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Abstract

The thesis deals with the motion planning problem. In this problem, the task is to
find a path or trajectory between two places in a known environment. Motion planning
is mostly studied in robotics, but its applications are far beyond robotics in areas like
computational biology or surgery. A wide range of motion planning problems can be
solved using the concept of configuration space. Due to high number of dimensions of
the configuration space, that is equal to the number of degrees of freedom of the robot, it
is not possible to discretize the space and search it using standard state-space searching
methods.

Sampling-based motion planner like Probabilistic Roadmaps of Rapidly Exploring
Random Tree solves the planning problems by randomized sampling of the configuration
space. A well know bottleneck of the methods is the narrow passage problem. In order to
speed up motion planner and to increase reliability of the planners, we propose to utilize
the knowledge of the workspace to help sample the configuration space. The knowledge
is represented using a path, the guides the sampling in the configuration space from the
start configuration to the goal configuration.

The guided sampling is studied in three challenging scenarios. The basic principle of
the guided sampling is introduced on the example of motion planning for mobile robots,
which requires to sample the three-dimensional configuration space. The low dimension-
ality of the configuration space allows us to compute the guiding path as a geometric path
in the workspace using standard path planning methods.

A different approach to compute the guiding path is proposed solve the path planning
problem for 3D objects, that requires to search the six-dimensional configuration space.
The proposed method first solves a relaxed version of the problem by scaling down the
geometry of the robot. The found solution is then iterative improved until the solution
of the original problem is found.

Finally, a novel motion planner is proposed for motion planning for modular robots.
Modular robots are formed by connecting basic robotic modules. These robots can be
reconfigured to various shapes and they represent systems with more than 6 degrees of
freedom. Motion planning for modular robots is challenging also due to necessity to
control many actuators in order to achieve a motion of the whole robot. We propose a
novel motion planning system that utilize several locomotion generators in order to realize
basic motions of the robots — motion primitives. The proposed planner then constructs
the plan using these primitives.
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Chapter 1

Introduction

The ability to move is a crucial skill of robots. Simple reactive motions can be generated based
on actual sensory data, which is suitable for tasks like floor cleaning or lawn mowing. To achieve
a motion in complex scenarios, e.g. for robots with many degrees of freedom, motion planning
techniques are required.

The motion planning problem has been studied since the beginning of robotics. It should be
noted that motion planning is sometimes called path planning (and vice versa) in the literature.
Although these problems are similar, we can identify several differences. In the path planning
problem, the task is to find a collision-free path in the environment for a holonomic robot.
The result of the path planning is a geometric path in the environment, which can
be represented e.g. as a sequence of waypoints. A geometric path however does not specify
how fast a robot should traverse the path, so time information and information about control
inputs are not considered in path planning. The task of motion planning (sometimes called
trajectory planning) is to find a trajectory for a robot considering its geometry, motion model
and time. The result of motion planning is a trajectory describing desired positions in
time, sometimes together with control inputs that can be used to drive the robot.

1.1 Problem formulation

A robot operates in a workspace W, which is YW = R? in the case of 2D environments or WW = R3
in the case of 3D environments. Let @ C W denote the obstacle region in the workspace. In
this thesis, 2D workspaces are described using the polygonal representation, i.e., each obstacle is
described by a polygon. To represent 3D workspaces and robots, 3D triangle meshes are used.

A position of a robot is described by its configuration g € C, where C is the configuration
space of the robot, i.e., the set of all possible configurations. The dimension of the configuration
space equals to the number of degrees of freedom of the robot. Rigid body of the robot is
denoted B(q) C W, where positions of its vertices are determined by the current configuration
g € C. The obstacle region of the configuration space Cppstacie C C is defined as Copstacie = {¢ €
C|B(q) N O # 0}. The free space Cfree is then Cgree = C\Cobstacte- In the rest of the text, we
denote configurations located in Cye. as free or collision-free, while configurations located in
Cobstacle are referred to as non-free.

One of the fundamental problems studied in robotics is the path planning problem (also
known as Piano mover’s problem [I51] or Generalized Mover’s problem [2006]):

Formulation 1.1.1 The task of path planning is to find a continuous collision-free path T :
[0,1] = Ctree from the start configuration Gsiart € Cree to a desired goal configuration qgoqr €
Cfree such that 7(0) = gstart, T(1) = qgoat and 7(t) € Cpree for all 0 <t < 1.

1



2 CHAPTER 1. INTRODUCTION

The formulation of the path planning problem assumes a holonomic robot, that can move
arbitrarily in the configuration space. For practical purposes, the path is often represented
as a polygonal path (a sequence of waypoints) instead as a continuous path. This waypoint
representation is considered in this thesis. The complexity of the problem for a robot with limited
number of polyhedral bodies moving amongst polyhedral obstacles was shown to be PSPACE-
hard [206]. Therefore, exact solutions can be found only in limited cases [147]. Optimal planning
is NP-hard even for a point in 3D polyhedral environment without differential constraints [31].
The high complexity of the problem led to development of many heuristics that provide a solution
in a reasonable computation time.

Motions of real robots are usually constrained due to kinematics and dynamics. The con-
straints restrict allowable velocities in the configuration space, which can be described using a
forward motion model

q=f(q,u), (L.1)
where u € U is a control input and U is a set of all possible control inputs. The motion model

describes how a configuration ¢ changes after a control input « is applied. The motion planning
problem under differential constraints [I51] can be formulated as follows.

Formulation 1.1.2 The task of motion planning is to find an action trajectory u : [0,T] — U
defining how to apply actions to the system starting from the configuration q(0) = qstart SO that
after integration:

a(t) = q(0) + /0 f(a(r), a(r)) dr, (1.2)

the resulting trajectory q : [0,T] — C satisfies: q(0) = qstart; ¢(T) = dgoat, and q(t) € Cpree for
allt € [0,T7.

The above introduced first-order constraints are usually caused by kinematics of the robot.
The dynamic constraints, e.g. velocity limits, can be described using second-order constraints
G = h(q,q,u). By introducing new configuration = = (g, ¢), we can shift the problem to new space
X, that is called phase space. The phase space has 2n dimensions, where first n components are
configurations and next n components are their time derivatives. In literature, the phase space
can be formulated to contain also high-order differential equations [152].

The planning problem under differential constraints of order at least two is called kinodynamic
motion planning [I51] and its formulation is similar to Formulation except the configuration
space is replaced by the phase space X and the states obtained using the integration have to
hold all high-order constraints. Motion planning under differential constraints with obstacles
is extremely difficult, and exact solutions are known only for the double integrator system for
C =R [189] or C = R? [30)].

In the above described formulations of the path planning and motion planning problems, the
only task is to find a feasible path or trajectory between two given configurations. The only
criterion to be satisfied is the feasibility of the solution regardless its efficiency. Both problems
can be formulated considering an optimality criterion such as time to reach the goal, length of
the trajectory or consumed energy.

In this thesis, we study the path/motion planning problems without considering any optimal-
ity criteria as finding a feasible solution is already challenging for many motion planning problems.
Non-optimal motion planners are often used to provide an initial solution to optimization-based
approaches like evolutionary algorithms [287, 57] or model predictive control [I18, B3]. It is
necessary to compute the non-optimal plans as fast as possible, which motivates us to design
a fast motion planner. Besides, the non-optimal plans are satisfactory in several applications
like assembly/disassembly studies [237, [, [36] or controller testing [127, 19]. Again, fast yet
non-optimal planners are required in these applications.
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1.2 Applications of motion planning

Motion planning has most applications in robotics, e.g. for path/trajectory computation of
robotic manipulators, mobile robots, autonomous cars [64, 53, [144], Unmanned Aerial Ve-
hicles [69, 275] [72, 273, 118, 200], humanoids [133] 88], planetary robots [139] and modular
robots [33, 261, 255].

Applications of motion planning can also be found far beyond robotics. For example, motion
planning is necessary for needle manipulation during surgical operations [274), [6], 180} 169, 182]
and for tumor treatment [241]. Paths for 3D objects are required in assembly/disassembly studies
in CAD systems [248] 306, 185, 227, 237, 5]. In these applications, providing a non-optimal yet
feasible solution is satisfactory, as it is used to decide if the parts are maintainable or not. Motion
planning can be used to design routes for evacuation planning [210] and to verify feasibility of
escape routes for wheelchairs [87, [198]. Computer games can utilize motion planners to control
bots [130, [134] 20T, 110, 18| [115] 148].

In computational biology, motion planning has been used to study protein docking and pro-
tein folding problems. A protein structure can be considered as a robot with many degrees of
freedom [119] 230] and the protein docking and protein folding problems can be formulated as
path planning tasks [230), [7, 170}, 55| 199, 228§].

1.3 Motivation & thesis goals

Various applications of motion and path planning bring their own challenges. Some problems can
be approached geometrically considering disc robots, while other problems require to consider
complex geometries of the robots including their motion capabilities. Many problems that are
different in terms of geometry or kinematics can be approached using the configuration space
concept [147]. The configuration space allows us to convert complicated geometric models and
motion constraints to a general problem of finding a path in the space.

The configuration space can be searched by sampling-based motion planners. The main idea
of sampling-based methods is to randomly sample the configuration space in order to create its
approximation. This approximation is called roadmap and it is represented as a graph. A path in
the graph is then related to a trajectory in the workspace. Due to utilization of the configuration
space concept, the sampling-based methods can solve various planning problems for robots with
many degrees of freedom (DOF) as well as for systems with motion constraints.

Despite the versatility of the sampling-based planners, there are several issues that can de-
crease performance of the methods in certain scenarios. The well known bottleneck of these
methods is the narrow passage problem. A narrow passage is a small free region of the configura-
tion space, which position is usually unknown. A prohibitively large number of random samples
must be generated over the whole configuration space in order to hit the narrow passage and to
connect it to the roadmap.

The goal of the thesis is to introduce a novel and practical motion planner to cope with the
narrow passage problem. The proposed planner is based on Rapidly Exploring Random Tree
(RRT) [150] that builds the roadmap as a configuration tree rooted at the initial configuration
gstart- The RRT method has been selected due to its ability to cope with differential constraints,
which is necessary for practical application in mobile and modular robotics. The main idea
of the proposed planner is to utilize a guiding path computed from the start configuration to
the goal configuration in order to sample the configuration space. We propose several methods
to compute the guiding path and we will show how to apply the guiding principle for motion
planning of mobile and modular robots as well as for path planning of 3D objects.

The effect of guided sampling is twofold. First, the guiding path helps to sample narrow
passages, which increases probability of finding a solution in a given amount of time. This
is depicted in Fig. , where the roadmap (tree) has to pass the narrow passage in order to
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connect the start and goal configurations. The tree is quickly built in the first room, but the
narrow passage is not entered due to its low volume, and the goal configuration is not reached.
If the guided sampling is used, the tree can enter and grow through the narrow passages and
consequently it can reach the goal configuration.

Second, guided sampling decreases the size of the tree, as the random samples are generated
mainly along the guiding path. The second effect is important especially in motion planning under
differential constraints, where satisfying the constraints may be time consuming and exploration
of unnecessary parts of the configuration space should be suppressed. An example is motion
planning for modular robots that requires a time-consuming physical simulation to properly
model motion of the robots in an environment (Fig. . Decreasing the number of nodes in the
tree significantly decreases runtime of the planning process.

%I

) uniform sampling (b) guided sampling

Figure 1.1: Difference between trees constructed by RRT using uniform samples (a) and samples
generated along a guiding path (b). The configuration trees are depicted in green with a high-
lighted red trajectory. The trees are constructed using 2000 iterations of the the RRT method.
The left tree has ~ 1500 nodes and the right tree has only ~ 800 nodes. The configuration tree
built using the uniform samples explores more the configuration space before the narrow passage
is entered. Contrary, the guiding path (brown) helps to quickly traverse the narrow passage and
consequently, the goal configuration is reached in less number of iterations. Moreover, the built
configuration tree is smaller.

Due to high complexity of the motion planning problem it is believed, that there is no
universal algorithm that can efficiently solve instances of all types [75] [77]. To fulfill the aim of

(a) uniform sampling (b) guided sampling

Figure 1.2: The effect of the guided sampling in motion planning for modular robots. The
configuration tree is depicted in green, the resulting trajectory in red. The result of the uniform
sampling is a tree covering large area in the space (a), while the guided sampling steers the
configuration tree directly towards the goal configuration (b). The motion planning using the
guided sampling therefore needs less number of iterations to reach the goal configuration. The
guided path is depicted in blue.
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the thesis, i.e., to provide a practical motion planner, we will study the herein proposed guiding
principle in three typical motion planning tasks. The tasks are selected to represent planning
problems in three-, six-, and high-dimensional configuration spaces. The increasing dimension
causes, that it is more difficult to estimate narrow passages from the description of the workspace.
The motion planning is studied in the following scenarios.

e Motion planning for mobile robots in 2D environments

In this task, collision-free trajectories need to be found for the mobile robots with three
degrees of freedom. The trajectories have to be computed considering motion models of the
robots. Despite low dimension of the configuration space, the problem is challenging due to
the presence of the narrow passages. To cope with the narrow passage problem, we propose
a novel sampling-based planner. This novel strategy, referred to as RRT-Path (Rapidly
Exploring Random Tree with guiding Path) in the rest of the text, utilizes a geometric
description of the workspace to speed up the search in the configuration space. RRT—Path
samples the configuration spaces primarily along the guiding path, which speeds up growth
of the configuration tree towards the goal configuration.

e Path planning of 3D rigid bodies in 3D workspaces

In the second domain, a collision-free path has to be found for a 3D rigid object moving in a
3D workspace. This requires to work in a 6D configuration space, as both 3D position and
3D orientation of the object have to be considered. The problem is challenging not only
due to more DOF's, but especially due to occurrence of complicated narrow passages, that
cannot be easily predicted based on geometric description of the objects and obstacles. We
propose a novel algorithm for finding paths for the 3D rigid objects. The proposed method
first solves a relaxed version of the problem and then it iteratively improves this initial
result to solve the original problem. The improvement of the relaxed solution is realized
using the guiding principle. The proposed method, called RRT-IS (RRT with Iterative
Scaling) is an extension of RRT—Path to the six-dimensional configuration space.

e Motion planning for modular robots

The task in the third scenario is to find a feasible trajectory for a modular robot while
avoiding collisions with obstacles. Modular robots consist of many basic mechatronic mod-
ules and they move by controlling many actuators. Motion planning for modular robots
leads to a search in a high-dimensional configuration space (with more than 6 dimensions).
This task is challenging also due to necessity to derive control signals for many actuators
considering a black-box motion model. We propose a novel extension of RRT for the pur-
pose of modular robots. The method utilizes a set of locomotion generators to generate
basic motion primitives of the robots and it is referred to as RRT-MP (RRT with Motion
Primitives). The utilization of motion primitives significantly reduces complexity of the
planning task, as it does not depend on the number of the actuators, but only on the
number of used primitives. To further increase speed of the planning process, the guiding
principle is used.

1.4 Thesis outline

The basic path planning and motion planning techniques are described in Chapter 2| with stress to
sampling-based motion planners. A novel motion planner, called RRT—Path, that combines path
planning and the sampling-based principle is proposed in Chapter The RRT-Path planner
is experimentally verified and compared to several state-of-the-art methods in Chapter [ An
extension of RRT—Path for the application of path planning of 3D rigid objects is described
in Chapter This novel algorithm, called RRT-IS, is compared to state-of-the-art methods.
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The experiments are described in Chapter [6] Chapter [7] is dedicated to motion planning for
modular robots using a novel extension of RRT called RRT-MP. Experimental verification of
the RRT-MP planner in simulation as well as on physical robots is described in Chapter
Finally, conclusion and future work are presented in Chapter [0

1.5 Overview of thesis contributions

The development of motion planning methods presented in the thesis has been inspired by
several applications, mainly in mobile and modular robotics. Particular contributions of the
thesis together with references to related publications are as follows.

e Motion planning for 2D mobile robots (Chapter (3))

— Novel principle for guided sampling of configuration space called RRT—Path. Initial
version of the method was published in [252], extended version in [253].

— Utilization of guided sampling of configuration space for modular robots [259].
e Path planning for 3D objects (Chapter [5)

— The method, called RRT-IS (RRT with Iterative Scaling), was published in [253].

— A novel Hedgehog in the cage benchmark, was accepted to the set of benchmarks for
3D motion planning [147].

e Motion planning for modular robots (Chapter [7)

— A naive implementation of RRT for modular robots utilizing random control sig-
nals [255].

— Comparison of several RRT-based planners in the task of motion planning for joint-
controlled modular robots [255].

— A novel motion planner for modular robots with motion primitives called RRT-MP
(RRT with Motion Primitives). Preliminary idea was presented at ICRA 2013 [260],
the final version of the planner was published in Robotics and Autonomous Systems
journal [263].

— The RRT-MP planner was used in Symbrion/Replicator EU projects [156].

— Fast motion planning for modular robots moving on a plane using simplified motion
model. The method was presented at ICRA 2014 [264].

— A fast method for optimization of locomotion gaits using Particle Swarm Optimiza-
tion [258].
— Guided sampling for motion planning for modular robots [259].

— Robot3D simulator for modular robots [271]. The simulator was used in the Sym-
brion/Replicator projects to study artificial evolution of modular robots. Another
simulator called Sim [254] was developed for fast simulation on computational grids.
The Sim simulator provides general physical simulation, and it allows users to create
their own robots. Besides utilization of the Sim simulation in Symbrion/Replicator
projects, it was used in the task of formation driving [218], 219, 220]. Both simulators
were co-developed by the author of this thesis.



Chapter 2

Related work

Path planning and motion planning problems have been studied for decades in robotics. The
early path planners solved the problem by a deterministic search of a discrete state-space, e.g.
by finding path in a grid representing the workspace. These methods are limited for robots with
few degrees of freedom, for which the discretized state-space can be prepared. In late 1980s,
randomized planners were introduced to cope with robots with more degrees of freedom. Later,
the randomization techniques were proposed to sample the configuration space, which further
enabled to consider differential constraints. This chapter briefly reviews the path planning and
motion planning approaches with the emphasis to the sampling-based motion planners.

2.1 Basic path planning methods

Basic path planning techniques rely on a graph-based description of the workspace, in which a
path can be found using standard graph-search methods like A* or Dijkstra. In the Visibility
graph approach (VG) [147], the graph is constructed from vertices of the polygons describing
the obstacles. If two vertices in a polygonal map can be connected by a collision-free line,
the corresponding vertices in the graph are connected by an edge. In the naive approach of
VG construction, all possible pairs of nodes are considered and tested whether a line segment
connecting them intersects any obstacle. This naive method has complexity O(n?), where n is
the number of vertices of the polygonal representation. The intersection test can be speeded
up using a line-sweep method, which improves the overall complexity to O(n?logn) [50]. An
example of a VG is depicted in Fig. [2.Th.

Decomposition-based techniques split the free parts of the workspace into a set of non-
overlapping regions. The relations between the regions are then described in a graph, where
the nodes represent the regions and the edges connect neighboring regions. To find a path be-
tween two places, first the regions containing start and goal points are determined and the path is
found in the graph between corresponding nodes. Several methods for workspace decomposition
have been proposed such as the vertical cell decomposition [37] or triangulation (Fig. [2.1p).

The VG approach and the decomposition-based methods can provide a path that is too close
to obstacles. A path with the maximal clearance can be computed using Voronoi diagram [14].
The point Voronoi diagram of a set of n points can be computed in O(nlogn) time using Fortune’s
algorithm [67]. Generalized Voronoi Diagram (GVD) [29] is more suitable for polygonal domains,
as it can compute the diagram considering line segments. The complexity of GVD is O(mlogm),
where m is the number of disconnected line segments. The example of GVD is depicted in
Fig. 2.1k. GVD is suitable for environments with narrow corridors, where paths with maximal
clearance are preferred. However, the paths provided by GVD are usually longer in large free
areas. A combination of Voronoi diagram and Visibility graph was proposed in [26§].

The above mentioned path planning methods consider only a point robot. To consider a
non-point robot, the polygonal map needs to be dilated by computing Minkowski sum between

7
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the obstacles and a disk representing the robot.

Although the geometric path planning approaches seem to be straightforward and easy to
implement, it is not trivial to achieve a robust implementation [86], because the methods may
suffer due to degenerate input data describing the workspace obstacles. An example of the
degenerate input are three points lying on a same line, which can cause a problem in the com-
putation of visibility in the VG approach. Further problems are caused by limited arithmetic
precision of computer variables. To increase robustness of the computations, the input data
should be preprocessed. For example, collinear or almost-collinear points can be removed using
Ramer-Douglas-Peucker algorithm [89] or using Discrete Curve Evolution [146].

o

STPDOAT MK
47?&%4‘72

PO

(a) Visibility graph (b) Triangulation

(c) Generalized Voronoi diagram (d) Potential field

Figure 2.1: Examples of path planning in polygonal domain. The potential field was computed

using [164].

In the potential field approach, a robot is considered as a positively charged particle that
moves under the influence of the potential field towards a negatively charged goal configura-
tion [I25]. The obstacles have assigned a positive charge to repeal the robot. Example of a
potential field is depicted in Fig. 2.Id. A path in the potential field is found using a gradient
descent method. The gradient descend is guaranteed to converge to a local minimum, but it is
not guaranteed that this minimum is the global minimum representing the goal configuration.
If a local minimum is reached, the gradient descend algorithm is not able to escape it to reach
the goal. The problem with local minima can be avoided if a navigation function is used [45]. A
navigation function is designed to have only one (global) minimum.

The path planning problem has been studied also using soft-computing methods like genetic
algorithms [229], evolutionary-based approaches [287], ant colony optimization [73], etc. The
soft-computing techniques often represent the path of a robot using splines or polynoms, whose
parameters have to be optimized to avoid collisions with the obstacles [39]. An important ad-
vantage of the soft-computing techniques is that they can consider an optimality criteria such as
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traveled distance or time required to traverse the path. The performance of the soft-computing
optimization techniques may be decreased if finding of the initial feasible solution is already a
challenging problem. This problem arises e.g. if the cost function describing quality of the solu-
tion cannot distinguish between unfeasible solutions, and consequently, it does not provide any
selection pressure to the evolutionary process. It is therefore suitable to provide an initial feasible
solution to the optimization-based methods. A comprehensive survey of existing soft-computing
techniques for path and motion planning can be found in [166].

An advantage of the basic planning methods is the fast computation. However, the methods
are tightly coupled with the geometric description of the environment and to consider robot’s
geometry, the environment needs to be dilated using Minkowski sum. The Minkowski sum needs
to be computed also for a set of considered rotations of the robot. This practically limits usage
of the basic path planners to simple mobile robots, that can be approximated by a disc.

2.2 Randomized motion planning

Motion planning under differential constraints, where also motion models of robots, their geome-
tries, and additional constraints need to be considered, can be solved using the configuration
space rather than using the workspace. The configuration space allows us to describe different
motion planning problems and the problem of finding a path or a trajectory in the workspace
is converted to the problem of searching a path in the configuration space. The main difference
between planning in the workspace and planning in the configuration space is caused by the
description of the obstacles. The workspace obstacles O are described explicitly e.g. using the
polygonal representation, which allows us to directly construct Visibility graphs or Voronoi dia-
grams. In contrary, obstacles in the configuration space are described implicitly, i.e., as a set of
configurations g € C satisfying R(q) N O # (). Due to the implicit representation of the obstacles
in the configuration space, the path planning methods designed for workspaces cannot be used
to search a path in the configuration space.

A naive approach to find a path in the configuration space would be to discretize it, e.g.
into a grid, and search the grid using A* or other state-space search methods. An obvious
disadvantage of this approach is the exponentially-growing number of discretized cells with the
dimension of the configuration space. Moreover, state-spaces of most real systems are infinite,
therefore discretization is intractable [151].

The configuration space can be searched using a randomized method without need to dis-
cretize the whole space. One of the first randomized planners was the Randomized Path Planner
(RPP) [11]. RPP uses several potential fields computed on a grid that is defined over the con-
figuration space. Each potential field corresponds to a control point on a robot. A potential of
each cell is defined as a combination of the potential fields in the workspace. The planner starts
at an initial state and descends the gradient of the potential field until a goal or a local minimum
is reached. If the goal state is reached, the algorithm terminates. To escape from the local
minimum, several random walks are performed. If the planner escapes it, the gradient descend is
performed until the goal state or another local minimum is reached, or a predefined planning time
is elapsed. The planning time must be limited, because RPP is probabilistically complete [143]
and it cannot recognize that no solution exists. To speed up the escape from a local minimum,
the configurations connected in previous iterations can be used to build a roadmap graph [34].
If a new local minimum is reached, the planer attempts to reach the nearest configuration in the
graph. The local minimum is then escaped using a path in the graph. The utilization of several
potential fields allows RPP to compute trajectories for many-DOF systems [110].

Two planners (global and local) are used in the Z3 planner [81]. The task of the global planner
is to place random subgoals in the configuration space, while the local planners tries to find a
connection between the subgoals. The local planner is realized using a potential field. If both
start and goal configurations are connected to a subgoal, the planner terminates, because the
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path can be found in the graph of the subgoals. Otherwise it attempts to connect unconnected
subgoals to other subgoals.

In the Ariadne’s clew algorithm [I68], two main procedures are used: Explore and Search.
The Explore phase adds new configurations to a tree rooted at the initial configuration. The
task of the Search procedure is to connect known configurations to the goal. Both procedures are
formulated as optimization tasks and they are solved using a genetic algorithm. For example, the
task of the optimization in the Explore procedure is to place a new configuration to maximize
its distance to all known configurations.

In early 1990s, several papers proposed to sample the configuration space using randomized
methods to create an approximation of the space, in which a solution can be found [162]. The
main idea of these methods, called sampling-based motion planners, is to create an approximation
of Cfree by random sampling of the whole configuration space and using collision detection to
determine the free samples. This approximation is called roadmap and it is represented as a
graph. A path in the graph then corresponds to a trajectory or path in the workspace. One of
the first attempts to build a roadmap of the configuration space using the random samples was
proposed in Horch’s planner [92]. The vertices in the roadmap are random configurations in the
configuration space, and the edges connect them with straight lines if possible. If a subgraph
is disconnected, a random ray is “shot” from a vertex of the graph. If the ray hits an obstacle,
the contact configuration on the boundary of the obstacle is computed, added to the roadmap
and connected with its nearest neighbors. If this contact configuration cannot be added to the
roadmap, a new random ray is shot from this configuration.

The early randomized planners like Z3, Ariadnes’s clew and Horch’s planner were able to
solve problems with more degrees of freedom than other planners of that time. These planners
introduced a new paradigm in the motion planning: creating a plan by randomized sampling
of the configuration space. This idea was further investigated, which resulted in the nowadays
most used sampling-based planners: Probabilistic Roadmaps (PRM) [121] and Rapidly Exploring
Random Trees (RRT) [I50].

2.3 Probabilistic roadmaps (PRM)

PRM [121] builds the roadmap in two steps. First, random samples drawn from uniform distri-
bution are generated in C and tested for collisions using collision detection. The collision-free
samples are stored in the roadmap. After the random samples are generated, they are connected
to their neighbors using a local planner. For simplicity, the straight-line planner is used as the
local planner. The straight-line planner connects two configurations by a straight line segment.
The line segment is tested for collisions at discrete points computed with resolution €. To find
a trajectory or path in the workspace, both initial and goal configurations are connected to the
roadmap and the path between them is found using a graph-search method like Dijkstra’s algo-
rithm. The search for the path between the start and goal configurations is called query phase.
The example of a roadmap construction is depicted in Fig.

Depending on the local planner, PRM can be used for both path and motion planning.
The path planning problem is solved using the straight-line local planner, that simply connects
two configurations by a line segment. A more advanced local planners are required for motion
planning, especially if differential constraints need to be considered. The local connection under
differential constraints can be made e.g. using RRT method [202], 46}, 224].

PRM is suitable in situations, where multiple planning queries have to be answered in the
same (static) environment, e.g. for motion planning of a robotic manipulator in the pick & place
task. The relatively high time required to prepare the roadmap is not an issue, as the roadmap
is built only once. A modification of PRM for motion planning in dynamic environments was
proposed in [277, 129, [159].

One of the time consuming routines is collision detection that is used to determine feasibility
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Figure 2.2: The configurations sampled in the first phase of the PRM (red). Initial and goal
configurations are not necessary sampled (a). Roadmap constructed from the samples using the
straight-line planner (b). In the query phase, both start and goal configurations are connected
to the roadmap and a path is found (c).

of the samples and edges. During the roadmap construction process, many samples are tested for
collisions even though they are not used in the final path. In Lazy-PRM [I7], collision detection
at the nodes and the edges is postponed to the query phase. If the path found in the roadmap
is completely collision-free, it is returned. Otherwise, colliding nodes and edges are iteratively
removed from the roadmap and the path is searched again in the updated roadmap until a
valid path is found. This speeds up the planning process in applications where the robot and
workspace geometry consist of hundred thousands of elements [217]. The idea of the postponed
collision detection approach is also part of other PRM-based planners [217), 2311 [16, [185] 95].

In Fuzzy-PRM [I85], collision detection is performed only for the nodes during the construc-
tion of the roadmap and the edges are not checked. Instead, the probability of being valid is
estimated according to the length of the edge. In the query phase, the path with the largest
probability of being valid is selected and its edges are validated using the collision detection mech-
anism and updated if necessary. The process is repeated until a valid path is found. Contrary
to Lazy-PRM, which postpones collision detection of both the nodes and the edges, Fuzzy-PRM
postpones only collision detection of the edges.

2.3.1 Narrow passage problem

A well known bottleneck of sampling-based methods is the narrow passage problem [120] 97].
Narrow passages are small regions in the configuration space whose removal changes connectivity
of the space. The volume of a narrow passage is small in comparison to the volume of the whole
configuration space, and it is therefore difficult to obtain sufficient number of samples there if
the samples are drawn from uniform distribution.

To cope with the narrow passages, the distribution of the random samples should be modified
in order to sample the passages densely. The probability distribution however cannot be changed
so easily, as the locations of narrow passages are unknown. Although their shape and volume
depend on the shape of the robot and obstacles, it is not always possible to estimate their

O HN
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(a) Workspace (b) Configuration space

Figure 2.3: Example of a workspace without narrow passage (a). Configuration space of a disc
robot contains a narrow passage (b).
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positions only from the description of the workspace. For example, a workspace depicted in
Fig. does not contain any narrow region, but the related configuration space of the circular
robot (Fig. [2.3p) contains a narrow passage.

Due to difficulty to estimate the positions of the narrow passages from the description of the
workspace, several methods attempt to evaluate the random samples before these are added to
the roadmap. In the Gaussian sampling strategy [191], the samples are generated more frequently
around obstacles. A random configuration ¢; € C is generated uniformly and another random
configuration ¢o € C is drawn around using Normal distribution N(q1,0?). If both ¢; and ¢ are
free or both are non-free, they are not added to the roadmap. If only one of these configurations
is free, then the free one is added to the roadmap. The disadvantage of this strategy is the
necessity to choose suitable value of the parameter ¢, which depends on the used map and the
shape of the robot. The Bridge-Test sampling [93] employs the Gaussian strategy to generate
two samples in order to compute their midpoint. If the midpoint is collision-free and both end
configurations are non-free, the midpoint lies in a narrow passage, and it is added to the roadmap.
Both Gaussian and Bridge-Test strategies have to be combined with the uniform sampling in
order to ensure sampling of free-regions [236]. Despite the simplicity of these two modifications,
they were proven to significantly improve performance of PRM [96), [78], 80, 267].

In the Visibility roadmap approach [149], uniformly distributed samples are used to build the
roadmap. A new node can be added to the roadmap only if it is not visible from other nodes in
the roadmap or if it is visible from at least two nodes in a different component of the roadmap.
This minimizes the number of the nodes in the roadmap, however the visibility check increases
runtime of the roadmap construction process.

2.3.2 Workspace-based sampling

The sampling distribution can be modified based on obstacles in the workspace as the narrow
passages in the workspace are believed to be related with narrow passages in the configuration
space [I38]. To localize the narrow passages in the configuration space, authors of [138] suggest
to construct tetrahedralization of the workspace and to compute importance of each face. The
faces located at the boundary of the free space and the obstacles have more importance. The
importance of each tetrahedron is computed as an average importance of its faces. To generate a
random sample, first a tetrahedron is selected randomly according to the probability distribution
given by the importance of the tetrahedrons. A random sample is then generated uniformly in
the selected tetrahedron. The disadvantage of the method is the high computational burden of
the tetrahedralization. Similar approach is used in [247], where the workspace is decomposed
into cells that are labeled by the watershed algorithm to find borders between open and close
regions. The border cells are then sampled more dense.

Methods [270 (68| [84] 00, 276] generate random samples around the medial axis, which helps
to sample narrow passages more densely. This requires to precompute the medial axis, which
can be time consuming. Another approach is to shift the random samples towards the medial
axis [§] or into a direction of estimated medial axis [91].

2.3.3 Adaptive sampling

The workspace-based sampling is useful for robots with few degrees of freedom, because the
narrow passages in the configuration space can be estimated from the narrow passages of the
workspace. The importance of the workspace knowledge however decreases as the dimension of
the configuration space increases [I138]. For example, two narrow passages can be detected in
the workspace of the Alpha puzzle problem [141] (Fig. [2.4). Configuration of the moving part
can be described by its 3D position and 3D rotation. The only knowledge we can extract from
the workspace is the 3D position of the narrow passage in the workspace (Fig. ), but the



2.4. RAPIDLY EXPLORING RANDOM TREES 13

a b

Figure 2.4: Alpha puzzle problem [I41] consists of two solid objects that need to be removed
from each other (a). The red arrows denote narrow passages of the geometric models (b).

exact position and shape of the corresponding narrow passage in the configuration space remain
unknown.

A solution is to estimate the difficult parts of the configuration space on-line and to change
the distribution of random samples accordingly. This requires to maintain a separate model of
the configuration space to discover the possibly difficult parts. Such a model can be realized using
a mixture of Gaussians [23] 25], a locally weighted regression [24] or nearest-neighbor model [26].

The performance of the sampling-based methods varies according to type of environment and
used robot. The planners are usually tuned for some type of environment and their performance
can degrade in different environments [75, [77]. To create a more universal planning system,
multiple motion planners can be combined. The environment can be split to several regions
in which specialized planners are used [I73, [I74, [I71]. To divide the configuration space into
several possibly overlapping regions, features like the number of obstacles in the region, the
radius of the largest free ball together with suitable performance indicators (e.g. the number
of nodes in the region roadmap or the connectivity ratio) are measured. A machine learning
technique is then used to classify the regions to several classes (free, cluttered, narrow-passage,
non-homogeneous). A suitable motion planner is then selected for each region based on the
classification. If the region cannot be classified, it is further split into smaller regions and the
classification process is repeated. The disadvantage of this approach is the necessity to provide
labeled data for the employed supervised machine learning. Later, authors improved the system
by employing an unsupervised strategy for region classification [240]. A bank of several planners
with known behavior is utilized also in [246]. In this approach, the configurations added to the
roadmap are classified as free-space samples or narrow passage samples. A suitable local planner
is then selected in order to connect two nodes according their classification.

2.4 Rapidly Exploring Random Trees

Rapidly Exploring Random Tree method was introduced by LaValle [150] in 1998. The RRT
method builds a roadmap as a tree rooted at gsqrt- The basic RRT algorithm works as follows.
In each iteration, a random sample g.qnq is chosen from C and the nearest node gpeqr in the
tree to @rang is found. The node gpeqr is expanded using a local planner to obtain a set of new
configurations reachable from ¢,eq-. The nearest configuration towards g;.qyq is selected from this
set and added to the tree. The edge from gpeqr to the newly added configuration contains control
inputs used by the local planner to reach the new configuration. The algorithm terminates if
the distance between a node in the tree and ggoq is less than dy.q or after I, of planning
iterations. The main loop of RRT is listed in Alg. [I]and the expansion procedure is described in
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Alg. 2 The resulting trajectory is represented as a sequence of nodes (configurations) together
with control information of each edge (e.g. a control input and time). RRT can therefore provide
both paths and trajectories.

The RRT algorithm differs from PRM in two main aspects. First, the configuration tree built
by RRT cannot have cycles, while the PRM roadmap can contain cycles. Second, the configu-
ration tree is extended incrementally. Contrary to PRM, which first samples the configuration
space and then connects the stored free samples into the roadmap, RRT samples the configura-
tion space simultaneously with the construction of the configuration tree. To create a dense tree
in a given region, the simple increase of probability of sampling in the region is not satisfactory as
it has to be ensured first, that the tree can grow towards the region. Many PRM-based methods
to cope with the narrow passage problem are not applicable to RRT due to this reason.

Algorithm 1: Main loop of RRT
Input: Configurations gsiart and ggoqr, maximum number of iterations, I,,qe, maximum distance
to goal dgoal
Output: Trajectory P or failure

1 T.add(qstart); // create new tree and add initial configuration gster¢ in it
2 for iteration=1:1,,,, do
3 Qrand = random configuration in C using uniform distribution;
4 (near = nearest node in tree 7 t0 ¢rand;
5 eXpandTree(QTanda Qnear);
6 d = distance from tree to ggoal;
7 if d < dgoar then
8 P = extract trajectory from ¢gszqr: to dgoal;
9 return P;
10 end
11 end
12 return failure; // no solution was found within K iterations

Algorithm 2: expandTree(q and; Gnear): Expansion procedure of RRT

Input: Random configuration ¢,q,q € C, configuration tree 7T, its nearest node in the tree
QTLear E T
Output: Extended tree T
R =0; // set of configurations reachable from gpcq, together with control inputs
foreach v € U do
At

q = Qnear + fo f((bzeara u) dt;
if ¢ is feasible then

| R=RU{(¢,u)};

end

end

if R # () then

(qnew,u) = select a configuration from R closest t0 grqnd;
T .addNode(gnew);

T.addEdge(qneara Gnew Atv u)v

end
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The implementation of the expansion step in RRT differs in path planning and motion plan-
ning. In motion planning, where a forward motion model § = f(q, u) is considered, the expansion
of a node ¢ is realized by applying several control inputs u € U to the model in order to obtain
new configurations reachable from the node. The control inputs are applied over time At. New
configurations are obtained by integration of the motion model, which can be solved analyti-
cally in the case of simple systems like Car-like robots [221], or using numerical integration like
Euler integration or Runge-Kutta methods for complex systems. As many robotic systems can
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be driven by continuous values (e.g. speeds of wheels of mobile robots), the set U has to be
discretized in order to allow RRT to expand the node ¢yq- to a reasonable number of candidate
configurations. U can be created e.g. by enumerating combinations of discretized control inputs
of the actuators. An example of tree expansion using three control inputs U = {ui,ug,us} is
depicted in Fig. 2.5 and examples of constructed trees are depicted in Fig. 2.6

The advantage of the tree expansion using a forward motion model is that kinematics, dy-
namics and motion constraints can be considered, which allows RRT to find feasible trajectories
even under differential constraints. This is one of the reasons for wide usage of RRT in robotics
for motion planning of systems like mobile robots [71], 154, [107], autonomous cars [140], hu-
manoids [I33] or Unmanned Aerial Vehicles [273], 118, 200].

9near Anear
At @ new
®
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Figure 2.5: Example of expansion of configuration ¢ using control inputs i, us and us applied
over time At. The arrows denote orientation of the robot (a). The usage of this expansion in
the RRT algorithm (b) and the extended tree (c).
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Figure 2.6: Progress of RRT configuration tree for a mobile robot.

The RRT planner can also be used for path planning [266, 211}, 5I] simply by using the
straight-line planner in the expansion step. A line between @neqr and @rqng is constructed and
the tree is extended by a configuration ¢ne, lying on the line in the distance ¢ from ¢peqr, Where
€ is the resolution of the straight-line planner. This is visualized in Fig. and examples of
large trees constructed for 2D objects are depicted in Fig. 2.7b,c. RRT can be used for path
planning of complex 3D models, e.g. in assembly/disassembly studies [248, [36], 227, [5].

The ability of RRT to spread the tree in the configuration space is caused by the nearest-
neighbor selection of nodes for the expansion. As the random samples are generated uniformly
in the configuration space, the probability that a node will be selected for the expansion is given
by the volume of its Voronoi cell. Due to this Voronoi bias, the nodes at a boundary of the tree
are selected more frequently for the expansion than the inner nodes [161, 279], which boosts the
tree to grow towards unexplored areas of the configuration space. The Voronoi bias is performed
implicitly by the sampling and nearest-neighbor searching. The study [160] has shown that
exploration of the configuration space can be speeded up by selecting nodes with the largest
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Figure 2.7: The tree expansion for path planning using the straight-line local planner with
resolution ¢ (a). Examples of configuration trees with 318 nodes (b) and 2,900 nodes (c).

(a) Pgoal = 0 (b) Pgoal = 0.9 (C) Pgoal = 0.9

Figure 2.8: Examples of trees constructed with various goal biases during 1, 000 iterations. The
black dots represent the random samples. The uniform sampling enables the tree to explore
the whole configuration space (a). The goal-bias that generates 90 % of samples in the goal
configuration causes that the tree is attracted mostly to the same place, therefore it cannot
grow in the environment. The growth of the tree is suppressed even if the random samples are
generated around the goal configuration (c).

exactly computed Voronoi cell, but this exact approach is time consuming due to necessity to
maintain the Voronoi diagram of the nodes of the tree.

The growth of the tree towards the goal configuration can be speeded up using the goal-bias
principle [153]: the random sample grqnq is replaced by ggou With a probability pyeq. The goal-
bias is very effective in environments without obstacles. However, it can slow down the growth
of the tree if the goal is hidden by an obstacle, because the same boundary nodes are frequently
selected for the expansion, which is precluded due to the obstacle. This situation is depicted
in Fig. The random samples drawn from the whole configuration space allow the tree to
grow into the whole space (Fig. [2.8n). By replacing ¢,qnq for Ggoal With pgoqr = 0.9, the tree is
attracted to the goal, but it is stuck due to the obstacle (Fig. ) The picture Fig. shows
a modified goal-bias, where ¢,q,q is generated around ggoq; using Normal distribution.

The goal-bias can be generalized to multiple waypoints towards which the tree has to grow.
Authors of [238] proposed to place the waypoints between difficult and easy regions of the config-
uration space, but they did not proposed any strategy to find the waypoints. In Cell-RRT [85],
the waypoints are found using A* in the grid-based representation of the workspace and trees
are constructed separately withing each cell on the path.

Another approach to bias the tree growth towards the goal configuration is to sample around
trees constructed in previous iterations, which is suitable in situations, where RRT is repeatedly
run in the same environment, e.g. in the robotic soccer. In these scenarios, a plan is computed
for a short time horizon and it has to be delivered as fast as possible. Despite possible changes
in the environment, the trees constructed in previous iterations can be used to speed up growth
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of the new one [65, 20]. In [20], the tree is built from scratch but its growth is biased along the
trajectory found in the previous step by replacing ¢rq.nq by a random point from the trajectory
with a certain probability (authors suggest 60 % of iterations). An approach to fully preserve
the previously built tree was proposed in [65]. Instead of removing the tree, the algorithm only
removes parts of the tree that are invalidated due to new situation in the environment.

2.4.1 Multiple trees

Other approaches to speed up growth of the tree and consequently to connect the start and goal
configurations in shorter time are based on multiple trees. RRT-Bidirect [I53] utilizes two trees,
one rooted at gsqr¢ and the second one at ggoq- The trees can be grown simultaneously, i.e.,
both are expanded towards g,qnq in each iteration, the expansion procedures can alternate [135]
or only a tree containing less nodes is expanded. The RRT-Bidirect terminates if the trees are
close enough to each other and can be connected by an edge.

To connect two trees 71 and 7» using their nodes ¢1 € 71 and ¢o € Ts, an appropriate control
input leading the robot from ¢; to g2 needs to be found. This operation can be solved easily
for holonomic robots or robots with simple differential constraints. Generally, this problem is
the two-point boundary problem, whose analytical solution is known only for limited class of
systems [40]. The problem is usually solved numerically by an optimization technique, e.g. by
perturbing the control inputs [142] [40]. The connection of two trees, especially under differential
constraints, is therefore a time demanding operation. The bidirectional search is more suitable
in the path planning task, where the configuration trees can be simply connected by the straight
line.

The bidirectional search can be further extended by employing multiple trees [157] [46| 234]
260, 202, 224], which requires to define how to create the multiple trees, how to extend them
and how to connect them to be able to find a trajectory. For example, authors of [234] suggest
to create a new tree if a random sample g.q,q cannot be connected to any of the existing trees.
The new tree is rooted at the configuration ¢.,q. To prevent creation of too many trees, a new
tree is created only with a given probability. A bounding box is maintained for each tree. The
connection procedure is called only if the newly added node changes the bounding box.

Another way to maintain the RRT trees is to employ PRM as a high-level planner [202]
46, 224, 172]. The PRM planner samples the configuration space and RRT is used to grow a
local tree around each node of the PRM’s roadmap. The nodes of the PRM’s roadmap are
connected using the local trees. The combination of PRM and RRT planners is similar to the
early Z3 planner [81]. The roadmap of the trees can be easily parallelized, because each tree-
based planner can run on its own processor. Similarly, the method [224] uses PRM to cover the
large free areas of the configuration space. Each sample is tested for being located in a narrow
passage. If a sample lies in a narrow passage, RRT is started in this configuration. A sample
is said to be in a narrow passages if it cannot be connected to its neighbors or only to a few of
them. Contrary to [234], the method [224] starts a new tree only in narrow passages, which is
motivated by the fact that RRT grows well in narrow passages despite the fact that it is hard to
reach them.

2.4.2 Modifications of the expansion step

RRT—Connect [134] 135] repeatedly expands the tree from the last added node until an obstacle
is hit or the goal is reached. This expansion can be implemented e.g. by applying same control
input to the last added node. The RRT-Connect method can create large chains of nodes, which
quickly traverse free regions. The repeated application of the same control inputs is however
not suitable in tortuous narrow passages, where control inputs need to be frequently changed in
order to steer a robot through the passage.
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RRT (1,100 nodes) RRT-Blossom (6,430 nodes)

Figure 2.9: Examples of RRT trees for a mobile robot constructed using RRT and RRT-Blossom
in 2,000 iterations. The tree constructed by RRT-Blossom is more dense, as upto five new nodes
are added to the tree in each expansion, while RRT can add at most one node.

While the original RRT algorithm extends the tree using only one new node in each iteration,
RRT-Blossom extends the tree using multiple nodes [I1I]. In the expansion procedure, all
control inputs are applied to steer the system from geq in order to obtain a set of reachable
configurations. A configuration from the set can be added to the tree only if the distance to
its parent is smaller than the distance to its nearest neighbor in the tree. This pruning boosts
the growth of the tree towards unexplored regions of the configuration space. Another pruning
method based on filtering of non-viable states, i.e., the states leading to a collision, was proposed
in [112]. In comparison to RRT, RRT-Blossom generates more dense trees. Examples of trees
constructed by RRT and RRT-Blossom are depicted in Fig.

An analysis of the performance of RRT in the narrow passages was presented in [279]. The
nodes in the tree can be divided into two groups: frontier nodes, whose Voronoi cells grow
together with growth of the environment and boundary nodes, which are close to the obstacles.
The frontier nodes lie at the boundary of the tree and they should be selected for the tree
expansion. In a narrow passage, the nodes are both boundary and frontier. These nodes are
frequently selected for the expansion, because they are the frontier nodes, however the tree
cannot be expanded from them, because they are also the boundary nodes. A Dynamic-Domain
strategy for RRT (RRT-DD) is proposed in [279]: each node holds an action radius defining
how far can be a random sample g,..,q that activates the node for the expansion. The RRT-DD
algorithm generates random samples ¢,qnq and finds its nearest neighbor in the tree ¢peq until
0(Grands Gnear) < GQnear-radius. The extension of gneqr is performed as in the original RRT. If the
connection is successful, the radius of g, 1S set to 0o, otherwise the radius of gneqr is set to a
predefined constant Ry, (Fig. . This ensures that the boundary nodes will not be selected
frequently for the tree expansion. Although the algorithm is efficient in the narrow passages,
it is strongly influenced by the parameter Rgq. Too small radius decreases performance of the
planner as it takes more time to generate samples that can induce a tree’s node for expansion.
Too large radius supports only exploration of the space and the refinement does not have any
effect. To set the initial radius Ry, authors suggest to use 100e, where ¢ is the resolution step
of the local planner.

To decrease the sensitivity of the method to the parameter Ry4, it can be automatically
adjusted, which was proposed in RRT-ADD (RRT with Adaptive Dynamic Domain) [108]. The
idea of RRT-ADD is to decrease the activation radius of a node that cannot be expanded. The
activation radius is increased after the node is successfully expanded. The radius is increased
by scaling it by factor (1 4+ agq) and it is decreased by scaling it by factor (1 — ayq), where agqy
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Figure 2.10: An example of an unsuccessful expansion in RRT-DD due to low activation radius.
The upper right corner shows possible expansions. The nearest neighbor to ¢.qnq is node A,
however it cannot be selected as its activation radius (yellow circle) is smaller than the distance
t0 Grand, S0 node B is selected for expansion, because its radius is co (a). The node B cannot be
extended, as all states lead to a collision (black nodes) (b). Therefore, the radius of the node B
is decreased from oo to Rgq (c).

a b

Figure 2.11: Example of a tree constructed using RRT-ADD with dynamic domain radius for
the Car-like robot (a) and the 2D holonomic robot (b). The orange circles denote activation
radius smaller than oco. The initial radius is set to Ryq = 70 mu, agqy = 0.1. Size of the maps is
1,500 x 1,000 mu. The activation radius is limited at nodes close to the obstacles.

is parameter of RRT-ADD. The effect of this automatic adjustment is that nodes close to the
obstacles have smaller activation radius, which prevents them to be frequently chosen for the
expansion. Examples of configuration trees built by RRT-ADD are depicted in Fig.
RRT-Retraction [286] improves sampling in the narrow passages for motion planning of 3D
objects. After grqnq is generated and its nearest neighbor ¢neqr € T is found, the segment
from @rand tO Qnear is checked for collision. The tree is extended normally if the segment is
free, otherwise the retraction step is performed. The task of the retraction step is to find a
contact configuration that minimizes the distance to ¢rqnq. The contact configuration ¢ is found
on the line and its neighborhood is searched to find another contact configuration ¢’ such that
0(¢', Grand) < 0(q, @rand)- The retraction is terminated after I,.; steps or if no new contact
configuration can be found. The configuration trees built by RRT-Retraction can therefore
contain more nodes than is the number of planning iterations, as the tree can be expanded by
upto I,..; contact configurations in each iteration. An example of the retraction is depicted in
Fig. The RRT-Retraction can quickly penetrate to narrow passages, but its computational
burden is significantly increased due to necessity to find the contact configurations. The method
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Figure 2.12: The retraction procedure of RRT—Retraction. The random configuration g,qnq is
non-free and a contact configuration ¢ is found on segment ¢ and, Gnear (2). The neighborhood
of ¢ is searched to find a new contact configuration ¢’ that minimizes distance to grqnq (b). The
tree is then extended towards ¢'.

was designed mainly for 3D path planning, but it can be combined with other planners for motion
planning of many-DOF robots [197].

The paper [286] lacks technical details about construction of the contact configurations.
For the purpose of our experiments, waypoints are computed on the line segment (Gnear, Grand)
with resolution € (resolution of the straight-line planner). Collision detection is run in each
point. The last collision-free configuration on the line starting from ¢eq,- is then considered as
the contact configuration. In order to find the next contact configuration around a previous
configuration ¢, N,¢; random samples are generated uniformly in the radius r,.¢; around ¢. From
these configurations, a collision-free configuration that is nearest towards g.q,q becomes the next
contact configuration. The procedure is repeated at most I..; times. The expansion procedure
of RRT-Retraction used in our experiments is listed in Appendix [A]

2.4.3 Optimality of RRT-based planners

The RRT planner belongs to the family of non-optimal planners. The probability that RRT
returns an optimal path is almost zero [I16]. Two basic paradigms are used to compute optimal or
near-optimal solutions using RRT: to construct the trees considering an optimality criteria [104,

117, 200, 154], 245] 107, 106) [60] and to improve the plans by a post-optimization [76, 186, 28,

187, 13, 79, 38, 10, 217].
In MA-RRT [154], a cost map is used to define difficulty of traversing areas in the environment.

To select a node for the expansion, all nodes in the tree are examined to estimate the cost to
the goal configuration. The node with the lowest resulting cost is selected and added to the tree.
MA-RRT generates trajectories with lower costs, but the method is computationally intensive,
because all nodes need to be examined during each expansion step. The necessity of examining
all nodes is eliminated in [245], where only several neighbors of gpeq, are tested for the expansion.
The costmap is utilized also in the approaches [I07, [106], where Monte Carlo optimization and
simulated annealing are used to accept or reject new states based on the gradient of the cost
function of the local motion. Another approach for computing good paths in rough terrains was
proposed in [60]. In this approach, the cost-map defines “obstacleness” as a cost of reaching a
given place. The expansion of the tree is allowed from the nodes with a low obstacleness. If no
solution can be found, the allowed level of obstacleness is increased.

Recently, PRM* and RRT* [117] extensions have been proposed, which evaluate quality of
each node as a cost of the path from the initial configuration to the node. Contrary to RRT,
where the tree is extended only from the node gyeqr-, RRT* considers also its neighbors. The tree
is extended from such a node that minimizes cost of the newly added node. Moreover, after a
new node is added, the parent node can be reconnected to different nodes, if the reconnection is
feasible and if it decreases the cost.

A different approach to achieve optimal or near-optimal plans is based on post-optimization.
A path or trajectory is optimized by moving or even deleting its configurations. A simple
approach for path smoothing is to test if three consecutive points can be replaced by a straight
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line made of the end points [13]. This is generalized in the Shortcut pruning [79], which tries to
replace a whole sequence of points by a single line. The Shortcut strategy selects the sequence
randomly. Other ways of selecting the sequence are discussed in [38] 10, 217]. Methods to replace
parts of path by other geometric elements (e.g. circular segments) were proposed in [115] [13].

The path manipulation is not easy if kinematic and dynamic constraints need to be considered.
Therefore, postprocessing is used mainly for path planning of mobile robots, where the usual
criterion is to improve smoothness of the paths [76] [53]. Smooth paths are preferred, as they can
be followed by mobile robots easier than jerky paths or paths with sharp turns [53].

During path pruning also clearance can be considered [79]. The path smoothing methods
usually change the paths only locally, i.e., the improved path is located in the same homotopy
class as the original one. The approach [83] allows more drastic changes in the path homotopy,
so that the path can skip obstacles during the post-optimization process.

2.5 Implementation details

The motion planning problem is usually studied on the algorithmic level and less number of
papers deal with implementation details. The implementation details become crucial in chal-
lenging tasks like autonomous car driving [140], or navigation of planetary rowers [140], where
the plans have to be delivered very fast or where computational resources are limited. Several
implementation details can be found in [49], and current issues and challenges in the motion
planning are summarized in [4].

An important part of the sampling-based planners is the nearest-neighbor search. In PRM,
the nearest-neighbor search is used to connect samples in the roadmap. Fast search can be re-
alized by dedicated data structures like KD-trees or metric-trees. In RRT, the nearest-neighbor
search is realized on an incrementally growing dataset, which requires fast insertion to an existing
KD-tree data structure. KD-trees suitable for RRT planners are supported by MPNN library [9].
The exact nearest-neighbor search using KD-trees becomes impractical in high-dimensional con-
figuration spaces, as almost all the stored nodes have to be visited [203]. In such a case, an
approximate nearest-neighbor method can be used. The performance of KD-trees can be nega-
tively influenced by frequent cache misses. A cache efficient KD-tree was proposed in [3], but it
supports only one-time construction of the tree, which is not suitable for RRT-based planners. A
cache aware RRT* that is able to construct KD-tree on-line was presented in [99]. It subdivides
the configuration space into several regions so the resulting dataset is small enough to fit in the
cache.

The collision detection is another important procedure of sampling-based planning. It is used
to decide whether a configuration ¢ € C is free or non-free. Collisions between 3D objects can be
computed fast using hierarchical data structures like OBB or AABB trees [56], which have been
implemented in several libraries like Rapid or Solid [207]. Parallelization of collision detection
can be achieved on multi-core architectures [52] or even using dedicated hardware [15] 196, [126].

Parallelization of computations is a widely used technique to obtain plans in a shorter time,
and it has been already used in several early planners [10, B35, [I63]. A simple parallel version
of RRT [32] executes the same instance of RRT on several processors and the first processor
that finds a solution terminates the others. The disadvantage of this approach is that all the
processors explore the configuration space separately and therefore many computations (e.g. col-
lision detections) are repeated, rather than shared amongst the processors. To share common
data structures a global communication between processors is required. A parallelization frame-
work for single-query planners was presented in [190]. In this approach, the processors construct
configuration trees separately until a new best solution is found (e.g. the shortest path to the
goal or the closest path to the goal). If a better plan is found, it is exchanged between the
trees and irrelevant nodes are pruned. A possible drawback of parallelized planning is the global
communication between the processors, which can have a considerable overhead. The commu-
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nication overhead can be decreased by splitting the configuration space to several regions, that
are searched independently by each processor [209] [105].

The ability of RRT to explore the configuration space is also influenced by the employed
metric o [41]. The Euclidean metric, that is supported by many KD-tree libraries, is often used
in RRT-based planners. The Euclidean metric is suitable only for non-holonomic systems, which
can freely move between two configurations on a straight line. In the presence of kinematic
constraints (joint limits, obstacles or other non-holonomic constraints) or dynamic constraints
(e.g. torque limits), the Euclidean metric does not describe the real distance between the states
correctly. Consequently, the nearest-neighbor search repeatedly selects nodes without growing
closer to the sampled region [226, 27], which slows down the tree growth process.

An ideal metric would be an optimal cost-to-go function computed e.g. as a time or energy
required to move the system between given configurations [69]. Computation of such a metric
is intractable for most of the high-order systems as it would require to solve the original motion
planning problem [15I]. The cost-to-go metric can be approximated using simple models [127,
194]. The drawback of using cost-to-go functions is that fast data structures like KD-trees cannot
be used. Linear search is used instead, which can decrease the speed of the planning process [194].

2.6 Conclusion

The presented overview has shown different approaches to solve the path and motion planning
problems. The basic path planning methods rely on a geometric description of the workspace,
from which a graph-based representation can be directly built. Examples are Voronoi diagram or
decomposition-based methods. An important advantage of these methods is a fast computation
of collision-free paths, especially if robots can be approximated by a disc. The methods are
therefore suitable for path planning of the mobile robots.

Sampling-based methods like PRM and RRT attempt to solve the planning problems by
randomized sampling of the configuration space. The methods utilize black-box collision detec-
tion to determine free and non-free samples which allows them to cope with robots of arbitrary
shapes. Another important advantage of the sampling-based methods is the ability to cope with
differential constraints. As the methods work primarily in the configuration space, they can be
applied to robots with many degrees of freedom.

One of the challenging issues of sampling-based planning is the narrow passage problem. Due
to low volume of narrow passages, it is difficult to sample them and therefore to construct a path
through them. The presence of the narrow passages decreases performance of the sampling-based
planners and consequently it increases time necessary to find a solution.

PRM-based planners can cope with the narrow passage problem by focusing the sampling to
regions that are believed to contain a narrow passage [1911 [138] 247, 22| 173, 174 172 171, 24
27,98, [95]. The biased sampling in a given region can improve the performance of RRT as well,
especially in environments without obstacles [150, 238], but it may become counterproductive in
environments with obstacles. The obstacles can block the growth of the tree, which slows down
the planning process.

In the task of motion planning for robots with few degrees of freedom, the knowledge about
the obstacles in the workspace can help to estimate the narrow passages in the configuration
space. In this thesis, we propose a novel sampling schema for the RRT planner. The core of the
method is the utilization of a workspace knowledge represented by a geometric path found in the
workspace. The path is used to focus the sampling of the configuration space to the regions that
are believed to contain a solution. The usage of such a path speeds up the tree growing process
and it also helps in the case of the narrow passages. To compute the path as fast as possible,
the path planning methods can be utilized.
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Guided sampling of configuration
space

The ability of RRT to quickly explore the configuration space is caused by the combination of
uniform sampling and the nearest-neighbor rule used to select nodes for the expansion. The
growth of the configuration tree into some parts of the configuration space can however be
slowed down due to the narrow passages. As has been proposed in many PRM-based planners,
the knowledge about the obstacles in the workspace can help to estimate positions of narrow
passages in the configuration space. In this chapter, we propose a novel sampling schema for
RRT to cope with the narrow passage problem. To maximize benefit of the workspace knowledge,
we propose to compute a path in the workspace, and we use it to guide the tree through the
configuration space towards the goal configuration.

3.1 Problem analysis

The growth of the configuration tree in RRT can be attracted to a region R C C by replacing
random configuration ¢qnq € C by ¢,,,; € R with a non-zero probability. An example of the
biased sampling is the goal-bias [I50], which replaces ¢rand by ¢goar With probability pgeq to
attract the tree towards the goal configuration. Sampling around predefined configurations was
proposed in [238]. Authors suggest to place the configurations close to narrow passages, but they
do not provide any method to find such configurations. The biased sampling can also be used
to rebuild a tree if the environment slightly changes, e.g. during robotic soccer. In [20] 243], the
configuration space is sampled more along a previously built tree.

Increasing probability of sampling in a given region however cannot ensure that a tree will
grow faster towards the region. The reason is that a sample can be added to the tree only if the
tree can reach the sample. The effect of goal-bias is investigated in the following two scenarios
in environments with and without obstacles.

3.1.1 Goal-bias without obstacles

Let consider the scenario with a long corridor depicted in Fig. with an initial configuration
@start and two goal configurations ggown and giop. Both goal configurations are equally distant
from @gtqrt- Due to the nearest-neighbor rule used to select the nodes for the expansion and the
implicit Voronoi bias, the uniform sampling supports fast growth of the tree towards unexplored
areas of the configuration space [I61]. In the long corridor, the nodes on the top of the tree have
larger Voronoi cells than the nodes on the bottom (Fig. [3.1b), therefore the tree will prefer to
grow upwards if uniform sampling is used. Consequently, the tree will probably reach g, faster
than ggown although both goals are equally distant from qgqr¢. Examples of typical configuration
trees are depicted in Fig. [3.1,d.

23
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Figure 3.1: The scenario with long corridor of size 400 x 900 map units (mu). The holonomic
robot is represented by a box of size 50 x 50 mu (a). Voronoi diagram of a tree with 16 nodes (b).
Example of configuration tree with highlighted path for ggeun (¢) and g variants (d) computed
without goal-bias. A small goal-bias pgoq = 0.2 forces the trees to grow directly to ggown (€) as
well as to gop (f).

Table shows difference between planning without (pgoqr = 0) and with (pgeq = 0.2) goal-
bias. The plans have been computed using basic RRT with I,,,, = 500 iterations and distance
threshold dyoq = 15 mu for a holonomic 2D robot represented by a box of size 50 x 50 mu,
where mu denotes the “map units”. The table shows average values over 50 trials. The success
rate is the percentage of trials where the tree approached a given goal configuration to a distance
dgoqr = 15 mu or less.

Without the goal-bias, RRT builds the trees with ~ 412 nodes in average to reach ggoun, while
only ~ 215 nodes are required to reach gs,,. The goal q4oun Was not always reached by the tree,
which is indicated by the distance to goal that is larger than the threshold dy,q = 15 mu. The
ability to reach both goals significantly improves if a small goal-bias (pgoa = 0.2) is introduced.
The average size of the built trees is reduced from ~ 412 nodes to ~ 17 nodes in the case of
Qdown and from ~ 215 nodes to ~ 10 nodes in the case of g;,, respectively. The examples of the
configuration trees constructed with goal-bias are depicted in Fig. [3.1p,f.

The introduction of the goal-bias also increases the success rate. Under uniform sampling
(Pgoat = 0), Giop is approached in 78 % of cases, while ¢4, only in 48 % of cases. When the
goal-bias is introduced, both configurations are visited in 100 % of cases. The higher success rate
is also indicated by the decreased distance to goal.

This simple experiment shows the positive effect of the goal-bias to the growth of the con-
figuration tree. It also shows, that the relative position of the start/goal configurations in the
environment significantly influences performance (especially success rate) of the RRT planner.
Although the both goals are equally distant from the start configuration, the success rate signif-
icantly differs if no goal-bias is used.

3.1.2 Goal-bias in scenarios with obstacles

An important parameter of the goal-bias is the probability pyeq; of drawing the samples around
Qgoal- A right choice of pyoq depends on the environment as well as on the maneuverability of a
robot, which is demonstrated in the following experiment.

The experiment has been performed in four 2D environments (Fig. with two Car-like
robots (Car-like; and Car-likes), two Differential drive robots (Diffy and Diffy) and two 2D
holonomic robots. The robots Diffy and Car-liker cannot move backward, while the robots Diffy
and Car—likei can move in both directions. For each robot and each map, 200 start/goal feasible
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Table 3.1: Effect of goal-bias sampling in the scenario with long corridor.

: qdown Gto
Goal-bias Mean Dev Mean ' Dev
Tree size 412.40 130.90 215.74 226.82
Runtime [s] 0.03 0.01 0.02 0.01
Pgoal =0 Distance to goal [mul] 18.7 21.5 12.5 144
Success rate 48 % 78 %
Tree size 17.40 7.70 10.42 5.10
Runtime [s] 0.02 0.01 0.02 0.01
Pgoat = 0.2 Distance to goal [mul] 1.00 4.47 3.57 4.92
Success rate 100 % 100 %
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Figure 3.2: 2D maps with a random start/goal configuration pair. All robots are represented as
box of size 20 map units. Numbers in parentheses denote width of narrow passage in BugTrap*
maps.

configurations are randomly generated. Basic RRT is run 40 times for each start/goal pair
and each tested value of pyoq = {0,0.05,0.1,...,0.95}. Maximum number of allowed iterations
I'mae = 1,000, and the goal region is defined by radius dgoq = 30 mu.

The performance of RRT is measured as percentage of start/goal pairs that are connected
by the planner at least once during the 40 trials. A start/goal pair is connected if the tree
approaches the goal configuration to distance less than the threshold dgoq = 30 mu. The results
are visualized in Fig. and Fig. ﬁ A small goal bias (pgoq = 0.1) significantly increases the
number of visited start/goal pairs compared to motion planning without goal-bias (pgoar = 0).
The goal-bias has the most positive effect (i.e., increase of percentage of solved instances) in the
Potholes environment. The Potholes map contains 23 obstacles and the tree can easily grow
around them without being stuck. Even with a high goal-bias (pgea = 0.7), almost all instances
can be solved (with a minor exception of the Car-like robot, which is discussed later).

Contrary, the increased goal-bias brings a negative effect in the Simple environment. The
Simple map contains long walls, which requires the robots to perform zig-zag motions in order
to maneuver through the environment. Such motions are however suppressed by the goal-bias.
The goal-bias can help mainly in cases where the start and goal configurations are not separated
by any obstacles (similarly as in the experiment described in Sec. . In this experiment, the
start /goal pairs are placed randomly, therefore many start and goal configurations are separated
by the obstacles. Consequently, the large goal-bias can help only for few start/goal pairs, which
explains the decreasing success rate with the increasing goal-bias. An example of start/goal pair
that is separated by the obstacles and the negative effect of the increasing goal-bias is depicted

in Fig. 33
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Figure 3.3: Examples of the configuration trees (green) and resulting trajectories (red) con-

structed with the goal-bias. All robots can move forward and backward.

The results also show that the planning is more difficult for robots with reduced motion
abilities (Car-likey, Diffy), because the percentage of solved stat/goal pairs decreases faster with
increasing goal-bias than for Car-like; and Diffy robots. The reduced motion abilities decrease
possibility of tree expansion, which consequently slows down the growth of the tree. Similar
decrease can be observed with the 2D holonomic robots. The maneuverability of the 2D holo-
nomic robots is determined by their size, therefore the smaller 2Dy« 50 robot is more agile than
the larger 2Dsogx100 robot. The achieved results confirm this, because the percentage of solved
start/goal pairs decreases faster for the 2Dggx 109 robot than for the 2Dggx50 robot.

3.1.3 Motivation for a novel guiding schema

The previous motivation experiments have shown that the goal-bias principle can significantly
improve growth of the tree towards a goal region and consequently, it can speeds up the planning
process and increase the success rate, as was shown in Section However, it is not easy to
determine the proper amount of the goal-bias in environments with obstacles, where it can have
positive and also negative effects, which has been discussed in Section [3.1.2

The experiment described in Section [3.1.1] indicates, that the growth of the tree can be easily
attracted towards a given region if the region is directly reachable from the tree, i.e, if there is
no obstacle between the tree and the region. To maximize growth of the tree towards a given
region, we propose to sample regions in the configuration space considering the ability of the
tree to reach them. Let consider the situation depicted in Fig. [3.6h, where the goal-bias is used
to generate more samples in the narrow passage area (denoted as np in the figure). The random
samples ¢rqnq generated in np will repeatedly select the same nodes for expansion (Fig. [3.6b),
but the tree cannot be expanded due to the obstacle. The frequent selection of the same nodes
therefore slows down the growth of the tree. To help the grow through the narrow passage, first
the region A should be sampled, then the region B and then the narrow passage (Fig. [3.6¢).

To improve the growth of the configuration tree, we propose to extend the goal-bias principle
considering the following criteria.
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Figure 3.4: Performance of the RRT method with increasing goal-bias in the task of motion
planning for mobile robots. The graphs show how many percents of start/goal pairs are connected
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Figure 3.5:

Performance of the RRT method with increasing goal-bias in the task of path
planning for 2D holonomic robots. The graphs show how many percents of start/goal pairs are
connected by RRT at least once during 40 trials.
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Figure 3.6: An environment with a narrow passage (denoted np). The biased sampling in the
narrow passage slows down the growth of the tree, as the same nodes (blue in (b)) are frequently
selected, but these cannot be expanded due to the U-shaped obstacle. To attract the tree towards
the narrow passage, first the region A should be sampled followed by sampling in region B. After
the tree reaches the region B, narrow passage np can be sampled more dense (c).

1. Biased sampling in a given region may become counterproductive if the tree is blocked by
an obstacle. The ability of the tree to grow towards a given region has to be considered.
To ensure that a tree can grown into a given region, the region should be sampled densely
only if the tree is close to it.

2. Instead of the blind biased sampling in one or more regions, the tree should be guided
through the configuration space. The guiding can be realized along a path computed in
workspace leading from the start configuration to the goal configuration.

3. Besides sampling the configurations along the guiding path, sampling from whole C should
be allowed as well. The probability of sampling along the guiding path should respect
the ability of the tree to follow the path and it should be adapted automatically. If the
tree cannot follow it, the sampling along the guiding path has to be suppressed in order
to generate more samples from the whole configuration space. The aim of this adaptive
sampling is to maintain growth of the tree even if the path cannot be properly followed.

3.2 RRT-Path: guided sampling of configuration space

The main idea of the proposed RRT-Path method [252] is to sample the configuration space
along a path leading from the start configuration to the goal configuration. The random samples
are not drawn along the whole path but only on such parts, that are not reached yet by the
tree, which enables the tree to follow the path. As the path guides the growth of the tree, it is
referred to as guiding path in the rest of the text.

Let P = (qi,..-,qn), where ¢; € Cfree,i = 1,...,1, ¢1 = Gstart a0d G = ¢goal, denote the
guiding path. The guiding path represents a knowledge about the environment. To maximize
the benefit of the guiding path, the configuration space should be sampled around such parts of
the guiding path that have not been reached by the tree yet. Contrary, sampling along already
reached parts of the path should be suppressed. This is achieved using a virtual goal q, € P,
which is a point with index v. The virtual goal defines which part of the guiding path is still
active, i.e., is used to attract the tree, and which part has no longer importance for the tree. At
the beginning, the virtual goal is set to v = 1 and it moves towards the next points on the path
if the tree approaches the virtual goal.

To generate random samples around the path, each point ¢; € P has assigned a sampling
radius r;. The radius determines both an importance of the point as well as the region around
the point to be sampled. It is computed as:

_J 0 if i<w (3.1)
e dgoat(1 — &8) + Rygc-  otherwise, ’
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where R;g > dgoql is a radius around the virtual goal and dy,q is the final radius around ggeq-
The radius r; decreases linearly according the distance c; between point ¢; € P and the last point
qn measured along the path using the metric p:

n—1
ci =y o(gj,q41)- (32)
Jj=i

The radius 7; determines the priority of the guiding path points, which is zero for points
behind the virtual goal (i < v), it is largest for the virtual goal (i = v), and it linearly decreases
towards end point of the guiding path.

To generate a random point along the guiding path, first a point g € P on the path is
selected randomly according the priorities r; of the points. As r; is zero for ¢ < v, the random
point ¢ will be selected in front of the virtual goal. The random sample ¢qqnqg ~ N(qg, L) iS
generated from Gaussian distribution around point gg. In this work, we use symmetric Gaussian
with X = riI, where I denotes the identity matrix.

The proposed RRT—Path algorithm is listed in Alg.[3]and it works as follows. In each iteration,
Grand is generated along the guiding path with probability pgeq or it is generated randomly in
the whole configuration space with probability (1 —pgea;). The nearest neighbor gpeq, € 7 in the
tree to @rang is found and expanded using a motion model of the robot. The tree is extended by
such a resulting configuration that is closest to g.qnq. Then, the virtual goal is updated (Alg. .
The virtual goal is moved forward if the tree approaches the path in front of the virtual goal. To
determine whether the tree approached the path, nearest neighbors geqr; in the tree to points
¢i € Pi=w,...,n are found and distance d; = 0(¢i, gnear,i) between the point ¢; and its nearest
neighbor is calculated. Point g; is said to be approached, if the distance d; < dpqs,- If no point
on the path is approached, the virtual goal is not changed. Otherwise, the last point on the
guiding path approached by the tree is found and the virtual goal is set to its successor on the
path.

The virtual goal does not move sequentially on the guiding path, but it can “skip” some
parts of the guiding path, because it is set as the successor of the last reached point on the
path. The skipped part of the guiding path is not used to attract the tree. This brings a
significantly advantage if a part of the guiding path cannot be easily followed by the tree, e.g.
due to differential constraints or due to obstacles. An example of skipping part of the guiding
path is depicted in Fig.

The spread of samples around the guiding path is determined by the radius R;g. In an ideal
case, the tree should be able to follow the guiding path precisely. As will be shown in the next
section, the guiding is computed as a geometric path in the workspace and therefore, it might

radius r; radius dpath guiding path tree node

Figure 3.7: Example how the tree can skip part of the guiding path. The brown circles represent
radius dpqsn, green circles represent decreasing sampling radius 7;. The probability of generating
random sample around path is given by r;. The actual virtual goal is set to ¢, = g3, so the
guiding path is sampled starting from point g3. If the tree approaches point g7, the new virtual
goal will be set to gg.
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Algorithm 3: RRT-Path: guiding a tree along a guiding path

© 00 N O Ok W N

[ o T S S S S G o]
© W0 9O Uk W N - O

Input: Configurations gstart, Ggoal, maximum number of planning iterations Ipnqz, goal-bias pyoat,

initial value of radius R,q, distance dgoq;, guiding path P = (qi, ...
Output: Trajectory between gstqrt and ggoq: or failure

»qn)

T'add(qstart)§

v =1; // index of the virtual goal is set to the first point on the guiding path

for iteration=1:1,,4, do

else

end

if d < dgoq then

end

end
return failure;

if rand(0,1) < pgoa: then

update radius r;; // Eq. |D
qi = selected random point on guiding path according r;;
Grand =random configuration around ¢ from N(qx, Xk );

| Granda = random configuration from C;
Gnear = nearestNeighbor (T ,¢rand);
expandTree(gnear, Grand);

(v, R;,;) = updateVirtualGoal(P, T v,R

d = distance from tree T to ggoal;

‘ return extract trajectory from gstart t0 goat;

Algorithm 4: updateVirtualGoal(P, T, v, R

© 00 N A WN -

e e e e s e
W N O G b W N = O

Input: Guiding path P = (q,...

Ruyg

,qn), configuration tree T, index of virtual goal v, actual radius

Output: Index of new virtual goal v, attraction radius R, of the virtual goal

approached = false;
Vnew = U — 1 5

fori=mn,n—1,...,9+1,v do //testing points from last point on the guiding path

di = Q(Qnea7',i7 Qz)v

if d; < dpath then
Unew = Z7
approached=true;
break;

end

end
Vnew = min(n, Unew + 1)a
if approached=true then

| Ry = Rug
else

| Rl = R+ o)
end

return (Vnew, 12,4);

Qnear; = T -nearestNeighbor(g;);
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be difficult to follow it exactly, especially with non-holonomic robots. In such a case, the radius
needs to be automatically increased to explore more space around the guiding path. The radius
R, is adapted as

Ry if virtual goal is moved in current iteration

I —_
Hug = { R;,g(l + «) otherwise, (3.3)

where 0 < o < 1 is the adaptation rate, and R,4 is the initial value of the radius. Practically,
R, can be limited, so it is not greater than size of the environment.

The adaptation process is depicted in Fig. [3.8] where a trajectory has to be found through a
narrow passage. The tree easily follows the guiding path until it approaches the narrow passage
(iteration 143). The tree cannot enter the narrow passage during iterations 144-368, and R, is
automatically increased, because the virtual goal is not moved. The increase of the radius R;g
causes that random samples are drawn also from the neighborhood of the narrow passage, which
increases probability, that a tree will find the entrance to the narrow passage. In iteration 369,
the tree finally traverses the narrow passage and the radius R;g is set back to the initial value
Ryq.

RRT is probabilistically complete which is ensured by the sampling of the whole configura-
tion space and the nearest-neighbor rule used to select the nodes for the expansions. To preserve
probabilistic completeness of the RRT—Path method, it has to be ensured, that the whole config-
uration space can be sampled with a non-zero probability. This can be achieved either if pgoq < 1
or if R,y > 0 and o > 0. In the first case, the configuration space is sampled with probability
1 — pgoar (line 7 in Alg. . If this probability is zero (pgoar = 1), we need to ensure that g¢,qnq
can be generated from the whole configuration space. If the initial radius along the virtual goal
R,y > 0 and the adaptation mechanism is allowed (a > 0), then this radius can be enlarged to
cover the whole configuration space. This ensures, that the random samples can be generated
from the whole configuration space.

3.2.1 Construction of a guiding path

An ideal guiding path should be constructed directly in the configuration space, which would
require to solve the generalized path planning problem. A simple and faster approach is to
construct the guiding path in the workspace. In the case of typical mobile robots with two or
three DOFs, the guiding path can be computed as a geometric path in the workspace using basic
path planning methods mentioned in Section Examples of guiding paths computed by these
methods are depicted in Appendix

These methods compute 2D guiding paths (in the case of 2D workspaces) as a sequence of
n two-dimensional points (p1,...,pn),p; € W. For the purpose of RRT—Path, the points need
to be extended to the configuration space of the robot. For example, a point p; = (z,y) € W
can be converted to a configuration ¢; = (x,y, @) € C of a Differential drive or Car-like robot by
setting ¢ = 0. This path can guide the tree using x and y dimensions and the tree randomly
samples the third dimension that describes heading of the robot. A more practical approach is
to consider also the heading ¢, e.g. by setting ¢ according the angle of the segment starting at
the corresponding point.

The path planning methods computed in the polygonal domain consider either a point holo-
nomic robot, or a disc robot. In the latter case, path planning is computed on the map where
the obstacles are enlarged by the radius of the robot. To consider shape of a robot during the
computation of the guiding path, the PRM path planner can be employed, because it consid-
ers full geometry of the robot during the roadmap construction process. Another advantage of
PRM-based guiding path is that it can provide guiding path directly in the configuration space
of the robot, therefore no conversion between workspace points and configuration space points is
required. A disadvantage of PRM is that it can be slower than the basic path planning methods,
therefore it is recommended to used it only for robots that cannot be approximated by a disc.
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iteration 10

iteration 50

iteration 143

iteration 368

iteration 369

final solution

Figure 3.8: Example of guiding process in a narrow passage. The guiding path is depicted in
brown and the green circles represent the radius r;. During the iterations 143-368, the tree
cannot enter the narrow passage, which leads to increase of R;g and consequently to increase of
r;. After the tree traverses the narrow passage, the radius R;g is decreased to its initial value

Ry
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3.3 Practical recommendations

Parameters of RRT-Path are the radius R,y, goal-bias pgoq, the adaptation rate o and the
threshold dpqs,. Beside that, the size of the goal region defined by dgoq needs to be specified.
The radius R,, defines how precisely is the guiding path followed by the configuration tree.
Large value of R,4 speeds up progress of the virtual goal, but it may be counterproductive in
the narrow passages, because it will generate the random samples from a large area instead from
the narrow passage only. A small radius R, may slow down the tree growing process, especially
with the non-holonomic robots, that cannot follow the guiding path precisely. To minimize the
effect of wrongly set R4, the radius is automatically adapted according the ability of the tree to
follow the guiding path. The rate of adaptation is controlled by the parameter a. Depending on
the rate a, it may take several iterations to adapt the radius R,4 to a suitable value. As an initial
setting, we recommend to set R,y = 2dgoq. We also recommend to set the adaptation rate a to
few percents, e.g. a = 0.01 or a = 0.02. This recommendation is based on many experiments,
and it is also discussed in the next chapter in Section

The parameter dj,q determines how precisely the tree has to follow the path. Too small
dpatn, means that the tree has to approach all points closely, which can increase the number of
planning iterations. Contrary, too high dy4 allows the tree to rather explore the configuration
space without following the path precisely. We recommend to set this parameter as the maximum
distance that the robot can traverse during the timestep At.

The guiding path is described by a set of its points. In each iteration of the algorithm,
the nearest neighbors from the tree towards all path points need to be found. To speed this
searching process, it is convenient to represent the guiding path using less number of points. We
recommend to represent the guiding path by points so the distance of two consecutive points
equals to the maximum distance that a robot is able to perform during the expansion step.

3.4 Discussion

The design of RRT—Path is motivated by the fact that the biased sampling of the configuration
space can help to cope with the narrow passage problem and it can speed up the growth towards
a given region. The effect of biased sampling in the presence of the narrow passages was studied
mainly with PRM-based planners [191], (138, 247, 22], 173|174, [172], 171} 24,27, 98, [05]. The second
motivation for RRT—Path is that knowledge about workspace can help to sample the configuration
space. The knowledge can be represented e.g. by medial axis of the workspace [270], 68, [84] [90),
276]. These methods proposed for PRM cannot be used for RRT, because RRT constructs
the configuration tree simultaneously with the sampling of the configuration space, and pure
modification of sampling distribution does not ensure that a tree can grow towards the densely
sampled areas.

The most relevant papers to our method are RRT-based planners [238] and [20]. In [23§], a
key-configuration is used to focus sampling to difficult areas of the configuration space. Authors
suggest to place the key-configuration in a way that connects easy and difficult areas of the
configuration space. For example, the key-configuration can be placed at the enter to a narrow
passage. Detailed method for computing the key-configurations is however not presented in [23§].
Modified RRT with key-configurations, called RRT-KC, uses two trees. The first tree T is rooted
at gstare and the second tree T, is rooted at the key-configuration. The method alternately
generates random samples from the whole configuration space, around the key-configuration and
around @goq in order to extended the first tree 7. The second tree Ti., is extended towards
random configurations sampled from the whole configuration space or around ggo,. The plan-
ner terminates if one of the trees approaches g0 close enough or if the maximum number of
iterations exceeds.

During the sampling, RRT-KC attempts to join the trees. Usually, the connection is realized
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using the closest nodes ¢1 € 7 and g2 € Tpey. A feasible trajectory between the nodes ¢; and
q2 has to be computed, which leads to the two-point boundary problem that can be solved
analytically only for limited class of system [40)]. Therefore, the connection needs to be realized
using numerical approaches, e.g. by perturbing control inputs of one tree [142] 40] or by shifting
the second tree Tiey so that g1 = g2 [238]. The RRT-KC method suffers from the same issues as
the bidirectional search [153| [I35] or RRT-based methods with multiple trees [157, 46}, 234] 260,
202, 224] as is discussed in Section [2.4.1]

RRT-KC is suitable for environments with a single narrow passage, because only a single
key-configuration is used. In comparison to RRT-KC, the herein proposed RRT—Path method
can guide the tree through multiple difficult areas due to the utilization of the guiding path.
Moreover, RRT—Path builds only one tree, which is faster than building two trees and maintaining
connections between them.

In [20] approach, the growth of the tree is biased using the configurations of the previously
found trajectory. The goal configuration is sampled with probability pgoq, the trajectory is
sampled with probability ps-,; and the whole configuration space is sampled with probability
(1 = Pgoar — Ptraj). To sample the trajectory, random point is selected on the trajectory from
uniform distribution and this point is used as ¢qnd-

The approach [20] differs from RRT-Path in three main aspects. First, [20] requires to
compute a trajectory in the configuration space in order to bias the sampling in the next iteration,
while RRT—Path relies on a guiding path computed in the workspace. Second, the trajectory is
sampled in [20] blindly without considering ability of the tree to reach it. The blind sampling
along an old trajectory may become counterproductive in environments with obstacles, as is
discussed in the motivation experiment in Section Third, the trajectory is sampled in [20]
exclusively using the trajectory points, while RRT—Path samples the configuration space around
the guiding path, which is ensured by the parameter R,.

To conclude, RRT—-Path utilizes the workspace knowledge more than RRT-KC, as the whole
sequence of points of the guiding path is used to steer growth of the configuration tree through
the configuration space. The sampling around the guiding path is not strict, as in [20], because
RRT-Path generates the random samples in radius I2,, around the guiding path. Moreover, the
sampling of the guiding path is adaptive (using the adaptation rate «) and it can therefore find
a solution even if the guiding path cannot be followed precisely by the tree.

The RRT-Path method changes only sampling of the configuration space and it can therefore
be combined with other RRT-based methods. A possible extension can be made for example
with RRT-Blossom, that expands the tree using multiple nodes in each expansion step. This
would provide more dense trees with higher chance to follow the path.



Chapter 4

Experimental verification of
RRT—-Path

4.1 Experiment setup

The performance of the proposed RRT—Path algorithm has been compared with several state-
of-the-art RRT-based planners in the scenario of motion planning of mobile robots in 2D envi-
ronments.

4.1.1 Motion models

The experiments have been performed with the non-holonomic Car-like and Differential drive
robots as well as with the holonomic non-points mobile robots. Configuration ¢ = (x,y, ¥)
describes position (z,y) and heading ¢ of the robots. The Differential drive robot (Fig. [4.1j)
has two actuated independent wheels allowing the robot to turn on spot and its motion model is
& = 5(u +uy)cos, y = 5(u; +u,)sinp, and ¢ = 7 (u, — 1), where u, u, are control inputs —
velocities of the left and right wheel respectively. The radius of the wheels is denoted r and their
distance L. Motion of the Car-like robot (Fig. ) is described as & = ugcos, ¥ = ugsin,
and ¢ = %= tanug, where us,ug are control inputs, us is the forward velocity, and ug is the
steering angle. The distance between front and rear wheels is denoted L.

The experiments have been performed with two Differential drive robots (Diff; and Diffy),
two Car-like robots (Car-like; and Car-likey) and with two holonomic 2D robots (2D2gx100 and
2D2ox50). The wheel velocities of Differential drive robots are (—2 < w;,u, < 2), and radius
of each wheel is » = 10, which gives us maximum forward velocity 20 mu.s~!'. The difference
between Diffy and Diffy is, that Diffy can move only forward, i.e., u; + u, > 0. The Differential
drive robots are represented by a box of size 20 x 20 mu.

The Car-like robots are represented by rectangle 20 x 30 mu. The bidirectional Car-like robot,
denoted as Car-like; can move forward and backwards, therefore —20 < u; < 20. The backward
motion is prohibited for Car-like; robot, and 0 < ug < 20. The turning angle of Car-like robots
in degrees is —40 < ug < 40. The maximum forward speed of the used Car-like robots is same
as the speed of the Differential drive robots. The 2D holonomic robots 2Dsgx100, 2D2gx50 can
move arbitrary and they are represented by 2D boxes. The subscripts denote size of the robots.

4.1.2 Algorithm setup

Three RRT-based planners are used for the comparison: RRT [150], RRT-ADD (RRT with
Adaptive Dynamic Domain) [I08], and RRT-Blossom [I11]. RRT-Blossom can extend the tree
using multiple configurations during each iteration. The trees constructed using RRT-Blossom
have typically more nodes than the trees constructed by the other methods. RRT-Blossom is
designed to cope with the robots under differential constraints and it is therefore more suitable

35



36 CHAPTER 4. EXPERIMENTAL VERIFICATION OF RRT-PATH

Ya Y 4

/:15

Ao :
(a) Differential drive (b) Car-like

¥
>

Figure 4.1: Illustration of Differential drive and Car-like mobile robots.

for the Differential drive and Car-like robots than for 2D holonomic robots. The goal-bias of
RRT and RRT-Blossom pgoq = 0.15 is used according to experiment described in Sec.

In RRT-ADD, each node in the tree has assigned an activation radius. A node can be
selected for the expansion only if the random configuration g,q,q lies in the distance defined by
the activation radius. RRT-ADD was originally proposed for high-dimensional path planning of
solid 3D objects, therefore this method should be suitable especially for the 2D holonomic robots.
RRT-ADD is run with initial activation radius R4q = 75 mu and learning rate agq = 0.01.

The planners are implemented in C++ and compiled using gcc compiler version 4.2.1 with
02 flag. The experiments have been performed on PC Intel Pentium IV @ 2.2 GHz. All planners
employ Rapid library [82] for collision detection and MPNN [280] library for the nearest-neighbor
search. The forward motion models are integrated over time At = 0.5 s with 0.125 s time step
of numerical integration during each expansion step. The resolution of the straight-line planner
used in the case of the 2D robots is set to ¢ = 0.5 mu. Collision detection is evaluated three times
per each edge. The experiments have been performed in four 2D maps (the maps are depicted

in Fig. |3.2)).

4.1.3 Performance evaluation

In literature, sampling-based planning algorithms are usually compared using the runtimes re-
quired to find a solution, or number of collision detection queries. A comparison based on quality
of solutions is not suitable for the non-optimal planners like RRT and PRM, therefore it is not
common. Many papers compare sampling-based planners only using single start/goal configura-
tion, which can be skewed due to sensitivity of the planners to the relative position of start and
goal configurations. This was shown in Section [3.1.1] where significantly different results were
obtained for two goal configurations despite they are located in the same distance from the start
configuration.

To investigate an overall performance of a planner in a given environment, we propose a novel
testing setup using multiple start/goal configurations. The evaluation is motivated by applica-
tions of motion planning in mobile robotics, where multiple trajectories have to be computed
either as a part of on-line replanning system (e.g. in warehouse systems [272] or in robotic soc-
cer [20]) or as a part of a reasoning system for robotic exploration [62] or inspection [63, 136].
In these applications, many trajectories need to be computed between various places in the en-
vironments. A planner with an overall good performance is preferred than a planner that excels
in few start/goal pairs, but fails otherwise.

For a given robot and environment, g pairs of random start/goal configurations (gstart, ¢goat),
where Qstart, Qgoal € Cfree and Q(QStart7ngal) > 2dgoal are generated (an example is shown in
Fig.|4.2h). A planner being tested then attempts to compute m plans (trials) for each start/goal
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pair. Therefore, each planner is run g-m times on each map. For each start/goal pair, a success
rate (referred to as s—rate in the rest of the text) denotes the percentage of trials where the
planner approached the goal configuration to a distance less than dg.q.

The overall performance of a planner on the multiple start/goal pairs can be described as the
percentage of the start/goal pairs for which the planner achieved a desired minimal s—rate. An
example is depicted in Fig. [£.2b. An ideal planner that is able to find plans between all tested
start/goal pairs with 100 % probability, would result in the green line in Fig. £.2b. A worse
performance is indicated by the blue line, that can solve 75 % of start/goal pairs with at least
80 % probability, but there are instances, that cannot be solved with 100 % success rate with
this algorithm (point C). The red line represents the performance of an even worse planner. The
highest success rate for the red curve is 87 %. This indicates that 13 % start/goal pairs are not
solved by this algorithm at all. The third algorithm can solve 75 % of instances with s—rate at
least 40 % (point A), but none of the start/goal pairs can be solved with probability higher than
80 % (point B).

To compare several planners, a desired minimal reliability can be selected and the percentage
of solved start/goal pairs is then used for the comparison. In this thesis, we compare performance
of the tested methods using desired success rate 80 %. For example, the comparison of three
curves depicted in Fig. 4.2b is: green=100 %, blue= 75% and red= 0%, and the planner with
the green curve would be considered as the best one.

The start/goal configurations should be generated in such a way, that at least one tested
planner can compute plans for all of them. The randomly placed start/goal pairs used in all
experiments in this thesis are always reachable. It is ensured, that the narrow passages are wider
than the size of the robots and the robots are placed into a sufficient distance from the obstacles.
Moreover, the random start configurations for Diff; and Car-like; robots have orientation towards
the free space in order to ensure that the robots can move from the configurations.

Also other variables such as runtime, number of planning iterations or size of constructed
trees are measured. The runtimes and planning iterations are shown as boxplots with highlighted
median. The boxplots are created from all g - m planning trials. It should be noted that these
values contain measurements from close start/goal pairs as well as from distant start/goal pairs.
Statistical comparison between runtimes or number of planning iterations of various planners
is not provided, since the main aim of the test is to investigate an overall reliability of the
planners in given environments. Other variables like number of collision detection queries of
collision detection time are not reported. All planners use same supporting libraries (for collision
detection and nearest-neighbor search) and the time spent in these routines is given by the
number of realized planning iterations.
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Figure 4.2: An example of random start (yellow) and goal configurations (gray) in the Sim-
ple map with dgoq = 20 mu (a). The graph (b) shows three examples of the progress of the
percentage of solved instances with increasing s—rate.
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4.2 Performance of RRT-Path with various guiding paths

The performance of RRT-Path with various guiding paths is investigated in the first set of
experiments. The guiding paths are computed using Delaunay Triangulation (DT), Voronoi
diagram (VD), Probabilistic roadmaps (PRM), triangle mesh (TMesh) and updated triangle
mesh (TMesh2). The methods TMesh and TMesh2 decompose free regions of the workspace to
triangles. The decomposition is described by a graph, where the nodes are the vertices of the
triangles and edges connect the vertices of the triangles. The cost of an edge is given by the
Euclidean distance of its end points. The Dijkstra’s algorithm is used to find a shortest path in
the graph. This path can touch obstacles. In order to increase clearance of this path, the method
TMesh?2 increases the cost of all edges incident with the path and touching the obstacles. After
the cost is increased, another path is computed, which results in a path of higher clearance. This
technique is similar to Lazy-PRM [I7]. The difference between TMesh and TMesh2 paths is
depicted in Fig. The test has been performed with g = 100 start/goals pairs with m = 40
trials per start/goal. RRT-Path was run with maximum number of allowed planning iterations
Lz = 5,000.
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Figure 4.3: A path in TMesh touches the obstacles (a). By increasing cost of edges that touch
the obstacles (red), a path with a higher clearance can be found (b).
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Figure 4.4: Performance of RRT-Path with the Diffy robot with various guiding paths in the
BugTrap4 map. Performance at 80% s—rate: TMesh2=100 %, TMesh=99 %, PRM=100 %,
DT=86 %, VD=97 %.
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Figure 4.5: Performance of RRT-Path for the Diffy robot with various guiding paths in the

BugTrap4 map. Performance at 80% s—rate: TMesh2=83 %, TMesh=80 %, PRM=81 %,

DT=59 %, VD=T75 %.

Results for the Differential drive robots in the BugTrapl environment are shown in Fig. [£.4]
and Fig. [£.5] and results in the Simple environment are depicted in Fig. [£.6] and Fig. [£.7] respec-
tively. The graphs show boxplots of runtimes and the number of realized planning iterations, as
well as the progress of s—rate.

All planners provide plans for most of the start/goals pairs with bidirectional robots. The
number of solved start/goal pairs is lower if Diff; and Car-likes robots are used. In these cases,
all planners show worse performance, but the lowest number of solved start/goal pairs is with
DT-based guiding paths. The paths constructed using DT are too close to the obstacles and it
is not easy to grow the tree along them, as expansions of many nodes possibly lead to collisions
with the obstacles. More iterations are therefore needed in order to expand the tree properly.
As the number of planning iterations I, is limited, RRT—Path initialized with the DT-based
path may fail to find useful solutions for certain start/goal pairs. Consequently, the percentage
of solved pairs is lower than for other methods. The runtimes of RRT—Path with paths computed
by VD, PRM, TMesh and TMesh2 are similar.

The ability of RRT-based planners to construct a tree is also influenced by the maneuverabil-
ity of the robots. The comparison of the planning iterations (Fig. vs. Fig. shows that
planning for the Diffy robot requires less number of iterations than for the Diffy robot. This is
caused by the limited maneuverability of the Diffy robot that can move only forward and it is
therefore more difficult to follow the guiding path and to construct the tree during the limited
amount of planning iterations. Consequently, solutions are provided for lower percentage of the
start/goal pairs.

The guiding process for the 2D holonomic robots is influenced by the quality of guiding paths
more than planning for the Differential drive robots. Although the 2D robots can move arbitrary
in the environment, the quality of guiding paths is more important than for the Differential
drive robots, because the 2D robots are larger than the Differential drive robots. The results
are shown in Fig. and Fig. Similarly to the tests with the Differential drive robots, the
worst performance is achieved with DT-based guiding path and the second worst performance
is achieved with the TMesh method. These two methods produce guiding paths that touch the
obstacles, therefore it is not easy to follow them by the 2D robots. Better results are achieved
with the guiding paths computed on the updated mesh (TMesh2) that provides the guiding paths
without touching the obstacles.

We can conclude, that the guiding paths computed by DT or TMesh are not suitable for
RRT-Path, as these have low clearance. Sampling along such paths is more difficult, especially
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Figure 4.6: Performance of RRT-Path for the Diffy robot with various guiding paths in the
Simple map. Performance at 80% s—rate: TMesh2=100 %, TMesh=100 %, PRM=100 %,
DT=85 %, VD=100 %.
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Figure 4.7: Performance of RRT-Path for the Diffy robot with various guiding paths in the
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Figure 4.8: Performance of RRT—Path with 2D2gx 199 robot in the Simple map. Performance at
80% s—rate: TMesh2=64 %, TMesh=>51 %, PRM=61 %, DT=45 %, VD=82 %.
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Figure 4.9: Performance of RRT—Path with 2Dsgx 100 robot in the BugTrap4 map. Performance

at 80% s—rate: TMesh2=87 %, TMesh=78 %, PRM=98 %, DT=65 %, VD=99 %.

for robots with motion constraints. Guiding paths with suitable clearance are preferred. In the
following experiments, guiding paths for RRT—Path are computed using the TMesh2 method.

4.3 Algorithms comparison

Performance of the tested planners in several 2D scenarios is investigated in this section. In each
environment, g = 200 start/goal pairs have been randomly placed. Each planner has been run
m = 40 times for each start/goal pair leading to total 200 - 40 = 8,000 planning trials. The
number of planning iterations is set to Ipq: = 5,000 for all planners. The experiment has been
performed with all mobile robots, i.e., Diffy, Diffy, Car-likey, Car-like; and with 2D holonomic
robots 2Dogx 100 and 2D9gx50. Selected results are shown in this section, and the results achieved
with remaining combinations of robots and maps are shown in Appendix

The performance with the Differential drive robots in the BugTrap4 map is depicted in
Fig. and All planners provide better plans for the bidirectional robot (Diff;), which
is indicated by the higher percentage of solved start/goal pairs. The better performance with
the bidirectional robots is also indicated by the size of constructed trees that are smaller for the
Diffy robot. The biggest configuration trees are built by the RRT-Blossom method, because the
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method extends the tree with several nodes in each iteration. The size of the trees constructed
by RRT-Blossom is significantly lower for the Diffy robot than for the Diffy robot. The highest
percentage of start/goal pairs is solved using RRT—Path.
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Figure 4.10: Comparison of motion planning for Diffy robot in BugTrap4 environment. Per-
formance at 80% s—rate: RRT=98 %, RRT-Path=100 %, RRT-Blossom=99 %, RRT-
ADD=100 %.
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Figure 4.11: Comparison of motion planning for Diff; robot in BugTrap4 environment. Perfor-
mance at 80% s—rate: RRT=24 %, RRT-Path=76 %, RRT-Blossom=62 %, RRT-ADD=62 %.

The comparison of motion planning for Car-like robots in BugTrap4 is depicted in Fig.
and The highest percentage of solved start/goal pairs is provided by RRT-Path planner
followed by RRT-Blossom planner.

Examples of constructed configuration trees for Car-like; robot are depicted in Fig. and
for the Car-like; robot in Fig. The configuration trees constructed for the Car-likey robots
contain more sharp turns and the resulting trajectories as well. This is caused by the ability of
Car-liket robot to move backward. All the motions, including the backward motions, are used
in the expansion step and in certain situations, the backward motions are selected and added to
the tree. The sharp turns can be seen also in the configuration trees for the Differential drive
robots. Examples are depicted in [C]

Results achieved on the Simple map with the Differential drive robots are shown in Fig. [4.16]
and Fig. All planners are able to construct a plan between almost all start/goal pairs for
the Diffy robot (Fig. , but the percentage of solved start/goal pairs is lower with the Diff;
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Figure 4.14: Example of motion plans for the Car-like; robot in the BugTrapl environment.

[==A]=!

RRT-Blossom RRT-Path

Figure 4.15: Examples of motion plans for the Car-like; robot in the BugTrapl environment.
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Figure 4.17: Comparison of motion planning for Diffy robot in the Simple map environment.
Performance at 80% s—rate: RRT=56 %, RRT-Path=87 %, RRT-Blossom=82 %, RRT-
ADD=74 %.

robot. Although there is no narrow passage in the Simple map, the environment is difficult for
the Diff} robot, as the long walls require a robot to frequently change direction in order to drive
around them. The robot has decreased maneuverability, because it can move only forward and
it is more hard to move amongst the walls. According to the reliability, the second best results
are achieved by RRT—Blossom. From the reliability point of view, RRT—Blossom is comparable
to RRT-Path, but RRT-Blossom constructs significantly larger trees.

The planners have also been compared in the path planning task with the 2D holonomic
robots. In this task, the RRT-based methods employ the straight-line planner for the expansion
of the tree. RRT—Blossom is not considered in this test, as the straight-line planner does not
allow to extend the tree by more than one configuration, which is required in RRT—Blossom.

The results achieved for the 2D9gx 50 and the 2Dggx 109 robots on the BugTrap4 map are shown
in Fig. and Fig. respectively. According to the progress of s—rate, the best results are
achieved by RRT-ADD method and RRT-Path provides the second best results. The size of
robots influences performance of RRT and RRT—Path methods, because both methods solve less
number of start/goal pairs with the 2Dggx 100 robot than with the 2Dypx50 robot. Contrary, the
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Figure 4.19: Comparison of motion planning for 2D2gx 100 robot in the BugTrap4 environment.
Performance at 80% s—rate: RRT=72 %, RRT-Path=84 %, RRT-ADD=100 %.

success rate of RRT-ADD is the same for both 2Dsygx50 and 2Dsggx100 robots: in both cases,
100 % of instances is solved.

The summary of the experiment is show in Tab. where the percentage of start/goal pairs
solved with success rate higher than 80 % are shown for all the planners. Out of total 24 tested
scenarios, RRT provides the best results in 9 cases, RRT—Path in 17 cases, RRT-ADD in 12
cases. RRT-Blossom has been used only for motion planning of mobile robots and it provides
the best results in 4 out of 16 scenarios. RRT—Path is superior especially in environments with
the narrow passages (BugTrapl and BugTrap4).

RRT-ADD is not suitable for motion planning of mobile robots, where it solved less amount
of start/goal pairs than other methods, but it is suitable for path planning of the 2D holonomic
robots. The method is able to find a feasible path for 2D robots for 100 % of start/goal pairs in
all environments.

The basic RRT performs well in maps without difficult narrow passages like Simple, Potholes
and BugTrapl, but its performance significantly decreases in BugTrap4 that contains the narrow
passage.

The comparison shows that the proposed RRT-Path method improves path and motion
planning of mobile robots in the 2D environments. The biggest advantage of the method can
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Percentage of solved start/goal instances

RRT RRT-Path RRT-Blossom RRT-ADD
Car-like; 4% 90 % 24 % 8 %
Simple Car-like; 1% 51 % 68 % 3%
“ I Diff; 100 % 100 % 100 % 100 %
|‘.L Diff; 56 % 87 % 82 % 74 %
2Dg0xs0 100 % 92 % N/A 100 %
2D20x100 100 % 54 % N/A 100 %
Potholos Car-like; 0% 100 % 32 % 1%
F—— Car-likey 0% 78 % 64 % 2 %
tSe s Diff; 100 % 100 % 100 % 100 %
=105 pifhy 0%  93% 82 % 65 %
“.. el 2Dgxs0 100 % 98 % N/A 100 %
2D20x100 100 % 83 % N/A 100 %
Car-like; 0 % 100 % 29 % 0%
Bugtrapl  Car-likey 0 % 70 % 66 % 4 %
. Diff; 100 % 100 % 100 % 100 %
[ Diff; 30 % 94 % 78 % 65 %
2D20x50 100 % 100 % N/A 100 %
2Doox100 100 % 98 % N/A 100 %
Car-like; 0 % 74 % 23 % 0%
Bugtrapd  Car-like; 0% 59 % 48 % 2%
_ Diff; 98 % 100 % 99 % 100 %
1 Diff; 24 % 76 % 62 % 62 %
2Do0x50 76 % 100 % N/A 100 %
2D20x100 72 % 94 % N/A 100 %
Overall 9 /24 17/ 24 4 /16 12 /24

Table 4.1: The percentage of start/goal pairs solved with success rate higher than 80 %. The
best performance in each row (for each robot) is in bold face. The last row summarize the
number of scenarios where the given algorithm provided best performance out of all scenarios.
The number of scenarios is 24 for RRT, RRT-Path and RRT-ADD robots. RRT-Blossom was
not used for path planning of 2D robots therefore its total number of scenarios is 16.

be seen in maps with narrow passages (BugTrapl and BugTrap4), where it solves most of the
instances with the desired 80 % probability. The experiments have also shown, that the RRT—
ADD method is better for path planning of 2D objects and it is therefore recommended for usage
in this scenario.

4.4 Influence of adaptation rate «

The adaptation rate a determines how fast is the radius R), o increased if the tree cannot properly
follow the guiding path. The influence of a to the performance of RRT—Path has been evaluated
in all 2D environments. For each learning rate a = {0,0.01,0.02,0.05,0.1}, each robot and
each environment, RRT-Path has been run 50 times. The influence of « is evaluated using the
percentage of solved start/goal pairs.

In all tested cases, the best results are obtained with a@ = 0.01 or @ = 0.02. Higher adaptation
rate (a = 0.05 or even o = 0.1) can however decrease the performance, because the sampling
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radius along the guiding path is increased too fast and the guiding path is not sampled as densely
as necessary. Using even higher values turns off the guiding process because the radius R;g is
increased too fast and it practically covers the whole configuration space, so the random samples
are generated in the same manner as in RRT rather than around the guiding path. The same
observation has been made also with other robots and maps, therefore the results are not shown
here. An example of influence of the adaptation rate « is shown in Fig.
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Figure 4.20: The influence of learning rate a to the performance of RRT-Path with the Differ-
ential drive robots.

4.5 Discussion

The RRT-Path method samples the configuration space using a predefined guiding path. The
guiding path is an input to the algorithm, therefore it should be computed as fast as possible. In
the case of motion planning for mobile robots with two or three degrees of freedom, the guiding
path can be computed as a geometric path in the workspace using methods like Visibility graph
and Voronoi graph.

The comparison of several methods for computing the guiding paths has shown, that the most
successful guiding process is achieved with guiding paths computed by Voronoi diagram, while
paths constructed using Delaunay triangulation are not suitable for attracting the tree as they
are too close to obstacles. Other types of guiding paths, such as those found in PRM roadmap
or TMesh2, are equally suitable for the guiding process.

The performance of RRT—Path has been experimentally verified and compared to the state-of-
the-art methods RRT, RRT-Blossom and RRT-ADD. The comparison is based on the success
rate of the planners to provide plans for multiple random start/goal pairs. The experiments
have shown superior performance of RRT—Path in the task of motion planning for the non-
holonomic mobile robots like Differential drive and Car-like. In these scenarios, RRT—-Path
solves more start/goal instances than other methods. The motion planning for these robots can
be successfully solved also using RRT-Blossom method, which also provides solutions for most
of the start/goal pairs. In comparison to RRT-Path, RRT-Blossom builds larger configuration
trees.

Different results are observed in path planning for the 2D robots, where RRT-ADD is supe-
rior. The superior performance of RRT-ADD is not surprising, as it was designed primarily for
path planning of 2D and 3D robots. Contrary, performance of RRT-ADD is significantly worse
in the case of path planning for mobile robots.

The performance of the tested planners has been measured as the percentage of start/goal
pairs that are visited with a given probability rather than using runtimes or memory consumption.
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The presented multiple start/goal benchmark is designed to measure the overall performance
of the planner in the given environments. Although the best results for the mobile robots
are achieved with the novel RRT—Path, the method may suffer in certain configurations or
environments. Before a motion planner is selected for a given task, it is always necessary to
define conditions under which the planner will be used. This includes the specification of the
start/goal pairs or regions. Performance of considered methods can be then measured only on
these regions in order to select the best planner for the given task.

Similarly to other motion planners, RRT—Path has several pros and cons. The main advantage
is the fast growth of the configuration tree towards the goal region. In comparison to other RRT-
based planners, RRT—Path needs less number of iterations to reach the goal and consequently, its
runtime is shorter. Moreover, the method constructs smaller configuration trees, which decreases
memory requirements and increases speed of the nearest-neighbor search.

A disadvantage of RRT—Path is that its performance is directly influenced by the quality of
the guiding path. As was shown in section the configuration tree cannot follow paths that
are too close to obstacles. Therefore methods like Visibility graphs are not suitable to generate
the paths. Best results are achieved with the guiding paths constructed by Voronoi Diagram or
using triangular representation of the workspace.
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Chapter 5

Guided sampling for 3D objects

The guided sampling strategy proposed in the previous chapter utilizes a path in the configuration
space that attracts the tree and guides its growth towards the goal configuration. In motion
planning for mobile robots, the guiding path can be found using basic path planning methods
(e.g. VD, VG, or decomposition-based approaches) as a geometric path in the workspace and it
can be extended to the configuration space by setting the rotation dimension to zero.

The utilization of guiding paths found in the workspace may however become insufficient if
the configuration space has significantly more dimensions than the workspace. This is studied in
the generalized path planning problem which has applications e.g. in path planning for steerable
needles in surgery [274, [0, 182], in assembly/disassembly studies [248, 36, 185, 227, 5] or in
computational biology [230, [7, 170) 55, 199, 228]. In these applications, a collision-free path
for a 3D solid object has to be found. This leads to search in six-dimensional configuration
spaces. The generalized path planning problem is very challenging and it was proven to be
PSPACE-hard [206].

Due to the high number of dimensions of the configuration space, it is not possible to discretize
the space fully, e.g. into a grid, because the number of cells grows exponentially with the number
of the dimensions. Due to high dimensionality of the configuration space, it is not easy to estimate
locations of the narrow passages from the description of the workspace, which does not allow us
to focus sampling to these difficult regions. In this chapter, we will investigate how to utilize the
guiding principle for the purpose of path planning of 3D rigid objects in 3D environments.

5.1 Problem analysis

The configuration space of 3D objects (robots) has six dimensions, since each configuration
q=(z,y,2,¢,0,1) € C describes 3D position and also 3D rotation of the robot. To utilize RRT—
Path for the generalized path planning problem in this six-dimensional configuration space, a
guiding path is required. This guiding path cannot be computed in the workspace considering a
point robot, because it would not provide information about rotation.

Let us consider a generalized path planning problem depicted in Fig. [5.1h, where the task is
to remove the hedgehog from the cage. Due to many spikes, the hedgehog needs to be carefully
rotated, while its 3D position changes slightly. An example of feasible solution is depicted in
Fig. where the phases with negligible translations but significant rotations are highlighted.
Usage of a 3D guiding path computed in the workspace (Fig. ) is not helpful for RRT—Path,
as it only suggests how to sample x,y and z dimensions, but the remaining three dimensions
v, 0 and 1 need to be sampled randomly using the uniform distribution. As the solution of the
hedgehog benchmark depends mainly on the rotation, utilization of a 3D guiding path is not
suitable.

51
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a

Figure 5.1:

CHAPTER 5. GUIDED SAMPLING FOR 3D OBJECTS

b

Hedgehog in the cage problem (a), where the task is to remove the spiky object

from the cage. An example of 3D guiding path (b).
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Figure 5.2:

Visualization of a solution of the Hedgehog problem. The light-blue color high-

lights two situations where the 3D position (top) of the Hedgehog does not change significantly

comparing to its rotation (bottom).
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Figure 5.3: An example of a simple 2D workspace with two obstacles. The corresponding
configuration space for a circular red robot contains a narrow passage (b). The width of the
passage is increased if the radius of the robot is scaled-down (c).

5.1.1 Motivation for iterative scaling approach

To solve the challenging path planning problem in the six-dimensional configuration space, the
RRT-Path method introduced in the Chapter [3] can be used. A suitable guiding path computed
right in the configuration space is required to efficiently guide the configuration tree. This however
leads to the generalized path planning problem. Computing the guiding path by solving the
generalized path planning problem would be time consuming, because the problem is PSPACE-
hard [206]. Moreover, it does not make sense to use a 6D path as a guiding path for RRT—
Path, because the 6D guiding path itself would be the solution of the generalized path planning
problem. A possible way to compute a 6D guiding path in a reasonable time is to relax the
feasibility constraints in order to increase the relative volume of the configuration space.

The feasibility constraints in the path planning task can be relaxed by scaling down the
geometry of the robot. Scaling down the geometry of the robot widens the narrow passages,
because a smaller robot has more space to move amongst the obstacles (Fig. [5.3). Thanks to
increased volume of the narrow passages, path planning for the relaxed problem (with a scaled-
down robot) is easier than solving the original problem. After a path is found for the relaxed
problem, it can be used as a guiding path for the original robot [253]. For the sake of simplicity,
we use term scaled robot instead of scaled geometry of the robot in the following text.

A possible disadvantage of this approach is that the relaxation of some constraints can change
connectivity of the configuration space. Therefore, a path computed for a scaled-down robot
might not be executable by the original robot. This can happen e.g. if the robot is scaled-down
too much and the guiding path is found through the regions of the configuration space that are
not followable by the original robot. For example, the guiding path found for a circle robot
(Fig.|p.4h) passes the narrow passage in the configuration space (Fig.|5.4b). The narrow passage
however becomes obstacle for a large robot (Fig. [5.4c).

To cope with this issue, we propose to iteratively improve the quality of the solution obtained
for a relaxed version of the problem. To achieve this, we propose to scale-up the geometry by
small steps. As the scale is improved by the small steps, the connectivity of the configuration
space should not change significantly and the previous solution can be used to guide the search
for the larger robot. An example of iterative improvements of solution is depicted in Fig. 5.5

5.2 RRT-IS: Rapidly Exploring Random Trees with Iterative
Scaling

The main idea of RRT-IS (RRT with Iterative Scaling) [253] is to find a feasible path in the
configuration space for a small (scaled-down) robot and to use this path as a guiding path for
a larger robot (Fig. . A discrete set S of possible scales of the geometry of the robot is
considered in RRT-IS, S = {Smin, Smin + SA, Smin + 2SA,- -, Smax}, where Spin and Spmayx are
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Figure 5.4: Connectivity of the configuration space depends on the size of the robot. Path in the
workspace (a) and corresponding path in the configuration space (b). This path is not followable
by the larger robot (dashed), because of the changed connectivity of the configuration space (c).
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Figure 5.5: Motivation for iterative scaling approach. The robot is scaled down to a small scale
1, for which a path is found. Then, the size of the robot is increased to a scale 2, for which a
new solution is found in the vicinity of path 1. The solution is close to the previous solution.
This process repeats until a solution for the original robot (denoted by number 4) is found. The
iterative improvement of the solution 1 to solution 2, etc. is necessary, as the path 1 traverses
a narrow passage that is not feasible for the full robot. Moreover, the narrow passage of path 1
is distant from the feasible space of the full robot. Without the iterative improvement, it is not
possible to sample vicinity of the path 1 in order to find a solution for the full robot.
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minimal and maximal allowed scales respectively and sa is the smallest considered difference
between two scales. The geometry of the robot corresponding to a scale s € S at a configuration
q is denoted Bs(q) C W. A robot with original geometry is considered to has scale s = 1, while
a scaled-down robot has scale s < 1. The maximal scale corresponds to the original size of the
robot, therefore sma.x = 1. A configuration ¢ is collision-free at scale s if there is no collision
between Bg(q) and the obstacles.

The guiding path P = (¢1,...,¢,) is a path in the configuration space starting from the
initial configuration q1 = gstart € Cyree and leading to a configuration g, = qgoal € Cfree, that is
located in the vicinity of the goal configuration ggeq, i-€., g(q; oals 9goal) < dgoal-

For each point ¢; € P and a given actual scale §, we can identify the largest scale §; € S,§; > §
such that the configuration ¢; is collision-free. A point ¢. € P,c¢ = 1,...,n, with the smallest
collision-free scale & is called the critical point. The procedure to determine the critical point is
listed in Alg.

Algorithm 5: findCriticalPoint(P,s)

Input: guiding path P = (q1,4¢s, - .., ¢n), actual scale 5, minimal scale $y,in, maximal scale $yax
and set of other scales S
Output: critical point g. € P and its smallest collision-free scale 3.

1 8¢ = Smax;
2 ¢c=0;
3 fori=1:ndo
4 5= Smin;
5 for s € S do // find maximal collision-free scale § of point g;
6 if (s > 35) and (Rs(q;) is collision-free) and (s > §) then
7 ‘ §=s;
8 end
9 end
10 if § < 5. then
11 3. = §; // collision-free scale of the critical point
12 ¢ =1; // index of critical point
13 end
14 end
15 return (q., §.);

The RRT-IS algorithm is listed in Alg. [6]and it works as follows. At the beginning, the robot
is scaled down to scale § = spin. In each iteration, first the critical point g. with critical scale 5.
is found and its predecessor ¢. on the path is determined. The point ¢, is set to the first point
on the guiding path if the critical point is also the first point on the path, otherwise ¢.. is the
point before the critical point. The RRT-Path planner is called to find a path between ¢, and
goal configuration ggeq for a robot with scale s. +sa. If a path is found (i.e., it approaches ggoq
to the distance dgoq), the guiding path is updated by replacing points p; € P,i = ¢,...,n with
the found path. This procedure repeats until the smallest collision-free scale §. of the critical
point is equal to symax or the allowed number of attempts B is reached. The result of RRT-IS
is the guiding path computed for the maximum scale spax. This guiding path also represents a
solution of the original problem. The guiding path is represented as a sequence of waypoints with
resolution €, because the path is provided by RRT—Path that utilizes the straight-line planner
with resolution e.

RRT-IS listed in Alg. [6] assumes that an initial guiding path is provided. This can be
computed using RRT-Path considering the small scale sy, of the robot and using pgyoq = 0 in
order to allow sampling from the whole configuration space.
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Algorithm 6: RRT-IS

Input: Initial state gstare, goal state ggoqr, minimal scale spmin, maximal scale syax, scale
increment sa, number of allowed unsuccessful iterations B, guiding path P = (¢1,...,¢n)
computed for the scale spyin

Output: path P

1 8= Smin;
2 b=0; // counter for unsuccessful iterations
3 while b < B do

4 (gc, 8.) = findCriticalPoint(P, 5);
5 qrare = Dredecessor of ¢. on the guiding path;
6 robot.scale(S. + sa); // change scale of the robot
7 | path = rrtPath(q)yare, Ggoat, P); // RRT-Path is listed in Alg.
8 d = distance(path.end,ggoq1);
9 if d < dgoqr then
10 replace points on P from ¢ to n by the found path;
11 S =38:4+ sa;
12 b=0;
13 else
14 | b=b+1;
15 end
16 if 5> spax then
17 ‘ return P; // path P contains solution for scale spax
18 end
19 end

20 return failure; // max. number of unsuccessful iterations B reached

5.2.1 Analysis of the iterative scaling

The main task of RRT-IS is to maintain the guiding path. The algorithm terminates if the
scale §. of its critical point is equal to spmax. This means that all points on the guiding path are
collision-free at the scale at least spax. AS Smax represents the original size of the robot (or the
size for which a solution is required), a guiding path with §. = spax represents the solution of
the original problem.

In each iteration of RRT-IS, the guiding path is collision-free at a scale §. that is determined
by the bottleneck of the path — the critical point ¢.. After the critical point is determined, RRT—
Path is called to find a new solution in order to improve the guiding path. It is necessary to
ensure that the new path is collision-free at a higher scale and therefore the RRT—Path algorithm
is run with the robot of scale 5. + sa. The path planning process cannot be initialized from the
critical point q., because it is not collision-free already at the scale §.+ sa, but only on the scale
Sc. Therefore, RRT—Path is initialized from the predecessor ¢.. of the critical point g.. The point
¢, is collision-free at the scale §. + sa, otherwise it would be selected as the critical point. If a
new path from ¢, to ggoq is found, it is collision-free at scale §. + sa and therefore, it can be
used to replace the part of the old guiding path starting from the critical point g.. This ensures
iterative improvement of the guiding path, i.e., increasing the scale §. of its critical point. Due
to randomization, RRT—Path may fail to find a solution, therefore it is called at most B times.

The iterative improvements of the guiding path is depicted in Fig. A guiding path with
critical point ¢, with scale 0.6 is depicted in Fig.[5.7h. The RRT-Path is constructed for a larger
robot (with scale 0.7) from the predecessor of g, (Fig. p.7p). The resulting path then replaces
the old guiding path starting from ¢/, (Fig. [5.7c).

In RRT-IS it is assumed that if a configuration ¢ is collision-free at the scale s it is collision-
free also for smaller scales. Validity of this assumption depends both on the shape of the objects
as well as on the utilized scaling method. It has to be ensured, that a scaled-down geometry
is always contained in the geometry of the original robot. Besides the simple multiplication of
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RRT-Path

a b C

Figure 5.7: Example of path merging in RRT-IS. A guiding path that is collision-free at scale 0.6
(a). A new configuration tree is built by RRT-Path from the configuration ¢, that is predecessor
of the critical point g. (b). The result of the planning is the green path in the tree. This path
replaces the old guiding path starting from ¢/ (¢). This improves the original path, because the
critical point of the new path is collision free at scale 0.7.

scale 1.0 scale 0.75 scale 0.5

Figure 5.8: Example of scaling-down objects by thinning them around the medial axis. The
objects are part of Alpha puzzle benchmark [141].

coordinates, thinning and shrinking of geometries is possible. The idea of object thinning is to
shift the coordinates towards the medial axis of the object [214]. A method for object shrinking
was presented in [94]. Example of object thinning suitable for Alpha puzzle is depicted in Fig. [5.8

The number of iterations needed to find a feasible path for the robot of scale s,y is influenced
by the minimal scale s,i, and the smallest differences between scales sa. Too small sy, increases
the number of iterations, and it can also direct the guiding paths to such parts of the configuration
space that are not feasible for higher scales. An example is shown in Fig. 5.4l If RRT-IS is
initialized with a too small robot, it can find a solution through the bottom passage (Fig. [5.4b),
but such a solution is not feasible for a larger robot (Fig. ) that needs to be manipulated
through the top passage.

In each iteration of RRT-IS, the RRT—Path planner is called to construct a tree using at
most Iq iterations, which can result in a configuration tree with at most I,,4, nodes. A path
extracted from this tree is then used as a guiding path in the next iteration. The size of a
configuration tree that is hold in memory at one time can therefore be at most I, nodes.
However, the total number of nodes explored during the whole run of RRT-IS can be larger.
The theoretical maximum is %B[max, as RRT-Path is called at most B times for each
scale of the robot and the number of scales is given by sa.

5.3 Discussion

Motion planning for 3D solid objects is a challenging problem leading to search of six-dimensional
configuration space. The high dimensionality of the problem prevents us to discretize the con-
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figuration space to a grid-based representation in order to employ state-space search methods to
find a solution. A path can be found using sampling-based methods that build an approximation
of the configuration space. The methods can however suffer from the existence of the narrow
passages.

A novel sampling schema for RRT in the task of path planning of 3D solid objects has
been proposed in this chapter to cope with the narrow passage problem. The method is based
on RRT-Path and a process of iterative improvement of the guiding path, where the feasibility
constraints are relaxed by scaling-down the robot geometry. At the beginning, a path is computed
for a small robot and the obtained solution is used as a guiding path for a larger robot. The
process is repeated until a solution of the original problem is found.

The most relevant work to RRT-IS is the IRC strategy [12], that defines general rules for
solving challenging planning problems: first, some feasibility constraints are relaxed and solved
by a sampling-based planner. The solution is then used to guide search for the original problem.
The core of the IRC strategy is the procedure of relaxing the feasibility constraints, which is
specific for each scenario. For example, motion planning for articulated robots can be simplified
by fixing some of the links, which decreases the number of actuators that need to be considered
by the planner.

For the purpose of path planning of 3D objects, the authors in [12] suggest to either scale-
down the robots or to allow a little penetration between the robots and the obstacles. The latter
approach requires to compute penetration depth between two geometries, which is computation-
ally more demanding than a pure collision detection. The TRC method has been designed for
PRM-based planners. For example, authors simply increase probability of sampling around the
previous solution, which is realized by the OBPRM method [§].

Another PRM-based planner solving the original problem by scaling-down the robot is pre-
sented in [94]. The robot geometry is shrunken using a novel approach. The method is suitable
also for multi-linkage robots like robotic manipulators. The planner utilizes PRM-based SBL
planner [2I7] to find the solution of the relaxed problem. To repair an existing solution, neigh-
borhood of the existing solution is sampled. If no new milestone is found within a given amount
of iterations, the neighborhood is increased. This repeats until a solution for the original robot
is found or a given maximum number of iterations is reached. To improve the approximate (re-
laxed) solution, the nodes on the path are validated using a larger robot and the unfeasible ones
are removed. The removed segments are replaced by sampling around the invalid configurations.
The technique is similar to Lazy PRM [17] and Fuzzy PRM [185] techniques.

The proposed RRT-IS planner and IRC strategy [12] share the same general idea: a solution
for a relaxed problem, obtained using a scaled-down robot, can be used to find solution for the
original problem. The main difference between RRT-IS and the IRC strategy [12] is that IRC is
designed primarily for the PRM planner, while RRT-IS is based on the RRT planner. The IRC
strategy simply assumes that it is enough to increase probability of sampling around a solution
constructed for a relaxed version of a problem in order to find solution of the original problem.
This strategy cannot be applied in RRT-based planners, where increase of probability of sampling
in a given area does not ensure growth of the tree into the area.



Chapter 6

Experimental verification of RRT-IS

6.1 Algorithm setup

The performance of RRT-IS has been verified in the task of path planning for 3D rigid objects in
3D workspace. RRT-IS is compared to RRT [I50], RRT-Retraction [286] and RRT-ADD [108].
The latter two methods have been selected as they represent two state-of-the-art modifications of
RRT for path planning of 3D objects. Due to lack of implementation details of RRT-Retraction,
the modification described in Section [2.4.2] is used. RRT-Retraction is run with I.,; = 10
retraction steps, the contact configurations are search amongst N, = 32 randomly placed points
around the actual configuration in radius 7. = 0.5 mu. RRT-ADD is run with parameters
agq = 0.05 and activation radius R4g = 0.5 mu. Parameters of both methods have been obtained
experimentally to achieve the best performance in the tested environments.

The performance of RRT-IS is given by the scaling parameters Smin, Smax and sa as well as
by the parameters of RRT—-Path, which is called by RRT-IS at most B times for each tested
scale. In all scenarios, the parameters are set to syin = 0.6, Smax = 1.0, sao = 0.05 and B = 10.
RRT-Path is called with R,; = 0.5 mu (the same radius as the action radius of RRT-ADD),
adaptation rate a = 0.01, and pgyoq = 0.6.

The robots and the maps are represented using 3D triangle meshes and collision detection is
solved using Rapid [82] library. Resolution of the straight-line planner is € = 0.2 mu. Collisions
are computed three times per edge. The distance ¢ between two configurations is computed
using 6D Euclidean metric. Nearest-neighbor queries are solved using MPNN [280] library. The
planners are implemented in C+4 and compiled using gcc compiler version 4.2.1 with O2 flag.
The experiments have been performed on PC Intel Pentium IV @ 2.2 GHz.

6.2 Cube scenario

In the first experiment, the task is to find a path for a cube robot of side size 1 mu in environments
with one narrow passage. The tested environments consist of two rooms separated by a wall with
a window of size 2 mu (Fig.[6.1)). The size of the rooms is 25 X 25 X 6 mu. The window represents
a narrow passage, that has to be traversed in order to connect the rooms. Performance of
the methods is evaluated using multiple start/goal pairs. The start/goal pairs are generated
randomly but it is ensured that they are located in different rooms in order to force the planners
to traverse the narrow passage. For each environment, 100 random start/goals is used and each
planner is run 50 times on each pair. Examples of generated start/goal pairs are depicted in
Fig. The total number of trials per planner is 100 - 50 = 5,000. The maximum number
of planning iterations is set to I,q,; = 50,000 for the Window and Tunnel environments, and
Lnaz = 100,000 for the Long-tunnel environment.

The results achieved in the Window scenario are depicted in Fig. results for the Tunnel
map are depicted in Fig. and results for Long-tunnel are shown in Fig. The figures show

99
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Window Tunnel Long-tunnel

Figure 6.1: Scenarios for the generalized path planning problem.

Window Tunnel Long-tunnel

Figure 6.2: Examples of random start/goal pairs.

boxplots of runtimes and size of constructed trees and a graph with progress of percentage of
solved start/goal instances. Each figure also shows percentage of start/goal pairs solved with at
least 80 % s—rate.

Methods RRT-Retraction and RRT-IS compute solution for the highest amount of start/goal
pairs. The boxplots of runtime show that RRT-IS is comparable to RRT—Retraction in the Win-
dow environment, but it is significantly slow in the case of Tunnel and Long-tunnel environments.
In the Tunnel environment, both RRT—Retraction and RRT-IS solve the highest percentage of
start /goal pairs, but RRT-IS requires significantly more time to find a solution.

The Long-tunnel environment is more challenging for the planners, therefore the number
of maximal planning iterations is set to ;. = 100,000. Both RRT-Retraction and RRT-IS
provide plans for the highest percentage of start/goal pairs, but from the runtime point of view,
the RRT-IS method is significantly slower.

Although RRT provides good results in the Window and Tunnel scenarios, it fails in the
Long-tunnel scenario. The boxplots of size of constructed trees show, that RRT does not reach
the maximum allowed tree size (which equals to the number of planning iterations, i.e., 100, 000).
This indicates, that the algorithm does not expand the tree during each iteration. The inability
to expand the tree is caused by frequent selection of boundary nodes for the expansion. The
boundary nodes cannot be expanded because these are located too close to the obstacles. The
constructed trees usually fill the whole room, where the start configuration is located, but due
to the small entrance to the narrow passage, they do not expand to the second room. The
situation in Long-tunnel is also complicated due to the zig-zag narrow passage, that requires more
manipulation with the object than the narrow passages in the Window or Tunnel environments.

Performance of RRT-ADD method is similar to RRT in the Long-tunnel scenario. A possible
reason is that the activation radius Rgzg of RRT-ADD is too small, which does not allow the
tree to be expanded properly. RRT-ADD solved almost all start/goal pairs in the Window and
Tunnel scenarios with the same radius Rgq, but a different radius needs to be used for the Long-
tunnel environment. Although all scenarios use the same robots and the narrow passages of
same widths, the results indicated that the activation radius Rgq should be set also considering
the shape of the obstacles and the narrow passage. This shows the possible disadvantage of
RRT-ADD, which is sensitive to the proper setting of Rgq4.
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Figure 6.3: Performance of path planning for cube robot in the Window environment. Percentage
at 80 % s—rate: RRT=100 %, RRT-Ret=100 %, RRT-IS=100 %, RRT-ADD=91 %.
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Figure 6.4: Performance of path planning for cube robot in the Tunnel environment. Percentage
at 80 % s—rate: RRT=99 %, RRT-Ret=100 %, RRT-IS=99 %, RRT-ADD=98 %.
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Figure 6.5: Performance of path planning for cube robot in the Long-tunnel environment.
Percentage at 80 % s—rate: RRT=28 %, RRT-Ret=100 %, RRT-IS=98 %, RRT-ADD=37 %.
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6.3 Stick scenario

The aim of the second experiment is to test the performance of the planners for path planning of
non-cubic, yet simple, robots. Three robots are used: Stick, Stick., and L-shape robot (Fig. .
The difference between the stick robots is the origin of their coordinate system: Stick has the
origin at one end of the stick and Stick. has the origin in the geometric center. The experiments
have been performed in the Window environment with 50 random start/goal pairs. The start and
goal configurations are placed into different rooms in order to test the ability of the planners to
find paths through the narrow passage. The examples of start/goal pairs are shown in Fig.
The maximum number of planning iterations is set to I,q, = 50,000 for all algorithms and
robots except Inq, = 150,000 for RRT-ADD and the L-shape scenario. For each start/goal
pair, the planners have been run 50 times leading to 50 - 50 = 2, 500 trials.

~__

\\\\jz\// \\\]ﬁ
Stick L-shape

Figure 6.6: The 3D objects used in the second experimental setup. The cross-section of each
object is 0.6 map units.

The Window scenario with the Stick robots The window scenario with the L-shape robots

Figure 6.7: Examples of random start/goal configurations of Stick and L-shape robots.

The results are depicted in Fig. for the Stick. robot, in Fig. for the Stick robot and
in Fig. for the L-shape robot. In all scenarios, the best results in the term of percentage of
start/goal pairs are obtained by the RRT-IS method. The experiment have shown unexpected
sensitivity of the planners to the geometric center of the Stick robots. The percentage of solved
start/goal pairs is significantly higher for the Stick robot (Fig. than for the Stick. robot
(Fig. . RRT-Retraction solves high percentage of start/goal pairs only for the Stick robot,
but it fails to solve the same planning instances with the Stick. robot.

RRT-IS shows superior performance also for the L-shape robot (Fig. , where other
planners are not able to solve most of the instances. Examples of the configuration trees built
by RRT-IS for various scales of the L-shape robot are depicted in Fig. [6.11]
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RRT=0 %, RRT-Ret=0 %, RRT-IS=100 %, RRT-ADD=0 %.

180

160 -

140 |-

RRT-Ret
RRT ———
RRT-IS ——
RRT-ADD
i I 1 )
40 60 80 100

Desired success rate [%]

Performance of the planners with the Stick. robot. Percentage at 80 % s—rate:

400000 -

350000

300000 -

100

80

?
120 - 2
250000 § 60
o) 2
';‘ 100 Ag £
£ @ 3
= o 200000 o
< 2 3
S5 80 [ @
[ 5 40
150000 *
60
%0 100000
== 20
20 50000 [
— —=
ol T . ) . .
KN N NN NN N
3 K %, % T,

RRT-Ret
RRT
RRT-IS ——
) RRT-ADD

40 60 80 100
Desired success rate [%]

Figure 6.10: Performance of the planners with the L-shape robot. Percentage at 80 % s—rate:

RRT=0 %, RRT-Ret=0 %, RRT-IS=100 %, RRT-ADD=0 %.



64 CHAPTER 6. EXPERIMENTAL VERIFICATION OF RRT-IS

scale=0.6 scale=0.7

scale=0.8 scale = 1.0

Figure 6.11: Example of the guiding paths (yellow) and the configuration trees (red) constructed
by RRT-IS for the L-shape robot. The path found in the configuration tree (green) becomes a
guiding path in the next iteration.
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6.4 3D BugTrap

The third experiment has been performed on the 3D BugTrap motion planning benchmark [147].
The objective is to remove the stick robot from the trap obstacle through the narrow passage. The
benchmark is challenging not only due to the narrow passage, but also due to time consuming
collision detection. Collision detection is realized using AABB (Axis-Aligned Bounding Box)
hierarchical data structure, but because the robot is located inside the shell, the bounding boxes
of both objects always overlap. More levels of the hierarchy need to be traversed before the
collision is properly determined, which increases time of the collision detection system [56].

The planners have been run with I,,,,., = 100,000, I, = 200,000 and ., = 500,000 of
the planning iterations. Parameters of RRT-IS are spi, = 0.3, sa = 0.1 and pgoq = 0.7. Small
goal-bias pgoq; = 0.01 is used also by other methods. RRT-Retraction is run with I, = 10
retraction steps, contact configurations are searched amongst N,..; = 32 random samples on a
sphere of radius 7,; = 1 mu. The initial radius of RRT-ADD is set to Rgg = 0.5 and «ag4q = 0.01.
Each algorithm is run 50 times. In this scenario, only one start/goal configuration is used. The
start configuration is inside the capsule and the goal configuration is defined as a region outside
the capsule.

The results are summarized in Tab. Within allowed I, = 100,000 of the planning
iterations, RRT-IS provides solution in 100 % of trials, RRT and RRT—-ADD failed (their s—rate
is 0 %), and RRT-Retraction solves the problem in 24 % of trials. By increasing the number
of allowed iterations I, from 100,000 to 500,000 the performance of RRT-IS remains same (it
provides solutions in 100 % of trials), but performance of other planners improves. The success
rate of RRT-Retraction increases from 24 % to 100 %, and the success rate of RRT increases
from 0 % to 64 %. This is the usual method to increase probability of finding a solution with
sampling-based planners, but it does not work always. For example, the success rate of RRT—
ADD increases from 0 % to only 18 % after I,,4. is increased from 100,000 to 500,000. The worse
performance of RRT-ADD is probably caused by improper setting of the activation radius Rgg.
The sensitivity of RRT-ADD to the parameter Ryq may disadvantage the method in scenarios,
where the radius cannot be easily estimated and where its experimental setting would be time
consuming.

The size of the constructed trees of RRT-IS does not increase significantly with increasing
Lnaz (it is 437 x 103 for I,4, = 100,000 and 477 x 103 for I,,q, = 500,000). RRT-IS can build
larger trees than is the number of allowed planning iterations, as it calls RRT—Path upto B
times for each scale. The increasing number of planning iterations I,,q, leads to the larger trees
constructed by RRT and RRT-ADD that build trees of maximal allowed size, which equals to
the number of iterations I,,q,. The size of constructed trees build by RRT—Retraction does not
increase so much with increased I,,,,. RRT—Retraction always builds larger trees than RRT
and RRT-ADD, because the retraction procedure can push the samples deeply into the narrow
passages.

The visualization of a solution found by RRT-IS is depicted in Fig. The video with the
final solution is available at [249].

6.5 Hedgehog in the cage

In the Hedgehog problem (Fig. , the task is to remove the spiky object from the cage with
five identical windows. The problem requires gentle manipulation of the object, as the radius of
its main sphere is just few percents smaller than the width of the windows. The configuration
space probably consists of many narrow dead-end passages and only few traversable ones. The
cage is a cylinder of radius 2.5 mu and height 7.5 mu and the size of the whole 3D workspace is
8 x 8 x 10 (width x depth x height) and the radius of the Hedgehog body is 0.95 mu.

The size of the environment is the same as the 3D BugTrap problem, so the algorithms have
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Figure 6.12: Solution of 3D BugTrap benchmark.

Table 6.1: Results on 3D BugTrap benchmark.

RRT-IS RRT RRT-ADD RRT-Ret
Mean Dev Mean Dev Mean Dev Mean Dev

Tmas = 100,000

Run-time [S] 232.17 153.49 13.37 0.29 16.68 1.23 60.93 6.91

Tree size (><103) 437 230 99 0 99 0 95 11

Success rate 100 % 0% 0% 24 %
Ivae = 200,000

Run-time [s] 22737 160.25 28.75 1.82 36.16 0.93 93.01 33.01

Tree size (x10%) 433 257 199 0 199 0 140 49

Success rate 100 % 0% 0% 66 %
Iae = 500,000

Run-time [S] 225.74 176.05 71.83 12.75 106.21 9.57 123.98 23.21

Tree size (><103) 477 346 446 69 486 32 183 34

Success rate 100 % 64 % 18 % 100 %

been run with the same setting as in the previous section. The number of planning iterations
is set to Ipae = 5 x 10° for RRT-IS. Due to low success rate of other methods, they have been
tested also with Ip,qe = 5 x 10%. The start position is located in the center of the cage, while
the goal position is defined as a region outside the cage (the whole hedgehog must be out of the
cage). The video of a final solution found by RRT-IS is available at [250].

The results are shown in Tab. [6.2l The RRT-IS method is the only planner that provides
solution of the benchmark. The difficulty of the object manipulation is indicated by the size of
the constructed trees. With Ip,qe = 5 x 10°, RRT-IS builds trees with ~ 174 -10% nodes, but the
other methods build significantly smaller trees.

The reason is that there is not much space to manipulate the object within the cage. After
several thousands of planning iterations, the configuration tree fills free space of the cage and in
order to extend it more, random samples g.q,q need to be generated inside the cage. However,
due to uniform sampling of configuration space used in RRT, RRT-ADD and RRT-Retraction,
most of the samples g.qnq are generated outside the cage. By considering the cage as a cylinder
and by neglecting the thorns, the volume of the cage is ~ 22 % of the workspace. Therefore,
approximately 78 % of random samples cannot extend the tree. From the rest of 22 % of random
samples, most of them do not lead to successful extension of the tree due to collisions of the spiky
robot with the cage. This is one of the possible reasons why increasing of planning iterations
from Inge = 5 X 10° t0 Inge = 5 x 10° does not increase the success rate of RRT, RRT-ADD
and RRT—-Retraction methods.
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Table 6.2: Results on Hedgehog in the cage benchmark.

RRT-IS RRT RRT-ADD RRT-Ret
Mean Dev Mean Dev Mean Dev Mean Dev
Taz =5 x 10°
Run-time [s] 1,619.86 2,179.19 118.77 14.45 70.30 6.99 463.87 12.07
Tree size (x10%) 174 213 7 0 42 3 41 0
Success rate 90 % 0% 0% 0%
Lnes = 5 x 108
Run-time [s] 1,710.52 80.79 1,546.34 68.00 3,600.00 0.00
Tree size (x10%) 60 1 276 12 317 6
Success rate 0% 0% 0%

6.6 Discussion

The presented experiments have shown performance of herein proposed RRT-IS method in the
task of path planning for the simple cubic objects, stick robots as well as in 3D BugTrap
and Hedgehog benchmarks. The method has been compared to RRT, RRT-ADD and RRT-
Retraction.

The experiments have shown, that RRT-Retraction and RRT-ADD are superior for the
simple cubic robots, but their performance decreases if robots of other shapes are used. The
experiment with two Stick robots has shown, that the planners are also sensitive to the geometric
center of the robots. Path planning for the Stick. robot is more challenging for RRT, RRT—
Retraction and RRT-ADD than for the Stick robot. The proposed RRT-IS method is able to
find paths for both Stick and Stick, robots.

The biggest difference between the performance of RRT-IS and the other planners has been
observed in the challenging Hedgehog and 3D BugTrap scenarios. These benchmarks contain
challenging narrow passages, that requires gentle manipulation of the objects. The percentage of
solved trials is significantly lower for the RRT, RRT-ADD and RRT—Retraction methods. The
planning iterations I,,,, can be increased to achieve better results with these methods, but this
helps only in the 3D BugTrap scenario.

There is no universal method capable of solving all instances of the considered path planning
problem. The experiments shown, that the problems involving convex geometries are solved
faster by the state-of-the-art methods RRT-ADD and RRT—-Retraction. The proposed RRT-IS
method is computationally more intensive in these scenarios. However, RRT-IS has been shown
to be superior in path planning involving complex geometries and in scenarios with complicated
narrow passages. Finally, the most challenging benchmark of the experiments, the Hedgehog
problem, has been solved only by the RRT-IS planner.
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Chapter 7

Motion planning for modular robots

Modular robots are composed of many basic building blocks — modules. The modules can be
connected in many ways and they can form robots of various shapes (Fig. . In comparison to
fixed-shape robots, modular robots are more versatile as they can adapt their shape for a given
task and environment.

Motion planning is required for self-reconfiguration as well as for navigation in an environ-
ment. In the second task, which is considered in this chapter, a feasible trajectory needs to
be found for the whole robot in order to reach a desired place. Modular robots typically have
many degrees of freedom and motion planning leads to search of a high-dimensional configuration
space.

Motion planning for modular robots operating in large flat environments is investigated in this
chapter. The task is motivated by Grand Challenge scenario proposed in Symbrion/Replicator
EU projects [156]. The scenario starts by autonomous exploration of a 2D environment with
tens of modules that are supposed to form larger robots in order to overcome obstacles and reach
distant power sockets. An integral part of the scenario is motion planning for the organisms
(modular robots), where the main task is to find trajectory for the whole robot to a distant
place.

Motion planning for modular robots is challenging due to many motion constraints, necessity
to control many actuators and the need to search a high-dimensional configuration space. Here,
the number dimensions of the configuration space grows with the number of modules. The RRT
method is a suitable candidate for the motion planning as it can cope with all the constraints.
Motion model of modular robots needs to be simulated rather than described analytically. This,
together with the necessity to control many actuators, significantly slows down construction of
the configuration tree.

During implementation of the RRT-based planner, it was identified that performing motions
of the whole robot is more challenging that the narrow passage problem. To enable RRT-based
motion planning for modular robots, we propose to employ locomotion generators to realize basic
motions of the robots. To decrease the number of evaluations of simulated motion model, the
guiding principle can be used. The novel motion planner, called RRT-MP (RRT with Motion
Primitives) [263] is described in this chapter.

Figure 7.1: Example of modular robots composed of CoSMO [I58] platform.

69
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7.1 Overview of modular robotics

Modular robotics is motivated by challenging scenarios like space exploration [282] 283], search
and rescue missions [58], or maintenance of scientific facilities [192] (193]. In these scenarios,
robots have to perform various tasks from locomotion to object manipulation. The idea of
modular robotics is to make robots on demand according to a given task instead of using many
specialized robots. Modular robots are composed of many mechatronic modules that can be
connected to form bodies of various shapes [70]. For example, a lizard-like robot can be formed
to traverse a rough terrain and it can be reconfigured to a snake-like robot in order to traverse
a narrow passage.

According to geometrical arrangement of the modules, modular robots can be classified into
two types, chain-type or lattice-based systems. The chain-type systems are composed of modules
that form single- or multi-branch linkages so they can form robots with legs or arms similar to
living creatures. The modules can be positioned arbitrary in space, which allows to move the
whole robot using joint-control locomotion and to perform object manipulation. The joint-
control locomotion is achieved by controlling angles of individual joints. However, it is difficult
to realize self-reconfiguration, as it requires a precise cooperation of several modules. In lattice-
based systems, modules occupy discrete locations similarly as atoms in a grid [44] [43] 265]. As
the modules move in the grid, reconfiguration is easier than with the chain-type robots, but it
is difficult to generate dynamic robotic motions like walking or crawling. Instead, lattice-based
robots can move via self-reconfiguration [195] 66, 285| 242], 204, 213].

Many modular robotic systems have been developed. We refer to [176] for a comprehen-
sive survey. Examples of homogeneous platforms that consist of modules of same type are
CONRO [222], 212], PolyBot [281] 283], M-TRAN [179, I78], ATRON [109], SuperBot [215],
Molecubes [288] and ICubes [244]. Homogeneous platforms have gain special interest, as they
simply scale in size by adding new modules. Heterogeneous systems employ several types of
modules that are specialized for certain tasks. Examples of heterogeneous systems are ModRed
platform [21] and recent Symbrion/Replicator robots [156].

The Symbrion/Replicator platform consists of three types of modules called Scout, CoSMO
and ActiveWheel (Fig. . The modules use the same electrical design, power and communi-
cation buses, and docking units. Power is provided by an internal battery or it can be shared
within the organism through the power bus. The modules can communicate via ZigBee interface
and, if connected, also using Ethernet. Each module is also equipped with a Blackfin processor,
32 MB of RAM and pClinux operating system. The connection between the modules is achieved
using an active docking mechanism with locks, i.e., at least one of the connected modules has to
lock the docking mechanisms in order to ensure the proper connection.

Scout robots support fast 2D locomotion using a pair of tracks and they are also equipped
with a simple hinge for 3D locomotion [I123]. The main task of Scout modules is to explore
2D environments in order to collect information about obstacles and to localize other modules.
CoSMO modules are equipped with a more powerful hinge for 3D locomotion, which allows them
to lift up to four other modules. The CoSMO modules are intended as backbone modules for
large robots (organisms). 2D locomotion is achieved using a screw-drive mechanism that provides
precise, albeit slow motion [I58]. ActiveWheels are hybrid robots, as they are equipped with
three omnidirectional wheels for 2D locomotion and they can be also connected with other two
platforms [I56]. ActiveWheel robots are designed as rescue robots, as these can pickup failed
modules and deliver them autonomously to a repair station.

Motion planning methods proposed in this thesis has been developed and tested on the
CoSMO platform [I58]. The modules are cubes of size 10 x 10 x 10 cm and they weight ~ 1.2
kg. The modules are equipped with four docking mechanisms. Beside the powerful joint for 3D
locomotion and the pair of screw-drives, each module is equipped with basic sensors (camera,
IR distance sensor, accelerometers). Examples of various robots made of CoSMO modules are

depicted in Fig.
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Figure 7.2: Examples of Symbrion/Replicator heterogeneous modules from left to right: Scout,
ActiveWheel and CoSMO.

7.2 Problem analysis

In this thesis, chain-type modular robots without loops are considered. A configuration of a
modular robot with n modules is described as ¢ = (x,y, z, ¢, 0,9, a1, ... ,a,) € C, where (z,y, z)
and (p,0,1) denote the 3D position and orientation of the pivot module respectively, a; denotes
the angles of the joints and C is the configuration space. A configuration is feasible, if the robot
does not collide with any obstacle and if no two modules collide. The task of motion planning
is to find a feasible trajectory from a start configuration g+ to a goal configuration ggeq. In
this thesis, the self-reconfiguration capabilities are not considered, therefore the topology of the
robot is not changed during the motion. Although the self-reconfiguration is supported by the
CoSMO modules, it is not used because of the design of Grand Challenge scenario. The motion
planning problem requires to search the high-dimensional configuration space considering the
motion constraints. We propose to solve this task using RRT method, as it allows to handle
motion constraints.

A crucial procedure of RRT is the expansion step, that generates new configurations reachable
from a selected node @peqr- Traditionally, the expansion is realized by examining all possible
combinations of discretized control inputs. This leads to k™ combinations, where k is the number
of discrete levels in each actuator and n is the number of actuators. This approach is not useful
for modular robots, because the number of combinations grows exponentially with the number
of actuators, and consequently, also with the number of modules. To decrease the complexity of
the expansion step, the hinges can be moved to randomly chosen positions [255] or they can be
controlled using random time signals [284]. However, motions achieved using these techniques
are clumsy and inefficient. A robot controlled in such a random manner performs many small
steps, which increases the number of planning iterations required to find a solution.

7.2.1 Motivation for motion planning with motion primitives

Instead of generating the control signals randomly by the motion planner, the joint-control lo-
comotion can be achieved using locomotion generators like Central Pattern Generators (CPG).
CPGs are inspired by observations from nature, where coupled neuro-oscillators provide rhyth-
mic signals for muscles [I77]. By changing parameters and coupling of the CPGs, various gaits
like crawling or caterpillar-like motions can be achieved. The parameters can be found automat-
ically using optimization tools like genetic algorithms (GA) [165, 239, 102, 261, 113], 114] [103],
evolutionary algorithms (EA) [260, 264, 263, 258] or reinforcement learning [I81]. CPGs have
been used to generate locomotion of snake-like robots [48) [188], 113], quadruped robots [12§],
humanoid robots [I75] 208, [61], swimming robots [102, [I0I] and modular robots [113], 114} 47].
A comprehensive review of CPGs and their usage in robotics can be found in [100].

It should be noted, that despite the ability of CPGs to generate various gaits for wide range
of robots, they are aimed to provide locomotion rather than solving high-level tasks as collision
avoidance or navigation to a predefined location. A more complex behavior can be achieved by
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introducing sensory feedback [I83], 167, 137, [42], but these approaches are intended mainly to
cope with altering terrains.

To achieve a more high-level behavior (i.e., to navigate the robot to a goal region in a large en-
vironment ), we propose to equip the robot with several gaits — motion primitives. Each primitive
p is realized by a suitable locomotion generator and it is represented by a vector x? of parameters
of its generator. The generator provides control signals u?(¢t) = (ai(t),...,an(t)),0 < t < 7P,
where a;(t) are desired positions of joints. Depending on the type of CPGs, the signals are
distributed to individual modules from a central unit, or they are computed on each module
separately. The centralized control is easier for implementation, but it can be prone to commu-
nication failures. A more robust approach is to run a cyclic function on each module separately.
To synchronize actions of the modules, each module sends a message to its neighbors after a frac-
tion of the period is completed [233] 232]. Synchronization can also be achieved using artificial
hormones [223, 216], which flow though the modules and trigger their actions. In this thesis, the
control signals are generated on the pivot module and they are distributed using messages to
other modules. Each module then moves to the desired position using an internal PD controller.

The robot can be equipped with several motion primitives such as ‘walk-forward’, ‘rise-head’
or ‘turn-left’. To control the robot using a primitive p, first the parameters xP are retrieved
from a look-up table and the control signal u?(t) is generated and distributed to the individual
modules.

7.3 RRT-MP: RRT with Motion Primitives

The RRT-MP (Rapidly Exploring Random Trees with Motion Primitives) [263] algorithm is
designed to solve the motion planning problem for joint-controlled modular robots. A robot is
equipped with a set of motion primitives, that are realized using CPGs. These primitives are
considered as atomic actions in the motion planning level and the task of the planner is to find
a sequence of the primitives to reach the goal configuration.

RRT-MP builds configuration tree rooted at ¢gsqrt and it works as follows. In each iteration,
a random configuration q,q,q € C is generated and its nearest neighbor ¢peqr € T is found in
the tree. To obtain new configurations reachable from ¢yeqr, input signal uP(t) is generated from
the settings xP for each of the employed motion primitives. A new configuration reachable using
the primitive p is determined using a simulated motion model, which is run over time interval
7P. From the obtained set of reachable configurations, the nearest configuration gnew t0 Grand
is selected and added to the tree. The information about the utilized primitive is stored in the
edge (Gnear, Gnew)- The algorithm terminates if ¢ye approaches the ggoq to a predefined distance
dgoq- The RRT-MP method differs from RRT only in the expansion step, therefore only the
expansion step is listed in Alg. [/} An example of the expansion step is visualized in Fig.

A trajectory is then found in the tree similarly as in normal RRT: the nearest node to
qg]oal € T towards the goal configuration is found and the path towards gsyq,¢ is retrieved from
the tree. The resulting trajectory is a sequence of k segments (g;, p;, 7i, ¢;), where ¢; is the initial
state of the segment, p; is the primitive that needs to be performed in this segment over time
7;, and ¢} is the expected end configuration of this segment. The first segment starts from gs¢ar+,
therefore q; = gstare- The last segment ends in the vicinity of the goal, and so ¢ = q;oal‘ The
last configuration ¢} of segment ¢ is the same as the first configuration ¢; 41 of the next segment.

The robot then executes this sequence of primitives by generating signals u”i(t) according
to setting xPi of primitive p; and these signals are applied to the actuators over time 7;. The
expected end configurations ¢} of each segments can be used to detect deviation of the robot
from the designed trajectory. A new plan is computed if the robot deviates from the planned
trajectory.

It has to be ensured that a primitive can be switched to another one. The current applicability
of a primitive depends on the actual state of the robot, and also on the previously used primitive.
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For example, the primitive ‘stand-up’ can be applied if the robot is lying on the ground. However,
it may not be straightforward to determine the proper states for complex shapes and it is more
comfortable to decide the applicability based on the previously used primitive. For example, we
can specify, that ‘stand-up’ can be applied after ‘lie-down’ has been applied without the necessity
to define all possible states in which it can be applied. Let the predicate isApplicable At(p, q)
be true if a primitive p can control the robot from state ¢. Also, let isApplicableA fter(p, pprev)
be true, if a primitive p can be applied after a primitive ppre,. The predicates are used in the
RRT-MP expansion step (line 3 in Alg. 7).

Algorithm 7: expandConfiguration(g,qnd, Gnear): Expansion procedure of RRT-MP

Input: random configuration grqn4, configuration to expand gneqr, previously used primitive pprev
Output: Extended tree 7

1 R=10;
2 foreach p € motion Primitives do
3 if isApplicable At(p, Gnear) N isApplicable A fter(p, pprev) then
4 xP = parameters of the motion primitive p;
5 u?(t) = (a1(t),...,an(t)),0 <t < 7P; // control signal using the locomotion generator with
setting xP;
6 g = simulatedMotionModel(u?(¢),qnear);
7 R=RU{(¢;p)};
8 end
9 end
10 if R # () then
11 (Gnew,p) = closest configuration from R t0 @rqnq and its primitive p;
12 T .addNode(gnew);
13 T .addEdge(gnears Gnew, P);

14 end

Figure 7.3: Example of a tree constructed using three motion primitives (Left, Forward, Right).
In the expansion step, the nearest node gneqr in the tree towards g,.qp,q is found and the motion
primitives are applied in this node (resulting in the yellow configurations).

The utilization of motion primitives significantly decreases the complexity of the expansion
step, that is given by the number of the primitives rather than by the number of actuators in
the robot. However, due to utilization of the simulated motion model, the expansion step is
still a time consuming procedure. To speed up the planning process, the number of expansion
steps should be decreased. We propose to employ the guiding principle designed in Chapter
to achieve this. In the considered task of motion planning for modular robot in flat-like large
environments, where the task is to move the robot to a distant place, the main task of the guiding
path is to suppress exploration of the whole configuration space and to focus the sampling to a
region, where a solution can be found.

The guiding path can be computed using the basic path planning methods in the 3D workspace.
We propose two basic strategies to compute the guiding path. First, the environment can be
represented using 2.5D grid, in which a path from start position to goal position is found. Sec-
ond, the environment can be described using a 3D triangular mesh. The mesh can be converted
to a graph, where nodes are vertices, the edges correspond to edges of the triangles, and the cost
of edges is the distance of related vertices. If the mesh also contains inaccessible areas, such a
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Figure 7.4: Example of motion planning for modular robot with and without the guiding path.

obstacles, the corresponding edges are not used in the graph. The graph is then searched for the
guiding path.

The result of both approaches is a workspace path represented by a sequence of 3D waypoints.
To utilize this workspace path as a guiding path for the modular robot, it has to be converted
to configuration space. A possible way to convert a workspace point (z,y, z) to a configuration
q(@',y, 2 p,0,1,a;),i = 1,...,n, is to use the 3D position from the workspace (i.e., 2’ = z,
y' =y and 2/ = 2), and set the remaining variables to zero. This is suitable if the robot moves
in a large area, where it is not required to follow the path precisely. As the workspace path
is computed on the surface of the ground, but the pivot module moves above the ground, it is
possible to add offset, i.e., 2’ = z + offset. The offset can be set e.g. as the average altitude of
the pivot module during a motion. Example of a guiding path is depicted in Fig. [7.4]

7.3.1 Analysis of motion planning with motion primitives

The utilization of motion primitives brings several advantages. First, we can assume that each
primitive generates the desired motion efficiently. Such primitives hence move the robot faster
than randomly generated control signals. Planning with motion primitives is thus faster and less
memory consuming than naive sampling-based planning with random control inputs [255], 284].

Second, the input signals of the motion primitives do not need to be stored in the tree, because
these can be generated on demand by the utilized CPG. Therefore, the edges in RRT-MP keep
only information about the utilized primitives, which decreases the memory requirements.

Third, the complexity of the expansion step is not influenced by the number of actuators,
but only by the number of available motion primitives (size of the set motionPrimitives on line
2 in Alg. [7)). RRT-MP is scalable and can also be used for systems with many actuators.

The ability of RRT-MP to find a plan for a modular robot depends on two key properties:
motion primitives and the metric. Both have to be chosen by human operator considering the
actual mission. The primitives should be selected considering capabilities of the robot as well as
suitability of the primitives for the given task. For example, primitives like ‘crawl’ or ‘turn’ are
enough for moving on a terrain, but ‘stand-up’ primitive may be necessary if the robot has to
reach a place above the ground. As the complexity of RRT-MP is given by the number of the
motion primitives, the user should select suitable primitives, that are believed to be necessary
to accomplish the task.

The ability of the tree to grow in the configuration space also depends on the employed metric
measuring distances between the configurations. The metric has to be designed considering also
effects of the primitives, so the primitives are distinguishable by the metric. The 3D Euclidean
metric measured between 3D positions of pivot modules is suitable for motion planning in large
environments, because it supports fast motion of the robot in the 3D subspace of the configuration
space. This metric is used for motion over large distances. Different metric, possibly with
rotation, should be used to plan shorter trajectories, e.g. during the docking to a power socket.
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Figure 7.5: Simulation models of the CoSMO modules.

7.4 Implementation details

The sampling-based motion planning for modular robots using the concept of motion primitives
differs from motion planning for mobile robots in two main aspects. First, motion model is not
described analytically, but it is realized using a physical simulation. Second, an optimization of
the motion primitives is required. These two components are described in this section.

7.4.1 Simulated motion model

The forward motion model describes the change of position of the robot after control inputs are
applied. While the motion of mobile robots can be described analytically, it is not easy to derive
a closed-form motion model for modular robots due to many constraints caused by kinematics
and necessity to consider contacts between the robots and underneath surface [205]. A black-box
motion model can be realized using physical simulation [205, 255| 263] 235]. Physical simulations
are widely used in robotics e.g. for modeling complex robots (e.g. snake-like, legged or modular
robots), particular devices [278] or deformable objects [74]. In comparison to closed-form motion
models that are prepared for a specified robot, physical simulations allow us to model robots
with changing shape and topology, which is very important in modular robotics, where robots
can reconfigure to various shapes. On the other hand, evaluation of simulated motion models is
usually slower than computation of a closed-form model.

In the physical simulation, a robot is represented using a set of physical bodies with associated
masses, mass densities and geometric shapes. The connection between the bodies (connection
between two modules) can be realized using several types of joints, which restrict relative mo-
tions of the bodies. Static obstacles including ground or terrain, are modeled only using their
geometries. In each simulation step, first collisions between the geometries are computed in order
to determine contact forces. These forces are caused e.g. by contacts between the robot and the
ground. In the next step, the contact forces, gravitational force and forces caused by actuators
are integrated to determine new position of the bodies. Due to restrictions caused by the joints,
new positions of the bodies are computed numerically.

The speed of the physical simulation is determined by the speed of its two main components:
collision detection and numerical solver. The task of the collision detection is to report pen-
etration vectors (or penetration depth [56]) that describe how to move two bodies in order to
remove the collision. The quality of penetration vectors is crucial for the stability of the physical
simulation. The vectors can be computed analytically between geometric primitives like boxes,
spheres and cylinder, and it is therefore recommended to approximate robots by these primitives.
Usage of detailed geometric models from CAD systems is also possible, but the computation of
penetration vectors between general (non-convex) triangle meshes is not trivial. Computation of
penetration vector may become ambiguous because of missing information about orientation of
faces. Therefore, it cannot be determined how to move the bodies in order to remove the collision
and the probable vector has to be estimated heuristically. Incorrectly determined penetration
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Figure 7.6: Simulation models of CoSMO modules. The HW module is depicted in (a). In the
simulation, the module is represented by four bodies (two green and two yellow) (b). Each body
has assigned different mass and mass density. Collision detection is realized using more detailed
geometry (c) and the visualization is realized using 3D CAD models with ~ 10k triangles (d).

vectors can cause leaking of objects to each other, which consequently decreases precision and
also stability of the simulation.

The task of the numerical solver is to determine new accelerations impacting the bodies
based on actual velocities/moments, forces caused by contacts between the bodies, moments
of joints and additional forces like gravitation. A time complexity of each simulation step of
ODE physical engine [2] for a group of n bodies with mj joints is O(kymi + kem3 + ksn),
where my is the total number of DOFs removed by all m; joints. Here, the number joints also
includes the contact joints between two touching bodies and it is therefore always higher than
the number of real joints of the modular robot being modeled. Due to the presence of many
1-DOF joints, that are used to model connection between modules, the physical simulation of
modular robots is considerably time consuming. Each simulation step integrates the forces over
a time tgm,, that determines speed, precision and also stability of the simulation. In the unstable
simulation, objects can penetrate each other and the joints do not properly limit relative motion
of the objects. The instability can even lead to “explosion” of the objects, that is caused by
violation of the assumptions of the numerical solver. With smaller ¢4;,,, positions of objects are
determined more precisely and the stability of simulation is increased, but the runtime of the
overall simulation is slower, as more physical steps need to be performed.

To decrease the time complexity and to increase the stability of the simulation, the simulated
CoSMO modules (Fig. [7.6a) are modeled using multiple boxes (Fig. [7.6p). Each body has
assigned different mass density and mass in order to make precise model of mass distribution
within the modules that is necessary for the accurate simulation. Collision detection is computed
using a more detailed shape (Fig. [7.6¢). Visualization is achieved using detailed 3D meshes
obtained from CAD models (Fig.{7.6d). An example of simulated Quadropod robot with various
levels of details is depicted in Fig. The physical simulation of Symbrion/Replicator robots
is provided by Robot3D [271] and Sim [254] simulators.

The physical simulation is used in the expansion step of RRT-MP to determine how the
robot moves after a motion primitive p is applied. In each iteration of the planner, the tree can
be expanded from different configuration ¢peq-. This requires to reset positions of all bodies and
joints according to configuration geq-. This non-linear utilization of the physical simulation may
cause instability. It is necessary to maintain also other variables like accelerations and velocities
of the internal objects in order to ensure its stability. These additional variables need to be
stored in the configuration tree together with the configurations. We refer to our paper [255]
where technical details about integration of physical simulation into RRT-based planners are
described.

7.4.2 Optimization of motion primitives

To achieve a desired motion primitive, parameters x? need to be optimized according to a fitness
function fP(xP) that differs for each primitive p. The success of the optimization process depends
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on the definition of the fitness (cost) function. The optimization of tens or even hundreds of
parameters of CPGs is necessary to achieve motion of modular robots, because of many actuators
to be tuned. This high-dimensional optimization can be solved using genetic algorithms [165] [239]
102] or other evolutionary methods. These methods rely only on the fitness function. Therefore,
the fitness function should allow the optimization process to start the evolution, which requires
to distinguish between good and bad solutions in the early stages of the evolution although
the solution itself does not provide the expected behavior [I84]. Many works suggest using the
traveled distance as the fitness. However, the traveled distance cannot distinguish between an
oscillation around a fixed point and a real motion outward the point. Let us imagine a robot
moving forward and backward, whose average position is zero. Such a motion would be rewarded
by a high fitness according to the traveled distance, but the motion itself is useless if a robot has
to visit a distant place.

We propose a different approach to define the fitness function, which is motivated by the
purpose of motion planning with the motion primitives. As the main task of the robot is to move
in a possibly large environment, fast motions to various directions are preferred. The fitness
function of one primitive to be maximized is fP(xP) = D — d, where D is the initial distance
of the robot from a virtual goal and d is the distance from the goal after primitive x? has been
applied. The distances D and d are measured as 3D Euclidean distance between robot’s pivot
module and the virtual goal, that is placed in a sufficient distance D from the robot in the desired
direction. The distance D should be large enough to ensure that the robot cannot overcome it
during the time 7P.

To evaluate the fitness function using the physical simulation, the simulated robot is created
at the initial configuration ¢(0) and it is driven by control signals u”(t) defined by the primitive
xP being tested. The robot reaches configuration ¢(77) after time 7P. The fitness is visualized in
Fig. [7.7 This fitness provides enough pressure to force the robot to move in the given direction
as fast as possible.
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Figure 7.7: Example of a fitness function for the motion pattern ‘move forward along z axis’.
At the beginning, the robot is placed at position ¢(0) and the motion primitive being tested is
applied to the actuators for time 7P. The initial distance D and the final distance d from the
virtual goal gygeq; are then used to compute the fitness fP(x?) = D —d.

We employ the Particle Swarm Optimization technique (PSO) to find the suitable parameters
xP. PSO is a population-based stochastic optimization technique, where each particle represents a
candidate solution xP. Movements of the particles are inspired by bird flocking and fish schooling.
In comparison to GA, PSO maintains the population using mutation only i.e., the crossing
operators are not used. Movement of a particle in the search space is influenced by the particle’s
experience, and also by the experience of other particles. Each particle maintains coordinates
%P in the search space associated with the best solution that it has achieved so far. Moreover,
the position XP of the best solution over all particles in the past is shared between the particles.
The quality of the particles is evaluated using a fitness function. Each particle has assigned a
velocity v;. In each iteration of the PSO algorithm, a new velocity v, is computed and the new
position xgp is updated using the old position x" and the velocity v/. The velocity and position
are updated in each dimension j separately:
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Figure 7.8: The PSO rule applied to a particle in a two-dimensional case. The old position of
the particle is x! and its velocity is v;. The particle is attracted to its best solution X! (green)
and to the best solution found in the whole swarm %P (blue). The new velocity v} is computed
and the particle changes position from x? to x;p (black).
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where w is an inertia factor, and r, and r,; are random numbers from the uniform distribution
U(0,1). The parameters ¢; and ¢4 provide balance between exploration and exploitation of the
solution space [122]. In the next step, x;p becomes x?. The velocity of the particles is bound by
a vector vmqe S0 that the particles cannot overpass the search space. Practically, it is useful to
set Umaz at 10-20 % of the dynamic range of the variable in each dimension [54] or it can be a
linear or nonlinear function of time [225]. Despite its simplicity, PSO has been shown to be fast
and effective in various optimization problems. A comprehensive survey of PSO-based methods
can be found in [59, [124].

Optimization using PSO brings several advantages that are important for optimizing motion
primitives. As the particles flow through the solution space, the technique is suitable for opti-
mization in continuous spaces, which is the case for the optimization of CPG parameters. PSO
can provide a solution even if only a few particles are used [262]. This is important for PSO-based
adaptation of the motion primitives, as the possibility to utilize few particles significantly speeds
up the adaptation process. As the searching of the solution space is based purely on a mutation
of existing solutions (particles), there is no need to design specialized crossing operators, which
would be necessary for a GA-based optimization. The PSO-based adaptation method can be
used with different CPGs without the need to tune the adaptation method itself.

7.5 Discussion

Modular robotics traditionally employ planning methods to study the self-reconfiguration task [195],
60, 285, 242], 204, 213| 145, 269], rather than for motion planning of the whole robots in envi-
ronments. The joint-control locomotion is mainly studied using the concept of Central Pattern
Generators, but the research is usually focused to the locomotion control only without aim to
avoid obstacles and visit a distant goal.

This chapter proposed a novel motion planner for modular robots considering joint-control
locomotion. The task of the planner is to design motion plans in large environments, which
is motivated by Grand Challenge scenario of Symbrion/Replicator EU projects. The proposed
method, called RRT-MP, is based on a sampling-based principle that solves the motion planning
problem by random sampling of the configuration space of the robot. Due to the high number
of actuators, it becomes intractable to examine all possible combinations of control inputs of
the modular robot. We therefore suggest to employ local motion primitives realized by Central
Pattern Generators.
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The most relevant work to our RRT-MP system is the RRT-CPG planner [284]. The RRT-
CPG generates basic motions of modular robots using a CPG. To reduce the number of CPG
parameters, modules are divided to several functional blocks representing legs or the main body.
The corresponding actuators in the same blocks are then controlled using same parameters.
The parameters of CPGs are selected randomly using RRT. Each node in the tree represents a
configuration of the robot. The nodes are expanded by examining several random parameters of
the used CPG.

Both RRT-MP and RRT-CPG generate the low-level motions of the modular robots us-
ing CPGs. The main difference between the methods is that RRT-MP utilizes a set of fixed
motion primitives that are optimized for a given task before the planning process. Contrary,
RRT-CPG utilizes single CPGs, but its parameters are selected randomly during the planning
process without evaluating efficiency of the motions. The motions achieved by RRT-CPG are
thus more inefficient and many planning iterations are required to reach the goal configuration.
Consequently, motion planning with RRT-MP is faster than with RRT-CPG.
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Chapter 8

Experimental verification of
RRT-MP

8.1 Simulated Experiments

The simulated experiments have been executed on Intel Core2@2.2 GHz with 4GB of RAM under
FreeBSD 8.2. Three types of modular robots are used in the experiments: S-Bot (a five-module
organism with an asymmetric one-module leg), Quadropod (nine modules with four legs) and
Lizard (14 modules with four legs). The robots are depicted in Fig. 8.1l The simulations are
based on the Robot3D simulator [271], a specialized simulator for modular robots co-developed
by the author of the thesis within the Symbrion/Replicator projects. The time step of the
physical engine is tg;, = 10 ms, which is a compromise between the speed of the simulation and
its stability. For the purposes of simplicity, the size of each module is 1 map unit (mu) and other
lengths are described in this unit. The nearest neighbors are searched using the KD-tree data
structure provided by the MPNN library [280]. The distances between the configurations of the
robots are measured using the 6D Euclidean metric computed between position and rotation of
pivot modules.

S-bot Lizard Quadropod.

Figure 8.1: Simulated robots with highlighted pivot modules.

8.1.1 Optimization of motion primitives

The robots are equipped with four motion primitives p € {‘move-forward’,‘'move-back’,‘move-
left’,‘move-right’}. The primitives are modeled using sine-CPG, i.e., a;(t) = A; + sin(w;t +
vi) + B;. The parameters 2P = (A;, w;, @i, B;) of the CPGs are found using the Particle Swarm
Optimization approach described in Section[7.4.2] The parameters space to be searched is defined
by physical properties of the hinges, and the ranges are: 0 < A; < 7/2, 0.1 < w; < 5 and
0 < ¢; < 2m. The offsets B; are set to zero for the purposes of this work. The sine-CPG has
been chosen as it can model the desired ‘move-*’ primitives efficiently with less parameters in
comparison with other CPGs [258].

81
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Figure 8.2: Progress of fitness function for ‘move-forward’ primitive for the Quadropod robot.
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Figure 8.3: Visualization of motion primitives ‘move-left’, ‘move-right’, ‘move-forward’ and
‘move-back’. The primitives are visualized as the trajectory of the pivot module. The red points
represent goal points used for computing the fitness function in the PSO algorithm.

The motion primitives have been found using PSO with parameters ¢, = ¢, = 2.05 [122],
30 particles and 200 iterations. Duration of each primitive is 77 = 10 s. The primitives are
optimized according to the fitness function depicted in Fig. where D = 7 mu. Example
of progress of the fitness function for the ‘move-forward’” motion is depicted in Fig. The
resulting motion primitives are visualized in Fig.

8.1.2 Algorithm setup

Motion planning using motion primitives is compared with the methods RRT-CPG [284] and
RRT-K [255]. In RRT-CPG, the actuators are also driven by the sine-CPG. However, their
parameters are not predefined as in RRT-MP, but are generated randomly in each expansion
step. In the RRT-K approach, the actuators are not controlled by a periodic signal. Instead,
they are moved to a fixed angle a;, which is generated randomly in each expansion step within
the range (—7/2,7/2). To enable a time comparison of all three planners, the complexity of their
expansion steps should be equivalent. In RRT-MP, the complexity is determined by the number
of utilized motion primitives. Therefore, RRT-CPG generates four random CPG settings in
each iteration. RRT-K expands the tree using random motions, therefore four sequences of 1000
random angles are tested in each expansion of RRT-K to match the 10 s long motion primitives
evaluated using tg;;, = 0.01 s step. The maximum number of planning iterations is e, = 5,000
for all algorithms, and the goal region is defined by radius dgyoq = 1 mu. To show the efficiency
of the motion planning with motion primitives, RRT-MP is run without the guiding path, unless
noted otherwise.
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Table 8.1: Results in the Plane scenario.

RRT-MP RRT-CPG RRT-K
Mean Dev Mean Dev Mean Dev
Path length 17.20  4.90 63.13 18.46 54.35 22.87
E Iterations 6.60 4.28 80.23 61.30 1,412.17  1,174.51
«» Path time [S] 4.53 1.63 23.33 7.33 73.63 37.10
Runtime [S] 1.78 0.96 44.05 33.49 108.30 93.17
Success rate 100 % 100 % 100 %
— Path length 26.54  6.05 120.95 14.90 186.84 105.73
% Iterations 18.85 25.06 130.30 73.41 5,000 0.00
5 Path time [S] 6.15 1.53 50.75 6.43 201.40 109.14
‘§ Runtime [S] 12.85 16.04 239.34 138.35 1,401.15 530.27
C  Success rate 100 % 100 % 15 %
Path length 35.15 4.24 382.72 77.97 103.54 26.77
T Iterations 13.93  3.79 2,270.29  1,375.92 943.00 459.32
é} Path time [s] 9.10 140  211.95  41.60  191.05  46.58

Runtime [s] 30.31 7.66 12,488.80 7,553.03 696.09 388.38
Success rate 100 % 90 % 100 %

8.1.3 Plane scenario

In the first experiment, the task is to find a trajectory between two fixed positions in a flat
environment of size 24 x 14 mu. The average results from 30 trials are shown in Tab. where
Path length (measured in map units) denotes the length of the found trajectory, and its time
duration is denoted by Path time. Runtime is the time needed to find the solution. The row
Iterations denotes the number of iterations that are needed to find the solution.

Based on the number of iterations, we can see that almost all algorithms solve the problem
in less than the allowed number of iterations (1,4, = 5,000), which is also indicated by success
rates close to 100 %. The only exception is the RRT-K algorithm, which fails to find a solution
for the Quadropod robot, and the success rate is only 15 % in this case. The RRT-MP algorithm
outperforms the other two methods in all measured aspects: it solves the problem in the shortest
time and it generates the fastest trajectories. RRT-MP is able to find a solution for all robots
in less than 20 iterations, which indicates that its motion primitives are very efficient. Although
RRT-CPG can also provide a solution, its runtime is significantly worse than the runtime of
RRT-MP, especially for the Lizard and Quadropod robots. While RRT-MP is able to move
the robot over long distances in each expansion step, the movements achieved by RRT-CPG
are less effective. This is indicated by the highest number of iterations over all algorithms. The
runtime and the number of required planning iterations of RRT-CPG increase with the size of
the robot which indicates that robots controlled by random signals move slower, and it requires
more iterations before the goal is reached. Examples of constructed trees are depicted in Fig.

8.1.4 Plane scenario with multiple start/goals

The proposed RRT-MP planner is intended as the global planner, i.e., it should provide trajectory
between any two positions in an environment. This is tested using the multiple start/goal
test. The test consists of 120 start/goal pairs randomly placed in the flat environment of size
24 x 14 mu. For each pair, each planner is run 30 times.

The results are shown in Fig. (S-Bot), Fig. (Lizard) and Fig. (Quadropod). The
results obtained using the multiple start/goal pairs confirm results achieved in the Plane scenario.
The motion plans are provided for most of the start/goal pairs by RRT-CPG and RRT-MP.
Significantly less amount of start/goal pairs is solved by the RRT-K planner. From the time
point of view, the slowest motion planning is realized using RRT-K and RRT-CPG planners
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Quadropod

RRT-CPG RRT-K

RRT-MP

Figure 8.4: Examples of configuration trees (green) and final trajectories (red) for the Quadropod
and Lizard robots in the Plane scenario. The trees and trajectories are visualized by the positions
of the pivot module. The structure of motion primitives can be clearly seen in the configuration
trees built by RRT-MP.
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multiple start/goal pairs.

Performance of motion planning for the S-Bot robot in the Plane scenario with
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Performance of motion planning for the Lizard robot in the Plane scenario with
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Figure 8.7: Performance of motion planning for the Quadropod robot in the Plane scenario with
multiple start/goal pairs.
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that require hundreds and even thousands of seconds, while RRT-MP can compute a plan in
tens of seconds.

The experiments show the strength of the nearest-neighbor rule and implicit Voronoi-bias
used to search the configuration space. Both RRT-K and RRT-CPG explores the configuration
spaces using randomly controlled robot. Despite inefficiencies of this random control, that leads
to slow and clumsy motions, the configuration tree can grow in the environment.

8.1.5 Uneven terrain with multiple start/goals

In this scenario, the robots move in an uneven terrain of size (40 x 25 mu). The terrain is modeled
as 3D triangle mesh with 2, 058 triangles. The motion primitives used in this scenario are learned
using the same approach as described in Section [8.1.1] only the fitness function is evaluated on
a randomly chosen position on the terrain. The planners are tested using 100 randomly placed
start/goal pairs. Each planner is run 30 times for each pair.

The progress of s—rate together with boxplots of runtimes and Fig. (S-bot), in Fig. 8.8
(Lizard) and in Fig. (Quadropod).

The planners RRT-K and RRT-CPG are able to provide solutions only for certain start/goal
pairs, but the generally, they are not able to find a solution with 100 % s—rate for all the
start/goal pairs. Contrary, RRT-MP provides solutions for all start/goal pairs with 100 %
success rate for Quadropod and Lizard robots.

The motion planning with motion primitives is worse for the S-Bot robot, where other plan-
ners are able to provide solutions for more start/goal pairs with higher success rate. The S-Bot
is the smallest robot and it has problems to move on the undulating surface especially if the start
configuration is located in a dip. The motion primitives optimized for RRT-MP are learned on
a randomly selected part of the terrain, so it can happen, that these primitives are not suitable
for the whole terrain. The methods RRT-K and RRT-CPG move the S-Bot randomly, which
increases chance that the robot will escape the dip.

From runtime point of view, the fastest motion planning is provided by RRT-MP, which also
constructs the smallest configuration trees.
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Figure 8.8: Performance of motion planning for the Lizard robot in the Surface map with
multiple start/goal pairs.
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Lizard Quadropod
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RRT-CPG
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RRT-MP

Figure 8.11: Configuration trees built for modular robots operating on terrain.

8.1.6 RRT-MP with guided sampling

The combination of motion planning with motion primitives realized by RRT-MP and guided
sampling has been investigated in this experiment. The task of the planner is to find a trajectory
for modular robots on uneven terrain of size 40 x 25 mu. Motion primitives have been optimized
on the terrain using the PSO process. The guiding path is computed in the surface represented
by 3D triangle mesh. The RRT-MP planner with guiding process has been run with parameters
Pgoal = 0.6, dgoy = 2 mu, o = 0.01, and R,y = 3 mu. The number of planning iterations
Lnae = 300.

The average results over 50 trials are depicted in Tab. Motion planning with the guiding
path outperforms the basic RRT-MP both in runtime, size of the constructed trees as well as in
the quality of the resulting paths. Examples of constructed configuration trees with and without
guiding paths are shown in Fig. 8.12]

8.1.7 Step scenario

In this scenario, the task is to verify the applicability of the RRT-K and RRT-MP methods in
environments with obstacles. Size of the environment is 24 x 14 mu and it contains three steps in
the middle. Size of each step is 0.7 mu. The task of the motion planning is to find a trajectory
for Quadropod to overcome these steps. The influence of the vocabulary of motion primitives
on the quality of the planning process is studied. Therefore, RRT-MP is tested in two variants:
RRT-MP-r and RRT-MP-a. Both variants employ the same primitives: ‘move-left’; ‘move-
right’, ‘move-back’ and they differ in the fourth primitive. The RRT-MP-r variant is equipped
with a ‘raise-head’ primitive; while RRT-MP-a uses the ‘move-forward’ primitive instead. The
‘raise-head’ primitive can lift up the pivot module to a position necessary for climbing the step.
The difference between RRT-MP-r and RRT-MP-a is depicted in Fig. [8.13] Two solutions are
depicted in Fig.
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Table 8.2: Comparison of guided sampling of configuration space for modular robots with CPG-
based motion patterns.

RRT-MP RRT-MP
+ guiding path
Mean Dev Mean Dev

- Run-time ] 832.74 0.00 188.22 104.27
5 Tree size 272.00 0.00 61.04 32.03
E Trajectory length [mu] 290.02 0.00 204.05 28.72
Success ratio 100.00 % 100.00 %
Run-time [s] 347.80 250.96 252.86  259.03
S Tree size 267.04 181.14 174.84  166.07
g Trajectory length [mu] 272.18 54.27 271.36 64.61
Success ratio 94.00 % 98.00 %
3, Run-time [s] 156.17 85.70  56.07 23.02
©  Tree size 101.32 52.34  33.02 12.19
T  Trajectory length [mu] 152.79 2849 15250  15.25
& Success ratio 100.00 % 100.00 %

(a) RRT-MP + guiding path RRT-MP

Figure 8.12: Examples of constructed trees (green) with highlighted trajectories (red) con-
structed with and without the guiding path. The guiding path is depicted in blue. The robots
are shown during execution of the plans. The tree constructed with the guiding path is signifi-
cantly smaller than the tree constructed with basic RRT-MP.
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RRT-MP-r RRT-MP-a

Figure 8.13: Vocabulary of motion primitives for the Step scenario. RRT-MP-r contains ‘raise-
head’ primitive (blue), which moves the pivot module higher in order to enter the step.

The average results from 30 trials can be found in Tab. RRT-K and RRT-MP-r find a
solution in all 30 trials, which is indicated by the 100% success ratio. Due to the large deviation
of the results, the methods are compared using T-test statistics. The p-values, listed in the
last column, show that the runtimes are same (under significance level & = 0.05), however the
other measures differ as the p-values are zero. We can conclude, that RRT-MP-r has better
performance, because its runtime is statistically the same as the runtime of RRT-K, but it
provides better trajectories than the RRT-K.

The results show that the performance of RRT-MP is determined by the capabilities of the
utilized motion primitives. RRT-MP-a fails to overcome the steps, because it utilizes primitives
suitable only for flat environments. By contrast, RRT-MP-r is able to reach the goal position
and to overcome the steps, because it utilizes one primitive, that allows it to climb the steps.
This shows the importance of using primitives suitable for a given situation.

RRT-MP-a

Figure 8.14: Example of configuration trees in the Step scenario.

Table 8.3: Results of the Step scenario. The last column is the p-value of the T-test computed
between the RRT-MP-r and RRT-K columns.

RRT-MP-r RRT-MP-a RRT-K p-val
Mean Dev Mean Dev Mean Dev

Path length 138.64 32.18 74.40 27.97 226.08 17.54  0.0000
Iterations 624.93 517.63 3,780.00 40.00 2,985.67 640.10 0.0000
Path time [s] 32.33 7.07 18.20 6.32 381.00 29.10  0.0000
Runtime [S] 749.52 623.79 3,656.30 26.19 981.29 210.07 0.0662
Success rate 100 % 0% 100 %

Quadropod
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8.2 Hardware verification

The proposed RRT-MP planning has been used in the preparation of Grand Challenge scenario
in Symbrion/Replicator EU projects. Before motion planning, motion primitives were optimized
for several modular robots composed of CoSMO modules.

8.2.1 Optimization on HW caterpillar robots

The performance of PSO-based optimization of motion primitives has been verified with Snakeg
and Snakes robots, where the subscript denotes the number of modules. The locomotion is
realized using sine-CPG described in Section [8.1.1] Ranges of individual parameters are same
as in the simulation. All parameters (4;, fi, vi),i = 1,...,n are optimized for Snakes robot,
therefore 9 parameters have to be optimized.

As have been observed in many simulated experiments, the motion of snake robots is strongly
influenced by the phase shift of the individual joints. Therefore, only four parameters (y;),i =
1,...,4 have to be found in the case of Snakes and the other parameters are set according to
best solution found for Snakes.

The fitness function on real robots is evaluated after 25 s of motion. The position of the robot
in the experimental arena is tracked using a top-view camera that detects a circular pattern [131].
The progress of the fitness functions is depicted in Fig.[8.15] The optimization for Snake, is faster
than for Snakes, as only four parameters are tuned for Snakey. This shows the importance of
selection of proper locomotion generators, that are able to perform desired motions, but have
reasonable number of parameters. The dimension of the search space can be further decreased
by optimizing only those parameters, that influence the behavior of the robot.

The results achieved on real robots confirm the simulated results. The optimization quickly
finds desired primitives for both robots. The achieved primitives move the Snakes about ~ 20
cm and Snakey about ~ 30 cm. In the case of Snakes robot, first suitable pattern is found in 40th
iteration (~ 16 minutes of optimization). The convergence is even faster in the case of Snakey
robot, which achieves f = 20 cm in 8th iteration (~ 4 minutes). Finally, primitive with f = 30
cm is found in 15th iteration (~ 7 minutes).
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Figure 8.15: Snapshots from the experiments with real robots (top). The bottom graphs show
progress of the fitness function of ‘Move-forward’ for Snakes (left) and Snakey (right). The fitness
is computed as traveled distance after 25 s (higher is better).
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8.2.2 Motion planning with Quadropod robots

Motion primitives have been also optimized for a small Cross robot made of five CoSMO modules
(Fig.8.16). The robot moves using the same four motion primitives as in the simulated scenarios
(‘move-forward’,‘move-left’,‘move-right’ and ‘move-back’), that are optimized in simulation using
the process described in Section [8.1.1] After the primitives are optimized in the simulation, the
best primitives are further optimized on real robot. The execution of each primitive takes 30
seconds on the real robot. The control signals a;(t),i = 1,...,n, where n is the number of
modules, define the desired position of each joint. The joints are controlled by a PD regulator.
The physical simulation used in the motion planner uses the same PD controller which allows us
to control the robot using the motion primitives obtained from the simulation. The examples of
control signals for the Cross robot are depicted in Fig. [8.18

Cross robot Screenshots from primitives optimization

Figure 8.16: Cross robot made of five Cosmo modules.

The task of the planner is to find a path in an environment 3 x 5 meters in size with static
obstacles (Fig. [8.17p). After a plan is created, the robot starts to execute it. To allow the
robot to replan when it deviates from the planned trajectory, its position is determined using
a camera-based localization system [132]. Screenshots from the navigation phase are shown in
Fig. 817 and the corresponding control signals are shown in Fig. [8.18]

Planning between two fixed positions is repeated 10 times. The average planning time in
this environment is 4.5 seconds, while the time needed to execute the trajectory is of the order
of minutes. The planning time is thus negligible in comparison to the execution time, thus the
replanning is sufficiently fast. A video from the experiment can be found at [251].

y [em]

Plan ——
raversed trajectory ——
) ) ) | Actual robot position _»
-100 -80 60 -40 -20 0 20
x[em]

(a) top view (b) side view (c) motion plan

Figure 8.17: Screenshot from execution of the plan (a,b). The robot is localized using the
circular pattern from the top camera. The graph (c) shows predefined plan (red) together with
tracked position of the robot’s pivot module with the pattern (green).
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Figure 8.18: Progress of hinge angles (in degrees) on the real Cross robot. In the ‘move-right’

pattern, which is highlighted by the blue background, only modules D and E are used, while the

remaining modules remain in zero position. The ‘move-forward’ primitive is achieved by modules

A,B and C, while the side modules D and E are fixed in the zero position.

8.3 Discussion

The proposed motion planning system for modular robots has been verified in simulations, as well
as on real robots. The simulated experiments also employed other RRT-based planner, namely
RRT-CPG [284] and RRT-K [255]. The simulated experiments showed that the proposed RRT—
MP motion planner significantly outperforms both RRT-CPG and RRT-K in planning time as
well as in the quality of the solutions.

RRT-MP explores the configuration space only on the basis of the motion primitives, so the
performance of RRT-MP is significantly influenced by the quality of the primitives. This has been
demonstrated on the Step scenario, where the task is to climb the steps. RRT-MP-a equipped
with unsuitable motion primitives, which provide only forward/left/right/backward motions, is
not able to find any solution. However, the motion plans are found if another primitive providing
‘raise-head’ is added, which is utilized in the RRT-MP-r variant. This primitive is responsible
for lifting up the pivot module of the robot, so it can enter the steps.

The simulated experiments have also shown the strength of the RRT motion planner itself:
both methods RRT-CPG and RRT-K explore the configuration space using randomly generated
control inputs. Although the robot controlled by these approaches move clumsy and inefficiently,
the robot are able to move in the environment, which allows RRT planner to reach the goal
position.

The motion planner was used also on HW CoSMO robots. To speed up the optimization of
motion primitives, the optimization has been started in simulation to find best candidates that
are further optimized on real robots.
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Chapter 9

Conclusion

9.1 Conclusion

The thesis addresses the motion planning problem. Motion planning finds applications mainly
in robotics, but also in other fields like surgery, CAD/CAM design, and even in computational
biology. Wide range of motion planning problems can be solved using the concept of configuration
space. The sampling-based motion planners that have been studied in this thesis, randomly
sample the configuration space in order to build a roadmap describing free regions of the space.
A path in the roadmap then corresponds to a motion in the workspace. A well known bottleneck
of the sampling-based planners is the narrow passage problem, where a relatively small region of
the configuration space cannot be sampled properly, which prevents to construct a path through
it.

The overall goal of the thesis was to design a novel sampling-based motion planner that is
able to cope with the narrow passage problem. The proposed solution, called RRT—Path is based
on the widely used Rapidly Exploring Random Tree method and it uses a guiding path to help
the sampling of the configuration space. The proposed guiding principle has been studied in
three different scenarios, from low-dimensional motion planning of mobile robots, in the task of
path planning for 3D objects in 3D workspace, and finally in the task of motion planning for
many-DOF modular robots.

The main contributions of the thesis are summarized as follows.

e A novel guided strategy for Rapidly Exploring Random Tree planner was proposed. The
proposed method, called RRT—Path, utilizes a guiding path to guide the sampling of the
configuration space from the start configuration to the goal configuration. For the purpose
of motion planning of mobile robots with three degrees of freedom, path planning methods
can be used to compute the guiding path.

e The guiding principle has been extended for path planning of 3D solid objects in 3D
workspaces. This problem requires searching in the six-dimensional configuration space.
The proposed method, called RRT-IS, approaches the problem by relaxation of feasibility
constraints, which is achieved by scaling-down the geometry of the robot. A solution found
for a scaled-down robot is used as the guiding path for a larger robot. The process is
repeated for increasing scales of the robot until the solution for the original problem is
found.

e Finally, motion planning for modular robots has been studied. Modular robots are com-
posed from many modules, therefore motion planning requires to work in high-dimensional
configuration spaces. Motion planning for modular robots was motivated by needs of Sym-
brion/Replicator EU projects and the task of motion planning of whole modular robots
in large environments was considered. Contrary to motion planning of mobile robot and
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path planning for 3D objects, motion planning for modular robots is challenging due to
necessity to control motion of the whole robot using many actuators. The generation of
these low-level motions is difficult as it requires cooperation of many modules and it can-
not be solved on the motion planning level. To cope with this problem, we proposed to
combine locomotion generators with the sampling-based motion planning techniques. The
resulting planner, called RRT-MP, provides high-level plans for modular robots, while the
low-level motions like ‘crawl-forward’ or ‘climb-step’ are realized using the locomotion gen-
erations like Central Pattern Generator. The RRT-MP planner tightly cooperates with
a physical simulation that implements motion model of the modular robot. To decrease
computational burden of RRT-MP, the number of calls of the physical simulation can be
significantly decreased by utilizing the guiding principle.

All the proposed planners have been experimentally verified and compared to state-of-the-
art methods. The guiding principle helps to find motion plans faster and with less amount
of random samples than other tested methods. The RRT-MP planners was further utilized
in Symbrion/Replicator project to derive motion plans for physical CoSMO modular robots.
Besides the above mentioned algorithmic results, the following contributions have been achieved.

e A novel evaluation procedure for comparison of sampling-based planner utilizing multiple
start/goal pairs was proposed. This comparison has been already used for comparing
quality of motion planners for modular robots [263], and for comparing optimization of
motion primitives under failures [257, 256].

e The RRT-MP planner relies on the physical simulation of modular robots. Two robotic
simulators were co-developed by the author. The Robot3D simulator [271] provides physi-
cal simulation for Symbrion/Replicator modular robots and it has been used during these
projects [155]. A more lightweight simulator dedicated for fast simulation on robot’s inter-
nal PCs or on computational grids, called Sim [254], was developed.

e A novel optimization of CPG-based locomotion using Particle Swarm Optimization. The
PSO method provides fast optimization to suitable solutions without need to tune the
method itself. The optimization start in physical simulation and the best candidates can
be finalized using HW robots [258]. The PSO-based optimization further allows to consider
failures [262] 256, 257].

e The Hedgehog benchmark was accepted to the list of 3D planning benchmarks [I]. A
visualization of our solution of the benchmark is available at [250].

9.2 Future work

The proposed guiding principle can be further improved and it can be combined with other
modifications proposed for RRT. To achieve better behavior in the narrow passages, the principle
of the activation radius proposed in the RRT-DD and RRT-ADD planners can be used. A faster
sampling of narrow passages can be achieved by extending the tree using multiple nodes as was
proposed in RRT—Retraction or RRT-Blossom methods.

The guiding principle seems to be useful especially in the path planning task for 3D solid
objects. The proposed RRT-IS strategy that iteratively improves the quality of solution, is based
on simple scaling of the geometries of the robots. Various types of geometries require different
scaling strategies. For example, methods for object thinning can provide better relaxation of
feasibility constraints for certain types of robots. Moreover, not all parts of the objects need to
be scaled. For example, an alternative scaling strategy for the Hedgehog robot is to scale only
the thorns, while preserving the radius of the sphere. One of the possible research directions is
the design of automatic tools for a more advanced scaling process.
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Motion planning for modular robots with motion primitives require operators to prepare
the motion primitives based on the solved task and abilities of the robot. Due to possibility
of modular robots to reconfigure into various shapes, human-designed primitives might not be
achievable by robots, as human usually tend to prefer simple and nice primitives. Motion planning
system can be extended by a tool to automatically derive suitable motion primitives based on
the configuration of the modules and the task being solved.
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Appendix A

Algorithms

Algorithm 8: expandTree(qrand, Gnear): Expansion procedure of RRT-Retraction

Input: Random configuration ¢,q,.q € C, nearest node in the tree ¢ueqr € 7, local planner
resolution ¢, radius r,.; for sampling vicinity of contact configurations, number of samples
Niet, number of retraction steps I,e;

Output: extended tree T

1.5=10
2 if (¢near; Qrand) is collision-free then
3 T .addNode(grand);
4 T'addEdge(Qnearv QTand);
5 else
6 L= (p1,...,pm) = discretize line segment (¢near, rand) With resolution &;
7 q = first contact configuration from L;
8 S =0
9 if q is feasible then
10 | S=5U{q}
11 end
12 fori=1:1.. do
13 C=set of N, random samples from on a n-dimensional sphere centered at ¢ with radius
Trets
14 C. =set of contact configuration from C
15 q= argminqesc Q(QTanch (Z)§
16 if q is feasible then
17 | S=5U{q}
18 end
19 end
20 for ¢ € S do
21 | T.addNode(q);
22 end
23 end
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Appendix B

2D guiding paths

Segment Voronoi Diagram
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Figure B.1: Examples of 2D guiding paths.
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Appendix C

Example of motion plans

Diff;

Car-likey Car—lik%

Figure C.1: Examples of motion plans constructed by RRT for the Differential drive and Car-
likerobots with/without backward motions.
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Appendix D

Comparison of RRT—Path with
state-of-the-art methods
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Figure D.1: Comparison of motion planning for the Diffy robots in the BugTrapl environment.
Performance at 80% s—rate: RRT=100 %, RRT-Path=100 %, RRT-Blossom=100 %,
RRT-ADD=100 %.
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Figure D.2: Comparison of motion planning for the Diff; robots in the BugTrapl environment.
Performance at 80% s—rate: RRT=30 %, RRT-Path=94 %, RRT-Blossom=78 %, RRT-
ADD=65 %.
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Figure D.3: Comparison of motion planning for the Car-likey robots in the BugTrapl environ-
ment. Performance at 80% s—rate: RRT=0 %, RRT-Path=100 %, RRT-Blossom=29 %,
RRT-ADD=0 %.
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Figure D.4: Comparison of motion planning for the Car-like; robots in the BugTrapl environ-
ment. Performance at 80% s—rate: RRT=0 %, RRT-Path=70 %, RRT-Blossom=66 %,
RRT-ADD=4 %.
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Figure D.5: Comparison of motion planning for the Diffy robot in the Potholes environment.
Performance at 80% s—rate: RRT=100 %, RRT-Path=100 %, RRT-Blossom=100 %,
RRT-ADD=100 %.
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Figure D.6: Comparison of motion planning for the Diffy robot in the Potholes environment.
Performance at 80% s—rate: RRT=40 %, RRT-Path=93 %, RRT-Blossom=82 %, RRT-
ADD=65 %.
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Figure D.7: Comparison of motion planning for the Car-like; robot in the Potholes environment.
Performance at 80% s—rate: RRT=0 %, RRT-Path=100 %, RRT-Blossom=32 %, RRT-
ADD=1 %.
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Figure D.9: Comparison of motion planning for the 2Dogx50 robot in the Potholes environment.
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Figure D.11: Comparison of motion planning for the Car-like; robot in the Simple map envi-
ronment. Performance at 80% s—rate: RRT=4 %, RRT-Path=90 %, RRT-Blossom=24 %,
RRT-ADD=8 %.
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Figure D.12: Comparison of motion planning for the Car-like; robot in the Simple map envi-
ronment. Performance at 80% s—rate: RRT=1 %, RRT-Path=51 %, RRT-Blossom—=68 %,
RRT-ADD=3 %.
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Figure D.13: Comparison of motion planning for the 2Dsgx 50 robot in the Simple map environ-
ment. Performance at 80% s—rate: RRT=100 %, RRT-Path=92 %, RRT-ADD=100 %.



112APPENDIX D. COMPARISON OF RRT-PATH WITH STATE-OF-THE-ART METHODS

0.14 450 100
[ 400 |
0.12
350 [ 80
0.1
300 [
& T ]
o o g 250 £ 60
£ ] g
= o @a
i g ol 2
2 006 F 3
H
0.04 - T 5%
: ®
100
0.02
50 20 |
0 S % A 0 S 4 % RRT
T Ty T Ty Ty RRT-Path
» D I o LARTADD ‘ ‘ ‘ ‘
0 20 40 60 80 100

Desired success rate [%]

Figure D.14: Comparison of motion planning for the 2Dy« 109 robot in the Simple map environ-
ment. Performance at 80% s—rate: RRT=100 %, RRT-Path=54 %, RRT-ADD=100 %.



Appendix E

Author’s publications

Publications related to the topic of the thesis

Impacted journal papers

e Vonidsek, V. - Saska, M. - Winkler, L. - Pfeucil, L.: High-level Motion Planning for CPG-
driven Modular Robots. Robotics and Autonomous Systems. 2015, vol. 68, no. 68, p.
116-128. ISSN 0921-8890. (Vonasek 50 %, Saska: 20 %, Winkler: 15 %, Pteucil: 15 %)

e Saska, M. - Vondsek, V. - Preucil, L.: Trajectory Planning and Control for Airport Snow
Sweeping by Autonomous Formations of Ploughs. Journal of Intelligent and Robotic
Systems. 2013, vol. 72, no. 2, p. 239-261. ISSN 0921-0296. (Saska: 70 %, Vondasek: 15 %,
Pieucil: 15 %)

e Saska, M. - Vondsek, V. - Krajnik, T. - Pfeucil, L.: Coordination and Navigation of
Heterogeneous MAV-UGV Formations Localized by a hawk-eye-like Approach Under a
Model Predictive Control Scheme. International Journal of Robotics Research. 2014, vol.
33, no. 10, p. 1393-1412. ISSN 0278-3649. (Saska: 70 %, others: 10 %)

e Saska, M. - Krajnik, T. - Vonasek, V. - Kasl, Z. - Spurny, V. - et al.: Fault-Tolerant
Formation Driving Mechanism Designed for Heterogeneous MAVs-UGVs Groups. Journal
of Intelligent and Robotic Systems. 2014, vol. 73, no. 1-4, p. 603-622. ISSN 0921-0296.
(Saska: 70 %, Preucil: 10 %, others: 5 %)

Indexed by Web Of Sciences

e Vondsek, V. - Faigl, J. - Krajnik, T. - Pfeucil, L.. RRT-Path: a guided Rapidly exploring
Random Tree. In Robot Motion and Control 2009. Heidelberg: Springer, 2009, p. 307-
316. ISSN 0302-9743. ISBN 978-1-84882-984-8. (Vondsek: 50 %, Faigl: 30 %, Krajnik:
10 %, Preucil: 10 %)

e Vondsek, V. - Fiser, D. - Kosnar, K. - Preucil, L.: A Light-Weight Robot Simulator
for Modular Robotics. In Modelling and Simulation for Autonomous Systems. Cham:
Springer, 2014, p. 206-216. ISSN 0302-9743. ISBN 978-3-319-13822-0. (Vondasek: 50 %,
Fiser: 25 %, Kosnar: 15 %, Preucil: 10 %)

e Vondsek, V. - Penc, O. - Preucil, L.: Guided motion planning for modular robots. In
Modelling and Simulation for Autonomous Systems. Cham: Springer, 2014, p. 217-230.
ISSN 0302-9743. ISBN 978-3-319-13822-0. (Vondasek: 75 %, Penc: 15 %, Preucil: 10 %)

e Vonidsek, V. - Penc, O. - Kosnar, K. - Preucil, L.: Optimization of Motion Primitives for
High-Level Motion Planning of Modular Robots. In Mobile Service Robotics: CLAWAR

113



114

APPENDIX E. AUTHOR’S PUBLICATIONS

2014: 17th International Conference on Climbing and Walking Robots and the Support
Technologies for Mobile Machines. Singapore: World Scientific, 2014, p. 109-116. ISBN
978-981-4623-34-6. (Vonések: 50 %, Penc: 25 %, Kosnar: 15 %, Preucil: 10 %)

Vonasek, V. - Saska, M. - Kosnar, K. - Pfeucil, L.: Global Motion Planning for Modular
Robots with Local Motion Primitives. In ICRA2013: Proceedings of 2013 IEEE Interna-
tional Conference on Robotics and Automation. Piscataway: IEEE, 2013, ISSN 1050-4729.
ISBN 978-1-4673-5641-1. (Vondsek: 35 %, Saska: 35 %, Kosnar: 20 %, Pieucil: 20 %)

Vonasek, V. - Saska, M. - Preucil, L.: Motion Planning for a Cable Driven Parallel Multiple
Manipulator Emulating a Swarm of MAVs. In ROBOT MOTION AND CONTROL (Ro-
MoCo) . Pistacaway, NJ: IEEE Robotics and Automation Society, 2013, art. no. 6614577,
p. 13-18. ISBN 978-1-4673-5511-7. (Vonasek: 60 %, Saska: 25 %, Pieucil: 15 %)

Saska, M. - Krajnik, T. - Vonasek, V. - Vanék, P. - Preucil, L.: Navigation, Localization
and Stabilization of Formations of Unmanned Aerial and Ground Vehicles. In Proceedings

of 2013 International Conference on Unmanned Aircraft Systems. New York: Springer,
2013, p. 831-840. ISBN 978-1-4799-0817-2.

Kulich, M. - Vonések, V. - Pfeuéil, L.: Simulation-Based Goal-Selection for Autonomous
Exploration. In Modelling and Simulation for Autonomous Systems. Cham: Springer,
2014, p. 173-183. ISSN 0302-9743. ISBN 978-3-319-13822-0. (Kulich: 50 %, Vonasek:
35 %, Preucil: 15 %)

Saska, M. - Vondsek, V. - Krajnik, T. - Pfeucil, L.: Coordination and Navigation of
Heterogeneous UAVs-UGVs Teams Localized by a Hawk-Eye Approach. In Proceedings of
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:
IEEE, 2012, vol. 1, p. 2166-2171. ISBN 978-1-4673-1735-1. (Saska: 50 %, Vonasek: 20 %,
Krajnik: 15 %, Pteucil: 15 %)

Saska, M. - Vondsek, V. - Preucil, L.: Roads Sweeping by Unmanned Multi-vehicle For-
mations. In ICRA2011: Proceedings of 2011 IEEFE International Conference on Robotics
and Automation. Madison: Omnipress, 2011, p. 631-636. ISSN 1050-4729. ISBN 978-1-
61284-386-5. (Saska: 60 %, Vondsek: 30 %, Preucil: 10 %)

Saska, M. - Vonasek, V. - Krajnik, T.: Airport snow shoveling. In IEEE/RSJ International
Conference on Intelligent Robots and Systems , 2010, vol. 1, p. 2531-2532. ISSN 2153-0858.
ISBN 978-1-4244-6675-7. (Saska: 70 %, Vonasek: 20 %, Pfeucil: 10 %)

Saska, M. - Vonasek, V. - Preucil, L.: Control of ad-hoc formations for autonomous airport
snow shoveling. In IEEE/RSJ International Conference on Intelligent Robots and Systems
2010, vol. 1, p. 4995-5000. ISSN 2153-0858. ISBN 978-1-4244-6675-7. (Saska: 70 %,
Vondsek: 20 %, Pieucil: 10 %)

Other publications

e Vonidsek, V. - Kulich, M. - Figer, D. - Krajnik, T. - Saska, M. - et al.: Techniques for

Modeling Simulation Environments for Modular Robotics. In Proccedings of International
Conference on Mathematical Modelling. Vienna: Vienna University of Technology, 2012,
p. 1-6. ISBN 978-3-902823-23-6. (Vonasek: 28 %, others: 12 %)

e Vonasek, V. - Faigl, J. - Krajnik, T. - Preucil, L.: A Sampling Schema for Rapidly Exploring

Random Trees Using a Guiding Path. In Proceedings of the 5th Furopean Conference on
Mobile Robots. AASS Research Centre, 2011, p. 201-206. (Vonasek: 50 %, Faigl: 35 %,
Krajnik: 10 %, Preucil: 5 %)



115

Vonasek, V. - Oertel, D. - Neumann, S. - Worn, H.: Failure Recovery for Modular Robot
Movements without Reassembling Modules. In Proceedings of 10th International Workshop
on Robot Motion and Control (RoMoCo) Piscataway: IEEE, 2015, (Vondsek: 50 %, Oertel:
20 %, Neuman: 20 %, Worn: 10 %)

Vonasek, V. - Neumann, S. - Oertel, D. - Worn, H.: Online Motion Planning for Fail-
ure Recovery of Modular Robotic Systems. In Proceedings of 2014 IEEE International
Conference on Robotics and Automation. Piscataway: IEEE, 2015, p. 1905-1910. ISSN
1050-4729. ISBN 978-1-4799-6923-4. (Vonasek: 50 %, Oertel: 20 %, Neuman: 20 %, Worn:
10 %)

Saska, M. - Vondsek, V. - Béca, T. - Preucil, L.: Ad-hoc Heterogeneous (MAV-UGV)
Formations Stabilized Under a Top-View Relative Localization. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE,
2013, (Saska: 65 %, Vondsek: 10 %, Baca: 10 %, Preucil: 15 %)

Vonasek, V. - Kosnar, K. - Figer, D. - Pfeucil, L.: Sim: A Light-Weight Robot Simulator
for Modular Robots. In Workshop Proceedings on Unconventional Approaches to Robotics.
Piscataway: IEEE, 2013, ISBN 978-1-4673-5642-8. (Vondsek: 30 %, Kosnar: 30 %, Fiser:
25 %, Preucil: 15 %)

Levi, P. - Meister, E. - van Rossum, A. - Krajnik, T. - Vondsek, V. - et al.: A Cognitive
Architecture for Modular and Self-Reconfigurable Robots. In Proceedings of 8th Annual
IEEE Systems Conference. Piscataway: IEEE, 2014, p. 465-472. ISSN 1944-7620. ISBN
978-1-4799-2086-0.

Saska, M. - Chudoba, J. - Preuéil, L. - Thomas, J. - Loianno, G. - Tresnak, A. - Vondsek, V.
- Kumar, V.: Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative
Surveillance. In Proceedings of 2014 2014 International Conference on Unmanned Aircraft
Systems (ICUAS). Danvers: IEEE Computer society, 2014, vol. 1, art. no. 6842301, p.
584-595. ISBN 978-1-4799-2376-2. (Saska: 55 %, Chudoba: 10 %, Pfeucil: 10 %, others:
5 %)

Vonasek, V. - Neumann, S. - Winkler, L. - Kosnar, K. - Woern, H. - et al.: Task-Driven
Evolution of Modular Self-Reconfigurable Robots. In From Animals to Animats 13. Hei-
delberg: Springer, 2014, vol. 8575, p. 240-249. ISSN 0302-9743. ISBN 978-3-319-08863-1.
(Vondasek: 50 %, Neuman: 15, Winkler: 10 %, Kosnar: 10 %, Pieucil: 10 %, Woern: 10 %)

Vonasek, V. - Winkler, L. - Liedke, J. - Saska, M. - Kosnar, K. - et al.: Fast On-Board
Motion Planning for Modular Robots. In ICRA2014: Proceedings of 2014 IEEE Inter-
national Conference on Robotics and Automation Piscataway: IEEE, 2014, p. 1215-1220.
ISBN 978-1-4799-3684-7. (Vondsek: 40 %, Winkler: 20 %, others: 10 %)

Winkler, L. - Vonések, V. - Worn, H. - Pteucil, L.: Robot3D — A Simulator for Mobile
Modular Self-Reconfigurable Robots. In Proceedings of 2012 IEEFE International Confer-

ence on Multisensor Fusion and Information Integration. Piscataway: TEEE, 2012, p.
464-469. ISBN 978-1-4673-2511-0.

Vonasek, V. - Kosnar, K. - Preucil, L.: Motion Planning of Self-reconfigurable Modular
Robots Using Rapidly Exploring Random Trees. In Joint Proceedings of the 13th Annual
TAROS Conference and the 15th Annual FIRA RoboWorld Congress. Dordrecht: Springer,
2012, p. 279-290. ISSN 0302-9743. ISBN 978-3-642-32526-7. (Vondasek: 60 %, Kosnar:
20 %, Preucil: 20 %)



116 APPENDIX E. AUTHOR’S PUBLICATIONS

e Saska, M. - Vondasek, V. - Preucil, L.: Formation Coordination with Path Planning in Space
of Multinomials. In Artificial Intelligence and Soft Computing 2011. Calgary: TASTED,
2011, p. 348-355. ISBN 978-0-88986-885-4. (Saska: 60 %, Vondsek: 30 %, Pteucil: 10 %)

e Faigl, J. - Vondsek, V. - Preucil, L.: A Multi-Goal Path Planning for Goal Regions in
the Polygonal Domain. In Proceedings of the 5th Furopean Conference on Mobile Robots.
rebro: AASS Research Centre, 2011, p. 171-176. (Faigl: 70 %, Vonasek: 20 %, Pteudcil:
10 %)

Publications not related to the topic of the thesis

Impacted journal papers:

e Saska, M. - Mejia, J.S. - Stipanovic, D.M. - Vondsek, V. - Schilling, K. - et al.: Control
and Navigation in Manoeuvres of Formations of Unmanned Mobile Vehicles. FEuropean
Journal of Control. 2013, vol. 19, no. 2, p. 157-171. ISSN 0947-3580. (Schiling: 16 %,
Preucil: 16 %, others: 17 %)

e Krajnik, T. - Faigl, J. - Vonasek, V. - Kosnar, K. - Kulich, M. - et al.: Simple, Yet Stable
Bearing-Only Navigation. Journal of Field Robotics. 2010, vol. 27, no. 5, p. 511-533.
ISSN 1556-4959. (Krajnik: 50 %, Faigl: 20 %, Vondsek: 10 %, others: 5 %)

e Faigl, J. - Vonasek, V. - Preucil, L.: Visiting Convex Regions in a Polygonal Map. Robotics
and Autonomous Systems. 2013, vol. 61, no. 10, p. 1070-1083. ISSN 0921-8890. (Faigl:
80 %, Vondsek: 19 %, Preucil: 1 %)

e Krajnik, T. - Faigl, J. - Vondsek, V. - Sziicsovd, H. - Fiser, O. - et al.: A Monocular
Navigation System for RoboTour Competition. ATEP journal PLUS 2. 2010, vol. 18, no.
1, p. 57-63. ISSN 1336-5010. (Krajnik: 55 %, Faigl: 20 %, Vonasek: 10 %, others: 5 %)

Publications indexed by WOS

e Kosnar, K. - Vonasek, V. - Kulich, M. - Pfeucil, L.: Comparison of Shape Matching
Techniques for Place Recognition. In Proceedings of 6th Furopean Conference on Mobile
Robots. 2013, p. 107-112. ISBN 978-1-4799-0263-7. (Kosnar: 50 %, Vonasek: 20 %, Kulich
20 %, Preucil: 10 %)

e Saska, M. - Krajnik, T. - Faigl, J. - Vonések, V. - Preucil, L.: Low Cost MAV Platform
AR-Drone in Experimental Verifications of Methods for Vision Based Autonomous Navi-
gation. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Piscataway: IEEE, 2012, vol. 1, p. 4808-4809. ISBN 978-1-4673-1735-1.
(Saska: 60 %, others: 10 %)

e Faigl, J. - Krajnik, T. - Vondsek, V. - Pfeucil, L.: On Localization Uncertainty in an
Autonomous Inspection. In Proceedings of 2012 IEEFE International Conference on Robotic
and Automation. Piscataway: IEEE, 2012, p. 1119-1124. ISBN 978-1-4673-1405-3. (Faigl:
40 %, Krajnik: 30 %, Vonasek: 20 %, Pieucil: 10 %)

e Faigl, J. - Kulich, M. - Vondsek, V. - Pfeucil, L.: An Application of the Self-Organizing
Map in the non-Euclidean Traveling Salesman Problem. Neurocomputing. 2011, vol. 74,
no. 5, p. 671-679. ISSN 0925-2312. (Faigl: 60 %, Kulich: 20 %, Vondsek: 10 %, Preucil:
10 %)

e Krajnik, T. - Vondsek, V. - Figer, D. - Faigl, J.: AR Drone as a Platform for Robotic Re-
search and Education. In RESEARCH AND EDUCATION IN ROBOTICS: EUROBOT



117

2011, p. 172-186. ISSN 1865-0929. ISBN 978-3-642-21974-0. (Krajnik: 50 %, Vonasek:
25 %, Fiser: 15 %, Faigl: 10 %)

e Fiser, O. - Szilicsova, H. - Grimmer, V. - Popelka, J. - Vonések, V. - et al.: A Mobile Robot
for Small Object Handling. In FUROBOT 2009 — International Conference on Research
and Education in Robotics. 2009, p. 47-60. ISSN 1865-0929. ISBN 978-3-642-16369-2.
(Krajnik: 50 %, Vonések 20 %, Chudoba:10 %, others: 5 %)

Other publications

e Kosnar, K. - Krajnik, T. - Vonasek, V. - Preuéil, L.: LaMa - Large Maps Framework. In
Proceedings of Workshop on Field Robotics, Civilian-European Robot Trial 2009. 2009, p.
9-16. ISBN 978-951-42-9176-0. (Kosnar: 40 %, Krajnik: 25 %, Vondsek: 25 %, Preucil:
10 %)

e Fiser, O. - Szilicsova, H. - Grimmer, V. - Popelka, J. - Vondsek, V. - et al.: A Mobile Robot
for Small Object Handling. In FUROBOT 2009 — International Conference on Research
and Education in Robotics. 2009,

e Kosnar, K. - Vonasek, V. - Kulich, M. - Pfeucil, L.. Combining Multiple Shape Matching
Techniques with Application to Place Recognition Task. In Computer Vision - ACCV
2014 Workshops. 2015, ISBN 978-3-319-16627-8. (Kosnar: 50 %, Vonasek: 20 %, Kulich:
20 %, Preucil: 10 %)

e Saska, M. - Vonéasek, V. - Pfeuéil, L.: Navigation and Formation Control Employing
Complementary Virtual Leaders for Complex Maneuvers. In 7th international Conference
on Informatics in Control, Automation and Robotics. 2010, vol. 2, p. 141-146. ISBN
978-989-8425-01-0. (Faigl: 70 %, Vondsek: 20 %, Preucil: 10 %)



118 APPENDIX E. AUTHOR’S PUBLICATIONS



Appendix F

SCI Citations of author’s work

e Vondsek, Vojtch, Jan Faigl, Tomas Krajnik, and Libor Pteucil. Rrt-patha guided rapidly
exploring random tree.” In Robot Motion and Control (RoMoCo) pp. 307-316. Springer
London, 2009. Cited: 1x

— Belter, Dominik, Przemyslaw Labecki, and Piotr Skrzypczynski. An exploration-
based approach to terrain traversability assessment for a walking robot. In IFEE
International symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1-6.
IEEE, 2013.

e Saska, Martin, Vojtch Vonasek, Tom&as Krajnik, and Libor Pfeucil. Coordination and
navigation of heterogeneous UAVs-UGVs teams localized by a hawk-eye approach. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) pp. 2166-
2171. IEEE, 2012. Cited: 3

— Mathew, Neil, Stephen L. Smith, and Steven L. Waslander. Multirobot Rendezvous
Planning for Recharging in Persistent Tasks. IEFEE Transactions on Robotics, 31, no.
1 (2015): 128-142.

— Aghaeeyan, A.; Abdollahi, F.; Talebi, H. A. UAV-UGVs cooperation: With a moving
center based trajectory, ROBOTICS AND AUTONOMOUS SYSTEMS , Volume: 63
, Pages: 1-9, Part: 1, 2015

— Lugo, Jacobo Jimenez; Masselli, Andreas; Zell, Andreas. Following a quadrotor with
another quadrotor using onboard vision. Conference: 6th European Conference on
Mobile Robots (ECMR), 2013

e Vondsek, V. - Saska, M. - Pfeucil, L.: Motion Planning for a Cable Driven Parallel Mul-
tiple Manipulator Emulating a Swarm of MAVs. In ROBOT MOTION AND CONTROL
(RoMoCo) IEEE Robotics and Automation Society, 2013, art. no. 6614577, p. 13-18.
ISBN 978-1-4673-5511-7. Cited: 1x

— Gravish, Nick; Chen, Yufeng; Combes, Stacey A.; et al. High-throughput study
of flapping wing aerodynamics for biological and robotic applications, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) Pages: 3397-3403,
2014

e Vondsek, V. - Saska, M. - Kosnar, K. - Preucil, L.. Global Motion Planning for Modular
Robots with Local Motion Primitives. In ICRA2013: Proceedings of 2013 IEEFE Interna-
tional Conference on Robotics and Automation. Piscataway: IEEE, 2013, ISSN 1050-4729.
ISBN 978-1-4673-5641-1. Cited: 1x

119



120 APPENDIX F. SCI CITATIONS OF AUTHOR’S WORK

— Van-Dung Hoang; Hernandez, Danilo Caceres; Hariyono, Joko; et al., Global Path
Planning for Unmanned Ground Vehicle based on Road Map Images, IEEE 7th
International Conference on Human System Interactions (HSI) Pages: 82-87, 2014

e Saska, M. - Mejia, J.S. - Stipanovic, D.M. - Vonasek, V. - Schilling, K. - et al.: Control
and Navigation in Manoeuvres of Formations of Unmanned Mobile Vehicles. FEuropean
Journal of Control. 2013, vol. 19, no. 2, p. 157-171. ISSN 0947-3580. Cited: 3x

— Ramos Turci, Luiz Felipe; Ramos Simoes, Mateus Mendonca, Adaptive pinning of
mobile agent network, COMMUNICATIONS IN NONLINEAR SCIENCE AND NU-
MERICAL SIMULATION Volume: 26 Issue: 1-3 Pages: 75-86, 2015

— Franco, Carlos; Stipanovic, Dusan M.; Lopez-Nicolas, Gonzalo; et al., Persistent cov-
erage control for a team of agents with collision avoidance, EUROPEAN JOURNAL
OF CONTROL Volume: 22 Pages: 30-45, 2015

— Lamburn, Darren J.; Gibbens, Peter W.; Dumble, Steven J. Efficient constrained
model predictive control, FUROPEAN JOURNAL OF CONTROL Volume: 20 Issue:
6 Pages: 301-311, 2014



BIBLIOGRAPHY

Bibliography

[1]

Algorithms & applications group
motion planning puzzles. set of
benchmarks. http://parasol-

www.cs.tamu.edu/dsmft /benchmarks/mp/.

ODE — Open Dynamics Engine. http://
www.ode.org/l Accessed: 2015-20-07.

P. K. Agarwal, L. Arge, A. Danner, and
B. Holland-Minkley.  Cache-oblivious data
structures for orthogonal range searching. In
Proceedings of the nineteenth annual sympo-

sium on Computational geometry, pages 237—
245. ACM, 2003.

P. K. Agarwal, L. J. Guibas, H. Edelsbrunner,
J. Erickson, M. Isard, S. Har-Peled, J. Her-
shberger, Ch. Jensen, L. Kavraki, P. Koehl,
M. Lin, D. Manocha, D. Metaxas, B. Mir-
tich, D. Mount, S. Muthukrishnan, D. Pai,
E. Sacks, J. Snoeyink, S. Suri, and O. Wolef-
son.  Algorithmic issues in modeling mo-
tion. ACM Computing Surveys, 34(4):550—
572, 2002.

I. Aguinaga, D. Borro, and L. Matey. Parallel
RRT-based path planinng for selective disas-
sembly planning. International Journal of Ad-
vanced Manufacturing Technology, 36:1221—
1233, 2008.

R. Alterovitz and K. Goldberg. Planning for
steerable bevel-tip needle insertion through
2D soft tissue with obstacles. In IEEE In-
ternational Conference on Robotics and Au-
tomation (ICRA), pages 1652-1657, 2005.

N. M. Amato, K. A. Dill, and G. Song. Using
motion planning to map protein folding land-
scapes and analyze folding kinetics of known
native structures. In International Conference
on Computational biology (RECOMB), pages
2-11, New York, NY, USA, 2002. ACM.

N. M. Amato, L. K. Dale O. B. Bayazit, Ch.
Jones, and D. Vallejo. OBPRM: an obstacle-
based PRM for 3D workspaces. In Workshop
on the Algorithmic Foundations of Robotics
(WAFR), pages 155-168, Natick, MA, USA,
1998. A. K. Peters, Ltd.

A. Atramentov and S. M. LaValle. Efficient
nearest neighbor searching for motion plan-
ning. In IEEE International Conference on
Robotics and Automation (ICRA), pages 632—
637, 2002.

B. Baginski. Efficient motion planning in
high dimensional spaces: The parallelized
Z3-method. In International Workshop on
Robotics in the Alpe-Adria-Danube Region,
pages 247-252, 1997.

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

121

J. Barraquand and J.-C. Latombe. Robot
motion planning: a distributed representation
approach. International Journal on Robotics
Research, 10(6):628-649, 1991.

0. B. Bayazit, D. Xie, and N. M. Amato. It-
erative relaxation of constraints: a framework
for improving automated motion planning. In
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages
3433-3440, 2005.

S. Berchtold and B. Glavina. A scalable op-
timizer for automatically generated manipu-
lator motions. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), volume 3, pages 1796-1802, 1994.

P. Bhattacharya and M. L. Gavrilova.
Roadmap-based path planning using the
Voronoi diagram for a clearance-based short-
est path. IEEE Robotics & Automation Mag-
azine, 15(2):58-66, 2008.

J. Bialkowski, S. Karaman, and E. Fraz-
zoli. Massively parallelizing the RRT and
the RRT*. In IEEE/RSJ International Con-

ference on Intelligent Robots and Systems

(IROS), pages 3513-3518, 2011.

R. Bohlin and E.E. Kavraki. Path planning
using Lazy PRM. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
volume 1, pages 521-528, 2000.

R. Bohlin and L. E. Kavraki. Path planning
using Lazy PRM. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
pages 521-528, 2000.

G. Bottesi, J.-P. Laumond, and S. Fleury. A
motion planning based video game. Technical
report, Technical Report 04576, LAASCNRS,
2004.

M. S. Branicky, M. M. Curtiss, J. A. Levine,
and S. B. Morgan. RRTs for nonlinear, dis-
crete, and hybrid planning and control. In
IEEE Conference on Decision and Control,
pages 9-12, 2003.

J. Bruce and M. Veloso. Real-time random-
ized path planning for robot navigation. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), volume 3,
pages 2383-2388, 2002.

A. Brunete, M. Hernando, E. Gambao, and
J. E. Torres. A behaviour-based control ar-
chitecture for heterogeneous modular, multi-
configurable, chained micro-robots. Robotics
and Autonomous Systems, 60(12):1607-1624,
2012.


http://www.ode.org/
http://www.ode.org/

122

22]

[26]

28]

[29]

[30]

[31]

[32]

B. Burns and O. Brock. Information theoretic
construction of probabilistic roadmaps. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems(IROS), volume 1,
pages 650-655, 2003.

B. Burns and O. Brock. Model-based motion
planning. Computer Science Department Fac-
ulty Publication Series, pages 1-22, 2004.

B. Burns and O. Brock. Sampling-based mo-
tion planning using predictive models. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 3120-3125,
2005.

B. Burns and O. Brock. Single-query entropy-
guided path planning. In IEFEE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 2124-2129, 2005.

B. Burns and O. Brock. Toward optimal con-
figuration space sampling. In Proceedings of
Robotics: Science and Systems, Cambridge,
USA, June 2005.

B. Burns and O. Brock. Single-query motion
planning with utility-guided random trees. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 3307-3312,
2007.

D. Calisi and D. Nardi. Performance evalu-
ation of pure-motion tasks for mobile robots
with respect to world models. Autonomous
Robots, 27(4):465-481, 2009.

J. Canny. A Voronoi method for the piano-
movers problem. In IEEE International Con-
ference on Robotics and Automation (ICRA),
volume 2, pages 530-535, 1985.

J. Canny, A. Rege, and J. Reif. An exact
algorithm for kinodynamic planning in the
plane. In Symposium on Computational geom-
etry (SCG), pages 271-280, New York, NY,
USA, 1990. ACM.

J. Canny and J. Reif. New lower bound tech-
niques for robot motion planning problems. In
Symposium on Foundations of Computer Sci-
ence, pages 49-60, 1987.

S. Carpin and E. Pagello. On parallel RRTs
for multi-robot systems. In Conference of
Italian Association for Artificial Intelligence,
pages 834-841, 2002.

A. Casal. Reconfiguration planning for mod-
ular self-reconfigurable robots. PhD thesis,
2002. Adviser J.-C. Latombe.

S. Caselli and M. Reggiani. ERPP:
An experience-based randomized path plan-
ner. In IEEFE International Conference on

[35]

[36]

[37]

[38]

[39]

[42]

[43]

[44]

BIBLIOGRAPHY

Robotics and Automation (ICRA), volume 2,
pages 1002-1008, 2000.

D. J. Challou, M. Gini, and V. Kumar. Par-
allel search algorithms for robot motion plan-
ning. In IEEE International Conference on
Robotics and Automation (ICRA), pages 46—
51, 1993.

H. Chang and L. Tsai-Yen. Assembly main-
tainability study with motion planning. In
IEEE International Conference on Robotics
and Automation (ICRA), volume 3, pages
1012-1019, 1995.

B. Chazelle. Advances in Robotics 1: Algo-
rithmic and Geometric Aspects of Robotics.
Lawrence Erlbaum Associates, 1987.

P.C. Chen and Y.K. Hwang. SANDROS: a
dynamic graph search algorithm for motion
planning. IEEFE Transactions on Robotics and
Automation, 14(3):390-403, 1998.

X. Chen and Y. Li. Smooth Path Planning
of a Mobile Robot Using Stochastic Particle
Swarm Optimization. In IEEE International

Conference on Mechatronics and Automation,
pages 1722-1727, 2006.

P. Cheng, E. Frazzoli, and S. M. LaValle. Im-
proving the performance of sampling-based
motion planning with symmetry-based gap

reduction. IEEFE Transactions on Robotics,
24(2):488-494, 2008.

P. Cheng and S. LaValle. Reducing metric
sensitivity in randomized trajectory design. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 43—
48, 2001.

H. J. Chiel, L. H. Ting, O. Ekeberg, and
M. J. Z. Hartmann. The brain in its
body: motor control and sensing in a biome-
chanical context. Journal of Neuroscience,

29(41):12807-12814, 2009.

G. Chirikjian and A. Pamecha. Evaluating
efficiency of self-reconfiguration in a class of
modular robots. Journal of Robotic Systems,
13(5):317-338, 1996.

G. S. Chirikjian. Kinematics of a meta-
morphic robotic system. In IEEFE Interna-
tional Conference on Robotics and Automa-
tion, pages 449-455, 1994.

H. Choset, K. M. Lynch, S. Hutchinson, G. A.
Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: The-
ory, Algorithms, and Implementations. MIT
Press, Cambridge, MA, 2005.



BIBLIOGRAPHY

[46]

[47]

[48]

[49]

[50]

[51]

[54]

[55]

M. Clifton, G. Paul, N. Kwok, D. Liu, and D.-
L. Wang. Evaluating performance of multiple
RRTs. In IEEE/ASME International Con-
ference on Mechtronic and Embedded Systems
and Applications, pages 564-569, 2008.

J. Conradt and P. Varshavskaya. Distributed
central pattern generator control for a serpen-
tine robot. In International Conference on Ar-
tificial Neural Networks, 2003.

R. Crespi, A. Badertscher, A. Guignard, and
A. J. Ijspeert. Amphibot I: an amphibious
snake-like robot. Robotics and Autonomous
Systems, 50:163-175, 2005.

I. A. Sucan and L. E. Kavraki. On the im-
plementation of single-query sampling-based
motion planners. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
pages 2005-2011, Anchorage, Alaska, 2010.

M. de Berg, O. Cheong, M. Kreveld, and
M. van Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag
TELOS, Santa Clara, CA, USA, 3rd edition,
2008.

J. Denny, E. Greco, S. Thomas, and N. Am-
ato. MARRT: Medial Axis biased Rapidly-
exploring Random Trees. In IEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), 2014.

D. Devaurs, T. Siméon, and J. Cortés. Par-
allelizing RRT on distributed-memory ar-
chitectures. IEEFE International Conference
on Robotics and Automation (ICRA), pages
2261-2266, 2011.

M. Du, J. Chen, P. Zhao, H. Liang, Y. Xin,
and T. Mei. An improved RRT-based motion
planner for autonomous vehicle in cluttered
environments. In IFEFE International Con-
ference on Robotics and Automation (ICRA),
pages 4674-4679, 2014.

R. C. Eberhart and Y. Shi. Particle swarm
optimization: developments, applications and
resources. In Proceedings of the Congress on

Evolutionary Computation, volume 1, pages
81-86, 2001.

A. Enosh, B. Raveh, O. Furman-Schueler,
D. Halperin, and N. Ben-Tal. Generation,
Comparison, and Merging of Pathways be-
tween Protein Conformations: Gating in K-

Channels. Biophysical Journal, 95(8):3850—
3860, 2008.
C. Ericson. Real-Time Collision Detection

(The Morgan Kaufmann Series in Interactive
3-D Technology). Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2004.

[57]

[58]

[59]

[61]

[62]

[63]

[66]

123

G. Erinc and S. Carpin. A genetic algorithm
for nonholonomic motion planning. In IFEE
International Conference on Robotics and Au-
tomation (ICRA), pages 1843-1849, 2007.

I. Erkmen, A.M. FErkmen, F. Matsuno,
R. Chatterjee, and T. Kamegawa. Snake
robots to the rescue! IEEE Robotics Automa-
tion Magazine, 9(3):17-25, sep 2002.

M. Eslami, H. Shareef, M. Khajehzadeh, and
A. Mohamed. A survey of the state of the
art in Particle Swarm Optimization. Research

Journal of Applied Sciences, Engineering and
Technology, 4:1181-1197, 2012.

A. Ettlin and H. Bleuler. Rough-terrain robot
motion planning based on obstacleness. In In-
ternational Conference on Control, Automa-
tion, Robotics and Vision, pages 1-6, 2006.

C. Armando F. de Pina, M. S. Dutra, and
L. Raptopoulos. Modeling of a bipedal robot
using mutually coupled Rayleigh oscillators.
Biological cybernetics, 92(1):1-7, 2005.

J. Faigl, M. Kulich, and L. Preucil. Goal
Assignment using Distance Cost in Multi-
Robot Exploration. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems (IROS), volume 1, pages 3741-3746,
Piscataway, 2012.

J. Faigl, M. Kulich, V. Vonések, and
L. Preucil. An Application of the Self-
Organizing Map in the non-Euclidean Trav-

eling Salesman Problem. Neurocomputing,
74(5):671-679, 2011.
D. Ferguson, T. M Howard, and

M. Likhachev. Motion planning in ur-
ban environments. Journal of Field Robotics,
25(11-12):939-960, 2008.

D. Ferguson, N. Kalra, and A. Stentz. Replan-
ning with RRTs. In IEEE International Con-
ference on Robotics and Automation (ICRA),
pages 1243-1248, 2006.

R. Fitch and Z. Butler. Million module
march: Scalable locomotion for large self-
reconfiguring robots. International Journal of
Robotic Research, 27(3-4):331-343, 2008.

S. Fortune. A sweepline algorithm for Voronoi
diagrams. In Symposium on Computational
Geometry (SCG), pages 313-322, 1986.

M. Foskey, M. Garber, M. C. Lin, and
D. Manocha. A Voronoi-based hybrid motion
planner for rigid bodies. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (IROS), pages 55—60, 2001.



124

[69]

[72]

[75]

E. Frazzoli, M. Dahleh, and E. Feron. Real-
time motion planning for agile autonomous
vehicles. In American Control Conference,
volume 1, pages 43-49. IEEE, 2001.

T. Fukuda and S. Nakagawa. Dynamically re-
configurable robotic system. In IFEFE Inter-
national Conference on Robotics and Automa-
tion (ICRA), pages 1581-1586, 1988.

C. Fulgenzi, C. Tay, A. Spalanzani, and
C. Laugier. Probabilistic navigation in dy-
namic environment using Rapidly-exploring
Random Trees and Gaussian processes. In
IEEE/RSJ International Conference on In-
telligent Robotics and Systems (IROS), pages
1056-1062, 2008.

I. Garcia and J. P. How. Improving the ef-
ficiency of Rapidly-exploring Random Trees
using a potential function planner. In IFEFE
Conference on Decision and Control and
Europena  Control Conference (CDC-ECC),
pages 7965-7970, 2005.

M. A. P. Garcia, O. Montiel, O. Castillo,
R. Septilveda, and P. Melin. Path plan-
ning for autonomous mobile robot navigation
with Ant Colony Optimization and fuzzy cost
function evaluation. Applied Soft Computing,
9(3):1102-1110, 2009.

R. Gayle, S. Redon, A. Sud, M. C. Lin, and
D. Manocha. Efficient motion planning of
highly articulated chains using physics-based
sampling. In IEEFE International Conference
on Robotics and Automation (ICRA), pages
3319-3326, 2007.

R. Geraerts and M. Overmars. A compara-
tive study of probabilistic roadmap planners.
In Workshop on the algorithm foundations of
robotics (WAFR), pages 43-57, 2002.

R. Geraerts and M. H. Overmars. Clear-
ance based path optimization for motion plan-
ning. In IEEE International Conference
on Robotics and Automation (ICRA), pages
2386-2392, 2004.

R. Geraerts and M. H Overmars. Sampling
techniques for probabilistic roadmap plan-
ners. In International Conference on Intelli-
gent Autonomous Systems (IAS), pages 600—
609, 2004.

R. Geraerts and M. H. Overmars. Reachabil-
ity analysis of sampling based planners. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 406-412,
2005.

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

BIBLIOGRAPHY

R. Geraerts and M. H. Overmars. Creat-
ing high-quality paths for motion planning.
International Journal on Robotics Research,
26(8):845-863, 2007.

R. Geraerts and Mark H. Overmars.
Reachability-based  analysis for  Proba-
bilistic Roadmap planners.  Robotics and
Autonomous Systems, 55(11):824-836, 2007.

B. Glavina. Solving findpath by combination
of goal-directed and randomized search. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 1718-1723,
1990.

S. Gottschalk, M. C. Lin, and D. Manocha.
OBBTree: a hierarchical structure for rapid
interference detection. In Proceedings of the
23rd annual conference on Computer graph-
ics and interactive techniques, pages 171-180,
1996. Also available at: http://gamma.cs.
unc.edu/0BB/.

R. Guernane and N. Achour. Generating op-
timized paths for motion planning. Robotics
and Autonomous Systems, 59(10):789-800,
2011.

L. J. Guibas, C. Holleman, and L. E. Kavraki.
A probabilistic roadmap planner for flexible
objects with a workspace medial-axis-based
sampling approach. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems (IROS), volume 1, pages 254-259,
1999.

J. Guitton, J.-L. Farges, and R. Chatila. Cell-
RRT: Decomposing the environment for bet-
ter plan. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), pages 5776-5781, 20009.

D. Halperin. Robust geometric computing in
motion. International Journal of Robotics Re-
search, 21(3):219-232, 2002.

C. S. Han, K. H. Law, J.-C. Latombe, and
J. C. Kunz. A performance-based approach
to wheelchair accessible route analysis. Ad-
vanced Engineering Informatics, 16(1):53-71,
2002.

K. Hauser, T. Bretl, K. Harada, and J.-C.
Latombe. Using motion primitives in prob-
abilistic sample-based planning for humanoid
robots. In In Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2006.

P. S. Heckbert and M. Garland. Survey of
polygonal surface simplification algorithms.
Technical report, Carnegie Mellon Univer-
sity, School of Computer Science, Pittsburgh,
May 1997. Multiresolution Surface Modeling
Course, SIGGRAPH.


http://gamma.cs.unc.edu/OBB/
http://gamma.cs.unc.edu/OBB/

BIBLIOGRAPHY

[90]

[92]

K. IIT Hoff, T. Culver, J. Keyser, M. Lin,
and D. Manocha. Interactive motion plan-
ning using hardware-accelerated computation
of generalized Voronoi diagrams. In IEEE In-
ternational Conference on Robotics and Au-
tomation (ICRA), volume 3, pages 2931-2937,
2000.

C. Holleman and L. E. Kavraki. A frame-
work for using the workspace medial axis in
PRM planners. In International Conference
on Robotics and Automation (ICRA), vol-
ume 2, pages 1408-1413, 2000.

T. Horsch, F. Schwarz, and H. Tolle. Mo-
tion planning with many degrees of freedom-
random reflections at C-space obstacles. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 3318-3323,
1994.

D. Hsu. The bridge test for sampling nar-
row passages with probabilistic roadmap plan-
ners. In IEEE International Conference
on Robotics and Automation (ICRA), pages
4420-4426, 2003.

D. Hsu, H. Cheng, and J.-C. Latombe. Multi-
level free-space dilation for sampling narrow
passages in PRM planning. In IEEE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 1255-1260, 2006.

D. Hsu, L. E. Kavraki, J.-C. Latombe,
R. Motwani, S. Sorkin, et al. On finding nar-
row passages with probabilistic roadmap plan-
ners. In Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), pages 141-154,
1998.

D. Hsu, J.-C. Latombe, and H. Kurniawati.
On the probabilistic foundations of probabilis-

tic roadmap planning. International Journal
of Robotics Research, 25(7):627-643, 2006.

D. Hsu, J.-C. Latombe, and R. Motwani. Path
planning in expansive configuration spaces. In
International Journal of Computational Ge-

ometry and Applications, volume 3, pages
2719-2726, 1997.

D. Hsu, G. Sanchez-Ante, and Z. Sun. Hybrid
PRM sampling with a cost-sensitive adaptive
strategy. In IEEE International Conference
on Robotics and Automation (ICRA), pages
3874-3880, 2005.

J. Ichnowski, J. F. Prins, and R. Al-
terovitz. Cache-aware asymptotically-optimal
sampling-based motion planning. In IEEFE In-
ternational Conference on Robotics and Au-
tomation (ICRA), pages 5804-5810, 2014.

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107)

[108]

109

[110]

125

A. J. Tjspeert. Central pattern generators
for locomotion control in animals and robots:
A review. Neural Networks, 21(4):642-653,
2008.

A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M.
Cabelguen. From swimming to walking with
a salamander robot driven by a spinal cord
model. Science, 315(5817):1416-1420, 2007.

A. J. Ijspeert, J. Hallam, and D. Willshaw.
Evolving swimming controllers for a simulated
lamprey with inspiration from neurobiology.
Adaptive Behavior, 7(2):151-172, 1999.

H. Inada and K. Ishii. Behavior generation
of bipedal robot using central pattern gen-
erator (CPG) (1st report: CPG parameters
searching method by genetic algorithm). In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), volume 3,
pages 2179-2184, 2003.

F. Islam, J. Nasir, U. Malik, Y. Ayaz, and
O. Hasan. RRT-smart: Rapid convergence
implementation of RRT* towards optimal so-
lution. In International Conference on Mecha-
tronics and Automation (ICMA), pages 1651
1656, 2012.

S. A. Jacobs, N. Stradford, C. Rodriguez, S. L.
Thomas, and N. M. Amato. A scalable dis-
tributed RRT for motion planning. In IEFEE
International Conference on Robotics and Au-
tomation (ICRA), pages 5088-5095, 2013.

L. Jaillet, J. Cortes, and T. Simeon.
Transition-based RRT for path planning in
continuous cost spaces. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (IROS), pages 2145-2150, 2008.

L. Jaillet, J. Cortes, and T. Simeon.
Sampling-based path planning on
configuration-space costmaps. IEEE Trans-

actions on Robotics, 26(4):635-646, 2010.

L. Jaillet, A. Yershova, S. M. LaValle, and
T. Simeon. Adaptive tuning of the sam-
pling domain for dynamic-domain RRTs. In
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages
2851-2856, 2005.

M. W. Jorgensen, E. H. Ostergaard, and H. H.
Lund. Modular ATRON: modules for a self-
reconfigurable robot. In IEEE/RSJ Interna-
tional Conference On Intelligent Robots and
Systems (IROS), pages 2068-2073, 2004.

M. Kalisiak and M. van de Panne. Grasp-
based motion planning algorithm for charac-
ter animation. In Furographics Workshop on
Computer Animation and Simulation, 2000.



126

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

M. Kalisiak and M. van de Panne. RRT-
blossom: RRT with a local flood-fill be-
havior. In IFEFEE International Conference
on Robotics and Automation (ICRA), pages
1237-1242, 2006.

M. Kalisiak and M. van de Panne. Faster
motion planning using learned local viability
models. In IEEFE International Conference
on Robotics and Automation (ICRA), pages
27002705, 2007.

A. Kamimura, H. Kurokawa, E. Toshida,
K. Tomita, S. Murata, and S. Kokaji. Auto-
matic locomotion pattern generation for mod-
ular robots. In IEEFE International Confer-
ence on Robotics and Automation (ICRA),
volume 1, pages 714-720, 2003.

A. Kamimura, H. Kurokawa, E. Yoshida,
K. Tomita, S. Kokaji, and S. Murata. Dis-
tributed adaptive locomotion by a mod-
ular robotic system, M-TRAN II. In
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages
2370-2377, 2004.

A. Kamphuis, M. Mooijekind, D. Nieuwen-
huisen, M. H. Overmars, and Games Cam-
era Movement Groups. Automatic construc-
tion of roadmaps for path planning in games.
In International Conference on Computer
Games: Artificial Intelligence, Design and
FEducation, pages 285292, 2004.

S. Karaman and E. Frazzoli. Incremental
sampling-based algorithms for optimal motion
planning. arXiv preprint arXiv:1005.0416,
abs/1005.0416, 2010. http://arxiv.org/
abs/1005.0416.

Sertac Karaman and Emilio Frazzoli.
Sampling-based algorithms for optimal mo-
tion planning. The International Journal of
Robotics Research, 30(7):846-894, 2011.

Z. Kasl, M. Saska, and L. Preucil. Rapidly
Exploring Random Trees-Based Initialization
of MPC Technique Designed for Formations
of MAVs. In Proceedings of the 11th Interna-
tional Conference on Informatics in Control,

Automation and Robotics, volume 2, pages
436-443, 2014.

L. E. Kavraki. Geometry and the discovery of
new ligands. In Algorithms for Robotic Mo-
tion and Manipulation (WAFR), pages 435—
448, 1997.

L. E. Kavraki, P. Svestka, J.-C. Latombe,
and M. Overmars. Probabilistic roadmaps for
path planning in high dimensional configura-
tion spaces. IEEE Transactions on Robotics
and Automation, 12(4):566-580, 1996.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

BIBLIOGRAPHY

L. E. Kavraki, P. Svestka, J.-C. Latombe, and
M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configura-
tion spaces. IEEFE Transactions on Robotics
and Automation, 12:566—-580, 1996.

J. Kennedy and R. Eberhart. Particle swarm
optimization. In IFEFE International Confer-
ence on Neural Networks, pages 1942-1948,
1995.

S. Kernbach, O. Scholz, K. Harada,
S. Popesku, J. Liedke, R. Humza, W. Liu,
F. Caparrelli, J. Jemai, J. Havlik, E. Meister,
and P. Levi. Multi-robot organisms: State of
the art. In IEEFE International Conference on
Robotics and Automation (ICRA), workshop
on "Modular Robots: State of the Art”, pages
1-10, 2010.

A. Khare and S. Rangnekar. A review of Par-
ticle Swarm Optimization and its applications
in Solar Photovoltaic system. Applied Soft
Computing, 13(5):2997-3006, 2013.

O Khatib. Real-time obstacle avoidance for
manipulators and mobile robots. Interna-
tional Journal of Robotics Research, 5(1):90—
98, 1986.

J. T. Kider, M. Henderson, M. Likhachev, and
A. Safonova. High-dimensional planning on
the gpu. In IEEFE International Conference
on Robotics and Automation (ICRA), pages
2515-2522, 2010.

J. Kim and Joel M. Esposito. An RRT-based
algorithm for testing and validating multi-
robot controllers. In Robotics: Science and
Systems, pages 249-256, 2005.

H. Kimura, Y. Fukuoka, and A. H. Cohen.
Adaptive dynamic walking of a quadruped
robot on natural ground based on biological

concepts. International Journal of Robotic
Research, 26(5):475-490, 2007.

R. Kindel, D. Hsu, J.-C. Latombe, and
S. Rock. Kinodynamic motion planning
amidst moving obstacles. In IEEFE Interna-

tional Conference on Robotics and Automa-
tion (ICRA), volume 1, pages 537-543, 2000.

Y. Koga, K. Kondo, J. Kuffner, and J.-
C. Latombe. Planning motions with inten-
tions. In Conference on Computer graph-
ics and interactive techniques (SIGGRAPH),
pages 395408, 1994.

T. Krajnik, M. Nitsche, J. Faigl, P. Vanék,
M. Saska, L. Preucil, T. Duckett, and M. Me-
jail. A practical multirobot localization sys-
tem. Journal of Intelligent € Robotic Systems,
76(3-4):539-562, 2014.


http://arxiv.org/abs/1005.0416
http://arxiv.org/abs/1005.0416

BIBLIOGRAPHY

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

T. Krajnik, M. Nitsche, J. Faigl, P. Vanék,
M. Saska, L. Pieucil, T. Duckett, and M. Me-
jail. A practical multirobot localization sys-
tem. Journal of Intelligent and Robotic Sys-
tems, 76(3-4):539-562, 2014.

J. Kuffner, K. Nishiwaki, S. Kagami, M. In-
aba, and H. Inoue. Motion planning for hu-
manoid robots. In International Symposium
on Robotic Research, pages 365—374. Springer,
2005.

J. J. Kuffner. Autonomous agents for real-
time animation. PhD thesis, Stanford, CA,
USA, 2000.

J. J. Kuffner and S. M. LaValle. RRT-
Connect: An efficient approach to single-
query path planning. In [IFEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 995-1001, 2000.

M. Kulich, V. Vondsek, and L. Pteucil.
Simulation-Based Goal-Selection for Au-
tonomous Exploration. In Modelling and Sim-
ulation for Autonomous Systems (MESAS),
pages 173-183. Springer, 2014.

Y. Kuniyoshi and S. Suzuki. Dynamic emer-
gence and adaptation of behavior through
embodiment as coupled chaotic field. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), volume 2,
pages 2042-2049, 2004.

H. Kurniawati and D. Hsu. Workspace im-
portance sampling for Probabilistic Roadmap
Planning. In International Conference on
Intelligent Robots and Systems (IROS), vol-
ume 2, pages 1618-1623, 2004.

Y. Kuwata, A. Elfes, M. Maimone,
A. Howard, M. Pivtoraiko, T. M. Howard,
and A. Stoica. Path planning challenges for
planetary robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS): 2nd workshop on planning, percep-
tion and mavigation for intelligent wvehicles,
2008.

Y. Kuwata, G. A. Fiore, J. Teo, E. Fraz-
zoli, and J. P. How. Motion planning for
urban driving using RRT. In International

Conference on Intelligent Robots and Systems
(IROS), pages 1681-1686, 2008.

Parasol Lab. Motion planning bech-
mark. https://parasol.tamu.edu/dsmft/
benchmarks/. Visited at 17.7.2015.

F. Lamiraux, E. Ferre, and E. Vallee. Kin-
odynamic motion planning: connecting ex-
ploration trees using trajectory optimization
methods. In IEEE International Conference

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

127

on Robotics and Automation (ICRA), vol-
ume 4, pages 3987-3992, 2004.

F. Lamiraux and J.-P. Laumond. On the
expected complexity of random path plan-
ning. In IEEE International Conference on
Robotics and Automation (ICRA), volume 4,
pages 3014-3019, 1996.

F. Lamiraux, J.-P. Laumond, C. Van Geem,
D. Boutonnet, and G. Raust. Trailer truck
trajectory optimization: the transportation
of components for the airbus A380. IFEFE
Robotics Automation Magazine, 12(1):14-21,
2005.

T. Larkworthy and S. Ramamoorthy. An ef-
ficient algorithm for self-reconfiguration plan-
ning in a modular robot. In IEEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 5139-5146, 2010.

L. J. Latecki and R. Lak&mper. Convexity
rule for shape decomposition based on discrete
contour evolution. Computer Vision and Im-
age Understanding, 73(3):441-454, 1999.

J.-C. Latombe.  Robot Motion Planning.
Kluwer Academic Publishers, Norwell, MA,
USA, 1991.

J.-C. Latombe. Motion planning: A journey
of robots, molecules, digital actors, and other
artifacts. International Journal of Robotics
Research, 18:1119-1128, 1999.

J.-P. Laumond and T. Simeon. Notes on visi-
bility roadmaps and path planning. In In Pro-
ceedings of the Workshop on the Algorithmic
Foundations of Robotics, pages 317-328, 2000.

S. M. LaValle. Rapidly-exploring ran-
dom trees: A new tool for path plan-
ning. http://coitweb.uncc.edu/~xiao/
itcs6151-8151/RRT.pdf, 1998. Technical re-
port 98-11.

S. M. LaValle. Planning Algorithms. Cam-
bridge University Press, Cambridge, U.K.,
2006.  Available at http://planning.cs.
uiuc.edu/|

S. M. LaValle. Motion planning, part IT: Wild
frontiers. IEEE Robotics Automation Maga-
zine, 18(2):108-118, 2011.

S. M. LaValle and J. J. Kuffner. Rapidly-
Exploring Random Trees: Progress and
Prospects. In Algorithmic and Computa-
tional Robotics: New Directions, pages 293—
308, 2000.

J. Lee, C. Pippin, and T. Balch. Cost based
planning with RRT in outdoor environments.


https://parasol.tamu.edu/dsmft/benchmarks/
https://parasol.tamu.edu/dsmft/benchmarks/
http://coitweb.uncc.edu/~xiao/itcs6151-8151/RRT.pdf
http://coitweb.uncc.edu/~xiao/itcs6151-8151/RRT.pdf
http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/

128

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages
684-689, 2008.

P. Levi and S. Kernbach, editors. Symbiotic
Multi-Robot Organisms: Reliability, Adapt-
ability, Fvolution. Springer-Verlag, 2010.

P. Levi, E. Meister, A. van Rossum,
T. Krajnik, V. Vondsek, P. Stépan, W. Liu,
and F. Caparrelli. A Cognitive Architecture
for Modular and Self-Reconfigurable Robots.
In Proceedings of 8th Annual IEEE Systems
Conference, pages 465-472, Piscataway, 2014.

T.-Y. Li and Y.-C. Shie. An incremental
learning approach to motion planning with
roadmap management. In IEEE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), volume 4, pages 3411-3416,
2002.

J. Liedke, R. Matthias, L. Winkler, and
H. Woern. The collective self-reconfigurable
modular organism (CoSMO). In IEEE/ASME
International Conference on Advanced Intelli-
gent Mechatronics, pages 1-6, 2013.

Yu-Te Lin. The Gaussian PRM sampling
for dynamic configuration spaces. In Inter-
national Conference on Control, Automation,
Robotics and Vision (ICARCYV), pages 1-5,
2006.

S. R. Lindemann and S. M. LaValle. In-
crementally reducing dispersion by increas-
ing voronoi bias in RRTs. In IEFEFE In-
ternational Conference on Robotics and Au-
tomation (ICRA ), volume 4, pages 3251-3257,
2004.

S. R. Lindemann and S. M. LaValle. Steps to-
ward derandomizing RRTs. In International
Workshop on Robot Motion and Control (Ro-
MoCo), pages 271-277, 2004.

Stephen R. Lindemann and S. M. LaValle.
Current issues in sampling-based motion plan-
ning. In Robotics Research: The Eleventh In-
ternational Symposium, pages 36-54, 2005.

T. Lozano-Pérez and P. A. O’Donnell. Par-
allel robot motion planning. In IFEE Inter-
national Conference on Robotics and Automa-
tion (ICRA), pages 1000-1007, 1991.

J. Mac¢dk. Multi-Robot Cooperative Inspec-
tion Task. Master’s thesis, Czech Technical
University in Prague, Czech Republic, 2009.

D. Marbach and A. J. Ijspeert. Online op-
timization of modular robot locomotion. In
IEEE International Conference on Mecha-
tronics and Automation (ICMA), pages 248
253, 2005.

[166]

[167]

168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

BIBLIOGRAPHY

E. Masehian and D. Sedighizadeh. Classic and
heuristic approaches in robot motion planning
— a chronological review. World Academy of
Science, Engineering and Technology, 23:101—
106, 2007.

L. Matthey, L. Righetti, and A. J. Ijspeert.
Experimental study of limit cycle and chaotic
controllers for the locomotion of centipede
robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), pages 18601865, 2008.

E. Mazer, J. M. Ahuactzin, and P. Bessiere.
The ariadne’s clew algorithm. Journal of Ar-
tificial Intelligence Research, 9:295-316, 1998.

M. Moll and L. E. Kavraki. Path planning for
variable resolution minimal-energy curves of
constant length. In IEEE International Con-
ference on Robotics and Automation (ICRA),
pages 2130-2135, 2005.

M. Moll, D. Schwarz, and L. E. Kavraki.
Roadmap methods for protein folding. In
Protein Structure Prediction, pages 219-239.
Springer, 2008.

M. Morales, R. Pearce, and N. M. Amato.
Analysis of the evolution of C-space mod-
els built through incremental exploration. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 1029-1034,
2007.

M. Morales, S. Rodriguez, and N. M. Amato.
Improving the connectivity of prm roadmaps.
In International Conference on Robotics and
Automation (ICRA), volume 3, pages 4427—
4432, 2003.

M. Morales, L. Tapia, R. Pearce, S. Ro-
driguez, and N. M. Amato. A machine
learning approach for feature-sensitive motion
planning. In International Workshop on Al-
gorithmic Foundations of Robotics (WAFR),
pages 361-376, 2004.

M. Morales, L. Tapia, R. Pearce, S. Ro-
driguez, and N. M. Amato. C-space subdivi-
sion and integration in feature-sensitive mo-
tion planning. In IEEE International Con-
ference on Robotics and Automation (ICRA),
pages 3114-3119, 2005.

J. Morimoto, G. Endo, J. Nakanishi, S. Hyon,
G. Cheng, D. Bentivegna, and C. G. Atkeson.
Modulation of simple sinusoidal patterns by a
coupled oscillator model for biped walking. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 1579-1584,
2006.



BIBLIOGRAPHY

[176)

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185)

[186]

P. Moubarak and P. Ben-Tzvi. Modular
and reconfigurable mobile robotics. Robotics
and Autonomous Systems, 60(12):1648-1663,
2012.

T. Mulder, J. Duysens, and Henri W.A.A
Van De Crommert. Neural control of loco-
motion: sensory control of the central pattern
generator and its relation to treadmill train-
ing. Gait & Posture, 7(3):251-263, 1998.

S. Murata, K. Kakomura, and H. Kurokawa.
Toward a scalable modular robotic sys-
tem. IEEE Robotics € Automation Magazine,
14(4):56-63, 2007.

S. Murata, E. Yoshida, A. Kamimura,
H. Kurokawa, K. Tomita, and S. Kokaji. M-
TRAN: Self-reconfigurable modular robotic
system. IEEE/ASME Transactions on
Mechatronics, 7(4):431-441, 2002.

F. Nageotte, P. Zanne, M. de Mathelin, and
C. Doignon. A circular needle path plan-
ning method for suturing in laparoscopic
surgery. In IEEE International Conference
on Robotics and Automation (ICRA), pages
514-519, 2005.

Y. Nakamura, T. Mori, M. Sato, and S. Ishii.
Reinforcement learning for a biped robot
based on a cpg-actor-critic method. Neural
Networks, 20(6):723-735, 2007.

L. Napalkova, J. W. Rozenblit, G. Hwang,
A. J. Hamilton, and L. Suantak. An opti-
mal motion planning method for computer-
assisted surgical training. Applied Soft Com-
puting, 24(0):889-899, 2014.

J. Nassour, P. Hénaff, F. B. Ouezdou, and
G. Cheng. A study of adaptive locomotive be-
haviors of a biped robot: patterns generation
and classification. In International conference

on Simulation of adaptive behavior: from ani-
mals to animats (SAB), pages 313-324, 2010.

A. L. Nelson, G. J. Barlow, and L. Doitsidis.
Fitness functions in evolutionary robotics:
A survey and analysis. Robotics and Au-
tonomous Systems, 57(4):345-370, 2009.

C. Nielsen and L. E. Kavraki. A two-level
Fuzzy PRM for manipulation planning. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), volume 3,
pages 1716-1722, 2000.

D. Nieuwenhuisen and M. H. Overmars. Mo-
tion planning for camera movements. In IEEFE
International Conference on Robotics and Au-
tomation (ICRA), volume 4, pages 3870-3876,
2004.

[187]

[188)]

[189)

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

129

D. Nieuwenhuisen and M.H. Overmars. Use-
ful cycles in probabilistic roadmap graphs. In
IEEE International Conference on Robotics
and Automation (ICRA), volume 1, pages
446-452, 2004.

N. M. Nor and S. Ma. CPG-based locomo-
tion control of a snake-like robot for obsta-
cle avoidance. In IEFEE International Con-
ference on Robotics ad Automation (ICRA),
pages 347-352, 2014.

C. O’Dﬁnlaing. Motion planning with inertial
constraints. Algorithmica, 2:431-475, 1987.

M. Otte and N. Correll. C-FOREST: Par-
allel shortest path planning with superlinear
speedup. IEEE Transactions on Robotics,
29(3):798-806, 2013.

M. H. Overmars. The Gaussian Sampling
strategy for probabilistic roadmap planners.
In International Conference on Robotics and

Automation (ICRA), pages 1018-1023, 1999.

P. Pagala, M. Ferre, and M. Armada. De-
sign of modular robot system for mainte-
nance tasks in hazardous facilities and en-
vironments. In ROBOT2013: First Iberian
Robotics Conference, volume 253 of Advances
in Intelligent Systems and Computing, pages
185-197. Springer International Publishing,
2014.

Prithvi Sekhar Pagala, Jos Baca, Manuel
Ferre, and Rafael Aracil. Modular robot sys-
tem for maintenance tasks in large scientific
facilities. International Journal of Advanced
Robotic System, 10(394), 2013.

L. Palmieri and K. O. Arras. Distance met-
ric learning for RRT-based motion planning
with constant-time inference. In IEEFE Inter-
national Conference on Robotics and Automa-

tion (ICRA), 2015.

A. Pamecha, 1. Ebert-Uphoff, and G. S.
Chirikjian. Useful metrics for modular
robot motion planning. IEEE Transaction
on Robotics and Automation, 13(4):531-545,
1997.

J. Pan, C. Lauterbach, and D. Manocha.
g-Planner: Real-time motion planning and
global navigation using GPUs. In AAAI 2010.

J. Pan, L. Zhang, and D. Manocha.
Retraction-based RRT planner for articulated
models. In IEEE International Conference
on Robotics and Automation (ICRA), pages
2529-2536, 2010.



130

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

207]

[208]

X. Pan and C. S. Han. Using motion-planning
to determine the existence of an accessible
route in a cad environment. Assistive Tech-
nology, 22:32-45, 2010.

D. Parsons and J. Canny. Geometric prob-
lems in molecular biology and robotics. In In-
ternational Conference on Intelligent Systems
for Molecular Biology, pages 322-330, 1994.

H. Peng, F. Su, Y. Bu, G. Zhang, and L. Shen.
Cooperative area search for multiple UAVs
based on RRT and decentralized receding
horizon optimization. In Asian Control Con-
ference, pages 298-303, 20009.

J. Pettré, J.-P. Laumond, and T. Siméon.
A 2-stages locomotion planner for digital ac-
tors. In ACM SIGGRAPH /Eurographics sym-
posium on Computer animation, pages 258—
264, 2003.

E. Plaku, Kostas E. Bekris, B. Y. Chen, A. M.
Ladd, and Lydia E. Kavraki. Sampling-based
roadmap of trees for parallel motion planning.
IEEE Transactions on Robotics, 21(4):597—
608, 2005.

E. Plaku and L. E. Kavraki. Quantitative
analysis of nearest neighbors search in high-
dimensional sampling-based motion planning.
In Workshop on Algorithmic Foundations of
Robotics (WAFR), 2006.

K. C. Prevas, C. Unsal, M. O. Efe, and P. K.
Khosla. A hierarchical motion planning strat-
egy for a uniform self-reconfigurable modular
robotic system. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
pages 787-792, 2002.

R. Primerano, D. Wilkie, and W. C. Regli. A
case study in system-level physics-based sim-
ulation of a biomimetic robot. IEEE Trans-
actions on Automation Science and Engineer-

ing, 8(3):664-671, 2011.

J. H. Reif. Complexity of the mover’s problem
and generalizations. In Symposium on Foun-
dations of Computer Science (SFCS), pages
421-427, Washington, DC, USA, 1979. IEEE
Computer Society.

GAMMA research group. Collision detection
and proximity queries. http://gamma.cs.

unc.edu/research/collision/. Visited at
17.7.2015.

L. Righetti and A. J. Ijspeert. Programmable
Central Pattern Generators: an application to
biped locomotion control. In IFEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 1585-1590, 2006.

209

[210]

[211]

[212]

[213]

214]

[215]

[216]

217]

[218]

219]

BIBLIOGRAPHY

C. Rodriguez, J. Denny, S. A. Jacobs,
S. Thomas, and N. M. Amato. Blind RRT:
A probabilistically complete distributed RRT.
In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages
1758-1765, 2013.

S. Rodriguez and N. M. Amato. Behavior-
based evacuation planning. In IFEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), pages 350-355, 2010.

S. Rodriguez, X. Tang, J. Lien, and N. M.
Amato. An obstacle-based Rapidly-Exploring
Random Tree. In IFEFE International Con-
ference on Robotics and Automation (ICRA),
pages 895-900, 2006.

M. Rubenstein and W.-M. Shen. Scalable
self-assembly and self-repair in a collective
of robots. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems

(IROS), pages 1484-1489, 2009.

D. Rus and M. Vona. Crystalline robots: Self-
reconfiguration with compressible unit mod-
ules.  Autonomous Robots, 10(1):107-124,
2001.

M. Saha, J.-C. Latombe, Y. Chang, and
F. Prinz. Finding narrow passages with prob-
abilistic roadmaps: The small-step retraction
method. Autonomous robots, 19(3):301-319,
2005.

B. Salemi, M. Moll, and W.-M. Shen. SU-
PERBOT: a deployable, multi-functional, and
modular self-reconfigurable robotic system. In
IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages
3636-3641, 2006.

B. Salemi, W.-M. Shen, and P. Will
Hormone-controlled metamorphic robots. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 4194-4199,
2001.

G. Sanchez and J.-C. Latombe. On delaying
collision checking in PRM planning — appli-
cation to multi-robot coordination. Interna-

tional Journal of Robotics research, 21:5-26,
2002.

M. Saska, T. Krajnik, V. Vondsek, Z. Kasl,
V. Spurny, and L. Pfeucil. Fault-Tolerant For-
mation Driving Mechanism Designed for Het-
erogeneous MAVs-UGVs Groups. Journal of
Intelligent and Robotic Systems, 73(1-4):603—
622, January 2014.

M. Saska, V. Vonasek, T. Krajnik, and
L. Pieucil. Coordination and Navigation


http://gamma.cs.unc.edu/research/collision/
http://gamma.cs.unc.edu/research/collision/

BIBLIOGRAPHY

220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

of Heterogeneous MAV-UGV Formations Lo-
calized by a hawk-eye-like Approach Un-
der a Model Predictive Control Scheme.
International Journal of Robotics Research,
33(10):1393-1412, September 2014.

M. Saska, V. Vonasek, and L. Preucil. Tra-
jectory Planning and Control for Airport
Snow Sweeping by Autonomous Formations
of Ploughs. Journal of Intelligent and Robotic
Systems, 72(2):239-261, November 2013.

M. Saska, V. Vonasek, and L. Preucil. Roads
sweeping by unmanned multi-vehicle forma-
tions. In IEEFE International Conference on
Robotics and Automation (ICRA), pages 631—
636, 2011.

W.-M. Shen, Y. Lu, and P. Will. Hormone-
based control for self-reconfigurable robots.
In International Conference on Autonomous
Agents, pages 1-8. ACM, 2000.

W.-M. Shen, Y. Lu, and P. Will. Hormone-
based control for self-reconfigurable robots.
In International Conference on Autonomous
Agents, 2000, pages 1-8, 2000.

K. Shi, J. Denny, and N. M. Amato. Spark
PRM: Using RRT's within PRMs to efficiently
explore narrow passages. In IEFE Interna-

tional Conference on Robotics and Automa-
tion (ICRA), pages 4659-4964, 2014.

Y. Shi and R. Eberhart. A modified particle
swarm optimizer. In IEEE World Congress on
Computation Intelligence, pages 69-73, 1998.

A. Shkolnik, M. Walter, and R. Tedrake.
Reachability-guided sampling for planning
under differential constraints. In IEEFE In-
ternational Conference on Robotics and Au-
tomation (ICRA), pages 2859-2865, 2009.

T. Simeon, J.-P. Laumond, and F. Lamiraux.
Move3D: A generic platform for path plan-
ning. In IEEFE International Symposium on
Assembly and Task Planning, pages 25-30,
2001.

A. P. Singh, J.-C. Latombe, and D. L. Brut-
lag. A motion planning approach to flexible
ligand binding. In International Conference
on Intelligent Systems for Molecular Biology,
pages 25261, 1999.

J. Solano and D. I. Jones.  Generation
of collision-free paths, a genetic approach.
In IEEE Colloquium on Genetic Algorithms
for Control Systems Engineering, pages 1-6,
1993.

230]

[231]

232]

233

[234]

[235]

[236]

237]

238

[239]

240]

131

G. Song and N. M. Amato. A motion plan-
ning approach to folding: From paper craft to
protein folding. In IEEFE International Con-
ference Robotics Automation (ICRA), pages
948-953, 2001.

G. Song, S. Miller, and N. M. Amato. Cus-
tomizing PRM roadmaps at query time. In
IEEE International Conference Robotitcs and
Automation (ICRA), pages 1500-1505, 2000.

K. Stoy, W.-M. Shen, and P. M. Will. Us-
ing role-based control to produce locomo-
tion in chain-type self-reconfigurable robots.
IEEE/ASME Transactions on Mechatronics,
7(4):410-417, 2002.

K. Stoy, W.-M. Shen, and P. M. Will. A sim-
ple approach to the control of locomotion in
self-reconfigurable robots. Robotics and Au-
tonomous Systems, 44(3):191-199, 2003.

M. Strandberg. Augmenting RRT-planners
with local trees. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
volume 4, pages 3258-3262, 2004.

I. Sucan and L. E. Kavraki. A sampling-
based tree planner for systems with complex
dynamics. IEEFE Transactions on Robotics,
28(1):116-131, 2012.

Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and
J. H. Reif. Narrow passage sampling for prob-
abilistic roadmap planning. IFEFE Transac-
tions on Robotics, 21(6):1105-1115, 2005.

S. Sundaram, I. Remmler, and N. M. Amato.
Disassembly sequencing using a motion plan-
ning approach. In IEEFE International Confer-
ence Robotics and Automation (ICRA), pages
1475-1480, 2001.

E. Szadeczky-Kardoss and B. Kiss. Exten-
sion of the Rapidly Exploring Random Tree
algorithm with key configurations for non-
holonomic motion planning. In IFEFE Inter-
national Conference on Mechatronics, pages
363-368, 2006.

G. Taga, Y. Yamaguchi, and H. Shimizu.
Self-organized control of bipedal locomotion
by neural oscillators in unpredictable environ-
ment. Biological Cybernetics, 65(3):147-159,
July 1991.

L. Tapia, S. Thomas, B. Boyd, and N. M. Am-
ato. An unsupervised adaptive strategy for
constructing probabilistic roadmaps. In IEEE
International Conference on Robotics and Au-
tomation (ICRA), pages 4037-4044, 2009.



132

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

R. Z. Tombropoulos, J. R. Adler, and J.-
C. Latombe. CARABEAMER: A treatment
planner for a robotic radiosurgical system
with general kinematics. Medical Image Anal-
ysis, 3:3-3, 1998.

K. Tomita, S. Murata, H. Kurokawa,
E. Yoshida, and S. Kokaji. Self-assembly and
self-repair method for a distributed mechani-
cal system. IEEE Transactions on Robotics
and Automation (ICRA), 15(6):1035-1045,
1999.

K. I. Tsianos and L. E. Kavraki. Replanning:
A powerful planning strategy for hard kinody-
namic problems. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), pages 1667-1672, 2008.

C. Unsal, H. Kilite, and P. K. Khosla. A mod-
ular self-reconfigurable bipartite robotic sys-
tem: Implementation and motion planning.

Autonomous Robots, 10:23—40, 2000.

C. Urmson and R. Simmons. Approaches
for heuristically biasing RRT growth. In
IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), volume 2,
pages 1178-1183, 2003.

D. R. Vallejo, C. Jones, and N. M. Amato. An
adaptive framework for ‘single shot’ motion
planning. In IEEE International Conference
on Intelligent Robots and Systems (IROS),
volume 3, pages 1722-1727, 2000.

J. P. van den Berg and M. H. Overmars. Us-
ing workspace information as a guide to non-
uniform sampling in probabilistic roadmap
planners. In IEEE International Conference
on Robotics and Automation (ICRA), vol-
ume 1, pages 453-460, 2004.

C. Van Geem, T. Simeon, J.-P. Laumond, J.-
L. Bouchet, and J. F. Rit. Mobility anal-
ysis for feasibility studies in cad models of
industrial environments. In IEEFE Interna-
tional Conference on Robotics and Automa-
tion (ICRA), volume 3, pages 1770-1775,
1999.

V. Vonasek. 3D Bugtrap benchmark problem:
solution. https://www.youtube.com/watch?
v=qci_AktcrD4. Accessed: 2015-20-07.

V. Vonéasek. Hedgehog in the cage problem:
solution. https://www.youtube.com/watch?
v=BqD770XV0mo. Accessed: 2015-20-07.

V. Vonasek. Video from HW verification
on CoSMO modular robot. http://wuw.
youtube.com/watch?v=£Cy3grSRCOk, 2014.
Visited: 17.7.2015.

252]

253

[254]

[255]

[256]

[257]

[258]

259

260]

BIBLIOGRAPHY

V. Vonések, J. Faigl, T. Krajnik, and
L. Pfeucil. RRT-path — a guided rapidly ex-
ploring random tree. In Robot Motion and
Control (RoMoCo), pages 307-316. Springer,
20009.

V. Vonasek, J. Faigl, T. Krajnik, and
L. Preucil. A sampling schema for rapidly
exploring random trees using a guiding path.

In European Conference on Mobile Robots
(ECMR), pages 201-206, 2011.

V. Vonasek, D. Fiser, K. Kosnar, and
L. Pfeucil. A Light-Weight Robot Simulator
for Modular Robotics. In Modelling and Sim-
ulation for Autonomous Systems (MESAS),
pages 206—216. Springer, 2014.

V. Vonések, K. Kosnar, and L. Pfeuc¢il. Mo-
tion planning of self-reconfigurable modular
robots using rapidly exploring random trees.
In Advances in Autonomous Robotics — Joint
Proceedings of the 13th Annual TAROS Con-
ference and the 15th Annual FIRA Robo World
Congress, pages 279-290, 2012.

V. Vonéasek, S. Neumann, D. Oertel, and
H. Wérn. Online Motion Planning for Fail-
ure Recovery of Modular Robotic Systems. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 1905-1910,
2015.

V. Vonéasek, D. Oertel, S. Neumann, and
H. Worn. Failure recovery for modular robot
movements without reassembling modules. In
10th International Workshop on Robot Mo-
tion and Control (RoMoCo), Poznan, Poland,
2015.

V. Vonasek, O. Penc, K. Kosnar, and
L. Pfeucil. Optimization of Motion Primi-
tives for High-Level Motion Planning of Mod-
ular Robots. In Mobile Service Robotics:
CLAWAR 2014: 17th International Confer-
ence on Climbing and Walking Robots and the
Support Technologies, pages 109116, Singa-
pore, 2014. World Scientific.

V. Vonasek, O. Penc, and L. Preucil. Guided
motion planning for modular robots. In
Modelling and Simulation for Autonomous
Systems (MESAS), pages 217-230. Springer,
2014.

V. Vondsek, M. Saska, K. Kosnar, and
L. Preucil. Global Motion Planning for Mod-
ular Robots with Local Motion Primitives. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 2465-2470,
Piscataway, 2013.


https://www.youtube.com/watch?v=qci_AktcrD4
https://www.youtube.com/watch?v=qci_AktcrD4
https://www.youtube.com/watch?v=BqD77OXVOmo
https://www.youtube.com/watch?v=BqD77OXVOmo
http://www.youtube.com/watch?v=fCy3grSRC9k
http://www.youtube.com/watch?v=fCy3grSRC9k

BIBLIOGRAPHY

[261]

[262]

263]

[264]

265

266

[267]

268

269]

270]

[271]

V. Vonasek, M. Saska, K. Kosnar, and
L. Pteucil. Global motion planning for mod-
ular robots with local motion primitives. In
Proceedings of the IEEFE International Con-
ference on Robotics and Automation (ICRA),
2013.

V. Vonasek, M. Saska, K. Kosnar, and
L. Pfeucil. Motion planning with adaptive
motion primitives for modular robots. Applied
Soft Computing, 34:678-692, 2015.

V. Vonasek, M. Saska, L. Winkler, and
L. Pfeucil. High-level motion planning for
CPG-driven modular robots. Robotics and
Autonomous Systems, 68(0):116-128, 2015.

V. Voniasek, L. Winkler, J. Liedke, M. Saska,
K. Kosnar, and L. Pfeucil. Fast On-Board
Motion Planning for Modular Robots. In
IEEE International Conference on Robotics
and Automation (ICRA), pages 1215-1220,
Piscataway, 2014.

J. E. Walter, E. M. Tsai, and N. M. Am-
ato. Algorithms for fast concurrent recon-
figuration of hexagonal metamorphic robots.
IEEE Transactions on Robotics, 21(4):621—
631, 2005.

W. Wang and Y. Li. A multi-RRT's framework
for robot path planning in high-dimensional
configuration space with narrow passages.
In International Conference on Mechatronics
and Automation, pages 4952-4957, 2009.

W. Wang, Y. Li, X. Xu, and S. X. Yang. An
adaptive roadmap guided Multi-RRTs strat-
egy for single query path planning. pages
2871-2876, 2010.

R. Wein. The Visibility-Voronoi complex and
its applications. In ACM Symposium Compu-
tational Geometry, pages 63-72, 2005.

M. P. Weller, M. E. Karagozler, B. Kirby,
J. Campbell, and S. S. Goldstein. Movement
primitives for an orthogonal prismatic closed-
lattice-constrained self-reconfiguring module.
In Workshop on Self-Reconfiguring Modu-
lar Robotics at the IEEE International Con-
ference on Intelligent Robots and Systems
(IROS), 2007.

S. A. Wilmarth, N. M. Amato, and P. F.
Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of
the free space. In IEEFE International Con-
ference on Robotics and Automation (ICRA),
pages 1024-1031, 1999.

L. Winkler, V. Vonéasek, H. Worn, and
L. Preucil. Robot3D — a simulator for mobile
modular self-reconfigurable robots. In IFEFE

272]

273

[274]

[275]

[276]

[277]

278

279

[280]

[281]

133

International Conference on Multisensor Fu-
sion and Information Integration, pages 464—
469, 2012.

P. R. Wurman, R. D’Andrea, and M. Mountz.
Coordinating hundreds of cooperative, au-
tonomous vehicles in warehouses. Al maga-
zine, 29(1):9, 2008.

M. Wzorek and P. Doherty. Reconfigurable
path planning for an autonomous unmanned
aerial vehicle. In International Conference on
Hybrid Information Technology (ICHIT), vol-
ume 2, pages 242-249, 2006.

J. Xu, V. Duindam, R. Alterovitz, and
K. Goldberg. Motion planning for steerable
needles in 3D environments with obstacles
using Rapidly-Exploring Random trees and
backchaining. In International Conference on

Automation Science and Engineering, pages
41-46, 2008.

K. Yang and S. Sukkarieh. 3D-smooth path
planning for a UAV in cluttered natural envi-
ronments. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), pages 794-800, 2008.

Y. Yang and O. Brock. Adapting the sam-
pling distribution in PRM planners based on
an approximated medial axis. In IEEFE In-
ternational Conference on Robotics and Au-
tomation (ICRA ), volume 5, pages 44054410,
2004.

Y. Yang and O. Brock. Elastic roadmaps—
motion generation for autonomous mobile ma-
nipulation. Autonomous Robots, 28(1):113—
130, 2010.

Y. Ye and C. K. Liu. Synthesis of de-
tailed hand manipulations using contact sam-
pling. ACM Transactions on Graphics
(TOG), 31(4):41, 2012.

A. Yershova, L. Jaillet, T. Simeon, and S. M.
LaValle. Dynamic-domain RRTs: Efficient
exploration by controlling the sampling do-
main. In IEFE International Conference
on Robotics and Automation (ICRA), pages
3856-3861, 2005.

A. Yershova and S. M. LaValle. Improv-
ing motion-planning algorithms by efficient
nearest-neighbor searching. IEFE Transac-
tions on Robotics, 23(1):151-157, 2007.

M. Yim, D. G. Duff, and K. D. Roufas. Poly-
Bot: a modular reconfigurable robot. In IEEE
International Conference on Robotics and Au-
tomation (ICRA), volume 1, pages 514-520,
2000.



134

[282]

[283]

[284]

[285]

M. Yim, K. Roufas, D. Duff, Y. Zhang, C. El-
dershaw, and S. Homans. Modular recon-
figurable robots in space applications. Au-
tonomous Robots, 14(2-3):225-237, 2003.

M. Yim, W.-M. Shen, B. Salemi, D. Rus,
M. Moll, H. Lipson, E. Klavins, and G. S.
Chirikjian. Modular self-reconfigurable robot
systems [grand challenges of robotics]. IEEE
Robotics €& Automation Magazine, 14(1):43—
52, 2007.

E. Yoshida, H. Kurokawa, A. Kamimura,
K. Tomita, S. Kokaji, and S. Murata. Plan-
ning behaviors of a modular robot: an ap-
proach applying a randomized planner to co-
herent structure. In IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), volume 2, pages 2056-2061, 2004.

E. Yoshida, S. Murata, H. Kurokawa,
K. Tomita, and S. Kokaji. A distributed
reconfiguration method for 3D homogeneous

[286]

[287]

[288]

BIBLIOGRAPHY

structure. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS), volume 2, pages 852-859, 1998.

L. Zhang and D. Manocha. An efficient
retraction-based RRT planner. In IEEFE In-
ternational Conference on Robotics and Au-
tomation (ICRA), pages 3743-3750, 2008.

Q.-H. Zhang, X.-H. Liu, and X.-S. Ge. Non-
holonomic motion planning with PSO and
spline approximation. In IFEFE Interna-
tional Conference on Control and Automa-
tion, pages 2600-2604, 2007.

V. Zykov, P. Williams, N. Lassabe, and
H. Lipson. Molecubes extended: Diver-
sifying capabilities of open-source modular
robotics. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems
(IROS): Workshop: Self-reconfigurable robots,
systems and applications, 2008.



	Introduction
	Problem formulation
	Applications of motion planning
	Motivation & thesis goals
	Thesis outline
	Overview of thesis contributions

	Related work
	Basic path planning methods
	Randomized motion planning
	Probabilistic roadmaps (PRM)
	Narrow passage problem
	Workspace-based sampling
	Adaptive sampling

	Rapidly Exploring Random Trees
	Multiple trees
	Modifications of the expansion step
	Optimality of RRT-based planners

	Implementation details
	Conclusion

	Guided sampling of configuration space
	Problem analysis
	Goal-bias without obstacles
	Goal-bias in scenarios with obstacles
	Motivation for a novel guiding schema

	RRT–Path: guided sampling of configuration space
	Construction of a guiding path

	Practical recommendations
	Discussion

	Experimental verification of RRT–Path
	Experiment setup
	Motion models
	Algorithm setup
	Performance evaluation

	Performance of RRT–Path with various guiding paths
	Algorithms comparison
	Influence of adaptation rate 
	Discussion

	Guided sampling for 3D objects
	Problem analysis
	Motivation for iterative scaling approach

	RRT–IS: Rapidly Exploring Random Trees with Iterative Scaling
	Analysis of the iterative scaling

	Discussion

	Experimental verification of RRT–IS
	Algorithm setup
	Cube scenario
	Stick scenario
	3D BugTrap
	Hedgehog in the cage
	Discussion

	Motion planning for modular robots
	Overview of modular robotics
	Problem analysis
	Motivation for motion planning with motion primitives

	RRT–MP: RRT with Motion Primitives
	Analysis of motion planning with motion primitives

	Implementation details
	Simulated motion model
	Optimization of motion primitives

	Discussion

	Experimental verification of RRT–MP
	Simulated Experiments
	Optimization of motion primitives
	Algorithm setup
	Plane scenario
	Plane scenario with multiple start/goals
	Uneven terrain with multiple start/goals
	RRT–MP with guided sampling
	Step scenario

	Hardware verification
	Optimization on HW caterpillar robots
	Motion planning with Quadropod robots

	Discussion

	Conclusion
	Conclusion
	Future work

	Appendices
	Algorithms
	2D guiding paths
	Example of motion plans
	Comparison of RRT–Path with state-of-the-art methods
	Author's publications
	SCI Citations of author's work
	Bibliography

