. In the following
section we outline how this is done and provide new insights en-
abling us to solve the two problems with radial distortion treated
in this paper.

3. A matrix version of Buchberger’s algorithm

The reason why Buchberger’s algorithm breaks down in floating
point arithmetic is that eliminations of monomials are performed
successively and this causes round-off errors to accumulate to
the point where it is completely impossible to tell whether a cer-
tain coefficient should be zero or not. The idea introduced by Faug-
ere [17] is to write the list of equations in a matrix form

C

xa1

..

.

xan

2
64

3
75 ¼ 0; ð3Þ

where ½xa1 � � � xan �T is a vector of monomials with the notation
xak ¼ xak1

1 � � � x
akp
p . Elimination of leading terms now translates to ma-

trix operations and we then have access to a whole battery of tech-
niques from numerical linear algebra allowing us to perform many
eliminations at the same time with control on pivoting etc.

However, as mentioned above, the real power of this approach
is brought out by combining it with knowledge about a specific
problem obtained in advance with a computer algebra system such
as Macaulay2 [21]. One can then get information about exactly
which monomials occur in Buchberger’s algorithm and the dimen-
sion of C½x�=I.

3.1. Obtaining a single elimination step

With knowledge of the particular problem at hand, it is often
ideal to obtain a single big elimination step. The reason for this is



236 Z. Kukelova et al. / Computer Vision and Image Understanding 114 (2010) 234–244
that each elimination step can be ill conditioned and with errors
accumulating the situation soon becomes hopeless. With a single
elimination step we get maximal control over row pivoting etc.
Moreover, the basis selection method introduced in [16] can fur-
ther improve stability, but is only applicable when a single elimi-
nation step is possible.

In Buchberger’s algorithm, two polynomials are picked
and the least common multiple of their leading terms is
eliminated by multiplying them with the right monomials and
then subtracting them. This is done a large number of times until
convergence. We mimick this process but aim at completely
separating multiplication by monomials and elimination. The
steps are

(i) Multiply the original set of equations with a large number of
monomials yielding an expanded set of equations.

(ii) Stack the coefficients of these equations in an expanded
coefficient matrix Cexp.

(iii) If enough new equations were generated in the previous
step, row operations on Cexp yield the elements of the Gröb-
ner basis we need.

An important observation made independently in [16] and [10]
is that not all elements of the Gröbner basis are needed. Let B de-
note a selection of basis monomials for C½x�=I. Then to construct
the action matrix mxk

we only need to calculate the elements of
the ideal I with leading monomials in the set ðxk �BÞ nB.

Let M denote the complete set of monomials and let
R ¼ ðxk �BÞ nB denote the set of monomials that need to be re-
duced to C½x�=I. Finally, let E (E for excessive) denote the remain-
ing monomials. We then have a partitioning of the monomials as
M ¼ E

S
R
S
B.

Now, reorder the columns of Cexp and the vector of monomials X
to reflect this

½C� CR CB �
X�
XR

XB

2
64

3
75 ¼ 0: ð4Þ

The E-monomials are not in the basis and do not need to be reduced
[16] so we eliminate them performing an LU factorization of Cexp

yielding the following schematic result:

U�1 CR1 CB1

0 UR2 CB2

� � X�
XR

XB

2
64

3
75 ¼ 0; ð5Þ

where U�1 and UR2 are upper triangular. We can now discard the top
rows of the coefficient matrix producing

UR2 CB2½ �
XR

XB

� �
¼ 0: ð6Þ

From this we see that if the submatrix UR2 is of full rank we get pre-
cisely the polynomials from the ideal I we need by forming

I U�1
R2CB2

� � XR

XB

� �
¼ 0; ð7Þ

or equivalently

XR ¼ �U�1
R2CB2XB; ð8Þ

which means that the R-monomials can now be expressed un-
iquely in terms of the B-monomials. This is precisely what we
need for computing the action matrix mxk

in C½x�=I. In other
words, the property of UR2 as being of full rank is sufficient to
get the part of the remainder arithmetic of C½x�=I that we need
to compute mxk

.

4. Application to minimal problems with radial distortion

Based on the techniques described in the previous section,
we are now able to provide fast and stable algorithms for
two previously untractable minimal problems with radial
distortion:

(i) The problem of estimating a one-parameter radial distortion
model and epipolar geometry from image point correspon-
dences in two uncalibrated views with different radial dis-
tortions in each image.

(ii) The problem of estimating a one-parameter radial distortion
model and epipolar geometry from image point correspon-
dences in two partially calibrated views.

These two problems were previously studied in [11] and found
to be numerically very challenging. In [11], the authors provided
solutions to these problems computed in exact rational arithmetic
only. This results in very long computational times and is not
usable in practical applications. In [22], an efficient way of getting
the floating point solution has been suggested. This paper makes a
synthesis of [11] and [22] and demonstrates that indeed the new
solution is better than previous solutions in simulated and real
experiments. Moreover this paper provides a new non-minimal
solution to the problem of estimating fundamental matrix and
two different radial distortion parameters for uncalibrated cameras
and 12 point correspondences based on a generalized eigenvalue
problem.
4.1. Uncalibrated case

In our solution we use the same formulation of the problem as
in [11]. This formulation assumes a one-parameter division model
[4] given by the formula

pu � pd=ð1þ kr2
dÞ ð9Þ

where pu ¼ ðxu; yu;1Þ
T and pd ¼ ðxd; yd;1Þ

T are the corresponding
undistorted, resp. distorted, image points, and rd is the radius of
pd w.r.t. the distortion center.

It is known that to get solutions to this minimal problem for
uncalibrated cameras with different radial distortions k1 and k2

in each image, we have to use the epipolar constraint [1] for 9 point
correspondences

p>ui
ðk1ÞFp0ui

ðk2Þ ¼ 0; i ¼ 1; . . . ;9 ð10Þ

and the singularity of the fundamental matrix F

detðFÞ ¼ 0: ð11Þ

Assuming f3;3–0 we can set f3;3 ¼ 1 and obtain 10 equations in 10
unknowns.

4.1.1. Eliminating variables
The epipolar constraint gives nine equations with 16 monomi-

als ðf3;1k1; f3;2k1; f1;3k2; f2;3k2; k1k2; f1;1; f1;2; f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; k1;

k2;1Þ and 10 variables ðf1;1; f1;2; f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; k1; k2Þ.
Among them, we have four variables which appear in one

monomial only ðf1;1; f1;2; f2;1; f2;2Þ and four variables which appear
in two monomials ðf1;3; f2;3; f3;1; f3;2Þ. Since we have nine equations
from the epipolar constraint we can use these equations to elimi-
nate six variables, four variables which appear in one monomial
only (and can be straightforwardly eliminated) and two of the vari-
ables which appear in two monomials. In this solution we have se-
lected f1;3 and f2;3.

We reorder the monomials contained in the 9 equations and put
the monomials containing f1;1; f1;2; f2;1; f2;2; f1;3 and f2;3 at the
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beginning. The reordered monomial vector becomes X ¼ ½f1;1; f1;2;

f2;1; f2;2; f1;3k2; f1;3; f2;3k2; f2;3; f3;1k1; f3;2k1; k1k2; f3;1; f3;2; k1; k2;1�T .
We rewrite the nine equations from the epipolar constraint on

matrix form CX ¼ 0; where C is the coefficient matrix. After per-
forming Gauss–Jordan (G–J) elimination on the matrix C, we obtain
nine equations on the form

fi ¼ LTðfiÞ þ giðf3;1; f3;2; k1; k2Þ ¼ 0; ð12Þ

where LTðfiÞ ¼ f1;1; f1;2; f2;1; f2;2; f1;3k2; f1;3; f2;3k2; f2;3 resp. f3;1k1 for
i ¼ 1;2;3;4;5;6; 7;8 resp. 9 and giðf3;1; f3;2; k1; k2Þ are 2nd order
polynomials in four variables f3;1; f3;2; k1; k2. This means that we
can express the 6 variables, f1;1; f1;2; f1;3; f2;1; f2;2; f2;3 as functions of
the other four variables f3;1; f3;2; k1; k2.

f1;1 ¼ �g1ðf3;1; f3;2; k1; k2Þ
f1;2 ¼ �g2ðf3;1; f3;2; k1; k2Þ
f1;3 ¼ �g6ðf3;1; f3;2; k1; k2Þ
f2;1 ¼ �g3ðf3;1; f3;2; k1; k2Þ
f2;2 ¼ �g4ðf3;1; f3;2; k1; k2Þ
f2;3 ¼ �g8ðf3;1; f3;2; k1; k2Þ;

ð13Þ

Substituting these expressions into the other three equations from
the epipolar constraint and also into the singularity constraint for
F gives four polynomial equations in four unknowns (one of 2nd de-
gree, two of 3rd degree and one of 5th degree)

k2ð�g6ðf3;1; f3;2; k1; k2ÞÞ þ g5ðf3;1; f3;2; k1; k2Þ ¼ 0
k2ð�g8ðf3;1; f3;2; k1; k2ÞÞ þ g7ðf3;1; f3;2; k1; k2Þ ¼ 0
f3;1k1 þ g9ðf3;1; f3;2; k1; k2Þ ¼ 0

det
�g1 �g2 �g6

�g3 �g4 �g8

f3;1 f3;2 1

0
B@

1
CA ¼ 0: ð14Þ

This problem has 24 solutions in general [11].
4.1.2. The Solver
The numerical solver is constructed starting with the four

remaining Eq. (14) in the four unknowns f3;1, f3;2, k1 and k2. The first
step is to expand the number of equations, as outlined in Section 3,
by multiplying them by a handcrafted set of monomials in the four
unknowns yielding 393 equations in 390 monomials. See Section
4.1.3 for details.

The coefficients of the equations are then stacked in a matrix C
as in (3). Following this, the monomials are ordered as in (4). The
sets E and R depend on which variable is used to create the action
matrix. For this problem f3;1 was used as the ‘‘action” variable. The
classical method is thereafter to choose the linear basis B of C½x�=I
to be the 24 lowest monomials (w.r.t. some monomial order). This
is enough to get a solution to the problem, but as mentioned in
Section 3 we can use the method introduced in [16] to select a ba-
sis of linear combinations of monomials from a larger set and
thereby improve numerical stability. Empirically, we have found
that the linear basis can be selected from the set of all monomials
up to degree four excluding the monomial k4

1. The set R then con-
sists of monomials of degree five that are reached when the mono-
mials of degree four are multiplied with f3;1. E is the remaining set
of 285 monomials.

Putting the part of C corresponding to E and R on triangular
form by means of an LU decomposition now produces (5).
We can then remove all equations that include excessive mono-
mials and still have enough information to construct the action
matrix.

Finally, we make the choice of representatives for C½x�=I by the
method in [16] and do the last elimination to get the part of the
Gröbner basis we need to construct the action matrix.
4.1.3. Details on the expansion step for the uncalibrated case
We have found experimentally that to construct the necessary

elements of the Gröbner basis, we need to generate polynomials
up to a total degree of eight. Thus, the 2nd degree polynomial has
to be multiplied with all monomials up to degree six and monomi-
als with the corresponding degrees for the 3rd and 5th degree
polynomials.

Further investigations has shown that not exactly all monomi-
als up to degree eight are needed, so in the implementation the
2nd degree polynomial was only multiplied with monomials up to
degree five and each variable not higher than four. Moreover k1

was not multiplied with degrees higher than two. For the other
polynomials it was possible to limit the degree of each individual
variable to one lower than the total degree.

These multiplications yield 393 equations in 390 monomials.
Without the last fine tuning of the degrees, the number of equa-
tions and monomials will be larger but all extra monomials will
be in the set E and will make no real difference to the solver except
slightly longer computation times.
4.2. Calibrated case

To solve the minimal problem for calibrated cameras, we make
use of the epipolar constraint for 6 point correspondences

p>ui
ðkÞEp0ui

ðkÞ ¼ 0; i ¼ 1; . . . ;6; ð15Þ

the singularity of the essential matrix E

detðEÞ ¼ 0 ð16Þ

and the trace constraint, which says that two singular values of the
essential matrix are equal

2ðEETÞE� traceðEETÞE ¼ 0: ð17Þ

Again assuming e3;3–0, we can set e3;3 ¼ 1 and obtain 16 equations
in 9 unknowns.
4.2.1. Eliminating variables
The epipolar constraint gives 6 equations in 15 monomials

ðke1;3; ke2;3; ke3;1; ke3;2; k
2; e1;1; e1;2; e1;3; e2;1; e2;2; e2;3; e3;1; e3;2; k;1Þ and

9 variables ðe1;1; e1;2; e1;3; e2;1; e2;2; e2;3; e3;1; e3;2; kÞ.
Using a similar elimination method as in the uncalibrated case

we eliminate 5 of these 9 variables. All these variables can be elim-
inated simultaneously.

We have again four variables which appear in one monomial
only ðe1;1; e1;2; e2;1; e2;2Þ and four variables which appear in two
monomials ðe1;3; e2;3; e3;1; e3;2Þ. Since we have six equations of
which each contains all 15 monomials we can eliminate five of
these nine variables. We select the first four variables
e1;1; e1;2; e2;1; e2;2 that appear in one monomial only and the fifth
variable as e1;3 which appears in two monomials.

We reorder the monomials contained in the 6 equations putting
monomials containing e1;1; e1;2; e2;1; e2;2 and e1;3 at the beginning.
The reordered monomial vector will be X ¼ ½e1;1; e1;2; e2;1;

e2;2; e1;3k; e1;3; e2;3k; e3;1k; e3;2k; k
2; e2;3; e3;1; e3;2; k;1�T .

We rewrite 6 equations from the epipolar constraint on matrix
form CX ¼ 0: After performing G-J elimination on the matrix C, we
obtain 6 equations of the form

fi ¼ LTðfiÞ þ giðe2;3; e3;1; e3;2; kÞ ¼ 0; ð18Þ

where LTðfiÞ ¼ e1;1; e1;2; e2;1; e2;2; e1;3k; resp. e1;3 for i ¼ 1;2;3;4;5
resp. 6 and giðe2;3; e3;1; e3;2; kÞ are 2nd order polynomials in four vari-
ables e2;3; e3;1; e3;2; k.

So, the five variables e1;1; e1;2; e1;3; e2;1; e2;2 can be expressed as
functions of the other four variables e2;3; e3;1; e3;2; k.
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e1;1 ¼ �g1ðe2;3; e3;1; e3;2; kÞ
e1;2 ¼ �g2ðe2;3; e3;1; e3;2; kÞ
e1;3 ¼ �g6ðe2;3; e3;1; e3;2; kÞ
e2;1 ¼ �g3ðe2;3; e3;1; e3;2; kÞ
e2;2 ¼ �g4ðe2;3; e3;1; e3;2; kÞ:

ð19Þ

We substitute these expressions into the remaining equation from
the epipolar constraint and into the singularity and trace con-
straints for E. In this way we obtain 11 polynomial equations in 4
unknowns (one of degree 3, four of degree 5 and six of degree 6):

One equation from the epipolar constraint

kð�g6ðe2;3; e3;1; e3;2; kÞÞ þ g5ðe2;3; e3;1; e3;2; kÞ ¼ 0; ð20Þ

one equation from the singularity constraint

detðEÞ ¼ 0; ð21Þ

and 9 equations from the trace constraint

2ðEETÞE� traceðEETÞE ¼ 0; ð22Þ

with

E ¼
�g1 �g2 �g6

�g3 �g4 e2;3

e3;1 e3;2 1

0
B@

1
CA: ð23Þ

In [11] it was shown that this problem has 52 solutions.

4.2.2. The solver
The numerical solution of this problem largely follows that of

the uncalibrated version. In the first expansion, all equations are
multiplied with monomials to reach degree eight. This gives 356
equations in 378 monomials. As in the uncalibrated case it is pos-
sible to reduce the number of monomials by fine tuning the de-
grees we need to use, in this case yielding 320 equations in 363
monomials.

The next step is to reorder the monomials as in Eq. (4). Once
again, the linear basis of C½x�=I can be constructed from the mono-
Fig. 1. (Left) Input images with different radial distortions (Top) 66% cutout (120� FOV)
perspective camera with very mild distortion. (Center) Corrected images. (Right) Dis
k2 ¼ 0:002500.
mials of degree four and lower. R will then consist of those mono-
mials of degree five that are reached when the degree four
monomials are multiplied with the variable e3;1, which is used as
the ‘‘action” variable.

As before, C is transformed to triangular form by LU decompo-
sition and after that we only consider those equations that do
not include any of the monomials in E. Now C holds all necessary
information to choose representatives in C½x�=I by the method of
[16] and create the action matrix with respect to multiplication
by e3;1.

5. Non-minimal solution to the uncalibrated case with different
distortions

For comparison we have also created a new non-minimal algo-
rithm for estimating fundamental matrix and two different radial
distortion parameters for two uncalibrated views and twelve im-
age point correspondences based on the generalized eigenvalue
problem. This algorithm is similar to the well-known algorithm
for estimating F and a single distortion parameter from nine point
correspondences proposed by Fitzgibbon [4] which was formu-
lated as a quadratic eigenvalue problem.

We also formulate the problem with different distortions as a
generalized eigenvalue problem. We use equations from the epipo-
lar constraint for 12 point correspondences

p>ui
ðk1ÞFp0ui

ðk2Þ ¼ 0; i ¼ 1; . . . ;12: ð24Þ

Assuming f3;3–0 we can set f3;3 ¼ 1 and obtain 12 equations with 16
monomials
ðf3;1k1; f3;2k1; f1;3k2; f2;3k2; k1k2; f1;1; f1;2; f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; k1; k2;1Þ
and 10 variables ðf1;1; f1;2; f1;3; f2;1; f2;2; f2;3; f3;1; f3;2; k1; k2Þ.

Using the standard notation for the division model

puðkÞ � ðxd; yd;1þ kr2
dÞ

T
; ð25Þ

we can rewrite the equations from the epipolar constraint as

ðD1 þ k2D2Þv ¼ 0; ð26Þ
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where D1 � ½xdi
x0di

xdi
y0di

xdi
ydi

x0di
ydi

y0di
ydi

x0di
y0di

r2
di

x0di
r2

di
y0di

r2
di

1� and
D2 � ½0 0 xdi

r02di
0 0 ydi

r02di
0 0 0 0 r2

di
r02di

r02di
�; i ¼ 1; . . . 12; are 12� 12

matrices containing only known distorted coordinates and v is the
12� 1 vector of unknown monomials v ¼ ½f11; f12; f13; f21; f22; f23; f31;

f32; f3;1k1; f3;2k1; k1;1�. The formulation (26) is a generalized eigenvalue
problem which can be easily solved using standard efficient algo-
rithms. For example MATLAB provides the function polyeig.

Because D3 has eight zero columns, this generalized eigenvalue
problem leads to eight ‘‘infinite” eigenvalues. Thus, there are at
most four finite real solutions to this problem.

6. Experiments

We have tested the algorithms for the uncalibrated and cali-
brated minimal problems on synthetic images with various levels
of noise, outliers and radial distortions as well as on real images
(Fig. 1). For comparison we have also tested our new non-minimal
algorithm on synthetic images. The time of computation has been
measured for both minimal algorithms. The minimal algorithms
proposed in this paper are significantly more stable than the algo-
rithms presented in [11] which ran in exact rational arithmetic
only. Since doing the computations in exact arithmetic is extre-
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Fig. 3. Uncalibrated case: relative errors of (Left) k1 and (Right) k2 as a function of noise
boxes contain values from 25% to 75% quantile. (For interpretation of the references to
mely slow (minutes instead of milliseconds), a comparison with
the floating point algorithm presented in this paper is not mean-
ingful and has therefore been omitted.

The problems presented in this paper are solved by finding the
roots of a system of polynomial equations which means that we
obtain several potentially correct answers, 52 in the calibrated
case, 24 in the uncalibrated minimal case and 4 in the uncalibrated
non-minimal case. In general we obtain more than one real root
(Fig. 2), in which case we need to select the best one, i.e. the root
which is consistent with most measurements. To do so, we treat
the real roots obtained by solving the equations for one input as
real roots from different inputs and use kernel voting [3] for sev-
eral inputs to select the best root among all generated roots. The
kernel voting is done using a Gaussian kernel with fixed variance
and the estimates of k1 and k2 in the uncalibrated case and k in
the calibrated case are found as the positions of the largest peaks
[3,10].

6.1. Tests on synthetic images

For all problems treated in this paper, the same synthetic exper-
iments were carried out to evaluate the quality of the solvers.
0 5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

Number of real solutions

Fr
eq

ue
nc

y

e. (Right) The number of real solutions for the calibrated case.
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. Ground truth (Top) k1 ¼ �0:2, k2 ¼ �0:3 and (Bottom) k1 ¼ �0:01, k2 ¼ �0:7. Blue
colour in this figure legend, the reader is referred to the web version of this paper.)
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In all our simulated experiments we generate our synthetic data
using the following procedure:

(i) Generate a 3D scene consisting of 1000 points distributed
randomly within a cube. Project M% of the points on image
planes of the two displaced cameras, these are matches. In
both image planes, generate ð100�MÞ% random points dis-
tributed uniformly in the image, these are mismatches. Alto-
gether, they become undistorted correspondences, true as
well as false matches.

(ii) Apply different radial distortions to the undistorted corre-
spondences in each image and in this way generate noiseless
distorted points.

(iii) Add Gaussian noise of standard deviation r to the distorted
points.

6.1.1. Uncalibrated case
In the first two experiments we study the robustness of our

minimal as well as non-minimal algorithm for the uncalibrated
case to Gaussian noise added to the distorted points.

The first experiment investigates the estimation error of k as a
function of noise. Results for the minimal algorithm are presented
in Fig. 3 and for the non-minimal algorithm in the Fig. 4. The
ground truth radial distortions parameters were k1 ¼ �0:2,
k2 ¼ �0:3 Figs. 3 and 4 (Top) in the first case and k1 ¼ �0:01,
k2 ¼ �0:7 Figs. 3 and 4 (Bottom) in the second case. The noise var-
ied from 0 to 2 pixels. For each noise level relative errors for 2000
k’s (estimated as the closest values to the ground truth value from
all solutions) were computed. The results in Figs. 3 and 4 for the
estimated k1 (Left) and k2 (Right) are presented by the Matlab func-
tion boxplot which shows values of the 25% to 75% quantiles as a
blue box with red horizontal line at median. The red crosses show
data beyond 1:5 times the interquartile range.

Both algorithms give similar results. For noiseless data we
obtain very accurate estimates of radial distortion parameters
even for very different k’s. For larger noises the log10 relative er-
rors are much higher (mostly around 10�1). However obtained
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Fig. 4. Non-minimal ‘‘12 point” algorithm for uncalibrated case: relative errors of (Left) k
(Bottom) k1 ¼ �0:01, k2 ¼ �0:7. Blue boxes contain values from 25% to 75% quantile. (Fo
to the web version of this paper.)
k’s are still satisfactory and mostly differ from the ground truth
value in the second decimal place. The main point though is not
to use a one set of points to get a good estimate, but to repeat-
edly draw configurations from a larger set of potential matches
and then use e.g. kernel voting to get a more reliable estimate.
Finally, the result can be further enhanced using the obtained
estimate as a good starting guess in a large scale bundle adjust-
ment. The effect of kernel voting is studied in the second
experiment.

In this experiment we did not select the root closest to the
ground truth value for each run of the algorithm, instead we used
kernel voting to select the best k’s among all generated roots from
several runs. The ground truth radial distortion parameters were as
in the previous experiment (k1 ¼ �0:2, k2 ¼ �0:3 in the first case
and k1 ¼ �0:01, k2 ¼ �0:7 in the second case) and the level of noise
varied from 0 to 2 pixels. Moreover, in the first case there were
10% of mismatches in the image (M=90).

The testing procedure was as follows:

(i) Repeat K times (We use K from 50 to 100 though for more
noisy data K from 100 to 200 gives better results).
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(a) Randomly choose 9 point correspondences from a set of
N potential correspondences (6 point correspondences
for the calibrated case).

(b) Normalize image point coordinates to ½�1;1�.
(c) Find 24 roots using our algorithm (4 roots for the non-

minimal algorithm and 52 for the calibrated case).
(d) Select the real roots in the feasible interval, i.e.�1 < k1;

k2 < 1 and the corresponding F’s.

(ii) Use kernel voting to select the best root.

Fig. 5 shows k’s computed using our minimal algorithm for the
uncalibrated case as a function of noise and Fig. 6 shows k’s com-
puted using our non-minimal algorithm. In the first case with mis-
matches Figs. 5 and 6 (Top) 100 k’s were estimated using kernel
voting for roots computed from 100 (K ¼ 100) 9-tuples of corre-
spondences randomly drawn for each noise level. In the second
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case Figs. 5 and 6 (Bottom) 200 k’s were estimated using kernel
voting for roots computed from 50 (K ¼ 50) 9-tuples of correspon-
dences. This means that for each noise level our algorithm ran
10,000 times in both cases.

The results are again presented by the Matlab function boxplot.
For the minimal algorithm the median values for k1 and k2 are

very close to the ground truth value for all noise levels from 0 to
2 pixels and also for very different radial distortion parameters
Fig. 5 (Bottom) and 10% of mismatches Fig. 5 (Top).

The median values for the non-minimal ‘‘12 point” algorithm
are also close to the ground truth values for all noise levels and also
for very different radial distortion parameters Fig. 6 (Bottom) and
10% of mismatches Fig. 6 (Top). However, the variances of this
‘‘12 point” algorithm are considerably larger, especially for higher
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noise levels, than the variances of the minimal algorithm Fig. 5. It is
significant especially for data with mismatches Fig. 6 (Top). This is
because for 12 points we have higher probability of choosing con-
taminated sample (sample containing mismatches) than for 9
points. The minimal algorithm thus produces higher number of
good estimates for the fixed number of samples. This is good both
for RANSAC as well as for kernel voting.

6.1.2. Calibrated case
The same synthetic experiments were carried out for the cali-

brated solver.
The results of the first experiment which shows relative errors

of the estimated k as a function of noise are shown in Fig. 7. The
ground truth radial distortion was k ¼ �0:3. For noiseless data
we again obtain very precise estimates of radial distortion param-
eter k. For larger noise levels the log10 relative errors are slightly
larger than for the uncalibrated case. However, using kernel voting
we can still obtain good estimates. This is shown by our second
experiment.

In this experiment k was estimated 50 times using kernel voting
for roots computed from 200 6-tuples of correspondences ran-
domly drawn for each noise level, Fig. 7. The median values for k
are again very close to the ground truth value k ¼ �0:3 for all noise
levels from 0 to 2 pixels. However the variances of this for the cal-
ibrated case are larger, especially for higher noise levels, than the
variances for the uncalibrated case. This means that for good esti-
mates of k this algorithm requires more samples in the kernel vot-
ing procedure than in the uncalibrated case.

6.1.3. RANSAC experiment
In the last experiment we compare our algorithms with other

existing algorithms within the RANSAC paradigm by showing the
number of correct matches recovered as a function of the number
of samples made from a set of tentative matches contaminated by
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Fig. 7. Calibrated case: (Left) relative errors of k as a function of noise, ground truth k ¼ �
200 6-tuples of correspondences randomly drawn for each noise level. Ground truth k ¼ �
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Table 1
The comparison of our ‘‘single distortion” algorithm for calibrated cameras with other exis
within s threshold and the number of correct matches K2 among them as a function of the n
The number of samples was 10;100 and 1000, noise level was 1 pixel and threshold s ¼ 1

RANSAC experiment for k1 ¼ k2

No mismatches

Algorithm 10 100 1000

Fitzgibbon 9pt K1 631.44 826.75 873.35
K2 631.44 826.75 873.35

Kukelova 9pt K1 695.62 835.38 835.38
K2 695.62 835.38 835.38

Our minimal 6pt K1 787.5 898.55 930.88
K2 787.5 898.55 930.88
mismatches. The number of samples used for our experiment was
10;100 and 1000. We compare the following algorithms

(i) Fitzgibbon’s non-minimal algorithm [4] for estimating fun-
damental matrix F and single radial distortion from nine
point correspondences based on QEP;

(ii) Gröbner based minimal algorithm [10] for estimating F and
single radial distortion from eight point correspondences,
which uses detðFÞ ¼ 0;

(iii) Our new minimal algorithm for estimating E and single
radial distortion for calibrated cameras from 6 point corre-
spondences, which uses constraints detðEÞ ¼ 0 and
2EET E� traceðEETÞE ¼ 0;

(iv) Linear algorithm for estimating F and two different radial
distortions from 16 point correspondences;

(v) Our new non-minimal algorithm for estimating F and two
different radial distortions from 12 point correspondences
based on the generalized eigenvalue problem;

(vi) Our new minimal algorithm for estimating F and two differ-
ent radial distortions from nine point correspondences,
which uses detðFÞ ¼ 0.

Two sets of images I1, I2 were generated using the procedure
described in Subsection 6.1, I1 for k1 ¼ k2 and I2 for k1–k2. Gauss-
ian noise with standard deviation 1 pixel was added to the image
coordinates.

The number of correct matches (M% of correct matches) among
1000 tentative matches was fixed and the image points were cor-
rupted by ð100�MÞ% of random mismatches. In our case M varies
from 100% to 80%.

Table 1 shows results of the first 3 algorithms (i-iii) for single
radial distortion k ¼ �0:3 and fixed threshold s ¼ 1 pixel on the
distance of an image point to epipolar curves. The results were ob-
tain as a mean values from 100 runs of RANSAC for 10, 100 and
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0:3. (Right) kernel voting: Estimated k using kernel voting for roots computed from
0:3 (green line). (For interpretation of the references to colour in this figure legend,

ting algorithms within the RANSAC paradigm by showing the number of matches K1
umber of samples made from a set of tentative matches contaminated by mismatches.
pixel. Number of mismatches varied from 0–20%.

10% Mismatches 20% Mismatches

10 100 1000 10 100 1000

479.17 671.42 772.4 302.17 532.04 632.1
479.08 671.332 772.36 301.5 531.9 632.06
520.84 685.67 773.36 322.36 574.65 660.5
520.73 685.6 773.28 321.78 574.54 660.36
662.24 780.85 838.94 517.98 675.49 719.2
662.07 780.6 838.78 517.53 675.22 718.96
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1000 samples. Table 2 shows results of the last 3 algorithms (iv-vi)
for different radial distortions k1 ¼ �0:2 and k2 ¼ �0:3 and fixed
threshold s ¼ 1 pixel. The first row in both tables shows the num-
ber of matches K1 within s threshold and the second row shows
the number of correct matches K2 among them.

The results show that the algorithms sampling fewer points fas-
ter hit a non-contaminated sample than the algorithms sampling
more points. Therefore, our minimal algorithms give better results
than non-minimal algorithms. This is significant especially for
higher number of mismatches.

6.2. Time consumption

To evaluate the speed of the new algorithm a reasonably opti-
mized version of the algorithm for the uncalibrated case was
implemented. The implementation was done in Matlab so rewrit-
ing the algorithm in a compiled language such as C should reduce
the execution time further.

The algorithm was run 10,000 times and the time consumption
was measured using the Matlab profiler. The experiments were
performed on an Intel Core 2 CPU 2:13 GHz machine with 2 GB of
memory. The estimated average execution time for solving one in-
stance of the uncalibrated problem was 16 ms. The corresponding
time for the calibrated problem was 17 ms. The time consuming
parts of the algorithms are the initial LU-factorization and the
eigenvalue decomposition and these are of comparable sizes.
Table 2
The comparison of our minimal ‘‘different distortion” algorithm and our non-minimal ‘‘d
paradigm by showing the number of matches K1 within s threshold and the number of corr
tentative matches contaminated by mismatches. The number of samples was 10;100 and 1
from 0–20%.

RANSAC experiment for k1–k2

No mismatches

Algorithm 10 100 1000

Linear 16pt K1 316.34 681.22 748.03
K2 316.34 681.22 748.03

Our non-minimal 12pt K1 418.18 697.93 763.51
K2 418.18 697.93 763.51

Our minimal 9pt K1 625.03 801.98 845.76
K2 625.03 801.98 845.76

Fig. 8. Real data, 60% cutouts from omnidirectional images. (Left) Input images with diffe
images. (Right) Distribution of real roots obtained by kernel voting. Estimated k1 ¼ �0:3
These results are to be compared with the execution times gi-
ven for the same problem in [11], where solutions were computed
in exact rational arithmetic. There, the processing time for one
problem instance was 30 s for the uncalibrated case and 1700 s
for the calibrated case.

6.3. Tests on real images

We have tested our minimal algorithm for uncalibrated cam-
eras with different radial distortions on several different sets of
images. In the first experiment the input images with different rel-
atively large distortions in each image, Fig. 8 (Left), were obtained
as 60% cutouts from fish-eye images taken with two different cam-
eras with different radial distortions. Tentative point matches were
then found by the wide base-line matching algorithm [23]. They
contained correct as well as incorrect matches. Distortion parame-
ters k1 and k2 were estimated using our algorithm for uncalibrated
cameras with different radial distortions and the kernel voting
method for 100 samples. The input (Left) and corrected (Center)
images are presented in Fig. 8. Fig. 8 (Right) shows the distribution
of real roots for these images, from which k1 ¼ �0:301250 and
k2 ¼ �0:368125 were estimated as the argument of the maximum.
The peaks from kernel voting are sharp and the k’s are estimated
accurately.

In the second experiment we tested our algorithm on images
with significantly different distortions. The left image Fig. 1
ifferent distortion” algorithm with the linear 16 point algorithm within the RANSAC
ect matches K2 among them as a function of the number of samples made from a set of
000, noise level was 1 pixel and threshold s ¼ 1 pixel. Number of mismatches varied

10% Mismatches 20% Mismatches

10 100 1000 10 100 1000

232.55 415.7 485.1 86.48 322.35 328.06
232.55 415.69 485.08 86.459 322.31 328.04
242.4 546.27 546.27 148.55 414.5 528.02
242.33 546.22 575.56 148.51 414.44 527.85
513.03 671.77 732.56 342.23 538.85 654.86
512.71 671.67 732.54 341.31 538.4 654.65
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(Top), was obtained as a 66% cutout (120� FOV) from a 180� FOV
fish-eye image and the right image Fig. 1 (Bottom) was taken with
a standard perspective camera. Since these images had a rather
large difference in radial distortion, the tentative point correspon-
dences contained a larger number of mismatches. Distortion
parameters k1 and k2 were again estimated using our algorithm
for uncalibrated cameras with different radial distortions and the
kernel voting method. The input (Left) and corrected (Center)
images are presented in Fig. 1. Fig. 1 (Right) shows the distribution
of real roots for these images from which k1 ¼ �0:925625 and
k2 ¼ 0:002500 were estimated. As can be seen the peaks obtained
by kernel voting are not so sharp but still sufficient to get good
estimates of the k’s even from only 100 samples.

7. Conclusions

In this paper we have given fast and robust algorithms for two
minimal problems for simultaneous computation of epipolar
geometry and radial distortion in floating point arithmetic. The
two problems of simultaneously solving for relative pose and radial
distortion were, due to numerical problems, previously solved in
exact rational arithmetic only, making them too time consuming
to be of practical value. With the floating point algorithm pre-
sented in this paper we have reduced the computation time from
minutes to milliseconds. Moreover, we have verified that this is
done without loss of numerical precision by extensive experiments
both on synthetic and real images.

We have also proposed a non-minimal algorithm for estimating
F and two different radial distortions from 12 point correspon-
dences based on a generalized eigenvalue formulation.

In the experiments we have demonstrated that the radial dis-
tortion estimation is robust both to outliers and noise when kernel
voting is used over several runs. Finally, we have shown that large
differences in distortion between two images can be handled.

Acknowledgements

This work has been supported by Grants EU FP7-SPA-218814
PRiVisG and MSM6840770038 DMCM III and the Swedish Research
Council through Grant No. 2005-3230 Geometry of multi-camera
systems, Grant No. 2004-4579 Image- Based Localisation and Rec-
ognition of Scenes.

References

[1] R.I. Hartley, A. Zisserman, in: Multiple View Geometry in Computer Vision,
second ed., Cambridge University Press, 2004, ISBN 0521540518.
[2] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Communications of the ACM 24 (6) (1981) 381–395.

[3] H. Li, R. Hartley, A non-iterative method for lens distortion correction from
point matches, in: Workshop on Omnidirectional Vision, Beijing China, 2005.

[4] A.W. Fitzgibbon, Simultaneous linear estimation of multiple view geometry
and lens distortion, in: Proceedings of Computer Vision and Pattern
Recognition Conference (CVPR), 2001, pp. 125–132.

[5] B. Micusik, T. Pajdla, Estimation of omnidirectional camera model from
epipolar geometry (2003) 485–490.

[6] B. Micusik, T. Pajdla, Structure from motion with wide circular field of view
cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence 28
(7) (2006) 1135–1149.

[7] H. Li, R. Hartley, A non-iterative method for correcting lens distortion from
nine-point correspondences, in: Proceedings of OmniVision05, ICCV-
workshop, 2005.

[8] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Springer-Verlag,
2007.

[9] J. Barreto, K. Daniilidis, Fundamental matrix for cameras with radial distortion,
in: IEEE International Conference on Computer Vision, Beijing, China, 2005.

[10] Z. Kukelova, T. Pajdla, A minimal solution to the autocalibration of radial
distortion, in: Proceedings of Computer Vision and Pattern Recognition
Conference (CVPR), IEEE Press, 2007.

[11] Z. Kukelova, T. Pajdla, Two minimal problems for cameras with radial
distortion, in: Proceedings of The Seventh Workshop on Omnidirectional
Vision, Camera Networks and Non-classical Cameras (OMNIVIS), 2007.

[12] H. Stewénius, Gröbner basis methods for minimal problems in computer
vision, Ph.D. thesis, Lund University, 2005.

[13] J.-C. Faugère, A. Joux, Algebraic cryptanalysis of hidden field equation (hfe)
cryptosystems using gröbner bases, in: CRYPTO, 2003, pp. 44–60.

[14] A. Almadi, A. Dhingra, D. Kohli, A gröbner-sylvester hybrid method for closed-
form displacement analysis of mechanisms, Journal of Mechanical Design 122
(4) (2000) 431–438.

[15] H. Stewénius, F. Schaffalitzky, D. Nistér, How hard is three-view triangulation
really? in: Proc. 10th Int. Conf. on Computer Vision, Beijing, China, 2005, pp.
686–693.

[16] M. Byröd, K. Josephson, K. Åström, Improving numerical accuracy of gröbner
basis polynomial equation solver, in: International Conference on Computer
Vision, 2007.

[17] J.-C. Faugère, A new efficient algorithm for computing grobner bases (f4),
Journal of Pure and Applied Algebra 139 (1999) 61–88.

[18] J.-C. Faugère, A new efficient algorithm for computing gröbner bases without
reduction to zero (f5), in: Proceedings of the 2002 international Symposium on
Symbolic and Algebraic Computation, ACM Press, New York, NY, USA, 2002,
pp. 75–83.

[19] H. Stewénius, C. Engels, D. Nistér, Recent developments on direct relative
orientation, ISPRS Journal of Photogrammetry and Remote Sensing 60 (2006)
284–294.

[20] H. Stewénius, D. Nistér, M. Oskarsson, K. Åström, Solutions to minimal
generalized relative pose problems, in: Workshop on Omnidirectional Vision,
Beijing China, 2005.

[21] D. Grayson, M. Stillman, Macaulay 2, 1993–2002. Available from: <http://
www.math.uiuc.edu/Macaulay2/>, an open source computer algebra software.
<http://www.math.uiuc.edu/Macaulay2/>.

[22] M. Byröd, Z. Kukelova, K. Josephson, T. Pajdla, K. Åström, Fast and robust
numerical solutions to minimal problems for cameras with radial distortion,
in: Proc. Conference on Computer Vision and Pattern Recognition, Anchorage,
Alaska, USA, 2008.

[23] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from
maximally stable extremal regions, Image Vision Computing 22 (10) (2004)
761–767.

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/

	Fast and robust numerical solutions to minimal problems for cameras with  radial distortion
	Introduction
	Review of Gröbner Basis techniques for polynomial equation solving
	A matrix version of Buchberger’s algorithm
	Obtaining a single elimination step

	Application to minimal problems with radial distortion
	Uncalibrated case
	Eliminating variables
	The Solver
	Details on the expansion step for the uncalibrated case

	Calibrated case
	Eliminating variables
	The solver


	Non-minimal solution to the uncalibrated case with different distortions
	Experiments
	Tests on synthetic images
	Uncalibrated case
	Calibrated case
	RANSAC experiment

	Time consumption
	Tests on real images

	Conclusions
	Acknowledgements
	References


