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Abstract—This paper presents a method for fully automatic and robust estimation of two-view geometry, autocalibration, and 3D metric

reconstruction from point correspondences in images taken by cameras with wide circular field of view. We focus on cameras which have

more than 180� field of view and for which the standard perspective camera model is not sufficient, e.g., the cameras equipped with

circular fish-eye lenses Nikon FC-E8 (183�), Sigma 8mm-f4-EX (180�), or with curved conical mirrors. We assume a circular field of view

and axially symmetric image projection to autocalibrate the cameras. Many wide field of view cameras can still be modeled by the central

projection followed by a nonlinear image mapping. Examples are the above-mentioned fish-eye lenses and properly assembled

catadioptric cameras with conical mirrors. We show that epipolar geometry of these cameras can be estimated from a small number of

correspondences by solving a polynomial eigenvalue problem. This allows the use of efficient RANSAC robust estimation to find the

image projection model, the epipolar geometry, and the selection of true point correspondences from tentative correspondences

contaminated by mismatches. Real catadioptric cameras are often slightly noncentral. We show that the proposed autocalibration with

approximate central models is usually good enough to get correct point correspondences which can be used with accurate noncentral

models in a bundle adjustment to obtain accurate 3D scene reconstruction. Noncentral camera models are dealt with and results are

shown for catadioptric cameras with parabolic and spherical mirrors.

Index Terms—Omnidirectional vision, fish-eye lens, catadioptric camera, autocalibration.

�

1 INTRODUCTION

STABLE ego-motion estimation and a 3D metric reconstruc-
tion from a small number of images can be achieved by

using cameras with a large angle of view [8], [11], [45]. There
exists a variety of omnidirectional cameras consisting of
mirrors or wide-angle (fish-eye) lenses with an angle of view
larger than 180� [6]. In this work, we show how to do
autocalibration andstructure frommotion withsuchcameras.

We are interested in central and slightly noncentral

omnidirectional cameras with a circular field of view which

cannot be described by the standard perspective model [10],

[22]. See Fig. 1 for examples of central dioptric (only lenses)

and slightly noncentral catadioptric (combination of lenses

and mirrors) omnidirectional cameras. The reason why the

center of projection is so desirable is that the models and

algorithms are simpler and it is possible to generate pure

perspective images by transforming cutouts from the

acquired images. The advantage of omnidirectional cameras

is primarily that they have a large field of view and, thus, the

ability to see a large part of the surroundings in one image.

The large angle of view often helps to establish extended

point correspondences which provide stable and very

complete 3D reconstructions from few images. Degenerate

cases (e.g., when only a single plane is observed in the image)

are less likely and therefore more stable ego-motion estima-

tion is often achieved [8], [11] compared to standard cameras.
This paper studies omnidirectional camera geometry,

properties, image formation, and the possibility of their
autocalibration from point correspondences in order to
compute the Structure from Motion from two views, see
Fig. 2. Often, no information about mirror or lens para-
meters and no calibration objects is available. Nevertheless,
it still is often possible to acquire two or more images of the
surroundings and establish point correspondences manu-
ally or automatically.

The main contribution of this work is the formulation of
the autocalibration methods for omnidirectional cameras
with a circular field of view as the Polynomial Eigenvalue
Problem, which allows one to robustly estimate the two-
view geometry just from image correspondences even if
they are contaminated by mismatches.

We show that the Fitzgibbon’s technique [12] can be
generalized to a wider class of cameras with radially
symmetric image formation. Interestingly, there is a direct
generalization for the para-catadioptric cameras, leading to
the quartic polynomial eigenvalue problem. More impor-
tantly, a very large class of (probably all practically useful)
radially symmetric mappings can be approximated in such
a way that the model estimation can be formulated as a
polynomial eigenvalue problem. For one-parametric mod-
els, we get a direct generalization of [12] and need to solve a
quadratic eigenvalue problem. For more-parametric mod-
els, a coordinate lifting can be used to attain the quadratic
eigenvalue problem on the cost of using extra correspon-
dences. This technique allows one to estimate epipolar
geometry and one-parametric models from nine and two-
parametric models from 15 correspondences in two views.
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We present experimental results for some single view-
point catadioptric cameras as well as for two wide field of
view fish eye lenses. We demonstrate that the technique can
be integrated into a RANSAC estimation paradigm and used
in a hierarchical manner to cope with a large number of
mismatches. The simple approximate image formation
model allows us to detect and remove mismatches efficiently.
Moreover, the approximate model computed from correct
matches can be used to initiate bundle adjustment with very
accurate but complex models. We demonstrate this on
slightly noncentral catadioptric cameras which need a
complicated model to get accurate reconstructions. We
present experiments with short as well as long baseline
camera setups and automatically established tentative
correspondences where contamination by mismatches
reached 80 percent.

To enable the formulation of a polynomial eigenvalue
problem, the center ofradial symmetryof the imageformation
has to be known and the image has to have “square pixels.” In
general, these conditions are not satisfied. The technique [12]
has been used only for cameras with a standard angle of view.
In such situations, it is safe to assume that the center of radial
symmetry is in the center of the image. Moreover, work [12]
assumed that the camera had square pixels. We demonstrate
that, if cameras have a circular field of view, which is common
for very large angle of view imaging, the origin can be put into
the symmetry center and the image can be transformed to get
squared pixels by mapping the view field to a circle. In a way,
the circular view field becomes a calibration object. Even
though this precalibration may not be accurate enough for
metrology, it was always accurate enough to get a working

polynomial eigenvalue problem for rejecting mismatches.

Our experiments demonstrate a hierarchy of the two-view

geometry estimation based on a coarse-to-fine strategy for

some types of central and slightly noncentral omnidirectional

cameras. As a side effect, we also show that accurate 3D metric

reconstructions can be obtained from two uncalibrated

images with very wide circular field of view.
The aim of the proposed calibration method is not to be

more accurate than offline calibration methods using
calibration targets and many-parametric models. The aim
of the method is to produce 3D reconstruction fully

automatically when only uncalibrated omnidirectional
images are available.

2 PREVIOUS WORK

Essential concepts describing the geometry of omnidirec-

tional cameras were studied and some of the models of

catadioptric cameras were proposed in [44], [3], [15], [5], [6],

[41], [18], [52]. Structure from motion with the omni-

cameras are discussed in [8], [11], [45], [20], [19], [6], [1],

[38], [48]. We review the most relevant work.
The idea of autocalibrating catadioptric omnidirectional

cameras from point correspondences has appeared in [16],
[26]. In [16], the para-catadioptric camera calibration was
done using an image of the absolute conic. It was shown that
Euclidean reconstruction is feasible from two views with
constant parameters and from three views with varying
parameters. The paper [26] introduced a calibration techni-
que for para-catadioptric cameras from epipolar geometry
by doing bundle adjustment on the distance of point
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Fig. 1. Omnidirectional cameras and acquired images. From the left: Nikon Coolpix digital camera and Nikon FC-E8 fish-eye lens; Canon EOS-1Ds
and Sigma 8mm-f4-EX fish-eye lens; perspective camera and hyperbolic mirror; orthographic camera and parabolic mirror.

Fig. 2. The 3D metric reconstruction built from two uncalibrated omnidirectional images. Input images with drawn epipolar curves are shown.



correspondences to the epipolar curves without any calibra-
tion object, knowledge of camera motion, or knowledge of
scene geometry. To start the bundle adjustment, the
calibration had to be a priori known accurately enough.
Moreover, it was assumed that all image correspondences,

were correct. Our method also uses point correspondences
but we provide a technique applicable to a much wider class
of cameras in the form of a direct solution which allows the
use of the autocalibration process in the RANSAC robust
estimation technique. Compared to [16], [26], our method
also allows one to use automatically established point
correspondences possibly infected by mismatches.

Our method leads to a Polynomial Eigenvalue Problem,
which was first used in camera calibration from point
matches in [12] for standard pinhole narrow-angle view
cameras. We extend the method to omnidirectional cameras
[30], [33] by a linearization of projection models. Our method
is not limited to a particular projection model, but can be used
for all radially symmetric models.

In [40], a method for interactive 3D reconstruction of
piecewise planar objects from a single panoramic view was
proposed. The 3D reconstruction was done using geome-
trical constraints (coplanarity, perpendicularity, and paral-
lelism) provided by the user.

A method for calibrating general central or noncentral
cameras proposed in [42] is based on several views of
objects with known structure but acquired from unknown
viewpoints. Our method does not need any knowledge
about the scene since we can model our noncentral cameras
from first principles using a small number of parameters
compared to [42].

Other calibration methods for omnicameras have ap-
peared in literature. They used calibration patterns [4], [37],
plumb lines [7], [17], [47], or special camera motions, e.g.,
pure rotation [26], [51]. Our method does not need any
calibration objects, no assumptions about the scene are
made, and the camera motions may be general except for
some degenerate motions.

When an imaging system does not maintain a single
viewpoint, a caustic, i.e., a locus of viewpoints in three
dimensions, is formed and the system has to be treated as
noncentral [9], [21], [46], [39], [42]. Accurate models of
noncentral cameras become very complex and may have
tens of parameters. Such models are difficult to estimate since
many matches are necessary to fix a model and, thus, a
workable RANSAC becomes too expensive. We demonstrate
that simplified central models can be estimated, mismatches
removed, and the simplified models used to initialize a
bundle adjustment with a complex but accurate model.

A method for modeling slightly noncentral catadioptric
cameras, which is similar to our idea [32], was suggested in
[39]. However, they calibrate the camera from known
3D positions of target points, which are not necessary in
our case.

A generalization of the “homography-based calibration
of radial distortion” [49] also estimates camera models for
very wide view angles. The technique needs to observe
correspondences on a plane in at least three images (or
general points and rotation of the camera). We can calibrate
from only two images of a general scene that are related by
a general motion.

3 OMNIDIRECTIONAL CAMERA GEOMETRY

Omnidirectional cameras with a large field of view have to be
modeled differently than standard perspective cameras with
a narrow angle of view. We introduce a new model to
represent omnidirectional cameras with an angle of view
larger than 180�.

3.1 Image Formation

We assume that the lenses and mirrors are 1) symmetric
with regard to an axis and 2) that the axis is perpendicular
to the sensor plane.

In practical situations, the axial symmetry is guaranteed
by manufacturing. The perpendicularity of the lens axis and
the sensor plane is also often guaranteed by camera
construction since lenses are mounted directly on cameras.
For catadioptric cameras, mirrors have to be carefully
placed in front of the cameras to make their symmetry axis
perpendicular to the image sensor. The perpendicularity
allows the recovery of the affine transformation caused by
the digitization process, as described later.

In the following, a fish-eye lens is shown in illustrative
images, but the equations hold for both dioptric and
catadioptric cameras. By fish-eye lens, we mean a “true
fish-eye” lens with a circular field of view (FOV) following
the terminology of Fig. 34.5 in [36].

Suppose we are observing a scene point X with an
omnidirectional camera, see Fig. 3. The projection of the
scene point X onto the unit sphere around the projection
center C is represented by unit vector q00 2 S3 ¼ fx 2 IR3 :
kxk ¼ 1g expressed in a sensor Cartesian coordinate system
(measured in some world units, e.g., in millimeters). There
is always a (possibly nonunit) IR3 vector p00 ¼ ðx00>; z00Þ>
linearly dependent with q00, which maps to the sensor plane
point u00 2 IR2 so that u00 is linearly dependent on x00 as

p00 ¼ hðku00k; a00Þ u00

gðku00k; a00Þ

� �
; ð1Þ

where g, h are functions IR� IRN ! IR, which depend on the
radius ku00k of the sensor point with regard to the image of the
optical axis (the center of symmetry) and on some parameters
a00 2 IRN , where N is the number of parameters. In the
following, we will, for the sake of simplicity, write hðku00kÞ
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Fig. 3. The mapping of a scene point X into a sensor plane to a point u00

for a fish-eye lens and a hyperbolic mirror.



instead of hðku00k; a00Þ. The linear dependence of u00 on x00, i.e.,
x00 ¼ � u00 is clear from Fig. 3b, where � ¼ hðku00kÞ and, thus,
x00 ¼ hðku00kÞ u00.

The functions g, h differ according to the type of lenses
and mirrors. For lenses, the functions depend on the type of
the lens projection (equisolid, equiangular, etc.) and for the
mirrors they depend on the shape of the mirror (parabolic,
hyperbolic, elliptical, etc.). The mapping of the vector p00 to
the sensor plane point u00 through the functions g, h is
shown in Fig. 3 for a fish-eye lens and a hyperbolic mirror.
For all fish-eye lenses in this work (and for a parabolic
mirror as well), h ¼ 1 and the vector p00 is mapped
orthographically to the sensor plane, Figs. 4a and 4b.

Suppose a general digital sensor composed of nonsquare
pixels is aligned in a “linear” but nonrectangular grid
(nonzero skew in the standard terminology of [22]), see
Fig. 4c. The digitization process transforms the circular field
of view on the sensor into an elliptical one in the digital image,
see Fig. 4d. The digitization can be represented by an affine
transformation

u00 ¼ A0u0 þ t0; ð2Þ

where u0 2 IR2 is a point in the digital image, A0 2 IR2�2 is a
regular matrix and t0 2 IR2 is a translational vector. The
point u0 represents the sensor point u00 in a nonorthogonal
coordinate system with the origin usually placed at the top
left corner of the image, see Fig. 4c.

The complete image formation can be written as

1

�00
P00 X ¼ p00 ¼

x00

z00

� �
¼

hðku00kÞu00

gðku00kÞ

� �

¼
hðkA0u0 þ t0kÞðA0u0 þ t0Þ

gðkA0u0 þ t0kÞ

� �
;

ð3Þ

where P003�4 ¼ ½R00c j � R00ct
00
c � is a camera projection matrix [22]

with regard to a world coordinate system.

3.2 Camera Calibration

The aim of the calibration is to find the mapping from a
digital image point u0 to a corresponding 3D ray p00. The
calibration can be divided into two steps. First, the mapping
from the digital image to the sensor plane caused by
digitization has to be recovered. Second, the mapping from
the sensor plane to rays, caused by the optics (or mirror
reflection), has to be found.

The advantage of the circular field of view cameras over
the standard ones is that the full view field circle is projected
into the sensor plane and is thus observable in the digital

image as a view field ellipse, see Fig. 6b. Let us emphasize
that seeing the view field ellipse in the image is essential for
recovering digitization parameters [22]. Usually, the ellipse
is very close to a circle since the pixel skew is negligible and
the pixels are nearly square.

We can transform the view field ellipse, which can often
be easily obtained by fitting an ellipse to the boundary of
the view field in the digital image, to a circle. The
transformation can be written again as

u ¼ A u0 þ t; ð4Þ

where A 2 IR2�2 and t 2 IR2. The point u 2 IR2 is expressed in
a camera Cartesian coordinate system with the origin placed
at the center of radial symmetry. The columns of the matrix A

represent the coordinates of the basis vectors of the image
coordinate system expressed in the basis of the camera
Cartesian coordinate system. The angle between the vectors is
the skew and the ratio of the vector lengths is the aspect ratio.
The vector t gives the position of the symmetry center.

There is an ambiguity with two degrees of freedom left
in the affine transform generated by mapping an ellipse to a
circle. We do not know the radius of the circle and the
rotation R 2 IR2�2 around the circle center is not fixed. The
following relationship between A0; t0 and A; t holds

� t ¼ R�1 t0; � A ¼ R�1 A0; ð5Þ

with the unknown rotation R and unknown scale �.
The process of determining matrix A and the vector t is

called the precalibration step in the rest of the paper. The
precalibrated image corresponds to the image acquired by a
camera with square pixels, see Fig. 5c. After the precalibration
step, the image mapping can be modeled by a radially
symmetric function, i.e., in such a precalibrated image, the
nonlinear mapping of an image point to its 3D ray can be
described by a function of the point distance from the origin.

Using (5) gives the relationship between the point u00 in
the sensor plane and the point u in the precalibrated image

u00 ¼ A0 u0 þ t0; u ¼ A u0 þ t ) u00 ¼ � R u; ð6Þ

which means that we are able to compute the point u in a
camera Cartesian coordinate system up to a scale and a
rotation with regard to the point u00 in a sensor Cartesian
coordinate system.

Let us further focus on doing autocalibration avoiding the
need for a calibration target. Instead, the epipolar constraints
will be used. The functions g, h should have a special
property with regard to rotation and scaling, which are left
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Fig. 4. Omnidirectional image formation. (a) A lens projects scene points to a sensor plane. (b) The sensor plane with a view field circle. (c) The
digitization process. (d) An acquired image related to the image on the sensor plane by an affine transformation. The view field circle is transformed
to an ellipse.



undetermined in the precalibration step. The rotation is no
problem since the functions are radially (i.e., rotationally)
symmetric. The scaling, however, might introduce an extra
parameter into g and h and would increase the number of
parameters by one. This would be possible, in general, but it
was not necessary in our case since we were able to design g
andh for which the scaling was “absorbed” into the change of
other parameters of g and h and, thus, did not introduce any
extra parameter. Every extra parameter doubles the RAN-
SAC estimation computational cost. Therefore, it is impor-
tant to keep the number of parameters as low as possible.

The following theorem shows that if functions g and h
behave with regard to their parameters, as in (7), the scaling
of their argument does not change the resulting ray
direction. This is important since the absolute size of image
pixels is usually unknown.

Theorem 1. Assume that functions g: IR� IRN ! IR and
h: IR� IRN ! IR model a concrete projection. If there are
parameters a 2 IRN such that, for all image points u 2 IR2, all
� > 0, and all a00 2 IRN holds

hðk�uk; a00Þ ¼ � hðkuk; aÞ;
gðk�uk; a00Þ ¼ � � gðkuk; aÞ;

ð7Þ

for some � 2 IR,

p00 ’ R

1

� �
p: ð8Þ

It is important that the functions g, h, which map the
point u00 in the sensor plane to vector p00 through
parameters a00, i.e.,

u00 --------------�!�!g;hðku00k;a00Þ
p00;

can be used to map the point u in the precalibrated image to
the vector p, i.e.,

u ---------�!�!g;hðkuk;aÞ
p;

with only the values of parameters being changed. The
unknown scale � is absorbed into the parameters (for each
omnidirectional camera differently) and does not have to be
estimated separately. The vectors p00 and p differ in their
lengths and they are mutually rotated around the optical
axis. The change of their lengths and the rotation does not
affect the angles between the vectors. Therefore, the camera
becomes metrically calibrated. The full calibration process is
illustrated on a real image in Fig. 6.

All our camera models use functions f and g that satisfy
Theorem 1. We were able to design the functions for all
common omnidirectional cameras, i.e., for catadioptric
cameras with parabolic (one-parametric model), hyperbolic
(two-parametric), and spherical mirror (one-parametric
when assuming central projection), and for dioptric cameras
with Nikon FC-E8 and Sigma 8mm-f4-EX fish-eye converter
(one and two-parametric models). See [29] for a detailed
description of all the models. Here, we present only those that
are necessary to demonstrate our autocalibration method.

3.3 Epipolar Geometry

The epipolar geometry can be formulated for central
omnidirectional central cameras, i.e., for catadioptric [43]
and for dioptric (with fish-eye lenses) omnidirectional
cameras. The epipolar constraint for vectors p001 and p002
reads as
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Fig. 5. Omnidirectional camera calibration process. (a) An acquired digital image with an elliptical field of view. (b) A transformed image with a

circular field of view. (c) Simulated sensor with zero skew parameter and square pixels. (d) Back-projection of the sensor plane to 3D rays.

Fig. 6. The calibration process shown on a real image. (a) An image in a sensor plane. (b) An acquired digital image with an ellipse fitted on the view

field. (c) A transformed circular precalibrated image. (d) Representation of an image on a sphere.



p00>2 E00 p001 ¼ 0; ð9Þ

where E00 is an essential matrix [22] and p001 and p002 are ray
direction vectors of the first and the second camera,
respectively.

We have shown in Section 3.2 that we are able to obtain
vectors p1, p2 that are related to p001 , p002 by (8). Substituting
(8) into (9) leads to the constraint

p>2
R2

1

� �>
E00

R1

1

� �
p1 ¼ p>2 E p1 ¼ 0: ð10Þ

We would like to estimate the matrix E from a small
number of point correspondences, similar to what is done
by the 7 or 8-point algorithm [22]. However, the vector p,
(10), cannot be computed since the parameters a of the
functions g, h are unknown. Equation (10) can be rear-
ranged to the following “homogeneous” form:

ðu2; v2; 1Þ diagðh2ðkukÞ; h2ðkukÞ; g2ðkukÞÞ
E diagðh1ðkukÞ; h1ðkukÞ; g1ðkukÞÞ ðu1; v1; 1Þ> ¼ 0:

The unknowns g1;2, h1;2 cannot be merged with E into a
single matrix F as can be done with the unknown calibration
matrix K for standard cameras [22], i.e., u>2 K

�>
2 E K�1

1 u1 ¼
u>2 F u1, since g1;2, h1;2 are different for image points with
different radii.

In the next section, we propose a method for simultaneous
estimation of E and a. Correctly estimated parameters a lead
to correctly recovered angles between vectors p. It allows us
to evaluate the quality of the estimated matrix E and the
camera model parameters a using an angular error measure.
The angular error [35] is defined as the minimum (over the
normals of epipolar planes) of the sum of squared sines of
angles �1 and�2 between the two corresponding rays and the
epipolar plane, i.e.,

�ðq1;q2; EÞ ¼ min
n

sin2 �1 þ sin2 �2

� �

¼ min
n
jn:q1j2 þ jn:q2j2
� �

;
ð11Þ

where q stands for p normalized to unit length and E stands
for the essential matrix. Direct solution of this error for one
corresponding pair q1, q2 (see [35]) is

�ðq1;q2; EÞ ¼
A

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

4
�B

r
; where

A ¼ q>1 E
>Eq1 þ q>2 E E>q2; B ¼ q>2 Eq1

� �2
:

It could be argued that image reprojection errors would be
more appropriate than the angular errors, (11). The image
reprojection errors could be evaluated provided that a
procedure for evaluating the distance of a point from an
epipolar curve was available. Such a procedure can always be
given, but it depends on the camera projection model and is
often iterative, since for many projection models, there is no
direct solution for the distance. For calibrated cameras, the
angular error is equivalent to the reprojection error provided
that the distribution of noise across the image is correctly
taken into account. Suppose there is isotropic Gaussian noise
in the image. Then, points on circles centered in image points
have equal probability to be generated from those points. If
the projection was perspective, then to each such circle would
correspond an almost circular cone of rays backprojected into

space. For wide field of view lenses and mirrors, the cone is
circular in the middle of the image, but becomes elliptical
toward the image boundary. In our experiments with fish-eye
lenses, the maximum change between the circle and the
ellipse axes was 20 percent. For a catadioptric camera with a
spherical mirror with FOV 220�, the change was 40 percent.
Thus, to be absolutely correct, the covariance matrices
characterizing the noise distribution on angles should be
used when evaluating the angular error. However, in all our
experiments, we have neglected this when rejecting mis-
matches and still obtained enough correct matches.

4 AUTOCALIBRATION FROM EPIPOLAR GEOMETRY

We adapt the Fitzgibbon’s technique [12] for the epipolar
geometry estimation for standard cameras with radial
distortion by solving the Polynomial Eigenvalue Problem
(PEP) to omnidirectional cameras with a circular field of
view. We introduce new models that relate the radius of a
point in the image to the angle contained between the
corresponding ray and the optical axis. In [12], the “division
model” has been used to get a Quadratic Eigenvalue
Problem. We show that the para-catadioptric camera model
leads directly to a Quartic Eigenvalue Problem. Further-
more, we show that other algebraic and even nonalgebraic
models of catadioptric cameras and fish-eye lenses can be
suitably linearized to get a Quadratic Eigenvalue Problem.

In the following, we explain the idea of the autocalibra-
tion method and we demonstrate it on a para-catadioptric
camera and on an omnidirectional camera with a fish-eye
lens. The methods for other omnidirectional cameras (with
a hyperbolic or spherical mirror or other lenses) are
analogous and some of them can be found in [32], [29].

4.1 Para-Catadioptric Camera

The para-catadioptric camera (PCD), see Fig. 7, is composed
of a convex parabolic mirror and an orthographic camera [6].
The orthographic camera is assembled with the parabolic
mirror so that the rays of the orthographic camera are parallel
to the mirror symmetry axis, see Fig. 7. An image point u is
orthographically projected onto the mirror and reflected such
that the ray p passes through the focal point F. All rays
intersect at F and, therefore, the PCD camera possesses a
central projection.

4.1.1 Camera Model

All coordinates will be expressed in the mirror Cartesian
coordinate system placed at F, see Fig. 7, with the z axis
aligned with the axis of the mirror. Let us consider a
paraboloid of revolution

z ¼ a
002 � ku00k2

2a00
;

where u00 ¼ ð�u00; v00Þ> is a point in the sensor plane (�u00
since the image is mirrored), a00 is the parameter of the mirror.
The model of the PCD camera has the form of 1, where
hðku00kÞ ¼ 1 and

gðku00kÞ ¼ a
002 � ku00k2

2a00
:

Therefore, when setting a ¼ a00=� and taking all � ¼ 1, we
get from Theorem 1 that vectors
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p ¼ u
a2�kuk2

2a

� �

are related to vectors p00 by a common rotation and
individual scalings.

4.1.2 Camera Autocalibration

By the calibration of the PCD camera we understand the
determination of the matrix A and the vector t, (4), and the
parameter a of the nonlinear function g so that all vectors p

fulfill the epipolar geometry, (10). The vector p1 in the left
image and p2 in the right image can be substituted into the
epipolar constraint p>2 E p1 ¼ 0, (10), as follows:

�u2; v2;
a2�ku2k2

2a

� �
E �u1; v1;

a2�ku1k2

2a

� �>
¼ 0: ð12Þ

Arranging and gathering the point coordinates and radii
into five design matrices, we obtain the equation

D1 þ a D2 þ a2D3 þ a3D4 þ a4D5

� �
f ¼ 0; ð13Þ

which is quartic (degree 4) in parameter a and linear in
elements of f , known as the Polynomial Eigenvalue Problem
(PEP) [2]. Efficient algorithms for solving the PEP are
available [2], e.g., MATLAB solves the PEP by the function
polyeig.

Every image point correspondence adds one row to the
matrices Di. The vector f of unknowns (created from the
matrix E) and one row from each of the five design matrices Di
have the following form:

f ¼ ½ E11; E12; E13; E23 . . . E33 �>;
D1 ¼ ½ 0 0 0 0 0 0 0 0 r2

2 r1 �;
D2 ¼ ½ 0 0 2u2 r

2
1 0 0 �2v2 r

2
1 2u1 r

2
2 �2v1 r

2
2 0 �;

D3 ¼ ½ 4u2 u1 � 4u2 v1 0 � 4v2 u1 4v2 v1 0 0 0 � r2
2 � r1 �;

D4 ¼ ½ 0 0 �2u2 0 0 2v2 �2u1 2v1 0 �;
D5 ¼ ½ 0 0 0 0 0 0 0 0 1 �;

ð14Þ

where r1 ¼ ku1k and r2 ¼ ku2k.
Automatically established point correspondences are

usually contaminated by mismatches. Since the autocalibra-
tion method needs nine points, it can be easily incorporated
in a 9-point RANSAC estimation technique to handle outliers
in point matches. The computational complexity increases by
a factor of 2 for 50 percent contamination by outliers in
comparison to the standard linear 8-point RANSAC algo-
rithm [22] for the fundamental matrix computation. The

convergence of the RANSAC algorithm can be speeded up by
using a bucketing technique [31].

4.1.3 Experiment

We rotated an off-centered PCD camera, see Fig. 7, on a
turntable such that the trajectory of its optical center (the
mirror focal point F) was a circle. The PCD camera was set up
from a Canon EOS-1Ds digital camera with a view field circle
of diameter 2500 pixels and a commercial parabolic mirror
[25]. One image was acquired every 9�, in total 40 images. The
correspondences for every consecutive pair of images were
automatically established and used in the autocalibration
process based on the RANSAC with bucketing [31]. In the rest
of the paper, if not otherwise specified, the correspondences
were found by the wide baseline stereo technique [28].

An essential matrix E, the camera parameter a, and
correct point matches, see Fig. 8, were obtained between
every consecutive pair as a result of the autocalibration
method. From the essential matrix E, the relative camera
rotation and the camera translation direction were com-
puted [22]. For obtaining the magnitudes of the transla-
tional vectors, we would need to reconstruct the observed
scene. Instead, we normalized the translational vectors to
have unit length since we made the motion such that all
translation vectors had the same length. The final trajectory
of the optical center can be seen in Fig. 9a.

After calibrating all consecutive image pairs, the para-
meter âa was computed as the mean over all estimated as.
We used the estimated âa to create 3D rays corresponding to
image points and applied the standard linear 8-point
algorithm [22] to recompute the essential matrices.

It can be seen in Fig. 9 that the estimation of the camera
parameter âa from more pairs of images leads to a “more
circular” trajectory. However, the end position does not
approach the starting one exactly as it should, neither using
the various as nor using the one âa for the entire sequence. The
error accumulated over the sequence reaches 18� at the end,
which is 5 percent relative error. There is approximately
0:5� error in the angle estimation on each pair. The camera
orientations, however, were correctly estimated for all images
of the sequence, see Fig. 9c.

The error in the trajectory estimation was caused by using a
nonideal orthographic camera. It is difficult to make an ideal
orthographic camera, i.e., to have all the image rays reflected
from the mirror parallel to each other. Often, the PCD camera
becomes slightly noncentral and a more complicated imaging
model has to be used to obtain a more accurate camera
trajectory. The real noncentral catadioptric cameras will be
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Fig. 7. (a) A para-catadioptric camera consisting of an orthographic camera and a parabolic mirror. (b) Coordinate system of the para-catadioptric
camera. The origin is located at F. (c) A coordinate system in the digital image.



described in Section 5 and it will be shown how the accuracy
of camera trajectory estimation increases.

The correspondences, however, were always correctly
recovered by using the central model, see Fig. 8. It shows
the strength of the method. It is possible, and advisable, to
validate the tentative matches using the central model
before starting a nonlinear bundle adjustment with a more
accurate and complicated model.

4.2 Fish-Eye Lens

Recently, a number of high quality and widely available
lenses with angle of view larger than 180� appeared, e.g.,
the Nikon FC-E8 fish-eye converter for the Nikon COOLPIX
digital camera or the Sigma 8mm-f4-EX fish-eye lens for
cameras with 35mm film format. The fish-eye lenses with so
large a field of view can be regarded as dioptric central
omnidirectional cameras, see Fig. 10a.

Depending on the desired accuracy, lens models with
various numbers of parameters can be used. Here, we show
how to simplify two fish-eye lens models and create a
hierarchy of models from the simplest (but not very accurate)
one to a more complicated (accurate) one. Even though the
simplest model is not very accurate, it is accurate enough to
reject many outliers. The more complicated models are more
accurate but more points have to be used to estimate them
with much bigger computational effort if outliers are present.

The main message of this section is in showing that
various lens models can be uniquely treated by suitable
linearizations to obtain the PEP even if the functions g, h in
(1) are not rational polynomial functions. If they are (such as

for PCD cameras), no linearization is needed to get the PEP
formulation of the calibration.

In what follows, we used concrete fish-eye lens models to
simplify the explanation, however, the procedure can be
repeated for any other model, e.g., central hyperbolic or
approximated spherical catadioptric camera [29]. We chose
the fish-eye lens model to show a two-parametric model
and the treatment of the second parameter. Every two-
parametric model can be handled in exactly the same way.

4.2.1 Fish-Eye Lens Models

For the Nikon and the Sigma fish-eye lenses, respectively,
we used the following two-parametric nonlinear models

� ¼ a00 ku00k
1þ b00 ku00k2

and � ¼ 1

b00
arcsin

b00 ku00k
a00

� �
; ð15Þ

where both a00 and b00 are the parameters of the models.
Both models in (15) were obtained experimentally in the

following manner: The Nikon and the Sigma lenses approxi-
mately implement the equi-angular projection (given by the
manufacturer), therefore, we took the equi-angular model
with parametera00 as the base and added an extra parameter b00

to model the lenses more accurately. For b00 ! 0, both models,
(15), become the following one-parametric linear models

� ¼ a00 ku00k and � ¼ ku00k=a00: ð16Þ

Adding an extra parameter b00 is often tricky. We tried out
some combinations of known models [13], [27], [4], [36] and,
finally, we ended up with the two models given by (15) as a
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Fig. 9. Estimated trajectories from the circle sequence. Circle � depicts the starting position, � depicts the end position. (a) The trajectory estimated

during the autocalibration. (b) The trajectory estimated after calibration using the same âa for each pair. (c) A detail view of the estimated camera

orientations in the circle sequence.

Fig. 8. Outliers removal during the autocalibration process for a PCD camera. (a) An acquired digital image from a stereo pair with all tentative
correspondences. Circles mark points in the first image, lines join their matches in the next one. (b) The same image with the validated inliers only.



compromise between the accuracy and the number of
parameters.

Suppose that the maximal view angle �max of the fish-
eye lens is known (given by a manufacturer). The maximal
radius r00max corresponding to the �max can be directly
measured on the view field circle in the precalibrated
image. Using (15) allows one to express the parameter a00 as
a function of b00, the radius r00max, and the angle �max.
Substituting it into (15) yields the following one-parametric
nonlinear models

� ¼ ð1þ b
00r00

2

maxÞ�max ku00k
r00maxð1þ b00ku00k

2Þ
and

� ¼ 1

b00
arcsin

ku00k sinðb00�maxÞ
r00max

:

ð17Þ

The relationship between the 3D vector p emanating
from the optical center C toward a scene point and the
corresponding sensor plane point u, see Fig. 10, for the
Nikon and the Sigma fish-eye lens, respectively, can be
expressed in the camera Cartesian coordinate system,
according to (1), as

p ¼ u
gðkuk; a; bÞ

� �
¼ u

kuk
tan �

� �
: ð18Þ

Depending on the model used, the � is given by formulae in
(15), (16), or (17). Similarly to the PCD camera, the relation
between a and a00 can be found without increasing the
number of parameters [29] and, therefore, Theorem 1 holds
and double primes are further omitted.

When taking the simplifications to the limit, we can set
b00 :¼ 0 and a00 :¼ �max=rmax to arrive at a “zero-parametric”
model and, thus, convert the problem into the standard
problem of rejecting mismatches by estimating the standard
epipolar geometry. This may be practical in some situations,
especially with equiangular lenses and mirrors.

4.2.2 Camera Autocalibration

The above three models can be used to stratify the
autocalibration in three steps: 1) estimate the one-para-
metric linear model, 2) estimate the one-parametric non-
linear model, and 3) estimate the two-parametric nonlinear

model. Optionally, it would be possible to start with the
zero-parametric model to finish earlier.

The estimation hierarchy allows the gradual rejection of
outliers depending on their error. The assumption is that the
mismatches with large error fit neither the most accurate
model nor a less accurate one. The worst outliers can thus be
detected by a simpler model and a more complicated two-
parametric model can be estimated from data with a lower
fraction of outliers. Using the more accurate (but more
computationally expensive) model on the inliers found by the
simpler models speeds up the convergence of the RANSAC-
based estimation and helps to avoid overfitting.

We follow the framework of Section 4.1.2, therefore we
stress only the different parts in the derivation process
compared to the para-catadioptric (PCD) camera.

Autocalibration for the Two-Parametric Nonlinear
Model. The fish-eye model (18) involves tan � and, thus,
does not lead directly to a PEP. However, a PEP can be
obtained by linearizing the function gð:Þ in (18) with regard
to a and b in a0 and b0,

~ggðr; a; bÞ ¼ gðr; a0; b0Þ þ gaðr; a0; b0Þða� a0Þ
þ gbðr; a0; b0Þðb� b0Þ;

ð19Þ

where the functions gað:Þ, respectively, gbð:Þ, are the partial
derivatives of gðr; a; bÞ with regard to a, respectively, b,
evaluated at the point a0 and b0 [29]. Parameter b often
represents “distortion” correction of the optics with regard to
intended design and then it is possible to linearize in b0 ¼ 0.
For a circular field of view cameras, moreover, it is also
straightforward to get a0 ¼ �max=rmax. The vector ~pp can be
written using (19) as follows:

~pp ¼
u

gð:Þ � a0gað:Þ � b0gbð:Þ

� �
þ a

0

gað:Þ

� �
þ b

0

gbð:Þ

� �

¼
u

w

� �
þ a

0

s

� �
þ b

0

t

� �
¼ xþ a sþ b t;

where x, s, and t are vectors composed of image
coordinates of corresponding points. The epipolar con-
straint, (10), holds for the linearized vectors, i.e., ~pp>2 E ~pp1 ¼ 0.
After rearranging, we get the following Quadratic Eigen-
value Problem (QEP):
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Fig. 10. (a) The Nikon FC-E8 fish-eye converter. All rays emanate from the projection center shown as a red bold dot. (b) The image point on the

planar sensor � can be represented by intersecting a spherical retina � with camera half-rays. (c) The projection of the vector q into a sensor plane

point u through a function gðrÞ.



ðD1 þ a D2 þ a2D3Þ l ¼ 0: ð20Þ

Rows of the matrices Di and the vector l are as follows:

D1 ¼ ½ u1u2 v1u2 w1u2 u1v2 v1v2 w1v2 u1w2 v1w2 w1w2

t1u2 t1v2 u1t2 v1t2 t1w2þw1t2 t1t2 �;
D2 ¼ ½ 0 0 s1u2 0 0 s1v2 u1s2 v1s2 s1w2þw1s2 0 0 0 0

t1s2þs1t2 0 �;
D3 ¼ ½ 0 0 0 0 0 0 0 0 s1s2 0 0 0 0 0 0 �;
l ¼ ð E11 E12 E13 E21 ... E33 b E13 b E23 b E31 b E32

b E33 b2E33 Þ>:
ð21Þ

The vector l contains elements of the essential matrix and
six additional (dependent) products b Eij. The parameter b
can be determined from any of them. The matrices Di should
be square and, therefore, at least 15 point matches are needed
for solving the PEP given by (20). There are 30 possible
solutions of a. For every a, six possible solutions of b exist.
Since there is noise in data, we choose the solution which best
fits our model in terms of the smallest error in (11). With more
than 15 points the least-square solution by left-multiplication
of (20) by D>1 can be used.

The QEP autocalibration method for the one-parametric
fish-eye model is straightforward. The vector l in (20) then
contains only elements of the essential matrix, similar to
(13). See [29] for more details.

4.2.3 Experiments

We carried out the same circular motion experiment as for
the PCD described in Section 4.1.3. A PULNIX digital
camera with a Nikon FC-E8 fish-eye lens was used. The
diameter of the view field circle was 870 pixels, 36 images in
total were acquired with one every 10�. Correspondences
were obtained by feature tracking using boujou [24] to show
that the method works for another matching technique and
is not restricted to [28] only. However, a similar result was
achieved also for matches found by [28].

The difference from the experiment with the PCD camera
in Section 4.1.3 is that two parameters a and b are estimated
instead of one and the calibration procedure was done in
three steps. First, a 9-point RANSAC with the linear model,
(16), and then a 9-point RANSAC with the nonlinear model,
(17), as a pretest to detect most of outliers were used. Finally, a
15-point RANSAC with the nonlinear model, (15), was run to

compute parameters a, b, and E. See Fig. 11 for results. To
show the robustness, the autocalibration was run 100 times on
the same sequence, see histograms in Fig. 11c. The two top
histograms show that the distribution of the recovered
camera parameters is Gaussian. It therefore makes sense to
take mean values as estimates of the correct (unknown)
parameter values. The bottom histogram shows the final
error in the trajectory end point estimation for 100 runs. None
of the runs correctly approaches the starting position.
However, taking mean values of the parameters significantly
improves the result as shown in Fig. 11d. Ideally, the end
position should coincide with the starting position, which
approximately holds for the trajectory in Fig. 11d.

In the next experiment, one image pair was selected from
the Venice Yard QY data set, acquired by a Sigma 8mm-f4-EX
fish-eye lens with view angle 180� and mounted on a Canon
EOS-1Ds digital camera with the diameter of the view field
circle of 2,528 pixels. The same hierarchical approach as in the
previous experiment (the 9-points RANSAC followed by the
15-points one) was applied. The obtained calibrated cameras,
essential matrix, and validated point matches were used to
reconstruct the scene by a linear technique [22].

The final 3D reconstruction was improved by a nonlinear
bundle adjustment minimizing the reprojection error and
enforcing the same internal parameters for both cameras. To
show the quality of the 3D reconstruction, some correspon-
dences, such as corners on the walls, were picked manually.
The estimated camera matrices were used for reconstruct-
ing these points. See Fig. 2 for the result. Notice how
accurate and complete a 3D reconstruction obtained from
only two omnidirectional images can be. The RMS of the
reprojection error was 0.25 pxl.

4.3 Algorithm

All autocalibration methods presented here are described
by the following algorithm. Suppose we have two omnidir-
ectional images of the same rigid scene taken from two
different positions by the same camera.

1. Find the ellipse corresponding to the view field of
the camera. Transform the images so that the ellipse
becomes a circle with radius rmax, determine A and t.
Establish 9 (or 15 for TPM1 point) correspondences
between two images fu1 $ u2g.
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1. TPM = two-parametric model.

Fig. 11. Estimated trajectories for the circular sequence. Circle � depicts the start position, � depicts the end position. (a) The Nikon fish-eye

converter mounted on the digital camera is rotated along a circle. (b) The trajectory estimated during the calibration. (c) Histograms of the

parameters a, b and the Euclidean distance of the end point with regard to the starting one computed from 100 runs. (d) The trajectory recomputed

when using averaged âa, b̂b.



2. Scale the image points u :¼ u=rmax to get a better
conditioned problem.

3. Create matrices Di from fu1 $ u2g according to the
type of mirror or lens and solve the PEP. Use, e.g.,
MATLAB: ½H a� ¼ polyeigðD1; D2; . . .Þ, where H is the
matrix with columns f 2 IR9�1 (or h 2 IR15�1 for
TPM) and a is a vector with solutions of a.

4. Choose only real positive “finite” as. Typically, one
to four solutions remain. For every a, there is the
corresponding essential matrix E reshaped from
vector f (for TPM the first nine elements of h give
E, the last six elements give six possible bs).

5. Compute 3D rays using thea (and the b for TPM) for all
point correspondences. Compute the error, (11), for all
pairs fa$ Eð$ bÞg as the sum of errors for all
correspondences. The pair with the minimal error is
the solution and a, (b), and the essential matrix E are
obtained.

For integrating the algorithm into RANSAC, 9 (or 15)
points are “randomly” selected from the whole set of
automatically detected correspondences and Steps 1-4 are
repeated until the model fitting the highest number of
matches is found.

To speed up the convergence of RANSAC and to avoid a
biased estimate, the bucketing technique [31] should be
applied. The main idea is to sample points from three
concentric zones with equal areas. Moreover, the correspon-
dences in the central part of the image are not used for
sampling to estimate the camera model, but they are included
in the evaluation of the model fitting error.

Once the mismatches are removed, the Maximum Like-
lihood estimate known as the Gold Standard method [22]
can be used to obtain the optimal estimate of an essential
matrix from its initial estimate E provided by the auto-
calibration. In our experiments, we skipped this step.
Instead, we directly initiated the bundle adjustment of the
final 3D metric reconstruction with E and always reached an
appealing reconstruction.

4.4 Degenerate Configurations and Motions

Suppose that two 3� 1 vectors

p ¼ u
gðkuk; aÞ

� �
and �pp ¼ u

gðkuk; aÞ þ d

� �
; d 6¼ 0; ð22Þ

are constructed from the same precalibrated image point u.
Assume that p, �pp are such that the epipolar geometry
p>2 E p1 ¼ 0 and �pp>2 E �pp1 ¼ 0 holds for them. To simplify the

situation, assume further that E represents a pure transla-
tion, i.e.,

E ¼
0 �tz ty
tz 0 tx
�ty �tx 0

0
@

1
A:

Let w ¼ gðkuk; aÞ, then, using �pp>2 E �pp1 ¼ 0,

p>2 þ ð0; 0; dÞ
	 


E p1 þ ð0; 0; dÞ>
h i

¼ 0

d p>2 ðty; tx; 0Þ> þ d ð�ty; �tx; 0Þ p1 ¼ 0;

which is for d 6¼ 0 equivalent to u2 ty þ v2 tx � u1 ty � v1

tx ¼ 0, where p1¼ ðu1; v1; w1Þ> and p2¼ðu2; v2; w2Þ>.

Theorem 2. Let the motion between two cameras be a pure
translation T ¼ ðtx; ty; tzÞ>. If, for all correspondences
ðu1; v1Þ $ ðu2; v2Þ,

u2 ty þ v2 tx � u1 ty � v1 tx ¼ 0; ð23Þ

then the function gð:Þ can be recovered only up to an additive
constant.

If (23) is fulfilled, the ambiguity in the third coordinate of
the vector p for pure translation causes the vector of
parameters �aa instead of a to be estimated in such a way that
the parameters �aa move the function gð:Þ along the z axis, i.e.,
gðkuk; �aaÞ ¼ gðkuk; aÞ þ d. However, the essential matrix E is
estimated correctly.

Assume a forward motion of the camera, i.e., motion
along the optical axis. Then, tx ¼ ty ¼ 0 and (23) holds. It
means that there remains an ambiguity in the computed
parameters of the camera model and the camera cannot be
completely calibrated from forward translations.

Assume a sideways motion of the camera, i.e., motion
perpendicular to the optical axis. Let tx 6¼ 0; ty ¼ 0, then (23)
becomes ðv2 � v1Þ tx ¼ 0, which is fulfilled iff v2 ¼ v1. By the
sideways motion, the correspondences go from one epipole to
the other, see center image in Fig. 2. In the central part of the
image, the condition v2 ¼ v1 approximately holds. It means
that, for a sideways motion, correspondences near the view
field center should be avoided for point sampling in
RANSAC (but still used to evaluate residuals) in the
proposed calibration procedure since they always fulfill (23).

5 REAL NONCENTRAL CATADIOPTRIC CAMERAS

In practice, many catadioptric cameras are often slightly
noncentral. The most common reasons are that 1) a
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Fig. 12. Reflected rays by (a) a spherical and (b) a hyperbolic noncentral catadioptric camera create caustics.



nontelecentric lens is used for a parabolic mirror (Fig. 14), or
that the lens and the parabolic mirror axes are not properly
aligned, 2) a perspective camera is not placed in one of the
focal points of a hyperbolic (Fig. 12a) or an elliptical mirror,
or 3) the mirror shapes, e.g., the spherical (Fig. 12b) or
uniform resolution mirrors [23], [14] are used, which do not
possess a single viewpoint property.

Noncentral models of catadioptric cameras may have
many parameters. For instance, the models obtained by using
the principles of ray optics for a slightly misplaced central
camera and a hyperbolic mirror would have 19 parameters.
We could hope to estimate it from 19 correspondences if we
could compute its minimal solution [34]. It would, however,
be overkill to estimate the full model to reject mismatches. We
demonstrate that, for common catadioptric cameras, an
approximate central model can be designed, calibrated by
our method, and used to detect and reject mismatches. On the
other hand, using the central camera model for a noncentral
camera leads to an inaccurate determination of 3D rays
corresponding to image points and, consequently, to a
skewed 3D reconstruction, as Fig. 13c shows. A remedy is
to estimate the accurate noncentral model from the remaining
correct matches by bundle adjustment. We demonstrate that
this approach gives good reconstructions even from very low
resolution omnidirectional images. See Fig. 13 to compare
how the 3D reconstruction was improved by using a
noncentral camera model. This result also indicates that
formulations leading to generalized eigenvalue problems are
stable and work even if the true image projection does not
exactly follow the mathematical model used.

We show in this section how to build a 3D reconstruction
by constructing a hierarchy of camera models. The
hierarchy starts with a simplified model that is accurate
enough to distinguish between correct (inliers) and incor-
rect (outliers) correspondences and simple enough to
provide a tractable optimization problem when using
RANSAC. In the case presented here, the simplified models
are central, allowing the mismatches to be rejected auto-
matically through the autocalibration method derived in
Section 4. Second, an accurate and complex noncentral
model allowing accurate reconstruction is fitted to the
correspondences validated in the first step. In general, the
art is to find 1) a simplified model that is accurate enough to
reject outliers but simple enough to provide a tractable
RANSAC estimation problem and 2) a sufficiently accurate

noncentral model providing accurate 3D reconstruction
from correct image correspondences.

5.1 Approximate Central Model

For central catadioptric cameras (i.e., parabolic, hyperbolic,
elliptical mirrors) [43], it is straightforward and advisable to
use their central models to approximate the slightly
noncentral projections caused by a misalignment.

For other mirrors (e.g., spherical, mirrors guaranteeing
uniform resolution) not possessing center of projection for
any camera-mirror setting, a fictive center of projection has
to be introduced [32].

5.2 Noncentral Model

Assume a Cartesian world coordinate system W . The
Cartesian coordinate system of a mirror, placed at F, is
rotated and translated by Rm 2 IR3�3 and tm 2 IR3�1 with
regard toW . The Cartesian coordinate system of a perspective
camera, placed at the optical center C, is related to the mirror
coordinate system by Rc and tc, see Fig. 14.

From image point to its projection ray. Following the
derivation of a central catadioptric camera model [43] and
using that rays are reflected by the mirror such that the angles
of incident and coincident rays to the surface normal are
equal, we can easily derive the full noncentral model [32]

xw ¼ R�1
m xþ tm ¼ R�1

m 	R>c K
�1uþ tc

� �
þ tm;

pw ¼ R�1
m R>c K

�1u� 2 R>c K
�1u

� �
� n

knk

� �
� n

knk

� �
;

ð24Þ

where Ri, ti are as stated before, K is a 3� 3 upper triangular
camera calibration, and n is a normal vector (different for
each type of mirror) to the mirror surface at the point
corresponding to the image point u, see Fig. 14. The
number 	 comes from parametrization of the ray 
 giving
the point of intersection with the mirror [32].

Equation (24) represents the complete mapping from an
image point u in the camera coordinate system to a pair
ðxw; pwÞ in the world coordinate system. The pair ðxw; pwÞ
consists of the point xw on the mirror surface and the
directional vector pw pointing toward a scene point X. A
simulation of the derived model shows the corresponding
caustic for a para-catadioptric camera, see Fig. 14.

Projection of a scene point to the image. Given a scene
point X, there is no direct solution for its image projection u. It
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Fig. 13. The top views of the 3D reconstructions of a square room. (a) Input image pair showing manually marked rectangular regions and point
matches established automatically. (b) A skewed reconstruction with a central model for a real para-catadioptric (PCD) camera. RMS of reprojection
error 2.5 pxl. (c) The correct reconstruction with a noncentral PCD camera model. RMS of reprojection error 0.2 pxl.



can be easily designed as an iterative method incorporating
the mapping from an image point to its projection ray
(derived in the previous section).

First, the initial image u of the point X is obtained using a
central model for which a direct solution exists [43]. Second,
the iterative method is used. The iterative method minimizes
(over coordinates of u) the distance between a ray, computed
from u by the noncentral model, and the 3D point X. The
method converges very quickly because of a good initial
estimate of u provided by the approximate central model.

5.3 3D Reconstruction

Every ith point correspondence can be represented by
ðxiw1; piw1Þ in the first camera and by ðxiw2; piw2Þ in the second
one, computed from (24). The reconstructed 3D point X for
one point match ðxiw1; piw1Þ $ ðxiw2; piw2Þ is obtained as the
point in the center of the shortest transversal of the
respective projection rays

di ¼
j xiw1 � xiw2

� �
� piw1 � piw2

� �
j

jpiw1 � piw2j
:

The final metric reconstruction RM is obtained by
minimizing the sum of squared lengths of the shortest
transversals

RM ¼ argmin
a;Rc;tc;Rm;tm; K

XN
i¼1

d2
i ; ð25Þ

where N is the number of point matches.

5.4 Experiments

We present two experiments, 1) a parabolic mirror
theoretically having the central model and 2) a spherical
mirror having only the noncentral model. For both cases,
the approximated central models were accurate enough to
provide initial estimates for further nonlinear minimization.

5.4.1 Noncentral Para-Catadioptric Camera

We acquired two images using a real para-catadioptric
camera (the same parabolic mirror as in the experiment in
Section 4.1.3 and a Canon PowerShot G2 digital camera with

the diameter of the view field circle of 1,474 pixels � 210�,
which is equivalent to 351 pixels for the common 50� view
angle).

The camera model parameter and relative camera position
encoded in the essential matrix (obtained by the autocalibra-
tion method described in Section 4.1.2) were used to perform
an initial 3D reconstruction using the triangulation method
[22] with an RMS of reprojection error of 2.5 pxl. The
3D reconstruction was improved by the Levenberg-Mar-
quardt bundle adjustment using the full noncentral model in
(24) minimizing the error in (25). The square pixel and zero
skew of the perspective camera were assumed.

The final RMS of the reprojection error was 0.19 pxl.
Minimization of the reprojection error in the images instead
of shortest transversals in 3D lead to the almost equal RMS
error of 0.21 pxl. However, the time increased eight times
due to the iterative backprojection model. Thus, the first
error using the shortest transversal is more practical.

To show the quality of the 3D reconstruction, some
correspondences, such as corners on the walls, have been
established manually. The estimated camera matrices were
used to reconstruct these points. See Fig. 13c for the result.

5.4.2 Noncentral Spherical-Catadioptric Camera

The same experiment with the same digital camera as was
done for para-catadioptric camera, described in the previous
section, was carried out for a spherical mirror (Fig. 12a). See
Fig. 15 and notice the accurate 3D reconstruction that can be
obtained even for very low resolution images with 1,042 pix-
els for 252�, which corresponds to 208 pixels for the common
50� view angle.

6 CONCLUSION

The paper presented the theory and practice of two-view
geometry and structure from motion for all common central
omnidirectional cameras with a circular field of view. An
algorithm for camera autocalibration and 3D metric recon-
struction was presented and demonstrated. The paper
extendedanonlinear cameramodel estimation usingepipolar
geometry, introduced by Fitzgibbon, to omnidirectional
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Fig. 14. Noncentral para-catadioptric camera. (a) Coordinate system of the camera. (b) The caustic. Rays reflected by the mirror are tangent to a

curve, called the caustic. (c) Detailed views of the caustic.



cameras with an angle of view larger than 180�. It was shown
that omnidirectional cameras with the circular FOV can be, in
practical situations, fully autocalibrated from point corre-
spondences by solving Polynomial Eigenvalue Problems. In
particular, we have 1) designed a robust method allowing a
3D metric reconstruction to be built from two uncalibrated
omnidirectional images automatically from point correspon-
dences, 2) formulated a theory of image formation and
autocalibration of central omnidirectional cameras with a
circular field of view, 3) demonstrated that the proposed
autocalibration method can be applied to real (often non-
central) catadioptric cameras to obtain initial values for an
optimization process with a noncentral model giving accurate
3D reconstruction.

APPENDIX

STABILITY OF THE POLYNOMIAL EIGENVALUE

PROBLEM

Stability of the Quadratic Eigenvalue Problems is a well-
understood mathematical problem. We refer the reader to [2],
[50], especially to Section 4 (Perturbation Analysis) in [50]
where the stability of the Quadratic Eigenvalue Problem is
studied. The accuracy of a numerical solver can be measured
by the backward error [50]. See [50, p. 267, Table 5.1] that
shows how the backward error decreases with the size of an
eigenvalue. In all our cases, estimated parameters corre-
sponding to the eigenvalues are larger than 0.8 and, thus, the
most sensitive area around 0 was avoided. The magnitude of
the estimated parameter can be, to some extent, controlled by
normalizing the image coordinates in the second step of the
algorithm described in Section 4.3.

In general, a polynomial eigenvalue problem of order l is
well-posed if at least one of the two matrices D1 and Dl is
regular because then it can be “linearized” and transformed
to a generalized eigenvalue problem [2]. If they are both
singular, the problem is potentially ill-posed. The solutions
might not exist or might not be unique.

For the quadratic eigenvalue problem in (20), the
15� 15 matrix D1 in (21) is regular, therefore it guarantees
a well-posed problem. Except for the para-catadioptric
camera case, all other cameras presented here lead to a

quadratic eigenvalue problem. In case of the quartic
eigenvalue problem for the para-catadioptric camera,
(13), both 9� 9 matrices D1, D5, (14), are singular. Thus,
the problem could be ill-posed and there could be a
problem with stability of solutions. We, nevertheless,
always obtained results useful for further optimization.

Only real solutions of the PEP are useful and zero
solutions can be directly discarded. The number of
solutions does not play a role since we choose the one
which provides the smallest error in (11). If the PEP does
not have a real solution, it indicates that there is large noise
or an outlier in point correspondences used to build the
matrices Di in (13) or (20). Since we use RANSAC, we
simply skip such cases and use another 9 or 15 points to
build the matrices.
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