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Abstract

Until now the experimental research in medical neuroscience has been limited to analyzing

summary activity of large neuron populations. However, thanks to recent efforts in using

neuroinformatics, artificial intelligence and machine learning methods in neuroscience

as well as medical and technological advances, new opportunities to record activity of

individual neurons arises. These opportunities allow us to better understand the neural

mechanism of complex behavior, as well as identify parts of the brain responsible for

specific tasks.

In this thesis, we were focusing on applying such methods to data recorded from pa-

tients with Parkinson’s disease that were treated with deep brain stimulation, to improve

our understanding of the human brain and the mechanism of the deep brain stimulation

in particular.

This thesis concentrated mainly on two problems in this field. First, the evaluation

of the state-of-the-art methods used to identify and classify neuronal action potentials

(i.e spike sorting methods) in microelectrode recordings, which required devising and

implementation of signal generator that produced artificial signals with similar properties

as the signals recorded from basal ganglia.

Second, to use these methods to discriminate individual neurons from a microelec-

trode recording and to use this knowledge to identify neurons with specific functions in

basal ganglia and better understanding of the human brain in general. Spike sorting

methods allowed us to find approx. 20% of basal ganglia neurons with activity related to

control of eye movements and 17% of basal ganglia neurons with activity related to pro-

cessing emotional stimuli or responding to different types of emotional stimuli. We were

also able to find several statistically significant relations between severity of Parkinson’s

disease symptoms (described using Unified Parkinson’s Disease Rating Scale subscores)

and statistical characteristics of both microelectrode records and by individual neuron

firing patterns using linear mixed-effects models.

Keywords: spike sorting, single-neuron recordings, Parkinson’s disease, deep brain

stimulation, basal ganglia, subthalamic nucleus, linear mixed-effects models, UPDRS,

emotion, arousal.
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Chapter 1

Introduction

Until now the experimental research in medical neuroscience has been limited to analyzing

summary activity of large neuron populations. However, thanks to recent efforts to use

neuroinformatics, artificial intelligence and machine learning methods in neuroscience

as well as medical and technological advances, new opportunities to record activity of

individual neurons arises. These opportunities allow us to better understand the neural

mechanism of complex behavior, as well as identify parts of the brain responsible.

We are focusing generally on applying such methods to data recorded from patients

with Parkinson’s disease (PD) that are treated with deep brain stimulation, to improve

our understanding of the human brain and the mechanism of the deep brain stimulation

in particular. Deep brain stimulation (DBS) has been an effective tool in the treatment

of Parkinson’s disease as well as other movement disorders. However, the clinical use of

DBS is still novel and it has severe side effects like increase rate of depression episodes in

post-DBS-treatment. Cause of these side effects is still a matter of debate as the functions

of the stimulated region - subthalamic nucleus (STN) - have not yet been fully uncovered.

Thesis concentrates mainly on two problems in this field. First, the evaluation of meth-

ods used to identify and classify neuronal action potentials (i.e spike sorting methods)

in microelectrode recordings. Second, to use these methods to discriminate individual

neurons from a microelectrode recording and use this knowledge to identify neurons with

specific functions in basal ganglia.
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2 CHAPTER 1. INTRODUCTION

1.1 Goals of the Thesis

• to evaluate performance of methods for transforming raw data consisting of sum-

mary neuronal activity (microelectrode records) into analyzable spiking activity of

individual neurons in order to be able to analyze brain activity at neuron level,

• to devise a method for generation of artificial signals similar to those created by

summary neuronal activity in basal ganglia that is necessary for objective evaluation

of various spike sorting methods,

• to experimentally evaluate that basal ganglia neurons are related to scanning eye

movements,

• to analyze firing patterns of neurons in STN to determine its function in the high-

level representation of emotions,

• to find objective relation between severity of various PD symptoms and statistical

characteristics of microelectrode records and individual neuron firing patterns.

1.2 Structure of the Thesis

This thesis is structured as follows. Chapter 2 serves as an introduction to the Parkin-

son’s disease (Section 2.1), it’s treatment (Section 2.2) and standardized means of rating

severity of the Parkinson’s disease symptoms (Section 2.3). Last Section 2.4 looks into

problems connected with Deep Brain Stimulation treatment and also discusses where do

the data used in this thesis come from.

Chapter 3 looks into the transformation of raw data from extracellular microelectrode

into spiking activity of individual neurons (i.e. spike sorting), involving evaluation of

state-of-the-art spike sorting methods based on ground truth synthetic data I created by

devising an artificial signal generator.

Chapter 4 summarizes the application results in neuroscientific field achieved using

spike sorting methods. Section 4.1 describes our finding of basal ganglia neurons related

to eye movements. Section 4.2 presents the process of searching for emotion-related

neurons in the subthalamic nucleus. Section 4.3 identifies activity in subthalamic nucleus

that is directly related to PD symptoms.

Finally, Chapter 5 concludes the thesis and discusses the achievements of the thesis.



Chapter 2

Medical Background

2.1 Parkinson’s disease

Parkinson’s disease (PD) belongs to a group of conditions called motor system disorders,

which are the result of the loss of dopamine–producing brain cells (NINDS Office of

Communications and Public Liaison 2006). PD primary symptoms are tremor (trembling

of arms, hands, legs, ...); bradykinesia (a movement slowness); rigidity (arm, leg stiffness)

and postural instability. Secondary symptoms include depression or another emotinal

changes, difficulty speaking, sleep problems, urinary problems etc.

PD mainly develops in people over age of 50. At the beginning, PD symptoms are

subtle and are usually ocurring progressively. The speed of the disease is different among

people. As the symptoms become more severe, they might interfere with daily activities

- e.g difficulty walking, talking or completing simple tasks.

The diagnosis of PD is based solely on medical history and neurological examination

as there are currently no laboratory tests that can ascertain PD. Therefore, the disease

can be often difficult to diagnose, so M.D. usually rule out other diseases first (NINDS

Office of Communications and Public Liaison 2006).

2.2 Parkinson’s disease Treatment

PD is currently not curable, but various medications significantly improve life quality

of patients. Usually, levodopa combined with carbidopa is used, because levodopa can

be used by cells in brain to make dopamine compensating for the low dopamine levels.

3



4 CHAPTER 2. MEDICAL BACKGROUND

Carbidopa helps delaying the levodopa to dopamine conversion until it reaches the brain.

Levodopa is used as a treatment in at least 75% parkisonian patients, however, only

some symptoms are respond well to the drug. Bradykinesia and rigidity are among

those that are most successfully treate with levodopa treatment, but tremor is often only

slightly affected and postural instability and several secondary symptoms are not affected

at all. Aside from levodopa, anticholinergics are sometimes used for tremor and rigidity

control and a group of drugs such as bromocriptine that mimic the role of dopamine in

the brain are also successfully used for PD patient treatment.

Before discovery of levodopa, surgery was a common treatment of PD. Nowadays, it

is only prescribed to patients with the most severe PD symptoms, that are insensitive to

drug therapy (NINDS Office of Communications and Public Liaison 2006).

2.3 Unified Parkinson Disease Rating Scale

The Unified Parkinson Disease Rating Scale (UPDRS) scale is a standardized measure

of the effect of the disease on patients’ motor skills and mental abilities. The UPDRS is

commonly used as a rating tool to follow the progress of Parkinson’s Disease.

It is made up of the

1. Mentation, Behavior, and Mood section

2. Activities of daily living section

3. Motor section

Patient’s ratings are evaluated by examiner during interview. It is possible to achieve

maximum rating of 135 points, which represents the worst (total) disability, while rating

of 0 points means no disability. As the disease progresses, UPDRS scores usually increase.

The complete list of all UPDRS scores of a sample patient is shown in Table 2.1.

Although being a standardized measure, the UPDRS score is still a subjective measure

depending on an experience and skills of the examiner. An objective UPDRS analysis

would be a valuable contribution as a decision support tool to help examiners with PD

treatment.
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18. Speech 1 23. Right hand finger tapping 1

19. Mimicry 2 Left hand finger tapping 0.5

20. Head rest tremor 0 24. Right palm movements 1

Upper–right extremity rest tremor 1 Left palm movement 0.5

Upper–left extremity rest tremor 1 25. Right hand pronation 1

Lower–right extremity rest tremor 0 Left hand pronation 0

Lower–left extremity rest tremor 0 26. Right heel taps 2

21. Upper–right extremity action tremor 1 Left heel taps 2

Upper–left extremity action tremor 1 27. Arising from chair 0

22. Neck rigidity 2 28. Posture 1

Upper–right extremity rigidity 3 29. Gait 0

Upper–left extremity rigidity 1.5 30. Postural stability 1

Lower–right extremity rigidity 2 31. Body Bradykinesia 0

Lower–left extremity rigidity 1

Table 2.1: UPDRS scores of a patient along with the corresponding se-

quence numbers from the UPDRS III form

2.4 Deep brain stimulation

Deep brain stimulation (DBS) is a surgical procedure used most commonly to treat the

symptoms of Parkinson’s disease (PD), such as rigidity, bradykinesia and tremor. DBS

is also used to treat essential tremor, which is also a common neurological movement

disorder. The procedure is currently only used for patients whose symptoms can no

longer be controlled with medications (Kringelbach et al. 2007).

High-frequency stimulation of the subthalamic nucleus (STN) suppress motor symp-

toms in Parkinson disease and is thought to mimic the effects of lesions of the STN

(Bergman et al. 1990) or of levodopa (Pollak et al. 1996). However, the mechanism of

action of STN stimulation is still a matter of debate (Welter et al. 2004).

As shown in Figure 2.1, the DBS system consists of three parts (1) DBS electrode,

or lead, (2) connecting wire and (3) implantable pulse generator (IPG). The electrical

pulses generated by the IPG are lead through the connecting wires to the DBS electrodes

that are placed in deep brain structures. Mostly subthalamic nucleus (STN) or globus

pallidus interna (GPi) is stimulated.

Pulse generator is placed inside a small incision made near the collarbone. The wire
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is lead under the scalp and skin. The by far most time consuming and complicated part

is the placement of the DBS electrodes (Jahanshahi et al. 2000).

Figure 2.1: Deep Brain Stimulation scheme (Gulie 2007a).

2.4.1 Neurosurgery

The stimulation electrodes are implanted during stereotactic surgery. A neurosurgeon

uses a stereotactic head frame and magnetic resonance imaging (MRI) to localize the

target within the brain.

Stereotactic head frame is attached to the head of the patient prior to the operation.

The frame defines three dimensional coordinate system for the MRI brain mapping. The

resulting map becomes the blueprint for planning the least invasive trajectories of the

microelectrodes into the deep brain structures. In order to maintain the head in a fixed

position throught the operation, the head frame is screwed to the operating table. The

operation has to be done with patient awake, so that he can report any sensory anomalies.

The awaken state is also necessary in order to test the effect of the stimulation at the
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end of the surgery (Baltuch et al. 2007). Therefore no global anesthetic is administered

– only local ones to avoid the pain caused by the stereotactic frame.

2.4.2 Navigation

As the location of STN is variable and due to the relatively small size of the nucleus itself

(approx. 25mm3), STN targeting is quite challenging. Neurosurgeon uses a combination

of MRI calibrated with a stereo-tactic frame, coordinates relative to established anatomic

landmarks from brain atlas and intraoperative neurophysiology. Figure 2.2 shows the MRI

and X-Ray image of DBS electrodes in thalamus (Slavin et al. 2007).

Figure 2.2: MRI and X-Ray image showing the DBS electrodes in tha-

lamus (Hutchison et al. 1998a; Gulie 2007b).

2.4.3 Microrecording

Microelectrode recording (MER) is used by neurosurgeon as an additional means to ensure

the accuracy of the surgical probe. This technique uses tungsten microelectrodes that can

record summary electrical activity of neurons within the deep brain structures. In order

to minimaze the damage done, the microelectrodes are much smaller than the stimulation

electrode. During the surgery signals recorded using microelectrodes from various depths

are amplified and played using earphones to the neurosurgeon, who acoustically analyzes
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the summary activity of different brain structures (thalamus, STN, globus pallidus etc.)

and help steer the electrodes toward the desired surgical target.

All the data examined in this thesis, was recorded using five parallel parylenecoated

tungsten microelectrodes spaced 2-mm apart in a “Ben-gun” configuration with an ex-

posed tip size of 15 − 25 µm. Microelectrode tips were plated with gold and platinum

to reduce the impedance to 0.2 MΩ at 1 kHz. The five parallel microelectrodes were

advanced simultaneously with a motor microdrive in 0.5-mm steps, beginning 10 mm

above the target.

Signals were amplified and filtered using the Medtronic Lead Point System with sam-

pling frequency 24kHz. The simultaneous recording of neuron channel was performed

using a tetra-electrode setup in which four microelectrodes were inserted as a glued pair

separated by a distance of 250− 300 µm.

Every dataset came along with an operation protocol, that describes what electrodes

were used and till what depth and where was the STN found – based on the subjective

judgment of the surgeon. Sample of the operation protocol is shown in Figure 2.4.

Figure 2.3: Example of microelectrode signals recorded from different

depths of human brain (Hutchison et al. 1998a).



2.4. DEEP BRAIN STIMULATION 9

Figure 2.4: Sample of operation protocol. It clearly describes that

only the central microelectrode was used till depth T + 1

(24 depths in total) and that the STN was found between

T − 4 and T + 1 (dexter hemisphere). The last column

describes the exact placement of leads of the stimulation

electrode.
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Chapter 3

Spike sorting

Single-channel microelectrode recordings (MER) consist of summed electrical potentials

created by individual neurons see Figure 3.1. Depending on how many neurons are close

to the recording electrode, recorded signal can contain traces of that many different

electrical potentials summed with a contribution of large number of neurons further away

from microelectrode (usually referred to as “background noise”). Therefore, in order

to study the behavior of individual neurons, we need to unravel the combined neuronal

activity and obtain the activity of the individual neurons.

As neuronal activity is discrete (i.e. at any given time neuron is either firing an action

potential or being silent), the problem of neuron separation is significantly reduced. All

that is needed is to detect all action potentials (also referred to as spikes) in the recording

and sort them according to what neuron created them. This process is called spike

detection and sorting. It results in a sequence of spikes, called the spike train, for each

neuron detected in the microelectrode recording (see Figure 3.2).

The content of the following sections has been published by Wild et al. (2012b).

3.1 Introduction

Classifying neuronal action potentials is a technical challenge that is a prerequisite for

studying many types of brain function. Accurate detection of the activity of individual

neurons can be difficult to achieve due to the large amount of background noise and the

complexity in distinguishing the action potentials of one neuron from others. Even if

the activity of several neurons is recorded with only a single electrode as is illustrated in

11
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Figure 3.1, spike sorting allows the researcher to measure the activity of the individual

neurons separately. This capability is especially important for experimental investigations

of neural codes that use spike timing.

Although there are many spike sorting software packages (including commercial soft-

ware), we are not aware of any objective comparison of them that discusses adjustments

to their parameters and their impact on spike sorting accuracy.

Figure 3.1: Illustration of several neurons measured by microelec-

trodes (Buzsaki 2004).

Most unsupervised spike sorting algorithms employ three principal steps (Figure 3.2).

In the first step, spikes are detected with an automatic spike detection method. In the

second step, a set of features is extracted from each spike - principal component analysis

(PCA) (Adamos et al. 2008) or the wavelet transform (Quiroga et al. 2004) are usually

used in this step. Finally, the spikes represented by their features are assigned to different

neurons by an unsupervised learning algorithm (e.g. a clustering algorithm). We should

mention that these steps are sometimes combined (Franke et al. 2009; Herbst et al. 2008),

but most spike sorting algorithms handle the three steps independently.

We focus on stages 2 and 3, as there are already a number of comparative studies in

the field of spike detection (Lewicki 1998; Adamos et al. 2008; Gibson et al. 2008), and

because the studied spike sorting algorithms are modular, thus allowing the researcher

to choose freely which spike detection algorithm to use. The spike detection part was
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Spike
detection

Spike Feature
Extraction

Spike Sorting

Raw signal
Spike waveforms with
corresponding spike-firing times

Sets of spike features

time

neuron 1

time

neuron 2

time

neuron 3

Figure 3.2: Three principal stages of unsupervised spike sorting algo-

rithms.

omitted by providing the algorithms with reference spike times.

The idea of recording multiple neurons and then grouping the action potentials by

the source neuron is not new. It was first proposed in the 1960s (Gerstein et al. 1964),

and since then numerous approaches to the problem have been developed.

Given a lower-dimensional representation of the spikes and disregarding the times at

which the spikes occurred, the spike sorting problem reduces to a clustering problem.

Therefore, most of the better known clustering algorithms have been applied to spike

sorting: k-means clustering (Salganicoff et al. 1998), hierarchical clustering (Fee et al.

1996), superparamagnetic clustering (Quiroga et al. 2004), as well as mixtures of Gaus-

sians (Sahani 1999) and mixtures of t-distributions (Shoham et al. 2003). The method

used in (Fee et al. 1996) grouped multiple classes according to whether the interspike

interval histogram of the group showed a significant number of spikes in the refractory

period.

Takahashi et al. (2003b) and Takahashi et al. (2003a) combined independent compo-

nent analysis (ICA) and the efficiency of an ordinary spike sorting technique (k-means

clustering) to solve spike overlapping and nonstationarity problems of tetrode recordings

with no limitation on the number of single neurons to be separated. Adamos et al. (2010)
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attempted to resolve overlapping spikes by introducing a hybrid scheme that combines

the robust representation of spike waveforms to facilitate the reliable identification of

contributing neurons with efficient data learning to enable the precise decomposition of

coactivations.

Fee et al. (1997) described a procedure for efficiently sorting spikes in the presence of

noise that is anisotropic, i.e., dominated by particular frequencies, and whose amplitude

distribution may be non-Gaussian, such as occurs when spike waveforms are a function

of the interspike interval. Support vector machines were used in Ding et al. (2008) to

solve the superposition spike problem.

Herbst et al. (2008) combined the spike detection and classification steps into a single

computational procedure using a Hidden Markov Model framework. Detection and clas-

sification was also merged in Franke et al. (2009), where a method of linear filters was

inspected to find a new representation of the data and to optimally enhance the signal-to-

noise ratio. By incorporating direct feedback, the algorithm adapted to non-stationary

data. Delescluse et al. (2006) used Markov chain Monte Carlo in order to estimate and

make use of the firing statistics as well as the spike amplitude dynamics of the Purkinje

cells. Online spike sorting approaches suitable for HW implementation were addressed in

Gibson et al. (2010) and Rutishauser (2006). (Adamos et al. 2008) performed a compara-

tive study focused on PCA using synthetic data on which correlated and white Gaussian

noise processes are superimposed, and the KlustaKwik (Harris 2000) clustering approach

was used. Wang et al. (2006) proposed a robust approach employing an automatic over-

lap decomposition technique based on the relaxation algorithm that required simple fast

Fourier transforms. Hulata et al. (2002) used a simple k-means technique for spike sorting

while applying the wavelet packets decomposition framework in an extraction step.

The following approaches dealt with the quality of the spike sorting process. Schmitzer-

Torbert et al. (2005) introduced two measures: L-ratio and Isolation Distance. The two

measures quantified how well separated the spikes of one cluster were from other spikes.

Joshua et al. (2007) described the isolation score, which measured the overlap between

the noise (non-spike) and the spike clusters. The measure of Tankus et al. (2009) was

based on visual features of the spike waveform and an automatic adaptive algorithm that

learned the classification by a given human and could apply similar visual characteristics

for classifying new data.

This chapter describes a comparative analysis od the three most popular spike sorting

approaches with a publicly available source-code: WaveClus (Quiroga et al. 2004), OSort

(Rutishauser 2006) and KlustaKwik (Harris 2000). Emphasis was put on involving the
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algorithm that can be used for real-time analysis (Rutishauser 2006).

The papers on WaveClus and KlustaKwik did not make direct comparisons with any

other spike sorting method. They merely made comparisons between different versions of

the same algorithm. OSort was compared with both methods, but from the perspective

of online spike sorting (Rutishauser 2006). We are convinced there is a need to evaluate

them within a common framework, in order to determine which one to use for a specific

task.

Lewicki (1998) presented an extensive review on spike sorting in 1998, but did not

include any quantitative experiments, and dozens of new algorithms have been proposed

since that review appeared. Gibson et al. (2008) compared several spike detection and

feature extraction methods, but they did not include a comparison of the clustering

algorithm, because the goal of the paper was only to reduce the data for hardware im-

plementation.

In summary, very few quantitative comparisons of spike sorting methods have been

made, and there are no standard criteria for evaluating them. We propose in this chapter

an evaluation framework aimed at providing a fair comparison of spike sorting methods

on optimal terms.

3.2 Methodology

The objective of the study is to compare the three most widely-used publicly-available

spike sorting algorithms (WaveClus, KlustaKwik, OSort) with regard to their parameter

settings. We observed that even a small change in the parameters of a spike sorting algo-

rithm may have a dramatic impact on their accuracy. Therefore a comparison between

spike sorting algorithms and non-optimal parameters could be biased. To overcome this

weakness, we employ an optimization technique on artificial signals to find near-optimal

parameter settings. Using these settings, we compared the algorithms on various types

of artificial signals, focusing on single-channel recordings (similar to extracellular signals

recorded using a single microelectrode).
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3.2.1 Spike sorting algorithms

The most important properties of all three spike sorting algorithms selected in the previ-

ous section are summarized in Table 3.1. A more detailed description of the algorithms

that have been used follows.

Table 3.1: Summary of the properties of each spike sorting algorithm.

WaveClus KlustaKwik OSort

Features wavelet transform PCA Raw data points

Clustering method superparamagnetic clustering AutoClass template matching

User-tunable parameters 20 10 2

Real-time use no no yes

Open source yes yes yes

GUI available yes yes yes (Mclust)

Version tested 2.0 1.6 2.1

WaveClus

WaveClus is an unsupervised spike detection and sorting algorithm that combines the

wavelet transform (localizing distinctive spike features) with superparamagnetic cluster-

ing (SPC), which is a method used in statistical mechanics (Quiroga et al. 2004). It

enables clustering of the data without assumptions such as low variance or Gaussian dis-

tributions. In the first step, spikes are detected with an automatic amplitude threshold

on the high-pass filtered data. In the second step, a small set of wavelet coefficients from

each spike is chosen as the input for the clustering algorithm. Finally, SPC classifies the

spikes according to the selected set of wavelet coefficients (Quiroga et al. 2004). WaveClus

is one of the most widely-used spike sorting algorithms, and it has a large number of pa-

rameters for fine-tuning the method (see Table 3.2 for details). WaveClus version 2.0 was

used for the comparison.

OSort

OSort is an implementation of a template-based, unsupervised online spike sorting algo-

rithm. The estimation of the number of neurons present, as well as the assignment of

each spike to a neuron, is based on a distance metric between two spikes (Rutishauser

2006). Based on this distance, a threshold is used: (i) to decide how many neurons are

present and (ii) to assign each spike uniquely to a neuron cluster, or to a noise cluster
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if unsortable. The threshold is calculated from the noise properties of the signal and is

equal to the squared average standard deviation of the signal, calculated with a sliding

window. The main advantage of OSort over its competitors is that it can be used online,

thus enabling real-time spike sorting during an experiment (Rutishauser 2006). OSort

version 2.1 was used for the comparison.

KlustaKwik

KlustaKwik is a software for unsupervised classification of multidimensional data. It is

employed in the MClust toolbox, which enables both manual and automatic spike sorting

on single-electrode, stereotrode and tetrode recordings. KlustaKwik fits a mixture of

Gaussians with unconstrained covariance matrices and automatically chooses the number

of mixture components. PCA is used to extract spike features for the clustering and a

penalty term for selecting the number of clusters is implemented. The penalty is based on

the ability to specify Bayesian information content (Cheeseman et al. 1996). KlustaKwik

allows a variable number of clusters to be fitted. The program periodically checks if

splitting any cluster would improve the overall score. KlustaKwik also checks to see if

deleting any cluster and reallocating its points would improve the overall score. The

splitting and deletion features often allow the program to escape from local minima,

reducing sensitivity to the initial number of clusters, and reducing the total number of

starts needed for a data set (Harris 2000). KlustaKwik version 1.6 was used for the

comparison.

3.2.2 Preparation of test data

For the purposes of comparison we used two sets of artificial data: previously published

data (Quiroga et al. 2004), referred to as QQ (after Quian Quiroga), and data generated

by our own method, referred to as JW, publicly available online - http://neuro.felk.

cvut.cz/supplementary/spikesorting-comparison/). Both of these data sets were

obtained simulating extracellular signals recorded using a single microelectrode.

Our artificial data was generated by superimposing real spikes at random times onto a

noise background – see Section 3.2.3 for details about the generator. Since several aspects

of signals affect spike sorting, we used a wide range of signals of different characteristics

(signal noise level, number of neurons) to maximize the objectivity and discriminability

of our results.

http://neuro.felk.cvut.cz/supplementary/spikesorting-comparison/
http://neuro.felk.cvut.cz/supplementary/spikesorting-comparison/
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A total of 9 real spikes (64 samples) shown in Figure 3.3 were picked manually from

extracellular tungsten microelectrode recordings during a Deep Brain Stimulation oper-

ation from the STN of 5 patients. Each spike was deduced from a different position in

the STN, thus eliminating the possibility of extracting two separate spikes of the same

neuron.

Spike 1 − patient id 4, position p2 Spike 2 − patient id 4, position p1 Spike 3 − patient id 4, position p3

Spike 4 − patient id 2, position p3 Spike 5 − patient id 3, position p1 Spike 6 − patient id 5, position p1

Spike 7 − patient id 5, position p4 Spike 8 − patient id 1, position p2 Spike 9 − patient id 3, position p6

Figure 3.3: Waveforms of 9 real spikes, used for artificial signal generation.

Each spike represents a different neuron.

The noise background for longer signals (60, 960 seconds) was generated in the same

way as for the QQ data (Quiroga et al. 2004) using over 2 000 different spikes (some

of which might be from the same neuron), thus simulating the activity of many distant

neurons in the brain. For shorter signals (20 seconds), a spike-less part of a raw signal

recorded from STN was used as a noise background to approximate real signals more

closely. The noise was then scaled, so that its standard deviation σ lies within the range

〈0.05; 0.3〉, and was then superimposed on the previously generated signal to get the final

artificial record.

Twenty two QQ signals (60 seconds) and another 90 JW signals with 2 − 9 neurons

generated using the described procedure were used to evaluate the spike sorting algorithms

on a large variety of signals with different properties. The JW signals were split into three

groups according to their length - 40 short JW signals (20 seconds), 40 long JW signals

(60 seconds) and 10 very long JW signals (960 seconds). The signals with the same

number of neurons differed in the standard deviation of the noise that was superimposed
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Figure 3.4: Example of the same 250 ms long signal with different noise

levels ranging from 0.05 to 0.35. The spikes marked in the

signal by a triangle and a circle each belonged to a different

neuron and are shown in greater detail on the right side - in

the case of a higher noise level at 0.25 and 0.35, a new noisy

spike could be misleadingly detected.
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on the signal element. However, as it was very difficult to estimate (and compare) the

standard deviation of the noise component in the case of real signals, all the JW and QQ

data was labeled using a straightforward noise estimation method (see Section 3.2.4).

3.2.3 Artificial signal generator

To generate an artificial signal with n neurons, spikes 1. . .n were used as a template

for each neuron. Each template was first scaled to 75%-125% (uniform distribution)

of its maximal amplitude to mimic the different spatial distance from each neuron to

the electrode and was placed at random positions in the signal, while maintaining a

neuronal refractory period of 3ms. The contribution of different neurons was independent,

such that spikes of different neurons might have coincided with each other in the signal,

simulating the situation of several neurons firing at the same time.

After placing all the spikes, noise should be added to the signal. Our generator used

two types of noise. An artificial one that was generated in the same way as the signal

itself but with much larger set of neurons (e.g. thousands of neurons). This procedure

was selected as it should closely mimic the origin of noise in recorded MER signals. As the

other type of noise a spike-less part of real recorded signal from STN was used (repeating

as needed). Both types of noises had to be normalized first and then multiplied by the

wanted noise level.

See Algorithm 1 for Matlab pseudocode of the artificial generator used.

3.2.4 Noise Level Estimation

The noise level nl was defined as the reciprocal value to the signal-to-noise ratio SNR

(Smith 1999)

nl =
1

SNR
=

(
Anoise
Asignal

)2

(3.1)

where Asignal represents the root mean square (RMS) amplitude calculated from all the

spikes extracted using spike detection, and Anoise accounts for RMS computed from the

rest of the signal. As the estimated noise level was normalized, it was easier for comparison

across signals with different amplitude ranges, as opposed to standard deviation. An

inevitable drawback of the method described here was that the estimation was slightly

biased as, in theory, Asignal had to be calculated only from the useful signal (spikes),

whereas in the real case the spikes themselves were corrupted by noise.
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Algorithm 1 Artifical signal generator

signal = zeros(1, signal length)

for each spike in spike templates do

% randomly increase/decrease spike size

nspike=spike · ((rand()/2) + 0.75)/max(spike)

% calculate interspike intervals (ISI) histogram

% from Poisson distribution given lambda (1..4)

lambda = rand() · 4
histogram = poissrnd(lambda)

% transform histogram into ISIs, adhering to refractory period

% so that each ISI is uniformly spread among the histogram bin

isi = refractory period+ (histogram− rand()) · binwidth

% calculate firing indexes from ISIs

idx = cumsum(isi)

% place spike according to idx (i.e. neuron spiketrain)

for i = 1 : length(idx) do

signal(idx) = signal(idx) + nspike

end for

end for

% Add normalized noise with a given noise level to the signal

% (noise can be prepared using the same procedure)

signal = signal + noise · noise level
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For illustration purposes, Figure 3.4 depicts the same 250 ms long signal with four

different noise levels (0.05, 0.15, 0.25, 0.35). On the right side of each signal there is a

detail of two spikes (marked in the signal by a triangle and a circle), each belonging to

a different neuron. This is an example to illustrate of how much the noise affected the

shape of the spikes.

3.2.5 Performance rating function

In order to asses the accuracy of different spike sorting algorithms and to provide an ob-

jective function for optimization, a performance measure was needed. As the experiments

were performed using artificial data, the true clustering of the spikes was available. In

machine learning research, many measures have been proposed for this type of clustering

evaluation task (Warrens 2008; Vinh et al. 2009; Vinh et al. 2010), and some of them

have already been used for spike sorting evaluation (Kretzberg et al. 2009; Gasthaus

2008). Recently, Vinh et al. (2010) showed that Adjusted Mutual Information (AMI)

had the best properties among all these clustering evaluation measures, so this measure

was selected for the evaluation.

AMI is an information theoretic measure which usually provides a value between 0

and 1. The value is 0 if the clustering provides information about the true clustering just

by chance, and it is 1 if all information is revealed, meaning that the two clusterings are

the same. Hence, AMI can be considered as the ratio of true information in a spike sorting

result. Several AMI values and their corresponding clustering are shown in Figure 3.5.

3.2.6 Spike sorting parameters

All of the spike sorting algorithms discussed have a number of parameters (OSort - 2

parameters; KlustaKwik - 9 parameters; WaveClus - 13 parameters) that can be adjusted

in order to improve the spike sorting accuracy. However, it was very difficult to set these

parameters correctly using manual methods.

Although all the parameters were documented, it was an almost impossible task to

find out how to operate them so that the algorithm would perform better on a given

signal.

First a visualization of the parameter space was performed using high dimensional

stacking (see Section 3.2.7). The visualization did not uncover any specific pattern in
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Figure 3.5: Several clustering results with their corresponding AMI values. The correct clus-

tering is presented in the top-left corner with different shapes for each cluster. In

the top-right corner, one cluster is further split, so AMI is reduced. In the bottom-

left corner, the number of clusters is correct, but there is a wrong split. In the

bottom-right corner is a random clustering (AMI=0).

the parameters space, but it did help us find reasonable parameter space boundaries for

optimal parameter search.

Second, the parameter search was formulated as an optimization problem: given a set

of algorithm parameters

x = {x1, x2, ..., xn}, (3.2)

find a solution for

maximize
x

f(x), (3.3)

where the f(x) objective function is the value of the performance rating function (the

AMI score) for the spike sorting results obtained with parameter vector x. As artificial

signals were used in this study, the AMI could be calculated for the parameter space and

the optimal solution could be identified by an exhaustive search. Gradient descent and

genetic algorithms were also considered, but the objective function changed significantly

with only a small change in the parameters, so only an exhaustive search guaranteed

finding the global optima.

While employing the exhaustive search, only some of the algorithm parameters proved

to have an impact on the spike sorting accuracy. The Table 3.2 summarizes the names
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of these parameters for all three algorithms. A complete annotated list of all parame-

ters is available online at http://nit.felk.cvut.cz/~wildj1/ssc or at each algorithm

author’s website.

Table 3.2: List of parameters impacting the spike sorting accuracy for each

algorithm. The parameter names were taken directly from the

original source code of each algorithm author.

WaveClus

force auto Automatically force membership of spikes assigned to noise cluster using tem-

plate matching.

inputs Number of wavelet coefficients to use as features for clustering.

KNearNeighb Number of data points used for the nearest neighbors interactions in the SPC.

min clus stop Minimum size of a cluster (cluster will be deleted if the number of spikes it

contains is lower than this value).

mintemp SPC minimum temperature - a lower temperature value groups all data into a

single cluster, while higher values allow the data to split into more clusters

scales Number of wavelet decomposition levels used.

SWCycles Number of Monte Carlo iterations used by SPC.

template type Type of template matching method used - template matching is used for spike

sorting speed up in the case of large number of spikes or for assigning spikes in

the noise cluster to the existing clusters (if force auto is set).

KlustaKwik

noDim Number of PCA dimensions used for clustering.

MinClusters The random initial assignment will have no less than MinClusters clusters. The

final number may be different, since clusters can be split or deleted during the

course of the algorithm.

PenaltyMix Amount of Bayesian information content (BIC) or Akaike information content

(AIC) to use as a penalty for more clusters. Default of 0 sets to use all AIC.

Use 1.0 to use all BIC (this generally produces fewer clusters).

OSort

minNrSpikes Minimum size of a cluster (cluster will be deleted if the number of spikes it

contains is lower than this value).

correctionFactorThreshold Value correcting a signal noise estimate used as a clustering threshold.

In order to make a fair comparison between algorithms with different numbers of

parameters, all signals were split into two parts. The first part was used for optimization

to find the ideal parameters, and the second part was utilized to evaluate the spike sorting

accuracy with these parameters.

http://nit.felk.cvut.cz/~wildj1/ssc


3.2. METHODOLOGY 25

3.2.7 Dimensional Stacking

In order to use dimensional stacking a two-dimensional grid was divided into embedded

rectangles representing the individual parameters (i.e. categorical dimensions). Starting

with two outer dimensions along the X and Y-axis, each additional pair of dimensions was

embedded into the outer level rectangles. This process was repeated until all parameteres

were used.

According to Hoffman et al. (1997), the outer dimensions had a different effect than

the inner dimensions. Therefore, it is significatn in which order to choose the parameters

for the stacking, because a specific order of parameters stacking might reveal something

another order would not (Hoffman et al. 1997). As there was no exact clue on how to

choose the outer and inner dimensions, these were picked manually in order to subjectively

reveal the most information.

In order to overcome the limitation of dimensional stacking (necessity of categorical

dimensions), we binned (discretized) each noncategorical dimension (algorithm parame-

ter). The color of each point was defined by the AMI value of algorithm performance

using the parameter set. Example of dimensional stacking visualization of WaveClus

parameter space was shown in Figure 3.6.

Figure 3.6: Example of dimensional stacking visualization of WaveClus

parameter space (six parameters used) for signal

QQ Difficult1 noise015. The cyan color represents bet-

ter performance (higher AMI), the magenta color means

worse performance (lower AMI).
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3.2.8 Statistical methods

For each artificial signal the AMI scores were calculated for each spike sorting algorithm,

using either optimized or default parameters. For the spike sorting evaluation, the signals

and their corresponding AMI scores were grouped according to the algorithm used and

the signal noise level. Each group was visualized as a simplified boxplot showing the

median and the lower and upper quartiles. The range between these quartiles is referred

to as the spread. Differences between group medians were assessed using the two-sided

Wilcoxon signed-rank test. Bonferroni corrections for multiple comparisons were applied

whenever appropriate.

For the comparison between the optimized parameters, and the default parameters

the AMI scores were grouped according to the algorithm and parameters that were used

(either optimized or default). For visualization, the simplified boxplots were used as

described above. Significant differences between the medians of the groups were assessed

in the same way as for the spike sorting evaluation, using the two-sided Wilcoxon signed

rank test.

All calculations and statistical analyses were performed using MatLab (Mathworks,

Natick, MA). The spike sorting results for the different algorithms were calculated using

a Dell Precision workstation running 32-bit Linux Mint with a 2.13GHz Intel Core 2 Duo

E6400 2.13GHz and 2 GB of DDR2 RAM.

3.3 Results and Discussion

The algorithms were compared in two main aspects. First, the spike sorting accuracy

was measured with AMI (one AMI score for each signal and algorithm). The results

correspond to the evaluation part of the signals, unless otherwise stated. Second, the

speeds of these algorithms were compared to give some impression of the number of

spikes that can be processed within a reasonable time.

3.3.1 Optimized parameters

As was already discussed in Section 3.2.6, the parameters were optimized on one part

of the signal and evaluated on the other half. It was important to see whether this

optimization really yielded better results than the default parameters of the algorithm.
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Figure 3.7 shows the spike sorting accuracy results using near-optimal parameters in

comparison with the results employing the default parameters. JW short, long and QQ

signals with noise levels ranging from 0.0 to 0.6 were used for this comparison. Although

the spread of the AMI values was quite high, mainly due to the noise level diversity of

signals used, it could be clearly seen that the optimization improved all three algorithms

(p < 0.01).

WaveClus KlustaKwik OSort

0

0.1

0.2

∆
A
M
I

Figure 3.7: Comparison of the accuracy of the algorithms when used with

default and optimized parameters. The y-axis represents the

difference between the achieved AMI score while using opti-

mized parameters and while using default parameters). Sym-

bol ∗∗ indicates that the medians of the marked boxplots are

significantly different from zero (p < 0.01).

3.3.2 Spike sorting accuracy

Our main assumption was that increasing noise levels have a negative effect on spike

sorting accuracy. We therefore present our results depending on noise levels. Figure 3.8

shows the spike sorting accuracy of WaveClus, KlustaKwik and OSort on short (10s) JW

signals with noise levels ranging from 0.0 to 0.6. For signals with noise level between

0.00 − 0.15, WaveClus was the most accurate algorithm, with a median AMI of 0.7.

However, because of its large spread the difference between WaveClus and KlustaKwik

or OSort was not significant.

With added noise, the median AMI of all respective algorithms decreased, with both

WaveClus and KlustaKwik proving to be significantly better than OSort (p < 0.05 and
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Figure 3.8: Performance of spike sorting algorithms using short (10s) ar-

tificial JW signals with noise levels binned and optimized pa-

rameters. The y-axis represents the AMI score of each algo-

rithm along with its spread. Symbols ∗ and ∗∗ indicate that

the medians of the marked boxplots are significantly different

(p < 0.05 and p < 0.01, corrected for 3 comparisons).
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p < 0.01 at noise level 0.15− 0.30), both having a better AMI score than OSort for 80%

of 10s signals within the respective noise level range. For signals with noise levels above

0.30 all three algorithms had very poor accuracy, indicating that signals with such a high

noise level were beyond their capabilities.
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Figure 3.9: Performance of spike sorting algorithms using long (30s) ar-

tificial JW and QQ signals with noise levels binned and op-

timized parameters. The y-axis represents the AMI score of

each algorithm along with its spread. Symbol ∗∗ indicates that

the medians of the marked boxplots are significantly different

(p < 0.01 corrected for 3 comparisons).

Figure 3.9, which depicts the same experiment as Figure 3.8, only with longer JW and

QQ signals (30s), gave us somewhat similar results for WaveClus and OSort. WaveClus

performed best in all cases, though it was significantly better (p < 0.01) than both of

its competitors only for noise level 0.15 − 0.30 (it had a better AMI score for 89% of
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the respective signals). KlustaKwik was significantly better than OSort for noise level

0.00− 0.15, though with higher noise levels KlustaKwik had a larger spread than OSort.

Again, noise level above 0.30 was too high for the algorithms to give reasonable results.

Some spikes were visually investigated in order to explain the effect of the noise levels.

Judging from Figure 3.4, the spike shape (in this case) remained almost unchanged for

noise levels 0.05 and 0.15, but at 0.25 and 0.35 the spike shape did not seem like the

shape at 0.05. This had a direct negative effect on the spike sorting accuracy of OSort,

as shown in Figure 3.8 and 3.9, in comparison with WaveClus, because OSort used raw

spike shapes (without any filtering) and a simple distance measure for sorting.

3.3.3 Spike sorting time complexity

In a real world scenario, the speed of an algorithm may be of considerable importance.

For example, if a certain algorithm can be run online, it will help researchers to gather

sorted spiking data from microelectrodes in real time. Of these three algorithms, only

OSort is online, which means that it processes spikes one-by-one as they come. For the

other two algorithms, the whole spike sorting process needs to be re-run with all previous

data to cluster the new spikes, so they are more targeted for offline analysis when new

spikes are not coming in. Even for large-scale offline analysis, it would be good to know

the computational demand of the algorithms.

Ten very long signals (960 s) with noise level 0.15 were used for evaluating the time

complexity of each algorithm. The 960 s signals were cut into shorter signals, with

the number of spikes varying from 100 to 19460. The parameters for each spike sorting

algorithm were optimized on the first part (1400 spikes) of each 960 s signal, and remained

unchanged for all the other parts originating from this signal. As only the speed of the

algorithms was measured and not their actual accuracy, parameter optimization of each

individual signal part was unnecessary.

The results of the speed test are shown in Figure 3.10. OSort was the fastest algorithm,

with an average speed of 1100 spikes/s, whereas the average speed for KlustaKwik and

WaveClus was 200 and 100 spikes/s respectively.
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Figure 3.10: Relation between number of spikes and time needed for the

spike sorting algorithms to run. Long JW signals (960 s, noise

level 0.15) cut into several parts were used. The parameters

were optimized using the first signal segment with 1400 spikes

and remained the same for all other segments.

3.4 Conclusion

Three widely-used publicly-available spike sorting algorithms were compared (WaveClus,

KlustaKwik, OSort) with regard to their parameter settings, using single-channel arti-

ficial data with different noise levels and different number of neurons. To avoid biased

results, an optimization technique was employed based on Adjusted Mutual Information

to find near-optimal parameter settings for our artificial signals. When using the near-

optimal parameters, each algorithm improved its spike sorting accuracy as opposed to

when only the default parameters were used (p < 0.01). Using these settings, an objective

comparison of the three algorithms was made.

WaveClus was the best performing spike sorting algorithm. The accuracy of Klus-

taKwik was comparable to that of WaveClus at a lower noise level (0.00 − 0.15), and

worse otherwise (see Figure 3.4 for visual comparison of signals with different noise lev-

els). Although OSort performed less well than both WaveClus and KlustaKwik, it sorted

spikes at more than five times faster, and can thus be recommended for real-time signal

processing with a low amount of noise present (below noise level 0.15). Where there is

high noise (noise level greater than 0.3), none of the three algorithms provided reasonable

results.

As our artificial data is publicly available online, we believe that our framework can
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be extended to further spike sorting algorithms, thus providing an objective comparison

platform for neuroscience researchers – as of 17.8.2015 this work was cited 14 times on

Web of Science (see Appendix A).



Chapter 4

Application Results of Spike Sorting

This chapter summarizes the application results in neuroscientific field which built upon

the spike sorting methods described in Chapter 3 and could not be realized otherwise.

Section 4.1 describes our finding of basal ganglia neurons related to eye movements. Sec-

tion 4.2 presents the process of searching for emotion-related neurons in the subthalamic

nucleus. Section 4.3 identifies activity in subthalamic nucleus that is directly related to

PD symptoms.

4.1 Basal Ganglia Neuronal Activity during

Scanning Eye Movements in Parkinson’s

Disease

This section describes the way of searching for basal ganglia neurons whose activity was

related to eye movements, employing the results of spike sorting evaluation.

Note: The content of this section has been published by Sieger et al. (2013b). This

work was a joint activity of several authors, including the author of this thesis. How-

ever, the dominant contributor was Tomáš Sieger. We briefly sketch the work here for

completeness. Details can be found in the original article.

33



34 CHAPTER 4. APPLICATION RESULTS OF SPIKE SORTING

4.1.1 Introduction

In everyday life we scan the environment with a series of eye movements, pointing the

fovea towards objects of interest and the most salient areas of the scene. The pattern of

such eye movements (EM) carried out while exploring an image, also called scanning EM,

is composed of a succession of small saccades and fixations, corresponding to successive

re-allocation of attention from one detail to another (Araujo et al. 2001). Therefore,

scanning EM can be considered as internally triggered EM, as the subject moves the

gaze around a complex visual image actively searching for information relevant to current

motivations and goals. Scanning EM have mostly been the domain of psychiatric research

which has focused on the behavioral aspects of the eye scanning path rather than to

pathophysiological origin and scanning EM control (Toh et al. 2011).

The structures and mechanisms involved in scanning EM are still poorly understood.

At the subcortical level, an involvement of the basal ganglia during scanning EM was

suggested by early research using regional cerebral blood flow in healthy controls and

schizophrenic patients (Tsunoda et al. 1992). However, subcortical neuronal activity

during scanning EM is still unknown and has never been studied in animals or in humans

before. The only evidence of human EM-related neurons was obtained from the sub-

thalamic nucleus during saccade tasks and smooth pursuit movements in patients with

Parkinson’s disease (Fawcett et al. 2004).

In our study, we systematically searched for basal ganglia neurons participating in

scanning EM. We took advantage of intraoperative microelectrode recordings of single

neuronal activity routinely used to identify the basal ganglia based on specific electrophys-

iological pattern (Hutchison et al. 1998b). We have focused on the subthalamic nucleus

(STN), substantia nigra pars reticulata (SNr) and globus pallidus (GP) – i.e. nuclei in

which EM-related activity was previously reported (Shin et al. 2010) and which are eas-

ily accessible during the implantation procedure for deep brain stimulation in Parkinsons

disease (PD).

Besides EM-related neurons firing selectively when a specific position, velocity or ac-

celeration of the eyeballs is reached, we expected to find less specialized neurons with

activity depending on two or more kinematic features simultaneously (Selemon et al.

1990). On the other hand, there is a segregation hypothesis which expects different neu-

ronal populations to selectively respond to specific kinematic parameters or to fire only

during a specific kind of the EM. Therefore, in a subgroup of patients, we additionally

studied the basal ganglia neurons during externally triggered EM using a visually guided
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saccade task. To further elucidate the function of neurons related to EM, we explored

temporal relations of EM kinematic parameters with respect to their preceding and fol-

lowing activity, which may suggest their involvement in execution or control processes.

4.1.2 Methods

Patients

Nineteen PD patients were enrolled consecutively from 2008 to 2011 (15 men, 4 women;

mean age: 54.5, SD 9.8, range 28–69 years; mean PD duration: 13.8, SD 6.1, range 3–30

years; Hoehn-Yahr stage 2-4; mean motor score of the Unified Parkinsons Disease Rating

scale – UPDRS III in OFF condition: mean 36.5, SD 13.6, range 10–65). All of them

were suffering from motor fluctuations and/or disabling dyskinesias and were indicated for

treatment with deep brain stimulation due to motor fluctuations and dyskinesias. Four

days before surgery, dopamine agonists were substituted by equivalent doses of levodopa.

Other anti-PD medication (amantadine, anticholinergics) was suspended earlier for the

surgery preparation. Levodopa was withdrawn at least 12 hours before the surgery.

Surgery and intraoperative microrecording

Implantation of the deep brain stimulation system was performed according to the previ-

ously mentioned procedure (see Section 2.4.1). The central trajectory was intentionally

focused on the STN center near the anterior part of the red nucleus (15 patients) or to the

posteroventrolateral portion of the GP interna (4 patients). The extracellular neuronal

activity was mapped by conventional microelectrode recordings (MER) using parallel in-

sertion of five tungsten microelectrodes in a ”Ben-gun” configuration (see Section 2.4.3).

Up to six recording positions in the STN, SNr or GP were used for the EM tasks in each

patient. The number of positions depended on the time course of the surgery, patients’

clinical conditions and compliance.

Eye movement recording

Eye movements during scanning and visually guided EM tasks were recorded using elec-

trooculography (EOG), a technique measuring the position of the eye in terms of the

electric potential induced by the eye dipole. Technical constraints during surgery (lim-

ited space around the stereotactic frame and a limited number of recording channels) did

not allow for more elaborate recordings than the use of one single-channel EOG. The
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signal was band-pass filtered in the range of 0.1–20 Hz and recorded using the Lead-

point recording system simultaneously with MER acquisition through a pair of surface

electrodes attached near the outer canthus and the lower lid of the left eye. This setup

enabled the orthogonal projection of the eye position on the axis connecting the two EOG

electrodes. All eye movements except those which were orthogonal to the axis could be

recorded with this technique.

4.1.3 Tasks

The EM tasks were presented on a 17”-computer screen placed approximately 55 cm in

front of the eyes of patients lying in supine position.

The scanning EM task The goal of this task was to induce self-initiated free-direction

scanning EM. The task consisted of a presentation of a series of photographs selected

from the International Affective Picture System (IAPS, Figure 4.1A) (Lang et al. 1999),

depicting objects, persons, animals and landscapes. To avoid showing the same picture

more than once, six unique variants of the test, each containing 24 pictures, were prepared.

Each picture was presented for a period of 2 s and was preceded by a black screen for

various durations (3500–5500 ms) with a white cross in the center. Patients were asked

to fix their eyes on the cross on the black screen and then to simply watch the pictures

presented. The MER and EOG signals were acquired in 2 s epoch intervals recorded both

during the picture presentation and the black screen. The task lasted approximately for

2.5 minutes.

The visually guided saccade task The goal of the task was to induce externally

generated horizontal saccades (Figure 4.1B). Initially, a black screen with a central white

cross was shown for a pseudorandom period of 2, 2.25, or 2.5 seconds. Subsequently, a

peripheral target, a small white square, was presented for 1 s, 17 degrees laterally from

the central fixation cross, pseudorandomly to the left (5 trials) or right (5 trials). Patients

were instructed to initially fixate on the central cross and then to track the lateral target

as fast as possible. The MER and EOG signals of 2 s durations were recorded during all

10 trials. The task lasted for 32.5 seconds.
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Figure 4.1: EM tasks employed in the study.

A - The scanning EM task. After the presentation of the

black screen with a central cross, a photograph chosen from

the International Affective Picture System was presented for

2 s. Patients were asked to initially fix their eyes on the cross

(left picture) and then simply watch the photograph (right

picture). In total, 24 pictures were consecutively used during

the task. The blue line highlights a possible eye scanpath.

B - The visually guided saccade task consisted of a pre-

sentation of 10 pairs of indifferent central (left picture) and

lateral GO (right picture) targets positioned pseudorandomly

on the left/right side of the screen. Patients were instructed to

initially fixate the central cross and then track to the lateral

targets as fast as possible.
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4.1.4 Data analysis

Microelectrode recordings WaveClus (Quiroga et al. 2004), an unsupervised spike

detection and sorting tool, which performed reasonably well on the single channel MER

(Wild et al. 2012b), was used to extract the series of action potentials of individual

neurons from MER signals (Figure 4.2). Instantaneous firing rate (IFR) of each neuron

was estimated by convolving the series of action potentials with the causal kernel function:

f(t) = α2 · t · exp(−α ∗ t), (4.1)

defined for positive time t, where 1
α

was empirically set to 20 ms.

Each neuron was then mapped relative to the border of the STN, GPi and SNr

identified by intraoperative MER. Onedimensional positions along the dorso-ventral mi-

croelectrode trajectory were determined using this technique.

Figure 4.2: MER and EOG signal acquisition and processing. Action

potentials of individual neurons were identified using the

WaveClus algorithm in the MER signal. The instantaneous

firing rate (IFR) was then estimated by convolving a series

of extracted action potentials generated by a single neuron

with a causal kernel function. Finally, the IFR was correlated

with the eye movement kinematic parameters derived from the

EOG.
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EM recordings EOG signals were rated manually and those contaminated with tech-

nical or major blinking artifacts, usually represented by large amplitude changes over-

saturating the recording channel, were excluded from further analyses. As we presumed

that neuronal activity could be related not only to the position of the eye, but also to

its motion and the dynamics of the motion (Fawcett et al. 2004) we characterized EM

by: i) the eye position (POS), defined by the EOG signal itself, ii) the eye velocity (VE-

LOC), defined as the derivative of POS, and iii) the acceleration of the eye (ACCEL),

defined as the derivative of VELOC. The derivative of the signal was defined in terms of

the differences between successive samples in a low-pass filtered signal computed using

a sliding rectangular window with the cutoff frequency of 12.5 Hz. The maximum and

typical amplitude of the EM was extracted in each recording position in each task for each

patient. While the maximum amplitude was defined as the extreme value in VELOC,

the typical amplitude was defined as the median peak exceeding ±1 SD of the VELOC.

To identify neurons whose activity was associated with EM, the relationships between

IFR and POS, IFR and VELOC, and IFR and ACCEL were assessed. A neuron was

considered connected to EM if its IFR was related to at least one of POS, VELOC,

and ACCEL at the Bonferroni-corrected significance level of p < 0.05. The relationships

between IFR and the EM characteristics were analyzed using cross-correlation, which

could reveal not only the link between concurrent IFR and EM, but also the link of IFR

to preceding and following EM (Figure 4.3). The maximal crosscorrelation lag considered

was ±500 ms with steps of 2.5 ms.

Biased estimates of correlation coefficients were computed to diminish uncertainty

in estimates of correlation coefficients over longer lags. The cross-correlation coefficient

between two signals was defined as the extreme correlation coefficient between the signals

over all the lags considered. The lag in which the extreme cross-correlation was reached

was called the optimal EM-to-IFR cross-correlation lag. The statistical significance of the

cross-correlation coefficient between two signals was assessed with Monte- Carlo simula-

tions (Simpson et al. 2001) using original and surrogate signals generated by randomly

changing the phases of the spectral representation of the original signal.

The binomial test, Pearson’s correlation coefficient test, Fisher exact test, two-sample

proportion test, likelihood ratio test comparing Poisson regression models of dependence

and independence in a 2-by-2-by-2 contingency table and paired t-test were used for

statistical analysis. Data processing and analyses were performed in MATLAB (R2007b,

The MathWorks, Natick, MA) and ”R” software (R Core Team 2015).
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Figure 4.3: Time lag of neuronal activity with respect to EOG. A, B, C - Explanation of the

cross-correlation procedure in three examples. Action potentials of three hypotheti-

cal neurons along with corresponding IFR were correlated with the theoretical EOG

signal. Figure A – the IFR correlates with the past EOG signal suggesting a sensory

function of the neuron. Figure B – the IFR correlates with the concurrent EOG

signal suggesting an executive function of the neuron. Figure C – the IFR correlates

with the future EOG signal suggesting a preparatory function of the neuron.

4.1.5 Results

We acquired 137 pairs of MER and EOG signals from 91 recording positions: 97 MERs

were assigned to the STN, 21 to the GP and 19 to the SNr according to their firing

pattern. In total, 183 neurons were detected using the spike sorting procedure, out of

which 130 were located in the STN, 23 in the GP and 30 in the SNr (Table 4.1).

Neuronal activity related to scanning eye movements

Thirty seven (20%) out of 183 neurons identified in the basal ganglia during the scanning

EM task were related to at least one of the EM kinematic parameters (POS, VELOC,

ACCEL) (Table 3). Their proportion was higher than the expected false positive rate

in each of the analyzed nuclei (binomial test, p < 0.001): 26/130 neurons (20%) in the

STN, 5/23 neurons (22%) in the GP and 6/ 30 neurons (20%) in the SNr. In the STN,

the ratio of the EM-related neurons was higher in the ventral part (0 to 1 mm from the

ventral STN border) compared to the rest of the nucleus (proportion test, χ2 = 2.722,

df = 1, p < 0.05).

The firing rate of the neurons relating to eye position (POS) significantly correlated

with fluctuations of the EOG (Pearson’s r = 0.89 (STN), 0.91 (GP), 0.86 (SNr); df = 18,

p < 0.001) (Figure 4.4). A relatively large number of neurons were related to more than



4.1. BASAL GANGLIA ACTIVITY DURING SCANNING EYE MOVEMENTS 41

Table 4.1: Eye movement-related neurons detected in the scanning

eye movement task and/or visual guided saccade tasks.

STN GP SNR Total

MER count 97 21 19 137

neuron count (SEM task) 130 23 30 183

neuron count (SEM & VGS task) 46 2 5 53

MER count – number of microelectrode recordings obtained in each

nucleus; SEM – scanning eye movement task; VGS – visually guided

saccade task; neuron count – number of neurons identified in each

nucleus during the SEM task (patients 1-19) and during both the

SEM and VGS tasks (patients 16-19); STN – subthalamic nucleus;

GP – globus pallidus; SNr – subtantia nigra pars reticulata.

Table 4.2: Number of neurons related to eye movements in the scanning eye movement

task.

STN GP SNr Total

EM-related neurons† 26 (20%)*** 5 (22%)*** 6 (20%)*** 37 (20%)***

POS 15 (12%)** 6 (26%)*** 5 (17%)* 26 (14%)***

VELOC 21 (16%)*** 7 (30%)*** 7 (23%)*** 35 (19%)***

ACCEL 19 (15%)*** 3 (13%) 5 (17%)* 27 (15%)***

POS, VELOC 10 (8%) 4 (17%)* 5 (17%)* 19 (10%)**

POS, ACCEL 7 (5%) 3 (13%) 3 (10%) 13 (7%)

VELOC, ACCEL 10 (8%) 3 (13%) 4 (13%) 17 (9%)*

POS, VELOC, ACCEL 7 (5%) 3 (13%) 3 (10%) 13 (7%)

EM-related neurons – the number of eye movement-related neurons associated with at

least one kinematic parameter (†Bonferroni-corrected number of neurons for three kine-

matic parameters). Neurons functionally associated with one or more kinematic parame-

ters (POS – eye position; VELOC – eye velocity; ACCEL – eye acceleration) are reported

for each nucleus separately (STN, GP, SNr). Number of neurons significantly greater than

expected 5% false positivity rate is denoted: *(p < 0.05), **(p < 0.01) ***(p < 0.001).
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one kinematic parameter (likelihood ratio test, D = 42.2 (STN), 19.8 (GP), 28.0 (SNr);

df = 3, p < 0.001).

As follows from cross-correlation analysis, the firing rate of the neurons was related

either to concurrent, previous, or future EM (Figure 4.3). However, none of the nuclei

predominantly contained any kind of the time-related neurons.

Neuronal activity related to visually guided saccades

There were 10/46 neurons (22%) whose activity was related to visually guided saccades

in the STN, 1/2 of the neurons were in the GP and 2/5 were in the SNr. A description

of neurons related to all EM kinematic parameters (POS, VELOC, ACCEL) is shown in

Table 4.3.

Table 4.3: Eye movement-related neurons detected in the scanning eye movement task and/or

visual guided saccade tasks.

STN (46 neurons) GP (2 neurons) SNr (5 neurons)

SEM VGS Both SEM VGS Both SEM VGS Both

EM-related neurons† 10 10 2 0 1 0 1 2 0

POS 4 9 0 0 0 0 0 2 0

VELOC 9 4 1 0 0 0 1 0 0

ACCEL 8 11 3 0 1 0 2 0 0

POS, VELOC 3 4 0 0 0 0 0 0 0

POS, ACCEL 2 4 0 0 0 0 0 0 0

VELOC, ACCEL 4 2 0 0 0 0 1 0 0

POS, VELOC, ACCEL 2 2 0 0 0 0 0 0 0

EM-related neurons – the number of eye movement-related neurons associated with at least

one kinematic parameter (†Bonferroni-corrected number of neurons for three kinematic param-

eters)identified from patients 16-19 which performed both the scanning eye movement task (SEM)

and visual guided saccade task (VGS) in the STN, GP and SNr. Neurons functionally associated

with one or more kinematic parameters (POS, VELOC, ACCEL) are reported for each nucleus

separately.

Eye movements in the scanning and saccadic tasks

As both the scanning EM and visually guided saccades tasks were executed by only four

patients, 19 relevant recording positions were analyzed. Neurons related to scanning
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Figure 4.4: Neuronal activity during the scanning movement task. Example of neuron related

(A, B) and unrelated (C, D) to eye movements based on correlation analysis of the

IFR and POS derived from the EOG. All eye movement-related neuronal popula-

tions in the STN, GP and SNr are plotted in figures E, F, and G. Figures A, C show

the IFR (blue) and EOG (red) pairs recorded during epochs of the task involving

both the black screen and pictures presentations. Figures B, D, E, F, G show the

dependency of the normalized POS derived from the EOG on the normalized, sorted

and binned amplitude of the IFR. While the IFR from a single neuron was used on

figures B and D; the IFR from all eye sensitive neurons were used on figures E, F,

and G for each nucleus separately. The amplitudes of the POS signals which corre-

lated negatively with the IFR signal were reversed. The number of signal samples

in each bin is expressed by different shades of grey in the diamond glyphs.
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EM were usually not activated in the visually guided saccades task and vice versa. Out

of 46 STN neurons found in these patients, ten neurons related to scanning EM, ten

neurons related to visually guided saccades and only two were activated during both

tasks. These neuronal populations seemed to be independent in each of the two tasks

as no evidence against the null hypothesis of independence was found (Fisher exact test,

p = 1.0) although the test had enough power to reject the null hypothesis had the number

of co-activated neurons been higher. In the GP and SNr, an insufficient number of neurons

were detected for proper assessment of independence in neuronal activity between the two

tasks. However, no GP or SNr neurons were co-activated during both tasks. Descriptive

analyses of the EM amplitude revealed that the maximal amplitude of the scanning EM

and visually guided saccades were nearly identical. As requested by the visually guided

task, patients executed large saccades, while small EM predominated in the scanning

task where large EM occurred only rarely. The amplitude of the typical EM made during

the visually guided saccades task was greater than during the scanning task (t = 5.7,

df = 18, p < 0.001). On average, the median saccade amplitude was 2.6 times larger in

the visually guided task than in the scanning EM task.

4.1.6 Discussion

We showed that nuclei of the basal ganglia (namely, STN, GP and SNr) contain neurons

whose firing rates correlated with eye movements during the scanning EM task. The

proportion of EM-related neurons was relatively high reaching 20-22% in each of those

nuclei (Table 4.2). Despite technical limitations due to the single-channel EOG recording

we found relationships between different kinematic parameters of the EM and the firing

rate in many neurons (Table 4.2, Figure 4.4). These findings point to the role of the basal

ganglia in the static and dynamic representation of the EM, a role of importance for the

maintenance of accuracy in goaldirected movements.

Eye movement activity in basal ganglia

Our single unit records from the STN showed that the proportion of EM-related neurons

was higher in its ventral part. A 20% share of oculomotor neurons in the ventral part

of the STN has already been noted in monkeys (Matsumura et al. 1991) and in humans

(Fawcett et al. 2004). However, those were solely neurons involved in saccadic EM. As

suggested by our results, the SNr and GP are probably as equally important for control
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of voluntary scanning EM as the STN. We consider this as one of the major outcomes of

our study because in both of these nuclei, the oculomotor activity had previously been

noted during EM only in animals (Basso et al. 2005).

Segregation and convergence in eye movement control

Scanning EM are an important tool in the exploration of complex visual stimuli (Toh

et al. 2011; Noton et al. 1971). Their trajectory is made up of a sequence of variably

large saccades and fixations with the visual field maintained for tens to hundreds of

milliseconds. As a result, a certain detail is steadily projected on the fovea. This is

followed by a saccade, a rapid voluntary movement, by means of which the fovea moves

on to a new point of interest while information from the other parts of the retina is being

concurrently assessed in search of another point of fixation. This distributed parallel

processing has been recently confirmed by the sequential scanning task (Trukenbrod et

al. 2012). As expected, in four patients where both tasks were used, the median amplitude

of scanning EM was smaller than that of the saccades in the visually guided task. At the

same time, the amplitudes of largest EM executed in both tasks were similar. This is in

agreement with previous studies (Wartburg et al. 2007).

From what structures and in which way the scanning movements are controlled is still

poorly understood. Since they are under voluntary control, they can be seen as a model

with internally generated movements – unlike reflexive saccades which are initiated by

external stimuli. Internally and externally triggered movements are generally subject to

different control and executive mechanisms (Jahanshahi et al. 1995; Wiese et al. 2004).

Hence, we assumed that both oculomotor systems are functionally segregated even at

basal ganglia level. This hypothesis proved to be correct because in a subgroup of pa-

tients engaged in tasks which involved scanning as well as visually guided saccades, we

observed that different EM-related neurons were involved in each of the tasks (Table

4.3). The principle of functional segregation in the control of voluntary and automatic

EM had already been previously implied in connection with the interpretation of deep

brain stimulation effects (Fawcett et al. 2009). Our results go even further in terms of

this specialization hierarchy. Apart from the segregation of populations of EM neurons

for scanning movements and visually guided saccades, we identified a higher degree of

segregation in all three nuclei neurons. In fact, some neurons responded exclusively to a

specific kinematic parameter of the EM associated with an increasing or decreasing firing

rate depending on whether or not the eye had reached a particular position, velocity or
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acceleration of movement (Figure 4.3).

Some of our results conform to the opposite principle – functional overlap of neu-

rons. A small percentage of the STN neurons showed the same neuronal activity in both

types of tasks (Table 4.3). The convergence theory is supported by our observation of

5–8% of STN neurons, whose activity correlated with several kinematic parameters si-

multaneously (Table 4.2, 4.3) suggesting the presence of universal oculomotor neurons.

This is in agreement with previous findings of STN neurons which become activated by

switching from automatic to voluntary controlled EM (Isoda et al. 2008). The functional

convergence is further supported by the STN deep brain stimulation joint effect on the

oculomotor and motor system of the neck and trunk in Parkinson’s disease, marked by

simultaneously improved orienting eye-head movements (Sauleau et al. 2008).

Time relation between EOG and neuronal activity

In our study, the eye-movement neurons in the STN, SNr or GP were not firing solely in a

particular phase of the scanning EM task. In all three nuclei, these neurons became active

200–400 ms before EM, in its course and also 200–400 ms after its onset. While STN

neuronal activity expressed in saccaderelated potentials already began 0.8–1.8 s before

the saccade, suggesting the involvement of nonspecific readiness non-motor mechanisms

(Fawcett et al. 2007), single unit neuronal STN and SNr activity culminated within 250

ms after the saccade onset suggesting monitoring or sensory function. Our results are

more in agreement with observations of the STN showing modified neuronal activity

before, during and after the saccade (Matsumura et al. 1991). This means that scanning

EM-related neurons of the STN could be involved in all the preparatory, executive and

monitoring phases of EM. This cannot be concluded for GP and SNr due to a relatively

low amount of data.

Limitations

As there were several limitations we should interpret our results with caution. The main

problem arose from the impossibility of using infra-red oculography or two-channel EOG

during surgery. While their use would definitely have improved the accuracy of the

kinematic parameters during EM, they would also have interfered with the established

implantation procedure. The use of singlechannel EOG, which failed to capture the full

extent of free-direction EM and yielded no more than EM projection into a onedimen-

sional space, is clearly a limitation which to some extent compromised the sensitivity
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of our study. Another limitation is connected with the assessment of neuronal activity

during the oculomotor tasks based on just correlation analysis. Neuronal firing does not

have to relate to EM activity alone but it may also reflect visual perception, planning,

visuo-spatial attention or other cognitive processing which coincide with oculomotor ac-

tivity. In addition, our results could be affected by the fact that our data was obtained

from patients with Parkinson’s disease in whom abnormal saccadic EM were repeatedly

reported (Pinkhardt et al. 2012; Antoniades et al. 2012). Whether any abnormalities

exist in Parkinson’s disease during scanning EM also is not clearly known since, with the

exception of one study which showed a deficit in trans-saccadic working memory (Hodg-

son 2002), no-one has systematically focused on scanpath or other parameters of complex

exploratory EM in these patients.

4.1.7 Conclusions

Employing spike sorting methods in our study was vital for showing that the STN,

SNr and GP contain neuronal populations related to scanning EM. Their representa-

tion reached about 20% in each of the three nuclei. Basal ganglia are thus not limited

to previously described saccade control and perhaps play a more general role in EM cir-

cuitry. Oculomotor systems responsible for the execution and monitoring of scanning

EM and visually guided saccades are mostly segregated as suggested by neurons involved

exclusively in one of two EM tasks or by neurons selectively co-activated in association

with a specific kinematic parameter. However, some functional overlap of the two oculo-

motor systems does exist, albeit confined to small groups of neurons conforming to the

complementary convergence principle. Further studies combining clinical and electro-

physiological approaches are needed to clarify the role of the basal ganglia in automatic

and voluntary oculomotor behavior. We should emphasize that the large representation

of basal ganglia neurons showing activity during all phases of the EM is also an argument

for taking them into account when designing new tasks using single unit microrecord-

ing. Many visual, ocular or motor experiments are potentially oculomotor in their nature

which may compromise results if the EM-related neuronal activity was not considered.
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4.2 Distinct Populations of Neurons Respond to

Emotional Valence and Arousal in the Human

Subthalamic Nucleus

This section describes the way of searching for basal ganglia neurons whose activity was

related to emotional valence and arousal. Spike sorting was vital to this work as it

allowed us an analysis of firing pattern of individual neurons necessary for confirming our

hypothesis.

Note: The content of this section has been published by Sieger et al. (2015b). This

work was a joint activity of a few authors, including the author of this thesis. How-

ever, the dominant contributor was Tomáš Sieger. We briefly sketch the work here for

completeness. Details can be found in the original article.

4.2.1 Introduction

Once the subthalamic nucleus was considered as an important regulator of motor func-

tion (Okun 2012; Alexander et al. 1991). However, the occurrence of postoperative

neuropsychiatric complications has expanded interest in the non-motor function of the

STN (Voon et al. 2006; Castrioto et al. 2014). Animal and human studies have already

demonstrated the additional functional role of the STN in emotional and motivational

processes (Schneider et al. 2003). In addition, recent fMRI studies found STN activation

in response to emotional stimuli in healthy subjects (Karama et al. 2011; Fruhholz et al.

2012). Therefore we hypothesized that emotional activity related neurons should exist

in the STN. However, participation of this nucleus in processing emotion has not been

investigated directly at the single-neuron level in humans before.

Single-neuron activity related to a priori defined emotional categories (e.g. positive

vs. negative) has already been detected in humans in a few brain regions such as in the

hippocampus, amygdala and in the prefrontal and subcallosal cortex (Kawasaki et al.

2005; Laxton et al. 2013; Wang et al. 2014).

It has been proposed that emotional behavior is organized along two psycho-physiological

dimensions: emotional valence, varying from negative to positive, and arousal, varying

from low to high (Russell 2003). The individual assessment of these dimensions is well cor-

related with somatic and autonomic measures of emotions (Lang et al. 1998). Contrary

to a priori categories they can better reflect emotional characteristics of the stimulus
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in an individual context and they take into account inter-individual differences based

on specific behavioral determinants, such as affective disposition and personality traits

(Hamann 2004).

We aimed to detect single-neuron firing pattern changes in the STN that were related

to emotional arousal and valence from the individual ratings of emotionally charged and

neutral pictures presented to PD patients undergoing DBS electrode implantation. It

has been shown that different features of tasks are linked to neuronal activity in different

frequency bands. While beta band oscillations (13-30Hz) restricted to the dorsolateral

(sensorimotor) part of the STN are linked mainly to motor functions and their alteration

in PD Degos et al. (2008) and Jenkinson et al. (2011), the gamma band oscillations (30-

100Hz) have perhaps more general meaning. Besides motor functions, they are modulated

by picture perception and early emotional arousal (Huebl et al. 2014). As we were

interested in affective content of visual processing, we focused on the alpha oscillations

(8-12Hz) because they repeatedly showed emotion-related behavior in local field potentials

(LFP) recordings (Kuhn et al. 2005; Brucke et al. 2007; Huebl et al. 2011). We used the

power spectra bands, which are well known in description of continuous LFP and EEG

signal that we adopted for analysis of the discrete single-neuron signal from the STN

during the task with affective pictures presentation.

In our study, we compared the individual alpha firing activity of single-neurons with

specific affective experience expressed in subjective ratings of the emotional valence and

arousal of each presented picture and we mapped these neurons into the STN model

(Morel 2007). A neuron was classified as affective, if its history-adjusted (and category-

adjusted) activity in the alpha band correlated with these ratings.

Studies on spatiotemporal dynamics of emotions (affective picture or facial emotion

processing) have observed early and late changes that have been attributed to different

stages of emotional processing (Bradley et al. 2006). Therefore for the analysis we split

arbitrarily the picture observation period lasting 2s in two time-windows. Within the

early one (0-500 ms) which may contain early emotional image confounded more by

perceptual and attentional processes (Guillory et al. 2014) we searched for activity related

to the affective picture presentation with contrast to the black screen periods preceding

each picture. For emotional activity we searched in the late window, starting 500 ms

after the visual stimulus onset, because it can be better related to emotional processing

after the conceptual knowledge of the presented emotion (represented here in individual

ratings of the emotional valence and arousal) is built (Adolphs 2002).
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4.2.2 Methods

Subjects

Thirteen PD patients (11 men, 2 women; mean (SD) age 55.5 (8.7), range 42-69 years;

mean PD duration 14.2 (5.6), range 9-30; mean motor score of the Unified Parkinson’s

Disease Rating Scale (UPDRS-III) in off-medication condition was 38.7 (11.4) range 18-

65) undergoing bilateral electrode implantation for the STN DBS due to motor fluctua-

tions and/or disabling dyskinesias were enrolled. Additionally, we included another four

patients undergoing bilateral electrode implantation for the globus pallidus interna DBS

due to PD to study the neuronal activity outside of the STN.

Affective task

Emotionally charged pictures of three categories were selected from the International

Affective Picture System (IAPS) (Lang et al. 1999). The pleasant category involved

pictures with erotic themes (people, romantic couples) and adventure (exotic landscapes,

animals, sports), the unpleasant category involved pictures of victims (mutilations) and

threats (human or animal attacks, aimed guns) and the neutral category comprised of

pictures of household objects, buildings, plants, neutral faces and scenes. Out of 144

unique pictures six different variants of the task containing 24 pictures were compiled

involving 8 pictures from each category. Pleasant and unpleasant pictures were selected

in a way so they represented emotional stimuli scaled from weak to strong according

to normative emotional valence and arousal. Additionally, the pictures were pseudo-

randomly organized so that no more than two pictures from one category followed. Each

picture was presented for 2 s and preceded by a black screen with a white cross in the

center for various durations (3500-5500 ms). Patients were instructed to fix their eyes

on the cross on the black screen and to simply watch the pictures presented and stay

motionless until the end of the task.

Surgery and intraoperative microrecording

DBS electrodes (model 3389, Medtronic, Minneapolis, MN) were implanted bilaterally

under local anesthesia as described in Section 2.4.

The central trajectory of the exploratory microelectrode was aimed at the STN center

near the anterior part of the red nucleus. The extracellular single-neuron activity was

mapped by the MER as described in Section 2.4.3. For analyses of eye movement-related
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neuronal activity a single-channel electrooculography was recorded (Sieger et al. 2013b).

In up to six regions with easily classifiable neuronal pattern specific for STN, the neuronal

activity was recorded during the affective task presentation with a unique variant of

affective pictures in each position. The number of positions depended on the time course

of the surgery and patient’s decision, clinical condition and compliance. Patients were

observed during the affective task and if there appeared to be any distracting discomfort

or sleepiness during surgery the experimental part was shortened or not performed. The

affective task was presented on a 17“-computer screen placed approximately 55 cm in front

of patient’s eyes who were lying motionless in the supine position as is customary for this

surgical procedure. The MER signals were acquired in 2 s epoch intervals recorded both

during the picture presentation (PIC epoch) and the black screen (FIX epoch), producing

a sequence of 48 MER epochs (FIX1, PIC1, ..., FIX24, PIC24) for a total duration of

96s.

Data analysis

WaveClus (Quiroga et al. 2004), an unsupervised spike detection and sorting tool, which

performed reasonably well on the single-channel MER (see Chapter 3), was used to extract

the series of action potentials of single-neurons from MER signals. Neurons related to eye

movements were excluded from further analysis (see Section 4.1). For other neurons, the

alpha band activity expressing the magnitude of 8-12Hz periodic increases and decreases

in the intensity of neuronal firing was computed as described below. The number of

action potentials in 5 ms segments was calculated and concatenated to form a discrete

signal representing the instantaneous intensity of firing. The signal was standardized to

zero mean and the fast Fourier transform was carried out applying the Hann window

of length 100 with 75% overlap. The alpha band (8-12 Hz) spectral component of the

signal was then extracted and the alpha band activity was defined as the mean power of

the alpha band spectral component, subjected to the square root transform to stabilize

variance.

To detect neurons with emotion-related activity, linear models of the alpha band

activity obtained during PIC epochs in the 500-2000 ms interval after the picture onset

were built. To find valence-related neurons, a model of the alpha band activity during

PIC epochs was built for each neuron in terms of the valence ratings. To find arousal-

related neurons, another model of the alpha band activity during PIC epochs was created

in terms of the arousal ratings including additional covariates to adjust for each apriori
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IAPS picture category (neutral, positive, negative). As strong serial correlation was

observed in the alpha band (see supplementary material), each model also included two

covariates representing the alpha band activity in the last FIX and PIC epoch preceding

the analyzed PIC epoch. A neuron was considered to be related to valence (arousal), if

the valence (arousal) covariate in the respective model was significant.

To detect neurons sensitive to visual stimuli, differences in the alpha band activity

between the FIX epoch and the 0-500 ms interval of the following PIC epoch were analyzed

using the paired t-test.

Data processing and analyses were performed in MATLAB (R2007b, The MathWorks,

Natick, MA) and R statistical software (84).

4.2.3 Results

We recorded single-neuron activity in the STN from 14 PD patients intraoperatively

performing an affective task consisting of a presentation with pleasant, unpleasant and

neutral pictures displayed for 2000ms preceded by a black screen with a white fixating

cross presented for 3500-5500 ms. We acquired 97 microelectrode recordings obtained

from 47 sites in the STN where 125 neurons were totally detected. The activity of 35

neurons was related to eye movements and were excluded from further analysis. The

remaining 90 neurons (69 in the left hemisphere) were searched for early perceptual and

emotional characteristics. Normative and postoperatively recorded individual valence

and arousal ratings for each picture category are presented in Table 4.4.

The alpha band activity of 15 (17%) out of 90 neurons during late period of picture

presentation (500-2000 ms post-stimulus-onset) epochs was related to the emotional con-

tent of the presented pictures expressed in individual valence or arousal ratings (p < 0.05,

uncorrected): the activity of 6 (7%) neurons correlated with the valence ratings (4 neu-

rons negatively, 2 neurons positively – Figure 4.5); the activity of other 9 (10%) neurons

correlated with the arousal ratings (7 neurons positively, 2 neurons negatively – Figure

4.6). The number of these 15 emotion-related neurons was greater than expected by

chance - (test in binomial distribution with false positive rate of 0.1, P < 0.05). Figure

S1 shows an explanation on how the alpha band activity was derived in one selected

neuron associated with the arousal rating.

In addition, 13 (14%) neurons significantly changed the alpha band activity between

the black screen (duration 2000 ms) and the early picture presentation (window 0-500 ms

post-stimulus-onset)(p¡0.05). Only 1 neuron demonstrated an alpha band activity change
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Figure 4.5: The relationship of the single-neuron alpha band activity during emotional picture

presentation (in the interval of 500-2000 ms after picture onset) on the individual

valence ratings of the presented pictures in 6 neurons of the subthalamic nucleus

in patients with Parkinson’s disease, for which the relationship was significant (as

identified by linear models, see Section 4.2.2). The horizontal axis shows the indi-

vidual ratings of the pictures’ valence varying from 1 (negative) to 9 (positive). The

vertical axis shows the alpha band neuronal activity adjusted for the past activ-

ity. For visualization purposes, correlation coefficients and their significances were

included.
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Figure 4.6: The relationship of the single-neuron alpha band activity during emotional picture

presentation (in the interval of 500-2000 ms after picture onset) on the individual

arousal ratings of the presented pictures in 9 neurons of the subthalamic nucleus in

patients with Parkinson’s disease, for which the dependency was significant (as iden-

tified by linear models, see Section 4.2.2). The horizontal axis shows the individual

ratings of the pictures’ arousal varying from 1 (low) to 9 (high). The vertical axis

shows the alpha band neuronal activity adjusted for the past activity and picture

categories. For visualization purposes, correlation coefficients and their significances

were included.



4.2. POPULATIONS OF NEURONS RESPOND TO EMOTIONAL VALENCE 55

Table 4.4: Patients’ and normative ratings of emotional stimuli used.

Category Patients’ rating Normative rating

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

valence intesity valence intensity

Negative 3.1 (1.6) 5.1 (2.6) 3.4 (0.7) 5.2 (1.1)

Neutral 5.2 (1.0) 2.6 (1.7) 5.0 (0.2) 2.8 (0.3)

Positive 6.0 (1.3) 4.0 (2.1) 6.6 (0.8) 5.2 (1.1)

Patients’ ratings represent subjective ratings assessed one month after

bilateral insertion of the permanent electrode into subthalamic nucleus

after overnight withdrawal of levodopa in DBS OFF condition. Nor-

mative ratings are those available from International Affective Picture

System (IAPS) (Lang et al. 1999).

in both the early and late time windows.

In post-hoc analyses, we searched for emotion-related neuronal activity in other fre-

quency bands. Four neurons were related to arousal in the beta band, but their number

was insignificant (binomial test P=0.98). In the gamma band, seven neurons were found

to be related to arousal. This number was not significant (binomial test P = 0.81). No

overlaps of beta and gamma emotion-related neurons with alpha emotion-related neurons

were observed.

To support specificity of emotion-related neurons located in the STN, we analyzed the

activity of 32 other eye movement-unrelated neurons in other basal ganglia: 18 neurons

from the substantia nigra pars reticulata and 14 neurons from the globus pallidus. None

of these neurons were found to be related to individual valence or arousal ratings of the

presented pictures.

4.2.4 Discussion

Using perioperative microrecordings from the subthalamic nucleus of patients with Parkin-

son’s disease, we analyzed changes in the firing pattern of single-neurons in relationship to

visually presented emotional material and found a relatively large proportion of neurons

with activity related to emotional and early perceptual processing. In addition, we showed

how easy it is to transform the single-neuron action potentials to a pseudo-continuous
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signal to perform spectral analysis typical for conventional electroencephalography. Us-

ing this approach we documented the impact of a visual emotional task on single-neuron

activity in the alpha band similar to those previously shown with local field potentials

(Kuhn et al. 2005).

Affective neurons in the STN

Seventeen percent of the STN neurons whose activity in the alpha band was analyzed

in our study responded to emotional stimuli. We found different neurons responding to

changes in emotional valence or in arousal ratings. As for the character of changes in

neuronal activity, both the increase or decrease were observed in either population of neu-

rons suggesting a further level of specialization within each emotional dimension. There

is a large body of evidence suggesting that behavioral responses to emotional valence and

arousal are mediated by different brain circuits. The independence of valence and arousal

have already been demonstrated for a variety of physiological reactions (Cacioppo et al.

1986; Vrana et al. 1988), or in affect-related cognitive processing (Kuhbandner et al. 2011).

Functional imaging and animal studies have also showed their functional segregation as

several brain regions have been associated with affective valence (the orbitofrontal cortex,

the mesolimbic dopamine system) while the others were associated with affective arousal

(the amygdala, the mesencephalic reticular activating system) (Faure et al. 2008). How-

ever there is also evidence that the two emotional dimensions are not fully independent

(Bradley et al. 2006) and that some subcortical regions may code the overall emotional

value of a stimulus (Winston 2005).

The neuronal activity in the STN that we observed during the late window (500-

2000 ms) may reflect the formation of conceptual knowledge related to emotional valence

and arousal as this is in line with the late neuronal response (625-1500 ms) related to

different valence of stimuli described already in amygdala (Wang et al. 2014). We may

speculate that the information represented in ratings of emotional valence and arousal in

the late time window depends on processes that involve the orbitofrontal and ventromedial

prefrontal cortex which provide significant input to the STN and plays a major role in

stimulus subjective valuation, representation of hedonic pleasure and value-based decision

making (Roy et al. 2012). Moreover, the previous passage of the emotional information

from the ventral basal ganglia involving input from amygdala to the dorsal basal ganglia

including the dorsal portion of the STN can also be a reason for late emotional activity

(Humphries et al. 2010).
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As expected, we did not find a statistically sufficient number of neurons responding

to the emotional valence and arousal in the beta and gamma frequency bands. This

corresponds to negative results of previous LFP studies (Huebl et al. 2011) and further

corroborate functional specialization of different frequencies within the STN. In addition,

no neurons responding to emotional content were found in the globus pallidus interna and

substantia nigra pars reticulata, suggesting that finding affective neurons was specific to

the STN, and can be explained by its central position in the in the cortico-basal ganglia

cirucuit (Peron et al. 2013) and its connections to both the cortical and the subcortical

components of the reward and limbic circuits (Ghashghaei et al. 2007; Winter et al. 2007).

Perceptual neurons in the STN

Fourteen percent of the subthalamic neurons responded in the alpha band firing activity

during the early-time window (0-500 ms) suggesting their connection with perceptual

processing. Neuronal short-latency activity changes related to visual perception have

already been found in animal STN (Matsumura et al. 1991) and confirmed in humans by

distortion of visual evoked potentials due to STN DBS (Jech et al. 2006). However, the

difference in neural activity between fixation and picture viewing periods is not necessary

evidence of visual processing since it may also reflect other processes such as an engage-

ment of selective attention, a shift from gaze fixation to scanning eye movements or other

cognitive functions intervening between vision and action – memory involvement, target

selection, saccade choice or content valuation (Shires et al. 2010). On the other hand,

the neuronal activity in the early time-window could also be affected by early emotional

and motivational activity. The STN is anatomically connected to subcortical centres that

contain visually responsive neurons (superior colliculus, pulvinar, amygdala, substantia

innominate, nucleus accumbens) involved in the visual encoding of emotional stimuli

(Tamietto et al. 2010). As the visual, attentional and emotional systems are intensively

interconnected, one might expect that some proportion of the affective neurons would

also respond in the early time window. Nevertheless, here only a one of the neurons

was activated during both early and late-time window. Therefore, we can speculate that

distinct populations of neurons are involved at different stages of processing of the visual

emotional material within the dorsolateral part of the STN.



58 CHAPTER 4. APPLICATION RESULTS OF SPIKE SORTING

Limitations

There are several factors that could affect our results and reduce the inferences that can

be drawn with regards to physiology of emotional processing and the role of the STN in

the limbic circuits. One limitation is that the study was conducted with PD patients, who

are known to have a widespread central nervous system pathology (Braak et al. 2002) and

experience problems in emotional processing (Peron et al. 2013). Therefore the number

of neurons responding to emotional stimuli in the STN might be different than in healthy

subjects. Their number is rather low but comparable to former relevant single-neuron

studies on emotion in humans (15, 18). Another fact that might have contributed to the

relatively low number of neurons is that our study was limited to the routine trajectory of

intraoperative microrecording exploration targeting the lateral sensorimotor part the STN

that has shown less reactivity to emotional stimuli than the ventromedial part (Eitan et

al. 2013). Moreover, emotional pictures were selected according to normative ratings that

were acquired in a healthy, younger population with a culturally different background.

Finally, some our PD patients rated the stimuli less variable along the dimensions of

emotional valence and arousal making the mathematical model less sensitive (Lang et al.

1999).

4.2.5 Conclusion

Early-perceptual and late-emotional single-neuron activity in the human STN corrobo-

rates its participation in non-motor circuits. The STN was previously shown to partic-

ipate in different components of emotional processing such as emotion recognition and

subjective feelings (Castrioto et al. 2014). We confirm the importance of the STN as a

hub within the limbic circuitry involved in both emotional valence and arousal processing

as in two functionally and spatially segregated systems. This together with finding several

neurons involved separately in perceptual and emotional processing supports the complex

role of the STN, previously only known using local field potentials recording. Usage of

spike sorting methods was thus vital to uncover results extending our knowledge on the

STN role in limbic circuits and contributing to understanding of affective disturbances

seen in Parkinson’s disease patients treated with subthalamic stimulation.
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4.3 Relation between UPDRS scores and statistical

characteristics of microelectrode recordings

from STN

4.3.1 Introduction

The UPDRS (see Section 2.3) is a standardized measure of patients’ abilities to perform

basic motor skills, as well as the effect of the disease on activities of daily living and

mental abilities. Although the UPDRS is standardized, it is still only a subjective measure

depending on the experience and skills of the examiner.

An objective UPDRS analysis would be a valuable contribution as a decision support

tool to help examiners. Additionally, it might reveal reveal which parts of STN are

responsible for which symptoms of PD and thus help creating a function map of STN

and its surroundings. Another possible outcome is to aid examiners to quickly adapt the

implanted DBS device parameters to its bearer, saving the patient’s and examiner’s time

and suppressing majority of the PD symptoms shortly after the DBS surgery.

Several studies has already succeeded in finding relations between synchronization of

basal ganglia neurons and motor disorders (Gatev et al. 2006; Hammond et al. 2007).

Analysis of local field potentials (LFP) recorded from stimulation macroelectrode inserted

into STN inferred that oscillatory synchronization in patients with PD tends to occur at

frequencies of a beta band (13-35Hz) (Hammond et al. 2007). According to Kühn et al.

(2008), beta synchronization of STN is significantly reduced during high-frequency DBS,

resulting in major improvement in PD symptoms. Therefore the LFP beta activity in

STN seems to be tightly related to the severity of motor PD symptoms (Little et al.

2012). As LFP originates locally in synchronized local neuronal activity in STN (Brown

et al. 2005), we were interested in looking for a relation between oscillatory activity of

STN neurons and PD symptoms (characterized by UPDRS scores).

However the processing of single-unit recordings conveys many challenges itself as it

is not known whether all of the neurons in STN have influence on UPDRS score or only

some of them – as discussed in Section 4.1 and 4.2 where activity of few neurons in STN

actually related to eye scanning movements and emotions.
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4.3.2 Methodology

We used microelectrode recordings from deep brain stimulation surgery of 53 Parkinson’s

disease patients (21 men, 32 women; mean age: 56.8, SD 4.2, range 42–64 years; mean

PD duration: 13.45, SD 2.7, range 7–23 years; Hoehn-Yahr stage 2-4; mean motor score

of the Unified Parkinsons Disease Rating scale – UPDRS III in OFF condition: mean

25.37, SD 8.3, range 10–46). All of them were suffering from motor fluctuations and/or

disabling dyskinesias and were indicated for treatment with deep brain stimulation due

to motor fluctuations and dyskinesias.

Before the surgery, UPDRS evaluation form (see Section 2.3) was filled for each patient

by an experience examiner. During the examination (as well as surgery) patients were in

an OFF condition (i.e. abstaining from PD medications). Using the UPDRS evaluation,

for each patient a set of UPDRS subscores were calculated according to Sharott et al.

(2014):

• rigidityipsi – Limb rigidity calculated as a sum of UPDRS III sub-item 22 (only

arm and leg ipsilateral to the side of recording).

• rigiditycontra – Limb rigidity calculated as a sum of UPDRS III sub-item 22 (only

arm and leg contralateral to the side of recording).

• bradykinesiaipsi – Bradykinesia calculated as a sum of UPDRS III sub-items 23-26

(arm and leg ipsilateral to the side of recording).

• bradykinesiacontra – Bradykinesia calculated as a sum of UPDRS III sub-items

23-26 (arm and leg contralateral to the side of recording).

• tremoripsi – Tremor calculated as a sum of UPDRS III sub-items 20-21 (only arm

and leg ipsilateral to to side of recording).

• tremorcontra – Tremor calculated as a sum of UPDRS III sub-items 20-21 (only arm

and leg contralateral to to side of recording).

Microelectrode recordings were acquired and preprocessed using five parylenecoated

tungsten microelectrodes in a “Ben-gun” configuration as described in Section 2.4.3.

Only signals from regions annotated by a surgeon as STN were used, as these recordings

should contain signals from neurons that were then stimulated by DBS and thus should be

partly responsible for the patient’s state. All signals were visually inspected for artificial

artifacts. Artifacts were remove by either shortening the recorded signal (to minimum of
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5 seconds) or removing it altogether – up to 21 artifact-free signals per patient (912 in

total) were recorded; each signal 5-10 seconds long (mean duration: 9.1s, SD 1.6s).

As our signals were much shorter than those used by Sharott et al. (2014), we ex-

tracted and analyzed features from the raw MER signals (i.e. the aggregated neuronal

activity, omitting the spike sorting step) first. Subsequently, spike detection and sorting

was employed to discern individual neurons extracting features from their activity, thus

possibly revealing the relation even if the affecting neurons were sparse in the STN.

Only features that were manually selected during data exploration stage, were used

as noted in Section 4.3.2 and 4.3.2.

Raw MER signal features

Features extracted from the 24kHz sampled signal are refered to as raw MER signal

features. Spectral parameters of recordings were evaluated using fast Fourier transform

as described previously (Halliday et al., 1995) using 0.5 Hz frequency bins. Following

power spectra features were selected for analysis:

• psdsubbeta – sum of power spectral density (PSD) of the signal in range 4–13Hz

• psdbeta – sum of PSD of the signal in range 13–35Hz

• psdgamma – sum of PSD of the signal in range 35–70Hz

As the PSD spectra vary a lot between individual recording positions not to mention

patients (see Figure 4.7), Kühn et al. (2005) encouraged use of a normalized version of

the features:

• psdrel.subbeta – sum of PSD of the signal in range 4–13Hz divided by sum of PSD in

range 4–45Hz

• psdrel.beta – sum of PSD of the signal in range 13-35Hz divided by sum of PSD in

range 4–45Hz

• psdrel.gamma – sum of PSD of the signal in range 35-70Hz divided by sum of PSD

in range 4–100Hz
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Figure 4.7: Mean PSD spectrum of 100 MER signals from different

patients (blue line) with bootstrapped confidence interval

(red line, 5%-95%).

Neuronal spike train features

As the recorded signals are a sum of coordinated discharge of neurons in the area, an

assumption is made that by analyzing neuronal firing pattern one can identify a neuron

involved in a specific motor function (as shown in Figure 4.1). To analyze behavior

of single neurons, WaveClus (Quiroga et al. 2004) a reasonably well performing spike

detection and sorting tool (see Chapter 3) was used to extract firing patterns from the

recordings.

Section 4.1 and 4.2 confirmed that there are neurons in STN related to eye movement

and emotion processing. We wanted to remove such neurons from this study. However,

that would lead to omitting a large amount of data recorded from patients that did not

participate in the beforementioned trials. We decided to use all the data recorded and in

order to cope with the possible bias caused by neurons not related to PD symptoms, a

grouping characteristic was used.

Neurons were assigned into four groups (none, subbeta, beta and gamma) based on

the PSD spectrum of their firing pattern as described in Sharott et al. (2014). Each

neuronal spike train was converted to zero-one signal and PSD spectrum with bin size of

0.5Hz was calculated. Then the spike train was randomly reshuffled 1000 times creating

a bootstrap set to estimate 5%-95% confidence interval for the PSD spectrum. If three

consecutive bins exceeded the 95% quantile, neuron was assigned to the group according
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to the frequency of beforementioned bins (i.e. 4-13Hz for subbeta, 13-35Hz for beta, 35-

70Hz for gamma and none for no bins) indicating in which frequency range they oscillate.

For each patient a percentage of neurons belonging to each individual oscillatory group

divided by total number of neurons for that patient was calculated and used as features:

• neuronsubbeta% – sum of neurons in subbeta oscillation group divided by total number

of neurons of the patient

• neuronbeta% – sum of neurons in beta oscillation group divided by total number of

neurons of the patient

• neurongamma% – sum of neurons in gamma oscillation group divided by total num-

ber of neurons of the patient

Assuming that the percentage of neurons that were not related to PD symptoms would

be approximatelly the same for all patients the variation ofneuronsubbeta%, neuronbeta%

and neurongamma% should be only attributed to variation in PD symptoms.

Statistical methods

For each MER, both raw MER signal and neuronal spike train features were calculated.

As several (up to 21) signals were recorded for each patient (and thus UPDRS subscores),

convetional correlation and linear regression models cannot be used to analyze relation-

ship between the calculated features and UPDRS subscores. Instead linear mixed–effects

models (McLean et al. 1991) were employed, to compensate for multiple recordings per

patient. Visual inspection of residual plots was done for each linear mixed-effects model

to detect any obvious deviations from homoscedasticity or normality. P-values were ob-

tained by likelihood ratio tests of the full model with the effect in question against the

model without the effect in question.

As oscillatory percentage group features (neuronsubbeta%, neuronbeta%, neurongamma%)

had already the same magnitude as number of patients, mixed-effect models were not

needed to determine their relation to UPDRS subscores. In that case the relations were

examined using Pearson’s correlation (if both variables were normally distributed) – in

the same way as in Sharott et al. (2014).

All calculations were performed using Matlab R2013b (Mathworks, Natick, MA) soft-

ware. All statistical hypotheses and linear mixed–effects analysis were tested at sig-

nificance level 0.05 using R software (2.14.1, R Foundation for Statistical Computing,

Vienna, Austria) with corrections for multiple comparisons.
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4.3.3 Results and Discussion

Firstly we tested a hypothesis that overall beta activity in STN is dependent on a position

in STN, as Weinberger et al. (2006) shown that e.g. the dorsal part of the STN has

more beta activity than the rest of STN. Therefore, we performed a linear mixed effects

analysis of the relationship between psdrel.beta feature and depthrelative (indicated distance

in millimeters of recorded position from the bottom of STN). As fixed effects, we entered

the depthrelative into the model. As a random effect, we had intercepts for subjects,

as well as by-subject random slopes for the effect of depthrelative. Visual inspection of

residual plots did not reveal any obvious deviations from homoscedasticity or normality.

The found model showed that depthrelative affected psdrel.beta (χ2 = 15.29, Df = 1,

p < 0.0001), increasing it by 0.008± 0.002 (standard error), confirming that psdrel.beta is

highest in the dorsal of STN. Data points along with linear regression model (i.e. omitting

the random effect) are shown on Figure 4.8.

Based on the findings, we decided to add depthrelative as a fixed effect to the rest of

the mixed-effects models.
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Figure 4.8: Relation between psdrel.beta feature and depthrelative with

linear regression line fitted.
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UPDRS subscores in relation to raw MER signal features

We performed a linear mixed effects analysis of the relationship between one of the

three raw MER signal features (psdrel.subbeta, psdrel.beta and psdrel.gamma) and one of the

six UPDRS subscores (rigidityipsi, rigiditycontra, bradykinesiaipsi, bradykinesiacontra,

tremoripsi, tremorcontra). As fixed effects, we entered the appropriate UPDRS subscore

and depthrelative (without interaction term) into the model. As random effects, we had

intercepts for subjects, as well as by-subject random slopes for the effect of depthrelative.

Visual inspection of residual plots did not reveal any obvious deviations from homoscedas-

ticity or normality.

Table 4.5 summarizes the results. We found that psdrel.beta was affected by both

tremorcontra (χ2 = 34.09, Df = 1, p < 0.0001; decrease of 0.028± 0.005), and tremoripsi

(χ2 = 28.81, Df = 1, p < 0.0001; increase of 0.026± 0.005). The analysis further showed

that psdrel.beta was also affected by both bradykinesiacontra (χ2 = 34.21, Df = 1, p <

0.0001; increase of 0.021± 0.003) and bradykinesiaipsi (χ2 = 32.89, Df = 1, p < 0.0001;

decrease of 0.020 ± 0.003). P-values were corrected using Bonferroni corrections for 18

comparisons. Figure 4.9 shows data points along with linear regression model of the three

beforementioned mixed-effects models.

Table 4.5: P-values of tested mixed-effects models.

UPDRS subscore psdrel.subbeta psdrel.beta psdrel.gamma

rigidityipsi 0.135 0.042 0.455

rigiditycontra 0.135 0.319 0.858

tremoripsi 0.045 <0.001 0.957

tremorcontra 0.025 <0.001 0.621

bradykinesiaipsi 0.363 <0.001 0.320

bradykinesiacontra 0.729 <0.001 0.680

Highlighted relations were significant at level 0.05 after perform-

ing Bonferroni corrections for 18 trials (p < 0.0027).

Positive bradykinesiacontra subscore effect on psdrel.beta is in agreement with findings

in Kühn et al. (2008), as according to our results beta activity increases for patients with

worse bradykinesia symptoms. Slightly weaker but the same effect of bradykinesiaipsi

subscore on psdrel.beta is not surprising as Tabbal et al. (2008) confirmed both ipsilateral

and contralateral effects of DBS on bradykinesia and rigidity symptoms in patients with
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Figure 4.9: Relation between psdrel.beta feature and tremorcontra,

tremoripsi, bradykinesiacontra, bradykinesiaipsi with lin-

ear regression line fitted
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PD.

Unfortunately, no significant relations with UPDRS subscores were found in subbeta

band, although according to Contarino et al. (2012) subbeta band should be correlated

with tremor. However, tremorcontra negative effect on psdrel.beta might be an indication

of such relation, as PSD of patients with more severe tremor symptoms should have more

power in subbeta band, which effectively lowers power in beta band.

Gamma band also did not show any significant relations with any of UPDRS sub-

scores, although Weinberger et al. (2009) stated that gamma oscillatory activity in STN

is pronounced in tremor patients with PD to the detriment of beta activity.

UPDRS subscores in relation to neuronal spike train features

Previous section confirmed that our data were coherent with at least two PD symptoms.

In order to find such relations also by employing features extracted from neurons, we

calculated correlations between the feature/subscore pairs. As we wanted to verify the

formed finding of Sharott et al. (2014), while using shorter signals we did not correct for

the multiple comparisons performed.

As shown in Table 4.6, only correlations between neuronbeta% and rigidityipsi (r =

0.22, p < 0.05), neurongamma% and bradykinipsi (r = −0.26, p < 0.05) and neurongamma%

and bradykincontra (r = −0.23, p < 0.05) were found significant (see also Figure 4.10).

Table 4.6: Correlation coefficients of analyzed relations between neuron

spike train features and UPDRS subscores.

UPDRS subscore neuronsubbeta% neuronbeta% neurongamma%

rigidityipsi 0.04 0.22* -0.11

rigiditycontra 0.03 0.07 -0.21

bradykinesiaipsi -0.05 0.05 -0.26*

bradykinesiacontra -0.05 0.11 -0.23*

tremoripsi 0.05 -0.11 -0.05

tremorcontra 0.00 -0.04 -0.14

* denotes correlation significant at level 0.05.

Positive correlation between neuronbeta% and rigidityipsi (along with the relation be-

tween beta band and bradykinesia in previous section) matches our understanding of how

neuron beta oscillation (and synchronization of similarly oscillating neuron) affects motor
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Figure 4.10: Relations between neuronbeta% feature and

rigidityipsi (r = 0.22, p = 0.05); neurongamma%

and bradykinesiacontra (r = 0.23, p = 0.027) and

bradykinesiaipsi (r = 0.26, p = 0.015) with linear

regression line fitted.
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functions of patients with PD. Interestingly, relation between beta band and rigidityipsi

was not significant when using raw MER signal features, while neuronal features did dis-

cern it. This demontrates the need for transforming the neuronal recording using spike

sorting methods in order to unveil the relevant information hidden in the aggreagated

neuronal activity.

On the other hand, relation between tremor and raw MER signal features was not

detected when using neuronal features, which supports our theory that this link was only

indirect due to increase in beta band at the same time. Furthermore, correlation between

bradykinesia and neuronbeta% was not found as well.

Finding a negative correlation between bradykinesia and neurongamma% was con-

sistent with hypothesis of Schoffelen et al. (2005) that gamma oscillations facilitate a

readiness to move and thus higher number of gamma oscillating neurons should lead to

lower bradykinesia score.

Considering the other correlations described in Sharott et al. (2014) were insignificant,

we assumed that the length and possibly signal-to-noise ratio of our MER data was the

culprit. Sharott et al. (2014) was using at least 45 second long signals and discarded

initial 5–15 s part, which was not possible in our case as our signals were only 5-10 s

long. This could have an adverse effect on spike sorting as well as assigning neurons to

oscillatory groups.

4.3.4 Conclusion

In pursuit of objectivization the UPDRS in patients with PD, we analyzed 912 signals

recorded using microlectrodes during DBS surgery from STN and compared them with

UPDRS scores of the patients undergoing the implantation.

Two sets of features were extracted from the recorded signals – one set was calculated

from summary neuronal activity recorded on the microelectrode (raw MER signal fea-

tures) and the other set was computed from activity of individual neurons (neuronal spike

train features) employing WaveClus (Quiroga et al. 2004) spike detection and sorting.

Raw MER signal feature psdrel.beta was positively correlated to bradykinesia subscore,

confirming findings of Kühn et al. (2008) that power of beta activity increases with wors-

ening of rigidity and bradykinesia symptoms. This hypothesis was further affirmed by

finding a significant positive correlation between neuronal feature neuronbeta% and rigidity

subscore.

Bradykinesia was also significantly negatively correlated with neurongamma% neuronal
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feature, supporting conclusion of Schoffelen et al. (2005) that higher gamma activity in

STN indicates weaker rigidity and bradykinesia symptoms.

Contrary to our expectations and findings of Contarino et al. (2012), psdrel.subbeta

activity was not directly linked to severity of tremor symptoms, but tremorcontra negative

relation to psdrel.beta lead us to a hypothesis that psdrel.subbeta is linked to tremor indirectly

(i.e. by lowering psdrel.beta).

We thus confirmed that severity of PD symptoms (i.e. UPDRS scores) has its re-

flection in firing pattern of neurons (individual or summed together). However further

research needs to be done in order to ascertain whether the neuronal activity in STN is

the cause of PD symptoms or if it is the other way around.



Chapter 5

Summary and perspective

We focused on applying spike sorting methods to data recorded from patients with Parkin-

son’s disease that are treated with deep brain stimulation, to improve our understanding

of the human brain in general and the mechanism of the deep brain stimulation in par-

ticular.

In Chapter 3, we dealt with problem of the transformation of raw data from extra-

cellular microelectrode into spiking activity of individual neurons (i.e. spike sorting).

Classifying neuronal action potentials is a technical challenge that is a prerequisite for

studying many types of brain function. Accurate detection of the activity of individual

neurons can be difficult to achieve due to the large amount of background noise and

the complexity in distinguishing the action potentials of one neuron from others. This

capability is especially important for experimental investigations of neural codes that use

spike timing.

We have performed a performance evaluation of three widely-used publicly-available

spike sorting algorithms (WaveClus, KlustaKwik, OSort) with regard to their parame-

ter settings, using custom generated single-channel artificial data (available online) with

different noise levels and different number of neurons. The best spike sorting method

(WaveClus) was used throughout the thesis for discerning individual neurons from our

MER data.

Sections in Chapter 4 built on top of that we performed various tasks in neuroscientific

field that involved statistical analyzes of microelectrode data and individual neuronal

activity and resulted in our better understanding of basal ganglia function.

In Section 4.1, we experimentally verified that there are neurons in basal ganglia par-

ticipating in scanning EM. We took advantage of intraoperative microelectrode recordings

of single neuronal activity routinely used to identify the basal ganglia based on specific

71
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electrophysiological pattern. Approx. 20% of neurons with activity related to eye move-

ments were identified.

Section 4.2 presented the process of searching for emotion-related neurons in the sub-

thalamic nucleus. 17% of neurons with activity related to processing emotional stimuli

or responding to different types of emotional stimuli were found in basal ganglia, con-

firming the importance of the STN as a hub within the limbic circuitry involved in both

emotional valence and arousal processing. This together with finding several neurons

involved separately in perceptual and emotional processing supports the complex role of

the STN. Our results thus extended our knowledge on the STN role in limbic circuits and

contribute to understanding of affective disturbances seen in Parkinson’s disease patients

treated with DBS.

In Section 4.3, we found relations among severity of PD symptoms (described as UP-

DRS scores) and statistical characteristics of MER data and individual neuronal activity

in STN. This objective analysis of UPDRS is welcomed by examiners to support their

decision process as well as it contributes to specification of particular STN regions and

specific PD symptoms and thus help creating a function map of STN and its surround-

ings. We have found several significant relations between severity of Parkinson’s disease

symptoms and both raw signal and neuronal features. Namely the relation between beta

band and bradykinesia and between neuronal beta oscillations and rigidity.

5.1 Thesis Achievements

Scientific contribution of this Thesis is represented by the following achievements:

• Performance of the state-of-the-art spike sorting methods was evaluated, finding

the best performing method and its parameters set that is used for transforming

all microelectrode signals used in this thesis to spike trains of individual neurons.

This evaluation was published (Wild et al. 2012b) in the Journal of Neuroscience

Methods (2012 IF 2.484), WoS 14 citations (as of 17.8.2015).

• A new method for generation of artificial signals was devised to produce data with

ground truth with similar properties as the signals recorded from basal ganglia.

The method was implemented in order to generate signals necessary for objective

evaluation of spike sorting methods.
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• An experimental verification showed that approx. 20% of neurons with activity

related to eye movements were identified in basal ganglia. This is the first study to

investigate activity of individual basal ganglia neurons related to eye movements in

human subjects. These results were published (Sieger et al. 2013b) in PLoS ONE

(2012 IF 3.73).

• An experimental verification showed that 17% of neurons with activity related to

processing emotional stimuli or responding to different types of emotional stimuli

were found in basal ganglia. This is the first study proving existence of individ-

ual neurons in the human STN that are involved in higher-level representation of

emotions. These results were published (Sieger et al. 2015b) in Proceedings of the

National Academy of Sciences (2014 IF 9.67).

• Several new relationships were found among variables describing severity of Parkin-

son’s disease symptoms and statistical characteristics of microelectrode records and

individual neuron firing patterns. A publication presenting these results is currently

under preparation.
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Jǐŕı Wild

http://www.sciencedirect.com/science/journal/13882457/122/supp/S1
http://www.sciencedirect.com/science/journal/13882457/122/supp/S1


References

Adamos, D., E. Kosmidis, and K. Theophilidis (2008). “Performance evaluation of PCA-

based spike sorting algorithms”. In: Comput Meth Prog Bio 91, pp. 232–44.

Adamos, D., N. Laskaris, E. Kosmidise, and G. Theophilidis (2010). “NASS: An empirical

approach to spike sorting with overlap resolution based on a hybrid noise-assisted

methodology”. In: J Neurosci Meth 190.1, pp. 129–42.

Adolphs, R. (2002). “Neural systems for recognizing emotion”. In: Current Opinion in

Neurobiology 12.2, pp. 169–177. doi: 10.1016/s0959-4388(02)00301-x.

Alexander, G. E., M. D. Crutcher, and M. R. DeLong (1991). “Chapter 6 Basal ganglia-

thalamocortical circuits: Parallel substrates for motor, oculomotor, prefrontal and

limbic functions”. In: Progress in Brain Research. Elsevier BV, pp. 119–146. doi:

10.1016/s0079-6123(08)62678-3.

Antoniades, C. A., P. Buttery, J. J. FitzGerald, R. A. Barker, R. H. S. Carpenter, and C.

Watts (2012). “Deep Brain Stimulation: Eye Movements Reveal Anomalous Effects

of Electrode Placement and Stimulation”. In: PLoS ONE 7.3. Ed. by I. Sugihara,

e32830. doi: 10.1371/journal.pone.0032830.

Araujo, C., E. Kowler, and M. Pavel (2001). “Eye movements during visual search: the

costs of choosing the optimal path”. In: Vision Research 41.25-26, pp. 3613–3625.

doi: 10.1016/s0042-6989(01)00196-1.

Baltuch, G. H. and M. B. Stern (2007). Deep brain stimulation for parkinson’s disease.

Parkinson’s Disease Foundation.

Basso, M. A., J. J. Pokorny, and P. Liu (2005). “Activity of substantia nigra pars reticu-

lata neurons during smooth pursuit eye movements in monkeys”. In: European Journal

of Neuroscience 22.2, pp. 448–464. doi: 10.1111/j.1460-9568.2005.04215.x.

Bergman, H., T. Wichmann, and M. R. DeLong (1990). “Reversal of experimental parkin-

sonism by lesions of the subthalamic nucleus”. In: Science 249.4975, pp. 1436–1438.

Braak, H., K. D. Tredici, H. Bratzke, J. Hamm-Clement, and D. Sandmann-Keil (2002).

“Staging of the intracerebral inclusion body pathology associated with idiopathic

77

http://dx.doi.org/10.1016/s0959-4388(02)00301-x
http://dx.doi.org/10.1016/s0079-6123(08)62678-3
http://dx.doi.org/10.1371/journal.pone.0032830
http://dx.doi.org/10.1016/s0042-6989(01)00196-1
http://dx.doi.org/10.1111/j.1460-9568.2005.04215.x


78 REFERENCES

Parkinsons disease (preclinical and clinical stages)”. In: Journal of Neurology 249.0,

pp. 1–1. doi: 10.1007/s00415-002-1301-4.

Bradley, M. M., M. Codispoti, and P. J. Lang (2006). “A multi-process account of startle

modulation during affective perception”. In: Psychophysiology 43.5, pp. 486–497. doi:

10.1111/j.1469-8986.2006.00412.x.

Brown, P and D Williams (2005). “Basal ganglia local field potential activity: Charac-

ter and functional significance in the human”. In: Clinical Neurophysiology 116.11,

pp. 2510–2519. doi: 10.1016/j.clinph.2005.05.009.

Brucke, C. et al. (2007). “The subthalamic region is activated during valence-related

emotional processing in patients with Parkinsons disease”. In: European Journal of

Neuroscience 26.3, pp. 767–774. doi: 10.1111/j.1460-9568.2007.05683.x.

Buhmann, C., S. Kraft, K. Hinkelmann, S. Krause, C. Gerloff, and W. H. Zangemeister

(2015). “Visual Attention and Saccadic Oculomotor Control in Parkinson’s Disease”.

In: EUROPEAN NEUROLOGY 73.5-6, 283–293. issn: 0014-3022. doi: {10.1159/

000381335}.

Buzsaki, G. (2004). “Large-scale recording of neuronal ensembles”. In: Nature Neuro-

science 7, No. 5, pp. 446–451.

Cacioppo, J. T., R. E. Petty, M. E. Losch, and H. S. Kim (1986). “Electromyographic

activity over facial muscle regions can differentiate the valence and intensity of affec-

tive reactions.” In: Journal of Personality and Social Psychology 50.2, pp. 260–268.

doi: 10.1037//0022-3514.50.2.260.

Castrioto, A., E. Lhommee, E. Moro, and P. Krack (2014). “Mood and behavioural effects

of subthalamic stimulation in Parkinsons disease”. In: The Lancet Neurology 13.3,

pp. 287–305. doi: 10.1016/s1474-4422(13)70294-1.

Cheeseman, P. and J. Stutz (1996). Bayesian classification (autoclass): theory and results.

AAAI Press,MIT Press.

Contarino, M. F., L. J. Bour, M. Bot, P. van den Munckhof, J. D. Speelman, P. R.

Schuurman, and R. M. de Bie (2012). “Tremor-specific neuronal oscillation pattern

in dorsal subthalamic nucleus of parkinsonian patients”. In: Brain stimulation 5.3,

pp. 305–314.

Degos, B., J.-M. Deniau, M. Chavez, and N. Maurice (2008). “Chronic but not Acute

Dopaminergic Transmission Interruption Promotes a Progressive Increase in Cortical

Beta Frequency Synchronization: Relationships to Vigilance State and Akinesia”. In:

Cerebral Cortex 19.7, pp. 1616–1630. doi: 10.1093/cercor/bhn199.

http://dx.doi.org/10.1007/s00415-002-1301-4
http://dx.doi.org/10.1111/j.1469-8986.2006.00412.x
http://dx.doi.org/10.1016/j.clinph.2005.05.009
http://dx.doi.org/10.1111/j.1460-9568.2007.05683.x
http://dx.doi.org/{10.1159/000381335}
http://dx.doi.org/{10.1159/000381335}
http://dx.doi.org/10.1037//0022-3514.50.2.260
http://dx.doi.org/10.1016/s1474-4422(13)70294-1
http://dx.doi.org/10.1093/cercor/bhn199


REFERENCES 79

Delescluse, M. and C. Pouzat (2006). “Efficient spike-sorting of multi-state neurons using

inter-spike intervals information.” In: J Neurosci Meth 150.1, pp. 16–29.

Ding, W. and J. Yuan (2008). “Spike sorting based on multi-class support vector machine

with superposition resolution”. In: Med Bio Eng Comput 46, pp. 139–45.

Ebrahimi, M., P. Aghagolzadeh, N. Shamabadi, A. Tahmasebi, M. Alsharifi, D. L. Adel-

son, F. Hemmatzadeh, and E. Ebrahimie (2014). “Understanding the Underlying

Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Pro-

tein”. In: PLOS ONE 9.5. issn: 1932-6203. doi: {10.1371/journal.pone.0096984}.

Eitan, R., R. R. Shamir, E. Linetsky, O. Rosenbluh, S. Moshel, T. Ben-Hur, H. Bergman,

and Z. Israel (2013). “Asymmetric right/left encoding of emotions in the human sub-

thalamic nucleus”. In: Front. Syst. Neurosci. 7. doi: 10.3389/fnsys.2013.00069.

Espinosa-Parrilla, J.-F., C. Baunez, and P. Apicella (2015). “Modulation of neuronal

activity by reward identity in the monkey subthalamic nucleus”. In: EUROPEAN

JOURNAL OF NEUROSCIENCE 42.1, 1705–1717. issn: 0953-816X. doi: {10.1111/

ejn.12938}.

Faure, A., S. M. Reynolds, J. M. Richard, and K. C. Berridge (2008). “Mesolimbic

Dopamine in Desire and Dread: Enabling Motivation to Be Generated by Localized

Glutamate Disruptions in Nucleus Accumbens”. In: Journal of Neuroscience 28.28,

pp. 7184–7192. doi: 10.1523/jneurosci.4961-07.2008.

Fawcett, A. P., J. O. Dostrovsky, A. M. Lozano, and W. D. Hutchison (2004). “Eye

movement-related responses of neurons in human subthalamic nucleus”. In: Exp Brain

Res 162.3, pp. 357–365. doi: 10.1007/s00221-004-2184-7.

Fawcett, A. P., D. Cunic, C. Hamani, M. Hodaie, A. M. Lozano, R. Chen, and W.

D. Hutchison (2007). “Saccade-related potentials recorded from human subthalamic

nucleus”. In: Clinical Neurophysiology 118.1, pp. 155–163. doi: 10.1016/j.clinph.

2006.09.016.

Fawcett, A. P., E. G. Gonzalez, E. Moro, M. J. Steinbach, A. M. Lozano, and W. D.

Hutchison (2009). “Subthalamic Nucleus Deep Brain Stimulation Improves Saccades

in Parkinsons Disease”. In: Neuromodulation: Technology at the Neural Interface 13.1,

pp. 17–25. doi: 10.1111/j.1525-1403.2009.00246.x.

Fee, M. S., P. P. Mitra, and D. Kleinfeld (1996). “Automatic sorting of multiple unit

neuronal signals in the presence of anisotropic and non-gaussian variability”. In: J

Neurosci Meth 69.2, pp. 175–88.

http://dx.doi.org/{10.1371/journal.pone.0096984}
http://dx.doi.org/10.3389/fnsys.2013.00069
http://dx.doi.org/{10.1111/ejn.12938}
http://dx.doi.org/{10.1111/ejn.12938}
http://dx.doi.org/10.1523/jneurosci.4961-07.2008
http://dx.doi.org/10.1007/s00221-004-2184-7
http://dx.doi.org/10.1016/j.clinph.2006.09.016
http://dx.doi.org/10.1016/j.clinph.2006.09.016
http://dx.doi.org/10.1111/j.1525-1403.2009.00246.x


80 REFERENCES

Fee, M. S., P. P. Mitra, and D. Kleinfeld (1997). “Erratum: Automatic sorting of multiple

unit neuronal signals in the presence of anisotropic and non-gaussian variability”. In:

J Neurosci Meth 71.2, p. 233.

Franke, F., M. Natora, C. Boucsein, M. H. J. Munk, and K. Obermayer (2009). “An online

spike detection and spike classification algorithm capable of instantaneous resolution

of overlapping spikes.” In: J Comput Neurosci 29, pp. 127–48.

Fruhholz, S. and D. Grandjean (2012). “Towards a fronto-temporal neural network for

the decoding of angry vocal expressions”. In: NeuroImage 62.3, pp. 1658–1666. doi:

10.1016/j.neuroimage.2012.06.015.

Gasthaus, J. (2008). “Spike Sorting Using Time-Varying Dirichlet Process Mixture Mod-

els”. MA thesis. University College London.

Gatev, P., O. Darbin, and T. Wichmann (2006). “Oscillations in the basal ganglia un-

der normal conditions and in movement disorders”. In: Movement disorders 21.10,

pp. 1566–1577.

Gerstein, G. L. and W. Clark (1964). “Simultaneous studies of firing patterns in several

neurons”. In: Science 143.20, pp. 1325–27.

Ghashghaei, H., C. Hilgetag, and H. Barbas (2007). “Sequence of information processing

for emotions based on the anatomic dialogue between prefrontal cortex and amyg-

dala”. In: NeuroImage 34.3, pp. 905–923. doi: 10.1016/j.neuroimage.2006.09.046.

Gibson, S., J. Judy, and D. Markovic (2008). “Comparison of spike-sorting algorithms

for future hardware implementation”. In: Engineering in Medicine and Biology So-

ciety, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. IEEE,

pp. 5015–20.

Gibson, S., J. Judy, and D. Markovic (2010). “Technology-Aware Algorithm Design for

Neural Spike Detection, Feature Extraction, and Dimensionality Reduction”. In: IEEE

Trans Neural Syst Rehabil Eng 18.5, pp. 469–78. issn: 1534-4320. doi: 10.1109/

TNSRE.2010.2051683.

Guillory, S. A. and K. A. Bujarski (2014). “Exploring emotions using invasive methods:

review of 60 years of human intracranial electrophysiology”. In: Social Cognitive and

Affective Neuroscience 9.12, pp. 1880–1889. doi: 10.1093/scan/nsu002.

Gulie, S. (2007a). A Shock to the System. online; http://www.spectrum.ieee.org/

oct07/5669.

Gulie, S. (2007b). Deep-Brain Stimulators for Parkinson’s Disease Increase Impulsive De-

cision Making. online; http://www.wired.com/wired/archive/15.03/brainsurgery_

pr.html.

http://dx.doi.org/10.1016/j.neuroimage.2012.06.015
http://dx.doi.org/10.1016/j.neuroimage.2006.09.046
http://dx.doi.org/10.1109/TNSRE.2010.2051683
http://dx.doi.org/10.1109/TNSRE.2010.2051683
http://dx.doi.org/10.1093/scan/nsu002
http://www.spectrum.ieee.org/oct07/5669
http://www.spectrum.ieee.org/oct07/5669
http://www.wired.com/wired/archive/15.03/brainsurgery_pr.html
http://www.wired.com/wired/archive/15.03/brainsurgery_pr.html


REFERENCES 81

Hajek, P. and K. Michalak (2013). “Feature selection in corporate credit rating pre-

diction”. In: KNOWLEDGE-BASED SYSTEMS 51, 72–84. issn: 0950-7051. doi:

{10.1016/j.knosys.2013.07.008}.

Hamann, S (2004). “Individual differences in emotion processing”. In: Current Opinion

in Neurobiology 14.2, pp. 233–238. doi: 10.1016/j.conb.2004.03.010.

Hammond, C., H. Bergman, and P. Brown (2007). “Pathological synchronization in

Parkinson’s disease: networks, models and treatments”. In: Trends in neurosciences

30.7, pp. 357–364.

Harris, K. D. (2000). “Accuracy of tetrode spike separation as determined by simultaneous

intracellular and extracellular measurements”. In: J Neurophysiol 84.1, pp. 401–14.

Herbst, J., S. Gammeter, D. Ferrero, and R. Hahnloser (2008). “Spike sorting with hidden

Markov models”. In: J Neurosci Meth 174.1, pp. 126–34. issn: 0165-0270.

Hodgson, T (2002). “Abnormal gaze strategies during problem solving in Parkinsons

disease”. In: Neuropsychologia 40.4, pp. 411–422. doi: 10.1016/s0028-3932(01)

00099-9.

Hoffman, P. and G. Grinstein (1997). Visualizations for high dimensional data mining -

table visualizations.

Huebl, J., T. Schoenecker, S. Siegert, C. Brucke, G.-H. Schneider, A. Kupsch, K. Yarrow,

and A. A. Kuhn (2011). “Modulation of subthalamic alpha activity to emotional

stimuli correlates with depressive symptoms in Parkinsons disease1”. In: Mov. Disord.

26.3, pp. 477–483. doi: 10.1002/mds.23515.

Huebl, J., B. Spitzer, C. Brucke, T. Schonecker, A. Kupsch, F. Alesch, G.-H. Schneider,

and A. A. Kuhn (2014). “Oscillatory subthalamic nucleus activity is modulated by

dopamine during emotional processing in Parkinsons disease”. In: Cortex 60, pp. 69–

81. doi: 10.1016/j.cortex.2014.02.019.

Hulata, E., R. Segev, and E. Ben-Jacob (2002). “A method for spike sorting and detection

based on wavelet packets and Shannons mutual information”. In: J Neurosci Meth 117,

pp. 1–12.

Humphries, M. D. and T. J. Prescott (2010). “The ventral basal ganglia, a selection mech-

anism at the crossroads of space, strategy, and reward.” In: Progress in Neurobiology

90.4, pp. 385–417. doi: 10.1016/j.pneurobio.2009.11.003.

Hutchison, W., R. Allan, H. Opitz, R. Levy, J. Dostrovsky, A. Lang, and A. Lozano

(1998a). “Neurophysiological identification of the subthalamic nucleus in surgery for

Parkinson’s disease”. In: Annals of Neurology 44, pp. 622–628.

http://dx.doi.org/{10.1016/j.knosys.2013.07.008}
http://dx.doi.org/10.1016/j.conb.2004.03.010
http://dx.doi.org/10.1016/s0028-3932(01)00099-9
http://dx.doi.org/10.1016/s0028-3932(01)00099-9
http://dx.doi.org/10.1002/mds.23515
http://dx.doi.org/10.1016/j.cortex.2014.02.019
http://dx.doi.org/10.1016/j.pneurobio.2009.11.003


82 REFERENCES

Hutchison, W., R. Allan, H. Opitz, R. Levy, J. Dostrovsky, A. Lang, and A. Lozano

(1998b). “Neurophysiological identification of the subthalamic nucleus in surgery for

Parkinson’s disease”. In: Annals of Neurology 44, pp. 622–628.

Isoda, M. and O. Hikosaka (2008). “Role for Subthalamic Nucleus Neurons in Switching

from Automatic to Controlled Eye Movement”. In: Journal of Neuroscience 28.28,

pp. 7209–7218. doi: 10.1523/jneurosci.0487-08.2008.

Jahanshahi, M. and C. D. Marsden (2000). Parkinson’s Disease: A Self-Help Guide. De-

mos Medical Press.

Jahanshahi, M., I. H. Jenkins, R. G. Brown, C. D. Marsden, R. E. Passingham, and

D. J. Brooks (1995). “Self-initiated versus externally triggered movements”. In: Brain

118.4, pp. 913–933. doi: 10.1093/brain/118.4.913.

Jech, R, E Ruzicka, D Urgosik, T Serranova, M Volfova, O Novakova, J Roth, P Dusek,

and P Mecir (2006). “Deep brain stimulation of the subthalamic nucleus affects resting

EEG and visual evoked potentials in Parkinsons disease”. In: Clinical Neurophysiology

117.5, pp. 1017–1028. doi: 10.1016/j.clinph.2006.01.009.

Jenkinson, N. and P. Brown (2011). “New insights into the relationship between dopamine,

beta oscillations and motor function”. In: Trends in Neurosciences 34.12, pp. 611–618.

doi: 10.1016/j.tins.2011.09.003.

Joshua, M., S. Elias, O. Levine, and H. Bergmana (2007). “Quantifying the isolation qual-

ity of extracellularly recorded action potentials”. In: J Neurosci Meth 163, pp. 267–

82.

Karabadji, N. E. I., H. Seridi, I. Khelf, N. Azizi, and R. Boulkroune (2014). “Improved

decision tree construction based on attribute selection and data sampling for fault

diagnosis in rotating machines”. In: ENGINEERING APPLICATIONS OF ARTIFI-

CIAL INTELLIGENCE 35, 71–83. issn: 0952-1976. doi: {10.1016/j.engappai.

2014.06.010}.

Karama, S., J. Armony, and M. Beauregard (2011). “Film Excerpts Shown to Specifically

Elicit Various Affects Lead to Overlapping Activation Foci in a Large Set of Symmet-

rical Brain Regions in Males”. In: PLoS ONE 6.7. Ed. by J. Lauwereyns, e22343. doi:

10.1371/journal.pone.0022343.

Kawasaki, H., R. Adolphs, H. Oya, C. Kovach, H. Damasio, O. Kaufman, and M. Howard

(2005). “Analysis of Single-Unit Responses to Emotional Scenes in Human Ventrome-

dial Prefrontal Cortex”. In: Journal of Cognitive Neuroscience 17.10, pp. 1509–1518.

doi: 10.1162/089892905774597182.

http://dx.doi.org/10.1523/jneurosci.0487-08.2008
http://dx.doi.org/10.1093/brain/118.4.913
http://dx.doi.org/10.1016/j.clinph.2006.01.009
http://dx.doi.org/10.1016/j.tins.2011.09.003
http://dx.doi.org/{10.1016/j.engappai.2014.06.010}
http://dx.doi.org/{10.1016/j.engappai.2014.06.010}
http://dx.doi.org/10.1371/journal.pone.0022343
http://dx.doi.org/10.1162/089892905774597182


REFERENCES 83

Kretzberg, J., T. Coors, and J. Furche (2009). “Comparison of valley seeking and T-

distributed EM algorithm for spike sorting”. In: BMC Neurosci 10.1, p. 47. issn: 1471-

2202. doi: 10.1186/1471-2202-10-S1-P47. url: http://www.biomedcentral.

com/1471-2202/10/S1/P47.

Kringelbach, M., N. Jenkinson, S. Owen, and T. Aziz (2007). “Translational principles of

deep brain stimulation”. In: National Reviews Neuroscience 8, no. 8, pp. 623–635.

Kuhbandner, C. and M. Zehetleitner (2011). “Dissociable Effects of Valence and Arousal

in Adaptive Executive Control”. In: PLoS ONE 6.12. Ed. by A. V. Garcia, e29287.

doi: 10.1371/journal.pone.0029287.

Kuhn, A. A., M. I. Hariz, P. Silberstein, S. Tisch, A. Kupsch, G. H. Schneider, P.

Limousin-Dowsey, K. Yarrow, and P. Brown (2005). “Activation of the subthalamic

region during emotional processing in Parkinson disease”. In: Neurology 65.5, pp. 707–

713. doi: 10.1212/01.wnl.0000174438.78399.bc.
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