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1.	Introduction

The antenna tool presented in this paper is based on the 
well-known Method of Moments (MoM) [1] with the 

Rao-Wilton-Glisson (RWG) [2] basis functions. Used together 
with the modal decomposition formulated by Harrington [3], it 
constitutes a powerful tool for antenna analysis and synthesis. 
The input for the methods is an arbitrary three-dimensional 
surface “triangularized” by Delaunay triangularization [4]. The 
surface is assumed to be made of a perfect electric con ductor 
(PEC) [5]; however, it is possible to include the effects of fi nite 
metal thickness and conductivity in post processing (see below). 
The metal surface must be placed in a vacuum, since the modal 
approach has been developed for a lossless surrounding 
medium, with relative permittivity 1rε = . 
 
 The electric-fi eld integral equation (EFIE) is formulated 
for the metal surface [6]. Two possible treatments of the elec-
tric-fi eld integral equation were implemented in the tool: the 
direct solution by MoM, and the modal decomposition in 
terms of characteristic modes. Both methods work with the 
same discretization, and therefore with the same impedance 
matrix, Z. As was proven in [7], if all modes on the structure 
are considered, both methods will give equal results. Former 
problems with the residual mode were solved recently in [8]. 
The direct MoM solution is therefore benefi cial for checking 
the TCM (Theory of Characteristic Modes) solution. 
 
 In recent years, MATLAB [9] has also provided useful 
new and perspective features, like OOP (object-oriented pro-
gramming, [10]), GPU computing (see, e.g., [11]), etc. All the 
presented algorithms were coded and successfully tested in 
MATLAB Versions R2011b-R2012a. All possible exceptions 
are caught correctly, so the presented version is stable. Some 
routines are included in the LAPACK package [12]. Those who 
are interested in the application presented here should see [13] 
for the compiled version, which is free. 

2.	An	Overview	of	the	Background	Theory

 All necessary theoretical issues are split into three parts: 

• Calculation of the impedance matrix, 

• Solution of the generalized eigenvalue problem, and

• Post processing. 

Based on electric-fi eld-integral-equation formulation [1], an 
impedance operator, Z, is defi ned by

 ( ) ( )0 1 0 1
i s′ ′× = − ×n E r n E r

     ( )0 ′= ×   n Z J r ,   (1)

where ′∈ Ωr , and Ω  is the selected structure to be analyzed. 

 For an arbitrary shape, the impedance operator in Equa-
tion (1) can be obtained only in a numerical way. The struc ture 
Ω  is therefore discretized to M triangles that share N inner – 
RWG – edges. For details about the calculation of the RWG 
basis functions, we refer to the classic paper [2]. Our impedance 
matrix is constructed in accordance with [14]. 
 
 The discretized impedance operator Z can be separated as 

 j= +Z R X ,    (2)

where R and X have to be real and symmetrical matrices. The 
following expressions thus hold:
 

 ( )1
2

∗= +R Z Z ,    (3)

 ( )1
2 j

∗= −X Z Z ,    (4)

where ∗Z  means the complex conjugate of Z. Matrix Z is 
therefore non-Hermitian but symmetrical. 
 
 The generalized eigenvalue problem of the form 

 n n nλ=XJ RJ     (5)

was derived in [3]. The above-stated decomposition consti tutes 
the characteristic basis of eigencurrents { }nJ , with associ ated 
eigenvalues { }nλ . This formulation is known as the Theory of 
Characteristic Modes (TCM), which can also be formulated in 
terms of an energetic functional

 
( )2,

( )
,

n n
m em n

n nn
m n r

W W

P

ω
λ

−〈 〉
= = =

〈 〉
J XJ

J
J RJ

 . (6) 

It is obvious that such a functional minimizes the total net 
power, and maximizes the radiated power. 
 
 Because Equation (4) forms an orthogonal system, we 
apply the following normalization immediately after decom-
position:

 ,m n mnδ=J RJ ,     (7)

 ,m n mn nδ λ=J XJ ,    (8)

 ( ), 1m n n mnλ δ= +J ZJ  ,   (9)

to obtain the orthonormal basis with respect to the radiated 
power. Of course, the above-mentioned normalization not only 
has benefi ts, but also some disadvantages (such as extreme 
scaling of nonradiating modes, etc.). In the following, we 
denote the modal radiated power as n

rP , and the total net stored 

power as ( )2 n n
m eW Wω −  for the nth mode. 
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3.	MATLAB Implementation

 At this point, we start with a description of the schematic 
diagram depicted in Figure 1. For convenience, the setup of 
all necessary input data, the GUI, preTCM, of the software 
TCMapp was coded (see Figure 2). The preTCM routine stores 
the pTCMproject native format that contains all the neces-
sary information to prepare the Theory of Characteristic 
Modes (TCM) task. For better understanding, we added a 
schematic code for the simplest Theory of Characteristic 
Modes decomposition of a thin-wire half-wavelength dipole in 
MATLAB (see Figure 3). 

 There are also other interfaces connected to the core of 
the application. These interfaces are fully automatic, and make 
it possible to perform optimization or the parametric sweep. 
Both preTCM, optimization, and the parametric sweep are 
directly connected to createJob. This part verifi es all input 
data, fi nds computational resources, generates the pTCMin (see 
Figure 1) batch, and then sends the created job to the solver 
manager, runSolver. The runSolver part of the pro gram 
is independent of low-level solvers (which can be placed, for 
example, on remote machines). It also makes it possible to add 
new solvers independently of each other (cur rently, the authors 
are working on a novel GPU solver in MATLAB). 
 
 The frequency samples for which the calculation will be 
performed have to be specifi ed before the start of the calcula-
tion. It is possible to enter a fi xed list of frequencies (see the 
top of Figure 4). This option is useful in all cases where the 
modal resonant frequencies are more or less known. Unfortu-
nately, such frequencies are not usually known a priori for 
most of the optimization tasks, nor for complicated shapes. 
Therefore, the adaptive frequency sampler was developed (see 
the bottom of Figure 4). This powerful feature makes it possi-
ble to automatically refi ne all results near to modal resonances 
( 0nλ = ).

 The low-level solvers can be directly chosen by the user 
(see Figure 5 for particular dialogs), or can be selected by 
the optimizer/parameter-sweep utility. The solution of Equa-
tion (4) may then be easily obtained using the eig routine in 
MATLAB (in fact, MATLAB calls some LAPACK functions: QR 
decomposition, reduction to Hessenberg matrix, etc.). After 
decomposition, all data are sent back to the runSolver service, 
which performs normalization, Equation (9), tracking, and 
sorting (in descending order). 
 
 The tracking routine [15] is somewhat delicate, because 
it can only be executed in a heuristic way (for details, see [15-
16]). The available tracking methods are simple correlation 
(top of Figure 6), improved correlation (middle of Figure 6), 

Figure 1. (top) A schematic diagram of the Theory of 
Characteristic Modes application, and (bottom) the struc-
ture of the pTCMin and pTCMout variables. 

Figure 3. Simple Theory of Characteristic Modes code for 
the thin-wire half-wavelength dipole.

Figure 2. A screenshot of the preTCM tool in MATLAB.

Figure 4. Screenshots of the Theory of Characteristic 
Modes tool in MATLAB: (top) manual frequency sampler, 
and (bottom) adaptive frequency sampler.
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Figure 5. Screenshots of the Theory of Characteristic Modes 
tool in MATLAB showing the available solvers: (top) single, 
(middle) parallel, and (bottom) distributive.

Figure 6. Screenshots of the Theory of Characteristic Modes 
tool in MATLAB showing tracking: (top) simple correlation, 
(middle) method #1, and (bottom) method #2. 

and complex tracking with spline interpolation of missing data 
(bottom of Figure 6). The complex tracking method is sche-
matically depicted in Figure 7 as a pseudocode. This part of the 
code is explicitly presented for the fi rst time. 

 Finally, N modes have to be found in MATLAB and sent 
to the postprocessing part. However, due to numerical 
noise and the fact that the Theory of Characteristic Modes is 
ill-conditioned for nonradiating modes, we usually fi nd far 
fewer modes than N. Fortunately, in practice, only fi ve to 10 
modes are needed for the correct analysis of antenna behavior 
in the selected frequency range. In the case of analysis of an 
electrically small antenna (ESA), only the fi rst one or two 
modes are necessary. 

 The problems of time-consuming inversion and decompo-
sition of the matrix Z were treated by parallel and distributive 
computing in MATLAB [17]. In parallel mode, only up to 
eight (12 in R2012b) threads can be simultaneously used on 
a single machine. An example of a typical speedup of a mid-
sized task (in terms of the size of the mesh and the number 
of frequency samples) is depicted in Figure 8. The distributive 
mode allows the use of a large number of cores (or nodes) to be 
connected through the LAN at a time, e.g., the initial part of the 
distributed solver is depicted in Figure 9. This piece of code can 
be generalized for any cluster calcula tions in MATLAB.

 Note that the MATLAB cluster can easily be established 
thanks to the MATLAB AdminCenter\footnote (however, of 
course, one must own the MATLAB Distributed Computing 

Server and/or Parallel Computing Toolbox). To achieve the best 
possible speedup, the code also has to be properly modi fi ed in 
terms of Amdahl’s law [19]. This means that the par allelized 
part of the software has to be maximized. 

4.	Results	Processing

 The tools for characteristic-modes computation of 
an arbitrary three-dimensional PEC surface antenna were 
described in the previous section. The next step is a post proc-
essing of these results. The eigenvalues and eigenvectors are 
regarded as primary results, since all other modal properties 
can be computed from them. Primary results (including eigen-
values, eigenvectors, the frequency list, the mesh structure, 
solver options, etc.) are stored in the pTCMout variable (see 
Figure 1), which can be saved to a fi le and then used for the 
following operation. 
 
 To give a short summary, we provided two tables (Table 1 
and Table 2), containing the most important post-processing 
functions. In spite of the fact that we briefl y describe them, 

Figure 7. Pseudo-code of the tracking procedure. 

Figure 8. A typical parallel speedup of a medium-sized 
Theory of Characteristic Modes job.

Figure 9. The start of the distributed solver.
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Table 1. Selected post-processing functions.

Function Description
resCurDistrib Calculates the modal current density 
resCharge Calculates the modal charge density 
resCoeff Calculates the modal coeffi cients 
resFF Calculates the modal radiated patterns
resVoltageGap Connects the voltage gap 
resPlaneWave Generates the incident plane wave 
resSumCur Summarizes the selected modal currents 
resSumCharge Summarizes the selected modal charge density 

resQeig Estimates the modal radiation Q from a slope of nλ  

resQz Calculates radiation Q factor from input impedance 
resQM Calculates radiation Q according to [18]

 

Table 2. Selected special display functions.

Function Description
plotMesh plots mesh, quality, tr./pt. numbers 
plotEigCur displays modal currents 
plotEigCharge displays charge densities 
plotEigNum displays eigenvalues 
plotFF displays modal radiated patterns 

each function has complete help, which can be accessed via the 
MATLAB help command, if necessary. 

 Note also that many operations can be performed via 
standard built-in functions (such as plot, surf, etc.). 

4.1	Selected	Examples

 Let us briefl y discuss the application of TCMapp via two 
illustrative examples. 
 
 The fi rst example is the Minkowski fractal in free space 
(see Figure 10). The preTCM accepts our in-house iterated 
function system (IFS) fractal [20] format, FRC [21], which 
represents any iterated function system in a compact form with 
base points, a list of affi ne transformations, and the iteration 
for fractal generation. For simplicity, we analyzed the above-
mentioned fractal generated only for the fi rst iteration. The 
initial size was 100 mm × 60 mm (see Figure 11 for three 
various triangularizations).

  The second example consists of a Franklin antenna [22], 
depicted in Figure 12. This structure was considered only for the 
post-processing calculation of modal effi ciencies and radiation 

Q factors. However, of course the Franklin antenna has to be 
analyzed fi rst in the Theory of Characteristic Modes tool. 

4.2	Geometry	and	Discretization

 There are many possibilities for discretization of the 
selected structure, because only matrices with all vertex points 
[p] and with all triangles [t] are necessary for the computa-
tion of the characteristic modes. One can utilize the MATLAB 
PDE toolbox [23]. However, the PDE toolbox usually creates 
a mesh of poor quality. From the authors’ point of view, the 
Comsol Multiphysics [24] option is better: it has an excellent 
mesh generator. 
 
 In order to improve the control of meshing even more, the 
authors are about to complete an in-house mesh generator based 
on the distmesh code [25]. We thus will be able to generate 
any required three-dimensional structure, including periodic 

Figure 10. The Minkowski iterated function system fractal, 
fourth iteration.

structures, fractals, and T-junctions, and control the details of 
the meshing process. 
 
 In terms of matrix inversion (direct MoM) as well as 
matrix decomposition (Theory of Characteristic Modes), it 
is necessary to control the quality of triangles, which can be 
defi ned as 

 2 2 2
1 2 1 3 2 3

4 3 n
n

n n n n n n

A
ζ =

− + − + −P P P P P P
. (10)

The quality of some fractal motifs is depicted in Figure 11. 
Also, the number of triangles, N, is important, because the time 
complexity of inversion and decomposition is 

( ) ( )2inv N∝  Z   and ( ) ( )3eig , N∝  X R  , respec-

tively. Interestingly, for the preparation of larger meshes, the 
user-defi ned repmat function (utilizing the built-in routine 
bsx) is faster than the original function repmat in Matlab. 
(repmat is exhaustively used to prepare the impedance matrix. 
To accelerate the calculations, the authors used vector operations 
everywhere possible.) 

4.3	Eigenvalues

 Eigenvalues are obtained directly from the decomposi tion 
of the impedance matrix and, with the exception of the tracking, 
they do not require any post processing. These values are 
continuous throughout the frequency range, they are equal to 
zero at resonance, and lie within the range of ( ),−∞ +∞ . 
Eigenvalues defi ne the character (capacitive/inductive) of the 
selected mode at a given frequency. 
 
 However, better representation of eigenvalues are the so-
called eigenangles [26], defi ned as 

 ( )180 arctann uδ λ= − .   (11)

Each eigenangle is in the range of ( )90 ,270° ° , and the mode 
resonates for 180nδ = ° . The eigenangles of the Minkowski 
fractal of the fi rst iteration are depicted in Figure 13, and the 
adaptive frequency solver was used. 

Figure 11. Fractal mesh generation (from coarse to fi ne, 
top to bottom). The quality of the triangles was computed 
according to Equation (10).

Figure 12. The Franklin antenna.
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Table 1. Selected post-processing functions.

Function Description
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resCharge Calculates the modal charge density 
resCoeff Calculates the modal coeffi cients 
resFF Calculates the modal radiated patterns
resVoltageGap Connects the voltage gap 
resPlaneWave Generates the incident plane wave 
resSumCur Summarizes the selected modal currents 
resSumCharge Summarizes the selected modal charge density 

resQeig Estimates the modal radiation Q from a slope of nλ  

resQz Calculates radiation Q factor from input impedance 
resQM Calculates radiation Q according to [18]
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Function Description
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Figure 10. The Minkowski iterated function system fractal, 
fourth iteration.
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Figure 13. The adaptive frequency sampler: (top to bot tom) 
fi rst, second, and fourth iterations.

4.4	Surface	Currents

 The eigenvectors are not yet the actual currents fl owing on 
the antenna’s surface. The computation of the components of 
the surface-current density, , ,x y zJ J J   , over all triangles is 

performed by the function resCurDistrib. It uses the 
eigenvectors as MoM expansion coeffi cients, multiplied by the 
basis functions [2]: for examples, see Figure 14. Our soft ware 
contains many post-processing routines, such as the cal culation 
of the radiation pattern, the modal (and total) radia tion Q factor, 
the modal (and total) radiation effi ciency, and so on. 

4.5	Far-Field	Computation

 The modal currents are the sources of modal radiated 
fi elds and the corresponding modal radiation patterns. Two 
methods were implemented to compute these radiated fi elds: a 
direct method, and the dipole method [27]. The direct method is 
a numerical integration of analytical expressions for the 
radiation vector ( ),θ φF  [5]. The input is a surface-current 
density over all triangles, which fi rst has to be computed by the 
resEichCur function. Since the triangulated surface made of 
the PEC is infi nitesimally thin and the current density is 
assumed to be constant on the triangle, the volume integra tion 
is reduced to a surface summation. The contribution to the 
radiation vector from one triangle is

 ( ) ( ) ( ) ( ) ( ), cos cos sin cos i xi yiJ Jθ θ φ φ θ φ θ= +F  

    ( )sin k
zi iJ e Aθ ′− 

r r   (12)

and 

 ( ) ( ) ( ), sin cos jk
i xi yi iJ J e Aφ θ φ φ φ ′ = − + 

r rF  ,  (13)

where iA  is the area of the ith triangle; xiJ , yiJ , and ziJ  are 
the components of the current density iJ  on the triangle; and 

 ( ) ( ) ( ) ( )cos sin sin cosi i ix y zφ φ θ θ′ = + +  r r .  (14)

The center of the ith triangle is specifi ed by the Cartesian 
coordinates ix , iy , and iz . The total radiation vector is next 
computed as a sum of contributions from all triangles:

 ( ) ( ), ,i
i

θ θθ φ θ φ= ∑F F ,   (15)

 ( ) ( ), ,i
i

φ φθ φ θ φ= ∑F F .   (16)

From the values of the radiation vector, the electric fi eld in 
the far-fi eld region, as well as the radiation intensity, U, can 
be computed. To estimate the modal directivity pattern, the 
radi ated power has to be known. It is obtained by numerically 
integrating U over a sphere. As all the modal currents are 
normalized and the structure is supposed to be lossless, the 
integration should give a unit radiated power. The algorithm is 
very fast, even with high angular resolution (see Table 3).

 The second approach is the dipole method. This method 
regards the current fl owing along a mesh edge as an infi ni-
tesimal dipole. This current is a direct result of the MoM, and 
in the Theory of Characteristic Modes, these currents can be 
associated with characteristic vectors. The advantage of the 
dipole method is that analytical expressions for radiated fi elds 
E and H exist. These expressions were derived without any 
far-fi eld approximation: they are therefore valid for an arbi-
trary distance larger than approximately the length of the 
dipole (edge) [27]. These expressions are thus also suitable 
for the near-fi eld calculations. The total fi elds at an arbitrary 
observation point are computed easily as the sum of contribu-
tions to E and H from all edges (i.e., dipoles). 
 
 The dipole method is more general, because it computes 
E and H fi elds at an arbitrary distance. On the other hand, the 
evaluation is approximately 15-20 times slower than the direct 
far-fi eld computation. 
 
 Let us next consider a visualization of the computed fi elds. 
The modal radiation patterns are plotted by a MATLAB surface 
plot. Note that spherical coordinates should be mapped to 
appropriate Cartesian coordinates before the visualization.

 The comparisons of computation times and computed 
values for different angle steps are in Table 3. Similar conver-
gence was observed for different modes and different struc-
tures. It could be seen that both the maximum directivity and 
the radiated power converged with a smaller angle step. A 
3° step was a reasonable compromise between accuracy and 
computation time. Examples of three-dimensional directivity 
plots and cuts are in Figures 15 and 16. 

4.6	Near	Field

 As was mentioned in the previous section, the dipole 
method is valid for arbitrary distances (greater than the edge 
length). Near-fi eld plots can therefore be created by comput-
ing fi elds at certain points lying on the surface of virtually any 
shape: for example, see the magnitude of the electric fi eld on a 
plane in Figure 17. 

Figure 14. The modal currents (top to bottom: the fi rst, 
second, and third modes at the resonance frequency).

Table 3. Far-fi eld computations for the Minkowski fractal
with different angle steps.

Angle 
Step

Angle 
Points

Max. 
Directivity Time Rad. 

Power
45° 45 2.6521 0.0082 0.9088
20° 190 2.3089 0.0121 0.9836
12° 496 2.2604 0.0194 0.9946
7.2° 1326 2.2433 0.0406 0.9986
4.5° 3321 2.2374 0.0915 1.0000
3° 7381 2.2354 0.1931 1.0004

1.5° 29161 2.2341 0.7478 1.0006
1° 65341 2.2339 1.6610 1.0008

0.5° 260281 2.2338 6.5763 1.0008

AP_Mag_Apr_2013_Final.indd   184 5/18/2013   8:57:55 PM



IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, April 2013� 185

Figure 13. The adaptive frequency sampler: (top to bot tom) 
fi rst, second, and fourth iterations.
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performed by the function resCurDistrib. It uses the 
eigenvectors as MoM expansion coeffi cients, multiplied by the 
basis functions [2]: for examples, see Figure 14. Our soft ware 
contains many post-processing routines, such as the cal culation 
of the radiation pattern, the modal (and total) radia tion Q factor, 
the modal (and total) radiation effi ciency, and so on. 

4.5	Far-Field	Computation

 The modal currents are the sources of modal radiated 
fi elds and the corresponding modal radiation patterns. Two 
methods were implemented to compute these radiated fi elds: a 
direct method, and the dipole method [27]. The direct method is 
a numerical integration of analytical expressions for the 
radiation vector ( ),θ φF  [5]. The input is a surface-current 
density over all triangles, which fi rst has to be computed by the 
resEichCur function. Since the triangulated surface made of 
the PEC is infi nitesimally thin and the current density is 
assumed to be constant on the triangle, the volume integra tion 
is reduced to a surface summation. The contribution to the 
radiation vector from one triangle is

 ( ) ( ) ( ) ( ) ( ), cos cos sin cos i xi yiJ Jθ θ φ φ θ φ θ= +F  

    ( )sin k
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and 
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r rF  ,  (13)

where iA  is the area of the ith triangle; xiJ , yiJ , and ziJ  are 
the components of the current density iJ  on the triangle; and 

 ( ) ( ) ( ) ( )cos sin sin cosi i ix y zφ φ θ θ′ = + +  r r .  (14)

The center of the ith triangle is specifi ed by the Cartesian 
coordinates ix , iy , and iz . The total radiation vector is next 
computed as a sum of contributions from all triangles:

 ( ) ( ), ,i
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θ θθ φ θ φ= ∑F F ,   (15)

 ( ) ( ), ,i
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φ φθ φ θ φ= ∑F F .   (16)

From the values of the radiation vector, the electric fi eld in 
the far-fi eld region, as well as the radiation intensity, U, can 
be computed. To estimate the modal directivity pattern, the 
radi ated power has to be known. It is obtained by numerically 
integrating U over a sphere. As all the modal currents are 
normalized and the structure is supposed to be lossless, the 
integration should give a unit radiated power. The algorithm is 
very fast, even with high angular resolution (see Table 3).

 The second approach is the dipole method. This method 
regards the current fl owing along a mesh edge as an infi ni-
tesimal dipole. This current is a direct result of the MoM, and 
in the Theory of Characteristic Modes, these currents can be 
associated with characteristic vectors. The advantage of the 
dipole method is that analytical expressions for radiated fi elds 
E and H exist. These expressions were derived without any 
far-fi eld approximation: they are therefore valid for an arbi-
trary distance larger than approximately the length of the 
dipole (edge) [27]. These expressions are thus also suitable 
for the near-fi eld calculations. The total fi elds at an arbitrary 
observation point are computed easily as the sum of contribu-
tions to E and H from all edges (i.e., dipoles). 
 
 The dipole method is more general, because it computes 
E and H fi elds at an arbitrary distance. On the other hand, the 
evaluation is approximately 15-20 times slower than the direct 
far-fi eld computation. 
 
 Let us next consider a visualization of the computed fi elds. 
The modal radiation patterns are plotted by a MATLAB surface 
plot. Note that spherical coordinates should be mapped to 
appropriate Cartesian coordinates before the visualization.

 The comparisons of computation times and computed 
values for different angle steps are in Table 3. Similar conver-
gence was observed for different modes and different struc-
tures. It could be seen that both the maximum directivity and 
the radiated power converged with a smaller angle step. A 
3° step was a reasonable compromise between accuracy and 
computation time. Examples of three-dimensional directivity 
plots and cuts are in Figures 15 and 16. 

4.6	Near	Field

 As was mentioned in the previous section, the dipole 
method is valid for arbitrary distances (greater than the edge 
length). Near-fi eld plots can therefore be created by comput-
ing fi elds at certain points lying on the surface of virtually any 
shape: for example, see the magnitude of the electric fi eld on a 
plane in Figure 17. 

Figure 14. The modal currents (top to bottom: the fi rst, 
second, and third modes at the resonance frequency).

Table 3. Far-fi eld computations for the Minkowski fractal
with different angle steps.

Angle 
Step

Angle 
Points

Max. 
Directivity Time Rad. 

Power
45° 45 2.6521 0.0082 0.9088
20° 190 2.3089 0.0121 0.9836
12° 496 2.2604 0.0194 0.9946
7.2° 1326 2.2433 0.0406 0.9986
4.5° 3321 2.2374 0.0915 1.0000
3° 7381 2.2354 0.1931 1.0004

1.5° 29161 2.2341 0.7478 1.0006
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0.5° 260281 2.2338 6.5763 1.0008
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Figure 15. Radiation patterns for the fi rst three modes for 
the Minkowski fractal motif in free space.

Figure 16. The radiation patterns for the fi rst mode of the 
Minkowski fractal motif in free space: (top) the Ludwig3 
horizontal component, (bottom) the Ludwig3 vertical 
component.

Figure 17. The normalized magnitude of the electric fi eld 
for mode 1 on a plane 25z = − mm of the Minkowski frac tal, 
shown on a logarithmic scale.

4.7	Radiation	Effi	ciency

 While we consider the PEC for the Theory of Characteris-
tic Modes decomposition, the modal radiation effi  ciency [5] 
can be estimated for good conductors (such as cop per, 
aluminum, etc.). We demonstrated the results for the case of the 
Franklin antenna in the frequency range 0.5 GHz to 3 GHz (see 
Figure 18). Modal effi ciencies were computed for the 
conductivity of copper, 75.85 10σ = × 1Sm− , and a metalli-
zation thickness of 50t = µm. 

4.8	Radiation	Q Factor

  Based on [28] and [29], the modal radiation Q factors can 
also be rigorously calculated [18]. The results for the fi rst seven 
modes are depicted in Figure 19. The Franklin antenna from the 
previous section was used. 

5.	Closing	Comments

  The presented software can be used for educational pur-
poses, as well as for effective antenna design. Nowadays, the 
major disadvantage is that the modal decomposition is time 
consuming. This issue can be treated by using a large number 
of high-speed processors. For this reason, the authors predict a 
growing interest in modal methods. 
 
 To demonstrate the usefulness of the Theory of Character-
istic Modes, we concluded with two complex struc tures that 
were designed and manufactured with the help of the TCMapp 
software. Both structures were fractal shapes, depicted in 
Figure 20. While both of them were simulated in professional 
CST MWS software [30], our software gave the fi rst (and very 
important) insight into their physical behavior. Antenna design 
is more effective based on this modal infor mation. For details, 
we refer the reader to [31] and [21]. 

 Together with the authors’ other activities (in the fi elds 
of optimization, Delaunay triangularization, and electrically 

Figure 19. The modal radiation Q factor for the Franklin 
antenna.

Figure 18. The modal radiation effi ciency for the Franklin 
antenna: 75.85 10σ = × 1Sm− , 50t = µm.

Figure 20. The manufactured fractal antennas that were 
analyzed with the Theory of Characteristic Modes soft ware.
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software. Both structures were fractal shapes, depicted in 
Figure 20. While both of them were simulated in professional 
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small antenna design), the MATLAB toolbox elements con-
sisting of the new RWG MoM, the Theory of Characteristic 
Modes simulator with comprehensive post processing, the 
particle-swarm optimizer, the modal radiation Q factor, and 
the radiation-effi ciency packages, are all scheduled towards the 
end of 2013. The MoM and the Theory of Characteristic Modes 
can be further generalized towards multilayered or dielectric 
structures, which can be the next challenge to inter ested readers 
and scientists in the fi eld. 
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small antenna design), the MATLAB toolbox elements con-
sisting of the new RWG MoM, the Theory of Characteristic 
Modes simulator with comprehensive post processing, the 
particle-swarm optimizer, the modal radiation Q factor, and 
the radiation-effi ciency packages, are all scheduled towards the 
end of 2013. The MoM and the Theory of Characteristic Modes 
can be further generalized towards multilayered or dielectric 
structures, which can be the next challenge to inter ested readers 
and scientists in the fi eld. 
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