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We propose an anytime learning procedure for the Sequence of Learned Linear Predictors (SLLiP) tracker.
Since learning might be time-consuming for large problems, we present an anytime learning algorithm
which, after a very short initialization period, provides a solution with defined precision. As SLLiP tracking
requires only a fraction of the processing power of an ordinary PC, the learning can continue in a parallel
background thread continuously delivering improved, i.e. faster, SLLiPs with lower computational com-
plexity and the same precision.

The proposed approach is verified on publicly-available sequences with approximately 12,000 ground-
truthed frames. The learning time is shown to be 20 times smaller than standard SLLiP learning based on
linear programming, yet its robustness and accuracy is similar. Superiority in the frame-rate and robust-
ness in comparison with the SIFT detector, Lucas–Kanade tracker and Jurie’s tracker is also demonstrated.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Visual tracking is the process of repeated estimation of the state
of an object given an image and the state(s) in previous frame(s).
The state of an object is a set of parameters determining its pose
(e.g. position, scale, rotation) and/or appearance. The most popular
tracking approach is the Lucas–Kanade class of trackers [1,7] which
minimizes the sum of intensity differences between a template
and image data by the Gauss–Newton gradient descent optimiza-
tion method. The intensity function is locally approximated by
the first-order Taylor expansion and motion parameters are esti-
mated as a linear function of image-template differences. The lin-
ear function is expressed as the pseudo-inverse of a matrix
which is a function of image gradients. Like any other gradient
method, the Lucas–Kanade tracker suffers from convergence to a
local minimum, an unknown number of required iterations and
an unknown basin of convergence.

Cootes et al. [2] noticed that a similar minimization task is
solved in each frame and proposed to replace the pseudo-inverse
operation with a multiplicative matrix learned on a set of synthet-
ically perturbed examples, see Fig. 1. Cootes’ method [2] predicts
motion parameters as a linear function of object intensities; we call
such methods learned linear predictors (LLiP). A LLiP method was
adapted by Jurie and Dhome [4] for tracking of rigid objects. Unlike
Cootes et al. [2], Jurie’s LLiPs are used for prediction of local 2D
translations only. This approach has recently attracted interest of
the tracking community [3,12] and it has been also generalized
ll rights reserved.
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to non-linear prediction as demonstrated by Williams et al. [9],
who learn the predictor by a Relevance Vector Machine.

Staying in the realm of trained trackers, we proposed [11] a track-
er that consists of a Sequence of LLiPs (SLLiP), see Fig. 2. Since the
time required for motion prediction by a SLLiP directly corresponds
to the number of used pixels, only a small subset of pixels from a
template is used. The SLLiP learning is formulated as an optimization
problem where time of tracking (computational complexity) is min-
imized given a predefined precision of motion predictors. In [11], a
globally optimal sequence is delivered, the learning might be pro-
hibitively time consuming for large problems.

The main contribution of this paper is a new anytime learning
approach which, after a very short initialization period, provides
a solution with predefined precision. The solution is continuously
improved, i.e. the SLLiPs with lower complexity and defined preci-
sion allowing for faster tracking are continuously delivered. The
anytime learning searches through the space of SLLiPs and succes-
sively constructs SLLiPs from LLiPs of different complexities. In or-
der to make the searching process efficient, the branch a bound [5]
searching approach is used.

If no constraint on the learning time is imposed, the anytime
learning algorithm finds a globally optimal solution with respect
to a certain class of predictors. If time consuming learning is not
acceptable, the tracking can start immediately after a short initial-
ization period. Since the SLLiP tracking requires only a fraction of
processing power of an ordinary PC, the learning can continue in
a parallel background thread.

We consider only linear predictors, nevertheless, the method is
easily extended to an arbitrary polynomial class by data lifting. For
instance, particular monomials can be considered as additional
features.
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Fig. 1. Learning of the linear mapping between intensities and motions by the LS method from a set of synthetically perturbed examples.

Fig. 2. SLLiP consists of a sequence of linear mappings. Computational complexity
of tracking, which directly corresponds to the number of used pixels, is minimized
in a learning stage.

1 In practice, the error is the mean value of square Euclidean error of all predictions
from the range.
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The rest of the paper is organized as follows: Section 2 summa-
rizes properties of SLLiPs [11] and introduces notation and defini-
tions. Section 3.1 describes how a training set is constructed from a
single image. In Section 3.2 the proposed anytime learning algo-
rithm is presented. Section 4 compares learning/tracking time,
robustness and accuracy of the proposed approach with state-of-
the-art approaches [4,6,7,11] on ground truthed sequences. Section
5 concludes the paper.

2. Problem formulation

In this section, we introduce formal definitions of LLiP and SLLiP
and formulate their learning as a constrained optimization prob-
lem. Let us suppose we are given an image I of an object to be
tracked. Object motion is robustly determined by RANSAC from local
motions of some points on the object. These points are called refer-
ence points and their motion is estimated from their neighbour-
hoods. For motion predictors, it is not necessary to use all
neighbourhood pixels, because sufficient precision is achievable
even with smaller number of pixels. Therefore only a selected sub-
set of pixels X ¼ fx1 � � � xcg, called support set, is used. LLiP esti-
mates motion of the reference point from the intensities
observed on the support set. These intensities are stored in the
observation vector denoted IðXÞ.

We denote ðt � XÞ the support set warped by a motion with
parameters t. For example, if the considered motion is a 2D trans-
lation, then ðt � XÞ ¼ ðX þ tÞ ¼ fðx1 þ tÞ; . . . ; ðxc þ tÞg. There is a
mapping (rendering) from parameters t to observations Iðt � XÞ,
which is usually not invertible. We therefore search for a mapping
approximating a the set of motions t which could have generated
the observation Iðt � XÞ. This mapping assigns a p-vector of motion
parameters to a c-vector of observation.

Definition 1. Linear predictor (LLiP) is an ordered pair u ¼ ðH;XÞ,
which assigns p-vector of motion parameters t ¼ HIðXÞ to c-vector
of observations IðXÞ, where H 2 Rp�c .

All predictors u are characterized by the following parameters, see
also Fig. 3:

Definition 2. Complexity cðuÞ ¼ jXj of predictor u is the cardinal-
ity of the predictor’s support X.

Definition 3. Range RðuÞ of the predictor u is a set of motion
parameters.

Definition 4. Error of predictor u ¼ ðH;XÞ for range RðuÞ is
kðuÞ ¼ Eðkt� HIðt � XÞk2

2Þ; 8t 2 RðuÞ, where Eð:Þ denotes the expec-
tation value with respect to t uniformly distributed on RðuÞ.1

Predictor complexity approximately corresponds to the number
of multiplications and sums necessary for motion estimation. It is
clear that there is no ideal predictor which would simultaneously
has (very) low complexity, (very) large range and (very) small er-
ror. It is easy to see that the higher the complexity the better the
prediction. However, as the complexity increases towards the com-
plete template, the improvements become less and less significant.
In general, for large ranges it is very difficult to achieve a good pre-
diction with any complexity. In order to overcome this limitation
we develop a sequential predictor U ¼ ðu1 � � �umÞ. Since the sequen-
tial predictor is provably superior to a single monolithic predictor,
it allows lower complexity for higher precision. A vector of motion
parameters t is predicted in m steps as follows:

t1 ¼ H1ðIðX1ÞÞ; t2 ¼ H2ðIðt1 � X2ÞÞ;

t3 ¼ H3ðIðt2 � t1 � X3ÞÞ; . . . ; tm ¼ Hm I �
m�1

i¼1
ti

� �
� Xm

� �� �
;

t ¼ �
m

i¼1
ti;

ð1Þ

The first vector of motion parameters t1 is directly predicted from
intensities observed at locations defined by the support set X1. The
second predictor estimates motion parameters t2 from intensities
Iðt1 � X2Þ observed on the its support set warped by t1, and so on.
The advantage is that each predictor in a sequence is more and
more specific, using a smaller range which corresponds to the accu-
racy of the preceding predictor.

Definition 5. Sequential predictor (SLLiP) is an m-tuple
U ¼ ðu1; . . . ;umÞ of predictors ui 2 x; i ¼ 1 � � �m, where x is a
set of predictors.



Fig. 3. (a) Table of used abbreviations. (b) Definitions: The range, complexity and prediction error of a learned linear predictor.
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The set of predictors x can include all possible predictors, or its
convenient subset. Because of computational complexity of the
learning process, only the predictors with H minimizing their pre-
diction error for a given support set and training set, will be further
considered.

Definition 6. Optimal sequential predictor is a sequential predictor

U� ¼ arg min
U2xm ;m

Xm

i¼1

cðuiÞjkðumÞ 6 k�
( )

; ð2Þ

where k� is predefined prediction error, c is predictor complexity, x
is a set of predictors and xm ¼ x�x� � � � �x is a set of sequential
predictors of length m.
3. Anytime learning of SLLiP

We define learning as a search for the optimal SLLiP subject to a
predefined prediction error (Definition 6). In general, the learning
procedure consists of two steps: support set selection and SLLiP
optimization. The support set selection is a combinatorial problem,
the solution of which might be time consuming [8,10]. Since we
are interested in applications where the learning time is an issue,
a randomly selected support set is used instead. The SLLiP optimi-
zation is also simplified by restricting x to be a class of LLiPs with
the minimal prediction error (Definition 4). Nevertheless, the pro-
posed learning algorithm can be used to find the globally optimal
solution with respect to arbitrary x. For example, x could be a
set of LLiPs learned by the minimax method, then the result of
learning would be the same as of the algorithm proposed in [11].
t − mi

+2

++9

−

training

Fig. 4. An image patch is perturbed by the motion parameters within a predefined ran
motions ti .
Note that the globally optimal solution found with respect to
the restricted x is not guaranteed to provide globally optimal solu-
tion with respect to the set of all possible LLiPs. In Section 3.1,
training set construction from a single image is described. Section
3.2 then presents SLLiP learning.

3.1. Training set construction

Given a predefined range of motions within which the track-
er is assumed to operate, we perturb the support set by motion
with parameters qi randomly (uniformly) generated inside the
range. Each motion qi warps the support set X to a set Xi,
where a vector of intensities Ii is observed, see Fig. 4. Given
the observed intensities, we search for a mapping assigning mo-
tion ti ¼ ðqiÞ�1, which warps Xi as close as possible to the ori-
ginal support set X. These examples are stored in matrices
I ¼ ½I1 � � � Id� and T ¼ ½t1 � � � td�. The ordered triple ðI;T;XÞ of such
matrices and ordered d-tuple of support sets X ¼ fX1 � � �Xdg
composes a training set.

3.2. Learning algorithm

In this section, we describe the method searching for the opti-
mal sequential predictor given a training set ðI;T;XÞ generated
on image I. Since we restricted the set of considered LLiPs x to
the set of LLiPs minimizing prediction error k, the LLiP learned from
the training set is u ¼ ðH�;XÞ, where

H
� ¼ arg min

H2Rp�c
kHI� Tk2

F ¼ TI
þ ð3Þ

and X is the support set aligned with the object.
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Ideally, the predictor learned according to Eq. (3) would trans-
form intensities I to motions T. However, such predictor usually
does not exist. Therefore the observed intensities are transformed
into motion parameters Tð1Þ which are as close as possible to the de-
sired motions T. We warp each support set Xi 2 X by motion param-
eters Ti;ð1Þ obtaining the new support set Xi;ð1Þ ¼ Ti;ð1Þ � Xi. Denoting
Ii;ð1Þ the intensities observed on these newly obtained support sets
Xi;ð1Þ, we form the new training set ðI1;T;X1Þ. We refer to it as to
training set invoked by predictoru1 and denote it Tðu1; cÞ, where c de-
notes the size of support set used in the training set. Similarly, we de-
fine training set invoked by sequential predictor as TðU; cÞ.

As already mentioned, the size of the support set influences the
prediction error. Removing some pixels from the support set nec-
essarily results in error increase.2 Given a training set TðU; c1Þ we
can simply generate a training set TðU; c2Þ; c2 < c1 for the predic-
tor with a lower complexity c2 by removing corresponding number
of pixels from X and corresponding number of rows from matrix I.
We refer to this process as training set restriction.3

In order to simplify the problem, we further work with a dis-
cretized set of complexities C. The optimal sequence of predictors
is found by searching through the set of all SLLiPs, which involvePm

i¼1jCj
i elements, where jCj denotes the size of C and m is maxi-

mum length of SLLiP. In order to make the searching process effi-
cient, the branch and bound [5] searching approach is used.
Sequential predictors are successively constructed from the LLiPs
of different complexities. In the first level, we learn LLiPs for all
complexities in C according to Eq. (3). They correspond to the
SLLiPs of the length equal to one. One of these SLLiPs, U, is ex-
panded in the next iteration. The expansion means that U is suc-
cessively extended by LLiPs with different complexities learned
on training set invoked by itself TiðU; cÞ. This process creates jCj
new SLLiPs, which could be expanded in further iterations. Once
a SLLiP with a sufficiently small prediction error (feasible solution)
is found, all other partially constructed SLLiPs with a higher com-
plexity are terminated, i.e. they will never be expanded. The small-
est complexity c� of the feasible solution is saved and once any
SLLiP reaches a higher complexity it is automatically terminated.

The learning process is summarized in Algorithm 1; see also
Fig. 5, which demonstrates six iterations of the algorithm on a
toy example with C ¼ f20;300g, range equal to 40% of the object
size and the predefined error set to 10% of the object size. In the
first iteration, two LLiPs with complexities 20 and 300 are learned,
denoted u1 and u2. Obviously, the LLiP with the higher complexity
achieves lower prediction error kðu2Þ ¼ 0:15. Since no solution has
been found, u2 is expanded in the second iteration, i.e. we learn
two further LLiPs, denoted u21 and u22, on the training set invoked
by u2. Since both newly constructed SLLiPs U1 ¼ ðu2;u21Þ and
U2 ¼ ðu2;u22Þ achieve sufficiently low prediction error, i.e. smaller
than k� ¼ 0:1, the one with the lower complexity, i.e.
cðU1Þ ¼ 300þ 20 ¼ 320, is selected and the other one, U2, is termi-
nated. U1 could be immediately used for tracking, while the learn-
ing can continue: in the third iteration, u1 is expanded. Since
cðu1u12Þ ¼ 300þ 300 ¼ 600 > cðU2Þ ¼ 320, this SLLiP is termi-
nated. In the remaining iterations the not terminated SLLiP is fur-
ther expanded till the solution, SLLiP U3 consisting of 5 LLiPs, is
reached. Since the complexity cðU3Þ ¼ 5� 20 ¼ 100 is smaller than
cðU1Þ ¼ 320;U1 is replaced by U3. And since there are no more
SLLiPs to expand, U3 is accepted as the final solution.

Of course, it is likely that better solution exist, consisting from
the LLiPs with complexities not constrained to C ¼ f20;300g, but
2 Proof of this claim is detailed in [11].
3 Since the support set is selected randomly its restriction is random as well. If, for

instance, the greedy construction [8,10,11] had been used, than the order of the
selection would have provided the importance measure of the support pixels and the
lastly selected pixels would have been removed firstly in the restriction.
this is just a toy example demonstrating the learning process. In
practice, we work with jCj 2 f10 � � �15g.

Algorithm (anytime learning of SLLiP)

Input:
	 Range R within which SLLiP is expected to operate.
	 Set of considered complexities C.
	 Predefined accuracy k� .
	 Training image I.
	 Support set X.

(1) Set:

c� ¼ 1 (complexity of the simplest admissible SLLiP found) and
i ¼ 0 (number of current iteration).

(2) Generate training sets T0ðcÞ; 8c 2 C on the predefined range R.4

(3) Initialize set X of learned active SLLiPs as a set of LLiPs learned on
T0ðcÞ; 8c 2 C according Eq. (3).

(4) U ¼ SðXÞ; X ¼ X nU (Select and remove U according to a strategy S.)
(5) For each c 2 C: (expand U)
4 We
other tr

5 The
cmp.fel
(a) Generate training set TiðU; cÞ invoked by U.
(b) Learn LLiP u for TiðU; cÞ according to Eq. (3).
(c) U0 ¼ ðU;uÞ; X ¼ X [U0 (add the new SLLiP to X)
(d) If cðU0 Þ < c� then U� ¼ U0 and c� ¼ cðU0Þ (replace solution)
(e) For 8U00 2 X with cðU00Þ > c� , do X ¼ X nU00 (terminate the SLLiPs

with higher complexity)
end
(6) If X ¼ ; stop otherwise i ¼ iþ 1 and goto 4.
Output:
	 Optimal SLLiP U�

Note that the selection strategy S which selects a SLLiP from X
(step 4), may influence the learning behavior. However, if Algorithm
1 satisfies condition X ¼ ; in step 6, U� is an optimal SLLiP with re-
spect to the set of considered LLiPs x. In our implementation, we
first use the strategy which expands the SLLiP with the highest com-
plexity. This strategy usually finds a solution U� in a few iterations.
This solution is of a high complexity, but the prediction error is guar-
anteed and the tracking can start. Then the strategy is switched and
the SLLiPs with the average complexity are preferably expanded.
Once a solution is reached, it can be immediately used for tracking
with a lower performance. If the learning continues, the SLLiP can
be in future replaced by better solutions.

The stopping condition (step 6) could be also optionally re-
placed for example by a maximum number of iterations, maximum
running time, maximum depth of the constructed graph or an arbi-
trary intersection of these conditions. However, such replacement
might influence the optimality of the found U�.

4. Experiments

The proposed method is verified on real sequences with planar
objects. The object is represented as a Number of SLLiPs (NoSLLiP),
which estimates local translations at a few points on the object.
Object motion, i.e. a homography, is determined from these local
translations by the RANSAC. Note that although we work with planar
objects in order to avoid problems of 3D reconstruction, the pro-
posed trackers could be attached to a 3D model with a reasonable
texture, as was shown in [11].

The quantitative evaluation of robustness and accuracy of SLLiPs
is conducted on sequences with three different objects (MOUSEPAD-MP,
TOWEL and PHONE), where ground truth positions of the object corners
in total number 11963 frames were manually labeled.5 Accuracy is
measured in each corner as a percentage; the displacement error is
related to the current size of the object upper edge. Robustness is
generate only T0ðcmaxÞ where cmax ¼ max C is maximum complexity of C, the
aining sets with the lower complexity are constructed by its restriction.
se sequences in conjunction with the ground truth are available at ftp://
k.cvut.cz/pub/cmp/data/lintrack/index.html.



Fig. 5. Demonstration of progress of Algorithm 1 for a toy example with C ¼ f20;300g; jCj ¼ 2; R ¼ 0:4 and k� ¼ 0:1. Blue denotes a set of current SLLiPs X, black denotes
terminated SLLiPs and red delineates solution U� with the lowest complexity so far.
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measured by the number of loss-of-locks, defined as the cases where
the accuracy was worse than 25%. In loss-of-lock frames, the tracker
was reinitialized from the ground truth and the accuracy did not con-
tribute to the total accuracy statistic. Some of the successfully
tracked frames, which include oblique views, motion blur and signif-
icant scale changes, are presented in Fig. 6. The results are summa-
rized in Table 1.

In the first row, results of NoSLLiP tracker with SLLiPs learned by
Algorithm 1 with no time constraint (method LS) are presented. Sec-
ond row contains results for SLLiPs learned by minimax [11] (meth-
od MM). The minimax learning minimize the size of a compact
region within which all predictions lie (uncertainty region) instead
of the square of Euclidean error, therefore higher robustness is
achieved, but the learning is 10–20 times longer. Tracking accuracy
of MM and LS methods varies with data; the accuracy is similar for MP

and TOWEL sequences, but PHONE object contains similar repetitive
structure (buttons) which make the LS accuracy significantly worse.

Robustness of the predictor is given by the shape of the error
distribution, because the higher the probability of large errors
the higher the probability of the predictor failure in the next frame
due to its initialization out of its range. Shape of MM SLLiP distri-
bution (blue solid line) and LS SLLiP distribution (red solid line)
are shown in Fig. 7. We observe that LS SLLiPs are more likely to
have higher errors in difficult cases however, the accuracy in easier
cases is higher. In addition to this we can also compare predefined
uncertainty region k0 of MM SLLiP, predefined prediction error �0 of



Fig. 6. The left column shows images used for training. The middle and right columns demonstrate some successfully tracked frames with strong motion blur from the testing
sequences. Blue rectangle delineates the object. Percentage values in corners are current corner speeds related to the current size of the object upper edge.

Table 1
Comparison of robustness and accuracy of NoSLLiP learned by anytime algorithm (LS)
and minimax algorithm (MM) proposed in [11].

Object SLLiP
learning

Learning
time* (s)

Processing
(fps)

Loss-of-
locks

Mean-error (%)

MP LS 11 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
MP MM [11] 310 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
TOWEL LS 16 33.3 2/3229 [1.6, 1.8, 1.1, 1.5]
TOWEL MM [11] 310 21.8 5/3229 [3.0, 2.2, 1.4, 1.9]
PHONE LS 21 25.6 55/1799 [7.3, 7.1, 10.6, 6.5]
PHONE MM [11] 310 16.8 20/1799 [1.2, 1.8, 2.6, 1.9]

* Learing time is an average time required per one SLLiP.

Table 2
Comparison of robustness and accuracy of SLLiP, LK, SIFT and LLiP tracker on MP

sequence.

Method Processing (fps) Loss-of-locks Mean-error (%)

SLLiP LS 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
SLLiP MM [11] 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
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ε

0
 = 0.03

E(LS)=0.32

Fig. 7. Accuracy analysis: Comparison of predefined uncertainty region k0 of MM
SLLiPs (blue dot-dashed line), predefined prediction error �0 of LS SLLiPs (red dot-
dashed line) and true error distribution (blue and red solid lines) on MOUSEPAD

sequence.
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LS SLLiP and true error distribution on ground truthed data (MOUSE-

PAD sequence). In this experiment we learned 35 SLLiPs with differ-
ent ranges covering the mousepad. MM SLLiPs are learned to
achieve uncertainty region k0 ¼ 5% (blue dot-dashed line), LS
SLLiPs are learned for prediction error �0 ¼ 3% (red dot-dashed
line). Both the uncertainty region and the prediction error are rel-
ative to SLLiPs range. k0; �0 were chosen experimentally in order
achieve the best performance of SLLiPs. Lower values result in
higher complexity and consequent over-fitting. The error is evalu-
ated on those frames, where inter-frame motion is smaller than the
learning range of SLLiPs.

Table 2 compares the NoSLLiP tracker to the state-of-the-art
Lowe’s SIFT detector [6] (method: SIFT),6 Lucas–Kanade tracker
[7] (method: LK tracker) and Jurie’s LS LLiP tracker [4] (method:
LLiP LS). All these local motion estimators were combined with
the RANSAC, to keep test conditions as similar as possible. SIFT track-
ing mainly fails in frames with strong motion blur or in frames
where the object was very far from the camera. LK tracker, which
SIFT [6] 0.5 281/6935 [1.6, 1.2, 1.5, 1.4]
LK tracker [7] 2.6 398/6935 [2.3, 2.2, 2.5, 2.5]
LLiP LS [4] 24.4 1083/6935 [5.9, 6.0, 6.7, 6.7]
LLiP LS [4] half-range 24.2 93/6935 [3.1, 2.3, 2.7, 4.0]

6 We use implementation of the SIFT detector downloaded from http://
www.cs.ubc.ca/lowe/keypoints/.

http://www.cs.ubc.ca/lowe/keypoints/
http://www.cs.ubc.ca/lowe/keypoints/
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K. Zimmermann et al. / Image and Vision Computing 27 (2009) 1695–1701 1701
estimates the local motion at Harris corners, provided quite good
results on the frames where the object was far from the camera,
but its basin of attraction was in many frames insufficient for cor-
rect motion estimation, failing for fast motions.

Since we work with a non-optimized implementation of the LK
tracker, the presented frame-rate in this experiment could not serve
for a speed comparison. Nonetheless the SLLiP computational com-
plexity is clearly smaller than the complexity of the LK tracker. Jurie’s
tracker is a LLiP tracker with the support set equal to the whole tem-
plate learned by LS method for the same reference points and ranges
as optimal SLLiPs. Since a single LLiP tracker does not allow sufficient
accuracy on the same range, very high loss-of-lock ratio and low
accuracy are reported. If the half-range is used, the higher accuracy
is achieved, but the number of loss-of-locks is still significantly high-
er than with NoSLLiP tracker, mainly due to long inter-frame
motions.

4.1. Time-constrained learning procedure

The learning procedure proposed in Algorithm 1 might be time
consuming if the set of considered LLiPs is too large. Since a long
learning time might not be acceptable for some types of applications,
either the set of considered LLiPs or the maximum number of itera-
tions have to be restricted. However, the constraint on maximum
number of iterations affects the optimality of the found SLLiP, and
therefore we show average complexity of the best found solution
as a function of iterations in Algorithm 1. Fig. 8 presents this function
for different sets of considered LLiPs. One can see that the learning
time could be 2–3 times decreased without significant increase of
the solution complexity.

Note that there is also another option besides premature inter-
ruption of the learning procedure. The anytime learning algorithm,
after a short initialization procedure, provides a solution – SLLiP
with higher complexity but predefined precision. Having this SLLiP
the tracking can immediately start. Since the tracking requires only
a fraction of the processing power of an ordinary PC, the learning
need not to be necessarily terminated and it might be allowed to
run in a parallel background thread continuously providing better
and better SLLiPs. This principle theoretically allows to start the
tracking procedure immediately without any learning using for
example Lucas–Kanade tracker and collect training examples auto-
matically. Once a training set is constructed the learning procedure
can run in a parallel thread providing the SLLiPs which continu-
ously replace worse LK trackers. Similar idea based in simple LLiPs
was demonstrated in [3].

5. Conclusions

We proposed a fast learning algorithm for the SLLiP learnable
tracker [11]. Unlike the original learning procedure, the new algo-
rithm has the anytime property and outputs progressively faster
SLLiPs satisfying a user defined accuracy and range. The learning
process very quickly returns a SLLiP which is slow, but satisfies
the user-defined conditions on accuracy and range. During track-
ing, the learning is run in a background thread and gradually im-
proves the SLLiP tracker.

The method was quantitatively evaluated on approximately
12,000 labeled frames with three different planar objects. The per-
formance and robustness superiority of the SLLiP tracker in compar-
ison with Lucas–Kanade tracker [7], SIFT detector [6] and Jurie’s LLiP
tracker [4] was demonstrated. We encourage the reader to download
sequences, ground-truth data and a MATLAB implementation which is
available at http://cmp.felk.cvut.cz/demos/Tracking/linTrack.
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