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Abstract

The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different

viewpoints is studied.

A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess

highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and

(2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame

rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER).

A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from

multiple measurement regions (regions obtained by invariant constructions from extremal regions), some that are significantly larger (and

hence discriminative) than the MSERs, may be used to establish tentative correspondences.

The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image

pairs from both indoor and outdoor scenes. Significant change of scale (3.5 £ ), illumination conditions, out-of-plane rotation, occlusion,

locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry

(average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained.
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1. Introduction

Finding reliable correspondences in two images of a

scene taken from arbitrary viewpoints viewed with

possibly different cameras and in different illumination

conditions is a difficult and critical step towards fully

automatic reconstruction of 3D scenes [5]. A crucial issue

is the choice of elements whose correspondence is sought.

In the wide-baseline set-up, local image deformations

cannot be realistically approximated by translation or

translation with rotation and a full affine model is

required. Correspondence cannot be therefore established

by comparing regions of a fixed (Euclidean) shape like

rectangles or circles since their shape is not preserved

under affine transformation.

In most images there are regions that can be detected

with high repeatability since they posses some distinguish-

ing, invariant and stable property. We argue that such

regions of, in general, data-dependent shape, called

distinguished regions (DRs) in the paper, may serve as the

elements to be put into correspondence either in stereo

matching or object recognition.

The first contribution is the introduction of a new set of

DRs, the so called extremal regions. Extremal regions have

two desirable properties. The set is closed under continuous

one-to-one (and thus perspective) transformation of image

coordinates and, secondly, it is closed under monotonic

transformation of image intensities. An efficient (near linear

complexity) and practically fast detection algorithm is

presented for an affinely invariant stable subset of extremal

regions, the maximally stable extremal regions (MSER).

Robustness of a particular type of DR depends on the image

data and must be tested experimentally. Successful wide-

baseline experiments on indoor and outdoor datasets

presented in Section 4 demonstrate the potential of MSERs.
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Reliable extraction of a manageable number of poten-

tially corresponding image elements is a necessary but

certainly not a sufficient prerequisite for successful wide-

baseline matching. With two sets of DRs, the matching

problem can be posed as a search in the correspondence

space [4]. Forming a complete bipartite graph on the two

sets of DRs and searching for a globally consistent subset of

correspondences is clearly out of question for computational

reasons. Recently, a whole class of stereo matching and

object recognition algorithms with common structure has

emerged [1,3,7,9,10,13,15,18,20,21]. These methods

exploit local invariant descriptors to limit the number of

tentative correspondences. Important design decisions at

this stage include: (1) the choice of measurement regions,

i.e. the parts of the image on which invariants are computed,

(2) the method of selecting tentative correspondences given

the invariant description and (3) the choice of invariants.

Typically, DRs or their scaled version serve as

measurement regions and tentative correspondences are

established by comparing invariants using Mahalanobis

distance [14,16,21]. As a second novelty of the presented

approach, a robust similarity measure for establishing

tentative correspondences is proposed to replace the

Mahalanobis distance. The robustness of the proposed

similarity measure allows us to use invariants from a

collection of measurement regions, even some that are much

larger than the associated DR. Measurements from large

regions are either very discriminative (it is very unlikely that

two large parts of the image are identical) or completely

wrong (e.g. if orientation or depth discontinuity becomes

part of the region). The former helps establishing reliable

tentative (local) correspondences, the influence of the latter

is limited due to the robustness of the approach.

Finding epipolar geometry (EG) consistent with the

largest number of tentative (local) correspondences is the

final step of all wide-baseline algorithms. RANSAC has been

by far the most widely adopted method since [19]. The

presented algorithm takes novel steps to increase the

number of matched regions and the precision of the EG.

The rough EG estimated from tentative correspondences is

used to guide the search for further region matches. It

restricts location to epipolar lines and provides an estimate

of affine mapping between corresponding regions. This

mapping allows the use of correlation to filter out

mismatches. The process significantly increases precision

of the EG estimate; the final average inlier distance-from-

epipolar-line is below 0.1 pixel. For details see Section 3.

Related work. Since the influential paper by Schmid and

Mohr [16] many image matching and wide-baseline stereo

algorithms have been proposed, most commonly using

Harris interest points as DRs. Tell and Carlsson [18]

proposed a method where line segments connecting Harris

interest points form measurement regions. The measure-

ments are characterised by scale invariant Fourier coeffi-

cients. The Harris interest detector is stable over a range of

scales, but defines no scale or affine invariant measurement

region. Baumberg [1] applied an iterative scheme originally

proposed by Lindeberg and Gårding [6] to associate affine-

invariant measurement regions with Harris interest points. In

[10], Mikolajczyk and Schmid show that a scale-invariant

MR can be found around Harris interest points. In [11], the

approach was combined with Baumberg’s iteration to obtain

an affine-invariant detector. In [13], Pritchett and Zisserman

form groups of line segments and estimate local homo-

graphies using parallelograms as measurement regions.

Tuytelaars and Van Gool introduced two new classes of

affine-invariant DRs, one based on local intensity extrema

[21] the other using point and curve features [20]. In the latter

approach, DRs are characterised by measurements from

inside an ellipse, constructed in an affine invariant manner.

Lowe [7] describes the ‘Scale Invariant Feature Transform’

approach which produces a scale and orientation-invariant

characterisation of interest points.

The rest of the paper is structured as follows. MSER

are defined and their detection algorithm is described in

Section 2. In Section 3, details of a novel robust matching

algorithm are given. Experimental results on outdoor and

indoor images taken with an uncalibrated camera are

presented in Section 4. Presented experiments are summar-

ized and the contributions of the paper are reviewed in

Section 5.

2. Maximally stable extremal regions

In this section, we introduce a new type of image

elements useful in wide-baseline matching—the Maximally

Stable Extremal Regions. The regions are defined solely by

an extremal property of the intensity function in the region

and on its outer boundary.

The concept can be explained informally as follows.

Imagine all possible thresholdings of a gray-level image I:

We will refer to the pixels below a threshold as ‘black’ and

to those above or equal as ‘white’. If we were shown a

movie of thresholded images It; with frame t corresponding

to threshold t; we would see first a white image.

Subsequently black spots corresponding to local intensity

minima will appear and grow. At some point regions

corresponding to two local minima will merge. Finally, the

last image will be black. The set of all connected

components of all frames of the movie is the set of all

maximal regions; minimal regions could be obtained by

inverting the intensity of I and running the same process.

The formal definition of the MSER concept and the

necessary auxiliary definitions are given in Table 1.

In many images, local binarization is stable over a large

range of thresholds in certain regions. Such regions are of

interest since they posses the following properties:

† Invariance to affine transformation of image intensities.

† Covariance to adjacency preserving (continuous) trans-

formation T : D!D on the image domain.

J. Matas et al. / Image and Vision Computing 22 (2004) 761–767762



† Stability, since only extremal regions whose support is

virtually unchanged over a range of thresholds is

selected.

† Multi-scale detection. Since no smoothing is involved,

both very fine and very large structure are detected.

† The set of all extremal regions can be enumerated in

Oðn log log nÞ; where n is the number of pixels in the

image.

Enumeration of extremal regions proceeds as follows.

First, pixels are sorted by intensity. The computational

complexity of this step is OðnÞ if the cardinality of the set S

of image intensities is small, e.g. the typical {0;…; 255};

since the sort can be implemented as BINSORT [17]. After

sorting, pixels are placed in the image (either in decreasing

or increasing order) and the list of connected components

and their areas is maintained using the efficient union-find

algorithm [17]. The complexity of our union-find

implementation is Oðn log log nÞ; i.e. almost linear1.

Importantly, the algorithm is very fast in practice. The

MSER detection takes only 0.14 s on a Linux PC with the

Athlon XP 1600 þ processor for an 530 £ 350 image ðn ¼

185; 500Þ:

The process produces a data structure storing the area of

each connected component as a function of intensity. A

merge of two components is viewed as termination of

existence of the smaller component and an insertion of all

pixels of the smaller component into the larger one. Finally,

intensity levels that are local minima of the rate of change of

the area function are selected as thresholds producing

MSER. In the output, each MSER is represented by position

of a local intensity minimum (or maximum) and a threshold.

Examples of MSERs are shown in Figs. 1, 2 and 5.

Notes. Although the set of extremal regions is covariant

with any one-to-one continuous transformation of the image

domain and thus covariant to projective transformation, the

process of the selection of the maximally stable subset is

affine-covariant. The MSERs are therefore only affine-

covariant.

The structure of the above algorithm and of an efficient

watershed algorithm [22] is essentially identical. However,

the structure of the output of the two algorithms is different.

The watershed is a partitioning of D; i.e. a set of regions

Ri :
S
Ri ¼ D;Rj >Rk ¼ Y: In watershed computation,

focus is on the thresholds where regions merge (and two

watersheds touch). Such threshold are of little interest here,

since they are highly unstable—after merge, the region area

jumps. In MSER detection, we seek a range of thresholds

that leaves the watershed basin effectively unchanged.

Detection of MSER is also related to thresholding. Every

extremal region is a connected component of a thresholded

image. However, no global or ‘optimal’ threshold is sought,

all thresholds are tested and the stability of the connected

components evaluated. The output of the MSER detector is

not a binarized image. For some parts of the image, multiple

Table 1

Definitions used in Section 2

Image I is a mapping I : D , Z2 !S: Extremal regions are well defined

on images if:

1. S is totally ordered, i.e. reflexive, antisymmetric and transitive binary

relation # exists. In this paper only S ¼ {0; 1;…; 255} is considered, but

extremal regions can be defined on, e.g. real-valued images ðS ¼ RÞ

2. An adjacency (neighbourhood) relation A , D £D is defined. In this

paper 4-neighbourhoods are used, i.e. p; q [ D are adjacent ðpAqÞ iff
Pd

i¼1 lpi 2 qil # 1

Region Q is a contiguous subset of D; i.e. for each p; q [ Q there is a

sequence p; a1; a2;…; an; q and pAa1; aiAaiþ1; anAq

(Outer) Region Boundary ›Q ¼ {q [ D\Q : ’p [ Q : qAp}; i.e. the

boundary ›Q of Q is the set of pixels being adjacent to at least one pixel

of Q but not belonging to Q

Extremal Region Q , D is a region such that for all p [ Q; q [
›Q : IðpÞ . IðqÞ (maximum intensity region) or IðpÞ , IðqÞ (minimum

intensity region)

Maximally Stable Extremal Region (MSER). Let Q1;…;Qi21;Qi;… be a

sequence of nested extremal regions, i.e. Qi , Qiþ1: Extremal region Qip is

maximally stable iff qðiÞ ¼ lQiþD\Qi2Dl=lQil has a local minimum at ip (l·l
denotes cardinality). D [ S is a parameter of the method

Fig. 2. Valbonne. Estimated epipolar geometry and points associated to the

matched regions are shown in the first row. Cutouts in the second row show

matched bricks.

Fig. 1. Bookshelf. Estimated epipolar geometry on indoor scene with

significant scale change. In the cutouts, the change in the resolution of

detected DRs is clearly visible.

1 Even faster (but more complex) connected component algorithms exist

with OðnaðnÞÞ complexity, where a is the inverse Ackerman function;

aðnÞ # 4 for all practical n:
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stable thresholds exist and a system of nested subsets is

output in this case. Finally we remark that MSERs can be

defined on any image (even high-dimensional) whose pixel

values are from a totally ordered set.

3. The proposed robust wide-baseline algorithm

Distinguished region detection. As a first step, the DRs

are detected—the MSERs computed on the intensity image

(MSERþ ) and on the inverted image (MSER2 ).

Measurement regions. A measurement region of arbi-

trary size may be associated with each DR, if the

construction is affine-covariant. Smaller measurement

regions are both more likely to satisfy the planarity

condition and not to cross a discontinuity in depth or

orientation. On the other hand, small regions are less

discriminative, i.e. they are much less likely to be unique.

Increasing the size of a measurement region carries the risk

of including parts of background that are completely

different in the two images considered. Clearly, the optimal

size of a MR depends on the scene content and it is different

for each DR. In [21], Tuytelaars and Van Gool double the

elliptical DR to increase discriminability, while keeping the

probability of crossing object boundaries at an acceptable

level.

In the proposed algorithm, measurement regions are

selected at multiple scales: the DR itself, 1.5, 2 and 3 times

scaled convex hull of the DR. Since matching is

accomplished in a robust manner, we benefit from the

increase of distinctiveness of large regions without being

severely affected by clutter or non-planarity of the DR’s pre-

image. This is a novelty of our approach. Commonly,

Mahalanobis distance has been used in MR matching.

However, the non-robustness of this metric means that

matching may fail because of a single corrupted measure-

ment (this happened in the experiments reported below).

Invariant description. In all experiments, rotational

invariants (based on complex moments) [8] were used

after applying a transformation that diagonalises the regions

covariance matrix of the DR. In combination, this is an

affinely invariant procedure. Combination of rotational and

affinely invariant generalised colour moments [12] gave a

similar result. On their own, the affine invariants failed on

problems with a large scale change.

Robust matching. A measurement taken from an almost

planar patch of the scene with stable invariant description

will be referred to as a ‘good measurement’. Unstable

measurements or those computed on non-planar surfaces or

Fig. 3. Wash. Epipolar geometry and dense matched regions with fully

affine distortion.

Fig. 4. Estimated EG on an outdoor scene.

Fig. 5. Cylindrical box. Epipolar geometry (top) and matched regions

(bottom left). Fully affine distortion, a non-planar object, textured surface

and strong specular reflections are present in the scene. SHOUT (bottom

right), a scene with a change of illumination spectral power distribution.
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at discontinuities in depth or orientation will be referred to

as ‘corrupted measurements’.

The robust similarity is computed as follows. For each

measurement MA
i on region A; k regions B1;…;Bk from the

other image with the corresponding ith measurement

Mi
B1
;…;Mi

Bk
nearest to MA

i are found and a vote is cast

suggesting correspondence of A and each of B1;…;Bk: The

votes are summed over all measurements.

The DRs with the largest number of votes are the

candidates for tentative correspondences. Experimentally,

we found that k set to 1% of the number of regions

gives good results. The number of regions is typically in the

102–103 range and k is thus between 1 and 10. In the current

implementation 216 invariants at each scale, i.e. a total of

864 measurements are used (i [ ½1; 864�; i runs through all

scales and all invariants). The 216 rotational invariants are

described in detail in [8]. The choice of four scales was

made by trial and error and as a compromise between speed

and performance.

Probabilistic analysis of the likelihood of the success of

the procedure is not simple, since the distribution of

invariants and their noise is image-dependent. We therefore

only suppose that corrupted measurements spread their

votes randomly, not conspiring to create a high score and

that good measurements are more likely to vote for correct

matches.

Tentative correspondences using correlation. Invariant

description is used as a preliminary test. The final selection

of tentative correspondences is based on correlation.

First, transformations that diagonalise the covariance

matrix of the DRs are applied. The resulting circular

regions are correlated (for all relative rotations). This

procedure is done efficiently in polar coordinates for

different sizes of circles.

Rough EG is estimated by applying RANSAC to the

centres of gravity of DRs. Subsequently, the precision of the

EG estimate is significantly improved by the following

process. First, an affine transformation between pairs of

potentially corresponding DRs, i.e. the DRs consistent with

the rough EG, is computed. Correspondence of covariance

matrices defines an affine transformation up to a rotation.

The rotation is determined from epipolar lines [2]. Next, DR

correspondences are pruned and only those with correlation

of their transformed images above a threshold are selected.

In the next step, RANSAC is applied again, but this time with

a very narrow threshold. The final improvement of the EG is

achieved by adding to RANSAC inliers DR pairs whose

convex hull centres are EG-consistent. Commonly, DRs

differ in minute differences that render their centres of

gravity inconsistent with the fine EG, but the centres of the

convex hulls are precise enough. The precision of the final

EG, estimated linearly by the eight point algorithm (without

bundle adjustment or radial distortion correction) is

surprisingly high. The average distance of inliers from

epipolar line is below 0.1 pixel, see Table 3.

4. Experiments

The following experiments were conducted:

Bookshelf, (Fig. 1). The BOOKSHELF scene tests per-

formance under a very large scale change. The correspond-

ing DRs in the left view are confined only to a small part of

the image since the rest of the scene is not visible in the

second view. Different resolution of detected features is

evident in the close-up.

Valbonne, (Fig. 2). This outdoor scene has been analysed

in the literature [13,14]. Repetitive patterns such as bricks

are present. The part of the scene visible in both views

covers a small fraction of the image.

Wash, (Fig. 3). Results on this image set have been

presented in [21]. The camera undergoes significant

translation and rotation. The ordering constraint is notably

violated, objects appear on different backgrounds.

Kampa, (Fig. 4), is an example of an urban outdoor

scene. A relatively large fraction of the images is covered by

changing sky. Repeating windows made matching difficult.

Cylindrical box, (Fig. 5, top and bottom left), shows a

metal box on a textured floor. The regions matched on the

box demonstrate performance on a non-planar surface. A

significant change of illumination and a strong specular

reflection is present in the second image that was taken

with a flash (this strongly decreases the number of

MSER þ ).

Shout, (Fig. 5, bottom right). This scene has been used in

[21]. Since the spectral power distribution of the illumina-

tion and the position of light sources is significantly

different, we included the test to demonstrate performance

in variable illumination conditions.

Results are summarized in Tables 2 and 3. Table 2 shows

the number of detected DRs in the left £ right images for

both types of the DRs (MSER2 and MSERþ ). The number

of tentative correspondences is given in the last column of

Table 2. Table 3 shows the number of correspondences

established in different stages of the algorithm. Column

‘TC’ repeats the number of tentative correspondences.

Column ‘rough EG’ displays the number of tentative

correspondences consistent with the rough estimate of the

EG. The ratio of ‘TC’ and ‘rough EG’ determines the speed

of the RANSAC algorithm.

Table 2

Numbers of DRs detected in the left and right images in the ‘left

DRs’ £ ‘right DRs’ format

No. of MSER2 MSERþ TC

Bookshelf 511 £ 908 349 £ 488 85

Valbonne 906 £ 1012 761 £ 950 49

Wash 1026 £ 714 542 £ 448 171

Kampa 1015 £ 914 659 £ 652 303

Cyl. box 1043 £ 627 788 £ 39 63

Shout 298 £ 348 80 £ 93 151

The number of tentative correspondences is given in the TC column.
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After establishing the ‘rough EG’ the so-called ‘guided

matching’ step is applied [2,5]. In the process of finding

tentative correspondences, at most a single corresponding

region is associated with one DR. Often this association is

erroneous, for instance if there is a repetitive pattern in the

scene. Moreover some DRs are not matched at all since they

fail the ‘mutually nearest’ requirement. Given the ‘rough

EG’, even rather imprecise, the process of finding tentative

matches can be revisited. The original tentative correspon-

dences are discarded and all potential matches consistent

with the ‘rough EG’ are selected. The matching now need

not rely on rotational invariants, since epipolar lines passing

through a pair of matching regions define their relative

orientation [2]. The ‘guided’ tentative correspondences are

therefore selected using correlation.

The column headed ‘EG þ corr’ gives the number of

correspondences consistent with rough EG that passed the

correlation test. Notice that the numbers are much higher

than those in the ‘rough EG’ column. The final number of

correspondences is given in the penultimate column ‘fine

EG’. Average distances from epipolar lines are presented in

columns ‘rough d’’ and ‘fine d’’. We can see, that the

precision of the estimated EG is very high, much higher than

the precision of the rough EG. The last column shows the

number of mismatches (found manually).

5. Conclusions

A new method for wide-baseline matching was proposed.

The three main novelties are: the introduction of MSERs,

robust matching of local features and the use of multiple

scaled measurement regions.

The MSERs are sets of image elements, closed under the

affine transformation of image coordinates and invariant to

affine transformation of intensity. An efficient (near linear

complexity) and practically fast detection algorithm was

presented. The stability and high utility of MSERs was

demonstrated experimentally. Another novelty of the

approach is the use of a robust similarity measure for

establishing tentative correspondences. Due to the robust-

ness, we were able to consider invariants from multiple

measurement regions, even some that were significantly

larger (and hence probably discriminative) than the

associated MSER.

Good estimates of EG were obtained on challenging

wide-baseline problems with the robustified matching

algorithm operating on the output produced by the MSER

detector. The average distance from corresponding points

to the epipolar line was below 0.09 of the inter-pixel

distance. Significant change of scale (3.5 £ ), illumination

conditions, out-of-plane rotation, occlusion, locally aniso-

tropic scale change and 3D translation of the viewpoint

are all present in the test problems. Test images included

both outdoor and indoor scenes, some already used in

published work.

Acknowledgements

The authors were supported by the European Union

project IST-2001-32184, by the Grant Agency of the Czech

Republic project GACR 102/02/1539 and by the Austrian

Ministry of Education project CONEX GZ 45.535. The

SHOUT and WASH images were kindly made available by

Tinne Tuytelaars.

References

[1] A. Baumberg, Reliable feature matching across widely separated

views, in: CVPR’00, 2000, pp. I:774–781.

[2] O. Chum, T. Werner, T. Pajdla, Joint orientation of epipoles, in:

Proceedings of BMVC’03, vol. 1, BMVA, London, UK, September

2003, pp. 73–82.

[3] Y. Dufournaud, C. Schmid, R. Horaud, Matching images with

different resolutions, in: CVPR’00, 2000, pp. I:612–618.

[4] W.E.L. Grimson, Object Recognition, MIT Press, Cambridge, MA,

1990.

[5] R. Hartley, A. Zisserman, Multiple View Geometry in Computer

Vision, Cambridge University Press, Cambridge, UK, 2000.

[6] T. Lindeberg and J. Gårding, “Shape-adapted smoothing in estimation

of 3-D depth cues from affine distortions of local 2-D structure”, in

Proc. 3rd European Conference on Computer Vision, vol. 800 of

Lecture Notes in Computer Science, (Stockholm, Sweden), pp. 389–

400, Springer Verlag, 1994.

[7] D. Lowe, Object recognition from local scale-invariant features, in:

ICCV’99, 1999, pp. 1150–1157.

[8] J. Matas, P. Bı́lek, O. Chum, Rotational invariants for wide-

baseline stereo, in: Proceedings of CVWW’02, February 2002, pp.

296–305.
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