
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Algebraic computations in quantum logics

Doctoral Thesis

Jeannine J.M. Gabriëls

Supervisor: Prof. Ing. Mirko Navara, DrSc.

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of Study: Mathematical Engineering

Prague, October 2015

To my parents Georgette Kerschot
and Constant Gabriëls

A person, who has seriously set a goal
for himself, will definitely reach it.

Benjamin Disraeli (1804 – 1881), British politician

Thanks
This thesis is the final work of my study at the Czech Technical University in Prague1.
There has been a lot of struggle and doubt along the way, I was working full–time in
a software company while doing the research for this thesis. I would like to use these
first pages to express my gratitude towards those who have helped me to find my path
during the last years.

First of all, I want to express my deepest thanks to Prof. Ing. Mirko Navara, DrSc.,
who introduced me in the interesting topic of quantum logic and who supported me
continuously in this challenging field. Thank you for your help and support. As you
know, until very recently, I doubted that I could do this, and I could certainly not have
done it without your help. It was great to work with you and I could not have wished
for a better supervisor than you!

My son Joris Verschaeve, Ph.D., who not only introduced me to my first little steps
in quantum mechanics, but he was a very great help in C++ programming.

Dr. Ulrike Vorhauer, who never doubted at my capabilities and taught me to write
scientific work in English and corrected my writing style. Also my sons Joris and Peter
gave me very useful tips in writing, “Moeke, there is no Leitmotiv in your thesis!”. This
made me thinking on it over and over.

Stephen Gagola III for his solutions at the moment I almost resigned to find an answer
to a problem that kept me busy.

Prof. Pavel Pták with his questions, that made me almost lunatic but they were a
challenge and a reason not to resign. He made me aware that I had to struggle more.

Then, I also want to thank all the staff members of the Faculty of Electrical Engineer-
ing. I have always appreciated the friendly and helpful atmosphere.

And last but not least I want to thank all my friends and family especially my husband,
Romain Verschaeve, who supported me and tolerated the spoiled leisure time and ruined
holidays.

1Supported by the Czech Technical University in Prague under project SGS12/187/OHK3/3T/13.

Anotace

Matematický popis kvantových jev̊u vyžaduje obecněǰśı strukturu jev̊u, než je Booleova
algebra. Birkhoff a von Neumann navrhli pro tento účel pojem ortomodulárńıho svazu.
Jeho typickou vlastnost́ı je existence tzv. nekomutuj́ıćıch jev̊u, které nejsou současně
pozorovatelné (např. poloha a hybnost, podle Heisenbergova principu neurčitosti).

Dlouho otevřenou otázkou z̊ustává, zda lze rozhodnout o ekvivalenci dvou formuĺı v
ortomodulárńıch svazech (“word problem”). V Booleových algebrách to lze snadno doćılit
převedeńım formuĺı na jednoznačnou normálńı formu. K tomu je potřebná komutativita,
asociativita a distributivita booleovských operaćı (konjunkce a disjunkce).

V ortomodulárńıch svazech odpov́ıdaj́ıćı svazové operace (pr̊usek a spojeńı) nesplňuj́ı
distributivitu. To znemožňuje převod na normálńı formy. Disertace je věnována hledáńı
alternativńıch postup̊u. Např. pr̊usek je jen jedna ze 6 operaćı v ortomodulárńıch svazech,
které zobecňuj́ı booleovskou konjunkci. V práci je studována otázka, zda některé z celkem
96 binárńıch operaćı v ortomodulárńıch svazech umožňuj́ı zavedeńı normálńıch forem
podobně jako v klasické logice.

Prvńı otázkou bylo, které z operaćı splňuj́ı asociativńı identitu, př́ıpadně za předpo-
kladu, že některé argumenty komutuj́ı. Dále je studována monotonie, která souviśı s
distributivitou vzhledem k pr̊useku a spojeńı. Závěr je, že neexistuje dvojice operaćı
umožňuj́ıćıch normálńı formy jako v booleovském př́ıpadě. Závěrečná kapitola se zabývá
identitami podobnými těm, které studoval Moufang v souvislosti s algebrami kvaternion̊u
a oktonion̊u. Jsou obecněǰśı než asociativita, a t́ım otv́ıraj́ı možnosti pro daľśı postup.

Vedleǰśım výsledkem práce je př́ıspěvek k vlastnostem některých operaćı (např. Sasa-
kiho projekce). Tyto nové nástroje na zjednodušeńı algebraických výpočt̊u dávaj́ı šanci
na vypracováńı algoritmických postup̊u obecněǰśıch než současné specializované pro-
gramy.

Abstract

Mathematical description of quantum phenomena requires an event structure more gen-
eral than a Boolean algebra. For this purpose, Birkhoff and von Neumann proposed
the notion of an orthomodular lattice. Its typical feature is the existence of so–called
non–commuting events, which are not simultaneously observable (like position and mo-
mentum, according to Heisenberg’s uncertainty principle).

There is an old open problem whether the word problem for orthomodular lattices
is solvable. Is it possible to decide whether two formulas are equivalent? In Boolean
algebras, an easy positive answer is given by a transformation of the formula to a unique
normal form. This requires the commutativity, associativity, and distributivity of the
Boolean operations (disjunction and conjunction).

In orthomodular lattices, the corresponding lattice operations (join and meet) violate
distributivity. This disables the use of normal forms. We looked for alternative ap-
proaches. E.g., the join is only one of six orthomodular lattice operations generalizing
the disjunction. In the thesis, we study the question whether some of the 96 binary
operations in orthomodular lattices admit normal forms similar to the classical logic.

The first question was which operations satisfy the associative identity, eventually
under the assumption that some variables commute. Then we studied monotonicity
because it is related to distributivity over the meet and join. The conclusion is that
there is no pair of operations in orthomodular lattices admitting “Boolean–like” normal
forms. In the last chapter we study “Moufang–like” identities, which were inspired by
the algebras of quaternions and octonions. These identities generalize associativity and
may enable further progress.

As a by–product, we proved interesting, yet unknown, properties of some orthomo-
dular lattice operations (e.g., the Sasaki projection). These new tools simplify algebraic
computations and give a chance to develop algorithms more general than the current
specialized software.

Table of contents

Thanks i

Anotace iii

Abstract v

Table of contents vii

List of tables xi

List of figures xiii

1 Contribution and outline 1

2 Aims of the doctoral thesis 3

3 Previous results: Preliminaries 5
3.1 Fundamentals . 5
3.2 Quantum logic . 8

3.2.1 Orthomodular lattices . 9
3.2.2 Intervals in orthomodular lattices 10

3.3 Division algebras . 11
3.4 Non-associative algebras . 12
3.5 Hasse and Greechie diagrams . 13

4 Previous results: Free algebras 15
4.1 Free Algebras . 15
4.2 The word problem . 16

vii

4.3 Free lattices . 17
4.3.1 First results . 18

5 Previous results: The free orthomodular lattice on two free generators 21
5.1 Fundamentals . 21
5.2 Computation in F(x,y) and the role of computers in proofs 24

5.2.1 Computation in F(x,y) and its set representation 24
5.3 Orthomodular lattices versus Boolean algebras 25

6 Orthomodularity and associativity 29
6.1 First results – skew Boolean algebras . 29
6.2 Associativity of binary operations . 30
6.3 Associativity of binary operations, by using commutation 36

6.3.1 Conditional associativity by using commutation of one pair of ar-
guments . 36

6.3.2 Associativity for one argument commuting with the two others . . 40
6.4 Conclusions . 42

7 Monotonicity of binary operations 43
7.1 Sufficient conditions . 44
7.2 Necessary conditions . 45

7.2.1 The use of free algebras – general approach 45
7.2.2 The Boolean part of operations . 45
7.2.3 The MO2 part of operations . 47
7.2.4 The free orthomodular lattice with three (non-free) generators . . 49
7.2.5 The free orthomodular lattice generated by two free generators . . 49
7.2.6 Kalmbach embedding . 49

7.3 Summary of results . 54
7.4 Monotonicity in the second variable . 54
7.5 Further results . 55
7.6 Conclusions . 56

8 Non-associative operations on orthomodular lattices 59
8.1 Alternative Algebras . 59
8.2 Associativity and parentheses . 60
8.3 Weaker forms of associativity in orthomodular lattices 61
8.4 Tools . 65
8.5 Examples . 65
8.6 Identities generalizing associativity . 66

8.6.1 Results obtained without using commutation 66
8.6.2 Results obtained by using commutation 69
8.6.3 Summary of results . 74

8.7 Other weaker laws of associativity involving the orthocomplement 98
8.8 Conclusions . 100

9 Conclusions and a glance on future work 105

Appendix 111
Beran’s numbers and their expressions . 111
Associative and conditionally associative operations 114
Monotonicity of orthomodular operations . 116
Weak–associative operations on lattices . 117

Sufficient conditions for associativity equations in Moufang–like constel-
lations . 118

Bibliography 119

Author’s Publications 125
Papers related to the topic of the thesis . 125
Papers not related to the thesis . 125
Conference papers related to the thesis . 126
Talks related to the thesis . 126

Index 127

ix

List of tables

5.1 Boolean operations and the Beran’s numbers of their six orthomodular
counterparts. 26

5.2 Orthomodular implications. 26
5.3 Orthomodular disjunctions and conjunctions. 27

6.1 The six associative orthomodular lattice operations. 31
6.2 The orthomodular operations extending the eight associative Boolean op-

erations. 31
6.3 Results for the proof of Proposition 6.2.5. 34
6.4 The duals and expressions with interchanged arguments, by their Beran’s

numbers. 38
6.5 Counterexamples for operations of Table 6.3, if only two arguments com-

mute. 38
6.6 Validity of the associativity identity for operations, if one variable com-

mutes with the other two. 42

7.1 Boolean operations not non–decreasing in the first argument. 46
7.2 Boolean operations non–decreasing in the first argument. 46
7.3 Beran’s numbers of binary operations, for which the Boolean counterpart

is not non–decreasing in the first argument. 47
7.4 Beran’s numbers of the operations which do not fulfil 0 ∗ y ⩽ x ∗ y. 48
7.5 Beran’s numbers of the operations which do not fulfil x ∗ y ⩽ 1 ∗ y. 48
7.6 Binary operations, not fulfilling 0 ∗ z ⩽ x ∗ z ⩽ y ∗ z ⩽ 1 ∗ z. 53
7.7 Operations non–decreasing in both variables. 54
7.8 Operations non–increasing in both arguments. 56

8.1 Nonassociative operations satisfying (L), (R) and (F) with their results. . 63

xi

8.2 The three typical operations and the Beran’s numbers of their analogues. 65
8.3 Operations fulfilling Moufang identities. 74
8.4 Results for the swapped projection. 75
8.5 Summary of results for Argument 23.1. 76
8.6 Counterexamples for Argument 23.1. 76
8.7 Summary of results for Argument 23.2. 77
8.8 Counterexamples for Argument 23.2. 77
8.9 Summary of results for Argument 23.3. 78
8.10 Counterexamples for Argument 23.3. 78
8.11 Summary of results for Argument 23.4. 79
8.12 Counterexample for Argument 23.4. 79
8.13 Summary of results for Argument 23.5. 80
8.14 Counterexamples for Argument 23.5. 80
8.15 Summary of results for Argument 23.6. 81
8.16 Counterexamples for Argument 23.6. 82
8.17 Results for the Sasaki projection. 82
8.18 Summary of results for Argument 18.2. 84
8.19 Counterexamples for Argument 18.2. 85
8.20 Summary of results for Argument 18.3. 85
8.21 Summary of results for Argument 18.5. 87
8.22 Counterexamples for Argument 18.5. 88
8.23 Summary of results for Argument 18.6. 88
8.24 Counterexamples for Argument 18.6. 89
8.25 Results for the lower commutator. 89
8.26 Counterexample for Argument 16.1. 90
8.27 Counterexamples for Argument 16.2. 90
8.28 Counterexamples for Argument 16.3. 91
8.29 Counterexample for Argument 16.4. 91
8.30 Graphical overview of all Arguments of the swapped projection. 94
8.31 Graphical overview of all Arguments of the Sasaki projection. 96
8.33 Graphical overview of all Arguments of the lower commutator 97
8.34 Sufficient conditions for the swapped projection and the Sasaki projection. 100
8.35 General graphs, no commuting arguments are assumed, for the swapped

projection and the Sasaki projection. 102

xii

List of figures

3.1 Hasse diagram and Greechie diagram of the Boolean algebra 24. 14

4.1 Diagram of the mappings from Definition 4.1.1 15

5.1 The (simplified) Hasse diagram of F(x, y). 22
5.2 Hasse diagram of MO2. 23
5.3 Hasse diagram of the Boolean algebra 24. 23
5.4 Greechie diagram of F(x, y). 23
5.5 The symbol for F(x, y). 24

6.1 Hasse and Greechie diagram of the orthomodular lattice D16. 35
6.2 Hasse diagram of lattice 23 of compatibility assumptions. 37
6.3 Hasse and Greechie diagrams of L22. 39

7.1 The pentagon (P). 50
7.2 Greechie and Hasse diagram of 22 ⊕ 23. 51
7.3 Results for non–decreasing binary operations. 55
7.4 Results for monotonicity of binary operations. 56

8.1 A scheme of the five ways of putting parentheses in a four-variable ex-
pression. 62

8.2 The Tamari lattice made by 14 ways of putting parentheses on a five-
variable expression. 62

xiii

Chapter 1

Contribution and outline

In abstract algebra, the answer to the question whether two words represent the same
element can be non–trivial. Finding an algorithm to decide this question is referred as
the word problem. One way to find such an algorithm is to bring the expressions to
their normal forms. A normal form also called canonical form of an object is a standard
way of presenting that object.

M. Dehn [9] was one of the first who described the word problem for groups. He was
aware that the word problem would be complex to solve. Ph. Whitman [57, 58] not
only proved the existence of normal forms in free lattices, he also gave an algorithm
to calculate them. R. Freese and J. B. Nation [14] were able to implement Whitman’s
algorithms and developed also own algorithms for deciding if a lattice term has a lower
cover.

The main trouble to find normal forms in orthomodular lattices is the shortage of dis-
tributivity, first positive results were found independently by D. Foulis [12] and S. Hol-
land [30], let L be an orthomodular lattice and a, b, c ∈ L, such that any one of them
commutes with the other two then, in this particular case, the distributive laws hold, this
is known as the Foulis–Holland theorem. The free lattice generated by such three vari-
ables is distributive, this is called the focussing technique described by R. Greechie [21].

In Section 3 we summarise the basic theory and fundamental background, which will
be used in the following chapters. This section is far from complete, our goal is to give
the reader, not familiar with lattice theory, a brief introduction. The basic work par
excellence for the theory of orthomodular lattice is the book by G. Kalmbach [37].

In the first part of Section 4 we describe the free algebras with non–free generators
which we use frequently in this thesis. A second part of Section 4 contains a brief
overview of the results obtained about the word problem.

1

In Section 5 we present the free orthomodular lattice F(x, y) which is an important in-
strument throughout our discussion. The complete description of this lattice is presented
in the book by L. Beran [3].

The paper [47] by M. Navara describes how we can introduce the orthomodular lattice
F(x, y) for our purposes, moreover he describes the possibility to use the free orthomo-
dular lattices on more than two non–free generators. M. Hyčko implemented the method
of M. Navara in a computer program [33] used throughout our work.

Not only the failing distributivity law makes it difficult to find normal forms but also
the lack of associativity is a deficit. In Section 6 we inquire the associativity of orthomo-
dular binary operations. First results can be found in the papers by H. Kröger [38] and
L. Beran [2]. More recent publications on the associativity of orthomodular implications
are the papers by B. D’Hooghe, J. Pykacz [10] and N. Megill, M. Pavičić [43] on the
associativity of some orthomodular lattice implications.

We first identify the associative orthomodular lattice operations, there are only few
fulfilling the associative law, therefore we continue the study of associativity in ortho-
modular lattices making some requirements under which the operations could fulfil the
associativity equation.

In Section 7 we studied the monotonicity properties of orthomodular lattice operations.
It is known that the Sasaki projection is monotone and preserves arbitrary suprema, but
little results about monotonicity of the other binary orthomodular lattice operations are
known.

In Section 8 we continue with some forms of weak associativity in orthomodular lat-
tices. Weak associativity and alternative algebras appear frequently in the literature,
but little is found about the special cases we studied in this thesis.

Parts of Sections 6 and 7 are based on joint research with M. Navara, [16] and [17]
respectively. Section 8 falls partially back on the joint study with M. Navara and
S. Gagola III [18].

The last Section 9 concludes our results and suggests directions for further study.

2

Chapter 2

Aims of the doctoral thesis

Mathematical description of quantum phenomena requires an event structure more gen-
eral than a Boolean algebra. For this purpose, Birkhoff and von Neumann proposed
the notion of an orthomodular lattice. Its typical feature is the existence of so-called
non-commuting events, which are not simultaneously observable (like position and mo-
mentum, according to Heisenberg’s uncertainty principle).

There is an old open problem whether the word problem for orthomodular lattices
is solvable: Is it possible to decide whether two formulas are equivalent? In Boolean
algebras, an easy positive answer is given by a transformation of the formula to a unique
normal form. This requires the commutativity, associativity, and distributivity of the
Boolean operations (disjunction and conjunction).

The scope we set ourselves in this thesis is following

1. Find operations in orthomodular lattices which satisfy the commutative or asso-
ciative law, eventually other similar laws.

2. From the above operations, find pairs which satisfy the distributive laws or other
identities which could be useful in simplification of formulas, in the best case, in
finding normal forms in orthomodular lattices.

3. Discuss the possibilities of automated simplification of formulas in orthomodular
lattices (extension of the current methods).

In orthomodular lattices, the corresponding lattice operations (join and meet) violate
distributivity. This disables the use of normal forms. We looked for alternative ap-
proaches. E.g., the join is only one of six orthomodular lattice operations generalizing
the disjunction. In the thesis, we study the question whether some of the 96 binary
operations in orthomodular lattices admit normal forms similar to the classical logic.

The first question was which operations satisfy the associative identity, eventually
under the assumption that some variables commute. Then we studied monotonicity

3

because it is related to distributivity over the meet and join. The conclusion is that
there is no pair of operations in orthomodular lattices admitting “Boolean-like” normal
forms. In a later chapter we study “Moufang-like” identities, which were inspired by the
algebras of quaternions and octonions. These identities generalize associativity and may
enable further progress.

As a by-product, we proved interesting, yet unknown, properties of some orthomodu-
lar lattice operations (e.g., the Sasaki projection). These new tools simplify algebraic
computations and give a chance to develop algorithms more general than the current
specialized software.

4

Chapter 3

Previous results: Preliminaries
In this section, some fundamental theory and definitions are presented, as far as they are
not defined later. We restrict ourselves to the concepts used in this thesis. The subject
matter is based on the books by G. Kalmbach [37] and L. Beran [3] on orthomodular
lattices. For lattices in general we used the book by G. Grätzer [20]. For theory of nonas-
sociative algebras, quaternions and octonions, the books by R. Schafer [53], J. Conway
and D. Smith [7] are used.

3.1 Fundamentals
Partial order, posets and lattices

A partially ordered set or poset is a pair (P, ⩽) with a set P and a reflexive, antisymmetric
and transitive relation ⩽ on the elements of P . We call a poset P bounded if P has a
smallest element, the zero denoted as 0, and a maximal element, the one denoted as 1.
An orthocomplementation on a bounded poset P is an operation

′ ∶ P → P
x↦ x′

with the following properties

x′ is the lattice–theoretical complement of x {
x ∧ x′ = 0 ,
x ∨ x′ = 1 ,

′ is order–reversing x ⩽ y⇒ y′ ⩽ x′ ,
′ is an involution x′′ = x .

The binary operations ∧ (meet) and ∨ (join) are defined as the infimum (greatest lower
bound) and supremum (least upper bound) respectively.

If for all elements x, y of a partially ordered set C either x ⩽ y or x ⩾ y holds, then we
call C a chain.

5

A poset for which every two–element subset has a supremum and an infimum is a
lattice. We call it a complete lattice if this is the case for any subset. Similarly to bounded
posets, a bounded lattice has a smallest element, the zero, and a maximum element, the
one. A bounded poset P with an orthocomplementation is called an orthoposet. An
ortholattice is a bounded lattice on which an orthocomplementation is defined. In the
following we will denote a poset by P and a lattice by L.

A lattice (L, ⩽) can equivalently be defined as (L,∧,∨), with the same set L and two
idempotent, commutative and associative operations, the join ∨ and the meet ∧, for
which the absorption laws hold

x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x

for all x and y in L.
A sublattice is a non–empty subset of a lattice, which is a lattice on its own with the

restriction of the same meet and the same join as those of the original lattice.

Remark 3.1.1
We often write (L,∧,∨, ′ , 0, 1), or simply L, for an ortholattice.

A distributive lattice is a lattice in which the two distributive laws hold for every triple
x, y and z

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

A Boolean algebra is a bounded distributive lattice in which every element has a unique
complement.
Because of the symmetry in the definitions of supremum and infimum, zero and one,

the following holds: if in an equation that holds for all posets, we interchange the symbols
∧ and ∨, interchange zero and one and reverse all inequalities, then we obtain another
valid statement, called the dual, which holds for all posets with zero and one. This
property is called the Principle of duality.

The modular law

In an arbitrary lattice L the following inequality always holds for every x, y, z ∈ L:

x ⩽ z ⇒ x ∨ (y ∧ z) ⩽ (x ∨ y) ∧ z .

In a modular lattice also the inverse inequality holds. Thus a modular lattice is a lattice
in which the modular law holds, which is defined as

x ⩽ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z ,

for all x, y, z ∈ L, it can be interpreted as a weak distributive law.

6

The modular law can also be written as x ⩽ z implies x∨ (y ∧ z) ⩾ (x∨ y)∧ z, or as an
equation (the modular identity):

(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ (x ∧ z)) .

It is clear that every distributive lattice is a modular lattice. A modular ortholattice is
a lattice which is orthocomplemented and modular.

Homomorphisms

An order homomorphism is a map between two partially ordered sets that preserves the
order of the elements. Let P1 and P2 be posets and ϕ ∶ P1 → P2 a mapping, so that for
all x and y in P

x ⩽ y⇒ ϕ(x) ⩽ ϕ(y)

holds, then ϕ is an order homomorphism. If ϕ is bijective and the reverse mapping is
still a homomorphism, then it is called an isomorphism. A homomorphism ϕ ∶ P1 → P2

is an embedding if for all x and y in P1 if the following

x ⩽ y⇔ ϕ(x) ⩽ ϕ(y)

holds. These definitions applied to lattices are equivalent, in general the definition on
lattices is formulated as follows: let L1 and L2 be lattices. A map ϕ ∶ L1 → L2 is called
a lattice homomorphism if ϕ respects the meet and join. That is, for all x, y ∈ L1 both

ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y)

ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y)

hold. A homomorphism ϕ ∶ L1 → L2 is called an isomorphism if ϕ is injective and the
map ϕ−1 is also a homomorphism. If two lattices L1 and L2 are isomorphic, we write
L1 ≅ L2. A lattice homomorphism ϕ ∶ L1 → L2 is an embedding if ϕ(L1) is a sublattice
of L2 and ϕ ∶ L1 → ϕ(L1) is an isomorphism [51].

Varieties

Let I be a set of lattice identities (equations), and denote by Mod(I) the class of
all lattices that satisfy every identity in I. A class K of lattices is a lattice variety if
K = Mod(I) for some set of lattice identities I. The class of all lattices L is a lattice
variety since L = Mod(∅). The following lattice varieties are frequently encountered:

T = Mod{x = y} all trivial lattices,
D = Mod{(x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z)} all distributive lattices,
M = Mod{(z ∧ y) ∨ (x ∧ y) = ((z ∧ y) ∨ x) ∧ y} all modular lattices.

7

Algebras

The term algebraic structure or algebra refers to a pair (A,R) of a set A and a set R,
where the set A is often called the carrier or underlying set and R is a set of a finite
number of operations on the elements of A. By an arity of a function (operation) f we
mean the number of arguments, or operands on which f operates on. The most used are
unary operations, they have one argument, and binary operations with two operands.
Nullary operations have no operands and are referred as constants.
Similar to sublattices, we can define a subalgebra as a non–empty subset of the carrier

set of an algebra, which is an algebra on its own and which is closed under the same
operations as those of the original algebra.

3.2 Quantum logic

G. Birkhoff and J. von Neumann [4] introduced quantum logic because the rules of
classical Boolean logic could not explain the principles of quantum mechanics, mainly
because the distributive law often fails in quantum mechanics.

A Hilbert space H is a linear space with scalar product, in which each Cauchy sequence
has its limit value in it.

G. Birkhoff and J. von Neumann developed the logic of quantum mechanics by study-
ing the structure of the lattice of projection operators P(H) on a Hilbert space H.
Therefore they are considered as the pioneers of a new field in algebra; the theory of
quantum logic. From a strict formal view, quantum logic can be characterised as the
logical structure based on the algebra of orthomodular lattices [11].

The lattice P(H) is an orthomodular lattice (see Section 3.2.1), also called a Hilbert
lattice. It is not distributive, unless H is one–dimensional. The lattice P(H) is modular
in case H has a finite dimension. It is orthomodular in case of infinite dimension. This
was the base for the introduction of orthomodular posets and orthomodular lattices in
quantum mechanics systems.

Let V and W be vector spaces over the same field K. A mapping f ∶ V →W is said
to be linear if for any two vectors x and y in V and any two scalars α and β in K, both
additivity and homogeneity are satisfied.

f(αx + βy) = αf(x) + βf(y) .

The mapping is called multilinear if it is a function of several variables that is linear
separately in each variable.

A function f ∶ R+ → R+, where R+ ∶= [0,∞), is called submultiplicative if it satisfies
the inequality

f(xy) ⩽ f(x)f(y) ∀x, y ∈ R+ .

It is called multiplicative if equality holds.

8

3.2.1 Orthomodular lattices

An orthomodular lattice L is an ortholattice in which, for each x, y ∈ L, the orthomodular
law

x ⩽ y ⇒ y = x ∨ (x′ ∧ y)

holds. The orthomodular law can be seen as a weak distributive law, weaker than the
modular law.

A characterization of quantum logic is the lack of the distributivity law in general, but
also the absence of the associativity law, for operations other than meet or join, causes
difficulties to perform calculations.

Commuting elements

An important relation in a lattice1 L is the commutation relation, also called compatibility
relation. For two elements x, y ∈ L, we say “x commutes with y” or “x is compatible with
y” and write xC y, it is defined as:

xC y if x = (x ∧ y) ∨ (x ∧ y′) .

If L is an orthomodular lattice, then this relation is reflexive (x C x) and symmetric
(x C y ⇒ y C x). The commuting relation is transitive if and only if L is a Boolean
algebra, in this case any pair of elements commutes. A Boolean algebra B can thus also
be defined as an orthomodular lattice in which

x = (x ∧ y) ∨ (x ∧ y′)

for each x and y in B.
Some useful lemmas dealing with commuting elements are the following:

Lemma 3.2.1 (Beran, Theorem II.2.3 [3])
Suppose L is an ortholattice and x and y in L. If either x ⩽ y or x ⩽ y′ then x and y
commute.

Lemma 3.2.2 (Beran, Theorem II.3.7 [3])
If L is an orthomodular lattice, x, y in L then the following are equivalent:

(i) x and y commute
(ii) x ∧ (x′ ∨ y) = x ∧ y

(iii) x ∨ (x′ ∧ y) = x ∨ y.

Proposition 3.2.3 (Beran, Theorems II.4.2 and II.4.4 [3])
In any orthomodular lattice, if x commutes with y and with z, then x commutes with
y′, with y ∨ z and with y ∧ z, as well as with any (ortho–)lattice polynomial in variables
y and z.

1The commutation relation is also defined on orthoposets.

9

The Foulis–Holland Theorem

Some methods to overcome the absence of distributivity were developed by D. Foulis [12]
and S. Holland [30] independently, the so–called Foulis–Holland Theorem provides a weak
but very useful alternative to the distributive law.

Theorem 3.2.4 (Foulis, Holland [12, 30])
Let L be an orthomodular lattice and x, y, z ∈ L such that one of them commutes with
the other two, then both distributive laws hold

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) ,
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

The proof can be found in the book by L. Beran [3, Theorem II.3.10, p. 48].

We call a Foulis–Holland set a non–empty subset of an orthomodular lattice S, such
that for every triple (x, y, z) of distinct elements of S, one of them commutes with the
other two.

A second tool to overcome the lack of distributivity in orthomodular lattices is the
Focusing technique by R. Greechie [21, 22].

Theorem 3.2.5 (Greechie [21, 22])
If S is a Foulis–Holland set, then the sublattice generated by S is distributive.

A third technique was developed by M. Navara [47]. It uses the free orthomodular
lattice F(x, y) generated by two free generators x and y. This technique will be discussed
in detail in Section 5 and 5.2 and will be used throughout this thesis.

3.2.2 Intervals in orthomodular lattices

Intervals in orthomodular lattices are defined in the usual way:

[x, y] = {a ∈ L ∶ x ⩽ a ⩽ y} for x, y ∈ L and x ⩽ y .

The interval [0, z], z ∈ L, is an orthomodular lattice on its own, if the orthocomplement
of r ∈ [0, z] is defined as r♯ ∶= r′ ∧ z [37].

An element κ of an orthomodular lattice L is called a central element if κ commutes
with every element of L, and the set

C(L) ∶= {κ ∈ L ∶ κC x,∀x ∈ L}

is called the center of L. Note that the zero and the one is always in the center.
The center of L is a subalgebra of L and a Boolean algebra on its own [37]. One can

prove that for a central element c ∈ C(L) and z ∈ L, c ∧ z ∈ C([0, z]) holds. But this

10

does not hold in the opposite direction: not every element of C([0, z]) can be written
as c ∧ z for some c ∈ C(L) [27].

The theorem of M. D. MacLaren [40] is important, it treats the decomposition of
orthomodular lattices into a direct product of intervals. This theorem allows us to use
calculations in the free orthomodular lattice F(x, y) on two free generators x and y. We
spend special attention on F(x, y) in Section 5.

Theorem 3.2.6 (MacLaren [40])
Let κ be a central element of an orthomodular lattice L. Then

L ≅ [0, κ] × [0, κ′] .

This isomorphism is given by x↦ (x∧κ , x∧κ′), the orthocomplementation on [0, κ] is
given by x♯ ∶= x′ ∧ κ and the orthocomplementation on [0, κ′] by x♭ ∶= x′ ∧ κ′.

Note: this theorem holds also if L is an ortholattice. The proof and further details can
be found in the book by G. Kalmbach [37, p. 20].

3.3 Division algebras
This section might appear handling a different matter as before; we introduce the division
algebras, quaternions and octonions as context information for the next section about
nonassociative algebras.

Roughly spoken a division algebra (D,+, ⋅) is a unit ring and D/{0} is a set in which
a multiplication and division is defined. For each pair of elements a, b ∈ D, a /= 0, the
equations

a ⋅ x = b
y ⋅ a = b

have unique solutions x, y ∈D.
A groupoid G (generalisation of the notion “group”, with a (partial) function replacing

the binary operation), is a quasigroup if for all a, b ∈ G, there exist unique elements x, y
in G

a ⋅ x = b
y ⋅ a = b .

A quasigroup need not have an identity element, it does not need to be associative.
Quasigroups are precisely groupoids whose multiplication tables are Latin squares. A
quasigroup can be empty.

The algebra of quaternions is a skew four–dimensional algebra, in which the elements
have the form

z ∶= a + b ⋅ i + c ⋅ j + d ⋅ k .

11

The base of the quaternions is (1, i, j,k), where i2 = j2 = k2 = i ⋅ j ⋅ k = −1 and the multipli-
cation between these elements is defined as

i ⋅ j = k = −j ⋅ i
j ⋅ k = i = −k ⋅ j
k ⋅ i = j = −i ⋅ k

i j

k

The octonions form an eight–dimensional algebra, with base (1, i, j,k, l,m,n,o) and
i2 = j2 = k2 = l2 = m2 = n2 = o2 = i ⋅ j ⋅ k ⋅ l ⋅ m ⋅ n ⋅ o = −1. By defining i0 = i, i1 = j,
i2 = k, . . . , i6 = o, the multiplication rules between these elements are defined as follows,
let n = 0, . . . ,6:

in+1 ⋅ in+2 = in+4 = −in+2 ⋅ in+1
in+2 ⋅ in+4 = in+1 = −in+4 ⋅ in+2
in+4 ⋅ in+1 = in+2 = −in+1 ⋅ in+4

See also the book by J. H. Conway and D. A. Smith [7].

3.4 Non-associative algebras

In general, a nonassociative algebra is an algebra over a field, in some cases a ring, on
which a, not necessarily associative, operation is defined. This operation is often called
the multiplication. By associativity in an algebra, we mean the independence of the
value of an operation on the distribution of parentheses within an expression [56]. The
associative law for three elements of an algebra is written as

x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z .

The topic of nonassociative algebras received attention after the discovery of the oc-
tonions. Following the investigation of the quaternions by W. Hamilton, his friend,
J. Graves, described a new eight–dimensional algebra, which he called the “octaves”. In-
dependently A. Cayley discovered the same algebra now called the octonions or Cayley
numbers. This algebra satisfies the usual axioms for addition and multiplication. The
multiplication however is not commutative, and does not necessarily satisfy the associa-
tive law. Addition and multiplication of this algebra do satisfy the distributive laws [1]
in the usual way.
The main motivation of the work by W. Hamilton was the formulation of a three–

dimensional normed division algebra. His endeavour was, however, unfruitful, since
three–dimensional normed division algebras do not exist [1]. After having given up the
quest of three dimensions and having the inspiration to go over to a four–dimensional
algebra, he succeeded in the formulation of the quaternions.

12

There are exactly four division algebras with a (submultiplicative) norm: the real
numbers R, they are the best known, the complex numbers C, they are not ordered, but
algebraically complete, noncommutative quaternions H, and the octonions O. Among
the normed division algebras the octonions are the largest, they are known to be nonas-
sociative. There exist still larger non–normed division algebras but in contrast to the
four normed ones, they are characterised by having null divisors. Two elements a, b ∈D
are called null divisors if a ⋅ b = 0, but a /= 0 and b /= 0.

Interest in the octonions in physics was first specified in the paper by P. Jordan, J. von
Neumann and E. Wigner [34]. However their attempt to apply octonionic quantum
mechanics to nuclear and particle physics had little success. It was only in the 1980s, that
it was realized that the octonions explain some particular features of string theory2 [1].

3.5 Hasse and Greechie diagrams

Throughout the thesis, we use Hasse and Greechie diagrams in order to create a graphical
idea of a lattice. We say that an element y covers the element x, if x ⩽ y and for an
element z with x < z ⩽ y it follows z = y. An atom is defined as the element which covers
the zero. A coatom is the element which is covered by the one.

A Hasse diagram represents a finite poset S as a graph. The vertices represent the
elements of S. The edges represent the covering order. If x, y ∈ S, and x ⩽ y, then the
edge between x and y is drawn in a way that x is lower than y. If x, y and z are elements
of S, so that x ⩽ y and y ⩽ z, then by the transitivity property x ⩽ z. In a Hasse diagram
this is shown by a path from x up to z, by passing through the elements between e.g.
y. The diagram for a lattice need not to be unique, Figure 3.1 shows a rather “unusual”
Hasse diagram of the Boolean algebra 24, the more used Hasse diagram of 24 can be
seen in Figure 5.3.

Sometimes Hasse diagrams can be rather large and the diagram gets unclear, then we
prefer the Greechie diagram. Let L be a lattice and Bi, i = 1, . . . , n, its blocks (maximal
Boolean subalgebras of L). A Greechie diagram associated with L = ⋃iBi consists of
the set of vertices representing the atoms of L and a set of edges. The edges correspond
to the blocks of L [37]. In Figure 3.1, on the right side, the Greechie diagram of 24 is
depicted.

2A theoretical framework in which the point–like particles of particle physics are replaced by one–
dimensional objects called strings; different types of observed elementary particles arise from the
different quantum states of these strings.

13

1

a

0

d

b c a

b

c

d

Figure 3.1: Hasse diagram and Greechie diagram of the Boolean algebra 24.

14

Chapter 4

Previous results: Free algebras

4.1 Free Algebras
Definition 4.1.1
Let K be a non–empty variety of algebras. We call F a free algebra in the variety K, if
F belongs to K and contains a set X of generators such that every mapping ϕ from the
set of generators X into any algebra A ∈ K can be extended to a homomorphism

ψ ∶ F → A.

The map ε ∶ X → F in Figure 4.1 is the so–called inclusion map that sends each element,
x of X to x, treated as an element of F .

It is known that free algebras exist in a variety.

Theorem 4.1.2
The algebra from Definition 4.1.1 has the following property: any equation of the form

p(x1, . . . , xn) = q(x1, . . . , xn) ,

X F

A

ε

ϕ ψ

Figure 4.1: Diagram of the mappings from Definition 4.1.1

15

where x1, . . . , xn ∈X, p and q are n–ary terms, holds in F , if and only if it holds in any
algebra from the variety K, this means, p(y1, . . . , yn) = q(y1, . . . , yn) holds for any A ∈ K
and any y1, . . . , yn in A.

The reason for this is that the homomorphism ϕ preserves the validity of equations and
any sequence y1, . . . , yn can be chosen as ϕ(x1), . . . , ϕ(xn).
In Definition 4.1.1, the elements of X are called free generators of the free algebra F .

The choice of free generators is not important, as the following theorem explains:

Theorem 4.1.3
Algebras, from a given variety, freely generated by the same number of free generators,
are isomorphic.

We sometimes need a free algebra with generators which are not free, i.e. they satisfy
additional equations, this leads us to the following definition:

Definition 4.1.4
Let K be a non–empty variety of algebras, let F ∈ K and {x1, . . . , xn} ⊂ F . Let Q be a
set of valid equations of the form

pi(x1, . . . , xn) = qi(x1, . . . , xn) ,

i ∈ I, were pi and qi are n–ary terms. We say that F is freely generated by x1, . . . , xn
under constraints Q if every mapping ϕ ∶ {x1, . . . , xn}→ A such that

pi(ϕ(x1), . . . , ϕ(xn)) = qi(ϕ(x1), . . . , ϕ(xn))

extends to a homomorphism ψ ∶ F → A.

4.2 The word problem
Let S be a set of letters, the finite sequences of n letters, elements of Sn, n ∈ N, are
called words of length n over the alphabet S. The set S is identified with S1. The empty
word is also admitted, it is the element of S0. The set

M(S) ∶= ⋃
n∈N

Sn

is the set of all words over the set S. Let x = (w1w2 . . .wn) ∈ Sn and y = (v1v2 . . . vm) ∈ Sm

be two words, the operation

x ⋅ y = (w1w2 . . .wn) ⋅ (v1v2 . . . vm) ∶= (w1w2 . . .wnv1v2 . . . vm)

forms a new word of length n +m, this operation is often called the concatenation of
the words x and y. The set M(S) with the concatenation and with the empty word
forms a monoid, i.e. a set that is closed under an associative binary operation (the
concatenation) and has an identity element (the empty word).
The normal form also called canonical form of an expression is a standard way of

presenting it. The normal form of elements is a substantial tool in solving the word
problem, by bringing the elements to normal forms, the comparison whether two words
correspond or not is then trivial.

16

A well–known problem is the word problem, i.e. does there exist an algorithm to decide
whether or not two expressions in an algebra represent the same element? If there exists
such an algorithm, we say the word problem is decidable, or solvable, otherwise it is
undecidable or unsolvable.

M. Dehn [9] was one of the first who realised that the word problem was an impor-
tant area of study. He formulated three general problems, which are of fundamental
importance when handling with the presentations of groups:

1. The identity problem, now called the word problem. Each element of a group is
defined by its composition of the generating elements. Is it possible to develop a
method with a finite number of steps to decide whether an element equals the unit
element or not?

2. The transformation problem, also called the conjugacy problem: given two arbitrary
group elements a and b, is it possible to develop a method to decide whether one of
these elements can be transformed to the other one, in other words: is it possible
to find an element u of the group, so that

a = ubu−1

holds?

3. The group isomorphism problem: Given two groups, are these isomorphic or not?
And given a mapping of elements of one group to elements of the other group, is
this mapping an isomorphism or not?

Remark 4.2.1
The conjugacy problem and the word problem are related; if in a group the conjugacy
problem is solved, then the word problem can also be solved.

The Novikov–Boone Theorem

P. Novikov [50] showed that there exists a finitely generated group G such that the word
problem for G is unsolvable. A different proof was obtained by W. Boone [5]. In other
words, the word problem for groups is in general unsolvable.

The solvability of the word problem in a single group can be extended to a criterion
for the solvability of the uniform word problem for a class of finitely presented groups
by a straightforward argument.

4.3 Free lattices

Similar statements exist concerning lattices and lively publications on this subject can
be found. We give a short summary of the main results, see also [52] and [15].

17

4.3.1 First results

Boolean and distributive algebras.

Every element of a Boolean algebra can be transformed to its normal form, which is
unique, the word problem in Boolean algebras is thus solvable. This is also the case in
distributive lattices.

Free modular lattices.

R. Dedekind [8] showed that the free modular lattice generated by three free generators
is finite and has 28 elements, the word problem is thus solvable for this lattice. C. Herr-
mann [28] and R. Freese [13] proved the word problem is undecidable for free modular
lattices with more than three free generators.

Free lattices.

The word problem for finitely presented free lattices was first solved by Skolem [54].
P. Whitman [57, 58] proved that for all equal elements in a free lattice, there is one of
shortest length. He solved the word problem in free lattices, and developed an algorithm
for finding normal forms. R. Freese and J.B. Nation implemented Whitman’s algorithm
in a computer program, see [14].

Ortholattices.

G. Bruns [6] extended the algorithm of P. Whitman to ortholattices and proved that the
word problem is solvable for ortholattices.

Related to the word problem, however different, is the uniform word problem, A. Meinan-
der [46] proved the solvability of the uniform word problem for free ortholattices.

Modular lattices.

L. Lipshitz [39] showed that the word problem for finite–dimensional projective geom-
etries and finite modular lattices and the word problem for modular lattices are undeci-
dable.

Orthomodular and modular–ortho lattices

Finding a solution to the word problem remains an open challenge in the orthomodular
case as well as in the modular–ortho case [29]. The free orthomodular lattice over
two free generators (see Figure 5.1) has 96 elements numbered by L. Beran [3]. Hence
the word problem for free orthomodular lattices over two free generators is decidable.
Unfortunately, this argument cannot be extended to the free lattice over three free
generators.

18

The free orthomodular lattice on two free generators

Calculations in the free orthomodular lattice on two free generators F(a, b) will be our
main tool throughout this research. In the next section we deal with the theory of the
free orthomodular lattice on two free generators F(a, b). A simplified Hasse diagram of
this lattice can be seen in Figure 5.1. The Greechie diagram is presented in Figure 5.4.
A more exhaustive theory is treated in the book by L. Beran [3].

19

Chapter 5

Previous results: The free
orthomodular lattice on two free
generators

5.1 Fundamentals
The free orthomodular lattice on one generator is isomorphic to the Boolean algebra
with four elements: {0, x, x′,1}, written 22.

The free orthomodular lattice F(x, y) generated on two free generators x and y has
96 elements, listed and numbered by L. Beran [3]. These numbers are called Beran’s
numbers in the paper by N. Megill and M. Pavičić [43] and their subsequent papers.
Beran’s numbers are of practical use, e.g. for comparison. We use them throughout this
thesis also as a place–holder for the corresponding operations. Sometimes we write Bn,
n = 1, . . . ,96, as abbreviation for “operation with Beran’s number n”. A complete list of
all elements of F(x, y) can be found in the book by L. Beran [3], we put a copy in the
Appendix.

Definition 5.1.1
The lower commutator of two lattice elements x and y is defined as

x com y = (x ∧ y) ∨ (x′ ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) ,

also denoted by c(x, y). Its complement, the upper commutator of x and y, is defined
as:

x com y ∶= (x ∨ y) ∧ (x′ ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y′)

and denoted by c′(x, y). In Boolean algebras the relation between both, upper and lower
commutators is:

0 = x com y ⩽ x com y = 1 .

21

It can be easily shown that in orthomodular lattices x ⩽ y implies xC y (Lemma 3.2.1),
and xC y is equivalent to x com y = 0 and x com y = 1 [37]. The elements x com y and
xcomy have the Beran’s numbers 16 and 81 respectively. They have a special role which
is described in [47].

Figure 5.1: The (simplified) Hasse diagram of F(x, y).

Figure 5.1 represent a “simplified” Hasse diagram of F(x, y), simplified because in
Hasse diagrams only the covering is denoted, here each of the “meta–edges” between six
sets of elements represents sixteen coverings between the corresponding elements.

In Section 3.2.2 we introduced the Theorem of MacLaren (Theorem 3.2.6), saying that
an orthomodular lattice L is isomorphic to the direct product of two intervals:

L ≅ [0, κ] × [0, κ′] ,

where κ is a central element.
An adept choice is L ∶= F(x, y), κ ∶= x com y, and κ′ = x com y; since F(x, y) is

generated by x and y, the homomorphic image pκ(F(x, y)) = [0, κ] is thus generated by
pκ(x) = (x ∧ y) ∨ (x ∧ y′) and pκ(y) = (x ∧ y) ∨ (x′ ∧ y), they commute.
The interval [0, κ], on its turn, is isomorphic to the Boolean algebra 24 with two free

generators, four atoms, and sixteen elements. The four atoms are: x∧y, x′∧y, x∧y′, and
x′∧y′. The interval [0, κ′] has four atoms x∧κ′, x′∧κ′, y∧κ′, y′∧κ′ and six elements, it
is isomorphic to the orthomodular lattice MO2 (Figure 5.2). These realisations are the
cornerstone of the method of M. Navara [47].
Other elements which appear often in this thesis are the Sasaki projection, Beran’s

number 18, the element with Beran’s number 23, and their analogues, like their duals
and operations where the arguments are interchanged.

22

0

y y′x′x

1

Figure 5.2: Hasse diagram of MO2.

Figure 5.3: Hasse diagram of the Boolean algebra 24.

u
u
u
u

u u
u uy′ ∧ κ′x′ ∧ κ′

x ∧ κ′ y ∧ κ′

x ∧ y

x ∧ y′

x′ ∧ y

x′ ∧ y′

@
@

@@

�
�
��

Figure 5.4: Greechie diagram of F(x, y).

23

z
z

z
z r

x

x′y′

y

Figure 5.5: The symbol for F(x, y).

5.2 Computation in F(x,y) and the role of computers
in proofs

Because the orthomodular lattice F(x, y) is finite, the whole computation can be made
automatically, e.g., by the use of a computer program. Megill implemented this idea
in a computer program1 which, given a formula in two variables, returns the Beran’s
number of the corresponding element in F(x, y). This program was presented in [43]
and extensively used in [44, 45] and other papers.

An implementation of the method of M. Navara [47] has been presented in [31] and
described in [32]. It returns the Beran’s number, as well as the graphical representation
according to [47] and the corresponding TEX macro for its typesetting2. Beside simplifi-
cation of formulas and testing equalities, it allows to answer questions with more compli-
cated logical structure. It admits to introduce further variables commuting with all other
variables, see Section 5.2.1. We make extensive use of the program by M. Hyčko [33],
throughout our research. We automatised the program, allowing us to compute large
numbers of operations in a short time.

5.2.1 Computation in F(x,y) and its set representation

The representation of F(x, y), see Figures 5.1 and 5.4, is not so easy to handle. In [47]
a set illustration of F(x, y) is described (see Figure 5.5); the orthomodular lattice MO2

can be characterised by subsets of a set with four elements. The Boolean algebra 24 can
be represented by the power set of a four–element set. The orthomodular lattice F(x, y)
is then depicted as in Figure 5.5. The four discs correspond to the Boolean part and
the four corners depicted by the two adjacent bars represent the MO2 part of F(x, y).
Full or empty discs refer to the presence or absence of the corresponding atoms in the
Boolean part. The Boolean algebra 24 generated by two free generators x, y has atoms
x∧y, x∧y′, x′∧y, and x′∧y′. It can be presented by all subsets of a four element set ●

●⋅●
● ,

the discs represent its atoms and a full or empty disc pictures the presence or absence of
the corresponding atom, respectively. The generators x and y of the Boolean algebra 24

1http://us.metamath.org/downloads/quantum–logic.tar.gz
2The style file can be downloaded from ftp://math.feld.cvut.cz/pub/navara/foml2.sty

24

(or the Boolean part of F(x, y)) are displayed by x = x ○
●⋅○
● y and y = x ○

○⋅●
● y , respectively.

The atoms are x ○
○⋅○
● y , x ○

●⋅○
○ y , x ○

○⋅●
○ y , and x ●

○⋅○
○ y in the same order as above.

The orthomodular lattice MO2 with generators x, y (or the MO2 part of F(x, y)) is
represented by the four angles ⋅ , where the presence or absence of a bar indicates the
presence or absence of the respective point of the set representation of MO2. Except for
the constants 0 = x ⋅ y and 1 = x ⋅ y, only couples of neighbouring bars are admitted,
the atoms are represented by x ⋅ y = x, x ⋅ y = y , x ⋅ y = y′ , and x ⋅ y = x′.

In the whole free orthomodular lattice F(x, y), the two parts (Boolean and MO2)
are combined so that the generators are represented by x ○

●⋅○
● y = x and x ○

○⋅●
● y = y ,

respectively. The computation is done in both parts independently.

In orthomodular lattices the following implication holds (Lemma 3.2.1):

x ⩽ y ⇒ xC y .

This property allows the use of the free orthomodular lattice F(x, y, c1, . . . , cn), for a
natural number n, generated by two free generators x and y and n non–free, mutually
compatible, generators c1, . . . , cn, and ciCx and ciCy for i = 1, . . . , n. This orthomodular
lattice F(x, y, c1, . . . , cn) is isomorphic to the direct product of 2n factors F(x, y) [47]

F(x, y, c1, . . . , cn) ≅ F(x, y) × . . . × F(x, y)
´¹¹¹¸¹¹¶

2ntimes

.

Its operations are represented by 2n–tuples of graphical symbols. E.g. for n = 1

F(x, y, c) ≅ F(x, y) × F(x, y) .

The generators x, y, and c are thus expressed by the graphical notation:

x = x (○
●⋅○
● ,

○
●⋅○
●)

c
y ,

y = x (○
○⋅●
● ,

○
○⋅●
●)

c
y ,

c = x (○
○⋅○
○ ,

●
●⋅●
●)

c
y .

In Sections 6 and 7 we will need a free orthomodular lattice with three generators,
two free generators, x and y, and one non–free generator c which commutes with x as
well as with y. This orthomodular lattice is also described in [47] and the program by
M. Hyčko allows to use up to nine non–free generators.

5.3 Orthomodular lattices versus Boolean algebras
The free orthomodular lattice F(x, y) is isomorphic to the product of the Boolean al-
gebra 24 and the orthomodular lattice MO2. Each Boolean operation has thus six
corresponding orthomodular lattice operations, in F(x, y) the corresponding elements
form an interval isomorphic to MO2.

25

Boolean operation Beran’s number of the corresponding F(x, y) operations
0 1 17 33 49 65 81
x ∧ y 2 18 34 50 66 82
x ∧ y′ 3 19 35 51 67 83
x′ ∧ y 4 20 36 52 68 84
x′ ∧ y′ 5 21 37 53 69 85
x 6 22 38 54 70 86
y 7 23 39 55 71 87
(x ∧ y) ∨ (x′ ∧ y′) 8 24 40 56 72 88
(x ∧ y′) ∨ (x′ ∧ y) 9 25 41 57 73 89
y′ 10 26 42 58 74 90
x′ 11 27 43 59 75 91
x ∨ y 12 28 44 60 76 92
x ∨ y′ 13 29 45 61 77 93
x′ ∨ y 14 30 46 62 78 94
x′ ∨ y′ 15 31 47 63 79 95
1 16 32 48 64 80 96

Table 5.1: Boolean operations and the Beran’s numbers of their six orthomodular counterparts.

We listed the Boolean operations, together with the Beran’s numbers of their corre-
sponding orthomodular lattice counterparts in Table 5.1. E.g., the Boolean implication
(x → y = x′ ∨ y) gives rise to six quantum implications →i, i = 0, . . . ,5. For i = 1, . . . ,5
these can be characterized as those binary orthomodular lattice operations which satisfy
the Birkhoff–von Neumann requirement [4]:

x→i y = 1 ⇔ x ⩽ y

see [37]. For i = 0 the implication corresponds to the classical one, for which this property
fails, e.g. for the atoms x,x′, y, y′ of MO2 the property x →0 y = 1 holds but not x ⩽ y.
The implications are defined as the orthomodular lattice polynomials listed in Table 5.2.
The enumeration is taken from [43] and will be maintained throughout this section.

Symbol definition Beran’s number, name & graphical symbol
x→0 y x′ ∨ y 94 classical arrow ●

○⋅●
●

x→1 y x′ ∨ (x ∧ y) 78 Sasaki arrow ●
○⋅●
●

x→2 y y ∨ (x′ ∧ y′) 46 Dishkant arrow ●
○⋅●
●

x→3 y (x′∧y)∨(x′∧y′)∨(x∧(x′∨y)) 30 Kalmbach arrow ●
○⋅●
●

x→4 y (x∧y)∨(x′∧y)∨(y′∧(x′∨y)) 62 non–tolens arrow ●
○⋅●
●

x→5 y (x ∧ y) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) 14 relevance arrow ●
○⋅●
●

Table 5.2: Orthomodular implications.

26

In Boolean algebras, all right–hand sides of these six equations coincide, and the same
happens in orthomodular lattices if x, y commute.
The six implications →i, i = 0, . . . ,5, give rise to the corresponding (quantum) con-

junctions ∧i and disjunctions ∨i [43] defined as:

x ∨i y = x′ →i y ,
x ∧i y = (x→i y′)′ .

symbol definition Beran’s number graphical symbol
x ∨0 y x ∨ y 92 ○

●⋅●
●

x ∨1 y x ∨ (x′ ∧ y) 28 ○
●⋅●
●

x ∨2 y y ∨ (x ∧ y′) 44 ○
●⋅●
●

x ∨3 y (x ∨ y) ∧ (x′ ∨ (x ∧ y′) ∨ (x ∧ y)) 76 ○
●⋅●
●

x ∨4 y (x ∨ y) ∧ (y′ ∨ (x′ ∧ y) ∨ (x ∧ y)) 60 ○
●⋅●
●

x ∨5 y (x ∧ y) ∨ (x′ ∧ y) ∨ (x ∧ y′) 12 ○
●⋅●
●

x ∧0 y x ∧ y 2 ○
○⋅○
●

x ∧1 y x ∧ (x′ ∨ y) 18 ○
○⋅○
●

x ∧2 y y ∧ (x ∨ y′) 34 ○
○⋅○
●

x ∧3 y (x ∧ y) ∨ (x′ ∧ (x ∨ y′) ∧ (x ∨ y)) 66 ○
○⋅○
●

x ∧4 y (x ∧ y) ∨ (y′ ∧ (x′ ∨ y) ∧ (x ∨ y)) 50 ○
○⋅○
●

x ∧5 y (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) 82 ○
○⋅○
●

Table 5.3: Orthomodular disjunctions and conjunctions.

We have presented our most important tool, the free orthomodular lattice F(x, y).
Now, we can pass to our main work. We start, in Section 6, with the study of associativity
in orthomodular lattices.

27

Chapter 6

Orthomodularity and associativity

6.1 First results – skew Boolean algebras
In orthomodular lattices, not only the distributive law fails, but also the commutative
and associative law is not applicable in general to some binary operations which extend
the Boolean join and meet. Some results for associativity in skew Boolean algebras can
be found in the works by H. Kröger [38] and L. Beran [3].

Let (M,∧,∨, ′ , 0 , 1) be an orthomodular lattice, we define the skew meet (.) and
skew join (/) for the two elements x and y ∈M as follows:

x . y ∶= (x ∨ y′) ∧ y Beran’s number 34, ○
○⋅○
●

x / y ∶= (x ∧ y′) ∨ y Beran’s number 44, ○
●⋅●
●

respectively.
These two skew operations give rise to a new algebra (M,.,/, ′ ,0 ,1), which is called
the skew Boolean algebra associated to the orthomodular lattice (M,∧,∨, ′ ,0 ,1).

Remark 6.1.1
In Boolean algebras both skew operations are equal to the classical ones, x . y = x ∧ y
and x / y = x ∨ y.

Kröger [38] showed that the presence of commuting elements is a sufficient condition for
associativity in skew Boolean lattices.

Proposition 6.1.2 (Kröger [38])
If both xC y and y C z hold, then

(x ∗ y) ∗ z = x ∗ (y ∗ z)

where ∗ is the skew meet or the skew join.

29

We will prove later (Corollary 6.3.2) that y C z is already sufficient for associativity of
the skew join and the skew meet.

Proposition 6.1.3 (Megill, Pavičić [43] and D’Hooghe, Pykacz [10])
Let x, y and z be elements of an orthomodular lattice such that one of them commutes
with the other two. If ∗ ∈ {∧i,∨i ∣ i = 0, . . . ,5} (see Section 5.3, Table 5.3), then the
associativity identity (x ∗ y) ∗ z = x ∗ (y ∗ z) holds.

Proof:
See [10] for i = 1,2,5 and [43] for i = 3,4. The case i = 0 leads to the lattice operations
∧0 = ∧ and ∨0 = ∨ which are known to be associative.

q.e.d.

6.2 Associativity of binary operations
In this section, we will explore which binary orthomodular lattice operations among the
96 ones are associative.

Let us start by summarizing the situation in Boolean algebras.

Proposition 6.2.1
There are 24 = 16 binary Boolean operations. Eight of them are associative: The
disjunction ∨, the conjunction ∧, the equivalence ↔ and its complement ↮ (XOR),

x↔ y =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x = y ,
0 otherwise ,

x↮ y =

⎧⎪⎪
⎨
⎪⎪⎩

0 if x = y ,
1 otherwise ,

also the two constants 0,1, and the two projections ⊲, ⊳,

x ⊲ y = x ,

x ⊳ y = y .
(6.1)

In general, we have to distinguish a Boolean operation from its six corresponding
orthomodular lattice operations, they have the same appearance as one of the six or-
thomodular counterparts, e.g., the projections ⊲, ⊳, defined by (6.1) are also defined in
orthomodular lattices. Table 6.1 summarizes these cases.

30

Symbol Orthomodular lattice operation Beran’s
number

Graphical
symbol

0 least element 1 ○
○ ⋅ ○
○

1 greatest element 96 ●
● ⋅ ●
●

⊲ left projection 22 ○
● ⋅ ○
●

⊳ right projection 39 ○
○ ⋅ ●
●

∨ join 92 ○
● ⋅ ●
●

∧ meet 2 ○
○ ⋅ ○
●

Table 6.1: The six associative orthomodular lattice operations.

Proposition 6.2.2
The six orthomodular operations in Table 6.1 are associative.

Proof:
The lattice operations ∨, ∧ are known to be associative by definition. The other four
operations are trivially associative.

q.e.d.

The following observation reduces our work to one half:

Proposition 6.2.3
In the special case of a Boolean algebra, each orthomodular binary operation ∗ reduces
to a unique Boolean operation ◻ . If ∗ is associative (in orthomodular lattices), so is ◻
(in Boolean algebras).

This means also that the orthomodular counterparts of a nonassociative Boolean oper-
ation cannot be associative in an orthomodular lattice. There are eight nonassociative
Boolean operations and as many associative ones, thus, in an orthomodular lattice there
are up to 48 (= 96 − 8 × 6) possibly associative operations. They are listed in Table 6.2.
Most of them are nonassociative, as will be proven later. The period 16 is due to the
system of Beran’s numbers.

Boolean operation Beran’s numbers of corresponding orthomodular
lattice operations

constant 0 1 17 33 49 65 81
constant 1 16 32 48 64 80 96
left projection ⊲ 6 22 38 54 70 86
right projection ⊳ 7 23 39 55 71 87
conjunction ∧ 2 18 34 50 66 82
equivalence ↔ 8 24 40 56 72 88
non–equivalence ↮ 9 25 41 57 73 89
disjunction ∨ 12 28 44 60 76 92

Table 6.2: The orthomodular operations extending the eight associative Boolean operations.

31

For the special case that only two variables are present, six different cases of associa-
tivity can be found:

(x ∗ x) ∗ y = x ∗ (x ∗ y) , (6.2)
(x ∗ x′) ∗ y = x ∗ (x′ ∗ y) , (6.3)
(x ∗ y) ∗ y = x ∗ (y ∗ y) , (6.4)
(x ∗ y′) ∗ y = x ∗ (y′ ∗ y) , (6.5)
(x ∗ y) ∗ x = x ∗ (y ∗ x) , (6.6)
(x ∗ y) ∗ x′ = x ∗ (y ∗ x′) . (6.7)

An example of such approach is as follows:

Example 6.2.4
Let x, y be non–commuting atoms of MO2. Let ∗ be one of the orthomodular binary
operations which, restricted to x and y, acts as the left projection,

x ∗ y = x .

This occurs only if the Beran’s number of ∗ is in {17,18, . . . ,32}. Then the right–hand
side of (6.6) is

x ∗ (y ∗ x) = x ∗ y = x

and (6.6) reduces to

x ∗ x = x .

This means that ∗, acting on the sub–orthomodular lattice generated by x, must be
idempotent. This sub–orthomodular lattice is {0, x, x′,1}, i.e., the free Boolean algebra
22 with one generator x. We see that the Boolean counterpart of ∗ must be idempotent.
Among associative operations on Boolean algebras, idempotence holds for ∧,∨,⊲,⊳

and does not hold for 0,1,↔,↮. For the corresponding orthomodular lattice operations
(denoted by Beran’s numbers) this means that each of the operations with Beran’s num-
bers 18, 22, 23 and 28 may (and do) satisfy (6.6), while those with Beran’s number 17,
24, 25 and 32 violate (6.6) and are nonassociative. Other operations from {17,18, . . . ,32}
were already excluded because their Boolean counterparts are not associative.

In view of Example 6.2.4, among operations with Beran’s numbers in {17,18, . . . ,32},
only four of them, B18, B22, B23 and B28, remain candidates which have to be tested
further. For this, we may use the equations (6.2) to (6.5) or (6.7). This requires only
computations in two variables which can be performed by a program [31]. Only those op-
erations which pass these tests need to be checked by more general associativity criteria.
Among them, the left projection ⊲ (B22), is known to be associative.

Proposition 6.2.5
The following operations violate at least one of equations (6.2) to (6.7):

32

1. The operations ∗ with Beran’s numbers 6, 12, 24, 25, 50, 54, 72 violate (6.2).
2. The operations ∗ with Beran’s numbers 55, 60, 66, 70, 76, 89 violate (6.3).
3. The operations ∗ with Beran’s numbers 7, 32, 65, 71, 80, 82 violate (6.4).
4. The operations ∗ with Beran’s numbers 8, 9, 40, 41, 73, 87, 88 violate (6.5).
5. The operations ∗ with Beran’s numbers 17, 33, 48, 49, 56, 57, 64 violate (6.6).
6. The operations ∗ with Beran’s numbers 18, 23, 28, 34, 38, 44, 86 violate (6.7).

Remark 6.2.6
To prove this and also some following theorems in this work, we use M. Hyčko’s pro-
gram [33]. The input line we used here is B3(∗,x,B3(∗,x,y)) = B3(∗,B3(∗,x,x),y)
for the equation (6.2) and suitable for other five equations. The letter “B” stands for Be-
ran, “3” indicates the arity of the operation1, “ ∗ ” stands for the Beran’s number of the
operation on the two following arguments. The program returns “True” if the equation
holds, “False” otherwise.

Proof:
As described in Remark 6.2.6, the proof uses the computational tool [33], as well as
arguments analogous to those of Example 6.2.4. The results are summarised in Table 6.3.
There are eight operations, marked with ☆, which fulfil all six equations. Operations
which do not appear in Table 6.2 or for which none of the six equations holds are not
listed. The coloured entries indicate pairs of “True” values, i.e. equations (6.2) and
(6.3), equations (6.4) and (6.5) and the equations (6.6) and (6.7). This will be dealt
with in the next Section 6.3.1.

Equation
Beran’s (6.2) (6.3) (6.4) (6.5) (6.6) (6.7)
number xxy xx’y xyy xy’y xyx xyx’

☆ 1 True True True True True True
☆ 2 True True True True True True

6 False False True True False False
7 True True False False False False
8 False False False False True False
9 False False False False True False
12 False False False False True False

☆ 16 True True True True True True
17 True True False False False False
18 True True True False True False

☆ 22 True True True True True True
23 True True True True True False

1Here we mean the arity from the point of view of the user of the program, i.e., the number of
entries following a call of a function, including the Beran’s number. From the mathematical point
of view, this represents a binary operation (whose entries are the second and third arguments in the
expression).

33

Equation
Beran’s (6.2) (6.3) (6.4) (6.5) (6.6) (6.7)
number xxy xx’y xyy xy’y xyx xyx’
24 False False True False False False
25 False False True False False False
28 True True True False True False
32 True True False False False False
33 False False True True False False
34 True False True True True False
38 True True True True True False

☆ 39 True True True True True True
40 True False False False False False
41 True False False False False False
44 True False True True True False
48 False False True True False False
49 False False True True False False
50 False False False False False True
54 False False True True False True
55 False False False False True True
56 True False False False False False
57 True False False False False False
60 False False False False False True
64 False False True True False False
65 True True False False False False
66 False False False False False True
70 False False False False True True
71 True True False False False True
72 False False True False False False
73 False False True False False False
76 False False False False False True
80 True True False False False False

☆ 81 True True True True True True
82 False False False False True False
86 False False True True False False
87 True True False False False False
88 False False False False True False
89 False False False False True False

☆ 92 True True True True True True
☆ 96 True True True True True True

Table 6.3: Results for the proof of Proposition 6.2.5.

q.e.d.

The approach of Proposition 6.2.5 disproved associativity of 40 orthomodular operations,

34

but it is not applicable to the lower commutator x com y, and the upper commutator
x com y. Both satisfy all equations (6.2) to (6.7) and another approach is needed.

Proposition 6.2.7
The lower and upper commutator, com, respectively com, are not associative.

u

u u u u u
u u u u u

u

�
�
�@

@
@�

�
�@

@
@HH

H
HH

H�
�
�@

@
@
H
HHH

HH��
�
��
��

�
�@

@
@

�
���

��

1

0

a

a′ u u
u u�

�
�@

@
@HH

H
HH

H

��
�
��
��
�
�@

@
@

PP
PP

PP
PP

P HHH
HHH

@
@
@�

�
�

�
��

�
��

��
��

��
��
�

@
@
@ PP

PP
PP

PP
PHH

HHHH��
��

��
��
���

���� �
�
�

f

f ′

b

b′

g

g′

c

c′

h

h′

d

d′
u

uu

u
u

u
u
c

da

b

f

g

h

Figure 6.1: Hasse and Greechie diagram of the orthomodular lattice D16.

Proof:
To prove this proposition, the Dilworth orthomodular lattice D16 is used (Figure 6.1).
Then

(a com g) com d = b com d = c ,

a com (g com d) = a com c = b /= (a com g) com d .

A similar argument works for the upper commutator:

(a com g) com d = b′ com d = c′ ,

a com (g com d) = a com c′ = b′ /= (a com g) com d .

q.e.d.

The result of this section is:

Theorem 6.2.8
The only associative operations in orthomodular lattices are the six operations in Table 6.1.

Proof:
This is just a combination of the previous propositions which cover all 96 possible cases.
Based on Proposition 6.2.1, Proposition 6.2.3 excludes 48 operations. Proposition 6.2.5
rejects further 40 possibilities and Proposition 6.2.7 disproves associativity of the two
commutators (not covered by the preceding propositions). What remains are the six
associative operations from Proposition 6.2.2.

q.e.d.

35

6.3 Associativity of binary operations, by using
commutation

We found six operations being associative without any constraints. The next question
which comes up is: are there other operations which satisfy the associativity identity
under the assumption that some arguments commute?

The operations listed in Table 6.3 are associative in at least one of the equations (6.2)
to (6.7), some only in one equation, others in all six of them. Six operations are known
to be associative. Then we may impose any of the three commutation assumptions,
xC y, xC z and y C z. All subsets of these three conditions form a lattice (the Boolean
algebra 23 with eight elements, see Figure 6.2).
An ideal in a bounded lattice L is a non–empty subset I such that x, y ∈ I implies

x ∨ y ∈ I and from x ∈ I, z ⩽ x follows z ∈ I. An ideal generated by a single element of L
is called a principal ideal. The dual concept of ideal is filter, a principal filter is defined
analogously.

Each positive result obtained for some subset of commutation assumptions applies to
the respective principal filter (of assumptions stronger than or equal to the original one).
Each negative result obtained for some subset of assumptions applies to the respective
principal ideal (of assumptions weaker than or equal to the original one).

The aim is to describe the situation for all eight possible sets of compatibility as-
sumptions. To shorten their description, we cover the whole of 23 by principal filters
and ideals and we only mention the weakest sufficient conditions for positive results and
the strongest insufficient conditions for negative results (i.e., the strongest assumptions
which still admit a counterexample). E.g., if we find out a counterexample for yC z and
positive results assuming x C y or x C z, this gives answer to all possible combinations
of compatibility assumptions. The filled circles in Figure 6.2 denote the assumptions
under which equalities hold, empty circles the remaining cases. The 1 represents the
case that all variables commute, then all 48 operations of Table 6.2 satisfy the associa-
tivity identity. The 0 represents the case that none of the variables commute namely
the six associative operations of Theorem 6.2.8.

6.3.1 Conditional associativity by using commutation of one
pair of arguments

We intend to find those operations from Table 6.2 which fulfil the associative identity
when only two of the three arguments commute. In Table 6.3 there are 42 orthomodular
lattice operations (without the six associative operations) for which at least one of the
six equations (6.2) to (6.7) holds.

Having a closer look at the six equations (6.2) to (6.7), we remark that we need not
consider all 42 operations. The six equations can be grouped in three pairs having the
commuting elements at the same place. In other words, for some cases the calculations in
F(x, y) itself give some counterexamples. The equations (6.2) and (6.3), equations (6.4)
and (6.5) and the equations (6.6) and (6.7) form three pairs. If the results contain at

36

0

y C zxC y xC z

y C x, y C z z C x, z C yxC y, xC z

1

Figure 6.2: Hasse diagram of lattice 23 of compatibility assumptions.

least one “False” in the respective columns of Table 6.3, it is already a counterexample.
Only if a pair has the same outcome “True” there is a chance that associativity equation
holds for the respective weaker commutation assumption. The Beran’s numbers of these
operations, the six associative operations not included, are highlighted in purple.

In Table 6.3 the remaining 30 cases (24 operations) are highlighted in purple. These
operations need further checks, their Beran’s numbers are

For xC y 7,16,17,18,23,28,32,38,65,71,80,81,87

For y C z 6,16,23,33,34,38,44,48,49,54,64,81,86

For xC z 16,55,70,81

Fortunately, we can reduce the amount of checks to more than half of them due to the
presence of dual operations and operations in which the arguments are interchanged.
We listed them in Table 6.4 by their Beran’s numbers. If we find a counterexample for
one operation, for instance the one whose Beran’s number is in the first column, then
it will also be possible to find counterexamples for the operations with Beran’s number
listed on the same line. The same holds for argumentation that the operation fulfils the
associativity identity under some constraints. In the last case attention has to be taken
to the correct commuting arguments.

x ∗ y y ∗ x (x′ ∗ y′)′ (y′ ∗ x′)′

6 7 86 87
16 16 81 81
17 33 32 48
18 34 28 44
23 38 23 38

37

x ∗ y y ∗ x (x′ ∗ y′)′ (y′ ∗ x′)′

49 65 64 80
54 71 54 71
55 70 55 70

Table 6.4: The duals and expressions with interchanged arguments, by their Beran’s numbers.

We checked the remaining seven operations in the Dilworth’s lattice D16 (Figure 6.1).
Only to find a counterexample for the operation with Beran’s numbers 23 and 54 we
used the lattice L22 (Figure 6.3)2. We could easily find counterexamples, not only for
the two commutators, but also for most of the other operations with partial positive
results in Table 6.3. The results are showed in Table 6.5, together with our choice of
arguments.

a ∗ b
commuting choice choice choice result for result for in
elements for x for y for z (x ∗ y) ∗ z x ∗ (y ∗ z) lattice3

6 y C z a′ c′ d 0 b D16

16 xC y d c a 1 c D16

16 xC z d a c 1 c D16

16 y C z a c d c 1 D16

17 xC y d c′ a 0 d D16

23 xC y a b′ d g a L22

23 y C z a c′ d f ′ a D16

49 y C z a c d h 0 D16

54 y C z a′ c′ d d′ g′ D16

55 xC z a h b g c D16

Table 6.5: Counterexamples for operations of Table 6.3, if only two arguments commute.

The Sasaki projection is not listed in Table 6.5, we can prove the associativity of the
Sasaki projection in case that the first and second argument commute.

Theorem 6.3.1 (Gagola III, Gabriëls, Navara [18])
Let L be an orthomodular lattice and let ∗ be the Sasaki projection, the operation with
the Beran’s number 18. If x, y ,z ∈ L such that x and y commute then4

x ∗ (y ∗ z) = (x ∗ y) ∗ z .

2The elements a and a′ are displayed twice because, as can be seen in the Greechie diagram, the figure
closes at a, a′. In this way the representation gets well–arranged.

3All counterexamples could be found in the lattice L22, we tried to use only the “smaller” lattice D16

which was not always possible.
4B. D’Hooghe and J. Pykacz [10] proved the associativity of the Sasaki projection, under the assump-
tion that one argument commutes with the other two. We prove that x C y is sufficient for the
associativity of B18.

38

u

u

u u u u u u u u u u u
u u u u u u u u u u u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

"
"
"
"
"
"
"
"
"
"
"
"
"
""

B
B
B
B
B
B
B
B
B

J
J
J
J
J
J
J
J
J

@
@

@
@
@

@
@
@
@

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
ZZ

b
b

b
b
b

b
b
b

b
b
b

b
b
bb

B
B
B
B
B
B
B
B
B

J
J
J
J
J
J
J
J
J

@
@
@
@
@
@
@
@
@

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

b
b
b
b
b
b
b
b
b
b
b
b
b
bb

�
�
�
�
�
�
�
�
�

�
�

�
�
�

�
�
�
�

�
�

�
�
�

�
�
�

�
�
��

"
"

"
"
"

"
"
"

"
"
"

"
"
""

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�@

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@��

��
��

��
��

��

��
��

��

��
��

��

��
��

��HH
HHHH

HH
HHHH

HH
HHHH

HH
HHHH

HH
HHHH

1

0

a

a′

a

a′

f b g c h d i e j

f ′ b′ g′ c′ h′ d′ i′ e′ j′

u u u
u
uuuuu

u
�
�
�
�
�
�

B
B
B
B
B
B

c
c
c
c
c

#
#

#
#
#

c

da

b

f

g

h

i

e

j

Figure 6.3: Hasse and Greechie diagrams of L22.

Proof:
By Lemma 3.2.2 (ii) the commutation relation xC y is equivalent to x ∗ y = x∧ y, hence

(x ∗ y) ∗ z = (x ∗ y) ∧ ((x ∗ y)′ ∨ z)

= (x ∗ y) ∧ ((x ∧ y)′ ∨ z)

= (x ∗ y) ∧ (x′ ∨ y′ ∨ z)

= x ∧ (x′ ∨ y) ∧ (x′ ∨ y′ ∨ z) .

and

x ∗ (y ∗ z) = x ∗ (y ∧ (y′ ∨ z))

= x ∧ (x′ ∨ (y ∧ (y′ ∨ z)))

Because y′ ⩽ y′ ∨ z, it follows by Lemma 3.2.1 that y′C (y′ ∨ z) and by Proposition 3.2.3

39

also that y′ C x′. Likewise, y commutes with both x′ and y′ ∨ z. Thus, by the Foulis–
Holland Theorem,

x′ ∨ (y ∧ (y′ ∨ z)) = (x′ ∨ y) ∧ (x′ ∨ y′ ∨ z) .

It then follows that

x ∗ (y ∗ z) = x ∧ (x′ ∨ (y ∧ (y′ ∨ z)))

= x ∧ (x′ ∨ y) ∧ (x′ ∨ y′ ∨ z) .

q.e.d.

Corollary 6.3.2
Let ☆ be the dual of the Sasaki projection, the operation with Beran’s number 28, and
xC y, then

x☆ (y☆ z) = (x☆ y)☆ z .

By Lemma 3.2.2 (iii) there is an equivalence between xC y and x☆ y = x∨ y. The proof
is thus similar to the proof of Theorem 6.3.1 by duality.

Corollary 6.3.3
Let ○ be the operation with Beran’s number 34 or the operation with Beran’s number
44, the skew meet or skew join respectively. Let y C z, then

x ○ (y ○ z) = (x ○ y) ○ z .

H. Kröger [38] proved the associativity of both skew operations, but under stronger
conditions, he required the commutation of one variable with the other two. We can
prove by interchanging the variables in Theorem 6.3.1 that yCz is a sufficient condition.

6.3.2 Associativity for one argument commuting with the two
others

The next question which rises at this point is: are there operations fulfilling the associa-
tivity identity if one argument commutes with the other two? More explicitly, we look
for the fulfillment of the associativity identity under the conditions:

xC y and xC z (Cx)
y C x and y C z (Cy)
z C x and z C y (Cz)

N. Megill and M. Pavičić proved this for the operations with the Beran’s numbers in
{12, 18, 28, 34, 44, 82} and B. D’Hooghe and J. Pykacz proved it for the Beran’s

40

numbers {50,60,66,76} (Proposition 6.1.3). Again the program of M. Hyčko [33] yields
the results, they are listed in Table 6.6. “True” means the equation (x∗y)∗z = x∗(y∗z)
holds for the operation ∗, “False” if it does not. The table contains 42 orthomodular
operations from Table 6.2, which are associative in Boolean algebras but failed to be
associative in general orthomodular lattices.

∗
y C x, y C z z C x, z C y xC y, xC z

(Cy) (Cz) (Cx)
6 False True True
7 False True True
8 True False False
9 True False False
12 True True True
16 True True True
17 True True True
18 True True True
23 False True True
24 False False True
25 False False True
28 True True True
32 True True True
33 True True True
34 True True True
38 False True True
40 False True False
41 False True False
44 True True True
48 True True True
49 True True True
50 True True True
54 False True True
55 False True True
56 False True False
57 False True False
60 True True True
64 True True True
65 True True True
66 True True True
70 False True True
71 False True True
72 False False True
73 False False True
76 True True True
80 True True True

41

∗
y C x, y C z z C x, z C y xC y, xC z

(Cy) (Cz) (Cx)
81 True True True
82 True True True
86 False True True
87 False True True
88 True False False
89 True False False

Table 6.6: Validity of the associativity identity for operations, if one variable commutes with
the other two.

All the computations are done in the free orthomodular lattice on three generators,
one commutes with the two others. This lattice is finite and the computations can be
done with the program of M. Hyčko [33]. Due to the properties of free algebras on
non–free generators, see Section 4, the results (both positive and negative) extend to all
orthomodular lattices.

6.4 Conclusions
All 48 operations from Table 6.2 fulfil the associativity identity,

(x ∗ y) ∗ z = x ∗ (y ∗ z)

under different commuting relation conditions.
Six operations are associative without any need of the commutation relation between

the arguments (Theorem 6.2.8). They correspond to the 0 in the Boolean lattice 23 of
Figure 6.2.
Four operations fulfil the equation, if one variable commutes with a particular one.

The condition xC y is sufficient for the Sasaki projection and its dual. The conditions
(Cx) or (Cy) are thus also fulfilled for them, the condition (Cz) is proved by Table 6.6.
For the skew meet and skew join, the sufficient condition is y C z. The conditions (Cy)
or (Cz) are thus also fulfilled, the condition (Cx) is proven by Table 6.6.
The other operations need at least two pairs of commuting elements: For twenty

orthomodular lattice operations, it does not matter which argument commutes with the
two others. Among them the Sasaki projection, its dual and the two skew operations,
see before.
The orthomodular operations with Beran’s numbers 24, 25, 27 and 73 fulfil the asso-

ciativity identity only in case that (Cx). The operations with Beran’s numbers 8, 9, 88
and 89 fulfil the associativity identity only in case that (Cy) and the operations with
Beran’s numbers 40, 41, 56 and 57 fulfil it only when (Cy).
The ten remaining operations fulfil the associativity identity in two cases, (Cx) or

(Cy).

42

Chapter 7

Monotonicity of binary operations

The absence of the distributivity law in orthomodular lattices is a handicap to bring
complex expressions in simpler normal forms. Commuting elements seem to be indis-
pensable. However, is it possible to find two operations out of the 96 binary orthomo-
dular lattice ones, which are distributive? Is it possible to find operations ∗ and ○ for
which

(x1 ∗ y) ○ (x2 ∗ y) ○ . . . ○ (xn ∗ y) = (x1 ○ . . . ○ xn) ∗ y

holds? Which properties do they need to have?
We need to find two operations which satisfy the distributive law, one of them (“ ○ ”)

has to be commutative and associative as well. As a result of Section 6, for the latter
conditions only the lattice join or meet are possible candidates, as they fulfil the com-
mutative as well as the associative law. There are other commutative and associative
operations, the constants 0 and 1, but they do not depend on both arguments. Such
operations are of no use in finding normal forms.

By the duality principle, it is not relevant for which, join or meet, we consider the last
equation. We decided to find the operations which distribute over the meet:

(x1 ∗ y) ∧ (x2 ∗ y) ∧ . . . ∧ (xn ∗ y) = (x1 ∧ . . . ∧ xn) ∗ y .

In both cases operations which come into question have to be monotonic. That is, for
which of the 96 binary orthomodular lattice operations ∗ does

x ⩽ y ⇒ x ∗ z ⩽ y ∗ z (7.1)

hold?
The right–hand side of implication (7.1) can be expressed as an equation

(x ∗ z) ∧ (y ∗ z) = x ∗ z ∀ z

43

or

(x ∗ z) ∨ (y ∗ z) = y ∗ z .

Implication (7.1) is equivalent to any of the following conditions which have the form of
equations:

1. Substitution y ∶= x ∨w gives

(x ∗ z) ∧ ((x ∨w) ∗ z) = x ∗ z . (7.2)

2. Substitution x ∶= y ∧ v gives

((y ∧ v) ∗ z) ∨ (y ∗ z) = y ∗ z . (7.3)

Since the handling of both variables is the same, we handle the monotonicity of the
first variable and disregard the second variable at first. We also concentrate on the non–
decreasing operations, because the non–increasing ones can be characterized analogously
by taking the orthocomplements.

7.1 Sufficient conditions
Lattice operations are non–decreasing in both arguments. The negation can produce an
operation which violates non–decreasingness property. Thus implication (7.1) is satisfied
by all binary orthomodular lattice operations ∗ which can be expressed in a form not
negating the first argument. E.g., the operation

x ∗ y = (x ∧ y) ∨ (x ∧ y′)

is non–decreasing in the first argument. On the contrary, the operation

x ∗ y = (x ∧ y) ∨ (x′ ∧ y′)

or

x ∗ y = (x ∧ y) ∨ (x ∨ y)′

need not be non–decreasing in the first argument because the argument x is negated.
The operation

x ∗ y = (x ∧ y) ∨ (x′ ∧ y)′

is defined using the orthocomplement applied to x, but it has an equivalent form

x ∗ y = (x ∧ y) ∨ (x ∨ y′)

which shows that it is non–decreasing in the first argument.
There are 17 binary orthomodular lattice operations satisfying this condition:

Proposition 7.1.1
The binary orthomodular lattice operations with Beran’s numbers 1, 2, 3, 6, 22, 34, 38,
39, 44, 51, 54, 58, 61, 86, 92, 93, and 96 are non–decreasing in the first argument.

44

7.2 Necessary conditions
After this, we asked what are the necessary conditions. Therefore, we proceed similarly
to the Sieve of Eratosthenes for prime numbers, and sort the non–monotonic operations
out of the list of all 96 binary orthomodular lattice operations, only the monotonic ones
will be kept.

The following techniques can be used: techniques in

the Boolean part of operations,
the MO2 part of operations,
the free orthomodular lattice with three (non–free) generators,
the free orthomodular lattice with two free generators,
the Kalmbach embedding.

It will turn out that the Kalmbach embedding already is sufficient to identify all non–
monotone operations.

7.2.1 The use of free algebras – general approach

Equation (7.2), resp. (7.3), holds if and only if it is satisfied in the free orthomodular
lattice with three free generators x, z, w, respectively y, z, v. However, the free ortho-
modular lattice with three free generators has a very complex structure (see [37, p. 229]).
Its strange properties are studied in [25]. The direct use of the free orthomodular lattice
with three free generators is thus impossible. Nevertheless, it is possible to derive nec-
essary conditions with additional assumptions, which make the computation possible.
The use of a free orthomodular lattice with three generators, which are not free, leads to
necessary conditions for monotonicity. The free orthomodular lattice on more than two
generators is described in [47]. Two generators are free and the others commute with
the two free generators and among each other.

7.2.2 The Boolean part of operations

Here it is assumed that all three generators are compatible. In the form of equations,
compatibility of x and y can be written equivalently, x com y = 1 or x com y = 0.
Compatibility of x, y and z can be written as

(x com y) ∧ (x com z) ∧ (y com z) = 1 (7.4)

or, equivalently,

(x com y) ∨ (x com z) ∨ (y com z) = 0 . (7.5)

Note that in orthomodular lattices, unlike orthomodular posets, pairwise compatibility
implies compatibility of the whole finite set. I.e., there is a Boolean subalgebra containing
all these elements; see [3] for more details.

45

The free orthomodular lattice with three generators x, y, z satisfying (7.4) (equiva-
lently, (7.5)) is the free Boolean algebra with three generators x, y, z. This algebra is
finite and has well–known properties, hence it is easy to verify (7.2) and (7.3).

The candidates are the 16 binary Boolean operations. Each of them corresponds to
six orthomodular lattice operations, see [43] and Section 5.3.

Among binary Boolean operations, the following seven violate (7.1) (the MO2 part in
the graphical symbols of the Boolean part in Table 7.1 is omitted):

Beran’s no. expression graphical notation
4 x′ ∧ y x ○

○⋅●
○ y,

5 x′ ∧ y′ x ●
○⋅○
○ y,

8 (x ∧ y) ∨ (x′ ∧ y′) x ●
○⋅○
● y,

9 (x ∧ y′) ∨ (x′ ∧ y) x ○
●⋅●
○ y,

75 x′ x ●
○⋅●
○ y,

94 x′ ∨ y x ●
○⋅●
● y,

95 x′ ∨ y′ x ●
●⋅●
○ y.

Table 7.1: Boolean operations not non–decreasing in the first argument.

If a binary Boolean operation violates (7.1), so do all six corresponding orthomodular
lattice operations, independently of their MO2 part. This principle proves that at least
6 × 7 = 42 binary orthomodular lattice operations violate (7.1).

The remaining 54 operations correspond to the nine Boolean operations listed in
Table 7.2.

Beran’s no. expression graphical notation
1 0 x ○

○⋅○
○ y,

2 x ∧ y x ○
●⋅●
● y,

3 x ∧ y′ x ●
●⋅○
● y,

22 x x ○
●⋅○
● y,

39 y x ○
○⋅●
● y,

58 y′ x ●
●⋅○
○ y,

92 x ∨ y x ○
○⋅○
● y,

93 x ∨ y′ x ○
●⋅○
○ y,

96 1 x ●
●⋅●
● y.

Table 7.2: Boolean operations non–decreasing in the first argument.

In Table 7.3 the Beran’s numbers of all orthomodular lattice operations are listed. The
not non–decreasing operations are highlighted in purple. We excluded those operations
because their Boolean counterparts are non–decreasing. There are other operations
which are non–decreasing but not yet marked in this table; they are subject to further
tests. The operations which fulfil the sufficient condition are written in red.

46

x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y
1 17 33 49 65 81
2 18 34 50 66 82
3 19 35 51 67 83
4 20 36 52 68 84
5 21 37 53 69 85
6 22 38 54 70 86
7 23 39 55 71 87
8 24 40 56 72 88
9 25 41 57 73 89
10 26 42 58 74 90
11 27 43 59 75 91
12 28 44 60 76 92
13 29 45 61 77 93
14 30 46 62 78 94
15 31 47 63 79 95
16 32 48 64 80 96

Table 7.3: Beran’s numbers of binary operations, for which the Boolean counterpart
is not non–decreasing in the first argument.

7.2.3 The MO2 part of operations

In MO2, two different non–central elements are compatible, if and only if one of them
is the orthocomplement of the other. The lattice MO2 can be considered as the free
orthomodular lattice with two (non–free) generators a, b which satisfy

a ∧ b = a ∧ b′ = a′ ∧ b = a′ ∧ b′ = 0

and
a ∨ b = a ∨ b′ = a′ ∨ b = a′ ∨ b′ = 1

by duality. To choose a, b, c ∈ MO2 so that a ⩽ b and c does not commute with at least
one of a and b, there are essentially only two possibilities: (see Figure 5.2)

a = 0 , b = x , c = y , (7.6)
or

a = x , b = 1 , c = y . (7.7)

All other possibilities are equivalent up to automorphisms of MO2. It is thus necessary
to test the inequalities

0 ∗ y ⩽ x ∗ y , (7.8)
and

x ∗ y ⩽ 1 ∗ y (7.9)

47

for the generators a, b of MO2. Moreover, the two inequalities are dual, thus testing one
of them for all orthomodular lattice operations gives answer also to the other. Even this
simple tool excludes many orthomodular lattice operations as being non–monotonic.

0 ∗ y x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y
1 1 17 33 49 65 81
1 2 18 34 50 66 82
1 3 19 35 51 67 83
39 4 20 36 52 68 84
58 5 21 37 53 69 85
1 6 22 38 54 70 86
39 7 23 39 55 71 87
58 8 24 40 56 72 88
39 9 25 41 57 73 89
58 10 26 42 58 74 90
96 11 27 43 59 75 91
39 12 28 44 60 76 92
58 13 29 45 61 77 93
96 14 30 46 62 78 94
96 15 31 47 63 79 95
96 16 32 48 64 80 96

Table 7.4: Beran’s numbers of the operations which do not fulfil 0 ∗ y ⩽ x ∗ y.

x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y x ∗ y 1 ∗ y
1 17 33 49 65 81 1
2 18 34 50 66 82 39
3 19 35 51 67 83 58
4 20 36 52 68 84 1
5 21 37 53 69 85 1
6 22 38 54 70 86 96
7 23 39 55 71 87 39
8 24 40 56 72 88 39
9 25 41 57 73 89 58
10 26 42 58 74 90 58
11 27 43 59 75 91 1
12 28 44 60 76 92 96
13 29 45 61 77 93 96
14 30 46 62 78 94 39
15 31 47 63 79 95 58
16 32 48 64 80 96 96

Table 7.5: Beran’s numbers of the operations which do not fulfil x ∗ y ⩽ 1 ∗ y.

48

After combining both, 0 ∗ y ⩽ x ∗ y ⩽ 1 ∗ y, almost all not non–decreasing operations
are sorted out of the list of all binary orthomodular lattice operations.

7.2.4 The free orthomodular lattice with three (non-free)
generators

In this section, we make again use of the technique described in Section 5.2.1, on cal-
culations in the free orthomodular lattice F(a, b, c) with three generators a, b, c, where c
commutes with both a and b. Weaker compatibility conditions do not lead to a finite
free orthomodular lattice. Only in this case an algorithm for checking the inequalities
can be used.

By substituting a by (x ∧ z), b by z, and c by y in (7.1), we obtain:

(x ∧ z) ∗ y ⩽ z ∗ y . (7.10)

This does not reduce the number of inequalities to check, but in this expression the
arguments a, b, and c are replaced by the generators of F(x, y, z) and the computer
program of M. Hyčko can be easily used to verify (7.10). If this inequality holds for some
orthomodular lattice operation ∗, its monotonicity is undecided. However, if (7.10) is
violated in this special case, then ∗ is not non–decreasing in the first argument.

7.2.5 The free orthomodular lattice generated by two free
generators

The free orthomodular lattice with three non–free generators discussed in the latter
section is a product of two factors which are isomorphic to the product of its intervals
[0, κ], and [0, κ′]. In the former, κ acts as 1, in the latter, κ acts as 0. Thus we may
reduce the number of calculations by considering the two simpler cases separately: First,
we choose κ = 1, then inequality (7.10) reduces to (7.9). Dually, we choose κ = 0, then
inequality (7.10) reduces to (7.8). The violation of (7.9) or (7.8) is sufficient to prove
that (7.1) is violated, too. All necessary computations can be performed in the free
orthomodular lattice with two free generators x, y. The use of a computer program
makes it a routine check.

We checked all 96 binary operations on the inequality (7.9), see Table 7.5, and found
63 operations which do not fulfil (7.9) and which violate (7.1) as well, in Table 7.5 they
are highlighted in purple. Among them those 42 operations already found in the section
about the Boolean part of operations (Section 7.2.2).
By checking (7.8) on the remaining 33 operations, it was possible to exclude 15 other

operations which violate (7.1), see Table 7.4, where those operations not fulfilling 0∗y ⩽
x ∗ y are highlighted in purple.

7.2.6 Kalmbach embedding

A further tool which we used to reduce the amount of work is the Kalmbach embedding
introduced in [36] and advanced in [23, 42], see an overview in [55].

49

Kalmbach embedding starts from any given bounded lattice (with or without an or-
thocomplementation) and embeds it into a bigger orthomodular lattice. The original
lattice operations, ∨ join and ∧ meet, are preserved (the original orthocomplementation,
if any, is not preserved).

Example

We start from the bounded lattice P = {0, x, y, z,1} called the pentagon, see Figure 7.1.
It is composed of two maximal chains, (0, z,1) and (0, x, y,1), which intersect only at
the bounds, 0 and 1.

According to the Kalmbach embedding, each chain generates a Boolean algebra of
the corresponding size. The intersection of these Boolean algebras is determined by the
intersection of the generating chains, here it is the two–element Boolean algebra {0,1}.
The chain (0, z,1) generates the Boolean algebra (0, z, z′,1) ≅ 22, the chain (0, x, y,1)
generates the Boolean algebra {0, x, y, x′, y′, t, t′,1} ≅ 23 with three atoms x, y′, and
t = y ∧ x′.
The technique of pasting equips the union of the two Boolean algebras with orthomo-

dular lattice operations (orthocomplementation and lattice operations) inherited from
the two Boolean algebras and completed in a unique way. Pasting’s particular instance
is a part of the Kalmbach embedding, see [37, 48]. We obtain the orthomodular lattice
L = {0, x, y, x′, y′, t, t′, z, z′,1} whose Greechie and Hasse diagram is depicted in Fig-
ure 7.2. The elements of L corresponding to those of P are circumcircled in the Hasse
diagram. Alternatively, it can be described as the horizontal sum of the two Boolean
algebras, 22 and 23, see [37, 48].

u

u
u u

u1

0

x

y

@
@
@�

�
�
��

@
@
@
@@

�
�
�

z

Figure 7.1: The pentagon (P).

The pentagon in Figure 7.1 represents the smallest bounded lattice where x < y and
the argument z is incomparable to x, y. Figure 7.2 represents the smallest orthomodular
lattice with these properties. Since it is finite and small, it allows to test (7.1) easily and
obtain necessary conditions for monotonicity of ∗. This particular case appeared crucial
for the exclusion of some orthomodular lattice operations.

50

t

x

y′

u
u
u

u u
z′z

uh

u uh u uhuh u u u
uh

�
�
�@

@
@

�
�
�@

@
@
HH

HHHH

��
����

1

0

x

x′

y′

y

t

t′

PP
PP

PP
PP

P H
HHH

HH

@
@
@�

�
�
��

��
�
��

��
��

@
@
@
@@

HHH
HHH

HHH

��
��

��
��
����

��� �
�
�

zz′

Figure 7.2: Greechie and Hasse diagram of 22 ⊕ 23.

The orthomodular lattice L ∶= 22 ⊕ 23 of Figure 7.2 can be also used to test inequality
(7.8) (if we take 0 and x ∈ L instead of x and y in (7.1)) and inequality (7.11) (if we take
y and 1 ∈ L instead of x and y in (7.1)). Thus three tests of necessary conditions can be
performed in a unique form: in L, we map the chain (0, x, y,1) to (0∗z, x∗z, y∗z,1∗z)
and ask if this quadruplet (in this order) is a non–decreasing sequence. This reformu-
lation appeared to be very efficient in finding necessary conditions for monotonicity of
orthomodular lattice operations.

Operation 0 ∗ z x ∗ z y ∗ z 1 ∗ z
1 0 0 0 0
2 0 0 0 z
3 0 0 0 z′

4 z > 0 0 0
5 z′ > 0 0 0
6 0 0 0 1
7 z > 0 0 z
8 z′ > 0 0 z
9 z > 0 0 z′

10 z′ > 0 0 z′

11 1 > 0 0 0
12 z > 0 0 1
13 z′ > 0 0 1
14 1 > 0 0 z
15 1 > 0 0 z′

16 1 > 0 0 1

51

Operation 0 ∗ z x ∗ z y ∗ z 1 ∗ z
17 0 x y > 0
18 0 x y ≰ z
19 0 x y ≰ z′

20 z ≰ x y > 0
21 z′ ≰ x y > 0
22 0 x y 1
23 z ≰ x y ≰ z
24 z′ ≰ x y ≰ z
25 z ≰ x y ≰ z′

26 z′ ≰ x y ≰ z′

27 1 > x y > 0
28 z ≰ x y 1
29 z′ ≰ x y 1
30 1 > x y ≰ z
31 1 > x y ≰ z′

32 1 > x y 1
33 0 z z > 0
34 0 z z z
35 0 z z ≰ z′

36 z z z > 0
37 z′ ≰ z z > 0
38 0 z z 1
39 z z z z
40 z′ ≰ z z z
41 z z z ≰ z′

42 z′ ≰ z z ≰ z′

43 1 > z z > 0
44 z z z 1
45 z′ ≰ z z 1
46 1 > z z z
47 1 > z z ≰ z′

48 1 > z z 1
49 0 z′ z′ > 0
50 0 z′ z′ ≰ z
51 0 z′ z′ z′

52 z ≰ z′ z′ > 0
53 z′ z′ z′ > 0
54 0 z′ z′ 1
55 z ≰ z′ z′ ≰ z
56 z′ z′ z′ ≰ z
57 z ≰ z′ z′ z′

58 z′ z′ z′ z′

52

Operation 0 ∗ z x ∗ z y ∗ z 1 ∗ z
59 1 > z′ z′ > 0
60 z ≰ z′ z′ 1
61 z′ z′ z′ 1
62 1 > z′ z′ ≰ z
63 1 > z′ z′ z′

64 1 > z′ z′ 1
65 0 x′ y′ > 0
66 0 x′ y′ ≰ z
67 0 x′ y′ ≰ z′

68 z ≰ x′ y′ > 0
69 z′ ≰ x′ y′ > 0
70 0 x′ y′ 1
71 z ≰ x′ y′ ≰ z
72 z′ ≰ x′ y′ ≰ z
73 z ≰ x′ y′ ≰ z′

74 z′ ≰ x′ y′ ≰ z′

75 1 > x′ y′ > 0
76 z ≰ x′ y′ 1
77 z′ ≰ x′ y′ 1
78 1 > x′ y′ ≰ z
79 1 > x′ y′ ≰ z′

80 1 > x′ y′ ≰ z′

81 0 1 1 > 0
82 0 1 1 > z
83 0 1 1 > z′

84 z 1 1 > 0
85 z′ 1 1 > 0
86 0 1 1 1
87 z 1 1 > z
88 z′ 1 1 > z
89 z 1 1 > z′

90 z′ 1 1 > z′

91 1 1 1 > 0
92 z 1 1 1
93 z′ 1 1 1
94 1 1 1 > z
95 1 1 1 > z′

96 1 1 1 1

Table 7.6: Binary operations, not fulfilling 0 ∗ z ⩽ x ∗ z ⩽ y ∗ z ⩽ 1 ∗ z.

In Table 7.6 all binary orthomodular lattice operations not fulfilling one of the in-
equations 0 ∗ z ⩽ x ∗ z ⩽ y ∗ z ⩽ 1 ∗ z are highlighted, we wrote “ > ” if the inequation

53

was reversed or “ ≰ ” if the results where incomparable. We did not write explicitly “ ⩽ ”
for fulfilled inequations. In the first column, all the operations fulfilling the inequation
chain are left blank.

We see that the example based on the Kalmbach embedding gives us the necessary
condition for monotonicity of the first argument.

7.3 Summary of results
Using the necessary conditions, we proved that 79 binary orthomodular lattice opera-
tions are not non–decreasing in the first argument. The remaining 17 operations fulfilled
the sufficient condition as well as the necessary conditions. They are listed in Propo-
sition 7.1.1. These operations are exactly those which are non–decreasing in the first
argument.

The Kalmbach embedding displays the sufficient condition for monotonicity.

7.4 Monotonicity in the second variable
The same method is appropriate to find all binary orthomodular lattice operations which
are monotone in the second variable. Concerning the sufficient conditions, the same
argument as before, all operations not containing a negation in the second variable are
non–decreasing. These are the seventeen operations with Beran’s numbers: 1, 2, 4, 7, 18,
22, 23, 28, 39, 68, 71, 75, 78, 87, 92, 94, and 96. Trivially, they are the same as for the
monotonicity in the first variable by interchanging the first and the second argument,
e.g. in the graphical notation x ○

○⋅●
○ y = y

○
●⋅○
○ x. Six of them are non–decreasing in both

variables; they are listed in Table 7.7. They correspond to the six associative operations,
which we found in Section 6.

Beran’s no. expression graphical notation
1 0 x ○

○⋅○
○ y,

2 x ∧ y x ○
○⋅○
● y,

22 x x ○
●⋅○
● y,

39 y x ○
○⋅●
● y,

92 x ∨ y x ○
●⋅●
● y,

96 1 x ●
●⋅●
● y.

Table 7.7: Operations non–decreasing in both variables.

In Figure (7.3) we coloured the non–decreasing operations in the illustration of F(x, y),
the operations non–decreasing in the first argument only are coloured in blue, those non–
decreasing only in the second variable in green. Those operations non–decreasing in both
variables are coloured in red.

It is remarkable that there is a certain pattern in the grouping of the operations,

54

Figure 7.3: Results for non–decreasing binary operations.

except x ○
●⋅○
● y = x for monotonicity in the first argument and x ○

○⋅●
● y = y for monotonicity

in the second argument. They appear in patterns of four, see Figure 7.3, this figure
shows also a symmetry along the horizontal axis.

7.5 Further results
We also reversed the implication (7.1) and traced the following question:

For which of the 96 binary operations ∗ the following implication holds:

a ⩽ b ⇒ a ∗ c ⩾ b ∗ c ∀ c (7.11)

This question can be treated with exactly the same method as above. Then, implica-
tion (7.11) holds for the operations with Beran’s numbers 1, 4, 5, 11, 36, 39, 43, 46,
53, 58, 59, 63, 75, 91, 94, 95, and 96 in the first argument, and as many in the second
argument, 1, 3, 5, 10, 19, 22, 26, 29, 58, 69 74, 75, 79, 90, 93, 95, and 96. Six of them
are non–increasing in both arguments; they are listed in Table 7.8. They are exactly the
complements of the operations found in Table 7.7.

In Figure 7.4 we highlighted the Beran’s numbers of all monotone orthomodular lattice
operations fulfilling implication (7.1) or (7.11) in the first or second variable, there are
46 in total and if x∗ y is one of them, so also x∗ y′, x′ ∗ y, x′ ∗ y′, y ∗x, y ∗x′, y′ ∗x, and
y′ ∗ x′, this explains the symmetry along the vertical and horizontal axes.

55

Beran’s no. expression graphical notation
1 0 x ○

○⋅○
○ y

5 x′ ∧ y′ x ●
○ ⋅ ○
○ y

58 y′ x ●
●⋅○
○ y

75 x′ x ●
○⋅●
○ y

95 x′ ∨ y′ x ●
●⋅●
○ y

96 1 x ●
●⋅●
● y.

Table 7.8: Operations non–increasing in both arguments.

Figure 7.4: Results for monotonicity of binary operations.

7.6 Conclusions
Our goal was to find a possible way of reducing the complexity of some orthomodular
lattice operations and write them in a unique normal form.

We analysed the monotonicity of the 96 binary orthomodular lattice operations, we
found 17 monotonic operations for each argument, among them the so–called skew join
(B44):

x / y = (x ∧ y′) ∨ y = x ○
●⋅●
● y

and the skew meet (B34):

x . y = (x ∨ y′) ∧ y = x ○
○⋅○
● y .

56

The distributivity of skew operations, if one argument commutes with the two other
arguments, was proved in [3]. However, it also does not enable normal forms in ortho-
modular lattices. The problem is that the skew operations are not associative. Therefore
they do not admit to combine many terms to a simple expression with the freedom of
the choice of the order of the arguments.

The standard way of finding a normal form, known from Boolean algebras, is not
applicable in orthomodular lattices, even if we reduce our requirements.

57

Chapter 8

Non-associative operations on
orthomodular lattices

In the literature three levels of associativity are distinguished. An algebra is called
power–associative if the subalgebra generated by any single element is associative. It is
called an alternative algebra, if the subalgebra generated by any two of its elements is
associative. If the subalgebra generated by any three elements is associative, then the
algebra is called an associative algebra [1].
In power–associative algebras the order in which an element is multiplied by itself, e.g.

(xx)x = x(xx) does not matter. Power–associative algebras are weaker than alternative
or associative algebras, i.e. associative and alternative algebras are power–associative
algebras. We will not continue on power–associative algebras, nor on associative algebras
(the latter are well–known) but we pay attention to alternative algebras.

8.1 Alternative Algebras
An alternative algebra M is a non–empty set M together with an operation “ ⋅ ”,

called the multiplication. The multiplication need not to be associative, but it has to be
alternative, this means that the following equations hold

x ⋅ (x ⋅ y) = (x ⋅ x) ⋅ y left identity and (L)
(y ⋅ x) ⋅ x = y ⋅ (x ⋅ x) right identity (R)

for all x, y ∈M .
From the left (L) and right (R) identities the flexible identity follows

x ⋅ (y ⋅ x) =(x ⋅ y) ⋅ x (F)

Often it is written “xy” instead of “x ⋅ y”.

59

The Moufang identities

A loop is a quasigroup with an identity element. In loops, the identities (L), (R) and
(F) are equivalent. The best known loop is the Moufang loop, this is a loop in which all
the elements x, y and z satisfy the Moufang identities. They are:

((xy)x)z = x(y(xz)) left Moufang identity, (M1)

((yx)z)x = y(x(zx)) right Moufang identity, (M2)

(xy)(zx) = (x(yz))x central Moufang identity, and (M3)

(xy)(zx) = x((yz)x) . (M4)

Two examples of alternative algebras are the algebra of the octonions and the Moufang
loops.

8.2 Associativity and parentheses
The distribution of the parentheses is closely attached to the concept of associativity.

D. Tamari made research on the way of putting parentheses in algebraic expressions.
In this section we give a short overview of his work on parentheses and this section is
mainly based on his paper [56].
The traditional definition of the associativity law is

A2 ∶ x(yz) = (xy)z .

In general, associativity can be written as

An(P,Q) ∶ P (x0, . . . , xn) = Q(x0, . . . , xn)

with 2 ⩽ n ∈ N. The expressions P and Q are two different ways of (correct) parentheses
setting of the expression x0⋯xn of length n + 1. They are equal if the associativity law
holds.
The associativity problem can thus be expressed as:

An(P,Q) ∶ P (x0, . . . , xn) = s, Q(x0, . . . , xn) = t ⇒ s = t (n ⩾ 2) ,

The case where n = 1 can also be included by

A1 ∶ xy = s, xy = t ⇒ s = t

A word of length n + 1 has n pairs of parentheses, we usually write only n − 1, e.g. one
possibility for putting parentheses in the word uvwx, n = 3, could be (((uv)w)x) – three
pairs, usually we write ((uv)w)x – two pairs.
For a word of length n + 1 we have

C(n) =
1

n
(

2n

n − 1
)

60

possibilities of parentheses. The C(n) are called the Catalan numbers, they grow asymp-
totically with n as

C(n) ∼
4n

√
23π

⋅

To prove associativity, we have

(
C(n)

2
) =

1

2
C(n) (C(n) − 1)

associative laws An to check. In our example there are C(3) = 5 possibilities to put
parentheses, thus 10 associative laws to check, namely:

A3 ∶ ((uv)w)x = a, (u(vw))x = b ⇒ a = b,

A3 ∶ ((uv)w)x = a, (uv)(wx) = c ⇒ a = c,

A3 ∶ ((uv)w)x = a, u((vw)x) = d ⇒ a = d,

A3 ∶ ((uv)w)x = a, u(v(wx)) = e ⇒ a = e,

A3 ∶ (u(vw))x = b, (uv)(wx) = c ⇒ b = c,

A3 ∶ (u(vw))x = b, u((vw)x) = d ⇒ b = d,

A3 ∶ (u(vw))x = b, u(v(wx)) = e ⇒ b = e,

A3 ∶ (uv)(wx) = c, u((vw)x) = d ⇒ c = d,

A3 ∶ (uv)(wx) = c, u(v(wx)) = e ⇒ c = e,

A3 ∶ u(v(wx)) = e, ((uv)w)x = a ⇒ e = a.

D. Tamari found a way to define a partial order on the set of all possible ways of
putting parentheses on words of length n+1. He grouped the objects in pairs (for binary
operations). Two groupings are comparable if the second can be obtained from the first
by successive rightward application of the associative law, (ab)c→ a(bc). In our example:
u((vw)x) can be obtained from (u(vw))x by rightward sliding the parentheses, thus
(u(vw))x ⩽ u((vw)x). In this manner we get for words of length four the non–modular
lattice N5 (pentagon), see Figure 8.1.
D. Tamari’s [56] results were rather negative. He concluded that the associativity

problem is not resolvable. The task becomes infinite due to the large number of equations
to check, even in finite monoids. As an illustration, see Figure 8.2, of a five variable
expression, with already 14 ways to put parentheses and 91 associative laws to check!

8.3 Weaker forms of associativity in orthomodular
lattices

In Section 6 we proved that only six of the 96 binary orthomodular lattice operations
are associative. In this section we examine some weaker forms of associativity in ortho-
modular lattices. We study all binary operations on orthomodular lattices which form
an alternative algebra; their specification is the following:

61

((ab)c)d

(a(bc))c

(ab)(cd)

a((bc)d)

a(b(cd))

Figure 8.1: A scheme of the five ways of putting parentheses in a four-variable expression.

(((••)•)•)•

((••)•)(••) ((•(••)•)•

(•((••)•))• ((••)(••))•

(•(••))(••) (•(•(••)))•

•(((••)•)•) (••)((••)•)

•((••)(••)) •((•(••))•)

•(•((••)•)) (••)(•(••))

•(•(•(••)))

Figure 8.2: The Tamari lattice made by 14 ways of putting parentheses on a five-variable ex-
pression.

62

Theorem 8.3.1
Let ∗ be one of the 96 binary operations on orthomodular lattices. The operation ∗
satisfies all three of the identities (L), (R), (F) in orthomodular lattices if and only if
its Beran’s number is in the set {1, 2, 16, 18, 22, 23, 28, 34, 38, 39, 44, 81, 92, 96}. All
other operations satisfy at most one of the identities (L), (R), (F).

Proof:
As the identities deal with only two variables, the program [32] is suited to find those
expressions fulfilling (L), (R), (F). The results were already shown in Table 6.3. The
columns (6.2), (6.4) and (6.6) correspond to the equations (L), (R) and (F) respectively.
“True” means that the equation holds, the results can be checked in the appropriate
columns.

q.e.d.

∗ x ∗ y x ∗ x ∗ y, x ∗ y ∗ y x ∗ y ∗ x
16 (x ∧ y) ∨ (x ∧ y′) ∨ (x′∧ y) ∨ (x′∧ y′) 1 1

18 x ∧ (x′ ∨ y) x ∧ (x′ ∨ y) x ∧ (x′ ∨ y)

23 (x′ ∨ y) ∧ (x ∨ (x′ ∧ y)) (x′ ∨ y)∧ (x∨ (x′ ∧ y)) x

28 x ∨ (x′ ∧ y) x ∨ (x′ ∧ y) x ∨ (x′ ∧ y)

34 y ∧ (y′ ∨ x) y ∧ (y′ ∨ x) x ∧ (x′ ∨ y)

38 (x ∨ y′) ∧ (y ∨ (y′ ∧ x)) (x∨ y′)∧ (y ∨ (y′ ∧x)) x

44 y ∨ (y′ ∧ x) y ∨ (y′ ∧ x) x ∨ (x′ ∧ y)

81 (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) 0 0

Table 8.1: Nonassociative operations satisfying (L), (R) and (F) with their results.

In Table 8.1 the operations fulfilling all three (L), (R) and (F) are listed. Observing
the expressions we remark that there are three couples which differ only by the order of
their arguments (see also Table 6.4), namely:

18 and 34; 28 and 44; 23 and 38.

Further, there are three couples of dual operations,

18 and 28; 34 and 44; 16 and 81.

The two operations, 23 and 38, are self–dual.
The question treated in this section is which of the eight operations of Table 8.1 satisfy

weaker laws of associativity similar to the Moufang identities (M1 to M4) In particular,

63

we study the following six constellations :

x ∗ x ∗ y ∗ z (xxyz)
x ∗ y ∗ x ∗ z (xyxz)
x ∗ y ∗ z ∗ x (xyzx)
y ∗ x ∗ x ∗ z (yxxz)
z ∗ x ∗ y ∗ x (zxyx)
z ∗ y ∗ x ∗ x (zyxx)

Remark 8.3.2
There are nine different formations of three variables with one double, we only need to
examine six of them.

If we take three different elements x, y and z of an algebra, then there are 3! = 6
possible constellations:

x, y, z ; x, z, y ;
y, z, x ; z, y, x ;
z, x, y ; y, x, z .

Let the variables y and z have the same role, i.e. they are arbitrary elements and are
interchangeable, their order is irrelevant. Thus the above constellations reduce to three:

x, y, z , y, z, x , z, x, y .

The variable x is the one we want to appear double i.e. x plays a different role as y
and z. Its place is important, there are nine different positions to put the variable x
twice in the last three constellations:

x,x, y, z ; y, x, x, z ; z, x, x, y ;
x, y, x, z ; y, x, z, x ; z, x, y, x ;
x, y, z, x ; y, z, x, x ; z, y, x, x .

Again, due to the arbitrarily chosen variables y and z, we can reduce these to six
different orders of arguments, namely

x,x, y, z ; y, x, x, z ;
x, y, x, z ; y, x, z, x ;
x, y, z, x ; y, z, x, x .

In Section 8.2, we figured out already that each constellation of length four admits five
different ways of putting parentheses. To prove associativity we have to check which of
the above constellations give the same result for all possible ways of putting parentheses,
e.g.

((x ∗ x) ∗ y) ∗ z = (P1)

(x ∗ (x ∗ y)) ∗ z = (P2)
(x ∗ x) ∗ (y ∗ z) = (P3)

x ∗ ((x ∗ y) ∗ z) = (P4)

x ∗ (x ∗ (y ∗ z)). (P5)

64

We shall use the symbols (Pn) to refer to the ways of putting parentheses in other
constellations, e.g., constellation (xyxz) with parentheses (P1) reads

((x ∗ y) ∗ x) ∗ z , etc.

The equality of the expressions obtained by all five ways of putting parentheses is en-
countered rather rarely. Many positive results are obtained if an extra assumption that
two of the variables commute is added. If we assume that two pairs of variables commute
(and the third does not), then we may apply the program [33] to answer the question. If
all three variables mutually commute, all computations can be easily made in a Boolean
algebra.

Remark 8.3.3
We have eight operations listed in Table 8.1 along with six basic constellations. Taking
into account the duality and reversion of arguments, results for some operations (al-
though they are not identical) can be derived from others, thus it suffices to investigate
three operations, see Table 8.2.

no. expression name analogue
18 a ∧ (a′ ∨ b) Sasaki projection 28,34,44

23 (a ∨ (a′ ∧ b)) ∧ (a′ ∨ b) swapped projection 38

16 (a∧b)∨(a∧b′)∨(a′∧b)∨(a′∧b′) lower commutator 81

Table 8.2: The three typical operations and the Beran’s numbers of their analogues.

In our paper [18] we proposed the name swapped projection for the operation with
Beran’s number 23, it acts as the right projection on commuting elements and as the
left projection on generators of MO2. For each of these choices, there are five ways of
putting parentheses, (P1) to (P5). The associativity problem: “are they all equal?”. We
have 6 constellations, 3 Beran’s expressions, i.e. B16, B18 and B23, thus 18 quintuples
of expressions which have to be compared in the five ways of putting parentheses.

8.4 Tools
Different techniques will facilitate our tasks. We will use the already mentioned and used
Foulis–Holland Theorem 3.2.4. In cases that at least two compatibility assumptions hold,
it can be solved by purely technical tools of [33].

Further we will rely on theorems about commuting elements, Lemmas 3.2.1 and 3.2.2
and Proposition 3.2.3.

8.5 Examples
To find counterexamples we use the lattices MO2, Figure 5.2, the free generated lattice
on two free generators F(a, b), Figure 5.1 and Figure 5.4. We use also the Dilworth

65

lattice D16, Figure 6.1, and the lattice L22, Figure 6.3.

8.6 Identities generalizing associativity

8.6.1 Results obtained without using commutation

We start with results which do not assume commutation. They are all based on prop-
erties of the Sasaki projection, summarized in Lemma 8.6.1. In order to prove the main
result, namely Theorem 8.6.2, we will need the results of Theorem 6.3.1.

Lemma 8.6.1
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 18
(Sasaki projection). It has the following properties:

(S1) If y ⩽ z then x ∗ y ⩽ x ∗ z ,
(S2) If x ⩽ y then x′ ∨ (y ∗ z) = x′ ∨ z ,
(S3) If x ⩽ z then x′ ∨ (y ∗ z) = x′ ∨ y ,
(S4) If y ⩽ z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y ,
(S5) If x ⩽ z then (x ∗ y) ∗ z = x ∗ (y ∗ z) = x ∗ y ,
(S6) If z ⩽ y then x ∗ (y ∗ z) = (x ∗ y) ∗ z = x ∗ z .

Proof:

(S1) The Sasaki projection is expressed by using monotonic lattice operations ∨ and ∧
without the orthocomplement being applied to any formulas containing y, as the
second argument, see Section 7.

(S2) In the special case x = y, computation in two variables can be done in the free
orthomodular lattice with 2 free generators, program [33] suffices to prove that

y′ ∨ (y ∗ z) = y′ ∨ z .

This allows to prove the general result if x′ ∨ y′ = x′:

x′ ∨ (y ∗ z) = x′ ∨ y′ ∨ (y ∗ z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=y′∨z

= x′ ∨ y′
´¹¹¹¹¸¹¹¹¹¶
=x′

∨ z

= x′ ∨ z .

(S3) In the special case x = z, computation in two variables using the program [33]
verifies

z′ ∨ (y ∗ z) = z′ ∨ y .

66

This allows to prove the general result if x′ ∨ z′ = x′:

x′ ∨ (y ∗ z) = x′ ∨ z′ ∨ (y ∗ z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= z′∨y

= x′ ∨ z′
²
=x′

∨ y

= x′ ∨ y .

(S4) Let y ⩽ z, then

(x ∗ y) ∗ z = x ∧ (x′ ∨ y) ∧ ((x ∧ (x′ ∨ y))′ ∨ z)

= x ∧ (x′ ∨ y) ∧ (x′ ∨ (x ∧ y′) ∨ z)
(∗)
= x ∧ (x′ ∨ y) = x ∗ y ,

where the step (∗) follows from the inequalities

x′ ∨ y ⩽ x′ ∨ z ⩽ x′ ∨ (x ∧ y′) ∨ z .

The second part follows easily from the fact that y ⩽ z implies y ∗ z = y ∧ z = y,

x ∗ (y ∗ z) = x ∗ y .

(S5) Because x ∗ y ⩽ x ⩽ z, we have (x ∗ y)′ ∨ z = 1 and

(x ∗ y) ∗ z = (x ∗ y) ∧ ((x ∗ y)′ ∨ z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= x ∗ y .

Similarly, applying (S3),

x ∗ (y ∗ z) = x ∧ (x′ ∨ (y ∗ z))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=x′∨y

= x ∧ (x′ ∨ y) = x ∗ y .

(S6) Calculation gives:

(x ∗ y) ∗ z = (x ∗ y) ∧ ((x ∗ y)′ ∨ z)

= (x ∗ y) ∧ (x′ ∨ (x ∧ y′) ∨ z)

= (x ∗ y) ∧ ((x ∧ y′) ∨ (x′ ∨ z))

= x ∧ (x′ ∨ y) ∧ ((x′ ∧ y)′ ∨ (x′ ∨ z))

Applying the Foulis–Holland Theorem (Theorem 3.2.4) to it, we get an intermedi-
ate result

(x ∗ y) ∗ z = ((x ∗ y) ∧ (x′ ∨ y)′) ∨ ((x ∗ y) ∧ (x′ ∨ z))

= (x ∗ y) ∧ (x′ ∨ z)

= x ∧ (x′ ∨ y) ∧ (x′ ∨ z)
´¹¹¹¸¹¹¶

x′∨z

(monotonicity of ∨)

= x ∗ z

67

Because z ⩽ y it follows z C y and thus y ∗ z = z,

(x ∗ y) ∗ z = x ∗ z = x ∗ (y ∗ z) .

q.e.d.

Theorem 8.6.2
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in
{18,28}. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)

(z ∗ (x ∗ y)) ∗ x = z ∗ (x ∗ y ∗ x)

((x ∗ y) ∗ z) ∗ x = (x ∗ y) ∗ (z ∗ x)

for any x, y, z ∈ L.

Proof:
Suppose x∗ y = x∧ (x′ ∨ y) (Beran’s number 18). By Theorem 8.3.1, for any x, y ∈ L the
word x ∗ y ∗ x is equal to x ∗ y regardless of the order of operations.
As (x ∗ y)C x, we may apply Theorem 6.3.1 with the substitutions1 x ∶= x ∗ y, y ∶= x

and obtain

((x ∗ y) ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z) .

As x ∗ y ⩽ x, we may use (S4) with the substitutions: x ∶= z, y ∶= x ∗ y, z ∶= x

(z ∗ (x ∗ y)) ∗ x = z ∗ ((x ∗ y) ∗ x) = z ∗ (x ∗ y) .

Similarly, (S5) with the substitutions: x ∶= x ∗ y, y ∶= z, z ∶= x gives:

((x ∗ y) ∗ z) ∗ x = (x ∗ y) ∗ (z ∗ x) = (x ∗ y) ∗ z .

The second case of B28 is then dual.
q.e.d.

Corollary 8.6.3
Let L be an orthomodular lattice and let ⊛ be an operation with Beran’s number in
{34,44}. Then

z ⊛ (x⊛ y ⊛ x) = (z ⊛ x)⊛ (y ⊛ x)

x⊛ ((y ⊛ x)⊛ z) = (x⊛ y ⊛ x)⊛ z

x⊛ (z ⊛ (y ⊛ x)) = (x⊛ z)⊛ (y ⊛ x)

for any x, y, z ∈ L.
1All substitutions should be done at the same time, without iterative substitutions, i.e., (x, y) is
replaced with (x ∗ y, x), which satisfies the assumption (x ∗ y)C x. The same meaning is assumed
in all substitutions in the sequel.

68

Proof:
Let ∗,⊛ be the operations with Beran’s numbers 18,34, respectively. As a∗ b = b⊛a, we
obtain

z ⊛ (x⊛ y ⊛ x) = (x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z) = (z ⊛ x)⊛ (y ⊛ x)

and similarly for other equalities from Theorem 8.6.2.
q.e.d.

8.6.2 Results obtained by using commutation

Here we summarise results that assume at least one pair of variables commuting.

Theorem 8.6.4
Let L be an orthomodular lattice and let ∗ be an operation with the Beran’s number
in {18,28}. If x, y, z ∈ L are such that x and y commute then each of the following
expressions has a unique output regardless of the order in which the terms appear:

x ∗ x ∗ y ∗ z , x ∗ y ∗ x ∗ z ,

x ∗ y ∗ z ∗ x , y ∗ x ∗ x ∗ z ,

y ∗ x ∗ z ∗ x , x ∗ y ∗ z ∗ z .

Thus all Moufang identities (M1) to (M4) hold.

Remark 8.6.5
The latter two constellations, y ∗ x ∗ z ∗ x and x ∗ y ∗ z ∗ z, are the same as z ∗ x ∗ y ∗ x
(zxyx) and z ∗ y ∗ x ∗ x (zyxx), respectively; we interchanged variables only to use the
same assumption xC y in all cases.

Proof:
Let ∗ be the Sasaki projection (B18). Identity (L) attains the form

x ∗ (x ∗ y) = (x ∗ x) ∗ y = x ∗ y = x ∧ y .

This allows to write

(x ∗ (x ∗ y)) ∗ z = ((x ∗ x) ∗ y) ∗ z = (x ∗ y) ∗ z = (x ∧ y) ∗ z

Likewise, by replacing y with y ∗ z, it follows that

x ∗ (x ∗ (y ∗ z)) = (x ∗ x) ∗ (y ∗ z) = x ∗ (y ∗ z) .

These expressions are equal due to Theorem 6.3.1, which also allows to derive equality
with the final remaining way of putting the parentheses:

x ∗ ((x ∗ y) ∗ z) = x ∗ (x ∗ (y ∗ z)) .

69

Now, by applying Theorem 6.3.1 to the relations x C y, (x ∗ y) C x and x C (y ∗ x), it
follows that

x ∗ (y ∗ (x ∗ z)) = (x ∗ y) ∗ (x ∗ z) = ((x ∗ y) ∗ x) ∗ z = (x ∗ (y ∗ x)) ∗ z

= x ∗ ((y ∗ x) ∗ z) = (x ∧ y) ∗ z .

Similarly, Theorem 6.3.1 with xC y proves that

x ∗ (y ∗ z) ∗ x = ((x ∗ y) ∗ z) ∗ x and x ∗ (y ∗ (z ∗ x)) = (x ∗ y) ∗ (z ∗ x) .

According to (S5) with substitutions x ∶= x ∗ y, y ∶= z, z ∶= x, the latter two expressions
equal (x ∗ y) ∗ z = (x ∧ y) ∗ z. Next, Theorem 6.3.1 with xC y proves that

(y ∗ x ∗ x) ∗ z = y ∗ (x ∗ x ∗ z) = (y ∗ x) ∗ (x ∗ z) = (x ∧ y) ∗ z .

Then, by using Theorem 6.3.1 with xC y, it follows that

y ∗ (x ∗ z ∗ x) = (y ∗ x) ∗ (z ∗ x) and ((y ∗ x) ∗ z) ∗ x = (y ∗ (x ∗ z)) ∗ x .

According to (S5) with substitutions x ∶= y ∗ x, y ∶= z, z ∶= x, the latter two expressions
equal (y ∗ x) ∗ z = (x ∧ y) ∗ z. Finally, Theorem 6.3.1 with xC y and (R) proves

x ∗ (y ∗ z ∗ z) = (x ∗ y) ∗ (z ∗ z) = ((x ∗ y) ∗ z) ∗ z = (x ∗ (y ∗ z)) ∗ z = (x ∧ y) ∗ z .

Likewise, the case of the operation with Beran’s number 28 is dual.
q.e.d.

Similarly to Corollary 8.6.3, we may prove the following:

Corollary 8.6.6
Let L be an orthomodular lattice and let ⊛ be an operation with the Beran’s expression
in {34,44}. If x, y, z ∈ L such that x and y commute then each of the following expressions
has a unique output regardless of the order in which the terms appear:

z ⊛ y ⊛ x⊛ x , z ⊛ x⊛ y ⊛ x ,

x⊛ z ⊛ y ⊛ x , z ⊛ x⊛ x⊛ y ,

x⊛ z ⊛ x⊛ y , z ⊛ z ⊛ y ⊛ x .

If y and z are switched and xC z, then all Moufang identities (M1) to (M4) hold.

Theorem 8.6.7
Let L be an orthomodular lattice and let ∗ be an operation with the Beran’s number
in {16,81}. If x, y, z ∈ L such that x commutes with y or z then each of the expressions
(xxyz), (xyxz), (xyzx), (yxxz), (zxyx), (zyxx) has a unique output regardless of the order
in which the terms appear.

Proof:
For the lower commutator (∗ = com, Beran’s number 16), the following rules suffice to
evaluate all cases showing that they are equal to 1:

70

1. The commutators are commutative, x ∗ y = y ∗ x.

2. For two commuting elements, the lower commutator results in 1.

3. The element 1 is absorbing, 1 ∗ x = 1.

4. The commutator commutes with both its arguments, xC (x ∗ y), y C (x ∗ y).

As a consequence of the above, we obtain

x ∗ x ∗ y = y ∗ x ∗ x = x ∗ y ∗ x = 1 .

With the additional assumption xC z it follows from Proposition 3.2.3 that

xC ((x ∗ y) ∗ z)

and therefore

x ∗ ((x ∗ y) ∗ z) = 1

The same can be applied for the roles of y, z interchanged.
The case of the upper commutator (com, Beran’s expression 81) is then dual.

q.e.d.

Theorem 8.6.8
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 23.
If x, y, z ∈ L such that x and z commute then each of the following expressions has a
unique output regardless of the order in which the terms appear:

z ∗ x ∗ y ∗ x

x ∗ y ∗ z ∗ x

The Moufang identities (M3) and (M4) hold, and if xCy instead of xCz then also (M2).

Proof:
The operation with Beran’s number 23 acts as the right projection on commuting ele-
ments, i.e. (1) z∗x = x. From Table 8.1 it is (2) x∗y∗x = x, so we can simplify following
expressions:

(z ∗ x) ∗ (y ∗ x)
(1)
= x ∗ (y ∗ x)

(2)
= x ,

((z ∗ x) ∗ y) ∗ x
(1)
= (x ∗ y) ∗ x

(2)
= x ,

z ∗ (x ∗ y ∗ x)
(2)
= z ∗ x

(1)
= x .

To prove the case of (z ∗ (x∗ y))∗x: although x need not commute with y, the element
x always commutes with x ∗ y. According to the assumption, x commutes with z, thus
also with z ∗ (x ∗ y). As ∗ acts as the right projection on commuting elements,

(z ∗ (x ∗ y)) ∗ x = x . (3)

71

The second constellation uses analogous arguments:

x ∗ (y ∗ z) ∗ x
(2)
= x ,

x ∗ (y ∗ (z ∗ x))
(1)
= x ∗ (y ∗ x)

(2)
= x ,

(x ∗ y) ∗ (z ∗ x)
(1)
= (x ∗ y) ∗ x

(2)
= x ,

((x ∗ y) ∗ z) ∗ x = x ,

where the latter equality follows from xC (x ∗ y) ∗ z.
q.e.d.

Similarly to Corollary 8.6.3, we may prove the following:

Corollary 8.6.9
Let L be an orthomodular lattice and let ⊛ be the operation with Beran’s number 38.
If x, y, z ∈ L are such that x and z commute then each of the following expressions has
a unique output regardless of the order in which the terms appear:

x⊛ y ⊛ x⊛ z

x⊛ z ⊛ y ⊛ x

The Moufang identity (M1) holds and if xC y instead of xC z then also (M3) and (M4)
hold.

The following Theorem is proven by Stephen M. Gagola III2:

Theorem 8.6.10
Let x, y and z be elements of an orthomodular lattice L, ∗ be the Sasaki projection and
assume y C z, then

((z ∗ x) ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ y .

Proof:
Some considerations in advance: Let L be an orthomodular lattice, the chain s, x, p′ ∈ L,
with s ≤ x ≤ p′ generates a Boolean subalgebra of L (because all the elements commute)
in which

x ∧ (s ∨ p) = s .

More generally, we can replace

s by a finite supremum ⋁s∈S s of elements s ≤ x and

p by a finite supremum ⋁p∈P p of elements p ⊥ x ,

2Personal communication, April 2015

72

where S,P ⊆ L. We obtain

x ∧ (⋁
s∈S

s ∨ ⋁
p∈P

p) = ⋁
s∈S

s ,

thus only the “small” elements, s ∈ S, determine the result. Finally, we admit also finitely
many elements c ∈ C ⊆ L which commute with x, i.e. each c = (c∧x)∨ (c∧x′) splits into
a “small” element c ∧ x ≤ x and an orthogonal element (c ∧ x′) ⊥ x, which are subject to
the above rules,

x ∧ (⋁
s∈S

s ∨ ⋁
p∈P

p ∨ ⋁
c∈C

c) = x ∧ (⋁
s∈S

s ∨ ⋁
c∈C

(c ∧ x) ∨ ⋁
p∈P

p ∨ ⋁
c∈C

(c ∧ x⊥))

= ⋁
s∈S

s ∨ ⋁
c∈C

(c ∧ x) . (8.1)

It may happen that not all c ∈ C commute with x. If C admits a partition to classes such
that the supremum of each class commutes with x, we may apply the above procedure
to these classes.

(z ∗ x) ∗ y = (z ∗ x) ∧ ((z ∗ x)′ ∨ y)

= z ∧ (z′ ∨ x) ∧ (z′ ∨ (z ∧ x′) ∨ y)

= (z′ ∨ x) ∧ z ∧ ((z ∧ x′)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

⩽z

∨ z′
®
⊥z

∨ y
®
Cz

)

(8.1)
= (z′ ∨ x) ∧ ((z′ ∨ x)′ ∨ (z ∧ y))

= (z′ ∨ x) ∗ (z ∧ y)

Then, inserting this result in (P1):

((z ∗ x) ∗ y) ∗ x = ((z′ ∨ x) ∗ (z ∧ y)) ∗ x ,

If we substitute in the previous result (z ∗ x) ∗ y = (z′ ∨ x) ∗ (z ∧ y) the arguments z by
z′ ∨ x, x by z ∧ y and y by x then we get:

((z ∗ x) ∗ y) ∗ x = ((z ∧ x′) ∨ (z ∧ y)) ∗ ((z′ ∨ x) ∧ x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=x

= ((z ∧ x′) ∨ (z ∧ y)) ∧ (((z′ ∨ x) ∧ (z′ ∨ y′)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

⩾z′

) ∨ x
®

⩽z′∨x

)

= ((z ∧ x′) ∨ (z ∧ y)) ∧ (z′ ∨ x)

= (z ∗ x) ∗ y .

73

Further for (P3):

(z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∧ ((z ∗ x)′ ∨ (y ∗ x))

= (z ∧ (z′ ∨ x)) ∧ ((z′ ∨ (z ∧ x′)) ∨ (y ∧ (y′ ∨ x)))

= (z′ ∨ x) ∧ z ∧ ((z ∧ x′)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

⩽z

∨ z′ ∨ (y ∧ (y′ ∨ x))
´¹¹¹¸¹¹¹¶

Cz

)

(8.1)
= (z′ ∨ x) ∧ ((z ∧ x′) ∨ (z ∧ (z′ ∨ (y ∗ x))))

= (z′ ∨ x) ∧ ((z ∧ x′) ∨ (z ∗ (y ∗ x)))

= (z′ ∨ x) ∗ (z ∗ (y ∗ x))

(Th. 6.3.1)
= (z′ ∨ x) ∗ ((z ∗ y) ∗ x)

(Lemma 3.2.2)
= (z′ ∨ x) ∗ ((z ∧ y) ∗ x)

= (z′ ∨ x) ∧ ((z ∧ x′) ∨ ((z ∧ y) ∧ (z′ ∨ y′ ∨ x)))

= (z′ ∨ x) ∧ ((z ∧ x′)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

= ∶a

∨((z ∧ y)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

= ∶b

∧(z′ ∨ y′
²

=b′

∨ z′ ∨ x
²

=a′

)))

Note: a ∨ (b ∧ (a′ ∨ b′)) = a ∨ b, and thus

(z ∗ x) ∗ (y ∗ x) = (z′ ∨ x) ∧ (a ∨ b)

= (z′ ∨ x) ∧ ((z ∧ x′) ∨ (z ∧ y))

= (z ∗ x) ∗ y .

q.e.d.

8.6.3 Summary of results

Beran’s no. fulfils Moufang identity condition proven by
18 and 28 (M1), (M2), (M3), (M4) xC y Theorem 8.6.4
34 and 44 (M1), (M2), (M3), (M4) xC z Corollary 8.6.6

23 (M3), (M4) xC z Theorem 8.6.8
23 (M2) xC y Theorem 8.6.8
38 (M1) xC z Corollary 8.6.9
38 (M3), (M4) xC y Corollary 8.6.9

Table 8.3: Operations fulfilling Moufang identities.

74

Further results are summarised in Tables 8.4, 8.17 and 8.25. For each constellation,
they show the common value of the quintuple of different ways of putting parentheses (if
any) and minimal commutation assumptions under which they are equal. Value “none”
means that there is no common value (in general) under the maximal commutation
assumptions. For positive results, the column “Argument” refers to a theorem or to the
applicable program (referenced by [33]). For negative results, it is a reference to the
corresponding paragraph below presenting more details.

We made graphical representations, similar to the Tamari lattice of the results, Fig-
ures 8.30, 8.31 and 8.33.

The swapped projection

Beran’s expression number 23 : a ∗ b = (a′ ∨ b) ∧ (a ∨ (a′ ∧ b))

Compatibility CommonConstellation
assumptions value

Argument

x ∗ x ∗ y ∗ z xC z none 23.1
(Cx) y ∗ z Program [33]
(Cy) none 23.1
(Cz) z Program [33]

x ∗ y ∗ x ∗ z y C z none 23.2
(Cx) none 23.2
(Cy) x ∗ z Program [33]
(Cz) z Program [33]

x ∗ y ∗ z ∗ x xC z x Theorem 8.6.8
(Cy) none 23.3

y ∗ x ∗ x ∗ z y C z none 23.4
(Cx) none 23.4
(Cy) x ∗ z Program [33]
(Cz) z Program [33]

z ∗ x ∗ y ∗ x xC z x Theorem 8.6.8
(Cy) none 23.5

z ∗ y ∗ x ∗ x xC z none 23.6
(Cx) x Program [33]
(Cy) none 23.6
(Cz) y ∗ x Program [33]

Table 8.4: Results for the swapped projection.

Remark 8.6.11
For the swapped projection, as well as for the Sasaki projection, the following holds:
xC (x ∗ y), but not y C (x ∗ y). Note that both projections are idempotent.

75

Argument 23.1

In general, without assuming commuting elements, we have following calculations:

P1 ∶ ((x ∗ x) ∗ y) ∗ z = (x ∗ y) ∗ z

P2 ∶ (x ∗ (x ∗ y)) ∗ z
(L)
= (x ∗ y) ∗ z

P3 ∶ (x ∗ x) ∗ (y ∗ z) = x ∗ (y ∗ z)

P4 ∶ x ∗ ((x ∗ y) ∗ z) no simplification possible

P5 ∶ x ∗ (x ∗ (y ∗ z))
(L)
= x ∗ (y ∗ z)

The cases xC y, xC z, y C z and (Cy) can be simplified further:

xC y xC z y C z (Cy)
P1: y ∗ z (x ∗ y) ∗ z (x ∗ y) ∗ z (◊2) z

P2: y ∗ z (x ∗ y) ∗ z (x ∗ y) ∗ z (◊2) z

P3: x ∗ (y ∗ z) x ∗ (y ∗ z) x ∗ z x ∗ z

P4: x ∗ (y ∗ z) (x ∗ y) ∗ z (◊1) x ∗ ((x ∗ y) ∗ z) (◊3) x ∗ z

P5: x ∗ (y ∗ z) x ∗ (y ∗ z) x ∗ z x ∗ z

Table 8.5: Summary of results for Argument 23.1.

(◊1) We assume xC z, by Remark 8.6.11 also xC (x ∗ y) holds. By Proposition 3.2.3 it
follows that xC ((x ∗ y) ∗ z). The swapped projection acts as the right projection
if both arguments commute, it follows P4 = x ∗ ((x ∗ y) ∗ z) = (x ∗ y) ∗ z.

(◊2) An example of P1 = (x ∗ y) ∗ z /= x ∗ z = P3 can be found in L22 when choosing
x ∶= a′, y ∶= c and z ∶= d, see Table 8.6.

(◊3) The condition yC z is not sufficient to fulfil the associativity equation (x∗ y)∗ z =
x ∗ (y ∗ z), see Table 6.5. Therefore (x ∗ y) ∗ z /= x ∗ (y ∗ z) = x ∗ z, thus P4 /= P3,
P5.

Equality of P4, P1 and P2 would be true if x ∗ ((x ∗ y) ∗ z) = (x ∗ y) ∗ z, a
counterexample to this can be found in MO2 (Figure 5.2) by choosing x ∶= x,
y ∶= 0 and z ∶= y, see Table 8.6.

y C z in L22 (◊2) y C z in MO2 (◊3)
x ∗ x ∗ y ∗ z x ∶= a′, y ∶= c, z ∶= d x ∶= x, y ∶= 0, z ∶= y

P1 ((a′ ∗ a′) ∗ c) ∗ d = f ((x ∗ x) ∗ 0) ∗ y = y

P2 (a′ ∗ (a′ ∗ c)) ∗ d = f (x ∗ (x ∗ 0)) ∗ y = y
P3 (a′ ∗ a′) ∗ (c ∗ d) = j (x ∗ x) ∗ (0 ∗ y) = x

P4 a′ ∗ ((a′ ∗ c) ∗ d) = f x ∗ ((x ∗ 0) ∗ y) = x

P5 a′ ∗ (a′ ∗ (c ∗ d)) = j x ∗ (x ∗ (0 ∗ y)) = x

Table 8.6: Counterexamples for Argument 23.1.

76

Argument 23.2

In general we can simplify only P1 and P2:

P1 ∶ ((x ∗ y) ∗ x) ∗ z
(F)
= x ∗ z

P2 ∶ (x ∗ (y ∗ x)) ∗ z
(F)
= x ∗ z

The cases xC y, xC z, y C z and (Cx) can be simplified further:

xC y xC z y C z (Cx)
P1: x ∗ z z x ∗ z z

P2: x ∗ z z x ∗ z z

P3: y ∗ (x ∗ z) (x ∗ y) ∗ z (◊3) (x ∗ y) ∗ (x ∗ z) (◊4) y ∗ z

P4: x ∗ z x ∗ ((y ∗ x) ∗ z) (◊2) x ∗ ((y ∗ x) ∗ z) (◊4) z

P5: y ∗ (x ∗ z) (◊1) x ∗ (y ∗ z) (◊3) x ∗ (y ∗ (x ∗ z)) (◊4) y ∗ z

Table 8.7: Summary of results for Argument 23.2.

(◊1) We assume xC y, by Remark 8.6.11 also xC (x ∗ z) holds. By Proposition 3.2.3 it
follows that xC (y ∗ (x ∗ z)). The swapped projection acts as the right projection
if both arguments commute, thus P5 = x ∗ (y ∗ (x ∗ z)) = y ∗ (x ∗ z).

Further, by accepting a more relaxed condition, also x C z is assumed, it can be
proven that y ∗ (x ∗ z) /= x ∗ z, see the last column of Table 8.7 (Cx).

(◊2) The counterexamples in Table 8.8, for xC z prove that P4 /= P1, P2 and P4 /= P3,
P5.

(◊3) The condition xCz is not sufficient to fulfil the associativity equation, see Table 6.3,
in general (x ∗ y) ∗ z /= x ∗ (y ∗ z), thus P3 /= P5.

(◊4) See counterexamples in Table 8.8: where P3, P4 and P5 have different results
moreover they differ also from those of P1 and P2.

xC z in L22 (◊2) y C z in L22 (◊4) y C z in L22 (◊4)
x ∗ y ∗x ∗ z x ∶= e, y ∶= b′ z ∶= d′ x ∶= b, y ∶= e, z ∶= d′ x ∶= a, y ∶= c′, z ∶= d′

P1 ((e ∗ b′) ∗ e) ∗ d′ = d′ ((b ∗ e) ∗ b) ∗ d′ = g′ ((a ∗ c′) ∗ a) ∗ d′ = j′

P2 (e ∗ (b′ ∗ e)) ∗ d′ = d′ (b ∗ (e ∗ b)) ∗ d′ = g′ (a ∗ (c′ ∗ a)) ∗ d′ = j′

P3 (e ∗ b′) ∗ (e ∗ d′) = j′ (b ∗ e) ∗ (b ∗ d′) = g′ (a ∗ c′) ∗ (a ∗ d′) = f ′

P4 e ∗ ((b′ ∗ e) ∗ d′) = e b ∗ ((e ∗ b) ∗ d′) = g′ a ∗ ((c′ ∗ a) ∗ d′) = b′

P5 e ∗ (b′ ∗ (e ∗ d′)) = j′ b ∗ (e ∗ (b ∗ d′)) = b a ∗ (c′ ∗ (a ∗ d′)) = f ′

Table 8.8: Counterexamples for Argument 23.2.

77

Argument 23.3

In general, without commuting elements we can simplify P2 and P4:

P2 ∶ (x ∗ (y ∗ z)) ∗ x
(F)
= x

P4 ∶ x ∗ ((y ∗ z) ∗ x)
(F)
= x

For the cases xC y, y C z and (Cy) we can calculate further:

xC y y C z (Cy)
P1: (y ∗ z) ∗ x (◊1) ((x ∗ y) ∗ z) ∗ x (◊2) z ∗ x

P2: x x x

P3: y ∗ (z ∗ x) (◊1) (x ∗ y) ∗ (z ∗ x) (◊2) z ∗ x

P4: x x x

P5: x ∗ (y ∗ (z ∗ x)) (◊1) x ∗ (y ∗ (z ∗ x)) (◊3) x

Table 8.9: Summary of results for Argument 23.3.

(◊1) The condition x C y is not sufficient for (y ∗ z) ∗ x = y ∗ (z ∗ x), see Table 6.5.
Moreover a counterexample proving P1 /= P3, P5 is found in Table 8.10.

A more relaxed condition, yC z is additionally assumed, is summarised in the last
column of Table 8.9 (Cy) ((◊4) and contains a counterexample, thus P5 /= P1, P3.

(◊2) Table 8.10 shows a counterexample to prove that the result of P3 can differ from
the results of any other possibilities of putting parentheses.

(◊3) If y C x is additionally assumed, thus a more strict assumption, i.e. (Cy) but not
xCz, then the last column of Table 8.9 contains a counterexample and P1 = z∗x /=
x = P5.

We wanted to prove that P5 /= P2 = P4, in other words x ∗ (y ∗ (z ∗ x)) /= x,
with y C z. But, although this is rather unlikely, exactly this result is obtained
in all orthomodular lattices we considered. At this point we do not have a good
explanation for this.

The cases (Cx) and (Cz) are covered by the sufficient condition xC z.

xC y in L22 (◊1) y C z in L22 (◊2)
x ∗ y ∗ z ∗ x x ∶= a, y ∶= b′ z ∶= i x ∶= d, y ∶= b′ z ∶= a′

P1: ((a ∗ b′) ∗ i) ∗ a = a ((d ∗ b′) ∗ a′) ∗ d = d

P2: (a ∗ (b′ ∗ i)) ∗ a = a (d ∗ (b′ ∗ a′)) ∗ d = d
P3: (a ∗ b′) ∗ (i ∗ a) = b′ (d ∗ b′) ∗ (a′ ∗ d) = h′

P4: a ∗ ((b′ ∗ i) ∗ a) = a d ∗ ((b′ ∗ a′) ∗ d) = d

P5: a ∗ (b′ ∗ (i ∗ a)) = b′ d ∗ (b′ ∗ (a′ ∗ d)) = d

Table 8.10: Counterexamples for Argument 23.3.

78

Argument 23.4

The general case, no elements commute, the following calculations can be done:

P1 ∶ ((y ∗ x) ∗ x) ∗ z
(R)
= (y ∗ x) ∗ z

P2 ∶ (y ∗ (x ∗ x)) ∗ z
(R)
= (y ∗ x) ∗ z

P3 ∶ (y ∗ x) ∗ (x ∗ z) no simplification possible

P4 ∶ y ∗ ((x ∗ x) ∗ z)
(L)
= y ∗ (x ∗ z)

P5 ∶ y ∗ (x ∗ (x ∗ z))
(L)
= y ∗ (x ∗ z)

For the cases xC y, xC z, y C z and (Cx) we can calculate further:

xC y xC z y C z (Cx)
P1: x ∗ z (y ∗ x) ∗ z (y ∗ x) ∗ z z

P2: x ∗ z (y ∗ x) ∗ z (y ∗ x) ∗ z z

P3: x ∗ z (y ∗ x) ∗ z (y ∗ x) ∗ (x ∗ z) (◊1) z

P4: y ∗ (x ∗ z) y ∗ z y ∗ (x ∗ z) y ∗ z

P5: y ∗ (x ∗ z) y ∗ z y ∗ (x ∗ z) y ∗ z

Table 8.11: Summary of results for Argument 23.4.

(◊1) See the counterexamples in Table 8.12 where the five expressions give three differ-
ent results, i.e. P3 /= P1 = P2 /= P4 = P5 /= P3.

y C z in L22(◊1)
y ∗ x ∗ x ∗ z x ∶= a, y ∶= c′ z ∶= d′

P1: ((c′ ∗ a) ∗ a) ∗ d′ = b′

P2: (c′ ∗ (a ∗ a)) ∗ d′ = b′

P3: (c′ ∗ a) ∗ (a ∗ d′) = g

P4: c′ ∗ ((a ∗ a) ∗ d′) = c′

P5: c′ ∗ (a ∗ (a ∗ d′)) = c′

Table 8.12: Counterexample for Argument 23.4.

Argument 23.5

In general we can simplify P4 and P5 in the following way:

P4 ∶ z ∗ ((x ∗ y) ∗ x)
(F)
= z ∗ x

P5 ∶ z ∗ (x ∗ (y ∗ x))
(F)
= z ∗ x

For the cases xC y, y C z and (Cy) we can calculate further:

79

xC y y C z (Cy)
P1: ((z ∗ x) ∗ y) ∗ x (◊1) ((z ∗ x) ∗ y) ∗ x (◊3) x

P2: (z ∗ y) ∗ x (◊2) (z ∗ (x ∗ y)) ∗ x (◊3) x

P3: z ∗ x (z ∗ x) ∗ (y ∗ x) (◊4) z ∗ x

P4: z ∗ x z ∗ x z ∗ x

P5: z ∗ x z ∗ x z ∗ x

Table 8.13: Summary of results for Argument 23.5.

(◊1) A more relaxed condition, also yCz is supposed, is summarised in the last column
of Table 8.13 (Cy) and proves the inequality of P1 with P3, P4 and P5.

(◊2) The condition x C y is not sufficient for the associativity equation (z ∗ x) ∗ y =
z ∗ (x ∗ y). In Table 8.14 a counterexample proves that P2 has an other result as
all other ways of putting the parentheses.

(◊3) A counterexample that ((z ∗ x) ∗ y) ∗ x = (z ∗ (x ∗ y)) ∗ x does not hold can be
found in Table 8.14.

A stronger condition, y C z is also supposed, is summarised in the last column of
Table 8.13 and gives an example of P1 /= P3 = P4 = P5.

(◊4) The last column from Table 8.13, as well as the counterexample from Table 8.14,
shows that P3 can have an other result as P2, P4 and P5 is shown in Table 8.14.

The cases (Cx) and (Cz) are covered by the sufficient condition xC z.

xC y in L22 (◊2) y C z in MO2 (◊3), (◊4)
z ∗ x ∗ y ∗ x x ∶= c, y ∶= d z ∶= a′ x ∶= x, y ∶= y, z ∶= y′

P1: ((a′ ∗ c) ∗ d) ∗ c = f ((y′ ∗ x) ∗ y) ∗ x = y

P2: (a′ ∗ (c ∗ d)) ∗ c = j (y′ ∗ (x ∗ y)) ∗ x = y′

P3: (a′ ∗ c) ∗ (d ∗ c) = f (y′ ∗ x) ∗ (y ∗ x) = y

P4: a′ ∗ ((c ∗ d) ∗ c) = f y′ ∗ ((x ∗ y) ∗ x) = y′

P5: a′ ∗ (c ∗ (d ∗ c)) = f y′ ∗ (x ∗ (y ∗ x)) = y′

Table 8.14: Counterexamples for Argument 23.5.

80

Argument 23.6

In general we have following calculations:

P1 ∶ ((z ∗ y) ∗ x) ∗ x
(R)
= (z ∗ y) ∗ x

P2 ∶ (z ∗ (y ∗ x)) ∗ x no simplification possible
P3 ∶ (z ∗ y) ∗ (x ∗ x) = (z ∗ y) ∗ x

P4 ∶ z ∗ ((y ∗ x) ∗ x)
(R)
= z ∗ (y ∗ x)

P5 ∶ z ∗ (y ∗ (x ∗ x))
(R)
= z ∗ (y ∗ x)

For the cases xC y, xC z, y C z and (Cy), we can calculate further:

xC y xC z y C z (Cy)
P1: (z ∗ y) ∗ x (◊1) (z ∗ y) ∗ x (◊2) y ∗ x x

P2: z ∗ x (z ∗ (y ∗ x)) ∗ x (◊3) (z ∗ (y ∗ x)) ∗ x (◊4) z ∗ x

P3: (z ∗ y) ∗ x (z ∗ y) ∗ x y ∗ x x

P4: z ∗ x z ∗ (y ∗ x) (◊3) z ∗ (y ∗ x) z ∗ x

P5: z ∗ x z ∗ (y ∗ x) z ∗ (y ∗ x) z ∗ x

Table 8.15: Summary of results for Argument 23.6.

(◊1) A counterexample to (z ∗ y) ∗ x /= z ∗ x can be found in MO2 by choosing x ∶= x,
y ∶= y and z = 0:

P1,P3 ∶ (0 ∗ y) ∗ x = y

P2,P4,P5 ∶ 0 ∗ x = x

(◊2) The condition xC z is not sufficient to fulfil the associativity equation (z ∗ y)∗x =
z ∗ (y ∗ x), see Table 6.5. Thus P1 = P3 /= P4 = P5.

(◊3) The counterexample in Table 8.16 proves that P2 can have other results as all
other possibilities of putting parentheses.

(◊4) The last culumn of Table 8.15 shows that P2 can have other results as P1 and P3
moreover Table 8.16 includes a counterexample.

At this point we do not have a good explanation that z ∗ (y ∗ x) /= z ∗ (y ∗ x) ∗ x,
when y C z (to prove that P2 /= P4 = P5). But exactly this result is obtained
in all orthomodular lattices we considered. At this point we do not have a good
explanation for this.

81

xC z in L22 (◊3) y C z in L22 (◊4)
z ∗ y ∗ x ∗ x x ∶= a′, y ∶= d, z ∶= b′ x ∶= d′, y ∶= b, z ∶= a

P1: ((b′ ∗ d) ∗ a′) ∗ a′ = c′ ((a ∗ b) ∗ d′) ∗ d′ = g′

P2: (b′ ∗ (d ∗ a′)) ∗ a′ = a′ (a ∗ (b ∗ d′)) ∗ d′ = f ′

P3: (b′ ∗ d) ∗ (a′ ∗ a′) = c′ (a ∗ b) ∗ (d′ ∗ d′) = g′

P4: b′ ∗ ((d ∗ a′) ∗ a′) = b′ a ∗ ((b ∗ d′) ∗ d′) = f ′

P5: b′ ∗ (d ∗ (a′ ∗ a′)) = b′ a ∗ (b ∗ (d′ ∗ d′)) = f ′

Table 8.16: Counterexamples for Argument 23.6.

The Sasaki Projection

Beran’s expression number 18 : a ∗ b = a ∧ (a′ ∨ b)

Compatibility CommonConstellation
assumptions value

Argument

x ∗x ∗ y ∗ z xC y (x ∧ y) ∗ z Theorem 8.6.4
xC z or y C z none 18.1

(Cz) (x ∗ y) ∧ z Program [33]
x ∗ y ∗x ∗ z xC y (x ∧ y) ∗ z Theorem 8.6.4

xC z or y C z none 18.2
(Cz) (x ∗ y) ∧ z Program [33]

x ∗ y ∗ z ∗x xC y (x ∧ y) ∗ z Theorem 8.6.4
xC z or y C z none 18.3

(Cz) (x ∗ y) ∧ z Program [33]
y ∗x ∗x ∗ z xC y (x ∧ y) ∗ z Theorem 8.6.4

xC z or y C z none 18.4
(Cz) (y ∗ x) ∧ z Program [33]

z ∗x ∗ y ∗x xC y or y C z none 18.5
xC z (x ∧ z) ∗ y Theorem 8.6.4
(Cy) (z ∗ x) ∧ y Program [33]

z ∗ y ∗x ∗x xC y none 18.6
xC z none 18.6
y C z (y ∧ z) ∗ x Theorem 8.6.4
(Cx) (z ∗ y) ∧ x Program [33]

Table 8.17: Results for the Sasaki projection.

Remark 8.6.12
1. One of many properties of the Sasaki projection is the following:

x ∧ y ⩽ x ∧ (x′ ∨ y) ⩽ x

see [36] page 156.

82

2. For the Sasaki projection, one non-sufficient condition for fulfilling the associativ-
ity identity is z < x as can been calculated in the orthomodular lattice 22 ⊕ 23

(Figure 7.2) by substituting (x, y, z) by (t′, z, x):

t′ ∗ (z ∗ x) = t′ ∗ z = t′ /= (t′ ∗ z) ∗ x = t′ ∗ x = x .

Argument 18.1

In general, without commuting elements, we have following calculations:

P1 ∶ ((x ∗ x) ∗ y) ∗ z = (x ∗ y) ∗ z

P2 ∶ (x ∗ (x ∗ y)) ∗ z
(L)
= ((x ∗ x) ∗ y) ∗ z = (x ∗ y) ∗ z

P3 ∶ (x ∗ x) ∗ (y ∗ z) = x ∗ (y ∗ z)

P4 ∶ x ∗ ((x ∗ y) ∗ z)
(◊1)
= (x ∗ y) ∗ z

P5 ∶ x ∗ (x ∗ (y ∗ z))
(L)
= x ∗ (y ∗ z)

(◊1) By Remark 8.6.11 we know that xC (x ∗ y) and by Theorem 6.3.1 it follows:

P4 ∶ x ∗ ((x ∗ y) ∗ z) = (x ∗ (x ∗ y)) ∗ z ∶ P2

thus

P4 ∶ x ∗ ((x ∗ y) ∗ z) = (x ∗ y) ∗ z .

From Section 6.3.1 it follows that for xC z or y C z the equation (x ∗ y) ∗ z = x ∗ (y ∗ z)
does not necessarily hold.
The cases (Cx) and (Cy) are covered by the cases xC y and (Cx).

Argument 18.2

In general the following holds:

P1 ∶ ((x ∗ y) ∗ x) ∗ z
(F)
= (x ∗ y) ∗ z

P2 ∶ (x ∗ (y ∗ x)) ∗ z
(F)
= (x ∗ y) ∗ z

P3 ∶ (x ∗ y) ∗ (x ∗ z)
(Th. 8.6.2)

= (x ∗ y ∗ x) ∗ z
(F)
= (x ∗ y) ∗ z

P4 ∶ x ∗ ((y ∗ x) ∗ z) no simplification possible
P5 ∶ x ∗ (y ∗ (x ∗ z)) no simplification possible

For the cases z ⩽ x or x ⩽ z and the case y ⩽ z we can calculate further:

83

z ⩽ x x ⩽ z y ⩽ z
P1: (x ∗ y) ∗ z x ∗ y y ∗ x

P2: (x ∗ y) ∗ z x ∗ y y ∗ x

P3: (x ∗ y) ∗ z x ∗ y y ∗ x

P4: x ∗ (y ∗ z) (◊1) x ∗ y (◊1) y ∗ x (◊3)

P5: x ∗ (y ∗ z) (◊2) x ∗ y (◊2) y ∗ x (◊4)

Table 8.18: Summary of results for Argument 18.2.

(◊1) If x C z, then we can find a counterexample that P4 has a different result as all
other ways of putting the parentheses, see Table 8.19.
a) In case z ⩽ x we apply Lemma 8.6.1 (S6):

P4 ∶ x ∗ ((y ∗ x) ∗ z) = x ∗ (y ∗ z) = P5 .

b) In case x ⩽ z we apply Lemma 8.6.1 (S5):

P4 ∶ x ∗ ((y ∗ x) ∗ z) = x ∗ (y ∗ x) = x ∗ y .

(◊2) For xC z we can calculate further

P5 ∶ x ∗ (y ∗ (x ∗ z))
(Lemma 3.2.2)

= x ∗ (y ∗ (x ∧ z))

a) If we assume z ⩽ x in addition, then

P5 ∶ x ∗ (y ∗ (x ∗ z)) = x ∗ (y ∗ (x ∧ z)) = x ∗ (y ∗ z) .

b) In the case that x ⩽ z

P5 ∶ x ∗ (y ∗ (x ∧ z)) = x ∗ (y ∗ x) = x ∗ y = P1, P2, P3 .

(◊3) If yCz, but y ≰ z, then we can find a counterexample that P4 has a different result
as all other ways of putting the parentheses, see Table 8.19.
If we assume y ⩽ z, then by Lemma 8.6.1 (S5) and Table 8.1:

P4 = x ∗ ((y ∗ x) ∗ z) = x ∗ (y ∗ x) = x ∗ y ,

but for z ⩽ y nothing can be said.

(◊4) For parentheses P5 and y C z:
a) With the additional assumption that y ⩽ z, by Lemma 8.6.1 (S5) it follows

y ∗ (x ∗ z) = (y ∗ x) ∗ z = y ∗ x .

In this case P5 = P1, P2, P3.
b) But the contrary assumption z < y is not a sufficient condition for y∗(x∗z) =

(y ∗ x) ∗ z, see Remark 8.6.12.

The cases (Cx) and (Cy) are covered by the condition xC y of Theorem 8.6.4.

84

xC z in MO2 (◊1) y C z in MO2 (◊3)
x ∗ y ∗ x ∗ z x ∶= a, y ∶= b z ∶= a′ x ∶= b, y ∶= a, z ∶= a′

P1: ((a ∗ b) ∗ a) ∗ a′ = 0 ((b ∗ a) ∗ b) ∗ a′ = b

P2: (a ∗ (b ∗ a)) ∗ a′ = 0 (b ∗ (a ∗ b)) ∗ a′ = b
P3: (a ∗ b) ∗ (a ∗ a′) = 0 (b ∗ a) ∗ (b ∗ a′) = b

P4: a ∗ ((b ∗ a) ∗ a′) = a b ∗ ((a ∗ b) ∗ a′) = 0

P5: a ∗ (b ∗ (a ∗ a′)) = 0 b ∗ (a ∗ (b ∗ a′)) = b

Table 8.19: Counterexamples for Argument 18.2.

Argument 18.3

In general we have

P1 ∶ ((x ∗ y) ∗ z) ∗ x
(Th. 8.6.2)

= P3

P2 ∶ (x ∗ (y ∗ z)) ∗ x
(F)
= x ∗ (y ∗ z)

P3 ∶ (x ∗ y) ∗ (z ∗ x)
(Th. 8.6.2)

= P1

P4 ∶ x ∗ ((y ∗ z) ∗ x)
(F)
= x ∗ (y ∗ z)

P5 ∶ x ∗ (y ∗ (z ∗ x)) no simplification possible

For the cases z ⩽ x or z ⩽ x and y C z we can calculate further:

z ⩽ x x ⩽ z y C z
P1: (x ∗ y) ∗ z x ∗ y = P3 (◊3)

P2: x ∗ (y ∗ z) x ∗ y x ∗ (y ∧ z) (◊2)

P3: (x ∗ y) ∗ z (◊1) x ∗ y (◊1) = P1 (◊3)

P4: x ∗ (y ∗ z) x ∗ y x ∗ (y ∧ z)

P5: x ∗ (y ∗ z) (◊1) x ∗ y (◊1) x ∗ (y ∧ z)

Table 8.20: Summary of results for Argument 18.3.

(◊1) For xC z we have

P1 ∶ (x ∗ y) ∗ (z ∧ x)

P3 ∶ (x ∗ y) ∗ (z ∧ x)

P5 ∶ x ∗ (y ∗ (z ∧ x))

a) For z ⩽ x,

P3 ∶ (x ∗ y) ∗ (z ∗ x) = (x ∗ y) ∗ (z ∧ x) = (x ∗ y) ∗ z

P5 ∶ x ∗ (y ∗ (z ∗ x)) = x ∗ (y ∗ (z ∧ x)) = x ∗ (y ∗ z)

From Section 6.3.1 follows that even if xCz the equation (x∗y)∗z = x∗(y∗z)
does not necessarily hold.

85

b) For x ⩽ z,

P3 ∶ (x ∗ y) ∗ (z ∧ x) = (x ∗ y) ∗ x
(F)
= x ∗ y

P5 ∶ x ∗ (y ∗ (z ∧ x)) = x ∗ (y ∗ x)
(F)
= x ∗ y

which is equal to P2 and P4, all results are then equal.

(◊2) If y C z we can calculate further:

P2 ∶ (x ∗ (y ∗ z)) ∗ x = (x ∗ (y ∧ z)) ∗ x
(F)
= x ∗ (y ∧ z)

P4 ∶ x ∗ ((y ∗ z) ∗ x) = x ∗ ((y ∧ z) ∗ x)
(F)
= x ∗ (y ∧ z)

P5 ∶ x ∗ (y ∗ (z ∗ x))
(Th. 6.3.1)

= x ∗ ((y ∗ z) ∗ x)
(F)
= x ∗ (y ∧ z)

(◊3) A counterexample proving that P1 and P3 can have different results as the other
possibilities of putting the parentheses can be found on MO2 by choosing x ∶= x,
y ∶= y and z ∶= y′

P1,P3 ∶ (x ∗ y) ∗ (y′ ∗ x) = x

P2 ∶ (x ∗ (y ∗ y′)) ∗ x = 0 = P4, P5

The cases (Cx) and (Cy) are covered by the condition xC y of Theorem 8.6.4.

Argument 18.4

In general we have

P1 ∶ ((y ∗ x) ∗ x) ∗ z
(R)
= (y ∗ x) ∗ z

P2 ∶ (y ∗ (x ∗ x)) ∗ z
(R)
= (y ∗ x) ∗ z

P3 ∶ (y ∗ x) ∗ (x ∗ z)
(◊)
= y ∗ (x ∗ z)

P4 ∶ y ∗ ((x ∗ x) ∗ z)
(L)
= y ∗ (x ∗ z)

P5 ∶ y ∗ (x ∗ (x ∗ z))
(L)
= y ∗ (x ∗ z)

(◊) P3 ∶ (y ∗ x) ∗ (x ∗ z)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

⩽x

(S6)
= y ∗ (x ∗ z) = P4,P5 (by Remark 8.6.12)

The Sasaki projection is not associative in general, by Section 6 it is thus (y ∗ x) ∗ z /=
y ∗ (x ∗ z).
The cases (Cx) and (Cy) are covered by the condition xC y and (Cz).

86

Argument 18.5

In general we have

P1 ∶ ((z ∗ x) ∗ y) ∗ x no simplification possible

P2 ∶ (z ∗ (x ∗ y)) ∗ x
(Th. 8.6.2)

= z ∗ (x ∗ y ∗ x)
(F)
= z ∗ (x ∗ y)

P3 ∶ (z ∗ x) ∗ (x ∗ y) no simplification possible

P4 ∶ z ∗ ((x ∗ y) ∗ x)
(F)
= z ∗ (x ∗ y)

P5 ∶ z ∗ (x ∗ (y ∗ x))
(F)
= z ∗ (x ∗ y)

For the cases xC y or x ⩽ y or y ⩽ x or y C z we can calculate further:

xC y x ⩽ y or y ⩽ x y C z

P1: ((z ∗ x) ∗ y) ∗ x (◊1) z ∗ (x ∧ y) (◊1) (z ∗ x) ∗ y (◊2)

P2: z ∗ (x ∧ y) z ∗ (x ∧ y) z ∗ (x ∗ y)

P3: z ∗ (x ∧ y) (◊1) z ∗ (x ∧ y) (◊1) (z ∗ x) ∗ y (◊2)

P4: z ∗ (x ∧ y) z ∗ (x ∧ y) z ∗ (x ∗ y)

P5: z ∗ (x ∧ y) z ∗ (x ∧ y) z ∗ (x ∗ y)

Table 8.21: Summary of results for Argument 18.5.

(◊1) For xC y, the counterexample in Table 8.22 shows that P1 is not equal to any of
the expressions P2 to P5. Further by y ∧ x ⩽ x:

P3 ∶ (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ (y ∧ x)
(S6)
= z ∗ (x ∧ y)

a) If we additionally assume that x ⩽ y then we have:

P1 ∶ ((z ∗ x) ∗ y) ∗ x
(S4)
= (z ∗ x) ∗ x = z ∗ x

P3 ∶ (z ∗ x) ∗ (y ∧ x) = (z ∗ x) ∗ x = z ∗ x

which is in this case equal to the results of P2, P4 and P5.

b) By assuming y ⩽ x:

P1 ∶ ((z ∗ x) ∗ y) ∗ x
(S6)
= (z ∗ x) ∗ (y ∗ x) = P3

P3 ∶ (z ∗ x) ∗ (y ∧ x) = (z ∗ x) ∗ y
(S6)
= z ∗ (x ∗ y) = z ∗ y .

Thus also equal to the results of P2, P4 and P5.

(◊2) The case y C z is solved by Theorem 8.6.10, it proves

P1 = ((z ∗ x) ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ y = P3 .

From Section 6.3.1 it follows that even if yC z the equation (z ∗x)∗ y = z ∗ (x∗ y)
does not necessarily hold, see also the counterexample in Table 8.22.

87

The cases (Cx) and (Cz) are covered by the condition xC z of Theorem 8.6.4, where y
and z are interchanged.

xC y in MO2 (◊1) y C z in MO2 (◊2)
z ∗ x ∗ y ∗ x x ∶= a, y ∶= a′ z ∶= b x ∶= b, y ∶= a z ∶= a′

P1: ((b ∗ a) ∗ a′) ∗ a = b ((a′ ∗ b) ∗ a) ∗ b = 0

P2: (b ∗ (a ∗ a′)) ∗ a = 0 (a′ ∗ (b ∗ a)) ∗ b = a′

P3: (b ∗ a) ∗ (a′ ∗ a) = 0 (a′ ∗ b) ∗ (a ∗ b) = 0

P4: b ∗ ((a ∗ a′) ∗ a) = 0 a′ ∗ ((b ∗ a) ∗ b) = a′

P5: b ∗ (a ∗ (a′ ∗ a)) = 0 a′ ∗ (b ∗ (a ∗ b)) = a′

Table 8.22: Counterexamples for Argument 18.5.

Argument 18.6

In general we have

P1 ∶ ((z ∗ y) ∗ x) ∗ x
(R)
= (z ∗ y) ∗ x

P2 ∶ (z ∗ (y ∗ x)) ∗ x no simplification possible
P3 ∶ (z ∗ y) ∗ (x ∗ x) = (z ∗ y) ∗ x

P4 ∶ z ∗ ((y ∗ x) ∗ x)
(R)
= z ∗ (y ∗ x)

P5 ∶ z ∗ (y ∗ (x ∗ x)) = z ∗ (y ∗ x)

For the cases xC y or x ⩽ y or y ⩽ x or the case xC z we can calculate further:

xC y x ⩽ y or y ⩽ x xC z
P1: (z ∗ y) ∗ x z ∗ (y ∧ x) (◊1) (z ∗ y) ∗ x (◊2)

P2: z ∗ (y ∧ x) (◊1) z ∗ (y ∧ x) (◊1) (z ∗ (y ∗ x)) ∗ x (◊2)

P3: (z ∗ y) ∗ x z ∗ (y ∧ x) (z ∗ y) ∗ x

P4: z ∗ (y ∧ x) z ∗ (y ∧ x) z ∗ (y ∗ x) (◊2)

P5: z ∗ (y ∧ x) z ∗ (y ∧ x) z ∗ (y ∗ x)

Table 8.23: Summary of results for Argument 18.6.

(◊1) The assumption x C y is not sufficient for associativity of the Sasaki projection,
by Section 6. An example that P2 = (z ∗ (y ∧ x)) ∗ x /= (z ∗ y) ∗ x = P1, P3 can be
found in Table 8.24.
On the other hand, while y ∧ x ⩽ x it is

P2 ∶ (z ∗ (y ∗ x)) ∗ x = (z ∗ (y ∧ x)) ∗ x
(S4)
= z ∗ ((y ∧ x) ∗ x) = P4, P5

a) If x ⩽ y then

P4, P5 ∶ z ∗ (y ∗ x) = z ∗ (y ∧ x) = z ∗ x

88

By Lemma 8.6.1 (S6), z ∗ (y ∗ x) = (z ∗ y) ∗ x. All results are then equal.

b) If x ⩾ y then, by Theoem 8.6.1 (S4):

P2 ∶ (z ∗ (y ∧ x)) ∗ x = (z ∗ y) ∗ x = z ∗ (y ∗ x).

Also in this case all results are equal to z ∗ (y ∧ x) = z ∗ y.

(◊2) In case xC z then P2 /= P4, P5, see the counterexample in Table 8.24. In the same
table is also an example proving that P2 /= P1, P3.

The cases (Cy) and (Cz), are covered by y C z and by Theoren 6.3.1 it is easy to prove
that in this case all ways to put parentheses have equal results.

xC y in L22 (◊1) xC z in MO2 (◊2) xC z in L22 (◊2)
z ∗ y ∗x ∗x x ∶= b, y ∶= c, z ∶= e x ∶= x, y ∶= y, z ∶= x′ x ∶= a, y ∶= i′, z ∶= b′

P1: ((e ∗ c) ∗ b) ∗ b = e ((x′ ∗ y) ∗ x) ∗ x = 0 ((b′ ∗ i′) ∗ a) ∗ a = a

P2: (e ∗ (c ∗ b)) ∗ b = 0 (x′ ∗ (y ∗ x)) ∗ x = 0 (b′ ∗ (i′ ∗ a)) ∗ a = g
P3: (e ∗ c) ∗ (b ∗ b) = e (x′ ∗ y) ∗ (x ∗ x) = 0 (b′ ∗ i′) ∗ (a ∗ a) = a

P4: e ∗ ((c ∗ b) ∗ b) = 0 x′ ∗ ((y ∗ x) ∗ x) = x′ b′ ∗ ((i′ ∗ a) ∗ a) = g

P5: e ∗ (c ∗ (b ∗ b)) = 0 x′ ∗ (y ∗ (x ∗ x)) = x′ b′ ∗ (i′ ∗ (a ∗ a)) = g

Table 8.24: Counterexamples for Argument 18.6.

Lower commutator

Beran’s expression number 16 : a ∗ b = (a ∧ b) ∨ (a′ ∧ b) ∨ (a ∧ b′) ∨ (a′ ∧ b′)

Compatibility CommonConstellation
assumptions value

Argument

x ∗x ∗ y ∗ z xC y or xC z 1 Theorem 8.6.7
y C z none 16.1

x ∗ y ∗x ∗ z xC y or xC z 1 Theorem 8.6.7
y C z none 16.2

x ∗ y ∗ z ∗x xC y or xC z 1 Theorem 8.6.7
y C z none 16.3

y ∗x ∗x ∗ z xC y or xC z 1 Theorem 8.6.7
y C z none 16.4

z ∗x ∗ y ∗x xC y or xC z 1 Theorem 8.6.7
y C z none 16.5

z ∗ y ∗x ∗x xC y or xC z 1 Theorem 8.6.7
y C z none 16.6

Table 8.25: Results for the lower commutator.

89

Remark 8.6.13
Due to the commutativity of the commutators, the results of (xxyz) (Argument 16.1)
and (zyxx) (Argument 16.6) and those of (xyxz) (Argument 16.2) and (zxyx) (Argument
16.5) will be similar. We will see that their results are symmetric in terms of the way of
putting parentheses, see Figure 8.33, Arguments 16.5 and 16.6.

Argument 16.1

y C z Lower commutator in D16

x ∗ x ∗ y ∗ z x ∶= a, y ∶= c z ∶= d
P1: ((a ∗ a) ∗ c) ∗ d = 1

P2: (a ∗ (a ∗ c)) ∗ d = 1
P3: (a ∗ a) ∗ (c ∗ d) = 1

P4: a ∗ ((a ∗ c) ∗ d) = b

P5: a ∗ (a ∗ (c ∗ d)) = 1

Table 8.26: Counterexample for Argument 16.1.

P1 ∶ ((x ∗ x) ∗ y) ∗ z = (1 ∗ y) ∗ z = 1

P2 ∶ (x ∗ (x ∗ y)) ∗ z = 1

P3 ∶ (x ∗ x) ∗ (y ∗ z) = 1

P5 ∶ x ∗ (x ∗ (y ∗ z)) = 1

Argument 16.2

y C z Lower commutator in L22

x ∗ y ∗ x ∗ z x ∶= c, y ∶= e, z ∶= a
P1: ((c ∗ e) ∗ c) ∗ a = 1

P2: (c ∗ (e ∗ c)) ∗ a = 1
P3: (c ∗ e) ∗ (c ∗ a) = c

P4: c ∗ ((e ∗ c) ∗ a) = d

P5: c ∗ (e ∗ (c ∗ a)) = b

Table 8.27: Counterexamples for Argument 16.2.

P1 ∶ ((x ∗ y) ∗ x) ∗ z
(F)
= 1

P2 ∶ (x ∗ (y ∗ x)) ∗ z
(F)
= 1

90

Argument 16.3

y C z Lower commutator in D16 Lower commutator in L22

x ∗ y ∗ z ∗ x x ∶= a, y ∶= c z ∶= d x ∶= c, y ∶= e, z ∶= a
P1: ((a ∗ c) ∗ d) ∗ a = b ((c ∗ e) ∗ a) ∗ c = 1

P2: (a ∗ (c ∗ d)) ∗ a = 1 (c ∗ (e ∗ a)) ∗ c = 1
P3: (a ∗ c) ∗ (d ∗ a) = 1 (c ∗ e) ∗ (a ∗ c) = c

P4: a ∗ ((c ∗ d) ∗ a) = 1 c ∗ ((e ∗ a) ∗ c) = 1

P5: a ∗ (c ∗ (d ∗ a)) = 1 c ∗ (e ∗ (a ∗ c)) = b

Table 8.28: Counterexamples for Argument 16.3.

P2 ∶ (x ∗ (y ∗ z)) ∗ x
(F)
= 1

P4 ∶ x ∗ ((y ∗ z) ∗ x)
(F)
= 1

Argument 16.4

y C z Lower commutator in L22

y ∗ x ∗ x ∗ z x ∶= a, y ∶= c z ∶= d
P1: ((c ∗ a) ∗ a) ∗ d = 1

P2: (c ∗ (a ∗ a)) ∗ d = 1
P3: (c ∗ a) ∗ (a ∗ d) = a

P4: c ∗ ((a ∗ a) ∗ d) = 1

P5: c ∗ (a ∗ (a ∗ d)) = 1

Table 8.29: Counterexample for Argument 16.4.

P1 ∶ ((y ∗ x) ∗ x) ∗ z
(R)
= 1

P2 ∶ (y ∗ (x ∗ x)) ∗ z = 1

P4 ∶ y ∗ ((x ∗ x) ∗ z)
(L)
= 1

P5 ∶ y ∗ (x ∗ (x ∗ z))
(L)
= 1

Argument 16.5

The commutators are commutative, the results of Argument 16.5 (zxyx) are symmetric
to the results of Argument 16.2 (xyxz) (Remark 8.6.13), see Figure 8.33.

Argument 16.6

Also the results of Argument 16.6 (zyxx) are symmetric to the results of Argument 16.1
(xxyz) (Remark 8.6.13), see Figure 8.33.

91

On the next pages we made graphical representations of the different constellations,
and the kind of fulfilling the associativity–like equations for the three representative
operations, the swapped projection, the Sasaki projection and the lower commutator.

The vertices represent the way of putting parentheses. If two or more vertices are
connected by an edge then they have equal results, if edges are not connected then these
kinds of putting the parentheses do not have equal results. For associative operations,
the representation would be a complete graph. The second column summarises the
conditions for which the constellation fulfils all associativity equations.

The tables represent the minimal conditions, e.g. if xCy is sufficient for fulfilling some
equations, then the case (Cx) will not be mentioned.

92

C
on

st
el
la
ti
on

B
er

an
’s

nu
m

b
er

23

xx
yz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
(C

x
)
or

(C
z
)

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,o

r
if
y
C
z

x
C
y
or

(C
y
)

x
C
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

xy
xz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
(C

y
)
or

(C
z
)

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

x
C
z
or

y
C
z

x
C
y
or

(C
x
)

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

xy
zx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
z

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

x
C
y

(C
y
)

y
C
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

(1
)

(1
)
w
e
do

no
t
kn

ow

93

C
on

st
el
la
ti
on

B
er

an
’s

nu
m

b
er

23

yx
xz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
(C

y
)
or

(C
z
)

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

y
C
z

x
C
y
or

x
C
z
or

(C
x
)

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

zx
yx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
z

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

y
C
z

x
C
y

(C
y
)

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

zy
xx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
(C

x
)
or

(C
z
)

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed

al
so

if
x
C
z

x
C
y
or

(C
y
)

y
C
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

(1
)

(1
)
w
e
do

no
t
kn

ow

T
ab

le
8.
30
:G

ra
ph

ic
al

ov
er
vi
ew

of
al
lA

rg
um

en
ts

of
th
e
sw

ap
pe

d
pr
oj
ec
ti
on

.

94

C
on

st
el
la
ti
on

B
er

an
’s

nu
m

b
er

18

xx
yz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
y
,o

r
(C

z
),

or
x
⩽
z
,o

r
y
⩽
z
,o

r
z
⩽
y

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed

or
x
C
z
,

or
y
C
z
,o

r
z
⩽
x

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

xy
xz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
y
or

x
⩽
z

or
y
⩽
z
or

(C
z
)

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

x
C
z
,o

r
y
C
z
,o

r
z
⩽
y

z
⩽
x

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

xy
zx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
y
,x

⩽
z
,o

r
(C

z
),
or

y
⩽
z
,o

r
z
⩽
y

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed

or
x
C
z

z
⩽
x
or

y
C
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

95

C
on

st
el
la
ti
on

B
er

an
’s

nu
m

b
er

18

yx
xz

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
y
,o

r
(C

z
),

or
x
⩽
z
,o

r
z
⩽
x
,o

r
y
⩽
z

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,o

r
x
C
z
,

or
y
C
z
,o

r
z
⩽
y

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

zx
yx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
z
,o

r
x
⩽
y
,

or
y
⩽
x
,o

r
(C

y
),
or

z
⩽
y

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed

x
C
y

y
C
z
or

y
⩽
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

zy
xx

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
y
C
z
,o

r
x
⩽
y
,

or
y
⩽
x
,o

r
(C

x
),
or

z
⩽
x

In
ge
ne
ra
l,
no

co
m
m
ut
in
g

el
em

en
ts

as
su
m
ed
,a

ls
o
if

x
C
z
or

x
⩽
z

x
C
y

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

T
ab

le
8.
31
:G

ra
ph

ic
al

ov
er
vi
ew

of
al
lA

rg
um

en
ts

of
th
e
Sa

sa
ki

pr
oj
ec
ti
on

.

96

B
er

an
’s

nu
m

b
er

16

P
5

P
4

P
2

P
1

P
3

A
ll
as
so
ci
at
iv
it
y
eq
ua

ti
on

s
ar
e
fu
lfi
lle
d
if
x
C
y
or

x
C
z

fo
r
al
lc

on
st
el
la
ti
on

s
xx

yz
,

xy
xz

,
xy

zx
,

yx
xz

,
zx

yx
an

d
zy

xx

xx
yz

xy
xz

xy
zx

yx
xz

zx
yx

zy
xx

y
C
z

y
C
z

y
C
z

y
C
z

y
C
z

y
C
z

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

P
5

P
4

P
2

P
1

P
3

T
ab

le
8.
33
:G

ra
ph

ic
al

ov
er
vi
ew

of
al
lA

rg
um

en
ts

of
th
e
lo
w
er

co
m
m
ut
at
or

97

8.7 Other weaker laws of associativity involving the
orthocomplement

In this section we look at other weaker laws of associativity that involve the comple-
ment and other non–decreasing operations for which they are satisfied. Introducing the
orthocomplementation, we may modify the previously studied identities in which some
variable appear repeatedly. In particular, identities (L), (R), (F) can be modified to the
following:

x ∗ (x′ ∗ y) = (x ∗ x′) ∗ y (L’)
(y ∗ x) ∗ x′ = y ∗ (x ∗ x′) (R’)
(x ∗ y) ∗ x′ = x ∗ (y ∗ x′) (F’)

We first ask which nonassociative operations in orthomodular lattices satisfy these iden-
tities. These are also listed in Table 6.3. The equations (L’), (R’) and (F’) correspond
to the columns (6.3), (6.5) and (6.7) respectively. We then ask which of them give a
unique output for the following set of constellations regardless of the order in which the
terms appear:

x ∗ x′ ∗ y ∗ z (xx’yz)
x ∗ y ∗ x′ ∗ z (xyx’z)
x ∗ y ∗ z ∗ x′ (xyzx’)
y ∗ x ∗ x′ ∗ z (yxx’z)
z ∗ x ∗ y ∗ x′ (zxyx’)
z ∗ y ∗ x ∗ x′ (zyxx’)

Theorem 8.7.1
Let L be an orthomodular lattice and let ∗ be an operation with the Beran’s numbers in
{16,81}. If x, y, z ∈ L such that x commutes with either y or z then each of the expres-
sions (xx’yz), (xyx’z), (xyzx’), (yxx’z), (zxyx’), (zyxx’) has a unique output regardless
of the order in which the terms appear.

Proof:
The proof progresses analogously to the proof of Theorem 8.6.7. q.e.d.

The same questions can be posed also for other operations, but the chance of getting
reasonably strong positive results is weak. We select only the following results.

Theorem 8.7.2
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 54,
x ∗ y = (x ∨ y) ∧ (y′ ∨ (x ∧ y)). If x, y, z ∈ L such that x and y commute then each of

98

the following expressions has a unique output regardless of the order in which the terms
appear:

x ∗ y ∗ z ∗ x′

x ∗ z ∗ x′ ∗ y

Remark 8.7.3
The constellation x∗z∗x′∗y (xzx’y) is the same as x∗y∗x′∗z (xyx’z); we interchanged
variables y, z only to use the same assumption xC y in both cases.

Proof:
Notice that ∗ acts as the left projection on commuting elements. Thus x ∗ y = x. Also
note that x commutes with z ∗ x′. Further, from computation with only two variables,
x ∗w ∗ x′ = x. These facts admit the following simplifications:

(x ∗ y) ∗ (z ∗ x′)
(1′)
= x ∗ (z ∗ x′)

(2′)
= x (1′) ∶ x ∗ y = x

((x ∗ y) ∗ z) ∗ x′
(1′)
= (x ∗ z) ∗ x′

(2′)
= x (2′) ∶ x ∗w ∗ x′ = x,

x ∗ (y ∗ z) ∗ x′
(2′)
= x .

For the remaining case of x∗ (y ∗ (z ∗x′)), note that since x commutes with both y and
z ∗ x′, x also commutes with y ∗ (z ∗ x′). Hence, since ∗ acts as the left projection on
commuting elements,

x ∗ (y ∗ (z ∗ x′)) = x .

Likewise, for the second constellation it follows that

(x ∗ z) ∗ (x′ ∗ y)
(1′)
= (x ∗ z) ∗ x′

(2′)
= x (1′) ∶ x ∗ y = x

(x ∗ z ∗ x′) ∗ y
(2′)
= x ∗ y

(1′)
= x (2′) ∶ x ∗ ∗x′ = x

x ∗ (z ∗ (x′ ∗ y)) = x ∗ (z ∗ x′)
(2′)
= x .

For the last case of x∗((z∗x′)∗y), note that since x commutes with both y and z∗x′, x
also commutes with (z ∗x′)∗y. Hence, since ∗ acts as the left projection on commuting
elements,

x ∗ ((z ∗ x′) ∗ y) = x .

q.e.d.

Similarly to Corollary 8.6.3, we may prove the following:

Corollary 8.7.4
Let L be an orthomodular lattice and let ⊛ be the operation with Beran’s number 71,
x ⊛ y = (x ∨ y) ∧ (x′ ∨ (x ∧ y)). If x, y, z ∈ L such that x and y commute then each of
the following expressions has a unique output regardless of the order in which the terms
appear:

x⊛ z ⊛ y ⊛ x′

y ⊛ x⊛ z ⊛ x′

99

8.8 Conclusions
We studied six Moufang–like identities, (xxyz), (xyxz), (xyxz), (zxyx), (zyxx) and
(xxyz), under the eight operations which fulfil the left (L), the right (R) and thus also
the flexible (F) identities. The six associative operations are not considered, they fulfil
these identities anyway. Four arguments have five possible ways of putting parenthesises
and thus ten associativity equations to check, see Section 8.2. All eight operations sum-
marised in Table 8.1 fulfil at least one of these ten associativity equations under certain
conditions.

The swapped projection and the Sasaki projection even fulfil all associativity equations
under the conditions summarised in Table 8.34. The upper and lower commutators have
for all constellations the same conditions, i.e. for the commutators the conditions xC y
or xC z are sufficient to fulfil the associativity–like identities for all constellations.

Constellation (Cx) (Cy) (Cz) xC y xC z y C z

Sw
ap

pe
d

pr
oj
ec
ti
on

xxyz ⍟ ⍟
xyxz ⍟ ⍟
xyzx ⍟ ⍟ ⍟
yxxz ⍟ ⍟
zxyx ⍟ ⍟ ⍟
zyxx ⍟ ⍟

Sa
sa
ki

pr
oj
ec
ti
on

xxyz ⍟ ⍟ ⍟ ⍟
xyxz ⍟ ⍟ ⍟ ⍟
xyzx ⍟ ⍟ ⍟ ⍟
yxxz ⍟ ⍟ ⍟ ⍟
zxyx ⍟ ⍟ ⍟ ⍟
zyxx ⍟ ⍟ ⍟ ⍟

Table 8.34: Sufficient conditions for the swapped projection and the Sasaki projection.

In Table 8.34 we summarised the sufficient conditions for the six constellations and
for both operations, the swapped projection and the Sasaki projection. The swapped
projection possesses the fewest cases (sufficient conditions) in which all associativity
equations hold.

The Sasaki projection fulfils all associativity equations if at least one argument com-
mutes with the other two. The Sasaki projection, in some constellations the condition
xC y, or xC z, or y C z do not suffice, in these cases the arguments x and y, x and z, y
and z respectively, have additionally to be comparable.

Moreover, in Table 8.35 we compared the graphs of the general cases, no commuting
arguments are supposed, we see that the Sasaki projection fulfils more equalities as the
swapped projections for the same constellation. The Sasaki projection fulfils exactly one
equation more, except the constellation (zyxx), which fulfil exactly the same equations
as the swapped projection.

100

Constellation Swapped projection Sasaki projection
xxyz

P5
P4

P2
P1

P3

P5
P4

P2
P1

P3

xyxz
P5

P4

P2
P1

P3

P5
P4

P2
P1

P3

xyzx
P5

P4

P2
P1

P3

P5
P4

P2
P1

P3

yxxz
P5

P4

P2
P1

P3

P5
P4

P2
P1

P3

zxyx
P5

P4

P2
P1

P3

P5
P4

P2
P1

P3

101

Constellation Swapped projection Sasaki projection
zyxx

P5
P4

P2
P1

P3

P5
P4

P2
P1

P3

Table 8.35: General graphs, no commuting arguments are assumed, for the swapped projection
and the Sasaki projection.

Remark 8.8.1
All our counterexamples were found in the single orthomodular lattice L22 of Figure 6.3.
Although D16 is not a sublattice of L22, the counterexamples using it could have also been
chosen from L22, too. This experience suggests a conjecture that the free orthomodular
lattice with three free generators belongs to the variety generated by L22. (The free
orthomodular lattice with two free generators belongs to the variety generated by MO2;
L22 does not belong to it.) This conjecture is not true. All the orthomodular lattices
used here, MO2, D16, and L22, admit order–determining sets of two–valued measures
(see [51]). It is known that such orthomodular lattices form a variety [41]. The lattice
of subspaces of the three–dimensional real Hilbert space is an orthomodular lattice with
three generators which does not admit any two–valued measure [19]. Thus the free
orthomodular lattice with three free generators belongs to a variety strictly larger than
that generated by MO2, D16 and L22.
The variety generated by the free orthomodular lattice on three free generators is the

variety of all orthomodular lattices [25]. More precisely: The variety of orthomodu-
lar lattices is not generated by any set S of orthomodular lattices with a finite upper
bound on the lengths of their chains. This is best seen by Jónsson’s Lemma3, since the
subdirectly irreducibles in the variety generated by S will be homomorphic images of
subalgebras of ultraproducts of members of S. They will have the same upper bound on
the length of their chains, and it is easy to construct subdirectly irreducible orthomo-
dular lattices that have no such finite upper bound (the horizontal sum of two infinite
Boolean algebras), this follows from results in [24].

Other weaker laws of associativity If we compare the three columns xx’y, xy’y
and xyx’ with the other three columns xxy, xyy und xyx of Table 6.3, then the first
which strikes is that there are only two nonassociative operations which satisfy the three
equations (L’), (R’), and (F’), namely the two commutators, B16 and B81. We remark
also that there are less operations which satisfy one or two equations as those which
satisfy (L), (R), or (F).

3By Jónsson’s Lemma, the variety V (K) generated by a finite lattice has only finitely many sub-
varieties. This led to the conjecture that, conversely, if a lattice variety has only finitely many
subvarieties, then it is generated by a finite lattice.

102

We notice that the analogue of the second part of Theorem 8.3.1 does not hold; some
operations fulfil exactly two equations, namely B23, B38, B54 and B71, they are each
other’s analogues.

Because x com y = x com y′ holds, we get the same results with or without orthocom-
plements; they are summarized in Theorem 8.7.1 and Table 8.25 where the second x is
replaced by x′.

103

Chapter 9

Conclusions and a glance on future
work
Keeping the word problem in mind and having the ambition to contribute to find a way
to transform elements of an orthomodular lattice to their normal form, we studied the as-
sociativity, monotonicity and alternating property in orthomodular lattices. Principally
we study these properties on the 96 orthomodular operations of the free orthomodular
lattice on two free generators, F(x, y).

The construction of F(x, y), being isomorphic to the direct product of the Boolean
algebra 24 and the orthomodular lattice MO2, has the effect that each of the sixteen
Boolean operations has six orthomodular counterparts. Half of these sixteen Boolean
operations are not associative, thus each of their counterparts does not fulfil the as-
sociativity identity. Hence 48 orthomodular lattice operations are excluded from the
outset.

The computer program by M. Hyčko [33] allows to obtain first negative results in
F(x, y). The remaining results have to be considered further. We examined several
orthomodular lattices to find counterexamples, nevertheless, they could be all found in
the lattice L22.
Among the 48 possible operations we found six associative operations, the least and

greatest element, the left and right projections and the meet and join operations. The
least and greatest element are uninteresting for our purpose, as are the left and right
projections. The meet and join are associative by definition. The left and right projec-
tions are rather unsurprising to be associative, their results only depend on the order of
the arguments.

The meet and join are the only operations which are commutative as well (except the
zero and the one, but they are insignificant). This means that only the meet and join
are candidates over which other operations distribute. Therefore the second operation,
for distributivity, has to be non–decreasing.

Further, we studied the chance that orthomodular lattice operations could have some

105

properties related to weaker forms of associativity. Notably alternative associative char-
acteristics. Although in the free orthomodular lattice on two free generators some oper-
ations fulfil the three alternative identities, it was in general not difficult to find coun-
terexamples in other orthomodular lattices. Nevertheless we obtained positive results,
which are summarised in the appendix.

The presence of commuting elements is crucial, for the associative as well as for dis-
tributive laws. We found operations fulfilling the associativity identity under the con-
straint of the presence of commuting elements. Only four nonassociative operations fulfil
the associativity identity if one pair of arguments commutes, the Sasaki projection and
its dual fulfil the associativity identity if xCy and the skew join and meet if yCz. Others
need two pairs of commuting arguments. Twelve orthomodular lattice operations fulfil
the associativity identity only if all three arguments commute.

Another remarkable matter is that we met the same operations several times; the six
associative operations are monotone in both variables and are trivially alternative. The
Sasaki projection (B18) and its dual with Beran’s number 28, fulfil the three identities
(L), (R) and (F), they are monotone in the second argument and they are also idempotent
operations. The skew join and its dual, Beran’s number 44 and 34 respectively, fulfil
the three identities (L), (R) and (F), the skew join is monotone in the first argument,
the skew meet is monotone in the second argument and both are idempotent operations,
too.

Also the operations with Beran’s number 23, the swapped projection, and its dual
with Beran’s number 38, often appear. They fulfil the three identities (L), (R) and (F).
The swapped projection is monotone in the second argument, its dual is monotone in
the first argument. Both are idempotent.

We proved new properties of the Sasaki projection, as well as its dual or the skew
operations. These give a chance to develop new algebraic methods based on these
operations instead of (only) the lattice operations.

A deep research of these last expressions could be promising, particularly in connection
with embedding. It is known that nonassociative algebras can be embedded in division
rings [49]. Does there exist a similar approach for (orthomodular) lattices?

Our aim to develop useful tools to transform orthomodular expressions to their nor-
mal form didn’t carry out completely; a result is the awareness that the traditional
way of finding canonical forms does not lead to success in orthomodular lattices. The
commuting property among arguments plays a crucial role.

Future work
Orthomodular lattices are studied as event structures of quantum logic. The lack of
distributivity makes computations in orthomodular lattices difficult and it is an open
question whether the word problem is solvable for them. As an alternative to the use of
the lattice–theoretical meet and join, other operations were considered; Sasaki operations
seem to be the most promising.

Related expressions to the Sasaki projection are its dual, the operation with Beran’s

106

number 28:

x ∨ (x′ ∧ y) ,

the skew meet (B34) and skew join (B44) which differ from the Sasaki projection and its
dual only by the order of arguments. Orthomodular lattices with one of these operations
form an alternative algebra. Interesting is also an other related operation, the Sasaki
arrow, see Section 5, in physics this operation is better known as the Sasaki hook. The
Sasaki arrow does not form an orthomodular lattice to an alternative algebra but it is
the right adjoint of the Sasaki projection.

More fundamental properties of the Sasaki projection will be handled in a future joint
paper.

Further, we regret the open problem for which we did not find a satisfactory solution.
The Arguments 23.3 and 23.6 (see Section 8.6.3) are related to each other and need a
more fundamental study with profound knowledge of the variety generated by the lattice
L22 and the one generated by L(R3).

107

Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is
something entirely different. Johann Wolfgang von Goethe (1749 – 1832)

Die Mathematiker sind eine Art Fran-
zosen: redet man zu ihnen, so überset-
zen sie es in ihre Sprache, und dann ist
es alsobald ganz etwas anderes.

Johann Wolfgang von Goethe (1749 – 1832)

Appendix

Beran’s numbers and their expressions

1 0 ○
○⋅○
○

2 x ∧ y ○
○⋅○
●

3 x ∧ y′ ○
●⋅○
○

4 x′ ∧ y ○
○⋅●
○

5 x′ ∧ y′ ●
○⋅○
○

6 (x ∧ y) ∨ (x ∧ y′) ○
●⋅○
●

7 (x ∧ y) ∨ (x′ ∧ y) ○
○⋅●
●

8 (x ∧ y) ∨ (x′ ∧ y′) ●
○⋅○
●

9 (x ∧ y′) ∨ (x′ ∧ y) ○
●⋅●
○

10 (x′ ∧ y′) ∨ (x ∧ y′) ●
●⋅○
○

11 (x′ ∧ y′) ∨ (x′ ∧ y) ●
○⋅●
○

12 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ○
●⋅●
●

13 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) ●
●⋅○
●

14 (x ∧ y) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
○⋅●
●

15 (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
●⋅●
○

16 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
●⋅●
●

17 x ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ○
○⋅○
○

18 x ∧ (x′ ∨ y) ○
○⋅○
●

19 x ∧ (x′ ∨ y′) ○
●⋅○
○

20 (x′ ∧ y) ∨ (x ∧ (x′ ∨ y) ∧ (x′ ∨ y)) ○
○⋅●
○

111

21 (x′ ∧ y′) ∨ (x ∧ (x′ ∨ y) ∧ (x′ ∨ y′)) ●
○⋅○
○

22 x ○
●⋅○
●

23 (x′ ∨ y) ∧ (x ∨ (x′ ∧ y)) ○
○⋅●
●

24 (x′ ∨ y) ∧ (x ∨ (x′ ∧ y′)) ●
○⋅○
●

25 (x′ ∨ y′) ∧ (x ∨ (x′ ∧ y)) ○
●⋅●
○

26 (x′ ∨ y′) ∧ (x ∨ (x′ ∧ y′)) ●
●⋅○
○

27 (x′ ∨ y′) ∧ (x′ ∨ y) ∧ (x ∨ (x′ ∧ y) ∨ (x′ ∧ y′)) ●
○⋅●
○

28 x ∨ (x′ ∧ y) ○
●⋅●
●

29 x ∨ (x′ ∧ y′) ●
●⋅○
●

30 (x′ ∨ y) ∧ (x ∨ (x′ ∧ y) ∨ (x′ ∧ y′)) ●
○⋅●
●

31 (x′ ∨ y′) ∧ (x ∨ (x′ ∧ y) ∨ (x′ ∧ y′)) ●
●⋅●
○

32 x ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
●⋅●
●

33 y ∧ (x ∨ y′) ∧ (x′ ∨ y′) ○
○⋅○
○

34 y ∧ (x ∨ y′) ○
○⋅○
●

35 (x ∧ y′) ∨ (y ∧ (x ∨ y′) ∧ (x′ ∨ y′)) ○
●⋅○
○

36 y ∧ (x′ ∨ y′) ○
○⋅●
○

37 (x′ ∧ y′) ∨ (y ∧ (x ∨ y′) ∧ (x′ ∨ y′)) ●
○⋅○
○

38 (x ∨ y′) ∧ (y ∨ (x ∧ y′)) ○
●⋅○
●

39 y ○
○⋅●
●

40 (x ∨ y′) ∧ (y ∨ (x′ ∧ y′)) ●
○⋅○
●

41 (x′ ∨ y′) ∧ (y ∨ (x ∧ y′)) ○
●⋅●
○

42 (x′ ∨ y′) ∧ (x ∨ y′) ∧ (y ∨ (x ∧ y′) ∨ (x′ ∧ y′)) ●
●⋅○
○

43 (x′ ∨ y′) ∧ (y ∨ (x′ ∧ y′)) ●
○⋅●
○

44 y ∨ (x ∧ y′) ○
●⋅●
●

45 (x ∨ y′) ∧ (y ∨ (x ∧ y′) ∨ (x′ ∧ y′)) ●
●⋅○
●

46 y ∨ (x′ ∧ y′) ●
○⋅●
●

47 (x′ ∨ y′) ∧ (y ∨ (x ∧ y′) ∨ (x′ ∧ y′)) ●
●⋅●
○

48 y ∨ (x ∧ y′) ∨ (x′ ∧ y′) ●
●⋅●
●

49 y′ ∧ (x ∨ y) ∧ (x′ ∨ y) ○
○⋅○
○

50 (x ∧ y) ∨ (y′ ∧ (x ∨ y) ∧ (x′ ∨ y)) ○
○⋅○
●

51 y′ ∧ (x ∨ y) ○
●⋅○
○

52 (x′ ∧ y) ∨ (y′ ∧ (x ∨ y) ∧ (x′ ∨ y)) ○
○⋅●
○

53 y′ ∧ (x′ ∨ y) ●
○⋅○
○

54 (x ∨ y) ∧ (y′ ∨ (x ∧ y)) ○
●⋅○
●

55 (x ∨ y) ∧ (x′ ∨ y) ∧ (y′ ∨ (x ∧ y) ∨ (x′ ∧ y)) ○
○⋅●
●

56 (x′ ∨ y) ∧ (y′ ∨ (x ∧ y)) ●
○⋅○
●

57 (x ∨ y) ∧ (y′ ∨ (x′ ∧ y)) ○
●⋅●
○

58 y′ ●
●⋅○
○

59 (x′ ∨ y) ∧ (y′ ∨ (x′ ∧ y)) ●
○⋅●
○

60 (x ∨ y) ∧ (y′ ∨ (x ∧ y) ∨ (x′ ∧ y)) ○
●⋅●
●

112

61 y′ ∨ (x ∧ y) ●
●⋅○
●

62 (x′ ∨ y) ∧ (y′ ∨ (x ∧ y) ∨ (x′ ∧ y)) ●
○⋅●
●

63 y′ ∨ (x′ ∧ y) ●
●⋅●
○

64 y′ ∨ (x ∧ y) ∨ (x′ ∧ y) ●
●⋅●
●

65 x′ ∧ (x ∨ y) ∧ (x ∨ y′) ○
○⋅○
○

66 (x ∧ y) ∨ (x′ ∧ (x ∨ y) ∧ (x ∨ y′)) ○
○⋅○
●

67 (x ∧ y′) ∨ (x′ ∧ (x ∨ y) ∧ (x ∨ y′)) ○
●⋅○
○

68 x′ ∧ (x ∨ y) ○
○⋅●
○

69 x′ ∧ (x ∨ y′) ●
○⋅○
○

70 (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ (x ∧ y) ∨ (x ∧ y′)) ○
●⋅○
●

71 (x ∨ y) ∧ (x′ ∨ (x ∧ y)) ○
○⋅●
●

72 (x ∨ y′) ∧ (x′ ∨ (x ∧ y)) ●
○⋅○
●

73 (x ∨ y) ∧ (x′ ∨ (x ∧ y′)) ○
●⋅●
○

74 (x ∨ y′) ∧ (x′ ∨ (x ∧ y′)) ●
●⋅○
○

75 x′ ●
○⋅●
○

76 (x ∨ y) ∧ (x′ ∨ (x ∧ y) ∨ (x ∧ y′)) ○
●⋅●
●

77 (x ∨ y′) ∧ (x′ ∨ (x ∧ y) ∨ (x ∧ y′)) ●
●⋅○
●

78 x′ ∨ (x ∧ y) ●
○⋅●
●

79 x′ ∨ (x ∧ y′) ●
●⋅●
○

80 x′ ∨ (x ∧ y) ∨ (x ∧ y′) ●
●⋅●
●

81 (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ○
○⋅○
○

82 (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ○
○⋅○
●

83 (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y′) ○
●⋅○
○

84 (x ∨ y) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ○
○⋅●
○

85 (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ●
○⋅○
○

86 (x ∨ y) ∧ (x ∨ y′) ○
●⋅○
●

87 (x ∨ y) ∧ (x′ ∨ y) ○
○⋅●
●

88 (x ∨ y′) ∧ (x′ ∨ y) ●
○⋅○
●

89 (x ∨ y) ∧ (x′ ∨ y′) ○
●⋅●
○

90 (x ∨ y′) ∧ (x′ ∨ y′) ●
●⋅○
○

91 (x′ ∨ y) ∧ (x′ ∨ y′) ●
○⋅●
○

92 x ∨ y ○
●⋅●
●

93 x ∨ y′ ●
●⋅○
●

94 x′ ∨ y ●
○⋅●
●

95 x′ ∨ y′ ●
●⋅●
○

96 1 ●
●⋅●
●

In the sequel, we denote by Bn(x, y), the binary orthomodular operation in x and y with the Beran’s
number n, (1 ⩽ n ⩽ 96).

113

Associative and conditionally associative operations

(x ∗ y) ∗ z = x ∗ (y ∗ z) No commuting arguments

B1(x, y) = 0 ○
○⋅○
○

B2(x, y) = x ∧ y ○
○⋅○
●

B22(x, y) = x ○
●⋅○
●

B39(x, y) = y ○
○⋅●
●

B92(x, y) = x ∨ y ○
●⋅●
●

B96(x, y) = 1 ●
●⋅●
●

(x ∗ y) ∗ z = x ∗ (y ∗ z) x commutes with y

B18(x, y) = x ∧ (x′ ∨ y) ○
○⋅○
●

B28(x, y) = x ∨ (x′ ∧ y) ○
●⋅●
●

(x ∗ y) ∗ z = x ∗ (y ∗ z) y commutes with z

B34(x, y) = y ∧ (x ∨ y′) ○
○⋅○
●

B44(x, y) = y ∨ (x ∧ y′) ○
●⋅●
●

(x ∗ y) ∗ z = x ∗ (y ∗ z) (xC y and xC z) or (y C x and y C z) or (z C x and z C y)

B12(x, y) = (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ○
●⋅●
●

B16(x, y) = (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
●⋅●
●

B17(x, y) = x ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ○
○⋅○
○

B18(x, y) = x ∧ (x′ ∨ y) ○
○⋅○
●

B28(x, y) = x ∨ (x′ ∧ y) ○
●⋅●
●

B32(x, y) = x ∨ (x′ ∧ y) ∨ (x′ ∧ y′) ●
●⋅●
●

B33(x, y) = y ∧ (x ∨ y′) ∧ (x′ ∨ y′) ○
○⋅○
○

B34(x, y) = y ∧ (x ∨ y′) ○
○⋅○
●

B44(x, y) = y ∨ (x ∧ y′) ○
●⋅●
●

B48(x, y) = y ∨ (x ∧ y′) ∨ (x′ ∧ y′) ●
●⋅●
●

B49(x, y) = y′ ∧ (x ∨ y) ∧ (x′ ∨ y) ○
○⋅○
○

B50(x, y) = (x ∧ y) ∨ (y′ ∧ (x ∨ y) ∧ (x′ ∨ y)) ○
○⋅○
●

B60(x, y) = (x ∨ y) ∧ (y′ ∨ (x ∧ y) ∨ (x′ ∧ y)) ○
●⋅●
●

B64(x, y) = y′ ∨ (x ∧ y) ∨ (x′ ∧ y) ●
●⋅●
●

B65(x, y) = x′ ∧ (x ∨ y) ∧ (x ∨ y′) ○
○⋅○
○

B66(x, y) = (x ∧ y) ∨ (x′ ∧ (x ∨ y) ∧ (x ∨ y′)) ○
○⋅○
●

B76(x, y) = (x ∨ y) ∧ (x′ ∨ (x ∧ y) ∨ (x ∧ y′)) ○
●⋅●
●

114

B80(x, y) = x′ ∨ (x ∧ y) ∨ (x ∧ y′) ●
●⋅●
●

B81(x, y) = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′) ○
○⋅○
○

B82(x, y) = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ○
○⋅○
●

(x ∗ y) ∗ z = x ∗ (y ∗ z) (xC y, xC z) or (z C x, z C y)

B6(x, y) = (x ∧ y) ∨ (x ∧ y′) ○
●⋅○
●

B7(x, y) = (x ∧ y) ∨ (x′ ∧ y) ○
○⋅●
●

B23(x, y) = (x′ ∨ y) ∧ (x ∨ (x′ ∧ y)) ○
○⋅●
●

B38(x, y) = (x ∨ y′) ∧ (y ∨ (x ∧ y′)) ○
●⋅○
●

B54(x, y) = (x ∨ y) ∧ (y′ ∨ (x ∧ y)) ○
●⋅○
●

B55(x, y) = (x ∨ y) ∧ (x′ ∨ y) ∧ (y′ ∨ (x ∧ y) ∨ (x′ ∧ y)) ○
○⋅●
●

B71(x, y) = (x ∨ y) ∧ (x′ ∨ (x ∧ y)) ○
○⋅●
●

B72(x, y) = (x ∨ y′) ∧ (x′ ∨ (x ∧ y)) ●
○⋅○
●

B86(x, y) = (x ∨ y) ∧ (x ∨ y′) ○
●⋅○
●

B87(x, y) = (x ∨ y) ∧ (x′ ∨ y) ○
○⋅●
●

(x ∗ y) ∗ z = x ∗ (y ∗ z) xC y and xC z

B24(x, y) = (x′ ∨ y) ∧ (x ∨ (x′ ∧ y′)) ●
○⋅○
●

B25(x, y) = (x′ ∨ y′) ∧ (x ∨ (x′ ∧ y)) ○
●⋅●
○

B72(x, y) = (x ∨ y′) ∧ (x′ ∨ (x ∧ y)) ●
○⋅○
●

B73(x, y) = (x ∨ y) ∧ (x′ ∨ (x ∧ y′)) ○
●⋅●
○

(x ∗ y) ∗ z = x ∗ (y ∗ z) y C x and y C z

B8(x, y) = (x ∧ y) ∨ (x′ ∧ y′) ●
○⋅○
●

B9(x, y) = (x ∧ y′) ∨ (x′ ∧ y) ○
●⋅●
○

B88(x, y) = (x ∨ y′) ∧ (x′ ∨ y) ●
○⋅○
●

B89(x, y) = (x ∨ y) ∧ (x′ ∨ y′) ○
●⋅●
○

(x ∗ y) ∗ z = x ∗ (y ∗ z) z C x and z C y

B40(x, y) = (x ∨ y′) ∧ (y ∨ (x′ ∧ y′)) ●
○⋅○
●

B41(x, y) = (x′ ∨ y′) ∧ (y ∨ (x ∧ y′)) ○
●⋅●
○

B56(x, y) = (x′ ∨ y) ∧ (y′ ∨ (x ∧ y)) ●
○⋅○
●

B57(x, y) = (x ∨ y) ∧ (y′ ∨ (x′ ∧ y)) ○
●⋅●
○

115

Monotonicity of orthomodular operations
For which operations do the following monotonicity implications hold?

x ⩽ y⇒ x ∗ z ⩽ y ∗ z x ⩽ y⇒ z ∗ x ⩽ z ∗ y
B1(x, y) = 0 B1(x, y) = 0
B2(x, y) = x ∧ y B2(x, y) = x ∧ y

B3(x, y) = x ∧ y′ B4(x, y) = x′ ∧ y

B6(x, y) = (x ∧ y) ∨ (x ∧ y′) B7(x, y) = (x ∧ y) ∨ (x′ ∧ y)

B22(x, y) = x B18(x, y) = x ∧ (x′ ∨ y)

B34(x, y) = y ∧ (x ∨ y′) B22(x, y) = x

B38(x, y) = (x ∨ y′) ∧ (y ∨ (x ∧ y′)) B23(x, y) = (x′ ∨ y) ∧ (x ∨ (x′ ∧ y))

B39(x, y) = y B28(x, y) = x ∨ (x′ ∧ y)

B44(x, y) = y ∨ (x ∧ y′) B39(x, y) = y

B51(x, y) = y′ ∧ (x ∨ y) B68(x, y) = x′ ∧ (x ∨ y)

B54(x, y) = (x ∨ y) ∧ (y′ ∨ (x ∧ y)) B71(x, y) = (x ∨ y) ∧ (x′ ∨ (x ∧ y))

B58(x, y) = y′ B75(x, y) = x′

B61(x, y) = y′ ∨ (x ∧ y) B78(x, y) = x′ ∨ (x ∧ y)

B86(x, y) = (x ∨ y) ∧ (x ∨ y′) B87(x, y) = (x ∨ y) ∧ (x′ ∨ y)

B92(x, y) = x ∨ y B92(x, y) = x ∨ y

B93(x, y) = x ∨ y′ B94(x, y) = x′ ∨ y

B96(x, y) = 1 B96(x, y) = 1

x ⩽ y⇒ x ∗ z ⩾ y ∗ z x ⩽ y⇒ z ∗ x ⩾ z ∗ y
B1(x, y) = 0 B1(x, y) = 0
B4(x, y) = x′ ∧ y B3(x, y) = x ∧ y′

B5(x, y) = x′ ∧ y′ B5(x, y) = x′ ∧ y′

B11(x, y) = (x′ ∧ y′) ∨ (x′ ∧ y) B10(x, y) = (x′ ∧ y′) ∨ (x ∧ y′)

B36(x, y) = y ∧ (x′ ∨ y′) B19(x, y) = x ∧ (x′ ∨ y′)

B39(x, y) = y B22(x, y) = x

B43(x, y) = (x′ ∨ y′) ∧ (y ∨ (x′ ∧ y′)) B26(x, y) = (x′ ∨ y′) ∧ (x ∨ (x′ ∧ y′))

B46(x, y) = y ∨ (x′ ∧ y′) B29(x, y) = x ∨ (x′ ∧ y′)

B53(x, y) = y′ ∧ (x′ ∨ y) B58(x, y) = y′

B58(x, y) = y′ B69(x, y) = x′ ∧ (x ∨ y′)

B59(x, y) = (x′ ∨ y) ∧ (y′ ∨ (x′ ∧ y)) B74(x, y) = (x ∨ y′) ∧ (x′ ∨ (x ∧ y′))

B63(x, y) = y′ ∨ (x′ ∧ y) B75(x, y) = x′

B75(x, y) = x′ B79(x, y) = x′ ∨ (x ∧ y′)

B91(x, y) = (x′ ∨ y) ∧ (x′ ∨ y′) B90(x, y) = (x ∨ y′) ∧ (x′ ∨ y′)

B94(x, y) = x′ ∨ y B93(x, y) = x ∨ y′

B95(x, y) = x′ ∨ y′ B95(x, y) = x′ ∨ y′

B96(x, y) = 1 B96(x, y) = 1

116

Weak–associative operations on lattices
Theorem
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in {18,28}. Then

(x ∗ y ∗ x) ∗ z = (x ∗ y) ∗ (x ∗ z)
(z ∗ (x ∗ y)) ∗ x = z ∗ (x ∗ y ∗ x)

((x ∗ y) ∗ z) ∗ x = (x ∗ y) ∗ (z ∗ x)

for any x, y, z ∈ L.

Theorem
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in {34,44}. Then

z ∗ (x ∗ y ∗ x) = (z ∗ x) ∗ (y ∗ x)

x ∗ ((y ∗ x) ∗ z) = (x ∗ y ∗ x) ∗ z

x ∗ (z ∗ (y ∗ x)) = (x ∗ z) ∗ (y ∗ x)

for any x, y, z ∈ L.

Theorem
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in {18,28}. If x, y, z ∈ L
such that x and y commute then each of the following expressions has a unique output regardless of
the order in which the terms are evaluated:

x ∗ y ∗ x ∗ z
x ∗ y ∗ z ∗ x
y ∗ x ∗ z ∗ x
x ∗ x ∗ y ∗ z
x ∗ y ∗ y ∗ z
x ∗ y ∗ z ∗ z

Theorem
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in {34,44}. If x, y, z ∈ L
such that x and y commute then each of the following expressions has a unique output regardless of
the order in which the terms are evaluated:

z ∗ x ∗ y ∗ x
x ∗ z ∗ y ∗ x
x ∗ z ∗ x ∗ y
z ∗ y ∗ x ∗ x
z ∗ y ∗ y ∗ x
z ∗ z ∗ y ∗ x

Theorem
Let L be an orthomodular lattice and let ∗ be an operation with Beran’s number in {16,81}. If x, y, z ∈ L
such that x commutes with either y or z then each of the following expressions has a unique output
regardless of the order in which the terms are evaluated:

x ∗ y ∗ x ∗ z
x ∗ y ∗ z ∗ x
z ∗ x ∗ y ∗ x
x ∗ x ∗ y ∗ z
y ∗ x ∗ x ∗ z
z ∗ y ∗ x ∗ x

117

Theorem
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 23. If x, y, z ∈ L
such that x and z commute then each of the following expressions has a unique output regardless of
the order in which the terms are evaluated:

z ∗ x ∗ y ∗ x
x ∗ y ∗ z ∗ x

Theorem
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 38. If x, y, z ∈ L
such that x and z commute then each of the following expressions has a unique output regardless of
the order in which the terms are evaluated:

x ∗ y ∗ x ∗ z
x ∗ z ∗ y ∗ x

Theorem
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 54, x ∗ y = (x ∨ y) ∧
(y ∨ (x ∧ y)). If x, y, z ∈ L such that x and y commute then each of the following expressions has a
unique output regardless of the order in which the terms are evaluated:

x ∗ z ∗ x′ ∗ y
x ∗ y ∗ z ∗ x′

Theorem
Let L be an orthomodular lattice and let ∗ be the operation with Beran’s number 71, x ∗ y = (x ∨ y) ∧
(x ∨ (x ∧ y)). If x, y, z ∈ L such that x and y commute then each of the following expressions has a
unique output regardless of the order in which the terms are evaluated:

y ∗ x ∗ z ∗ x′

x ∗ z ∗ y ∗ x′

Theorem
Let x, y and z be elements of an orthomodular lattice L, ∗ is the Sasaki projection and assume y C z,
then

((z ∗ x) ∗ y) ∗ x = (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ y .

Sufficient conditions for associativity equations in Moufang–like
constellations

Constellation operation (Cx) (Cy) (Cz) xC y xC z y C z
xxyz B23 ⍟ ⍟

xxyz B18 ⍟ ⍟ ⍟ ⍟

xyxz B23 ⍟ ⍟

xyxz B18 ⍟ ⍟ ⍟ ⍟

xyzx B23 ⍟ ⍟ ⍟

xyzx B18 ⍟ ⍟ ⍟ ⍟

yxxz B23 ⍟ ⍟

yxxz B18 ⍟ ⍟ ⍟ ⍟

zxyx B23 ⍟ ⍟ ⍟

zxyx B18 ⍟ ⍟ ⍟ ⍟

zyxx B23 ⍟ ⍟

zyxx B18 ⍟ ⍟ ⍟ ⍟

118

Bibliography
[1] Baez, John C.: The Octonions. Bulletin of the American Mathematical Society, 39

(2) (2002), 145–205. Errata in Bulletin of the American Mathematical Society, 42
(2) (2005), 213.

[2] Beran, Ladislav: Über gewisse Sätze vom Foulis–Holland–Typ in Boole’schen
Zwerchverbänden. Journal für die reine und angewandte Mathematik, 297 (1978),
214–220.

[3] Beran, Ladislav: Orthomodular Lattices. Algebraic Approach. Academia, Praha,
1984.

[4] Birkhoff, Garrett and von Neumann, John: The logic of quantum mechanics. Annals
of Mathematics, 37 (4) (1936), 823–843.

[5] Boone, William W.: The word problem. Proceedings of the National Academy of
Sciences, 44 (10) (1958), 1061–1065.

[6] Bruns, Günter: Free Ortholattices. Canadian Journal of Mathematics, 28 (1976),
977–985.

[7] Conway, John H. and Smith, Derek A.: On Quaternions and Octonions. Their
Geometry, Arithmetic, and Symmetry. CRC Press, London, New-York, 2003.

[8] Dedekind, Richard: Über die drei Moduln erzeugte Dualgruppe. Mathematische
Annalen, 53 (3) (1900), 371–403.

[9] Dehn, Max: Über unendliche diskontinuierliche Gruppen. Mathematische Annalen,
71 (1) (1911), 116–144.

[10] D’Hooghe, Bart and Pykacz, Jaroslaw: On some new operations on orthomodular
lattices. International Journal of Theoretical Physics, 39 (3) (2000), 641–652.

119

[11] Egly, Uwe and Tompits, Hans: Gentzen-like methods in quantum logic. In Proceed-
ings of the Eight International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX ’99), Position Papers. Technical Re-
port, Institute for Programming and Logics, University at Albany - SUNY, 1999.

[12] Foulis, David J.: A note on orthomodular lattices. Portugaliae Mathematica, 21 (1)
(1962), 65–72.

[13] Freese, Ralph: Free modular lattices. Transactions of the Mathematical Society,
261 (1) (1980), 81–90.

[14] Freese, Ralph: Free lattice algorithms. Order, 3 (4) (1987), 331–344.

[15] Freese, Ralph: Finitely Presented Lattices: Canonical Forms and the Covering
Relation. Transactions of the American Mathematical Society, 312 (2) (1989), 841–
860.

[16] Gabriëls, Jeannine J.M. and Navara, Mirko: Associativity of operations on ortho-
modular lattices. Mathematica Slovaca, 62 (6) (2012), 1069-1078.

[17] Gabriëls, Jeannine J.M. and Navara, Mirko: Computer proof of monotonicity of
operations on orthomodular lattices. Information Sciences, 236 (2013), 205–217.

[18] Gagola III, Stephen M., Gabriëls, Jeannine J.M. and Navara, Mirko: Weaker forms
of associativity in orthomodular lattices. Algebra Universalis, 73 (3–4) (2015), 349–
266.

[19] Gleason, Andrew M.: Measures on the closed subspaces of a Hilbert space. Journal
of Mathematics and Mechanics, 6 (6) (1957), 885–893.

[20] Grätzer, George: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2010.

[21] Greechie, Richard J.: On generating distributive sublattices of orthomodular lat-
tices. Proceedings of the American Mathematical Society, 67 (1) (1977), 17–22.

[22] Greechie, Richard J.: An addendum to “On generating distributive sublattices of
orthomodular lattices”. Proceedings of the American Mathematical Society, 76 (2)
(1979), 216–218.

[23] Harding, John: Orthomodular lattices whose McNeille completions are not ortho-
modular. Order, 8 (1) (1991), 93–103.

[24] Harding, John: Completions of othomodular lattices II. Order, 10 (3) 1993, 283–
294.

[25] Harding, John: The free orthomodular lattice on countably many generators is a
subalgebra of the free orthomodular lattice on three generators. Algebra Universalis,
48 (2) (2002), 171–182.

120

[26] Harding, J.: The source of orthomodular law. The Handbook of Quantum Logic and
Quantum Structures, Elsevier 2007, 553–586.

[27] Haviar, Miroslav, Konôpka, Pavel, Priestley, Hilary A. and Wegener, Claudia B.:
Finitely Generated Free Modular Ortholattices I. International Journal of Theoret-
ical Physics, 36 (12) (1997), 2639–2660.

[28] Herrmann, Christian: On the word problem for the modular lattice with four free
generators. Mathematische Annalen, 265 (4) (1983), 513–527.

[29] Herrmann, Christian, Micol, Florence and Roddy Michael S.: On n-distributive
Modular Ortholattices. Algebra Universalis, 53 (2–3) (2005), 143–147.

[30] Holland Jr., Samuel S.: A Radon-Nikodym theorem in dimension lattices. Trans-
actions of the American Mathematical Society, 108 (1) (1963), 66–87.

[31] Hyčko, Marek: Implications and equivalences in orthomodular lattices. Demonstra-
tio Mathematica XXXVIII (38–4) (2005), 777-792.

[32] Hyčko, Marek and Navara, Mirko: Decidability in orthomodular lattices. In-
ternational Journal of Theoretical Physics, 44 (22) (2005), 2239–2248. DOI:
10.1007/s10773-005-8019-x

[33] Hyčko, Marek: Computations in OML. http://www.mat.savba.sk/~hycko/oml,
2011/06/07

[34] Jordan, Pascual, von Neumann, John andWigner, Eugene P.: On an Algebraic Gen-
eralization of the Quantum Mechanical Formalism. Annals of Mathematics, Second
Series, 35 (1) (1934), 29–64.

[35] Jordan, Pascual: Halbgruppen von Idempotenten und nichtkommutative Verbände.
Journal für die reine und angewandte Mathematik, 211 (1962), 136–161.

[36] Kalmbach, Gudrun: Orthomodular Lattices do not satisfy any special lattice equa-
tion. Archiv der Mathematik 28 (1) (1977), 7–8.

[37] Kalmbach, Gudrun: Orthomodular Lattices. Academic Press, London, 1983.

[38] Kröger, Henner: Zwerch-Assoziativität und verbandsähnliche Algebren. Bayerische
Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Son-
derdruck 3 aus den Sitzungsberichten 1973, 23–48.

[39] Lipshitz, Leonard M.: The Undecidability of the Word Problems for Projective Ge-
ometries and Modular Lattices. Transactions of the American Mathematical Society,
193 (1974), 171–180.

[40] MacLaren, M. Donald: Atomic orthocomplemented lattices. Pacific Journal of
Mathematics, 14 (2) (1964), 597–612.

121

[41] Mayet, René: Varieties of orthomodular lattices related to states. Algebra Univer-
salis, 20 (3) (1985), 368–396.

[42] Mayet, René and Navara, Mirko: Classes of logics representable as kernels of mea-
sures. In: Contributions to General Algebra, 9, G. Pilz, (ed.) Teubner, Stuttgart,
Wien, 1995, 241–248.

[43] Megill, Norman D. and Pavičić, Mladen: Orthomodular lattices and a quantum
algebra. International Journal of Theoretical Physics, 40 (8) (2001), 1387–1410.

[44] Megill, Norman D. and Pavičić, Mladen: Equivalencies, identities, symmetric dif-
ferences, and congruences in orthomodular lattices. International Journal of Theo-
retical Physics, 42 (12) (2003), 2797–2805.

[45] Megill, Norman D. and Pavičić, Mladen: Quantum implication algebras. Interna-
tional Journal of Theoretical Physics, 42 (12) (2003), 2807–2822.

[46] Meinander, Andrea: A solution of the uniform word problem for ortholattices.
Mathematical Structures in Computer Science, 20 (04) (2010), 625–638.

[47] Navara, Mirko: On generating finite orthomodular sublattices. Tatra Mountains
Mathematical Publications, 10 (1997), 109–117.

[48] Navara, Mirko: Constructions of quantum structures. In: D. Gabbay, D. Lehmann,
K. Engesser (eds.), Handbook of Quantum Logic, Vol. 1, Elsevier, 2007, 335–366.

[49] Neumann, Bernhard H.: Embedding non-associative rings in division rings. Pro-
ceedings of the London Mathematical Society, 1 (3) (1951). 241–256.

[50] Novikov, Petr S.: On the algorithmic unsolvability of the word problem in group
theory. Proceedings of the Steklov Institute of Mathematics, 44 (1955), 3–143. (Rus-
sian)

[51] Pták, Pavel and Pulmannová, Sylvia: Orthomodular Structures as Quantum Logics.
Kluwer Academic Publishers, Dordrecht, 1991.

[52] Roddy, Michael S.: On the word problem for orthocomplemented modular lattices.
Canadian Journal of Mathematics, 61 (6) (1989), 961–1004.

[53] Schafer, Richard D.: An Introduction to Nonassociative Algebras, Oxford City
Press, 2010.

[54] Skolem, Thoralf: Logisch-Kombinatorische Untersuchungen über die Erfüll-
barkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über
dichte Mengen. Skrifter utgit av Videnskapsselskapet i Kristiania, I. Matematisk-
naturvidenskabelig klasse, 4 (1920), 1–36. Kristiania (Oslo): Jacob Dybwad, 1920.

[55] Svozil, Karl: Quantum logic. Springer-Verlag, Signapore, 1998.

122

[56] Tamari, Dov: Problèmes d’associativité des monoïdes et problèmes des mots pour
les groupes, Séminaire Dubreil. Algèbre et théorie des nombres, tome 16, no 1 (1962-
1963), exp. no 7, 1–29.

[57] Whitman, Philip M.: Free Lattices. Annals of Mathematics, 42 (1) (1941), 325–330.

[58] Whitman, Philip M.: Free Lattices II. Annals of Mathematics, 43 (1) (1942), 104–
115.

123

Author’s Publications

Journal papers related to the topic of the thesis
Gabriëls, Jeannine J.M. and Navara, Mirko: Associativity of operations on ortho-
modular lattices. Mathematica Slovaca, 62 6 (2012), 1069-1078. [authorship 50%,
cited once]

Gabriëls, Jeannine J.M. and Navara, Mirko: Computer proof of monotonicity of
operations on orthomodular lattices. Information Sciences, 236 (2013), 205–217.
[authorship 50%]

Gagola III, Stephen M., Gabriëls, Jeannine J.M. and Navara, Mirko: Weaker forms
of associativity in orthomodular lattices. Algebra Universalis, 73 (2015), 249–266.
[authorship 33%]

Gabriëls, Jeannine J.M.: Conditional associativity in orthomodular lattices. Sub-
mitted. [authorship 100%]

Gabriëls, Jeannine J.M., Gagola III, Stephen M. and Navara, Mirko: Sasaki pro-
jection. Submitted. [authorship 33%]

Papers not related to the thesis
Dästner, Kaeye, Gabriëls, Jeannine, Henrich, Werner, Kausch, Thomas, Opitz, Fe-
lix: Sensor Data Fusion on the Frigate F124. Architecture and Principles. Interna-
tional Radar Symposium IRS 2003. Dresden, Germany, October 2003. [authorship
50%]

125

Conference papers related to the thesis
Gabriëls, Jeannine J.M. and Navara Mirko: Properties of OML operations and the
role of computers in proofs. In: M. Kalina, O. Nánásiová, L. Valášková (eds.), Ab-
str. International Conference Quantum Structures 2011, Kočovce, Slovakia 2011.
[Authorship 50 %]

Gabriëls, Jeannine J.M.: Shall we find normal forms on orthomodular lattices?
Klement E.P., Mesiar R., Drobná E., Struk P. (eds.), Abstr. Eleventh International
Conference on Fuzzy Set Theory and Applications, FSTA 2012, Liptovský Ján,
Slovakia, 2012. [Authorship 100 %]

Gabriëls, Jeannine J.M. and Navara, Mirko: Searching normal forms for ortho-
modular lattices, Abstr. Eleventh Biennal IQSA Meeting Quantum Structures,
Cagliari 2012. [authorship 50%]

Gagola III, Stephen M., Gabriëls, Jeannine J.M. and Navara, Mirko: Identities
valid in orthomodular lattices. Abstr. Twelfth Biennal IQSA Meeting Quantum
Structures, Olomouc 2014. [authorship 33%]

Gabriëls, Jeannine J.M., Gagola III, Stephen M. and Navara, Mirko: New proper-
ties of Sasaki projections. Topology, Algebra, and Categories in Logic 2015, Ischia
(Italy), 21 – 26 June 2015, Booklet of abstracts, 107 – 109. [authorship 33%]

Talks related to the thesis
QS 2011 Presentation at the International Conference Quantum Structures, Kočovce,

Slovakia, 16 – 20 May 2011.

FSTA 2012 Presentation at the Eleventh International Conference on Fuzzy Set Theory
and Applications, FSTA, Liptovský Ján, Slovakia, 30 January – 3 February 2012.

IQSA 2012 Presentation at the Eleventh Biennal IQSA Meeting Quantum Structures,
Cagliari, Italy, 23 – 27 July 2012.

TACL 2015 Presentation at Topology, Algebra, and Categories in Logic 2015, Ischia
(Italy), 21 – 26 June 2015.

126

Index

algebra, 8
algebra alternative–, 59
algebra associative–, 59
algebra Boolean–, 6
algebra division–, 11
algebra free–, 15
algebra nonassociative–, 12
algebra power–associative–, 59
algebra skew Boolean–, 29
algebraic structure, 8
alphabet, 16
arity, 8
arity, binary, 8
arity, nullary, 8
arity, unary, 8
arrow classical–, 26
arrow Dishkant–, 26
arrow Kalmbach–, 26
arrow non–tolens–, 26
arrow relevance–, 26
arrow Sasaki–, 26
atom, 13

Beran’s numbers, 21

bounded, 5

canonical form, 16
center, 10
central element, 10
chain, 5
coatom, 13
commutator lower–, 21
commutator upper–, 21
commuting elements, 9
concatenation, 16
conjugacy problem, 17
cover, 13

diagram Greechie–, 13
diagram Hasse–, 13
dual, 6

embedding, 7
embedding lattice–, 7

filter, 36
filter principal–, 36
Focusing technique, 10
Foulis–Holland set, 10
Foulis–Holland Theorem, 10

generators free–, 16

127

group isomorphism problem, 17

Hilbert lattice, 8
Hilbert space, 8
homomorphism lattice–, 7
homomorphism order–, 7

ideal, 36
ideal principal–, 36
identity Moufang–, 60
identity problem, 17
inclusion map, 15
isomorphism lattice–, 7
isomorphism order–, 7

lattice, 6
lattice bounded–, 6
lattice complete–, 6
lattice distributive–, 6
lattice modular–, 6
lattice orthomodular–, 9
loop, 60
loop Moufang–, 60

mapping linear–, 8
mapping multilinear–, 8
modular identity, 7
modular law, 6
modular ortholattice, 7
monoid, 16
multiplicative, 8

normal form, 16
Novikov–Boone Theorem, 17
null divisors, 13
numbers Beran’s–, 21
numbers Catalan–, 61
numbers Cayley–, 12

octonions, 12

orthocomplementation, 5
ortholattice, 6
orthomodular law, 9
orthoposet, 6

partially ordered set, 5
poset, 5
Principle of duality, 6
projection Sasaki–, 22
projection swapped–, 65

quasigroup, 11
quaternions, 11

relation compatibility–, 9
requirement Birkoff–von Neumann–, 26

set carrier–, 8
set, underlying–, 8
skew join, 29
skew meet, 29
subalgebra, 8
sublattice, 6
submultiplicative, 8

Theorem Foulis–Holland–, 10
Theorem Novikov–Boone–, 17
transformation problem, 17

variety lattice–, 7

word, 16
word empty–, 16
word problem, 17
word problem decidable–, 17
word problem solvable–, 17
word problem undecidable–, 17
word problem uniform–, 17
word problem unsolvable–, 17

128

	Thanks
	Anotace
	Abstract
	Table of contents
	List of tables
	List of figures
	Contribution and outline
	Aims of the doctoral thesis
	Previous results: Preliminaries
	Fundamentals
	Quantum logic
	Orthomodular lattices
	Intervals in orthomodular lattices

	Division algebras
	Non-associative algebras
	Hasse and Greechie diagrams

	Previous results: Free algebras
	Free Algebras
	The word problem
	Free lattices
	First results

	Previous results: The free orthomodular lattice on two free generators
	Fundamentals
	Computation in F(x,y) and the role of computers in proofs
	Computation in F(x,y) and its set representation

	Orthomodular lattices versus Boolean algebras

	Orthomodularity and associativity
	First results – skew Boolean algebras
	Associativity of binary operations
	Associativity of binary operations, by using commutation
	Conditional associativity by using commutation of one pair of arguments
	Associativity for one argument commuting with the two others

	Conclusions

	Monotonicity of binary operations
	Sufficient conditions
	Necessary conditions
	The use of free algebras – general approach
	The Boolean part of operations
	The MO2 part of operations
	The free orthomodular lattice with three (non-free) generators
	The free orthomodular lattice generated by two free generators
	Kalmbach embedding

	Summary of results
	Monotonicity in the second variable
	Further results
	Conclusions

	Non-associative operations on orthomodular lattices
	Alternative Algebras
	Associativity and parentheses
	Weaker forms of associativity in orthomodular lattices
	Tools
	Examples
	Identities generalizing associativity
	Results obtained without using commutation
	Results obtained by using commutation
	Summary of results

	Other weaker laws of associativity involving the orthocomplement
	Conclusions

	Conclusions and a glance on future work
	Appendix
	Beran's numbers and their expressions
	Associative and conditionally associative operations
	Monotonicity of orthomodular operations
	Weak–associative operations on lattices
	Sufficient conditions for associativity equations in Moufang–like constellations

	Bibliography
	Author's Publications
	Papers related to the topic of the thesis
	Papers not related to the thesis
	Conference papers related to the thesis
	Talks related to the thesis

	Index
	Leere Seite
	Leere Seite
	Leere Seite
	Leere Seite

