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Preface

Transport and mobility play an essential role in the functioning of modern so-
ciety – being integral part of our daily lives, employing millions of people and
contributing significantly to the economy. Due to their characteristics – com-
prised of massive numbers of self-interested entities acting and interacting in
a shared, resource-constrained environment – transport systems are inherently
multiagent systems. Formalizing and solving transport and mobility problems us-
ing the multiagent systems framework is therefore fitting and useful, as confirmed
by the numerous successful applications of agent-based techniques in transport
over the last decade.

The natural fit between transport and multiagent systems was a strong mo-
tivation also for my own research on applying agent-based and, more generally,
artificial intelligence techniques to problems in transport and mobility. My re-
search, conducted together with my colleagues at the Czech Technical Univer-
sity in Prague and with external collaborators, concerns three specific topics:
(i) agent-based simulation modelling of transport and mobility, (ii) advanced
multimodal journey and route planning and (iii) agent-based resource allocation
for on-demand transport services. Although many of my results have wider ap-
plicability, most of them have been obtained in the domain of maritime transport
or, more recently, in the domain of integrated multimodal urban mobility.

My research contributions to the above topics, generated in the course of ap-
proximately five years, have been published in 26 peer-reviewed scientific papers,
selected nine of which are included in this thesis. The research I conducted with
my collaborators has also resulted in several advanced software systems, some of
which have been released as open source software.

The thesis starts with a brief introduction to multiagent systems in trans-
port and mobility, followed by a commented summary of my specific research
contributions to the field. The summary of my existing results to date is then
complemented with an outlook for future research. The rest of the thesis com-
prises the reprints of the nine selected scientific papers.
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Chapter 1

Introduction and Research
Summary

Transport and mobility play an essential role in the functioning of modern so-
ciety – being integral part of our daily lives, employing millions of people and
contributing significantly to the economy. In Europe1, the transport industry
directly employs more than 10 million people, accounting for 4.5% of total em-
ployment, and represents 4.6% of GDP. 13.2% of every household’s budget is
spent on average on transport goods and services. Logistics, such as transport
and storage, account for 10-15% of the cost of a finished product.

Not everything is perfect with our current transport systems, though. Trans-
port has a major negative environmental impact, contributing significantly to
greenhouse gas, noise and other pollutant emissions. Despite a steady decline,
transport-related accidents are still a major cause of premature death in Europe,
with 26,000 road fatalities in 2013 alone2. Finally, traffic congestion costs Europe
an estimated 100 billion Euro, i.e., the whole 1% of GDP.

There is therefore a strong motivation for further improving the efficiency,
safety and sustainability of transport systems. The application of information
and communication technology to transport – referred to nowadays broadly as
intelligent transport systems (ITS) [59] – has long been recognized as a promis-
ing way to reach these objectives. The potential of advanced computation and
information processing techniques for improving transport operations has been
further multiplied by recent technological advances, in particular the advent of
ubiquitous internet connectivity, cloud computing, pervasive sensor technology
and GPS-enabled smartphones. With large volumes of historic and real-time
data available, the transport field has become ready for the application of a wide
range of intelligent data analysis, control and planning techniques capable of
turning collected data into insight and effective action [40]. Increasingly, for the
reasons explained below, the application of intelligence computational techniques
to transport is taking place within the framework of multiagent systems.

1source: http://ec.europa.eu/transport/strategies/facts-and-figures/

transport-matters/index_en.htm
2source: http://ec.europa.eu/transport/road_safety/specialist/statistics/index_

en.htm
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Figure 1.1: High-level conceptual model of the multiagent system.

1.1 Transport and Multiagent Systems

With an acceptable level of simplification, the multiagent system [60] can be
defined as a system composed of multiple autonomous entities, termed agents,
situated and interacting within a shared environment. The environment repre-
sents the physical space surrounding the agents – agents can modify the state
of the environment by performing actions and the agents are informed about the
state of the environment and its changes through perception. We assume that the
agents are endowed with intelligence that allows them to select and execute such
actions that bring them closer to their goals. However, as the environment is one
and the agents are many, the actions of individual agents can mutually interact
and produce results that, for better or worse, would not be achieved by individual
agents alone. Based on the motivations of agents and the nature of interactions,
multiagent systems can be classified as cooperative (all agents act towards a sin-
gle shared team goal), competitive (agents pursue their individual self-interest) or
a combination of both. In addition to implicit interaction through the environ-
ment, agents can also interact directly, i.e., bypassing the environment, through
message-based communication. See Figure 1.1 for an illustration of a high-level
conceptual model of a multiagent system.

1.1.1 Properties of Transport Systems

In transport systems, many autonomous actors, such as passengers, drivers or
transport operators, pursue their transport-related objectives within the context
of a shared and capacity-constrained transport infrastructure and limited-size
vehicle fleets. The individual actors in the transport system interact with each
other as well as with the transport infrastructure (e.g., queuing at junctions), and
produce emergent, potentially complex global behaviour (e.g., traffic waves).

Transport systems exhibit many of the characteristics typical for multiagent
systems:

• Multiple self-interested actors – Transport systems involve multiple
and often very many actors with different, potentially conflicting goals.

• Frequent interactions – Actors in transport systems interact locally by
observing their surrounding physical space as well as at a distance using
communication technology (the latter is greatly facilitated by now ubiqui-
tous internet connectivity).
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• Limited-capacity resources – Both the transport infrastructure (e.g.,
road space, or parking places) and vehicle (e.g., taxis, or train seats) re-
sources have limited capacity. This can give rise to competition between
the actors in the transport system.

• Spatial distribution – Transport systems are geographically extended,
spanning areas from single neighbourhoods and cities up to entire countries
and continents. Because of the globalization, even very distant parts of
transport systems have become connected and can affect each other.

• High dynamism – With many of their actors in motion, transport systems
operate under constantly changing conditions.

• No single central authority – There is no single central authority which
would direct the behaviour of transport systems. Although a common reg-
ulatory framework is typically in place, it is not fully enforceable and the
self-interested behaviour within the bounds of the regulation is in any case
decided freely by the actors in the transport system.

• Autonomy – Automation and consequently autonomy have been increas-
ing at all levels of transport systems. Many of traffic and transport control
and management decisions are now made with minimum or zero direct hu-
man action. Autonomy is posed to continue growing strongly in the future.

Due to their structural and behavioural properties, transport systems there-
fore essentially are multiagent systems. The solutions of transport modelling,
control and optimization problems should therefore benefit from the application
multiagent system models and techniques.

1.1.2 Research on Agents in Traffic and Transport

The suitability of the multiagent systems framework for conceptualizing and solv-
ing mobility and transport-related problems has been reflected in the growing
number of publications on agents in traffic and transport. A systematic explo-
ration of agent-based techniques for intelligent transport systems started around
the turn of the millennia – the first review [46] of agent-based approaches to
transport problems was published in 2002, followed by [5] in 2005. So far the
latest review [15], published in 2010, provides a detailed analysis of almost 130
papers, which demonstrates the growing popularity of the agent-based computing
in intelligent transport systems.

So far, agent-based approaches in transport have been primarily applied in
the following areas:

• Traffic microsimulation modelling, including cognitive driver models,
lane following and lane changing models, or vehicle-to-vehicle and vehicle-
to-infrastructure system models.

• Vehicle dispatching, routing and scheduling, including dynamic pickup
and delivery problems in on-demand transport and logistics, taxi fleet man-
agement, or air traffic take-off/landing slot allocation.

• Collaborative driving and driving assistance, including dynamic route
guidance, truck platooning, or driverless cars.
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• Intelligent traffic management, including self-organising traffic light
control, anticipatory vehicle routing, proactive and cooperative junction
control, or bus priority handling.

Most of the applications of agent-based techniques can be found in road trans-
port; the second most addressed mode of transport is air transport. In contrast,
work on agent-based approaches to rail and in particular water transport is still
scarce. With key technological enablers now in place, the adoption of multiagent
systems solutions is likely to increase significantly for all transport modes in the
coming years.

1.2 Overview of My Research

Compared to the majority of the published research on agents in traffic and
transport, my work treats transport problems on a higher-level of abstraction.
Instead of detailed vehicular traffic modelled and/or controlled over short time
frames (seconds to minutes), my research concerns mobility of people and freight
over longer time periods (tens of minutes, hours or even days).

Overall, my research addresses three main topics:

1. Simulation and modelling where I explore agent-based simulation mod-
elling techniques for gaining insight and foresight regarding the operation
of complex transport systems (see Section 1.3 for more details).

2. Journey and route planning3 where I explore agent-based and other
artificial intelligence techniques for helping people and vehicles to travel ef-
ficiently in large-scale, possibly multimodal transport systems (Section 1.4).

3. Transport resource allocation where I explore novel agent-based ways of
coordinating the use of potentially scarce vehicle and infrastructure capacity
in transport systems (Section 1.5).

From the many transport application subdomains, my research focuses on
two areas. First (from around 2009 until 2012), I worked on problems concerning
maritime transport, in particular the security aspects of long-distance merchant
shipping (see [36] for a summary ). More recently (from around 2011 onwards),
I have shifted my focus and I have been conducting research on agent-based
techniques for integrated multimodal transport and mobility4, particularly in the
urban context.

Most of my research addresses new, previously scientifically little explored
yet practically significant problems, as opposed to perfecting solutions to already
well-established problems. This was the case of all my work on applying agent-
based techniques to fighting maritime piracy and is also the case of most of my
work on integrated multimodal urban mobility. Table 1.1 provides a list of all
my 26 research papers relevant to the topic of this habilitation thesis, categorized
based on the topic and the transport domain. Nine of the papers are included in
the thesis; the rest can be obtained on-line.

3I use the term journey planning when the result of the process is a sequence of logical
instructions for executing a trip, such as when planning for public transport trips; I use the
term route planning or simply routing when the result corresponds directly to a path in the
physical transport network, such as when planning for cars or bicycles.

4I use the term transport to stress the technical and physical aspects of moving people and
freight around. I use the term mobility when considering broader behavioural, sociological and
economic aspects of travel.
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 Exploring Pareto Routes in Multi-
Criteria Urban Bicycle Routing (2014) 
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 Transiting Areas Patrolled by a Mobile 
Adversary (2010) [50] 
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 Computing Time-Dependent Policies for 
Patrolling Games with Mobile Targets 
(2011) [10] 

 Extending Security Games to 
Defenders with Constrained Mobility 
(2012) [49] 

R
E

S
O

U
R

C
E

 
A

L
L

O
C

A
T

IO
N

 

 A Profit-Aware Negotiation 
Mechanism for On-Demand 
Transport Services (2014) [24] 
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Table 1.1: Overview of my publications related to the topic of the habilitation
thesis. Publications included in the thesis are marked in bold. See full references
in the Bibliography section at the end of the thesis.
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1.3 Topic 1: Agent-based Simulation Modelling
of Transport and Mobility

The already high complexity of transport systems continues to rise. New types of
transport services are introduced, increasing the number of entities in transport
systems and the number of combinations in which they work together. Ubiq-
uitous connectivity and advancing automation dramatically increase the speed,
frequency and reach of human-vehicle-infrastructure interactions in transport sys-
tems, further contributing to their rising complexity. Such developments bring
the dynamics of transport systems closer to that of large-scale complex adaptive
systems [43] and, consequently, make their operation difficult to understand and
foresee.

Simulation modelling is an established approach for studying complex socio-
technical systems; it is therefore also applicable for analysing the behaviour of
transport systems. Unfortunately, existing popular transport modelling toolkits
do not provide sufficient support for modelling some of those aspects of transport
systems that contribute strongly to their complexity. This is because the tradi-
tional transport modelling approaches rely on equation-based or discrete-event
simulation modelling – while powerful, these approaches are not well suited to
model systems with autonomous, adaptive agents with goal-oriented behaviour
and context-dependent interactions. Specifically, the traditional approaches lack
the support for modelling anytime, ad hoc interactions between the actors of the
transport system and the just-in-time decision making required for participating
in such interactions. Capturing both well is essential for accurately modelling the
behaviour of present and, in particular, future autonomous transport systems.

Over the past 20 years, agent-based simulation modelling has emerged as a
powerful new paradigm for system modelling. Agent-based simulation modelling
(ABSM)[9] is a bottom-up modelling approach that models the behaviour of the
target system at the level of its constituent individual actors. In contrast to
top-down modelling approaches, the global, system behaviour is not modelled ex-
plicitly in agent-based models but emerges from the behaviour and interaction of
individual actors. Because of this, agent-based simulation modelling is well suited
for modelling systems involving goal-oriented, adaptive, and frequently interact-
ing actors. Hence, given our analysis in Section 1.1.1, agent-based simulation
models are a well-suited tool for modelling and studying complex, interaction-rich
transport systems. Because of the relative novelty of the agent-based simulation
approach, its genuine5 applications in the transport domain are, however, still
relatively scarce and limited to specific subproblems, in particular road and air
traffic microsimulation.

Below, I summarize my research contributions to agent-based simulation mod-
elling in both the maritime traffic and the multimodal urban transport domain.

1.3.1 Agent-based Modelling of Piracy-affected Maritime
Traffic

The use of simulation models to support policy design and operational manage-
ment has a long tradition in the transport field. The vast majority of the work,

5Although some transport models promote themselves as agent-based, they only employ the
agent concept on a superficial level. In particular, they leave out of consideration the critical
properties of agent autonomy and reactivity, both of which are important for capturing adaptive
and emergent system properties.
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Figure 1.2: AgentC-based simulation of maritime shipping traffic and pirate
activity in the Gulf of Aden. See Appendix A for more information.

however, focuses on ground transport [8].
In the maritime domain, applications of simulation models are surprisingly

scarce. This was in particular true in the case of decision support for fighting
maritime piracy, which posed, and to a great extent still poses, a major secu-
rity threat for the global shipping industry. At the time when this research was
conducted (i.e., years 2010-2012 when the piracy problem peaked), existing sim-
ulation modelling work in the maritime domain either focused on traffic in ports
and national, coastal waters [26] or used high-level equation-based models [11]
unfit for capturing individual-level behaviour and inter-vessel interactions essen-
tial for modelling maritime piracy. Furthermore, none of then existing models
was concerned with the security of maritime shipping lanes6.

This is why, together mainly with my Ph.D. student Ondřej Vaněk and in
close collaboration with the U.S. Office of Naval Research, I developed agent-based
techniques and software tools (known as the AgentC platform, see Figure 1.2 for
an illustrative screenshot) for modelling maritime traffic in piracy-affected waters.
The AgentC model represents the movement and other activities of merchant,
navy and pirate vessels in piracy-affected waters of Indian Ocean. Modelling the
behaviour and interactions of thousands of individually simulated vessels, the
model is capable of capturing the complex dynamics of the maritime transport
system threatened by maritime piracy and, consequently, allows assessing the
effect of a range of piracy countermeasures.

The development of the simulation model required collecting, analysing and
integrating a variety of data sets, conducting interviews with domain experts,
developing new techniques and technologies for simulating the behaviour of indi-
vidual vessels (including e.g., global voyage route planner) and their interactions.

6Recently, new work, citing our research, was published that specifically deals with (agent-
based) modelling or piracy (e.g., [55, 20]).

15



It also required the development of a novel methodology for data-driven calibra-
tion and validation of agent-based simulation models. At the time of its release in
2012, AgentC was the first simulation model (of any kind) of maritime traffic in
piracy-affected waters and, in fact, the first application of agent-based simulation
to global maritime shipping modelling.

The results of our work have been published in a series of papers [35, 51, 54,
52], the last and most comprehensive of which

Ondřej Vaněk, Michal Jakob, Ondřej Hrstka and Michal Pěchouček:
Agent-based Model of Maritime Traffic. In Piracy-affected Waters.
Transportation Research Part C: Emerging Technologies. 2013, vol.
36, p. 157–176. ISSN 0968-090X. (my contribution: 30%)

is included in the thesis in Appendix A.
Because of its timeliness and originality, our work of maritime piracy simula-

tion attracted strong interest of several leading institutions actively involved in
fighting maritime piracy, in particular the United Nations International Maritime
Organization (London, UK), U.S. Navy Research Lab (Monterrey, CA, USA),
NATO Undersea Research Centre (La Spezia, Italy), Naval Postgraduate School
(Monterrey, CA, USA) and Space and Naval Warfare Systems Center Pacific
(San Diego, CA, USA). The developed AgentC simulation platform has been
transferred to the U.S. Navy Research Lab for further development and potential
operational use.

1.3.2 Fully Agent-based Modelling of Transport Systems

As already argued, due to the strongly multiagent nature of transport systems,
agent-based simulation modelling is a particularly suitable and effective approach
for modelling transport and mobility. The agent-based approach has been partic-
ularly widely adopted in microscopic traffic simulations [22] which model, with
a very high-level of detail, the behaviour of individual vehicles and their inter-
actions with other vehicles and the road infrastructure. At present, a variety
of mature commercial as well as open-source simulation software tools exist for
traffic microsimulation.

The agent-based approach has also been applied for modelling transport and
mobility on a higher-level of abstraction. Demand-responsive transport systems
[27], taxis [16], ride-sharing [21] and vehicle-sharing [3] services have all been
simulated using agent-based approaches. In contrast to microsimulation models,
however, there are no readily available agent-based modelling tools that allow
expressing complex interactions of vehicles, drivers, passengers and dispatchers
typical for such transport and mobility services. This is also the case for the
otherwise relevant MATSim simulation framework [2] – although MATSim uses
individual-level modelling, it treats individuals as passive data structures whose
state can only be updated synchronously by central modules at infrequent, pre-
defined points in time. Such a centralized approach introduces a significant mod-
elling gap – in reality, agents in transport systems make just-in-time decisions
asynchronously at different occasions throughout a day, often in reaction to ex-
ternal observations or communication – and consequently makes it difficult to
model transport systems which rely on frequent interactions.

Because of the lack of suitable toolkits, almost all of higher-level agent-based
transport simulation models have therefore been developed from scratch using
general-purpose programming languages (most often C++ or Java). In the case
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of few exceptions where general purpose toolkits were employed (e.g., [18, 41]),
model developers faced considerable difficulties expressing and implementing re-
quired model behaviour using their chosen toolkit; this resulted in long develop-
ment times and/or reduced fidelity of implemented models.

This is why, building on the experience from maritime traffic simulation, I
set out, together with my colleague Zbyněk Moler, to develop a flexible toolkit
for fully agent-based simulation modelling of multimodal transport systems. The
result of the work is the AgentPolis simulation platform, designed from its in-
ception to support the modelling of interaction-rich multimodal ground transport
systems. The work on the AgentPolis platform was described in two publica-
tions [33, 32], the latter of which

Michal Jakob and Zbyněk Moler: Modular Framework for Simulation
Modelling of Interaction-Rich Transport Systems. In Proceedings of
the 16th IEEE Intelligent Transportation Systems Conference (ITSC),
p. 2152–2159, 2013. (my contribution: 60%)

is included in the thesis in Appendix B.

As one of its main applications, we have utilized the AgentPolis platform
for implementing an agent-based model of multimodal mobility. Adopting the
activity-centric mobility modelling approach, our model aims to simulate travel
in a large-scale multimodal transport system. Initially developed for the South
Moravian region, the model is going to be later extended to cover the whole area
of the Czech Republic.

Furthermore, recognizing the rising importance of on-demand transport ser-
vices, I, together with my colleague Michal Čertický and a former Ph.D. student
Radek Ṕıbil, used the AgentPolis platform as a basis for the flexible mobil-
ity services simulation testbed. The testbed allows researchers and practitioners
to easily evaluate and compare the performance of different vehicle routing and
allocation mechanisms under various scenarios. The testbed was described in
a series of publications [57, 58, 56]. Importantly, the flexible mobility services
testbed has been released as an open source software and is freely available at
https://github.com/agents4its/mobilitytestbed.

1.3.3 Mixed-Reality Testbeds for Autonomous Systems

Despite the valuable role computational simulation plays in foreseeing the op-
eration of transport systems, in certain cases simulation alone may not provide
enough accuracy and, consequently, confidence for critical decisions to be made.
In such cases, evaluation on models that more closely corresponds to the real-
world system under consideration is needed.

That is why, in a parallel but related research stream to my transport simu-
lation modelling work, I explored the concept of mixed-reality testbeds. In mixed-
reality testbeds, computational simulation is complemented with the use of real
physical assets in order to construct models that better approximate the operation
of the target system. In order to match the scale of the real-world systems, mixed-
reality testbeds use a low number of physical assets and complement them with a
high number of computationally simulated assets. This way realistic issues, such
as those arising from imperfect sensors, physical dynamics or real-world commu-
nication channels, can be identified and explored, without costly and potentially
risky full-scale tests with the target physical system.

17

https://github.com/agents4its/mobilitytestbed


Our main contribution in the area of mixed-reality testbeds was a proposal of a
methodology for incremental multi-level mixed-reality development. The method-
ology allows using mixed-reality testbeds of various sizes and virtualization levels
in a way that maximizes the effectiveness of autonomous system development and
evaluation, in the transport domain and beyond.

The results of this research have been published in [34]

Michal Jakob, Michal Pěchouček, Michal Čáp, Peter Novák, and Ondřej
Vaněk: Mixed-Reality Testbeds for Incremental Development of HART
Applications. In IEEE Intelligent Systems. 2012, vol. 27, p. 1541–
1672. (my contribution: 35%)

which is included in the thesis in Appendix C.

1.4 Topic 2: Advanced Multimodal Journey and
Route Planning

The growing complexity of transport systems and the accent on their optimum
utilization, drives the development of advanced tools that help people make right
travel decisions.

Although journey and route planning have been traditionally studied by graph
algorithm researchers in the computer science community, the artificial intelli-
gence and multiagent systems perspective has been gaining importance. The need
to employ agent-oriented approaches arises when planning journeys with the con-
sideration of other actors, both in cooperative settings (such as in ridesharing)
and in non-cooperative settings. Journey and route planning problems involving
multiple actors are best framed as multiagent problems and solved using tech-
niques from multiagent planning and computational game theory. The strong
drive towards personalized journey planning, in which journey recommendations
are tailored to the specific needs of each individual traveller, is another impulse
for more agent-oriented approaches. This is because personalized journey plan-
ning requires agent-oriented modelling techniques capable of representing user’s
constraints and preferences effectively.

My research contributions to the field of journey planning and routing concerns
all of the above aspects.

1.4.1 Real-time Fully Multimodal Journey Planning

My first contribution concerns fully advanced multimodal journey planning in
the urban context. The advent of new types of mobility services, such as bike,
electric scooter or car sharing, real-time carpooling or next-generation taxi, has
further expanded the already rich portfolio of means of travel available in modern
cities. Providing intelligent tools that would help citizens make the best use of
the mobility services on offer is thus needed more than ever. Despite recent algo-
rithmic advances [4], existing journey planners address this need only partially.
In particular, they only consider a limited subset of transport modes and their
combinations and do not have full support for working with real-time information.

This is why, together with my Ph.D. student Jan Hrnč́ı̌r, I have conducted
research on fully multimodal journey planning that supports the full spectrum
of available mobility services and their combinations. In our approach, a journey
can consist of any combination of scheduled public transport modes (e.g., bus,

18



Figure 1.3: A visualization of the generalised time-dependent graph representing
the multimodal transport network of Milan, Italy. See Appendix D for more
information.

tram and underground), individual modes (e.g., walk, bike, shared bike and car),
and on-demand (e.g., taxi) modes. We have adopted a representation-centric ap-
proach to solving the fully multimodal journey planning problem. Instead of pro-
viding purpose-specific journey planning algorithms, we have introduced gener-
alised time-dependent (GTD) graphs that allow representing the fully multimodal
journey planning problem as a standard graph search problem and consequently
allow using general shortest path algorithms to solve it (see Figure 1.3 for an
example instance of the GTD graph). Importantly, this approach allowed us to
reuse the GTD representation and associated tools for a wide range of additional
applications.

In a subsequent development, we have further extended our GTD representa-
tion to support time-varying historic and real-time information about conditions
in the transport system (i.e., actual traffic flow speeds, delays and disruptions
in the public transport network, or the availability of bicycles in bike-sharing
stations).

The results of our research have been integrated in the core journey planning
component of the Superhub platform for sustainable multimodal urban travel,
developed under the SUstainable and PERsuasive Human Users moBility in fu-
ture cities (Superhub) project [13]. Through the Superhub project field trials,
our journey planning algorithms were successfully tested by several thousand
users in four big European cities (Barcelona, Milan, Helsinki and Brno).

The results of our work on fully multimodal journey planning have been pub-
lished in [31, 29], the latter of which

Jan Hrnč́ı̌r and Michal Jakob: Generalised Time-Dependent Graphs
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for Fully Multimodal Journey Planning. In Proceedings of IEEE In-
telligent Transportation Systems Conference (ITSC). 2013, p. 2138–
2145. (my contribution: 30%)

is included in this thesis in Appendix D. An article describing the extension
of the GTD representation towards efficiently handling real-time information is
currently in preparation.

The GTD representation and selected journey planning algorithms have also
been leveraged in our research on analysing accessibility in multimodal transport
systems, early results of which were briefly described in [44]. Importantly, our
research on transport accessibility analysis has been integrated into a working
prototype of an online transport network analyser, which is available, at the time
of writing, at http://transportanalyser.com. Since its launch in September
of 2013, the online transport analyser has been used by several thousand users.

1.4.2 Bicycle Routing with Realistic Route Choice Prefer-
ences

In contrast to car and public transport journey planning, for which advanced
algorithms and mature software implementations exist [4], bicycle route planning
is a surprisingly underexplored topic. Although numerous bicycle route planning
applications have recently emerged (e.g., Cyclestreets7 or BBBike8), these appli-
cations follow ad-hoc approaches and provide very little information about their
internal models and search algorithms.

Interestingly and importantly, compared to car drivers, cyclists consider a
significantly broader range of factors while deciding their routes. By employ-
ing questionnaires and GPS tracking, researchers have found that besides travel
time and distance, cyclists are sensitive to slope, turn frequency, junction control,
noise, pollution, scenery, and traffic volumes [12]. Moreover, the relative impor-
tance of these factors varies among cyclists and can also be affected by weather
conditions and the purpose of the trip [12]. Such a user- and context-dependent
multi-criteriality makes bicycle routing a particularly difficult category of routing
problems.

This is why together primarily with my postdoc Qing Song and master student
Pavol Žilecký, I have conducted research on bicycle routing that takes realistic
route choice preferences into account.

Our first contribution to bicycle routing has been a proper formalization of
the multi-criteria bicycle routing problem. Although relatively straightforward,
such a formalization had not been previously available. The flexible, hierarchical
model we have developed relies on sets of features, criteria and costs to capture
the rich semantic information contained in the underlying bicycle network and
map data in a form amenable to multi-criteria shortest path search.

Our second contribution to bicycle routing focused more on the algorithmic
part of the problem. We applied the multiple label correcting algorithm [42] for
finding a full set of Pareto routes in a multi-criteria bicycle routing problem. To
reduce the potentially very large number of Pareto solutions, we have introduced
a route selection algorithm, based on hierarchical clustering, for extracting a small
representative subset of Pareto routes.

7http://www.cyclestreets.net/
8http://www.bbbike.org/
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Figure 1.4: The results of multi-criteria bicycle route search in the urban environ-
ment of Prague (503 Pareto routes shown - the thicker the edge, the more Pareto
routes follows the edge). See Appendix E for more information.

The results of our research have been published in two papers [30, 47], the
latter of which

Qing Song, Pavol Žilecký, Michal Jakob and Jan Hrnč́ı̌r. Exploring
Pareto Routes in Multi-Criteria Urban Bicycle Routing. In Proceed-
ings of IEEE Intelligent Transportation Systems Conference (ITSC).
2014. (my contribution: 25%)

is included in the thesis in Appendix E. A follow-up journal paper studying the
effect of speed-up heuristics for accelerating the generally very time-consuming
optimal multi-criteria search is under submission.

The results of our research on bicycle routing have also been integrated in
a working bicycle route planner that is available, at the time of writing, to the
public at http://cykloplanovac.cz.

1.4.3 Planning Shared Journeys on Timetabled Transport
Services

One way to tackle traffic congestion is through ridesharing, i.e., purposeful and
explicit planning to create groups of people travelling together in a single vehicle
for parts of the journey. Participants in such schemes can benefit from ridesharing
in several ways: sharing parts of a journey may reduce cost (e.g., through group
tickets), carbon footprint (e.g., when sharing a private car), and travellers can
enjoy the company of others on a long journey.

Ridesharing is a known and studied problem – existing work (e.g., [7]), how-
ever, focuses exclusively on ridesharing using vehicles that can move freely on a
road transport network, without schedule or route restrictions. Planning shared
rides on timetabled public transport network has not been previously addressed.

To address this gap, I contributed, together with my Ph.D. student Jan Hrnč́ı̌r
and his former M.Sc. supervisor Michael Rovatsos, to the development of a novel
agent-based approach. The approach employs the recently introduced domain-
independent best-response multiagent planning [39] and specializes it for the spe-
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cific purpose of planning shared journeys on timetabled transport services. The
key benefit of the approach is its scalability to real-world public transport net-
works.

The results of the research have been published in [28]

Jan Hrnč́ı̌r, Michael Rovatsos and Michal Jakob: Ridesharing on
Timetabled Transport Services: A Multiagent Planning Approach.
Special issue of Journal of Intelligent Transportation Systems: Tech-
nology, Planning, and Operations. 2014. (my contribution: 20%)

which is included in the thesis as Appendix F.

1.4.4 Route Planning in Adversarial Scenarios

Route planning in adversarial settings presents a very challenging variant of route
planning problems. Assuming the ability of agents to reason about the actions
and strategies of the opponent, such route planning problems are best studied
within the context of non-cooperative game theory and in particular security
games [48].

There are two main variants of the problem. In the first variant, the agent
needs to find a route crossing a controlled area such that the agent avoids (or
maximizes the probability of avoiding) being detected and/or intercepted by the
adversary. In the other variant of the problem, the agent needs to find a patrolling
route around a sensitive asset such that the chance of an adversary successfully
attacking the asset is eliminated or at least minimized.

Traditional models, such as those put forward by the ambush games and search
games frameworks [45, 25], only consider one side of the problem setting to be
mobile. In the research conducted together primarily with Ph.D. students Ondřej
Vaněk and Branislav Bošanský, we have extended existing models and algorithms
towards situations where both agents are mobile.

The first stream of work concerned the development of a routing strategy for
a patrolling agent protecting a group of mobile vulnerable assets. Motivated by
the work on navy escorts protecting groups of vessels transiting pirate waters, the
solution required an extension of models and algorithms for patrolling games [1]
towards situations where the protected assets are mobile. The results of this line
of research have been published in [10].

The second stream of work addressed the problem of optimum route find-
ing for an agent crossing an area roamed by a mobile adversary with a fixed
base and limited endurance. Motivated by the problem of merchant ship routing
through piracy waters, the solution of the problem required the development of
novel single- and double-oracle methods for the efficient computation of optimal
randomized routing strategies. The results of this work have been published in a
series of papers [50, 53, 49], the last of which

Ondřej Vaněk, Branislav Bošanský, Michal Jakob, Viliam Lisý and
Michal Pěchouček: Extending Security Games to Defenders with Con-
strained Mobility. In Proceedings of AAAI Spring Symposium on
Game Theory for Security, Sustainability, and Health. 2012. (my
contribution: 10%)

is included in the thesis in Appendix G.
Overall, the work on route planning in adversarial domains has revealed the

combinatorial challenges of route planning with strategic, game-theoretic models.
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While in the standard journey planning setting, transport networks comprising
millions nodes and edges can be efficiently searched, even significantly smaller
problems (thousands of nodes) can become hard to solve when considered in the
adversarial, game-theoretic setting.

1.5 Topic 3: Agent-based Resource Allocation
for On-Demand Transport Services

The availability of near-ubiquitous internet connectivity and the widespread adop-
tion of GPS-equipped smartphones have enabled new types of mobility services –
such as real-time ridesharing, free-floating bike, scooter and car sharing or peer-
to-peer parking. The common property of such services is that they support and
often require pre-arrangement and/or booking by the user. Given the limited ca-
pacity of such services, a key problem, particularly in the periods of high demand,
is how to allocate the available service capacity to users.

In general, the problem of resource allocation has been widely studied by
the multiagent research community [17]. Various models for different types of
allocated goods, languages for representing agent preferences, measures of social
welfare as well as protocols and strategies for allocation procedures have been
explored.

In the road transport domain, however, the problem of resource allocation has
mostly been studied under the assumption of full cooperation. This is certainly
the case with the vast majority of work on vehicle allocation and routing in
pickup and delivery problems [6], which consider the vehicles as fully controlled
by a single dispatcher. The cooperative setting is an adequate model for transport
operations run by a single company. It is, however, ill-suited for the emerging
open transport service marketplaces which continuously match large numbers of
self-interested transport providers with customers seeking transport services.

That is why, together with my postdoc Malcolm Egan, I started investigating
the problem of vehicle allocation in competitive formulations of vehicle allocation
and routing problems. Our overall approach is to leverage general marketplace-
based allocation techniques (in particular auctions [60, Chap. 7]) and to adapt
and specialize them for specific problems in transport resource allocation.

In our first contribution, we explicitly considered profit maximization (as op-
posed to traditionally considered cost minimization) in the dial-a-ride [19] cate-
gory of pickup and delivery problems [6]. We have proposed a novel profit-aware
negotiation mechanism that accounts for both passenger and service provider
preferences. The negotiation mechanism prices each passengers journey, in ad-
dition to providing vehicle routing and scheduling. We have proved a stability
property of our negotiation mechanism using a connection to hedonic games. We
have also showed via simulations the dependence of the service provider profit and
passenger prices on the number of passengers as well as passenger demographics.
Our key observation was that increasing the number of passengers has the effect
of increasing passenger diversity, which in turn increases the service providers
profit.

The results of this research have been published in [24]

Malcolm Egan and Michal Jakob. A Profit-Aware Negotiation Mech-
anism for On-Demand Transport Services. In Proceedings of the Euro-
pean Conference on Artificial Intelligence (ECAI), p. 273–278. 2014.

23



(my contribution: 40%)

which is included in the thesis in Appendix H.
Because of the recency of the topic, the above is our only publication on

competitive transport resource allocation published at the time of submitting the
thesis. Because of the importance of the topic for my future research and in order
to provide a more comprehensive exposition of the topic, I also include a journal
manuscript [23]

Malcolm Egan and Michal Jakob. Market Mechanism Design for Prof-
itable On-Demand Transport Services. Submitted to Transportation
Research Part B: Methodological. 2014. (my contribution: 25%)

which has been submitted and is currently under review. The manuscript general-
izes some of the assumptions of the earlier paper [24] and reframes the problem in
a way better aligned with the standard research on multiagent resource allocation.
The manuscript is included in the thesis in Appendix I.
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Chapter 2

Outlook and Future Work

There has never been a better time for research on multiagent systems for trans-
port and mobility. With the continuation of current trends, the multiagent prop-
erties of transport systems identified in Section 1.1.1 are going to become even
more pronounced in the future. In particular, as automation progresses, transport
systems will gradually morph into massive multiagent systems in which millions
(and later billions) of people, (semi-)autonomous vehicles and transport infras-
tructure elements continuously interact to deliver smooth mobility services. For
engineering and managing such future transport systems, multiagent systems
models and techniques will thus be essential.

In this section, I outline several directions in which I personally would like to
contribute to the future development of agent-based techniques in transport and
mobility.

2.1 Common Future Themes

There are several themes which are common to my future research in all of the
three main research directions I pursue (i.e., simulation, journey and route plan-
ning, and agent-based resource allocation).

Perhaps the most important theme is the significantly increased utilization
of large real-world data sets and data analysis techniques in transport systems
modelling, management and optimization. As transport and mobility embrace the
big data era, there is a strong growth in the size and variety of available transport
data. Fully utilizing the potential of such data will be key to further improve the
quality of models and efficiency of algorithms for intelligent transport systems. I
will give more specific examples below when talking about the individual research
directions.

The other important theme concerns research methodology. Given their size,
complexity and variety, statistically relevant insights into the operation of trans-
port systems require conducting very high numbers of computational experiments.
The research process in intelligent transport systems thus, in addition to becom-
ing more data-driven, needs to be scaled up to take the full advantage of high-
performance computing resources available. This will require the development of
design of experiments techniques that optimize the configuration of experiments
so as to maximize information gain from each experiment and, consequently, to
minimize the number of experiments needed to reliably answer research questions
of interest. I aim to further develop our initial work in this strategic direction as
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it is instrumental to increasing our empirical research capacity across a range of
topics.

2.2 Future Research in Transport and Mobility
Simulation

There are several specific directions in which I, together with my colleagues, aim
to advance research on transport and mobility simulation.

In line with the big data trends mentioned, we aim to incorporate large data
sets on human movement extracted from cellular telecommunication networks in
our multimodal mobility simulation models. To this end, we aim to develop new
machine-learning-based techniques for automatically extracting, calibrating and
validating activity-centric mobility models from real-world trip and activity data.

We also aim to scale up the number and size of transport simulation ex-
periments performed and to take advantage of newly available supercomputing
facilities. To this end, we will upgrade our simulation management and design of
experiment tools to support parallelized execution and automated processing of
thousands of simulations involving up to millions of agents on distributed com-
puting infrastructures.

Such an upgrade should allow us to successfully complete the development
the agent-based multimodal mobility model of the whole Czech Republic, which
requires simulating over 10 million agents. It will also allow us to scale up
simulation-based empirical study of agent-based vehicle allocation and routing
techniques for on-demand mobility. By conducting large-scale computational ex-
periments, we aim to gain deeper insights into how the topology of the transport
network, the spatio-temporal distribution of travel demand and the size and struc-
ture of the vehicle fleet affect the performance of on-demand mobility services.

2.3 Future Research in Journey and Route Plan-
ning

As far as journey planning and routing is concerned, I aim to continue our research
both on fully multimodal journey planning and multi-criteria bicycle routing.

One of the recent practically motivated yet scientifically challenging problems
in multimodal journey planning is planner integration. In planner integration,
multiple existing journey planners, each with limited geographical and/or trans-
port mode coverage, are combined in order to provide a fully multimodal journey
planning service across the whole region of interest. To address this problem, we
have already successfully tested a novel meta-planning approach to planner in-
tegration, which utilizes an abstracted meta-level representation of the planning
problem to guide the journey plan search. To make the approach practically ap-
plicable, we aim to tackle several challenging issues, in particular the choice of a
suitable meta-level representation of the multimodal transport network, the con-
struction of the meta-level transport network representation from minimum map
and service data, and efficient meta-level search algorithms and control strategies.

We will also continue our promising research on bicycle routing in challenging
urban conditions. First, we aim to improve speed-up techniques in order to bring
multi-criteria search times for realistic trip distances to under one second. Next,
we aim to extend the underlying cycle network graph representation to more
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accurately capture real-world features considered by cyclists in their route choice.
Related to this, we aim to develop methods that would improve bicycle routing by
learning more accurate models of cyclists’ behaviour from real-world GPS tracks
data. Finally, we plan to continue collaborating with human-machine interface
researchers on user-friendly ways for exposing bicycle routing functionality to
users on mobile and wearable devices.

2.4 Future Research in Agent-based Transport
Resource Allocation

Market-based resource allocation is currently perhaps the most promising area for
the application of multiagent systems in transport and mobility. In this direction,
we aim to extend our initial work on profit-maximizing negotiation protocols for
on-demand transport services. Our immediate objective will be to better align
our model with the general multiagent resource allocation framework and, in
particular mechanism design and auction theory, in order to be able to exploit
relevant formal models and theoretical results. This should bring us closer to our
long-term research objective, which is to understand the fundamental trade-offs
between the efficiency, fairness and profitability in on-demand transport services
markets.

In a parallel quest for model fidelity and real-world relevance, we aim to uti-
lize newly acquired data sets about real-world operation of on-demand transport
services. By employing intelligent data analysis, we aim to build more accurate
models of passenger and driver behaviour, and to use such models to optimize
the passenger-vehicle matchmaking process, which is central to transport services
marketplaces.

Once we have better understood the behaviour of on-demand transport ser-
vices markets in the single-passenger setting, we aim to extend our approach to-
wards shared rides. In contrast to existing work, we aim to ground our approach
to ridesharing in coalitional game theory – this should allow deriving principled
solutions that are also individually rational from the passenger’s perspective and
which should thus improve the stability and long-term viability of ridesharing
systems.

2.5 Further Research Opportunities

The future opportunities are not limited to the three main research directions I
have been already pursuing.

Valuable results can be in fact obtained by leveraging the synergies between
the individual research lines. For example, we can use our agent-based simulation
framework to explore the behaviour of transport services marketplaces in a wide
range of conditions. Because of the complexity of the problem, only very limited
results can be obtained formally and computational studies are essential for un-
derstanding how different design choices affect the performance of market-based
resource allocation.

Another opportunity lies in the combination of multimodal journey planning
with transport resources allocation. In fact, the ability to have tickets and reser-
vations required for a trip automatically arranged is crucial for the concept of
seamless door-to-door mobility. We have already made initial steps in this direc-
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tions by introducing the concept of journey plan resourcing. A principled solution
of the problem, however, will require an in-depth exploration of how planning and
resource allocation should be mutually combined to provide reliable journey plans
in capacity-limited environment.

There are also exciting opportunities immediately outside of the area of my re-
search to date. Many of our results on simulation, journey planning and resource
allocation for passenger mobility transfer well to freight logistics. Of particular in-
terest is the problem of same-day (or even same-hour) delivery in urban areas with
its substantial challenges of allocating and routing vehicles in a highly-dynamic
environment.

The fast maturing concept of connected vehicles [14] (and the broader develop-
ment of the internet of things) opens up a whole new area for the application and
further development of our results. By providing standard interfaces to vehicle-
to-vehicle and vehicle-to-infrastructure interaction, connected vehicle platforms
will enable integrating our vehicle routing and allocation techniques with the car
localization and navigation subsystems, and consequently pave the way towards
fully autonomous multiagent transport systems.

Ultimately, many of the future research topics outlined above are likely to
become the part of the newly emerging discipline of computational transporta-
tion science [61]. Promoted as the science behind intelligent transport systems,
computational transportation science aims to combine computer science and engi-
neering with the modelling, planning, and economic aspects of transport planning
and engineering to create more efficient, equitable, liveable and sustainable trans-
port systems and communities.

2.6 Final Remark

Over the past years, I and my collaborators have acquired a firm grounding in the
problems and solution techniques at the cross-section of multiagent systems, arti-
ficial intelligence and transport research. We have acquired a solid understanding
of relevant formal models and algorithms, developed a modular stack of reusable
software components, assembled a broad range of crucial real-world transport
data sets and built strong links with a number of key academic and industrial
players in the field. In the future, we aim to capitalize on these achievements and
continue contributing strongly to the theory and practise of intelligent transport
systems and computational transportation science.
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Appendix A

Agent-based Model of
Maritime Traffic in
Piracy-affected Waters

O. Vaněk, M. Jakob, O. Hrstka, and M. Pěchouček. Agent-based model of mar-
itime traffic in piracy-affected waters. Transportation Research Part C: Emerging
Technologies, 36:157–176, 2013.
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a b s t r a c t

Contemporary maritime piracy presents a significant threat to global shipping industry,
with annual costs estimated at up to US$7bn. To counter the threat, policymakers, shipping
operators and navy commanders need new data-driven decision-support tools that will
allow them to plan and execute counter-piracy operations most effectively. So far, the pro-
vision of such tools has been limited. In cooperation with maritime domain stakeholders,
we have therefore developed AGENTC, a data-driven agent-based simulation model of mar-
itime traffic that explicitly models pirate activity and piracy countermeasures. Modeling
the behavior and interactions of thousands of individually simulated vessels, the model
is capable of capturing the complex dynamics of the maritime transportation system threa-
tened by maritime piracy and allows assessing the potential of a range of piracy counter-
measures. We demonstrate the what-if analysis capabilities of the model on a real-world
case study of designing a new transit corridor system in the Indian Ocean. The simulation
results reveal that the positive past experience with the transit corridor in the narrow Gulf
of Aden does not directly translate to the vast and open waters of the Indian Ocean and that
additional factors have to be considered when designing corridor systems. The agent-based
simulation development and calibration process used for building the presented model is
general and can be used for developing simulation models of other maritime transporta-
tion phenomena.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Global maritime shipping lanes are a critical part of the world’s transportation infrastructure. 90% of internationally
traded goods are transported by sea at least one point in their journey (Earnest and Yetiv, 2009). In the past years, the global
maritime transportation system has come under a serious threat from maritime piracy. As a major security and economic
threat costing the global economy up to estimated US$7bn (Bowden et al., 2011), contemporary maritime piracy has solicited
a concerted international response which has, finally, led to the reduction of the success rate of pirate attacks. The number of
pirate attacks, average amount of ransom paid and the number of seafarers held in captivity, however, remain high. In 2011
and for Somali-based piracy alone, there were 181 attacks reported for Somalia, 28 vessels hijacked and 1118 seafarers were
taken hostage.1 Containing piracy also required and continues to require extensive deployment of naval forces which is unsus-
tainable in a long term.

From the many levels on which solutions of the problem are sought, we focus on the operational management of the sit-
uation at sea, as this is the arena where progress can be made in the short term, before long-term sustainable solutions can

0968-090X/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.trc.2013.08.009
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1 Source: International Maritime Bureau (IMB) Piracy Reporting Centre (website: http://www.icc-ccs.org/piracy-reporting-centre).
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be developed onshore. To date, military, governmental and industry stakeholders have proposed several types of piracy
countermeasures to increase the security of maritime transit, including recommended transit corridors, group transit,
escorted convoy schemes, coordinated patrol deployments and on-board security teams. When properly designed and
implemented, such measures can significantly improve maritime transportation security with reasonable additional cost.
However, due to complex spatial and temporal dependencies between individual countermeasures and external factors, dis-
covering effective, synergistic combinations of piracy countermeasures presents a major challenge.

To address this challenge, we have built AGENTC, a data-driven agent-based simulation model of maritime activity in pi-
racy-affected waters. The model aims at helping decision makers reduce uncertainty about the effects of their operational
control and regulatory interventions. The model incorporates a wide range of real-world data and, to our best knowledge,
is the first computational model that simulates deep sea shipping down to the level of individual vessels. This is crucial
for accurately capturing emergent, collective effects arising from the context-dependent interactions of merchant, pirate
and navy vessels.

Due to the lack of prior work on the topic, the development of the model prompted the development of a novel method-
ology for agent-based maritime transportation modeling. Some parts of the methodology could be borrowed from more ma-
ture transportation modeling fields; other parts had to be developed from scratch. In addition to the AGENTC model, the
developed methodology, presented alongside the model itself, is therefore the second major contribution of the paper.

The rest of the paper is organized as follows. After reviewing related work, we describe the AGENTC simulation model,
detailing how the maritime environment, vessel behaviors and vessel interactions are modeled. We then briefly comment
on the implementation aspects of the simulation model and devote significant space to discussing calibration of the model.
Finally, we show how the developed model was employed to help answering specific operations research questions concern-
ing the design of maritime transit corridor systems.

2. Related work

The use of agent-based or simulation-based models to support policy design and operational management has a very
long-standing tradition in the transportation field. The vast majority of the work, however, focuses on ground transportation
(e.g. Hidas, 2002; Waraich et al., 2013) and, to a lesser extent, on air transportation (e.g. Tang et al., 2012).

In the maritime domain, applications of simulation models are surprisingly scarce, as analyzed, e.g., by Davidsson et al.
(2005). Existing work either focuses on traffic in ports and national, coastal waters (Hasegawa et al., 2004) or uses high-level
equation-based models (Bourdon et al., 2007) unfit for capturing individual-level behavior and inter-vessel interactions
essential for modeling maritime piracy. Furthermore, none of the above models is concerned with the security of maritime
shipping lanes. Advanced computational methods have been applied in the maritime domain to optimize ship routing (e.g.
Norstad et al., 2011; Øvstebø et al., 2011), albeit not taking the security aspect into account. In both cases, the authors use
mathematical programming rather than simulation to solve the problem.

As far as the security angle on transportation systems is concerned, existing simulations focus on modeling activities in
and around terminals rather than within transportation networks themselves. This is true both for airport security
(Chawdhry, 2009) and port security (Koch, 2007). Port security has also been listed as an important area for the application
of operations research methods (Crainic et al., 2009), of which simulations are an important representative. The spatial, net-
work aspect of transportation security has been touched upon in the work on modeling critical infrastructures (Barton and
Stamber, 2000), however, the emphasis there is mostly on other than transportation types of infrastructures. The problem of
securing transportation infrastructures and logistical networks has only been studied in the military context (Ghanmi et al.,
2011).

Focusing on the very phenomenon of maritime piracy, existing work is concentrated primarily in the fields of security
studies, international relations and global policy (Onuoha, 2010). Only recently, initial attempts at applying computational
modeling and optimization to maritime piracy have emerged but focus exclusively on military aspects of the problem:
Bruzzone et al. (2011) model piracy around the Gulf of Aden using the discrete-event simulator PANOPEA. The authors focus
on evaluating the efficiency and effectiveness of different Command and Control models; only main actors in the Gulf of
Aden are considered and the simulation is not scaled to the Indian Ocean where the merchant traffic model is significantly
more complicated.

Tsilis (2011) employs the MANA agent-based modeling framework (Lauren and Stephen, 2002) to identify key factors
affecting the escort of vulnerable merchant vessels through the Gulf of Aden. The escorting scenario is modeled on a tactical
level, focusing on positioning of individual ships and protection of one group of merchant vessels; this is different from our
model which adopts a whole-system perspective and considers the security of maritime transportation system as a whole.
The MANA framework is also used by Decraene et al. (2010) to analyze requirements on non-lethal deterrents for defending
large merchant vessels against pirate attacks; again, the focus is on the tactical level of modeling a single encounter in detail,
rather than the system as a whole.

Slootmaker (2011) describes Next-generation Piracy Performance Surface (PPSN) model which employs meteorological
forecasts, intelligence reports and historical pirate incidents to predict areas conductive to pirate activity around the Horn
of Africa. Hansen et al. (2011) further improve the PPSN model by refining the environment model and adding a probabilistic
behavioral pirate model, resulting into the Pirate Attack Risk Surface (PARS) model. Both PPSN and PARS models are numerical
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with only a minor simulation component and are limited to short-term forecasts (several days). They do not directly model
real-world behavior and interactions of individual vessels; consequently, their applicability for what-if type of analysis is
limited.

Finally, piracy patterns and the effect of countermeasures were also studied using statistical data analysis and data min-
ing (Bowden et al., 2011). The usability of such results for policy design and optimization is limited because the insights
gained concern the behavior of the maritime system under current circumstances and are difficult to extrapolate to hypo-
thetical future scenarios.

3. Model description

The AGENTC model represents the movement and other activities of selected categories of vessels in piracy-affected waters
of the Indian Ocean (we focus on piracy with origins in Somalia, affecting Gulf of Aden, Arabian Sea and West Indian Ocean).
A visual overview of the model and its constituent entities is given in Fig. 1.

The description of the model proceeds as follows: after explaining the agent-based modeling methodology, we describe
the model of the maritime environment and models of each vessel class in detail. Given the importance of vessel interactions,
we separately describe the model of the pirate attack and of selected piracy countermeasures.

3.1. Agent-based modeling methodology

As already stated, we employ individual-centric modeling approach, in which the behavior of the modeled system is rep-
resented at the micro-level of individual vessels. Vessels are modeled as autonomous agents (Russell et al., 2010) capable of
moving freely within the navigation boundaries of ocean waters while interacting with the maritime environment, other
vessel agents and other actors (such as shipping operators or traffic coordinators).

Based on the literature and discussions with domain experts, we identified merchant vessels, pirate vessels and navy vessels
as main vessel classes which are therefore explicitly represented in our model as vessel agents. For most of the time, each
vessel agent pursues its individual goals, however, there are situations where multiple vessel agents interact—such interac-
tions are either non-cooperative (such as pirate attacks or navy warship counter-pirate interventions) or cooperative (such
as merchant vessel agents’ requests for help to navy vessel agents). Vessel agent interactions play a critical role in the
dynamics of maritime piracy and make the agent-based, micro-simulation approach vital for accurately modeling the effect
of piracy on maritime transportation, primarily because it allows capturing the phenomena naturally and it provides the de-
tail of analysis not attainable with macro-level equation-based methods (Van Dyke Parunak et al., 1998).

Fig. 1. Key actors, activities and environmental features represented in the AGENTC model of piracy affected waters.
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In line with the agent-based modeling approach, the model for each class of vessels consists of an individual vessel behav-
ior model and a vessel population model. The vessel behavior model represents the executable behavior of an individual vessel
agent; such behavior can depend on vessel parameters assigned to each individual vessel. The vessel population model spec-
ifies how many vessels of each class are generated and how the values of vessel parameters are assigned.

The choice of vessel parameters is based on relevant literature (Bruzzone et al., 2011; Tsilis, 2011; Decraene et al., 2010)
and was discussed with domain experts; their influence (i.e., importance) was also explored using sensitivity analysis (de-
scribed in Section 5.2). For each vessel class, we list the parameters in a table together with the intervals of parameter values
considered in the simulation. For each simulation instance, depending on the scenario executed, we either sample the value
of a parameter uniformly from its respective interval or set the parameter value to a constant from the interval.

3.1.1. Note on Naming
In the military domain, merchant vessels are denoted as MV, pirate vessels—recently mainly operating as a group of one

mothership and multiple accompanying speedboats—are denoted as pirate attack group (PAG) and navy vessels as coalition
forces (CF). We denote the vessel classes as M, P and N respectively. Furthermore, although we use the term vessel and vessel
agent rather interchangeably, we use the latter if we want to stress the behavioral aspect of vessel description. With some
simplification, vessel agent can be viewed as the shipmaster controlling a respective vessel.

3.2. Maritime environment model

The environment model represents physical maritime environment in which the vessels operate. It consists of two prin-
cipal components:

� geography, bathymetry—represent the geography of the maritime environment in terms of a set of spherical obstacle poly-
gonsO representing land masses, shallow waters and other obstructions that limit navigability. This component also con-
tains locations of ports and anchorages used in merchant shipping and pirate activities.
� weather—represents the environmental conditions affecting the behavior of modeled vessels, specifically, wave height,

wind speed and currents. Wave height plays an important role in pirate’s decision making; currents and wind slightly
alter routes of small vessels (e.g., pirate boats).

3.3. Merchant shipping model

Merchant vessels are large ocean-going vessels carrying cargo over long distances between world’s major ports. Merchant
vessels are the primary targets of pirate attacks. In order to be useful for what-if analysis of different counter-piracy mea-
sures and policies, the merchant traffic model has to produce realistic traffic patterns even for situations which diverge from
the current status quo in terms of pirate operations and the configurations of piracy countermeasures deployed. The mer-
chant traffic model therefore cannot solely mimic current real-world merchant vessel routes but it has to be capable of gen-
erating realistic shipping traffic from more fundamental principles. We therefore adopt the approach of separating the
modeling of transportation demand from traffic routing. Demand is considered given and fixed while the routes are gener-
ated dynamically, based on the assumption that merchant vessel agents maximize their utility and take the most advanta-
geous route possible. Such an approach is widely used in ground transportation modeling, its application to global maritime
shipping, however, is novel.

3.3.1. Merchant shipping origin–destination matrix
The demand for merchant transportation is represented in terms of an origin–destination matrix (O–D matrix) which spec-

ifies the volume of merchant traffic between world’s major ports. The O–D matrix is used to generate origins and destina-
tions for individual merchant vessel voyages and the voyage planning module is then used to find optimum routes
connecting voyage endpoints.

Unfortunately, in contrast to ground traffic modeling, no data explicitly and completely capturing the merchant shipping
O–D matrix is available; we were therefore forced to estimate the matrix from several partial sources. We have extracted the
most important ports in and near the observed area from CI-online database and Ports and Ships2 portal. We then estimated
the O–D matrix by fitting generated traffic to known real-world traffic densities (see Section 5.3).

3.3.2. Voyage planning
A fundamental part of the merchant vessel operation is voyage planning. Voyage planning is primarily used in the model

of merchant vessels to generate realistic merchant traffic from the merchant shipping O–D matrix; however, it is also used in
the operation of the other two vessel classes.

We model voyage planning as an optimization problem of finding an optimal route C between an origin and a destination
point on a sphere, given vessel-specific route optimality criterion, a set of constraints imposed by geographical boundaries

2 http://www.ci-online.co.uk, http://ports.co.za/.
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and physical properties of the vessel, and a spatial piracy risk function (the latter is only used in voyage planning for mer-
chant vessels).

Mathematically, we formalize the optimal route selection problem as a bi-objective optimization problem

min LðCÞ;RðCÞ
s:t: C 2 C

ð1Þ

where LðCÞ is the length of route C on the sphere, C is the set of all valid routes, i.e., routes going from the origin to the des-
tination respecting geographical boundaries, and RðCÞ is the risk of a pirate attack along route C, computed as

RðCÞ ¼
Z

C
rds ð2Þ

Here,

rðx; y; tÞ : R3 ! Rþ0 ð3Þ

is termed the piracy risk function and captures the expected density of pirate attacks for a given time and location, defined by
latitude x and longitude y. The piracy risk function can be constructed based on past pirate incident reports,3 or another risk
model in the form of a spatio-temporal or spatial function can be used, e.g., the NATO Shipping Centre4 pirate activity map.

To solve the optimization problem (1), we transform the length and risk criteria into a scalar criterion function using the
aggregation method (Hwang et al., 1979) with a single weight:

min ð1� aÞLðCÞ þ aRðCÞ ð4Þ

The weight a is termed the risk aversion coefficient and it can be set individually for each merchant vessel agent based, e.g., on
the level of on-board security, vessel cruising speed or the value of its cargo.

In order to leverage efficient path-finding algorithms, we discretize the ocean surface space and represent it as a graph.
First, we define the piracy risk area as a spherical polygon OR which delineates the space in which piracy attacks occur and
where we explicitly consider piracy risk in the routing process. For discretization, we divide the piracy risk area OR into a
rectangular latitude-longitude grid Gr (Sahr et al., 2003) with predefined cell widths. We create a graph G1ðV1; E1Þ from the
grid Gr: the set of vertices V1 comprises all vertices from the grid and the set of edges E1 is the set of all geodesics5 between
any two neighboring vertices (considering 16-connected cells (Boult et al., 1993); see Fig. 2a).

Second, we construct a spherical visibility graph G2ðV2; E2Þ. The vertices V2 of the visibility graph comprise all vertices of all
spherical polygons O [ OR (O is the set of obstacle polygons, see Section 3.2). The set of edges E2 of the visibility graph is the
union of the set of all geodesics between all vertices V2 which do not intersect any polygon from O [ OR (Fig. 2b) and the set
of entry and exit edges, where the entry and exit edges are all such edges connecting the voyage’s origin and destination
point to the visibility graph G2 that do not intersect any polygon from O [ OR and any edge from E1. We set the risk value
on edges outside the piracy risk area OR to 0; for edges inside the piracy risk area OR, we set the risk value to the integral of
the piracy risk function (3).

Fig. 2. (a) Rectangular grid representing the piracy risk area, (b) cell-grid connected to the visibility graph, (c) PARS model for October 1st, 2011, provided
by NATO Shipping centre—green, yellow, red colors correspond to low, medium and high risk of attack respectively; plans are generated for each O–D
matrix entry with risk aversion coefficient a = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3 As provided e.g. by the International Chamber of Commerce Piracy Reporting Centre at http://www.icc-ccs.org/.
4 NATO Shipping Centre website: http://www.shipping.nato.int.
5 The shortest path between two points on a surface of a sphere.
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We compute the optimum vessel route in graph GðV1 [ V2; E1 [ E2Þ with respect to criterion (4) using the A⁄ algorithm
(Russell et al., 2010) with orthodromic distance6 heuristics and with the cost function equal to the criterion function. For illus-
tration, vessel routes generated by the route planner between all pairs of ports considered in the AGENTC model are shown in
Fig. 2c. Risk aversion coefficient a = 0.5 and a spatial risk model obtained from the NATO Shipping Centre were used.

3.3.3. Merchant vessel population model
The merchant vessel population model instantiates a population of merchant ships of size #M with a realistic distribution

of key vessel attributes, i.e., speed and size. It then samples the merchant shipping O–D matrix in order to assign each vessel
a port of origin and a destination port to reach. All merchant vessel attributes specified by the population model are listed in
Table 1. 2000 merchant vessels with speed and size distribution taken from a data-set of 2700 real-world vessel samples7

were used in the simulation to replicate real-world shipping density in the Indian Ocean in Year 2011.

3.3.4. Merchant vessel agent behavior model
The behavior of a simulated merchant vessel is straightforward. Given a pair of origin–destination ports at the beginning

of the simulation, the merchant vessel agent invokes the route planner to plan vessel’s voyage, taking into account corridors
and group transit schemes along its route. The merchant vessel then sets on cruising along the route. After the destination
port is reached, a new port is sampled from the O–D matrix and a new route is planned. This basic behavior is interrupted if
the vessel is attacked by a pirate vessel, in which case the merchant vessel agent reports attack to nearby merchant vessel
agents, notifies the closest navy vessel agent and employs self-defense measures (see Section 3.6). Activities and transitions
of the merchant vessel agent behavior are depicted in Fig. 3.

3.4. Navy operations model

Navy vessels represent military vessels operating in piracy-affected waters and capable of using force to deter and disrupt
pirate activities. AGENTC focuses on modeling the part of Navy vessel operation consisting in providing assistance to vessels
subject to pirate attacks. It does not model active search and area patrolling operations, although such extensions can easily
be incorporated in the model assuming data about such operations (which are typically classified) are obtained.

3.4.1. Navy vessel population model
Navy vessel population model instantiates #N navy vessel agents with specified deployment locations. The deployment

locations can be specified manually by a human expert or obtained as a result of an optimization process (see below). All
navy vessel parameters are listed in Table 2.

Table 1
Merchant vessel parameters.

Parameter Values Description

Destination port id Destination port of vessel voyage
Docking time [0,3] days Docking time of a merchant vessel
Cruising speed [10,20] kn Vessel travel speed unless participating in a group transit
Ship size [30,250] m Size of the ship
Alertness [0,60] h�1 Frequency of checking for an approaching pirate
Risk aversion [0,1] – Risk aversion coefficient used in voyage planning

Pirate spotted 

Hijack 

Destination reached 

Dock/Wait 

Hijacked Cruise Plan route 

Request for help 

Fig. 3. Merchant vessel agent behavior model. The entry point is the Dock/Wait state. After docking in a port, the merchant vessel plans a route and cruises
to its destination. If a pirate is spotted, a request for help is sent. In case the vessel is hijacked, the hijacked state is terminal and the merchant vessels is
under the control of the pirate.

6 The shortest distance between any two points on the surface of a sphere.
7 The data-set is a subset of the Vesseltracker (http://www.vesseltracker.com) database.
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3.4.2. Navy vessel behavior model
The basic behavior of a navy vessel comprises staying in its deployment location waiting for possible distress calls from

nearby merchant vessels threatened by pirates. If a distress call is received, the navy vessel agent responds by dispatching a
helicopter (if available) and by moving at its cruising speed to the attacked merchant vessel, trying to intercept the attack.
Once the response has been completed, the navy vessel returns to its original deployment position. More details about navy
vessel involvement in pirate attacks are given Section 3.6. The behavior model of the navy vessel agent is depicted in Fig. 4.

3.4.3. Navy vessel location assignment model
Similarly to the merchant traffic model, the navy operations model cannot solely replicate existing real-world deploy-

ment locations, but it needs to be able to take into account hypothetical merchant traffic flows in diverse evaluated
what-if scenarios. We have therefore developed a navy vessel location assignment algorithm which takes the density of mer-
chant traffic as the input and produces navy vessel deployment locations. The choice of locations aims to maximize the pro-
portion of merchant traffic that lies within the action radius of deployed navy vessels.

We formalize the problem of optimal asset allocation as an optimization problem. We consider the merchant traffic density
functionmðx; yÞ : R2 ! Rþ0 specifying the average density of merchant vessels at a location specified by latitude x and longi-
tude y. We assume that each navy vessel can protect merchant traffic that lies within the vessel’s action radius and that the
probability that the navy vessel will prevent the attack decreases exponentially with the distance from the navy vessel. Spe-
cifically, we model the probability of attack prevention as

pðx; yjlx;lyÞ ¼ exp �
ðx� lxÞ

2 þ ðy� lyÞ
2

2r2

 !
ð5Þ

where parameters lx, ly represent the lat/lon location of the navy vessel and we set r ¼ 1
3 AR to approximate that the prob-

ability of successful attack prevention is very high near the navy vessel, declines sharply as the distance from the navy vessel
increases and is almost zero once the attack happens outside the vessel’s action radius AR.

The navy vessel location assignment optimization problem is then formulated as

arg min
l1

x ...lN
x ;l1

y ...lN
y 2R

Amðx; yÞ
Y

i21...N

1� pðx; yjli
x;l

i
yÞ

� �
dxdy ð6Þ

i.e., we search for the positions li
x;li

y of all navy vessels such that the expected number of successfully attacked vessels is
minimized.

Similarly to voyage planning, for practical reasons we solve the allocation problem in a discrete formulation. We intro-
duce the merchant traffic density map mG : Gm ! Rþ0 where Gm is a rectangular latitude-longitude grid covering the navigable
ocean waters. For any cell c 2 Gm, mG(c) specifies the number of merchant vessels passing through the cell for a specified time
interval (e.g., a month or a year). Density maps for each month are provided by, e.g., AMVER8 or they can be generated for any
time span from the AgentC model (see Section 5.3 for details).

Table 2
Navy vessel parameters.

Parameter Values Description

Helicopter Y/N Presence of helicopter on board the navy vessel
Patrolling location GPS Coords Area at which the navy vessel is located and from where it can respond to nearby pirate attack
Action radius [100,200] nm Distance on which the navy vessel reacts to distress calls
Response speed [20,30] kn Speed at which the vessel sails to intercept pirate attack
Helicopter Speed [140,170] kn Speed of the on-board helicopter

Abort mission 

Disruption 

Request for help 

Patrolling Return to post Disarm pirate 

Move to MV Deploy Heli 

Fig. 4. Navy vessel agent behavior model. The entry point is the Patrolling state. The navy vessel reacts on a request for help by deploying a helicopter (if
available) and cruises towards the merchant vessel. If the navy vessel or the helicopter arrives before the merchant vessel is hijacked, the pirate is disarmed
and the vessel (and helicopter) returns to its assigned location. The intervention terminates unsuccessfully if the pirate successfully completes the hijacks of
the merchant vessel.

8 Automated Mutual-Assistance Vessel Rescue System (AMVER), http://www.amver.com.
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We define functions vx;vy : Gm ! R specifying the latitude vx(c) and the longitude vy(c) of the central point of cell c 2 Gm.
The allocation algorithm searches for the set of cells that maximize the protection of merchant traffic. Specifically, we use

an iterative greedy algorithm to determine navy vessel locations—in the ith iteration, the ith navy vessel is placed to the cen-
ter of a cell ci such that the following expression

ci ¼ arg min
c�2Gm

X
c2Gm

mGðcÞ � pðvxðcÞ;vyðcÞjvxðc�Þ;vyðc�ÞÞ�

Yi�1

j¼1

pðvxðcÞ;vyðcÞjvxðcjÞ;vyðcjÞÞ ð7Þ

is minimized. The expression
Qi�1

j¼1pðvxðcÞ;vyðcÞjvxðcjÞ;vyðcjÞÞ captures the protection provided by navy vessels placed in pre-
ceding iterations.

3.5. Pirate activity model

Pirate vessels range from small skiffs up to large motherships acting as a floating base from which speedboats are
launched to attack. We model piracy at the level of individual pirate attack groups which are represented by a single pirate
vessel agent having its home anchorage and operating in and around main shipping lanes, where it attempts to attack, board
and hijack passing merchant vessels.

3.5.1. Pirate population model
The pirate population model is currently simple and is only used to generate #P pirate agents and to assign them their

home-anchorage parameter. The assignment is based on reported estimates of the number of pirate attack groups operating
from each known pirate anchorage. All parameters of the pirate are listed in Table 3.

3.5.2. Pirate vessel agent behavior model
The pirate vessel agent behavioral cycle consists of three stages:

1. Cruising—the pirate vessel moves directly to its selected target area and looks for a suitable merchant vessel to attack.
If the pirate vessel agent spots a navy vessel, it steers away temporarily. When the pirate vessel reaches the target
area, it moves at a low speed and changes its course randomly from time to time.

2. Attack—If a suitable merchant vessel is spotted, pursuit starts (described in detail in Section 3.6).
3. Recuperation—After a successful attack or when running out of supplies (endurance parameter), the pirate agent nav-

igates back to its home anchorage. After an unsuccessful attack, the pirate recovers (cool-down time parameter) and
looks for a merchant vessel again.

Activity diagram of pirate vessel agent behavior is depicted in Fig. 5. Note that we do not model the economic aspect of
piracy, such as ransom negotiation and other processes taking places after a hijacked vessel is brought to shore.

3.5.3. Target attack area selection mechanism
A key part of pirate vessel decision-making is choosing its target area where it will look for a merchant vessel to attack.

Again, in order to have the pirate activity reflect the simulated scenario, target area cannot be predefined based on attack
locations currently observed in the real world but needs to be determined dynamically from more fundamental principles.

AGENTC therefore implements an algorithm that determines attack locations dynamically, from the assumption of pirate’s
rationality and partial knowledge of both merchant vessels and naval patrols: pirate’s target area is thus selected based on
the following inputs: weather conditions, the merchant traffic density map in a form of a grid and a (partial) knowledge
about navy vessel positions.

Table 3
Pirate vessel parameters.

Parameter Values Description

Home anchorage base id Base from which the pirate vessel embarks and to which it returns
Cruising speed [8,14] kn Normal speed when traveling long distance between the base and a target location
Pursuit speed [25,30] kn Speed during the attack on a merchant vessel
Endurance [7,21] days The number of days the pirate vessel can stay at sea
Visibility radius [5,12] nm Maximum distance of a merchant vessel which the pirate can spot
Attack time 30 min Duration of attack attempt
Cool-down time [1,4] h Time needed for recovery after an unsuccessful attack
Navy knowledge [0,1] Probability of knowledge about navy vessel position
Hijack prob. qu [0,1] Probability of successful hijack of a merchant vessel cruising at 10 nm unaware of the pirate attack
Hijack prob. qa [0,1] Probability of successful hijack of a merchant vessel cruising at 10 nm aware of the pirate attack
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Algorithm 1. Target area selection algorithm

1: regions selectRegions(date)
2: densityMap merge(NavyPos,MerchantMap)
3: cList getCells(densityMap,regions)
4: totalValue sumValues(cells)
5: for cell 2 cells do

cell.prob cell.value/totalValue
6: end for
7: cell sample(cell)

return cell

The algorithm for target area selection is described in Algorithm 1. In the first step, a subset of regions with acceptable
weather conditions for a given date is selected.9 In the second step, navy vessels positions—if known—are combined with the
merchant traffic density map (this procedure is equal to the navy vessel location assignment algorithm with positions of navy
vessels being already known) and only cells from the merchant traffic density map within the regions with the acceptable
weather are considered (cList on the 3rd line of the algorithm).

Each cell from cList has a probability assigned which is proportional to the value of the cell taken from the merchant traf-
fic density map, i.e., we divide the value of each cell by the sum of values of all cells in cList (line 5–6). Finally, a simple ran-
dom sampling mechanism returns a cell from cList, i.e., each cell is chosen with a probability proportional to the value of the
cell in the risk map.

The above location selection mechanism approximates the combination of two fairly complex driving forces behind the
pirate’s decision-making process: (1) the pirate wants to maximize its expected reward and prefers high density cells to low
density cells; and (2) the pirate is subject to game-theoretic interaction in the sense that he does not want to be predictable
(Tambe, 2011). These two counter-going objectives of pirate are captured by the weighted randomization over the merchant
traffic density map with consideration of regions with unsuitable weather and known positions of naval vessels.

3.6. Pirate attack model

Pirate attack is a complex interaction between all three classes of vessels; we therefore provide its standalone description
that complements the description of the attack from the perspective of individual vessel agent behaviors. Parameters di-
rectly influencing the course and the outcome of the attack are depicted in Table 4 and are a subset of parameters of indi-
vidual vessel classes, except the M awareness binary parameter which is well-defined only during the attack phase. All
interactions taking place during a pirate attack are depicted in Fig. 6. The attack consists of three phases:

1. Pre-attack/approach—this phase begins after a merchant vessel is spotted by a pirate vessel agent; the pirate vessel
agent starts a pursuit at its pursuit speed. The merchant vessel agent checks for a, approaching pirate vessel several
times per hour (parameterized by the alertness parameter capturing the probability of spotting an approaching
pirate). If a pirate vessel is spotted during its approach, the awareness parameter is set to true, meaning that the mer-

Fig. 5. Pirate vessel agent behavior model. The entry point is the Select target area state. After the pirate reaches the target area previously selected, it looks
for a suitable merchant vessel to approach and hijack. The hijack attempt can be unsuccessful, interrupted by a navy vessel—in which case the pirate is
disarmed and sails home—or successful, in which case he sails with the merchant vessel to its home base.

9 Based on the correlation of attack frequencies and weather conditions in 2011, we have estimated the acceptable wave height for piracy operations to be up
to 1.25 m.
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chant vessel is not taken by surprise by the attacking pirate and can deploy self-defensive countermeasures. Further-
more, upon spotting the attack, the attacked merchant vessel agent broadcasts a distress call and notifies nearby

Table 4
Parameters affecting the outcome of a pirate attack.

Parameter Values Description

M Cruising speed [10,20] kn Cruising speed of the merchant vessel
M Alertness [0,60] h�1 How often the merchant vessel checks for pirate presence in its vicinity
M Awareness Y/N Merchant vessel’s knowledge about an approaching pirate (element of surprise)
P Visibility radius [5,12] nm Maximum distance at which a merchant vessel can be spotted
P Pursuit speed [25,30] kn Cruising speed of the pirate
P Attack time 30 min Maximum time for which the pirate attacks a merchant vessel
P Hijack prob. qu, qa [0,1] Probability of hijack of (un) aware merchant vessel
N Helicopter Y/N Presence of helicopter on board the navy vessel
N Action radius [100,200] nm Navy vessel distress call response radius
N Helicopter speed [140,170] kn Speed of navy vessel’s on-board helicopter
N Cruising speed [20,30] nm Speed of a navy vessel

Navy

opt Deploy heli?

Pirate Merchant

Vesselspotted

Approach

opt Piratespotted?
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RequestforAction
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Sail to MV
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Board
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Abortmission

Abortmission

Sailhome

Sailhome

Abortattack

Attackaborted

Choosenextdestination

opt Reacheddestination

Hijacked

Disrupt .

Fig. 6. Sequence diagram of the pirate–merchant–navy vessel interaction during a pirate attack. The attack takes a predefined amount of time and is
terminated either by the successful hijack of the merchant vessel or by the arrival of a navy vessel or its helicopter.
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merchant vessel agents about the danger (their awareness is then set to true). If there is an idle navy vessel within
the navy vessel action radius, the navy vessel responds by moving towards the attack. If the navy vessel carries an on-
board helicopter, it dispatches the helicopter to prevent the pirate from hijacking the merchant vessel.

2. Attack—the pirate vessel agent attempts (repeatedly, for a time period, specified by the attack-time parameter) to
board the merchant vessel and seize control. The probability of success depends on the speed s of the merchant ves-
sel, its alertness a and subsequently on its awareness. The average probability of a merchant vessel being hijacked
without any navy vessels present in the model can be computed as ph = a � pa(s) + (1 � a) � pu(s), where pa(s) and
pu(s) are the probabilities of hijacking an aware and unaware merchant vessel, respectively, traveling at speed s.
The hijacking probabilities are linear functions (with threshold) of merchant vessel speed: pa(s) = max{0, (2 � s/
m)qa}, pu(s) = max{0,(2 � s/m)qu}, where qa and qu are base probabilities specifying the probability of hijacking a mer-
chant vessel cruising at m P 10 kn (minimum cruising speed of a merchant vessels in our model is 10 kn).

3. Post-attack—if the attack is successful, the hijacked vessel is taken to the pirate’s home anchorage; if the attack is
aborted by the pirate (after attacking unsuccessfully for a period given by pirate’s attack time parameter), the mer-
chant vessel continues its voyage according to the original plan; the pirate vessel recovers from the attack for a spec-
ified period of time (cool-down time parameter) and then it looks for another target to attack. If the attack is
interrupted by the navy, the pirate is disarmed and sails to its home anchorage without further trying to attack
any merchant vessels.

3.7. Piracy countermeasures model

Merchant and navy vessels can engage in various piracy countermeasures designed to increase the security of passage
through piracy-affected waters. Most of such measures require cooperation between multiple vessels and can be viewed
as multi-agent coordination mechanisms that augment standard, single-agent vessel behaviors. Based on discussions with
the maritime security community, we support the following operational piracy countermeasures in the AGENTC model:

� Recommended transit corridors, which concentrate merchant traffic along a defined route connecting a sequence of
waypoints. Such concentration of traffic facilitates protection from navy vessels; however, it also makes targeting
transiting vessels easier for pirates. The corridors are modeled as extensions of the merchant voyage planner. Case
study in Section 6 examines the effectiveness of corridor systems closer.

� Group transit schemes, which coordinate the timing of merchant vessel transit so that vessels pass high-risk piracy
areas in groups. This improves mutual awareness and facilitates navy response; however, it makes the transit take
longer as vessels have to follow a predefined schedule and may have to reduce their cruising speeds to match the
speed of their respective transit group. The group transit schemes are modeled as an extension of the voyage planner;
they assign time marks to a subset of waypoints in a plan and the merchant vessels is then required to be at those
waypoints at given time.

� Navy vessel deployments, which deploy navy vessels in strategic locations from where they can provide assistance to
nearby merchant vessels in case of a pirate attack. We consider only stationary deployments (see Section 3.4).

� On-board security teams consists in deploying armed security personnel on-board of vessels transiting high-risk areas
capable of deterring attackers and denying them access to the vessel. This countermeasure is currently modeled by
the alertness and awareness parameters of the merchant vessel.

Each countermeasure is parameterized by a set of parameters (see Table 5). Except for route randomization, all above
measures are currently actively used, although convoy schemes are operated rather sporadically by national navies on an
ad hoc basis. The usage of transit corridors and group transits is currently limited to the Gulf of Aden.

3.8. Simulation model outputs

By its very nature, the agent-based micro-simulation model allows recording and evaluating, at different levels, multitude
of information about the behavior of the modeled maritime transportation system.

At the lowest level, each simulation run produces a detailed log of all events generated by vessel agents and their inter-
actions among themselves and with the modeled maritime environment. One year of simulated maritime traffic generates
hundreds of thousands of events recording vessel locations in time, state-transition events (e.g. destination-reached event,

Table 5
Piracy countermeasures considered, with sets of parameters by which they are specified.

Countermeasure Parameters

Transit corridor Sequence of GPS waypoints
Navy vessel deployment Set of locations
Group transit scheme Corridor, Speed levels, transit schedule (per speed level)
On-board security team Alertness of merchant vessels
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target-area-selected event, etc.) and events generated during vessel interactions (e.g., pirate-spotted event, pirate-attack event,
pirate-attack-disrupted event and many others). Events logs can be used for studying micro-level behaviors involving one or
more individual vessels. They can be also used for on-line visualization of individual simulation runs, which is crucial for
presentation and face validation purposes.

Micro-level event logs are aggregated in time and/or space into meso-level spatio-temporal output reports describing the
occurrence of specific event or a set of events over time or in geographical space. A particularly important type of output report
at this level are density maps which capture the frequency of occurrence of a specific event in grid-discretized space (as an exam-
ple, see Fig. 9a for a density map of pirate attacks). Meso-level reports are useful for understanding how a certain phenomena is
geographically distributed, how it is changing in time or both. It can also be used for calibration and validation of the model.

Finally, at the highest-level, event logs and spatio-temporal reports are aggregated into simple numerical statistics sum-
marizing the activity in the piracy-affected waters. Both security-related and operational output quantities are evaluated.
The former includes pirate attack count, i.e, the number of all attacks over a given time period (e.g., a year), and attack success
ratio, i.e, the number of successful attacks (i.e. hijacks) divided by the number of all attacks; the later includes average transit
distance and average transit duration, which can be used to estimate operational shipping costs. The high-level statistics are
used to gain insight into the global behavior of the modeled system under different circumstances and are also crucial for
model calibration.

4. Model implementation

Agent-based maritime transportation simulation requires agent control architecture capable of expressing required indi-
vidual and collective vessel behaviors. Vessel agents have to be able to execute long-running actions while reacting to inter-
ruptions. The minimum intelligent agent architecture that can handle such requirements is the model-based reflex agent
architecture (Russell et al., 2010) with encapsulated deliberative modules handling route-planning and other complex rea-
soning tasks. The required class of behaviors should be implementable in a modular and extensible way, facilitating sharing
of common behavior fragments between different classes of vessels. At the same time, the agent control architecture should
be computationally efficient enough to handle thousands of simulated agents. Unfortunately, none of existing agent archi-
tectures or simulation platforms supports these requirements. AnyLogic10 simulation software comes closest but is not suit-
able due to its commercial closed-source nature. We have therefore implemented our own agent architecture for executing
individual agent behavior models.

The implemented architecture decomposes agent behaviors into individual activities (depicted as boxes in Figs. 3–5)
which correspond to the principal activities of the vessel agent (such as cruise, board, and patrol) and their associated ac-
tions. Each activity stores its context when deactivated so that when reactivated, the context can be restored to continue
the previously interrupted action. The transition between activities is conditioned by external (e.g., request for help) or inter-
nal events (e.g., cool-down time passed). Although limited (e.g., not capable of executing concurrent activities), this approach
provides a good trade-off between expressiveness, modularity and computational efficiency.

Behavioral models are embedded and executed in a Java-based agent-based simulator built partially using the light-
weight ALITE (Novák et al., 2012) multi-agent simulation toolkit and employing Google Earth for geo-spatial visualization
(see Fig. 7). The simulator provides suitable abstractions for implementing the model of the maritime environment, environ-
ment-to-agent sensor interfaces and agent-to-agent communication protocols. Time-stepped simulation execution model is
used although migration to the discrete event-based model is possible.

5. Model calibration and validation

The AGENTC model contains a wide range of parameters that needs to be specified. Most of these parameters were set
based on consulting domain sources and experts. There are, however, also parameters which significantly affect the behavior
of the model and for which no reliable sources exist—the values of these parameters were therefore determined through cal-
ibration against real-word data.

In the following sections, we describe the calibration and validation process employed. Specifically we describe the cal-
ibration methodology selected, sensitivity analysis, calibration of the merchant traffic sub-model, and calibration and vali-
dation of the complete model.

5.1. Calibration methodology

The purpose of the calibration step is to set the values of key model parameters so that the behavior of the model most
closely reflects the behavior of the real system; this closeness of the model is measured in terms of several fitness criteria.
Due to limited supply of computing resources, we performed greedy iterative calibration—in each iteration, we chose a sub-
set of parameters most influencing the fitness criteria, found the optimal value of these parameters and fixed them in sub-
sequent iterations. To further speed up calibration, we used different calibration fitness metric in each step. The ordering of

10 AnyLogic http://www.xjtek.com/.
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steps and the choice of calibrated variables and fitness metrics in each step was based on the results of the sensitivity anal-
ysis. Depending on the standard deviation of the selected fitness criterion, we executed between 50 and 100 simulation runs
(with a different random generator seed) for each model configuration (i.e., each combination of model parameters – see
Table 6).

In order to compare the spatial outputs of the model, we used spatial success rate (SR) curves as described by Chung and
Fabbri (2003). Spatial success rate curves give a concise account of the performance of a spatial model. Specifically, the curve
specifies what percentage of space a given spatial model needs in order to cover a given percentage of real-world occurrences
of the event of interest (e.g., pirate attacks). The smaller the area required to cover a given percentage of the events, the tigh-
ter the fit and the better the model. The SR curve is constructed by discretizing the modeled area into a finite-size cells and
then sorting the cells according to the relative frequency of the event occurring in the cell (e.g., relative frequency of pirate
attacks). The SR percentage value for x percent of covering cells is determined by taking the x percent of the highest-fre-
quency cells and counting the percentage of events occurring within these cells. SR curves can be modified in order to be
used for comparing spatial models against spatial event density maps rather than sets of discrete events. In this case,

Fig. 7. Screenshot of the AGENTC simulation. Google Earth-based visualization of the simulation execution and graphical user interface for simulation control
and inspection of internal state of the model.

Table 6
Coefficients of variation for each criteria and model parameter. The bold-faced values correspond to parameters which were varied when calibrating the model
for each criterion.

Parameter Attack dist. Attack freq. Hijack ratio

#N 0.15 0.24 0.32
#P 0.046 0.74 0.041
P Visibility radius 0.052 0.26 0.11
M Alertness 0.053 0.075 0.20
P Hijack prob. qa, qu 0.057 0.078 0.16
P Navy knowledge 0.1 0.085 0.14
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coverage is counted as the fraction of the overall mass11 of the density map covered by a given proportion of highest-raking
cells. We further define the SR curve index as the percentage of the area under the SR curve with respect to the overall rectan-
gular plot area (i.e., the area below and above the curve). The interpretation of SR curves is illustrated in the captions of Figs. 8
and 9. To our knowledge, this is the first use of SR curves for calibration of simulation models.

5.2. Sensitivity analysis

Before the actual calibration, we performed sensitivity analysis in order to understand how the variation of key model
parameters affects model outputs: (1) attack distribution, (2) attack frequency and (3) attack success ratio. Table 6 summa-
rizes the sensitivity of each output to the variation of the given model parameter, measured in terms of the coefficient of
variation12 of a given output variable when varying a given model parameter. For each of the model outputs, we have selected
the most sensitive parameters which were then varied while the rest of the parameters remained fixed.
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Fig. 8. Merchant traffic sub-model calibration. (a) Simulated merchant traffic density map Gs

m for merchant traffic sub-model. (b) Reference AMVER 2011
merchant traffic density map GA

m . (c) SR curves for Gs
m (blue solid line) and GA

m (red dashed line). The red SR curve of the AMVER map captures the theoretical
upper-bound achievable for a given spatial resolution of the model: 20% of the AMVER map top ranking cells cover 70% of the AMVER map; 20% of the
AGENTC merchant traffic sub-model top ranking cells cover approximately 64% of the AMVER traffic. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Complete model calibration—attack spatial distribution fitting. (a) Density map for the complete model. (b) IMB 2011 Reports. (c) SR curves for the
complete model (blue solid line) and IMB 2011 reports (red dashed line). The red SR curve for IMB 2011 reports was measured by transforming the incidents
into a density map on which the SR curve was measured. This IMB density map thus serves as a theoretical upper-bound 20% of the most dense cells in the
IMB density map covers approximately 72% and 20% of the AGENTC model density map covers 61%. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

11 Where the mass of a density map is the sum of values in all cells. Note that we assume the space is discretized into finite-sized cells, e.g., a latitude-
longitude grid utilized for voyage planning or navy vessel location assignment (see Sections 3.3.2 and 3.4).

12 Coefficient of variation is defined as a ratio of standard deviation and mean: cv ¼ r
l.
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5.3. Merchant traffic sub-model calibration

In the first calibration step, we calibrated the merchant traffic sub-model of the AGENTC model, i.e., the model consisting
solely of merchant vessels. The calibration involved estimating all entries in the O–D matrix (see Section 3.3.1) together with
the risk aversion parameter a 2 [0,1] (see Section 3.3.2) such that we minimize a difference between the simulated and real-
world merchant traffic. We used the SR curve index between the simulated merchant traffic density map in form of the lat-
itude-longitude grid Gs

m and reference 2011 merchant traffic density map grid GA
m provided by AMVER (see Fig. 8b) as the

calibration fitness metric in this step. The simulated merchant traffic density map Gs
m is obtained in the following way:

we discretize the observed area into a latitude-longitude grid with cell size equal to 1�, similarly to the AMVER grid. We
let the simulation run for one simulated year and for each cell, we record the number of transits by any ship. Note that
the two maps do not have to be normalized for the computation of the SR index. We used a canonical piracy risk function
modeling the piracy risk as a time-independent function of the distance from main pirate anchorages for risk-aware routing.

In the calibration of the O–D matrix, we search for a number of merchant vessels sailing between any two of 20 major
world ports. We assume, that the traffic is symmetric, i.e. the flow between two locations is the same in both directions
(the O–D matrix is symmetric) and no vessels sail from one location to the same location (the diagonal values are zero);
i.e. we can consider only the upper triangular matrix excluding the diagonal. The O–D matrix contains 20 rows and columns,
resulting into 180 parameters which are interdependent and together with the non-linear fitness criterion (the SR index)
pose a difficult problem to be solved optimally. We thus use local search with restarts to estimate the value of entries in
the O–D matrix.

The algorithm is listed in Algorithm 2. The O–D matrix is initialized as a zero matrix. All entries from the upper triangular
matrix excluding the diagonal (denoted as U(ODmatrix) on the 7th line) are selected into a list entries, which is randomly
shuffled. Then, for each entry from entries, the algorithm tries to increment the entry’s value by a step as long as it leads
to the improvement of the SR index. If it is not possible to improve the SR index by incrementing any of the entries above
a predefined max value, the algorithm tries to improve the SR index by decrementing the entries by step (switching to decre-
ments on 25th line). The SR index is computed in each step by simulating one year of merchant traffic sampled from the O–D
matrix, creating a merchant traffic density map and comparing it to the reference map.

Algorithm 2. O–D matrix calibration

1: input: max,step
2: SRindex 1
3: refMap AMVERdensitymap
4: ODmatrix U(zeros)
5: best 0
6: changed true
7: entries shuffle(U(ODmatrix))
8: whilechangeddo
9: changed false
10: forentry 2 entriesdo
11: while (entry P 0)&(entry 6max) do
12: entry entry + step
13: simMap simulate(ODmatrix)
14: SRindex getFit(refMap,simMap)
15: ifSRindex < bestthen
16: entry entry � step
17: break
18: else
19: best SRindex
20: changed true
21: end if
22: end while
23: end for
24: ifstep > 0 then
25: step � step
26: changed true
27: end if
28: end while
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The O–D matrix calibration was repeated 100 times for each risk aversion coefficient a = {0,0.1, . . . ,1}. The best fit was
achieved for a⁄ = 0.6; the resulting traffic density map for a⁄ and the associated SR curve are given in Fig. 8a and c, respec-
tively. Minor discrepancies can be observed around Kenyan and Tanzanian coast and in the Mozambique channel; overall,
the fit is very good.

5.4. Complete model calibration

Following the calibration of merchant traffic sub-model, we calibrated the complete model containing all three categories
of vessels. The complete model was calibrated to fit the situation in the Indian Ocean in 2011, where there were 181 attacks
(source: IMB 2011 reports), from which 28 were hijacks (15.4% hijack success rate). Even though some of the attacks are
unreported and thus the IMB 2011 reports are incomplete, it is to our best knowledge the most comprehensive report source.
The calibration consisted of the following three steps:

5.4.1. Attack spatial distribution fitting
First, the complete model was calibrated with regards to the spatial distribution of pirate attacks. The number of navy

vessels #N (0 � 500) and pirate’s P-navy-knowledge were the calibrated variables; the SR curve index (see Section 5.1) be-
tween the attack density map produced by the model and the IMB 2011 reports was used as the fitness metrics. The best
fit was found for #N = 50 and P-navy-knowledge = 0.4. The attack density map produced by the model and the SR curve
for the best values of calibrated parameters are given in Fig. 9, along with the reference IMB 2011 reports.

Two directly observable discrepancies between the AGENTC model and the situation in 2011 can be observed: the attacks
in the AGENTC model are concentrated in the East Arabian sea, not spreading to the North. This difference is caused by the fact
that the AGENTC pirates sailing to the Northern Arabian sea encounter a merchant vessel during their voyage prior reaching
the target area and decide to attack this vessel instead of continuing along its original route. Additionally, due to the sparse
AGENTC merchant traffic in the West Indian Ocean, there are no simulated attacks in that area, the AGENTC pirates shift their
presence under the southern tip of India, causing another small discrepancy. Even though the fit of the calibrated model on
the available data is good, the described discrepancies have to be taken into account when using the model for decision
making.

5.4.2. Pirate attack frequency fitting
Second, the complete model was calibrated with regards to the overall number of attacks. The number of pirates #P (0–5)

and pirate’s P-visibility-radius (5–12 nm) were the calibrated parameters; the fitness metric was a difference between the
overall number of attacks produced by the model and the reference real-word value of 181 based on the IMB 2011 reports.
The best fit was obtained for #P = 2 and P-visibility-radius = 6 nm, producing on average 182 attacks with the standard devi-
ation of 16.1.

5.4.3. Pirate attack success ratio fitting
Finally, the complete model was calibrated with regards to the attack success ratio. Two parameters influencing the out-

come of the merchant vessel-pirate interaction were calibrated: M-alertness 2 [0,1] and P-base-hijack-probability qa,
qu 2 [0,1] (defined in Section 3.6); the fitness metric was the difference to the reference success ratio based on IMB 2011
report statistics, was 0.15. Best fit was obtained for M-alertness = 0.5, qa = 0.2 and qu = 0.5, estimating the probability of a
hijack with navy vessels (#N = 50—fixed in the previous calibration phase) to be 0.15 and without any navy vessels to be
p = 0.35. The probability of a pirate being disrupted by a navy vessel is then 43%, according to our model—this is an example
of an insight which cannot be directly inferred from the collected attack reports alone.

5.5. Validation

Face validation was performed repeatedly throughout the model development process. We consulted experts and officials
from the industry, government and military, including International Maritime Organization, US Naval Research Lab, US Naval
Postgraduate School and several maritime security providers. Feedback received on structural walkthroughs and visualized
simulation runs confirmed structural and behavioral plausibility of the proposed model.

Unfortunately, due to lack of data on the behavior of the maritime transportation system under varying circumstances
(e.g., the exact number of pirate attack groups and/or deployed naval warships), we were unable to statistically validate
the model. The model should not therefore be treated as reliable for quantitative prediction and should be used for gaining
qualitative insights only.

6. Case study

We have applied the developed model to several real-world use cases, based in part on discussions with maritime domain
stakeholders. Here we present one particular case study focusing on analyzing the possibility of introducing transit corridor
system in the Indian Ocean.
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The existing International Recommended Transit Corridor (IRTC), established in 2009, has proven—in combination with the
deployment of navy vessels—a very effective tool in reducing the number of successful pirates attacks in the Gulf of Aden.
The maritime security community has been discussing the possibility of establishing additional corridors in the Indian
Ocean, where most pirate activity takes place following pirates’ displacement from the Gulf of Aden. In contrast to the Gulf
of Aden, which is an elongated, narrow area with a simple bidirectional traffic flow, the Indian Ocean is much larger and
crisscrossed, in all directions, by a multitude of traffic flows. This makes the design of an effective corridor system a com-
plicated task.

6.1. Scenarios

We studied the effect of two possible layouts of Indian Ocean corridor systems: (1) single west-east corridor channeling
the large amount of west- and east-bound traffic (denoted as Single-IO), and (2) a more extensive multi-corridor system cov-
ering all the main traffic flows in the Indian Ocean (denoted as Multi-IO). See Fig. 10 for a scheme of corridor layouts. We
compared the results with the current setup where no corridors are used in the Indian Ocean (denoted as None-IO). The exist-
ing IRTC corridor was considered in all three configurations.

In addition to the corridor layout, we were interested in assessing synergies between corridors and other countermea-
sures, specifically in assessing employing group transit schemes within the corridors and deploying of navy vessels alongside
corridors. In addition to the corridor layout, we therefore included the number of deployed navy warships
(#N = {20,30,40,50,60,80,100} and the use of group transit (group-transit = {YES, NO}) as additional study parameters. In or-
der to make the assessment more robust with respect to the variation of future pirate activity, we also included the number
of active pirates (#P = {1,2,3,4}) as a study parameter.

6.2. Results

The results given are for one year of simulated maritime traffic. Due to probabilistic nature of part of the model, we sim-
ulated each configuration for 50 runs and present average values together with standard errors.

The values of the average transit distance (in nautical miles) and average transit duration (in hours) only depend on the
layout of the corridor system and amounted to 2153 nm/141 h for the None-IO setup with no corridors in the Indian Ocean,
2162 nm/142 h for the Single-IO and 2213 nm/145 h for the Multi-IO corridor setups. The small difference between different
corridor settings is due to the positioning of corridors copying main natural shipping lanes. The traffic is not re-routed

Fig. 10. Corridor layouts for the Indian Ocean corridor system. The Single-IO layout only uses IRTC with the red east–west corridor; the Multi-IO layout
utilizes all depicted corridors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significantly by the introduction of the corridors. Although some of the routes are longer, others can actually be shorter—the
risk inside corridors is considered zero13 and the corridors (especially the south-north corridor) can therefore act as shortcuts
to long risk-avoiding detours.

Fig. 11a captures the dependency of the number of hijacks on the number of navy vessels for each corridor system, aver-
aged over different numbers of pirates. As expected, increasing the number of navy vessels decreases the number of both
attempted and successful attacks. The reduction in attempted attacks is caused by a denser navy presence, which causes
the pirates not to launch attacks when a navy vessel is nearby. The reduction in successful attacks is then caused, addition-
ally, by more frequent attack disruption allowed by the higher density of navy vessels—this can be seen from Fig. 11b which
depicts a detailed breakdown of attack outcomes for the Multi-IO corridor system. When the number of navy vessels is in-
creased to a certain level, most of the attacks are successfully disrupted.

What is more interesting is the finding that in order to have positive impact on reducing hijacks, the extended corridor
systems (Single-IO and Multi-IO) have to be patrolled by a high number of navy vessels (approximately 70 and more). For
fewer than 40 navy vessels, the introduction of the corridors in the Indian Ocean actually worsens transit security (keep in
mind that, as suggested in the validation section, quantitative results are only indicative). This is because the better predict-
ability and higher concentration of merchant traffic inside the extended corridors systems makes targeting vessels easier for
pirates. This can be seen from Fig. 11c—the number of attempted attacks for the Multi-IO remains higher than for the None-
IO setup even for very high numbers of navy vessels. The ratio of disrupted attacks to the number of all attacks (depicted in
Fig. 11d) can be seen as navy vessel efficiency. This efficiency rises with increasing the number of deployed navy vessels.
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Fig. 11. Results of the Corridor system study. (a) Dependency of the number of hijacks on the corridor system and the number of navy vessels (lower is
better). (b) Breakdown of the different attack types for Multi-IO corridor system. (c) Dependency of the number of all attacks on the corridor system (lower
is better). (d) Dependency of the ratio of intercepted attacks on the number navy vessels—we can observe boost of navy vessel efficiency by the introduction
of extended corridor systems, when enough navy vessels are available (higher is better).

13 Estimating the value of risk inside a corridor opens another case study by itself—what is the actual risk in an established corridor, given its positioning and a
specified number of patrols? Are the merchant vessels incentivized enough to transit through the corridor? AGENTC can be used to estimate the risk value by
repeatedly running the simulation, compare the number of incidents inside and outside the corridor, quantify the pirate target area preferences, assess the risk
and run another simulation with modified risk values, until convergence. Unfortunately, this study is out of scope of this paper.
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More interestingly, the Single-IO and Multi-IO systems lead to higher navy vessel efficiency (though this increase is not en-
ough to counter the increase of attempted attacks). The use/not use of group transit has insignificant effect in the current
model—this may change if more sophisticated patrolling strategies which coordinate navy vessels with transit groups are
employed.

Finally, in Fig. 12 we compare the geo-spatial distribution of vessel hijacks between None-IO and Multi-IO corridor setups
for 50 navy vessels. The distribution of attacks in the Multi-IO corridor system is more concentrated along the corridors and
the pirate activity is shifted from the Gulf of Aden and from the East Arabian Sea to the corridor along the Somali coast.

Overall, the results suggests that the positive effect of transit corridors is not directly transferable from the small and nar-
row Gulf of Aden into the vast Indian Ocean. This is not surprising given the complex nature of the inter-dependencies in the
maritime transportation system; it is exactly the kind of conclusions that is difficult to reach without in-depth simulation
modeling (e.g., by employing data analysis techniques only).

Key limitation of the study lies in the simple static deployment of navy vessels. More elaborated patrolling and convoy
formation strategies could be more effective and allow the extended corridor systems to be successfully patrolled with fewer
vessels. The agent-based design and implementation of the simulator makes introduction of such strategies into the model
straightforward assuming the description of the strategies can be obtained.

7. Conclusions

We presented AGENTC, a simulation model of the maritime transportation system affected by piracy. The model employs
agent-based modeling approach—the behavior of the overall system is represented as a composition of thousands of micro-
level behaviors of individually simulated vessels. To our knowledge, AGENTC is the first model representing deep sea shipping
and pirate activity at such a level of detail.

The ability of the model to provide insight into the complex dynamics of piracy-affected waters was demonstrated on a
real-world use case of designing transit corridors in the Indian Ocean. Although direct extrapolation of the experience from
the Gulf of Aden would suggest that corridors will boost transit security, the simulation of several corridor layouts revealed
that this is not necessarily the case and that additional factors play a decisive role. Many other policy decisions can be ana-
lyzed using the AGENTC model, either out of the box or after small extensions. In fact, applications of the model are not limited
to maritime piracy—the merchant traffic sub-model alone is a valuable result and can be used for studying the impact of
other factors on maritime shipping (e.g., fuel costs, opening of northern shipping lines, etc.).

The major obstacle to building the model was a severe lack of data on almost all aspects of the behavior of the maritime
transportation system. This made proper statistical validation of the model impossible and, consequently, all conclusions
have to be interpreted with caution. On the positive side, the work on the model allowed us to clearly identify missing data-
sets and such information can now serve as a motivation and direction for future maritime data acquisition activities.

Although the AGENTC model is the main contribution, the methodology using which the model was developed and cali-
brated is also a valuable contribution. The application of the agent-based simulation engineering process in the maritime
security domain is novel and required several iterations to refine. The trialed-and-tested methodology can be enacted
repeatedly to model other maritime transportation scenarios or to improve the existing model when new data become
available.

Fig. 12. Geographical distribution of hijacks for the None-IO (left) and Multi-IO (right) corridor system configurations.
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Modular Framework for Simulation Modelling of Interaction-Rich 

Transport Systems 

Michal Jakob1 and Zbynek Moler1 

Abstract- The increasing pervasiveness of information and 
communication technology (ICT) in transport systems changes 
the requirements on techniques and tools for transport simula­

tion modelling. Novel ICT-powered responsive mobility services, 
such as real-time on-demand transport, are interaction-rich in 
a sense that they rely on frequent, ad hoc interactions between 
various entities of the transport system. These interactions have 
to be properly captured in the model if it is to accurately 
represent the dynamics of the modelled transport system. 
Unfortunately, existing modelling tools are not well suited for 
modelling interaction-rich transport systems. We have therefore 
developed a novel modular simulation framework designed 
specifically for modelling transport systems in which ad hoc 
interactions and decision making play an important role. The 
framework provides an extensible library of modelling elements 
based on a unifying ontology of agent-based modelling abstrac­
tions, a high-performance discrete-event simulation engine and 
suite of tools supporting real-world deployment and utilization 
of implemented models. By fully leveraging the conceptual 
foundation of multiagent systems, our framework provides 
flexibility and extensibility that is difficult to achieve by existing 
approaches. We demonstrate the applicability of the framework 

on the models of five distinct interaction-rich transport systems. 

I. INTRODUCTION 

The increasing deployment of ubiquitous location-aware 

and internet-connected devices is changing the way transport 

is organized and managed. Novel ICT-powered mobility 

services, such as real-time on-demand transport, peer-to-peer 

car sharing or dynamically priced taxis, are on the rise. 

A common feature of these services is the intensive use 

of (semi-)automated, electronic communication for coordi­

nation, in order to improve the efficiency and convenience 

and to reduce the financial and environmental costs of the 

service. In the case of shared collective taxi services, for 

example, the explicit, real-time coordination between the 

riders and the service provider allows using fewer vehicles 

and, consequently, road space compared to when the same 

demand was served in an uncoordinated fashion. The newly 

introduced coordination interactions, however, increase the 

complexity of the transport system and, consequently, make 

its operation more difficult to analyse and foresee. 

Simulation modelling is an established approach for 

analysing the behaviour of complex socio-technical systems 

and is therefore also applicable for analysing transport sys­

tems employing ICT-powered services. Unfortunately, ex­

isting simulation toolkits do not support the simulation of 

ICT-powered transport systems well - in particular, they 

l{jakob, moler}@agents.fel.cvut.cz, Agent Technology 
Center, Dept. of Computer Science and Engineering, Faculty of Electrical 
Engineering, Czech Technical University, Praha, Czech Republic. 

lack the support for modelling anytime, ad hoc interactions 

among the entities of the transport system and the just­

in-time decision making required for participating in such 

interactions. Capturing both well is essential for accurately 

modelling the behaviour of ICT-powered systems and, in 

fact, of the wider class of interaction-rich transport systems, 
i.e., systems whose overall behaviour is strongly affected by 

ad hoc interactions among their constituent entities. 

In our work, we aim to remedy this situation by provid­

ing a simulation modelling framework, termed AgentPolis' , 
designed from its inception to support the modelling of 

interaction-rich transport systems. Key to achieving this 

objective is the use of the concept of multiagent systems[12] 
as the basis of the framework's design. Multiagent systems 

capture the interaction-centricity of ICT-powered transport 

systems very well - putting them in the core of the mod­

elling framework therefore minimizes the structural and 

behavioural gap between the target interaction-rich system 

and its model. 

In this paper, we present the main results of our research, 

describing the four pillars of the AgentPolis framework -

the ontology of modelling abstractions, library of ready-to­

use modelling elements, discrete-event simulation engine and 

simulation tools - along with our experience of employing 

the framework to implement models of five distinct instances 

of interaction-rich transport systems. 

II. RELATED WORK 

In the last decade, simulation modelling has become 

an indispensable tool for studying the behaviour of ICT­

powered, interaction-rich transport systems. In [8], the au­

thors employed an agent-based simulation, developed com­

pletely from scratch, to study operational characteristics of 

a multimodal transport system integrating scheduled and 

flexible on-demand services. Demand-responsive transport 

systems were also studied in [13]. 
Taxi operations were also evaluated using simulations, 

both in their standard form (e.g. [4]) or employing a real­

time taxi sharing scheme (e.g. [10], [7]). In all three cases, 

model-specific simulation tools had to be developed and 

used, with [4] explicitly stating that existing simulation 

toolkits, including MATSim and SUMO, were not suitable 

for the task. Another type of transport systems evaluated 

using simulations are car sharing services. In [3], the authors 

evaluated a car sharing scheme under real-world conditions 

'The AgentPolis framework can be obtained from http: / / 
agentpolis.org. 
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of a Californian resort community, again employing a sim­

ulation tool developed internally from scratch. 

A very interesting approach is presented by Wainer in 

[14]. The author developed a general language for describing 

simulation models that allows decoupling the model descrip­

tion from the simulation engine used for model execution. 

The objectives of Wainer's work - flexibility and ability 

to rapidly develop simulation models - are close to our 

goals. His approach is, however, based on discrete-event 

cellular automata and directed towards vehicle-centric low­

level traffic simulations. 

A common attribute of the majority of simulations of ICT­

powered transport systems is that these simulations were 

developed from scratch using general-purpose programming 

languages (most often C++ or Java). There are exceptions -

[5] and [6] used the MAT Sim simulation framework [1] for 

evaluating car sharing and collective taxi schemes, respec­

tively. Furthermore, in [11] the authors used the general­

purpose Any Logic simulation toolkit to model a taxi sharing 

scheme in Lisbon. In all of the above cases, however, 

model developers faced considerable difficulties expressing 

and implementing required model behaviour using their 

chosen toolkit; this resulted in long development times and/or 

reduced fidelity of implemented models. 

III. BACKGROUND AND MOTIVATION 

Although there are many differences between services 

such as collective taxis and car sharing, there are also 

many elements (e.g. the concept of road networks, vehicles, 

passenger demand, or coordination protocols) that are similar 

and can be shared between the models of all such transport 

systems and services. Judging from the observed low use of 

general toolkits for the simulation modelling of interaction­

rich transport systems, it seems that such similarities have 

not been sufficiently exploited. We believe - and, as we shall 

see, this belief has been confirmed by our results so far - that 

the difficulties in employing general simulation toolkits, and 

the consequent lack of reuse in modelling interaction-rich 

transport systems, stems from the fact that existing toolkits 

do not take into account the multi agent nature of the ICT­

powered transport systems sufficiently and, consequently, 

fail to provide abstractions for modelling such systems in 

a direct, natural way. 

Before explaining how we have solved the problem, let us 

briefly introduce the very concept of multi agent systems (see 

e.g. [12] for an in-depth discussion). With an acceptable level 

of simplification, the multiagent system can be defined as a 

system composed of multiple autonomous entities, termed 

agents, situated in a shared environment. The environment 
represents the physical space surrounding the agents and the 

agents can interact with it in two ways. First, agents perform 

actions that modify the state of the environment; second, in 

the opposite direction, agents are informed about the state 

of the environment through perceptions. We assume that the 

agents are endowed with intelligence that allows the agents 

to select and execute actions that bring them closer to their 

goals. However, as the environment is one and the agents are 

Fig. 1: High-level conceptual model of a multiagent system. 

many, the actions of individual agents can mutually interact 

and produce results that, for better or worse, cannot be 

achieved by individual agents alone. In addition to implicit 

interaction through the environment, agents can also interact 

directly, i.e., bypassing the environment, through message­

based communication. See Figure 1 for a scheme relating 

the above concepts in a high-level conceptual model of a 

multi agent system. 

In transport systems, a large number of autonomous enti­

ties, such as passengers, drivers or transport operators, pursue 

their transport-related objectives within the context of a 

shared and capacity-constrained transport infrastructure. The 

individual entities interact among themselves and with the 

transport infrastructure (e.g. queuing on junctions), and pro­

duce complex, emergent global behaviours (e.g. congestion). 

In traditional transport systems, interactions among entities 

are mostly implicit, mediated by the transport environment. 

In ICT-powered transport systems, implicit interactions are 

complemented by explicit ICT-mediated interactions that are 

often central to driving the overall system behaviour. 

Due to their structural and dynamic properties, ICT­

powered, interaction-rich transport systems therefore es­

sentially are multi agent systems. Consequently, to model 

them, the (multi)agent-based modelling paradigm should be 

employed as it offers the most direct conceptual mapping 

between the model and the system. Unfortunately, existing 

transport modelling toolkits support the agent-based mod­

elling paradigm only to a limited extent. Although MAT Sim 

[1], for example, uses individual-level modelling, it treats 

individuals as passive data structures whose state can only 

be updated synchronously by central modules at infrequent, 

predefined points in time. Despite some practical advantages, 

such a centralized approach contradicts the nature of mul­

tiagent systems and consequently introduces a significant 

modelling gap - in reality, agents in transport systems make 

just-in-time decisions asynchronously at different occasions 

throughout a day, often in reaction to external observations 

or communication. 

To eliminate the modelling gap and issues it creates, our 

AgentPolis framework employs the agent-based modelling 

approach fully. AgentPolis does not impose constraints on 

when and how decision making, activities and interactions 

can occur in the model, and it is therefore suitable for 

modelling ICT-powered transport systems with ad hoc in­

teractions and just-in-time decision making. 
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IV. FRAMEWORK OVERVIEW 

The proposed AgentPolis framework provides abstrac­

tions, code libraries and software tools for building and using 

agent-based models of interaction-rich transport systems. 

More specifically, the framework consists of the following 

four components: 

1) Modelling abstraction ontology which provides a uni­

fying set of concepts for expressing agent-based simu­

lation models. The abstractions refine the more general 

multiagent systems concepts and make them express­

ible in object-oriented programming languages. 

2) Modelling element library which contains concrete 

implementations of the modelling abstractions chosen 

so as to represent the elements frequently used in real­

world transport models. 

3) Simulation engine, based on the discrete event simula­

tion approach, which provides the runtime functional­

ity for simulating AgentPolis models. 

4) Simulation tools which support the deployment and 

use of AgentPolis models in real-world conditions by 

providing data import, scenario configuration and sim­

ulation result analysis and visualization capabilities. 

In the following two sections, we describe the framework 

components in more detail. 

V. MODELLING ABSTRACTIONS AND ELEMENT S 

In designing the AgentPolis framework, our aim was 

to provide a framework that provides maximum ready-to­

use transport modelling functionality out of the box while 

offering enough flexibility to adapt to initially unforeseen 

requirements. A key tool for achieving this objective was 

the explicit separation between well-defined modelling ab­

stractions, based on the multiagent conceptual model (see 

Section III), and concrete modelling elements for building 

specific application models. By requiring that any modelling 

element is an instance of one of the modelling abstractions, 

we enforce design and implementation decisions that pro­

mote interoperability among different elements and facilitate 

addition of new application-specific modelling elements. 

The AgentPolis framework currently has eight modelling 

abstractions (see Figure 2) and several tens of modelling 

elements - these evolved through several iterations during 

which the abstractions were used to define concrete mod­

elling elements that were, in turn, used to build specific 

simulation models. 

In the rest of the section, we describe individual modelling 

abstractions along with the corresponding modelling ele­

ments. Due to limited space, we omit some technical details 

and focus on the features that best convey the overall idea of 

the framework. Also note that due to circular dependencies 

between concepts and elements, we sometimes refer to 

concepts or elements that will only be defined later. 

A. Agents 

Agents are the central entities of agent-based models 

and are the main drivers of model dynamics. Somewhat 

surprisingly, the concept of the agent is only loosely defined 

,--------------

i Abstraction 

L ______ _____ _ 

Fig. 2: Modelling abstractions of the AgentPolis framework. 

The concepts in the white, dashed-outline boxes only provide 

grouping and are not used as modelling abstractions. 

in the AgentPolis framework. This is primarily because of the 

large variation in the behaviour of agents between different 

models, which makes standardization of agent behaviour 

difficult and, in fact, counterproductive. Each agent in the 

AgentPolis framework is therefore only required to have 

defined its lifecycle, which is a top-level activity governing 

the agent's behaviour. 

Two predefined Iifecycles are nevertheless provided in the 

framework and can be utilized for defining new agents. The 

P TO rive r lifecycle represents the top-level behavioural 

loop of the agent serving as a public transport vehicle driver; 

the UrbanTraveller lifecycle can be used to implement 

an agent generating and executing basic activity-driven travel 

patterns2. 

B. Activities 

Activities provide the abstraction for defining agent be­

haviour. Technically, activities are reactive control structures 

implementing the logic determining which actions or nested 

activities the agent executes at a certain point in time or in 

response to sensor information or messages received from 

other agents. 

For example, the Dr i veVehicle activity moves a ve­

hicle along a predefined route. The route to follow, ex­

pressed as a sequence of nodes of an underlying transport 

network, is given as an input parameter of the activity. The 

Dr i veVehicle activity then sequentially, for each edge of 

the transport network, invokes the MoveVehicle action to 

change the location of the vehicle (as well the driver and 

any passenger inside the vehicle) on the network. After the 

vehicle reaches the final waypoint, the activity notifies the 

caller about its successful conclusion and finishes. The list 

of activities currently provided by the AgentPolis framework 

is given in Table I. 

C. Actions 

Actions provide the abstraction for modelling how agents 

manipulate the environment. Each action defines the logic 

2Because of their defining role in specifying agent behaviour, we some­
times refer to agents by the name of their assigned lifecycIe, e.g., calling 
an agent employing the PTDri ver lifecycle as a PTDri ver agent. 

978-1-4799-2914-613/$31.00 ©2013 IEEE 2154 

55



Activity Description 
Walk The agent walks between locations according to a 

specified journey plan. 
RidelnVehicle The agent travels as a passenger of an individual 

transport vehicle according to a journey plan. 
RideOnPT The agent travels by public transport according to 

a journey plan. 
DriveVehicle The agent drives a vehicle according to a journey 

plan. 
ParkVehicle The agent parks a vehicle at or near a specified 

location. 
Wai t The agent spends a specified time waiting. 

TABLE I: Core activities in the AgentPolis framework. 

Action Description 
MoveVehicle Moves a vehicle across an edge of the road net­

work, taking possible congestion in the account. 
MoveAgent Moves an agents across an edge of the road 

network. 
TeleportAgent Moves an agent instantly to a specified location 

(used e.g. for initializing agent's position). 
GetlnVehicle Moves a passenger into a vehicle (the passenger 

will be linked with the vehicle and move auto­
maticaUy whenever the vehicle moves). 

GetOffVehicle Removes a passenger from a vehicle (unlinks the 
passenger from the vehicle). 

Wai tForVehicle Waits until a specified vehicle arrives. 

TABLE II: Core actions in the AgentPolis framework. 

determining action duration and the logic defining which 

state attributes of which environment objects should be 

modified as the effect of executing the action. 

For example, the MoveVehicle action moves a vehicle 

along a transport network edge by changing the vehicle's 

location from one transport network node to another, adjacent 

network node. The MoveVehicle action interacts with the 

queuing logic implemented by the TransportNetwork 

environment object. The state of the TransportNetwork 

object can affect the duration of the MoveVehicle action 

and can even make the action fail if the queue associated 

with the traversed network edge is full. The list of actions 

currently provided by the framework is given in Table II. 

D. Sensors 

Sensors process percepts from the environment and allow 

agents (and their activities) to be informed about events in 

the course of simulation, in particular about the changes of 

the environment state and the execution of action and ac­

tivities. Together with messages received from other agents, 

sensor notifications can provide the main triggers for starting, 

terminating or changing activities executed by agents. 

For example, the P os it ionUpdate sensor notification 

is sent to the DriveVehicle activity after the vehicle 

has reached a new position; after receiving the notification, 

the DriveVehicle activity decides where to move the 

vehicle next and invokes the next MoveVehicle action 

accordingly. The list of all sensors implemented in the 

framework is given in Table III. 

E. Environment Objects 

The environment models the physical context in which 

agents are situated and perform their activities. In the Agent-

Sensor Description 
PositionUpdated Informs about a new position of a specific 

agent or an environment object. 
NextVehicleLoc. Informs about the upcoming next location of a 

vehicle. 
DrivingFinished Informs that a vehicle driver has reached the 

destination specified by the plan. 
WaitingFinished Informs that a specified waiting time has 

elapsed. 
VehicleArrived Informs that a vehicle arrived to a given node. 

TABLE III: Core sensors in the AgentPolis framework. 

Environ. Object Description 
TransportNetwork A network of roads, railways, cycle paths and/or 

pedestrian pathways with the associated queu­
ing logic. 

PTStops A list of public transport stops or stations. 
Attractor A location acting as a destination for trips with 

specific purpose (i.e. schools, offices, shops 
etc.). 

Vehicle A vehicle that can move along a transport 
network (car, bus, tram, train etc.). 

TABLE IV: Core environment objects in the AgentPolis 

framework. 

Polis framework, the environment is decomposed into and, 

consequently, represented as a collection of environment 
objects. Each environment object represents a fragment of the 

modelled physical reality and its associated state. The state 

of an environment object is represented by its attributes and 

it can only be changed by actions or by the object's internal 

update logic. Environment objects notify agents through 

sensors about changes in their state. 

For example, the TransportNetwork environment ob­

ject represents a transport network (road, cyclepath, footpath 

or railway). It consists of a graph of junctions and connect­

ing network segments with associated queues and update 

logic for modelling congestion. The queue is used by the 

MoveVehicle action to determine how much time a vehi­

cle needs to move along the respective network segment. The 

list of the environment objects provided by the AgentPolis 

framework is given in Table IV. 

F Queries 

Queries are used by agents to obtain information about the 

state of the environment. Queries read, filter or aggregate 

but do not change the state of any environment objects. 

In contrast to sensors, queries are invoked by the agents 

(or, typically, by activities)3. Although not strictly necessary 

- calls to queries could be replaced with direct calls to 

respective environment objects - queries improve encapsu­

lation by providing a layer that hides environment's internal 

implementation from agents. 

For example, given an agent identifier, the 

AgentP osition query returns the position of the 

agent as the identifier of the transport network node on 

which the agent is located. The list of queries implemented 

in the framework is given in Table V. 

3Queries can therefore be viewed as information pull requests, while 
sensors correspond to information push requests. 
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Query Description 
AgentPosition Returns the current position of an agent or an 

environment object. 
PTStopPosition Returns the position of a (public transport) stop 

or station. 

TABLE V: Core queries in the AgentPolis framework 

Action 
'­

Query 

, 
Environment object 

Fig. 3: Simplified architecture of AgentPolis models. 

G. Communication Protocols 

Communication protocols are the abstraction for mod­

elling inter-agent communication by means of message pass­

ing. At the moment, the framework core only provides 

simple protocols: I-to-l messaging and I-to-many 

messaging. Additional, more complex protocols (e.g., 

tendering and auctions) have, however, been implemented 

as part of application-specific models (see Section VII). 

H. Reasoning Modules 

As part of their behaviour, agents may need to make 

decisions that require executing complex algorithms. In the 

AgentPolis framework, such algorithms can be encapsulated 

into reasoning modules and reused in different activities. 

At the moment, the only reasoning module provided in 

the framework core is the ]ourneyPlanner module encap­

sulating the fully multimodal journey planner developed in 

[9]. The module, given an origin and destination location 

and time constraints, finds a shortest-duration journey plan 

that can subsequently be executed by agent activities. Addi­

tional reasoning modules have been implemented as part of 

application-specific models (see Section VII). 

Figure 3 shows how all modelling abstraction relate to 

each other in AgentPolis simulation models. 

VI. SIMULATION ENGINE AND TOOLS 

The library of modelling elements and the underlying 

ontology of modelling abstractions form the fundamental 

part of the AgentPolis framework. Additional functionality 

is, however, required for practically using developed models 

as part of simulation-based evaluation and decision support 

processes. To this end, the AgentPolis framework comprises 

software components that support the whole modelling life­

cycle from importing real-world data, executing simulation 

models and analysing and visualizing simulation results. 

A. Data Import Tools 

To facilitate the incorporation of real-world data into 

AgentPolis models, the framework provides data importers 

for converting external datasets into framework's internal 

data models. At the moment, the framework supports import­

ing data in the OpenStreetMap (OSM)4 and General Transit 
Feed Specification (GTFS)5 formats, including automated 

cross-referencing between both formats (e.g., mapping the 

corresponding public transport stops between OSM and 

GTFS files). Through the importers information about road, 

cyclepath and footpath networks, public transport routes and 

timetables and basic land use can easily be incorporated 

in AgentPolis models. Files imported by the framework 

tools are checked for consistency in order to prevent the 

hard-to-trace errors caused by invalid data during simulation 

execution. 

AgentPolis models can incorporate additional categories of 

data, such as socio-demographic data or origin-destination 

matrices representing travel flows. However, as no estab­

lished standards exist for these data categories, importers for 

such datasets are scenario-specific and need to be developed 

or customized for each model. 

B. Simulation Engine 

The simulation engine for executing AgentPolis simulation 

models is an essential part of the framework. The AgentPolis 

framework employs the discrete event simulation (DES) 
approach [2] in which the operation of the target system 

is modelled as a discrete sequence of events in time. Each 

event occurs at a particular instant in time and marks a 

change of state of the system. Between consecutive events, 

no change in the system is assumed to occur; thus the 

simulation can directly jump in time from one event to the 

next, which makes it computationally more efficient than 

the time-stepped approach that is mostly used in transport 

models. 

In AgentPolis models, events provide the low-level causal 

link between actions, model updates and sensor invocations. 

Whenever an agent executes an action, the action inserts an 

event into the event queue; the event has a state update logic 

attached specifying which environment objects should be up­

dated as the effect of action execution. The state update logic 

is executed only after the simulation time corresponding to 

the duration of the action has elapsed. The modification of 

the environment state caused by the update logic triggers 

sensor notifications which are received by agents (activities); 

the agents (activities) can consequently react by invoking 

further actions, thus closing the model update loop. 

The AgentPolis uses the discrete event-queue implementa­

tion provided by Alite6, a general purpose lightweight toolkit 

for building multiagent systems. A screenshot of a running 

AgentPolis simulation is given in Figure 4. 

4http: / / openstreetmap.org 
5https: / / developers.google.com / transit / gtfs / 

reference 
6http: / /alite.agents.cz 
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Fig. 4: High-level view of a running AgentPolis simulation 

model. Road (black), pedestrian (grey), tram (yellow) and 

metro (red) networks and UrbanCitizen (green) and PTDriver 

(yellow) agents are shown. Simulation events are depicted in 

the overlay window. 

C. Result Reporting, Analysis and Visualization Tools 

Recording simulation progress and results is a necessary 

part of simulation execution. AgentPolis provides a cus­

tomizable logging mechanism employing the Java event bus 

programming concept that allows detailed recording of low­

level simulation events (e.g. the start and end of the execution 

of activities and actions). From the recorded events, higher­

level, aggregate performance metrics can be calculated and 

visualized using a customizable reporting pipeline. The 

pipeline is based on the open-source GIS software stack 

employing the PostGIS7 spatially enabled database and the 

OpenGe08 interactive geovisualization framework. Powerful 

aggregation and filtering functions can easily be specified 

using the spatial extension of the SQL language supported 

by PostGIS. In addition to OpenGeo, export to Google Earth 

is also supported and is particularly useful for interactively 

exploring temporal geospatial data. Together, the above tools 

allow analysing and browsing simulation results at different 

spatial and temporal resolution. 

VII. EXAMPLE MODELS 

We have successfully used the AgentPolis framework to 

implement several simulation models. The models cover a 

wide range of interaction-rich transport systems that differ in 

a number of important characteristics, including the type and 

number of agents, the complexity of agent decision making, 

the type and number of transport modes present and the com­

plexity of agent-to-agent interactions. The basic information 

about the implemented models is given in Table VI - below 

we describe each model in more detail. In Table VII, we 

then list the main modelling elements used in each of the 

models. 

7http: / / postgis.net 
8http: / / opengeo.org 

Model # agents Types of agents 
Multimodal mobility 105 - 10' Urban citizen, PT driver, 

Ridesharing 
Dynamic pricing 
Fare inspection 
Parcel logistics 

102 
_ 103 

102 
104 

_ 105 
102 

Driver 
Passenger, Driver, Dispatcher 
Passenger, Driver 
Passenger. Inspector 
Dispatcher, Van driver 

TABLE VI: List of implemented AgentPolis models with the 

overall number and the types of agents used. 

A. Multimodal Urban Mobility 

The multimodal urban mobility model is the most com­

prehensive and the largest model built using the AgentPo­

lis framework, covering areas up to thousands of square 

kilometres and simulating populations of up to millions 

of inhabitants. Employing the activity-centric approach, the 

model aims to reproduce travel in a multimodal urban 

transport system. The model is similar in purpose and scope 

to other activity-based mobility models but it is internally 

implemented in the fully agent-based way - this gives 

it the benefits associated with the agent-based approach, 

in particular the ability to model within-the-day decision 

making and to include ICT-powered mobility services relying 

on ad hoc inter-agent interactions in the activity model. 

Technically, the model utilizes most of the core AgentPolis 

modelling elements with the UrbanTraveller lifecycle being 

the basis of the agents representing the population of the 

modelled region. 

B. Real-time Ridesharing 

The real-time ridesharing model has been implemented 

for studying the performance of ridesharing services under 

different deployment conditions. The model comprises three 

types of agents: vehicle drivers (corresponding to drivers of 

collective taxis, flexible buses or shared private vehicles), 

passengers of the ridesharing service, and the dispatcher, 

who matches passengers with drivers and vehicles. While the 

dispatcher agent is new, the driver and the passenger agents 

largely reuse the core AgentPolis activities. New, model­

specific logic consists of the negotiation protocol used to 

arrange shared rides and the associated decision logic on the 

side of participating agents. Extension on lower-level of the 

model, i.e. actions and sensors, were not required. 

In its basic configuration, the ridesharing model only 

employs hundreds of agents directly participating in the 

modelled ridesharing service. Thanks to its fully agent-based 

design, it is, however, possible to combine the ridesharing 

model with the multimodal urban mobility model and to 

study interactions between ridesharing services and other 

mobility modes and services. 

C. Auction-based Dynamic Taxi Pricing 

The dynamic taxi pricing model has been implemented for 

studying the effect of auction-based dynamic pricing of taxi 

services. In contrast to the previous model, the modelled 

dynamic taxi pricing scheme relies on peer-to-peer inter­

actions and only contains two types of agents: passengers 

978-1-4799-2914-613/$31.00 ©2013 IEEE 2157 

58



Abstraction 

Activities 

Env. Objects 

Actions 

Sensors 

Queries 

Protocols 

Reasoning 
modules 

Element 
Walk 
RidelnVehicle 
RideOnPT 
DriveVehicle 
ParkVehicle 
Wait 
DriveTaxi 

PatrolInStation 

PatrolInVehicle 

TransportNetwork 
PTStops 
Attractor 
Vehicle 

Warehouse 

DeliveryPoint 

VehicleInspectArea 

StationInspectArea 

MoveVehicle 
MoveAgent 
TeleportAgent 
GetlnVehicle 
GetOffVehicle 
WaitForVehicle 
RideInTaxi 

TaxiWaitForJob 

LoadParcel 

UnLoadParcel 

UnLoadParcel 

InspectPassengers 

ExistInspectArea 

EnterInspectArea 

PositionUpdated 
NextVehicleLoc. 
DrivingFinished 
WaitingFinished 
VehicleArrived 
Passenger InSight 

InspectorInSight 

GetAgentPosition 
GetPTStopPosition 
l-to-l Messaging 
Auction 
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• 
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+ 

• 

TABLE VII: The use of modelling elements in the example 

AgentPolis models. Core elements printed using normal font; 

newly added in italics. ( . reused core element, 0 modified 

core element, + newly added modelling element). 

and taxi drivers. Similarly to the ridesharing model, the 

taxi pricing model reuses a large part of framework's core 

modelling elements, with the majority of newly developed 

code concerning the auction protocol and the associated 

decision logic. In contrast to the ridesharing model, new 

activities related to travelling by taxi were added. Again, 

the taxi pricing model can be combined with the multimodal 

urban mobility model to study mutual interactions. 

D. Urban Parcel Logistics 

The urban parcel logistics model has been implemented 

for studying the performance of parcel delivery services. 

The model comprises two types of agents: van drivers and 

dispatchers. Because of its focus on the transport of goods 

rather than people, the model lies outside the main focus 

of the AgentPolis framework and, consequently, provided an 

interesting test of the flexibility of the framework's design. 

The framework has passed the test successfully - although 

the model required the implementation of several model­

specific elements at the environment level, these elements 

could be expressed using the AgentPolis abstractions. Specif­

ically, we added depots and delivery locations as new types 

of environment objects together with actions and sensors 

related to parcel loading and unloading. 

E. Public Transport Fare Inspection 

Finally, the fare inspection model has been implemented 

for studying the effectiveness of different strategies for con­

ducting ticket inspection patrols in public transport networks. 

The model takes travel demand, ticket options and inspector 

patrol schedules as the input and produces inspection and 

fare evasion statistics as the output. Different passenger and 

fare evasion strategies, including the ability of passengers to 

avoid inspection through learning and communication, are 

modelled. The model uses two types of agents: passengers 

and ticket inspectors. The implementation of the model 

reused a significant portion of the core AgentPolis elements 

but also required the addition of a number of elements related 

to performing ticket inspections. 

Because of their strong reliance on modelling ad hoc 

interactions and just-in-time decision making, security mod­

els, such as this one, are another important category of 

interaction-rich transport systems that can benefit from the 

fully agent-based modelling supported by the AgentPolis 

framework. 

F Additional Models 

We are currently considering the implementation of 

models of other ICT-powered transport systems, including 

demand-responsive fleets of driverless cars, smart parking 

schemes and electrical vehicles sharing services. We believe 

that in their implementation, similarly to the models already 

implemented, it would be possible to reuse a large number 

of AgentPolis core modelling elements and that the exten­

sions and additions required would be expressible using the 

abstractions of the modelling ontology. 

VIII. DISCUSSION 

The positive experience with the development of several 

models confirmed the viability of the fully agent-based 

approach, and the AgentPolis framework in particular, to 

modelling interaction-rich transport systems. The five models 

implemented represent a diverse set of models, each testing 

the flexibility of the framework in a different way. The 

framework proved capable of supporting models with a low 

number of computationally intensive agents (e.g. ridesharing 

or parcel logistics) as well as models with millions of 

lightweight agents (multimodal urban mobility). The latter is 

important because it shows that the higher flexibility of the 
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fully agent-based approach does not come at the expense of 

degraded runtime performance of fully agent-based models. 

Furthermore, despite the diversity of the implemented mod­

els, the ratio between the reused and the newly developed 

code remained good, with the newly developed code mostly 

focusing on the logic specific to each model. Although 

in some cases significant extensions were necessary (in 

particular for parcel logistics and fare inspection models), 

they were easily accommodated by the framework. 

There are still a number of open issues, though. The 

development of AgentPolis models remains a non-trivial task 

and requires model developers with good software design 

and implementation skills. In some cases, there are multiple 

ways in which a certain behaviour can be expressed in the 

framework but only some of them allow the model to fully 

leverage the strengths of the framework and its tools. At 

the moment, the modeller can refer to the example models 

for guidance on which abstractions should be employed for 

which purposes; in the future, we plan to make such guidance 

explicit in a set of model design patterns. 

The above issue is also related to the fact that the simula­

tion logic concerning a certain fragment of the modelled phe­

nomena typically cuts across several modelling abstractions 

(in particular activities, actions, sensors and environment 

objects); the implementations of these abstractions thus need 

to be kept consistent, which is not easy. Although such 

a mutual dependency problem cannot be fully solved and 

affects all extensible simulation platforms, there are ways in 

which the burden on the modeller can be reduced and which 

we consider for the future versions of the framework. A usual 

way to address the dependency problem would be to provide 

a set of well-defined and encapsulated extensions points, 

which would reduce the need to modify core modelling 

elements and consequently shield the developer from having 

to understand their exact interdependencies. This approach 

would be particularly efficient if the scope of the framework 

is narrowed. Focusing, e.g., solely on modelling on-demand 

mobility services (such as ridesharing) would allow fixing 

the majority of lower-level modelling elements; the model 

developer would then only implement higher-level model 

logic governing the arrangement of rides but not their actual 

execution. In a longer run, the maintainability and extensibil­

ity of the framework could be improved by employing more 

modular programming abstractions - such as traits or lambda 

expressions - available in some progressive programming 

languages now and coming to Java in a near future. 

The AgentPolis framework currently provides the 

strongest support for modelling the environment and agent­

to-environment interactions. The support for modelling agent 

behaviour, on the other hand, is relatively basic, with activ­

ities and reasoning modules as the only supporting abstrac­

tions. This is partly intentional because of the diversity of 

agent behaviours and the notorious difficulty to provide flex­

ible abstractions for programming general agent behaviour. 

That said, we plan to improve the support for behaviour 

modelling by providing simple yet proven behaviour pro­

gramming abstractions such as finite state machines. 

IX. CONCLUSIONS 

We have developed a modular framework for the im­

plementation, execution and analysis of simulation models 

of interaction-rich transport systems. The framework fully 

adopts the agent-based modelling paradigm, which makes it 

very versatile and capable of modelling systems with com­

plex ad hoc interactions and just-in-time decision making. 

We have used the framework to implement models of five 

different transport systems. The positive experience obtained 

has confirmed the effectiveness of the fully agent-based 

approach in general, and of the AgentPolis framework in 

particular, in quickly building models of different kinds of 

interaction-rich transport systems. 
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Mixed-Reality 
Testbeds for 
Incremental 
Development of 
HART Applications
Michal Jakob, Michal Pěchouček, Michal Čáp, Peter Novák 
and Ondřej Vaněk, Czech Technical University

An incremental 

process for developing 

human-agent-robot 

applications uses 

mixed-reality testbeds 

of varying fidelity 

and size.

to develop such applications. Because of the 
requirements of efficiency, reliability, and 
robustness of such systems in real-world 
conditions, no development methodology 
will be effective without strong support for 
realistic evaluation and testing.

In contrast to standalone software sys-
tems, the operation of HART applications 
depends on factors beyond the actual soft-
ware logic—in particular, on the character-
istics of the hardware (sensors, actuators, 
and communication links), the dynamics of 
the environment, and the behavior of the 
humans involved. A reliable assessment re-
quires a testbed that approximates these 
factors with a sufficient level of fidelity.  
In general, testing an application in the 
full target configuration (that is, with the 
complete set of hardware assets and human  
individuals operating within the target 
physical environment) provides the most  

reliable assessment. Unfortunately, such full- 
configuration tests are expensive in terms of 
money, time, and resources, and could carry 
substantial risks—for example, testing a 
collision avoidance functionality between 
unmanned aerial vehicles (UAVs). This 
makes full-configuration testing impractical 
in the early stages of application develop-
ment, when developers must perform a lot 
of evaluation and testing quickly to assess 
multiple design options.

To reduce costs and risks, application de-
velopers can employ simplified testbeds that 
approximate the target application setup. 
These testbeds can fully or partially replace 
the environment, hardware, and human  
actors with computational models, albeit at 
the expense of introducing potential assess-
ment errors. Using computational models is 
common in many areas of engineering, in-
cluding the development of robotic systems.1

Thanks to technological progress in recent years, autonomous robotic 

assets now play a role in many real-world endeavors. With contin-

ued demand for applications involving a mixture of human, agent, and robot 

teams (HARTs), there’s a growing need for efficient methods and processes
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In the case of HART applications, 
however, determining which parts of 
the application to approximate with 
computational models is difficult due 
to the large number of involved enti-
ties and their dependencies. In this 
article, we address this issue and lay 
the foundations for an approach that 
balances assessment cost and accu-
racy throughout the development 
process. We propose and formalize 
the concept of incremental multi­
level mixed-reality development, 
which lets us use mixed-reality test-
beds of various sizes and virtualiza-
tion levels in a way that maximizes 
the effectiveness of HART applica-
tion development.

This approach arose from our ex-
perience with the AgentScout proj-
ect (see Figure 1), which focuses on 
developing coordination algorithms 
for mixed teams of mobile robots, 
static sensors, and human patrols.2 
Our work dealt with implement-
ing the ability for teams of UAVs to 
track mobile targets autonomously, 
with only high-level supervision 
by a human operator. We have dis-
cussed some of the ideas underlying 
the proposed framework in previous 
writings about using simulations to 

accelerate the development of multi
agent applications.3 We also fol-
lowed this approach in the develop-
ment of a piracy countermeasure 
coordination system for the AgentC 
project, as well as in the process of 
porting collision-avoidance algo-
rithms to UAVs in the AgentFly proj-
ect.4 For other work in the field, see 
the sidebar “Related Work on Mixed  
Reality.”

Multilevel Mixed-Reality 
Testbeds
In general, there are different ways to 
approximate target deployment setup 
to make application tests faster and 
less expensive. Because our interest 
is in multi-entity systems involving 
several human actors and robotic 
assets, we consider two principal  
dimensions in which the approxima-
tion can proceed:

•	 the level of virtualization at which 
the target setup is represented, and

•	 the number of entities in the test 
scenarios.

We could introduce other approxima-
tion dimensions as long as they allow 
us to trade test costs for test accuracy.

Approximation Dimensions
The virtualization level denotes how 
much the target application setup  
is virtualized in a given testbed  
configuration—that is, how many 
parts are replaced with synthetic com-
putational models. At one extreme, 
the full target setup uses no virtual-
ized entities—only physical hardware 
platforms and human actors. Starting 
from the zero-virtualization setup l0, 
we replace individual entities of the ap-
plication with computational models. 
This process of gradual virtualization 
gives rise to a sequence of virtualiza-
tion levels, labeled l0, l1, …, ln, in which 
ln is a completely virtualized setup with 
fully synthetic computational repre-
sentations of system entities. Between 
the two extremes lie mixed-reality  
testbeds, such as hardware-in-the-loop 
simulations or testbeds involving hu-
man actors in virtual reality. Within 
a single testbed configuration, we can 
assign different virtualization levels to 
different entities. In most cases, a lower 
virtualization level facilitates more re-
liable testing but consumes more time 
and resources. The core idea underly-
ing our development process is to start 
at a relatively high system virtualiza-
tion level and then iteratively decrease 
it until we reach the target deploy-
ment setup.

The other dimension along which 
we can approximate the target appli-
cation setup is the number of auton-
omous entities with which the appli-
cation is tested. Instead of having the 
same full number of robots and/or 
humans as in the full application, we 
can perform initial development and 
testing with only a subset of entities. 
We call the number of entities used 
the size of a testbed configuration.

Reducing the testbed size generally 
leads to cost savings, especially when 
physical hardware or human actors 
are involved. Reducing the number 
of entities below a certain threshold, 

Figure 1. The AgentScout project focuses on tracking mobile targets and patrolling 
areas and perimeters with teams of unmanned aerial vehicles. Mixed-reality 
testbeds helped develop the algorithms for coordinating multiple vehicles.
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however, can undermine the ability 
to test collective behavior properties.

Testbed Configurations  
and Fidelity
To specify the distribution of virtu-
alization levels in compact form, we 
define testbed configuration s as a 
vector s = (s0, s1, …, sn), where n is 
the number of virtualization levels, 
and s is the number of entities mod-
eled at the corresponding virtualiza-
tion level. The testbed configuration’s 
size (the number of entities used) then 
corresponds to η σ( ) =

=∑ sii

n

0
. Target 

configuration st represents the entire 
target system, with no virtualization. 
Typically, st will be of the form st = 
(k, 0, …, 0) for some k ≥ 0.

We can visualize the space of all 
possible testbed configurations in a 
plane, as shown in Figure 2. The hor-
izontal axis denotes the testbed con-
figuration sizes; the vertical axis rep-
resents the aggregate virtualization 

level, defined as a weighted average of 
virtualization levels over all the enti-
ties in the given testbed configuration.

Unless the testbed corresponds to the  
target configuration st, the applica-
tion’s test performance can differ from 
its performance in the target configu-
ration. To capture this difference, we  

introduce the concepts of testbed 
error and testbed fidelity. The test-
bed error e(s) ∈ [0, ∞) is the dis-
tance between state space execution 
traces produced using the given test-
bed configuration and those using the 
target configuration, averaged over all 
possible application runs. The testbed  

V irtual reality deals with ways for a human user to 
observe and interact with nonexistent virtual 
worlds.1 In mixed reality, the agent observes a world 

that is partly real and partly virtual. The concept of a reality-
virtuality continuum embodies a continuous scale, rang-
ing from fully real to fully virtual worlds.2 Between the two 
extremes stands mixed reality, typically implemented either 
as augmented reality (in which perception of the real world 
is augmented with virtual objects) or augmented virtuality 
(the virtual world is augmented with elements of physical 
reality). Current research in mixed reality mostly concerns 
interface devices that let a human user observe and inter-
act with mixed-reality worlds.

Developers of control programs for autonomous robotic 
systems routinely use sophisticated simulators to test their 
programs prior to deployment on target hardware. To fur-
ther increase the fidelity of such testing, they can include 
one or more physical hardware assets in the simulation. 
Such simulations are, depending on the context, termed 
hardware-in-the-loop simulations (HILs), hybrid simulations 
(HS), or mixed-reality simulations (MRSs).3–5

The idea of evaluating control algorithms for multirobot 
systems in environments that mix both real and simulated 
entities is over 20 years old. An initial attempt dealing with 
simulation of industrial robots was published in 1989.6 More 
recently, researchers have used mixed-reality simulations in 
the development of autonomous robotic assets. Ian Chen 
and his colleagues introduced a mixed-reality simulation  

library for the Gazebo 3D mobile robot simulator.5 Using 
this library, a real hardware robot can interact with the 
Gazebo simulated world, which can both augment the real 
robot’s environment with virtual objects and provide visual 
feedback on the state of the robot’s perception through 
3D visualization. Others have used hybrid and hardware-in-
the-loop simulations for autonomous underwater vehicles.
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Figure 2. The space of testbed configurations with different combinations of testbed 
size and level of virtualization. The target configuration corresponds to the bottom 
right corner.

Ag
gr

eg
at

e 
le

ve
l o

f v
irt

ua
liz

at
io

n

Fully
simulated

Fully real

(0, 0, ..., 0, 1)

(0, 0, ..., 1, 0)

. .
 .

1 agent

(1, 0, ..., 0, 0)

(0, 0, ..., 0, 2)

(0, 0, ..., 1, 1)

. .
 .

2  agents

(2, 0, ..., 0, 0)

(0, 0, ..., 0, n)

(0, 0, ..., 1, n – 1)

. .
 .

n agents

(n, 0, ..., 0, 0)

. . .

. . .

. . .

. . .

. . . .

Size (no. of agents)

Mixed
reality

IS-27-02-Jako.indd   21 4/26/12   2:52 PM
65



22		  www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

H u m a n - A g e n t - R o b o t  T e a m w o r k

fidelity j(s) = 1 if e(s) = 0—that is, 
when a testbed configuration fully 
replicates the behavior of the target 
setup. Otherwise, j(s) = tanh[1⁄e(s)].

The higher the fidelity of a testbed, 
the more accurate the assessments 
obtained on it. We can use a different 
sigmoid function for the fidelity cal-
culation, as long as it maps the test-
bed error in the (0, 1] interval.

Comparing Testbeds
The core of the proposed approach to 
HART application development is it-
erative evaluation in gradually more 
and more realistic setups. Expressed 
in terms of testbed configurations, the 
incremental process should use a se-
quence of testbed configurations with 
increasing fidelity. Unfortunately, in 
practice, determining such a sequence 
isn’t directly feasible, because we 
can’t determine testbed fidelity with-
out performing tests on the full target 
configuration and comparing results.

Instead, we use an approximate fi-
delity ordering based on the follow-
ing assumption, which is valid in 
most domains: a testbed configura-
tion s ′ is expected to have higher fi-
delity than s if

•	 testbed size increases while the vir-
tualization level does not increase, or

•	 the virtualization level decreases while 
the testbed size does not decrease.

More formally, we define the ap­
proximate fidelity ordering relation ⊱ 
of testbed configurations as follows: 
for configurations s = (s0, …, sn) and 
s ′′ = (s′

0
, …, s′

n
), we denote s ′ ⊱ s if at 

least one of the following holds:

•	 there exists a testbed configu-
ration s ′′ such that s ′ > s ′′ > s 
(transitivity);

•	 for all i, s′
i 
 ≥ si, and there exists 

j such that s′
j
 > sj and thus h(s) > 

h(s); or

•	  h(s ′) = h(s), and there exists j such 
that s′

j
 > sj, and for all i < j, s′

i
 ≥ si.

We use the approximate testbed fi-
delity ordering to navigate the space 
of testbed configurations during the 
development process.

Virtualization Levels in HART 
Applications
For applications involving human-
agent-robot teams, we can use specific 
virtualization techniques. For robotic 
hardware entities, these include the 
following, listed in decreasing order 
of level of virtualization (L):

•	 Fully simulated hardware (LFS).
A hardware asset is replaced by a  
fully synthetic computational model, 
such as an out-of-the-box robotic 
simulator like Gazebo, able to sim-
ulate the physical and electronic 
properties of several different ro-
botic platforms.

•	Hardware-in-the-loop (LHIL). Even 
the most sophisticated robotic simula-
tors don’t capture all the phenomena 
that could arise in a real hardware as-
set. We can use a hardware-in-the-
loop setup to increase the testbed’s 
hardware fidelity. We test a hard-
ware asset in a laboratory setting, 
with sensory input provided by a 
simulator, and actuator signals con-
trolling a simulated physical model. 
This approach is often used to ver-
ify the function of hardware plat-
form electronic and communica-
tion subcomponents and is therefore 
useful in single-robot scenarios.

•	Augmented reality or hybrid simu­
lation (LHS). As a next step toward 
the full hardware testbed, we can use 
an augmented reality or hybrid sim-
ulation. Hardware assets operate in 
the target physical environment, but 
the simulator augments their sensory 
inputs with objects that exist only 
in the simulation. This approach is  

particularly useful in multiagent 
scenarios where we want to test in-
teraction between multiple robots 
but fewer than the target number of 
physical robots are available.

•	Full hardware (L0). Robot as-
sets are represented by target ro-
botic platforms operating and  
interacting in the target physical 
environment.

Virtualization techniques involving 
human entities include the following, 
again listed in decreasing order of 
virtualization:

•	Computational behavior models 
(LBM). We substitute computational 
behavior models for human ac-
tors. We can construct the models 
manually according to an expert 
input, or they can be learned au-
tomatically from past observations 
of human behavior. We can employ 
different models of human decision-
making, such as prospect theory, 
bounded rationality, or quantal- 
response equilibrium.

•	Data feeds about human behav­
ior (LDF). The testbed replays data 
feeds of past real human behavior. 
This type of virtualization typi-
cally provides only a unidirectional 
link between the human actors and 
the rest of the application; in other 
words, the humans cannot react to 
the output of the application.

•	Virtual reality (LVR). Real humans 
are involved, but instead of operat-
ing directly in the target environ-
ment, they work in its virtual re-
ality approximation. This lets us 
test aspects of human behavior that 
are hard to capture with computa-
tional models and facilitates testing 
of phenomena such as bounded ra-
tionality, irrational behavior, or the 
effect on decision-making of im-
mediate mental attitudes, such as 
stress, fear, anger, or joy.
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•	 Simulated human-machine inter­
action (LSI). Real humans oper-
ate in the target environment, but 
some parts of their interaction with 
other entities remain simulated. 
This lets us test coordination algo-
rithms even with incomplete hard-
ware capability (sensory or other). 
The setup provides a human- 
oriented equivalent of hybrid sim-
ulations from the perspective of 
hardware assets.

•	Full human involvement (L0). 
Real humans act in the target 
environment.

Multilevel Incremental 
Development
The main reason for the concept of 
a testbed configuration is to provide 
a framework for describing iterative 
strategies for HART application de-
velopment. A key idea in determin-
ing such strategies is to use a se-
quence of testbeds with different test 
accuracy and cost so that each itera-
tion can provide the maximum feed-
back on design and implementation 
choices.

Cost
To explain this idea more accurately, 
we introduce the notion of iteration 
cost, expressed as cost(s1, s2), which 
represents the total cost for getting 
from an application that works cor-
rectly on testbed configuration s1 
to an application that works cor-
rectly on configuration s2. In gen-
eral, the overall iteration cost breaks 
down into. 

•	 the testbed cost of providing a test-
bed with configuration s2;

•	 the development cost of modifying 
the application logic to work cor-
rectly on testbed s2; and

•	 the test cost of verifying that the 
modified application works cor-
rectly on testbed s2.

Iteration Strategy
The ultimate challenge in our pro-
posed methodology is to find the op-
timal iteration strategy through the 
space of testbed configurations—
that is, a sequence of configura-
tions s0, s1, …, sn such that sn = st 
and cost

i

n
i i= −∑ 1 1( , )σ σ  is minimal.

Unfortunately, except for trivial 
cases, determining the optimal strat-
egy a priori is not feasible in real-
world cases because it depends on 
the specifics of each application and 
on the uncertainty of cost estimates. 
However, assuming that iterations 
are faster on more highly virtualized 
testbeds, a reasonable strategy is to 
start with those, even though they 
might have lower fidelity. After that, 
as uncertainty about application de-
sign and underlying logic decreases, 
development should move toward 
higher-fidelity testbeds, even though 
they’re likely to have higher test cost 
and therefore allow fewer tests. The 
following algorithm illustrates such 
an iteration strategy:

1.	 Choose an arbitrary starting con-
figuration s.

2.	Develop a testbed with the config-
uration s.

3.	 Develop, modify, and debug the 
application until it works correctly  
on s.

4.	 If s = st, end.
5.	 If not, choose another configura-

tion s ′ such that s ′ ⊱ s, and start 
again from step 2 with s ′.

Typical scenarios involving several 
virtualization levels and multirobot 
systems will offer many ways to con-
struct the sequence of testbed config-
urations. For instance, the developer 
can choose whether to first scale the 
algorithms with respect to the num-
ber of simulated robots and only 
then start to port the system to real 
hardware, or the other way around. 

Either way, the core of the iterative- 
development strategy should remain: 
to gradually refine the system setup 
so as to approach the target deploy-
ment scenario.

In general, the space of testbed con-
figurations has as many dimensions 
as there are virtualizations levels, 
making the number of possible itera-
tion strategies huge. A better under-
standing of the structure and proper-
ties of the error, fidelity ordering, and 
iteration cost functions is therefore 
essential for deriving intuitive or pos-
sibly even more formal rules for de-
termining the iteration strategy.

Iterative Development 
of a Multi-UAV Tracking 
Application
We have used our approach to de-
velop a coordination mechanism for a 
team of UAVs cooperatively tracking 
a number of humans in an urban en-
vironment. Besides a fully simulated 
setup (LFS) and a fully physical tar-
get setup (L0), we also considered an 
intermediate augmented-reality setup 
(LHS). The intermediate setup was nec-
essary because we only had two hard-
ware platforms available—Unicorn  
UAVs from Procerus Technologies—
whereas we had to test the coordi-
nation mechanism with larger teams  
of UAVs.

Starting from a fully simulated 
setup, there are numerous ways to 
traverse the space of testbed configu-
rations; Figure 3 depicts a fragment 
of the configuration space. The un-
derlying directed graph connecting 
the configurations corresponds to the 
approximate fidelity-ordering relation  
described earlier. The two develop-
ment strategies shown correspond to 
the following two extreme cases.

Following the first strategy, we 
would first scale the coordination 
algorithms to the target number of 
simulated UAVs in a fully simulated  
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environment. Then we would port 
the control code running on indi-
vidual UAVs from the simulation to 
physical UAVs, one by one, embedded 
in an augmented-reality environment. 
At each step, we would go through 
the full port-extend or adapt-test-
evaluate cycle until we reach the 
desired performance level. This way, 
development would eventually re-
sult in all aircraft control agents de-
ployed and working correctly on tar-
get hardware UAV platforms with 
augmented sensory input feeds. In the 
final round of iterations, we would 
disconnect individual UAVs from 
the augmented-reality environment 
and place them in the target physical  
environment.

With the other strategy, we would 
initially work with only one UAV. 

Immediately after getting its control 
logic working correctly in the full 
simulation, we would port it to the 
UAV embedded in the augmented re-
ality and then, after adapting it to 
work correctly, to a physical UAV. 
Once the system is working correctly 
on a single hardware UAV in the 
physical environment, we would add 
additional UAVs.

The choice between the two strat-
egies typically depends on which 
is more uncertain: realizing collec-
tive team behavior or deploying the 
control logic on the target hardware 
platform. In this particular case, we 
chose the first approach.

Similarly, human entities that are 
the tracked objects can also be in-
volved at different virtualization lev-
els. Initially, we can represent all  

human subjects with computational 
behavior models. In the second step, 
we can approximate some human ac-
tors in the minimal virtual reality set-
tings (for example, using a joystick 
with a GUI). The third step would 
involve real humans moving in the 
target physical environment but with 
simplified interaction with the ro-
botic assets.

The approach described is just a 
first step toward a comprehen-

sive methodology for incrementally 
developing HART applications using 
mixed-reality testbeds. Further re-
search is needed to better understand 
how different combinations of testbed 
sizes and virtualization levels affect 
testbed fidelity and individual com-
ponents of iteration cost. Although 
it is likely that strong, prescriptive 
iterative-development guidelines can 
be found only for specific subcatego-
ries of HART applications, the pro-
posed common conceptual frame-
work allows for the comparison of 
different guidelines and the transfer  
of methodological knowledge across 
domains.
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Generalised Time-Dependent Graphs
for Fully Multimodal Journey Planning

Jan Hrnčı́ř1 and Michal Jakob1

Abstract— We solve the fully multimodal journey planning
problem, in which journey plans can employ any combination of
scheduled public transport (e.g., bus, tram and underground),
individual (e.g., walk, bike, shared bike and car), and on-
demand (e.g., taxi) transport modes. Our solution is based on
a generalised time-dependent graph that allows representing
the fully multimodal earliest arrival problem as a standard
graph search problem and consequently using general shortest
path algorithms to solve it. In addition, to allow users to
express their journey planning preferences and to speed up
the search process, flexible journey plan templates can be used
in our approach to restrict the transport modes and mode
combinations permitted in generated journey plans. We have
evaluated our solution on a real-world transport network of the
city of Helsinki and achieved practically usable search runtimes
in the range of hundreds of milliseconds.

I. INTRODUCTION

The growing number of transport options available in
modern cities raises the importance of tools that support
travellers in finding journey itineraries that make the best
use of available transport services while respecting traveller’s
individual needs. Existing journey planners fulfil such re-
quirements only to a limited degree, in particular as they
often only consider a certain subset of transport modes and
their combinations, and as they only provide limited ways
for users to express their preferences.

The journey planning problem is most often formalised
as the earliest arrival problem (EAP), i.e., the problem of
finding the earliest arrival at a destination given a departure
date and time from an origin. The earliest arrival problem has
been widely studied and numerous algorithms and speed-up
techniques exist for solving it on road network graphs and
networks of public transport (PT) services. However, very
limited work has been done on solving the earliest arrival
problem for journey plans allowing general combinations of
individual and public transport modes, the work of Horn [7]
and Yu and Lu [13] being notable exceptions.

In this paper, we aim to address this gap. More specifically,
we focus on solving the fully multimodal variant of the EAP.
We use the term fully multimodal in order to stress that we
consider modes and combinations thereof that go beyond
what is supported in existing multimodal journey planners.
In our approach, a journey can consist of any combination
of scheduled PT modes (e.g., bus, tram and underground),
individual modes (e.g., walk, bike, shared bike and car), and
on-demand (e.g., taxi) modes.

1{hrncir,jakob}@agents.fel.cvut.cz, Agent Technology
Center, Dept. of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, Praha, Czech Republic

We adopt a representation-centric approach to solving the
fully multimodal EAP. Thus, instead of providing complex,
purpose-specific journey planning algorithms, we introduce
a generalised time-dependent (GTD) graph that allows rep-
resenting the fully multimodal EAP as a standard graph
search problem and consequently use general shortest path
algorithms to solve it. We treat the problem in a deterministic
setting assuming no uncertainty in any of the attributes of
the planning graph.

Along with the GTD graph representation, we also in-
troduce the concept of journey plan templates. Journey
plan templates provide a powerful way of parameterising
the operation of the planner and allow the user or the
administrator of the journey planner to obtain plans that
best meet their constraints and preferences. In addition, the
templates constrain the search space and therefore speed up
journey planning.

II. RELATED WORK

As already indicated, the earliest arrival problem is a
widely studied problem when considered separately for plan-
ning on road networks and for planning on networks of
scheduled PT services. Existing work covers the whole spec-
trum from formal models of the problem, through solution
algorithms up to practical consumer-oriented planning tools
and services.

The road network variant of the EAP typically employs
the direct graph representation of the road network. The road
network is represented as a weighted directed graph G =
(V,E, ρ) where the set of nodes V represents junctions and
the set of edges E represents roads. Each edge (u, v) ∈ E
is assigned a weight ρ((u, v)) specifying the time needed
to travel across this edge. The road network graph is very
sparse, almost planar, and usually has hierarchical proper-
ties. These properties are used to enhance basic shortest-
path algorithms, such as A*, with speed-up techniques that
accelerate graph search. The best known speed-up techniques
include SHARC [2], Landmark A* (ALT) [6], highway hier-
archies [11], and transit-node routing [1].

For the scheduled PT variant of the EAP, there are two
main ways to represent public transport timetables as a search
graph. In the time-expanded approach [9], each event at
a stop, e.g., the departure of a train, is modelled as a node
in the graph; in the time-dependent approach [3], the graph
only contains one node for each stop. To accelerate the search
process, many speed-up techniques for basic shortest-path
algorithm, e.g., Dijkstra’s algorithm, have been proposed,
including the multi-level graph approach [12], access-node
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routing [4], and core-ALT [8]. Many of these techniques have
been implemented as part of public online travel planning
services.

In contrast to the EAP for road networks and for networks
of scheduled PT services, only very limited research exists
on the fully multimodal variant of the EAP. One of few
exceptions is the planner proposed by Horn [7] which sup-
ports combinations of scheduled PT and on-demand transport
services. A limitation of the Horn’s approach is that the on-
demand mode can only appear as the first or the last non-
walk leg of a journey, i.e., the on-demand mode can only
serve as a feeder service. The second attempt at solving the
fully multimodal EAP is provided by Yu and Lu [13] who
use a genetic algorithm to construct the sequence of transport
modes in a journey plan. In their experiments, Yu and Lu
permit walk, bus, underground, and taxi modes. However,
the individual modes of transport (bike, shared bike and car)
are not used.

Despite the limited research on the fully multimodal EAP,
several online services exist capable of planning journeys
employing non-trivial combinations of transport modes. For
example, the AnachB1 planner supports the combination of
car and scheduled PT services. A major weakness is that
the parking place (P+R) is not chosen optimally by the
planner but needs to be selected manually by the user. The
OpenTripPlanner2 supports the combination of walking and
riding a shared bike borrowed and later returned to one of
the many city’s bike sharing stations. However, the technical
approaches behind these services have not been published
and no guarantees about their optimality are known.

III. GENERALISED TIME-DEPENDENT GRAPH

As mentioned in the introduction, our approach to solving
the fully multimodal EAP relies on the newly proposed
generalised time-dependent (GTD) graph, which allows rep-
resenting the combined road network (for individual and
on-demand modes) and PT network (for PT modes) in a
single structure. The GTD graph is a generalisation of the
time-dependent graph with constant transfer times defined by
Pyrga et al. [9] (the time needed to make a transfer between
two lines at a stop is defined as a constant for each stop).
The generalised time-dependent graph G is constructed from
the following three structures: (1) time-dependent graph GT

for the PT network; (2) network graph GN for the network
of pavements, cycleways, and roads; (3) graph connector D
of the time-dependent graph GT and the network graph GN .
The GTD graph’s structure is shown in Figure 1. Below, we
describe each part of the construction in detail.

A. Time-dependent Graph

To model the network of scheduled PT services (e.g.,
bus, tram, underground), we use a time-dependent graph
GT = (V T , ET , ρT ) with constant transfer times [9]. We
have chosen this model for its better performance than the
time-expanded model [10]. Let S be the set of stop nodes

1http://anachb.at/
2http://emtvalencia.es/geoportal/?lang=en_otp

GTD graph G

network graph GNtime-dependent graph GT

u ∈ V T v ∈ V N(u, v) ∈ D

(v, u) ∈ D

connector D
graph

Fig. 1: The structure of a GTD graph

corresponding to the stops that are physically present in the
PT network. A stop node can be served by one or more
routes. A route is a set of PT vehicle trips that are known to
the public under the same route number identifier, e.g., the
tram line number 3. Assuming that n is the number of routes
using a stop u ∈ S, then n route nodes Ru = {ru1 , . . . , run},
one for each route, are associated with stop u. Route nodes
are virtual nodes without corresponding counterparts in the
real world and they are used to model constant transfer times.
Without route nodes, it would not be possible to model non-
zero transfer times between different routes at the same stop.
The set of all route nodes is denoted as R = ∪u∈SRu. The
set of nodes V T of the time-dependent graph GT is then
defined as V T = S ∪R.

The set of edges ET of the time-dependent graph GT is
defined as ET = A ∪ B ∪ C where A denotes the set of
edges between route and stop nodes, B denotes the set of
edges between stop and route nodes, and C denotes the set
of route edges between route nodes of the same route. Edges
(v, w) ∈ A ∪B are called transfer edges. Formally, the sets
are defined as follows:
A = ∪u∈S{(ru, u)|ru ∈ Ru}
B = ∪u∈S{(u, ru)|ru ∈ Ru}
C = ∪u,v∈S{(ru, rv)|ru ∈ Ru ∧ rv ∈ Rv} where ru

and rv are visited successively by the same route

The link-traversal function f ′(v,w) : N → N is associated
with each edge (v, w) ∈ C and defined as f ′(v,w)(t) := t′

where t is the departure time from v and t′ ≥ t is the earliest
possible arrival time at stop w. We assume that overtaking
of vehicles on edges of the same route is not permitted. This
means that the earliest arrival of a PT vehicle to a route node
rwj corresponds to the earliest departure from an adjacent
departure route node rvi .

Let the function gv return the constant transfer time at
stop v. For example in Figure 2, the transfer from a route
node rv0 to rv1 and vice versa takes time gv . Then the travel
duration ρT (v,w) : N→ N of traversing an edge (v, w) ∈ ET
from v at the departure time t is defined as

ρT (v,w)(t) :=


0 if (v, w) ∈ A
gv if (v, w) ∈ B
f ′(v,w)(t)− t if (v, w) ∈ C

B. Network Graph

To model the network for individual modes of transport
(e.g., walk, bike, shared bike and car) and on-demand modes
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of transport (e.g., taxi), we use the network graph GN =
(V N , EN , ρN ) defined as a weighted directed graph, where
the set of nodes V N represents junctions and the set of edges
EN represents roads, pavements, and cycleways. The length
of each edge (v, w) ∈ EN is given by the weight function
ρN : EN → R+

0 .

C. Graph Connector

In order to plan multimodal journeys using combinations
of individual, on-demand, and PT modes of transport, the
time-dependent graph GT and the network graph GN need
to be interconnected. Let θ : S → P(VN ) be a mapping
that associates with each stop v ∈ S a set of nodes θ(v) ∈
P(VN ) from the network graph. For the underground stops
and large PT stations, the mapping assigns a stop a set of
corresponding entrances from the network graph GN . For
the other PT stops, the mapping assigns to a stop a nearest
pavement node from the network graph GN .

Then the graph connector D of graphs GT and GN is
defined as a set of interconnecting edges:

D = {(v, w)|(v ∈ S ∧ w ∈ θ(v)) ∨ (v ∈ θ(w) ∧ w ∈ S)}
A length in metres ρd((v, w)) = |v, w| is assigned to each
(v, w) ∈ D (the Euclidean distance between v and w is
used).

D. GTD Graph

Finally, we can use the described structures to construct
a unified network graph that supports multimodal journeys
that use any combination of PT, individual, and on-demand
modes of transport. Before defining the GTD graph, we
define the edge weight ρ, the permitted modes function µ,
and the permitted mode change predicate χ.

Firstly, let t be the departure time from node v ∈ V and
vel ∈ R+ the travel speed in metres per second. Then the
edge weight ρ(v,w) : N×R+ → N returns the travel duration
(in seconds) of traversing the edge (v, w) ∈ E at time t
using travel speed vel:

ρ(v,w)(t, vel) :=

 ρT ((u,w), t) if (v, w) ∈ ET
ρN ((v, w))/vel if (v, w) ∈ EN
ρd((v, w))/vel if (v, w) ∈ D

Secondly, assuming M = {m1, . . . ,ml} is the set of all l
supported modes of transport, the function µ : E → P(M)
returns the set of permitted modes of transport µ((v, w)) ∈
P(M) at an edge (v, w) ∈ E. In our approach, we currently
use the following modes of transport: walk (W), bike (I),
shared bike (S), car (C), taxi (X), bus (B), tram (T), and
underground (U). Especially in the network graph GN , there
are usually several modes of transport permitted to use
a given edge, e.g., car, taxi, and bike.

Thirdly, we need to capture the fact that certain changes
of mode of transport are possible only at some nodes. For
example, changing from walk to shared bike or vice versa is
only possible at bike sharing stations. Formally, the permitted
mode change predicate χv :M ×M is associated with each
node v ∈ V and χv(m1,m2) returns true if it is possible to
change the mode of transport from m1 to m2 at node v.
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Fig. 2: An example of the GTD graph. Edges are annotated
with the permitted modes of transport. Stop nodes v, w ∈ S
represent two tram stops that are connected by one tram
route connecting four route nodes (rv

′
i , r

v
1 , r

w
0 , r

w′
j ). Route

nodes Rv = {rv0 , rv1} and Rw = {rw0 } associated with the
respective stop nodes v and w are highlighted with grey
background. Edges from the time-dependent graph GT are
also annotated with their weight (edge traversal time).

As an example, let SN ⊂ V N be the set of bike sharing
stations and PN ⊂ V N be the set of park and ride (P+R)
parking places. For the modes of transport currently used,
the predicate χv(m1,m2) for each v ∈ V and m1,m2 ∈M
is defined as follows (t denotes true, f denotes false):

χv(m1,m2) :=



t if v ∈ V T (1)
t if v ∈ SN ∧ ((m1m2 = WS)

∨(m1m2 = SW)) (2)
t if v ∈ PN ∧ ((m1m2 = CW) (3)
t if m1 = m2 (4)
f otherwise (5)

The defined predicate captures the five following rules:
(1) change of mode of transport is not restricted for any
stop v ∈ V T ; (2) change from walk to shared bike or vice
versa is possible only at bike sharing stations v ∈ SN ;
(3) change from car to walk is possible only at P+R parking
places; (4) change from m1 to m2 = m1 is not a change
(it is always permitted to continue with the same mode of
transport); (5) change of modes is not permitted in all other
cases.

Finally, we define the generalised time-dependent graph
as a weighted directed graph G = (V,E, ρ, µ, χ) where V =
V T ∪ V N and E = ET ∪ EN ∪D. An example of a GTD
graph is shown in Figure 2.

IV. JOURNEY PLANNING PROBLEM

In this section, we first describe the notions of a journey
leg and a journey plan. Then, we define the fully multimodal
earliest arrival problem.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2140

75



A. Journey Plan

Let the journey leg be a part of a journey plan that is
either covered by the traveller on foot or by a movement
by one and only one vehicle from one location to another.
Formally, the journey leg L = ((v1, w1), . . . , (vk, wk)) is
defined as a sequence of |L| = k edges (vj , wj) ∈ E.
Edges are a finer-grained decomposition of a journey leg
and represent the lowest-level, atomic parts of any journey
plan. Then the journey plan is a quadruple π = (P, σ, φ, ψ):

• P = (L1, . . . , Ln) is a sequence of |P | = n journey
legs Li.

• Function σ denotes the mode of transport σ(Li) ∈ M
that is used for journey leg Li.

• Function φ : E → N returns the departure time from v
for each edge (v, w) ∈ E.

• Function ψ : E → N returns the arrival time at w for
each edge (v, w) ∈ E.

Let L[j] be the j-th element of a sequence of elements L
and |L| be the number of elements in L. Let ξ(P ) be the
flattened plan constructed as the concatenation of all edges
in all journey legs Li ∈ P :

ξ(P ) = (L1[1], . . . , L1[|L1|], . . . , Ln[1], . . . , Ln[|Ln|])

B. Fully Multimodal Earliest Arrival Problem

The fully multimodal earliest arrival problem is a pair J =
(G, r), where:

• G = (V,E, ρ, µ, χ) is a GTD graph
• r = (o, d, t) is a journey request specifying an ori-

gin o ∈ V , a destination d ∈ V , and a time of departure
t ∈ N

A journey plan π = (P, σ, φ, ψ), where P = (L1, . . . , Ln), is
then a solution of the fully multimodal earliest arrival prob-
lem J = (G, r) if and only if all the following conditions
hold:

1) Journey plan starts at the origin:
o = v where (v, w) = L1[1]

2) Journey plan ends at the destination:
d = w where (v, w) = Ln[|Ln|]

3) All edges are present in the GTD graph:
∀(v, w) ∈ ξ(P ) : (v, w) ∈ E

4) Edges form a path in the GTD graph:
∀j ∈ {1, . . . , |ξ(P )| − 1} :
(v, w) = ξ(P )[j] ∧ (w, x) = ξ(P )[j + 1]

V. JOURNEY PLANNING PROBLEM WITH TEMPLATES

For the fully multimodal earliest arrival problem with tem-
plates, we introduce the notion of a journey plan template.
As mentioned in the introduction, journey plan templates
give users and journey planner administrators a powerful
way of parameterising the journey planner to obtain plans
that best meet their constraints and preferences. For instance,
a journey plan template that prefers environmentally friendly
modes of transport can be designed by a journey planner
administrator (e.g., a combination of walk and shared bike).

A. Journey Plan Template

A journey plan template constrain the journey plan in the
permitted combination of modes on the level of journey legs.
A journey plan template τ is defined as a regular expression
over the transport modes alphabet M . As an example, we
list three templates3:
• Taxi only: ˆX$
• Walk and PT: ˆW((B|T|U)W)*$
• Walk and shared bike: ˆW(SW)?$
We define several notions related to the journey plan tem-

plates. Let the word σ(L1) . . . σ(Ln) be the mode sequence
κ(P ) of a sequence of journey legs P = (L1, . . . , Ln).
Empty mode sequence κ(∅) = ε. We say that a sequence of
journey legs P match a journey plan template τ if and only
if the mode sequence κ(P ) matches the regular expression τ .
Next, let modes(τ) be the set of modes of transport that are
present in a template τ . Finally, the binary operator ‖ over
a mode sequence m1 . . .mn and a mode of transport m ∈M
is defined as follows:

m1 . . .mn‖m :=

{
m1 . . .mn if m = mn

m1 . . .mnm otherwise

B. Fully Multimodal EAP with Templates

The fully multimodal EAP with templates adds the notion
of journey plan template to the fully multimodal EAP. Thus,
the fully multimodal earliest arrival problem with templates
is a triple J = (G, r, τ), where:
• G = (V,E, ρ, µ, χ) is a GTD graph
• r = (o, d, t) is a journey request
• τ is a journey plan template

A journey plan π = (P, σ, φ, ψ) is then a solution of the
fully multimodal earliest arrival problem with templates J =
(G, r, τ) if and only if all the following conditions hold:

1) Journey plan π is a solution of the fully multimodal
earliest arrival problem J = (G, r).

2) Journey legs P = (L1, . . . , Ln) match the journey plan
template, i.e., σ(L1) . . . σ(Ln) matches τ .

VI. SOLUTION METHOD

In this section, we present a method to solve the fully
multimodal earliest arrival problem with templates using the
GTD graph representation. The method uses a contextual
view over the underlying GTD graph in order to use general
shortest path algorithms to find the journey plans in the
search space. This is enabled by storing the node context,
i.e., the time of arrival and the modes of transport sequence
used, in the contextual GTD graph.

A. Contextual GTD Graph

The contextual GTD graph is a view over an underlying
GTD graph. The contextual GTD graph serves two main
purposes. First, it allows filtering the available edges in the
GTD graph with respect to the permitted modes of transport
specified by a given journey plan template τ . Second, it

3POSIX Extended Regular Expression syntax is used.
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Function 1 Outgoing edges of a contextual node

Input: A contextual node (v, ta,ms) and a template τ
Output: A set of outgoing edges from (v, ta,ms) given τ

1: function OUT((v, ta,ms),τ )
2: O := ∅
3: for all (v, w) ∈ E do
4: for all m ∈ µ((v, w)) do
5: m′s := ms‖m
6: mprev := mn where ms = m1 . . .mn

7: a := χv(mprev,m)
8: b := m′s matches τ
9: if m ∈ modes(τ) ∧ a ∧ b then

10: t′ := ta + ρ(v,w)(ta, λ(m))
11: O := O ∪ ((v, ta,ms), (w, t

′,m′s))
12: end if
13: end for
14: end for
15: return O
16: end function

allows checking that the current partial journey plan matches
a given journey plan template τ during the search process.

Let us define the graph formally. The contextual GTD
graph Gτ over a GTD graph G = (V,E, ρ, µ, χ) us-
ing a journey plan template τ is defined as Gτ =
(Vτ , Eτ , ρ, µ, χ, λ). Vτ is a set of contextual nodes defined
as triples (v, ta,ms) where:
• v ∈ E is a node in the GTD graph
• ta ∈ N is the arrival time at v
• ms is a mode sequence κ(P ′) of a sequence of journey

legs P ′ from origin o (taken from the input journey
request r) to node v

The context of contextual nodes corresponds to a GTD
graph traversal at certain time using specific modes of
transport, cf. Figure 3.

d{W,I,S}a b c{W,I,S} {W,I,S}

GTD graph G

contextual GTD graph Gτ

(a, 8:00, ε) (b, 8:10,W)

(c, 8:30,WS)

(d, 8:35,WSW)

{W}

e

(e, 8:20,W)

Fig. 3: An example of a GTD graph and its corresponding
contextual GTD graph searched using the walk and shared
bike template. Origin is set to a at 8:00; destination is set
to d. Grey nodes b and c represent bike sharing stations.
The bottom part of the figure shows how the contextual
information is represented using the contextual nodes in the
contextual GTD graph Gτ .

Let the function λ : M → R+ returns the travel speed
λ(m) for a mode of transport m ∈ M . Then the set of

Function 2 Path to journey plan transformation

Input: A path K in Gτ
Output: A journey plan π = (P, σ, φ, ψ)

1: function DERIVEJOURNEYPLAN(K)
2: i := 0
3: for all ((v, ta,ms), (v

′, t′a,m
′
s)) ∈ K do

4: if ms 6= m′s then
5: i := i+ 1
6: Li := ()
7: σ(Li) := mj where m′s = m1 . . .mj

8: end if
9: Li := Li ◦ (v, v′)

10: φ((v, v′)) := ta
11: ψ((v, v′)) := t′a
12: end for
13: P := (L1, . . . , Li)
14: return (P, σ, φ, ψ)
15: end function

contextual nodes Vτ and the set of edges Eτ is constructed
using the origin contextual node (o, t, ε) and the function
OUT((v, ta,ms), τ) (cf. Function 1) that returns the outgoing
edges for a contextual node (v, ta,ms) and a template τ . At
line 9 of Function 1, it is checked that a mode of transport
m is present in the template τ , that a mode change from
mprev to m is permitted and that the current mode sequence
m′s matches the journey plan template τ .

The advantage of the contextual GTD graph is that unmod-
ified general shortest path algorithms (e.g., A* or Dijkstra)
can be used to find journey plans. This is enabled by
embedding the domain information (e.g., permitted modes
of transport and checking against a journey plan template)
in the contextual GTD graph.

From the implementation point of view, the contextual
GTD graph can be constructed on request. The nodes and
edges are created on request only when they are needed
during the search process of the respective shortest path
algorithm.

B. Algorithm Specification

Now we present how the contextual GTD graph is used
to solve the fully multimodal EAP with templates J =
(G, r, τ). The input of the algorithm is an instance of the
problem J = (G, r, τ) and the output is a journey plan
π = (P, σ, φ, ψ) that solves the problem J = (G, r, τ). The
algorithm works in two phases:

1) Shortest path algorithm on contextual GTD graph
2) Journey plan derivation
In the first phase, a general shortest path algorithm

(e.g., A* or Dijkstra) is used to find a path K =
((x1, x2), (x2, x3), . . . , (xk, xk+1)) of length |K| = k in
the contextual GTD graph Gτ = (Vτ , Eτ , ρ, µ, λ) from the
origin contextual node (o, t, ε) to the destination contextual
node (d, ·, ·). The edge weight function ρ(v,w) at line 10
of Function 1 returns the duration of traversing an edge
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TABLE I: Size of the Helsinki GTD graph

Graph name Graph Nodes Edges
Time-dependent graph GT 50,320 112,127
Network graph GN 207,240 585,937
Graph connector D - 14,980
GTD graph G 257,560 713,044

(v, w) ∈ E, therefore the journey plan is optimised with
respect to its duration (i.e., the earliest arrival problem is
solved).

In the second phase, the path K found in the con-
textual GTD graph Gτ is transformed into a jour-
ney plan π = (P, σ, φ, ψ). This is done using the
DERIVEJOURNEYPLAN(K) function, cf. Function 2. The
function iterates over edges ((v, ta,ms), (v

′, t′a,m
′
s)) ∈ K.

Every time the mode sequence is changed, a new journey leg
Li is created and its mode σ(Li) set. The edge (v, v′) ∈ E is
then added to the current journey leg Li using the operator ◦
that appends an element to a sequence and the departure
φ(v, v′) and arrival ψ(v, v′) is set.

It is important to note that if the shortest path algorithm
used in the first phase of the algorithm is optimal, then
the solution of the fully multimodal EAP with templates is
optimal with respect to journey plan duration and the journey
plan template τ .

VII. EVALUATION

Our proposed approach has been evaluated on real-world
PT and road network data for Helsinki. The main purpose of
the evaluation was to confirm that the GTD graph represen-
tation is flexible enough to allow successfully planning fully
multimodal journeys with a variety of mode combinations.
We were also interested in measuring how fast the GTD
graph can be searched using standard algorithms – the
runtimes results should, however, be treated as preliminary
because we have not yet applied any speed-up techniques or
other optimisation methods.

A. Data

Helsinki covers the area of 600 square kilometres.
Kalkati.net XML database dump4 provided by the Helsinki
Regional Transport Authority (HSL) has been used as the
data source for scheduled PT services. The data has been
converted to the widely used General Transit Feed Specifica-
tion (GTFS)5 data format which is then used to construct the
time-dependent graph GT . OpenStreetMap6 has been used
as a data source for the network graph GN . Basic statistics
about the size of the GTD graph and its components are
given in Table I. A fragment of the GTD graph is visualised
in Figure 4. Note that in Helsinki, there are currently no
bike sharing stations. For experimentation purposes, 150 bike
sharing stations have therefore been added – the locations
of the stations were chosen randomly with the uniform

4http://developer.reittiopas.fi/pages/en/kalkati.
net-xml-database-dump.php

5https://developers.google.com/transit/gtfs/
6http://openstreetmap.org/

walk only bike and walk PT roads

Fig. 4: Visualisation of a 2.4 km by 2.4 km fragment of
the Helsinki GTD graph. Edge colours denote the modes
of transport permitted at each edge, cf. legend. All other
combinations of modes (e.g., car and taxi, bike only) are
marked red. There are approximately 9,500 nodes and 27,700
edges in the visualisation.

distribution over the nodes V N of the network graph GN .
In addition, P+R parking places are not properly set in the
OpenStreetMap data. For experimentation purposes, 10 P+R
parking places were manually inserted into the map at the
border of the Helsinki city centre.

B. Experiment Settings

We used seven journey plan templates τ ∈ T7 for the
evaluation, cf. Table II. The templates have been chosen to
reflect the typical combinations of modes used in modern
multimodal transport systems. To allow a unified description
of the results, we treat the fully multimodal EAP (without
templates) as equivalent to the fully multimodal EAP with
templates using the empty template permitting any combina-
tion of modes.

A* and Dijkstra’s algorithms have been used to find
a journey plan π given J = (G, r, τ). A* uses a duration
heuristic h(v) calculated as h(v) = |v, d|/velmax where
|v, d| is the Euclidean distance between current node v and
destination node d, velmax is the speed of the underground
set to 120 km/h.

Following initial experiments, the better algorithm of the
two has been chosen for each template τ ∈ T7. The templates
τ ∈ T7 and their corresponding chosen algorithms are listed
in Table II. Consequently, all templates use A* except the
walk and PT template and car, walk and PT template where
the Euclidean distance heuristic slows-down the A* search
process [6] so the Dijkstra’s algorithm is used.
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TABLE II: Journey plan templates used in the evaluation,
along with the best performing algorithm for each template

Template name Template regexp Algorithm
Walk only ˆW$ A*
Bike only ˆI$ A*
Taxi only ˆX$ A*
Walk and PT ˆW((B|T|U)W)*$ Dijkstra
Car, walk and PT ˆCW((B|T|U)W)*$ Dijkstra
Walk and shared bike ˆW(SW)?$ A*
Empty template N/A A*

TABLE III: Average runtimes in milliseconds

Template name Short Medium Long
Walk only 24 135 417
Bike only 15 60 178
Taxi only 31 103 239
Walk and PT 488 817 939
Car, walk and PT 384 477 504
Walk and shared bike 87 223 440
Empty template 376 758 891

The set of instances of the fully multimodal EAP with
templates Q for the experiment were created in the following
way. First, n = 10,000 origin-destination-departure triples
Qt = ((o1, d1, t1), . . . , (on, dn, tn)) were sampled using the
uniform distribution over the coordinates of Helsinki area
and the uniform distribution over the time interval from 8:00
to 18:00 on 17 Jan 2013. The maximum origin-destination
distance was set to 40 km to exclude long trips that are not
usual in the urban setting.

Then the origin and destination coordinates were converted
to origin and destination nodes from graph G. Let δ(c,m)
be a function that returns the nearest node in the GTD
graph G given a coordinate c and a mode of transport m. For
example, for the walk mode, the nearest node on a pavement
is returned. Then the set of |Q| = 70,000 instances of the
fully multimodal EAP with templates is constructed. Each of
the origin-destination-departure triples Qt is combined with
all journey templates as follows:

Q = {(G, (δ(o,m1), δ(d,mn), t), τ)|
(o, d, t) ∈ Qt ∧ τ = m1 . . .mn ∈ T7}

C. Implementation

The algorithm is implemented in JAVA 7. The results
obtained are based on running the algorithm on one core of
a 3.2 GHz Intel Core i7 processor of a Linux desktop com-
puter with OpenJDK IcedTea7 2.3.7. The PostgreSQL 9.1
database spatially enabled with PostGIS 2.0.17 was used
for storing and retrieving the data for the time-dependent
graph GT and the network graph GN . The Osmosis 0.418

tool has been used to cut the Helsinki area from the OSM
data dump and to put the data in the PostgreSQL database.
Both the A* and Dijkstra’s algorithm use the Fibonacci heap
[5] implementation from the JGraphT 0.8.39 library.

7http://postgis.net/
8http://wiki.openstreetmap.org/wiki/Osmosis
9http://jgrapht.org/
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Fig. 5: Runtime against origin-destination distance (taxi only
template, 1000 randomly selected requests)
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Fig. 6: Runtime against origin-destination distance (walk and
PT template, 1000 randomly selected requests)

Geographical locations of all nodes in the OSM data and
stops in the GTFS data are represented as their longitude and
latitude values using the World Geodetic System (version
WGS 84). WGS 84 is a geographic coordinate system type
identified by SRID 432610 (Spatial Reference System Identi-
fier). In order to simplify the complex calculation of the Eu-
clidean distance between two nodes expressed in the WGS 84
coordinates (the calculation is very frequently used in the A*
Euclidean distance heuristic), we use a projected coordinate
system. The projected coordinate system is regional and
projects the location from a spheroid to a plane. For locations
in Helsinki, the spatial reference system “KKJ / Finland
zone 2” with SRID 239211 is used.

D. Results

A solution for each problem instance J ∈ Q has been
computed. All instances are divided into three sets based
on the distance of their origin and destination location:
short (below 10 km), medium (10–20 km), and long (20–40
km). Average runtimes in milliseconds for each journey plan
template and origin-destination distance interval are shown
in Table III.

10http://spatialreference.org/ref/epsg/4326/
11http://spatialreference.org/ref/epsg/2392/
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Runtimes for all journey plan templates (except templates
containing PT) are better than the runtimes for the empty
template. This empirically confirms that the journey plan
templates constrain the search space of the planner, which
results in lower runtimes than when the empty template,
which permits any combination of modes, is used. Runtimes
for the empty template are better than the runtimes for
templates containing PT because the heuristic of the A*
algorithm leads the planner well into the destination using
the taxi mode (for the majority of requests, taxi is the fastest
mode of transport with the lowest journey plan duration).

In general, the templates containing more than one mode
of transport are more difficult for the planner (higher branch-
ing factor and a larger contextual GTD graph) resulting in
higher runtimes than the single-mode templates. Template
with the lowest runtimes is the bike only template where the
average runtimes range from 15 ms for the short requests up
to 178 ms for the long requests. Template with the highest
average runtimes is the walk and PT template where the
average runtimes ranges from 488 ms for the short requests
up to 939 ms for the long requests. The runtimes of car, walk
and PT template are lower than the runtimes of the walk
and PT template because a significant part of the journey is
covered by car and only the last part from the P+R parking
place to the destination by walk and PT modes.

Figures 5 and 6 show scatter plots of the search runtime
versus the origin-destination distance for 1000 randomly
selected requests. It can be observed that runtimes for the
taxi only template in Figure 5 are more strongly correlated
on the origin-destination distance than the runtimes of the
walk and PT template in Figure 6.

E. Discussion

Compared to the algorithms employing state-of-the-art
speed-up techniques specifically designed for road network
and public transport network variant of EAP, the search times
of our method are high. There are several reasons for such
a behaviour. First and most importantly, the GTD graph
representation is significantly more expressive and flexible,
enabling searching for plans from a much richer family
of journey plans, which necessarily increases the method’s
computational cost. Second, no speed-up techniques have
yet been applied to accelerate the search of the contextual
GTD graph. Last, the algorithm is currently implemented
in JAVA whereas the search algorithms employing state-of-
the-art speed-up techniques are usually implemented in C++.
That said, even without the use of speed-up techniques and
other optimisations, our method achieves practically usable
runtimes.

So far, seven journey plan templates have been used in
the evaluation. In the future, we plan to add the following
useful plan templates:
• Taxi and PT: ˆX?W((B|T|U)W)*X?$

A taxi can be used for covering the first, the last, or
both first and last journey legs.

• Bike and PT: ˆIW(UW(IW)?)*I?$
A traveller uses his or her own bike to get from an

origin to a destination. Where possible and beneficial,
PT mode of transport that permits taking bike along is
used (in this example only the underground permits it).

VIII. CONCLUSION

We have presented a novel method for multimodal journey
planning that allows finding multi-leg journeys utilising
transport modes and combinations thereof not supported
by existing journey planners. At the core of our method
is a novel, generalised time-dependent graph representation
which allows representing the fully multimodal journey
planning problem with templates as a graph search problem
that can be solved by general graph search algorithms.
Experiments on realistic network data about the Helsinki
transport system confirmed the viability of the approach –
the planner was able to find a diverse set of journey plans
and achieve runtimes which, although noticeably higher
compared to algorithms optimised for basic variants of the
earliest arrival problem, are generally usable and are likely
to be significantly improved after the preliminary implemen-
tation of the approach is optimised.

ACKNOWLEDGMENT

This work was supported by the European Union Sev-
enth Framework Programme FP7/2007-2013 (grant agree-
ment no. 289067), by the Ministry of Education, Youth
and Sports of Czech Republic (grant no. LD12044 and
7E12065) and by the Czech Technical University (grant no.
SGS13/210/OHK3/3T/13).

REFERENCES

[1] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316(5824):566, 2007.

[2] R. Bauer and D. Delling. SHARC: Fast and robust unidirectional
routing. ACM Journal of Experimental Algorithmics, 14, 2009.

[3] G. S. Brodal and R. Jacob. Time-dependent Networks as Models
to Achieve Fast Exact Time-table Queries. Electronic Notes in
Theoretical Computer Science, 92(0):3–15, 2004.

[4] D. Delling, T. Pajor, and D. Wagner. Accelerating Multi-modal Route
Planning by Access-Nodes. In ESA, volume 5757 of Lecture Notes in
Computer Science, pages 587–598. Springer, 2009.

[5] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615,
1987.

[6] A. V. Goldberg and C. Harrelson. Computing the shortest path: A*
search meets graph theory. In Proceedings of the 16th annual ACM-
SIAM symposium on Discrete algorithms, Philadelphia, USA, 2005.

[7] M. Horn. Multi-modal and demand-responsive passenger transport
systems: a modelling framework with embedded control systems.
Transportation Research Part A: Policy and Practice, 36(2):167–188,
2002.

[8] T. Pajor. Multi-Modal Route Planning. Master’s thesis, 2009.
[9] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis. Efficient models

for timetable information in public transportation systems. Journal of
Experimental Algorithmics (JEA), 12, 2008.

[10] E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. Experimental
Comparison of Shortest Path Approaches for Timetable Information.
In Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 88–99, 2004.

[11] P. Sanders and D. Schultes. Highway Hierarchies Hasten Exact
Shortest Path Queries. In ESA, volume 3669 of Lecture Notes in
Computer Science, pages 568–579. Springer, 2005.

[12] F. Schulz. Timetable information and shortest paths. PhD thesis, 2005.
[13] H. Yu and F. Lu. A Multi-Modal Route Planning Approach With

an Improved Genetic Algorithm. In Joint International Conference
on Theory, Data Handling and Modelling in GeoSpatial Information
Science, pages 343–348, 2010.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2145

80



Appendix E

Exploring Pareto Routes in
Multi-Criteria Urban
Bicycle Routing
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Exploring Pareto Routes in Multi-Criteria Urban Bicycle Routing

Qing Song, Pavol Zilecky, Michal Jakob and Jan Hrncir

Abstract— To properly account for a broad range of route-
choice factors in bicycle route planning, a multi-criteria opti-
mization framework is needed. Unfortunately, in contrast to
other categories of routing problems, optimal multi-criteria
search has not yet been developed for bicycle routing. In
this paper, we address this gap and provide a multi-criteria
formulation of the bicycle routing problem and an optimum
multi-label correcting algorithm for finding a full set of Pareto
routes. To reduce the potentially very large number of Pareto
solutions, we introduce a route selection algorithm, based on
hierarchical clustering, for extracting a small representative
subset of Pareto routes. We empirically evaluate our approach
on a real-world cycleway network. We explore the size and
structure of the set of Pareto routes and demonstrate the
capability of our method to generate a practical set of bicycle
routes in realistic conditions.

I. INTRODUCTION

Utility cycling, i.e., using the bicycle as a mode of trans-
port, is the original and the most common type of cycling in
the world [7]. Cycling provides a convenient and affordable
form of transport for most segments of the population. It has
a range of health, environmental, economical, and societal
benefits [5] and has therefore been promoted as a modern,
sustainable mode of transport.

In contrast to car drivers, cyclists consider a significantly
broader range of factors while deciding their routes. By
employing questionnaires and GPS tracking, researchers
have found that besides travel time and distance, cyclists are
sensitive to slope, turn frequency, junction control, noise,
pollution, scenery, and traffic volumes [1], [15]. Moreover,
the relative importance of these factors varies among cyclists
and can also be affected by weather conditions and the
purpose of the trip [1]. Such a user- and context-dependent
multi-criteriality makes bicycle routing a particularly difficult
category of routing problems.

Several papers have been published on bicycle routing
with multiple objectives. In [14], the authors discuss the
design of a web-based tool that helps cyclists to determine
safe and efficient routes. It uses a weighted combination
of five different metrics to determine routes that optimise a
trade-off among various safety factors and distance. In [12],
the authors developed a web-based cycling route planner for
Metro Vancouver, Canada. It enables users to find a cycling
route based on one of the selectable preferences: shortest path
route, restricted maximum slope, least elevation gain, least
traffic pollution and most vegetated route. Hochmair et al. [9]
proposed a bicycle trip planner for Broward County, Florida

The authors are with the Agent Technology Center, Faculty of
Electrical Engineering, Czech Technical University in Prague, Czech
Republic, emails: song@agents.fel.cvut.cz, zilecky@agents.fel.cvut.cz,
jakob@agents.fel.cvut.cz, hrncir@agents.fel.cvut.cz.

that enables users to select among five criteria: fast, safe
(least interaction with traffic), simple, attractive and short.
The criteria were decided based on the observed route choice
behaviour of cyclists [8].

Although considering multiple objectives in the formu-
lation of the routing problem, the existing approaches to
bicycle routing do not use multi-criteria search methods to
properly solve the resulting multi-criteria shortest path prob-
lem. This contrasts with other categories of route planning
problems where the application of multi-criteria shortest path
search techniques [11], [13] have been widely studied. See
e.g. [4] and [3] for a multi-criteria algorithm for car routing
and public transport journey planning, respectively.

Instead of employing a multi-criteria shortest path algo-
rithm, existing approaches to bicycle routing transform multi-
criteria search to single-criterion search either by optimizing
each criteria function separately [12], [9] or by using a
weighted combination of all criteria [14]. Unfortunately,
scalarization of the multi-criteria problem using a linear
combination of all criteria functions may miss Pareto optimal
journeys [2] and, consequently, reduce the quality of the
routes proposed to the user.

In this paper, we address the above limitations and explore
how proper multi-criteria search can be applied to urban
bicycle route planning. In doing so, we provide the follow-
ing contributions. First, we provide a formal definition of
the multi-criteria bicycle routing problem that incorporates
realistic route choice factors based on recent studies of
cyclists’ behaviour [1], [15]. Second, we provide a multi-
criteria search algorithm based on the multi-label correcting
algorithm [11] which is able to generate all Pareto routes.
Third, understanding that the number of Pareto routes can
be very high, we propose a novel route selection method,
based on hierarchical clustering in the route space, to ex-
tract few representative Pareto route suggestions. Fourth, we
instantiate our approach with real-word data and study its
properties, in particular the structure and size of the set of
Pareto routes, in a realistic and challenging urban scenario.

II. PROBLEM FORMULATION

A. Multi-criteria Bicycle Routing Problem

The cycleway network can be represented as a directed
weighted cycleway graph G = (V,E, g, h, l, f,−→c ,−→r ),
where V is the set of nodes representing start and end points
(i.e., cycleway junctions) of cycleway segments, and E =
{(u, v)|(u, v ∈ V )∧(u 6= v)} is the set of edges representing
cycleway segments. The cycleway graph is directed due to
the fact that some cycleway segments in the map are one-
way only. The function g : V → R2 assigns a latitude and
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a longitude values to each node v ∈ V . An altitude value
is assigned to each node by the function h : V → R. The
horizontal length of each edge (u, v) ∈ E is given by the
function l : E → R+

0 . For each edge (u, v) ∈ E, the function
f : E → ℘(F ) returns the features associated with the edge,
which capture relevant properties of the edge as obtained
from the input map data (e.g., the surface of the cycleway
segment, or the road type). The set of all edge features is
denoted by F . Note that an edge can have multiple features
assigned to it, thus f((u, v)) ⊆ ℘(F ) with the number of
elements |f((u, v))| ≥ 1.

In the multi-criteria case, the cost on each edge is
represented as a k-dimensional vector of criteria −→c =
(c1, c2, . . . , ck). The value of any criterion i ∈ (1, 2, . . . , k)
for the given edge (u, v) ∈ E is computed by the cost
function ci : E → R+

0 . The vector −→r = (r1, r2, . . . , rk)
returns the criteria coefficient for the k criteria of each edge;
criteria coefficients reflect the aggregate influence of edge
features on different criteria, e.g., the features indicating that
the edge is a dedicated cyclelane with good-quality surface
will have positive influence on the travel time criterion.
Thus the function ri : ℘(F ) → R+

0 computes the criteria
coefficient of any criterion i ∈ (1, 2, . . . , k) for a given edge
(u, v) ∈ E with a set of features f((u, v)) ⊆ ℘(F ).

The multi-criteria bicycle routing problem is then defined
as a pair C = (G, r), where:
• G = (V,E, g, h, l, f,−→c ,−→r ) is the cycleway graph
• r = (o, d, s) is a journey request; where o ∈ V is an

origin, d ∈ V a destination, and s ∈ R+ an average
cruising speed.

The solution of the multi-criteria bicycle routing
problem is a full Pareto set of routes {π|π =
(u0 (o), u1, u2, . . . , uw (d))}, each of which forms a finite
path from the origin o to the destination d in G, with a cost
value c(π) = (

∑w−1
t=0 c1(ut, ut+1), . . . ,

∑w−1
t=0 ck(ut, ut+1))

non-dominated by any other solution (a solution πp domi-
nates another solution πq iff ci(πp) ≤ ci(πq), for all 1 ≤
i ≤ k, and cj(πp) < cj(πq), for at least one j, 1 ≤ j ≤ k).

B. Criteria Function Definition

Taking into account technical constraints as well as studies
of real-word cycle route choice behaviour [1], [15], we
further consider a tri-criterion bicycle routing problem with
three specific criteria. Specifically, we consider the travel
time criterion c1, the comfort criterion c2 and the flatness
criterion c3 defined as follows.

1) Travel Time Criterion: The travel time criterion cap-
tures the preference towards routes that can be travelled in
a short time. Travel time is a sensitive factor in cyclists’
route planning especially for commuting purposes. To model
the slow down caused by obstacle features such as stairs or
crossings, we define the slowdown function q : ℘(F )→ R+

0

which returns the slowdown in seconds on the given edge
(u, v) ∈ E with a set of features f((u, v)).

Besides, changes in elevation may affect the cyclist’s
velocity and hence affect travel times. For the case of uphill
rides, we define the positive vertical ascend a : E → R+

0

and the positive ascend grade a′ : E → R+
0 for a given edge

(u, v) ∈ E as follows:

a((u, v)) :=

{
h(v)− h(u) if h(v) > h(u)
0 otherwise

a′((u, v)) :=
a((u, v))

l((u, v))

Analogously, for the case of downhill rides, we define
the positive vertical descend d : E → R+

0 and the positive
descend grade d′ : E → R+

0 for a given edge (u, v) ∈ E as
follows:

d((u, v)) :=

{
h(u)− h(v) if h(u) > h(v)
0 otherwise

d′((u, v)) :=
d((u, v))

l((u, v))

To model the speed acceleration caused by vertical de-
scend for a given edge (u, v) ∈ E, we define the downhill
speed multiplier sd : E × R+ → R+ as:

sd((u, v), sdmax) :=

:=

{
sdmax if d′((u, v)) > d′c,
(sdmax−1)d′((u,v))

d′
c

+ 1 otherwise

where sdmax ∈ R+ is the maximum downhill speed mul-
tiplier, and d′c ∈ R+ is the critical d′ value over which a
downhill ride would use the multiplier of sdmax. This reflects
the fact that the speed acceleration is remarkable for the ride
on a steep downhill (compared to a mild one), however, it
is limited due to safety concerns, bicycle physical limits and
air drag.

Considering the integrated effect of edge length, the
change in elevation and its associated features, the travel
time criterion is defined as:

c1((u, v)) =
l((u, v)) + ala((u, v))

s · sd((u, v), sdmax) · r1((u, v))
+ q((u, v)),

where s is the average cruising speed of a cyclist, and
al is the penalty coefficient for uphill rides. The criteria
coefficient r1((u, v)) expresses how many times faster a
cyclist can travel on a given edge (u, v) ∈ E with a certain
set of features f((u, v)). Intuitively, c1((u, v)) can model
the travel time of flat rides, uphill rides, and downhill rides
with sd((u, v), sdmax) = 1 for uphill and flat scenarios, and
a((u, v)) = 0 for downhill and flat scenarios.

2) Comfort Criterion: The comfort criterion captures the
preference towards comfortable routes with good-quality
surfaces and low traffic. The comfort criteria coefficient
r2((u, v)) is employed here to express the comfort property
of an edge (u, v), which summarizes the effect of road sur-
faces and traffic volumes. The surface coefficient rs((u, v))
penalises bad road surfaces, obstacles such as steps, and
places where the cyclist needs to dismount his/her bicycle,
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with small values indicating cycling-friendly surfaces; while
the traffic coefficient rt((u, v)) measures traffic volumes by
considering the infrastructure for cyclists (e.g., dedicated
cycleways), the type of roads, and the junctions, where low-
traffic cycleways are assigned small coefficient values. The
maximum coefficient of the two is used here to avoid the
cycleway segments that negatively affect the comfort the
most, and the criteria function for comfort is defined as:

c2((u, v)) = r2((u, v))

r2((u, v)) = max{rs((u, v)), rt((u, v))}

3) Flatness Criterion: The flatness criterion captures the
preference towards flat routes with minimum uphill seg-
ments. The criteria function for flatness takes into account
the positive vertical ascend a, and it penalises uphill rides by
the equivalent flat distance ala((u, v)) of the segment with a
vertical ascend of a((u, v)). Criteria coefficient r3((u, v)) is
used to express the flatness property of an edge (u, v). The
criteria function for flatness is defined as:

c3((u, v)) =
ala((u, v))

s
· r3((u, v))

Next we introduce how to compute Pareto routes as well
as how to identify significant ones for cyclists.

III. MULTI-CRITERIA ROUTE GENERATION METHOD

In this section, we describe how the multi-criteria bicycle
routing problem is solved using the multi-label correcting
algorithm and how representative Pareto routes are selected
through a postprocessing clustering analysis.

A. Multi-label Correcting Algorithm

We employ the multi-label correcting algorithm [11] for
computing the full set of Pareto routes. The multi-label
correcting algorithm is an extension of Dijkstra’s algorithm
which operates on labels that have multiple values, one per
optimization criterion.

First, we define variable structures required for al-
gorithm execution: for each node u ∈ V , L(u) :=
(u, (l1(u), l2(u), . . . , lk(u)), LP (u)) represents the label at
u, which is composed of the node, the cost values with
respect to each criterion, and the predecessor label LP (u).
Each label has a record number, following the order it is
generated (starting from 0). A priority queue Q is defined to
maintain all labels created during the search. Since each node
may be scanned multiple times, we define a bag structure
Bag(u) for each node u to maintain the non-dominated
labels at u.

Then the multi-label correcting algorithm is composed of
the following steps:

Step 1: Initialization. For a three-criterion optimization
problem, we
• initialize the label at the origin L(o) :=

(o, (0, 0, 0), null);
• insert the initial label L(o) into Q and Bag(o).

Algorithm 1: Multi-label correcting algorithm
Input: cycleway graph G = (V,E, g, h, l, f,−→c ,−→r ),

origin node o, destination node d
Output: full Pareto set Bag(d)

1 L(o)← (o, (0, 0, 0), null)
2 Q.insert(L(o))
3 Bag(o).insert(L(o))

4 while !Q.isEmpty() do
5 current← Q.poll()
6 u← current.getNode()
7 (l1(u), l2(u), l3(u))← current.getCost()
8 LP (u)← current.getPredecessorLabel()
9 foreach edge u→ v do

10 if LP (u).getNode() == v then
11 continue
12 end

13 Ci(v)← li(u) + ci(u, v) for i = 1, 2, 3
14 insert← true

15 foreach label L(v)∈ Bag(v) do
16 if li(v) ≤ Ci(v) for i = 1, 2, 3 then
17 insert← false
18 break
19 end

20 if Ci(v) ≤ li(v) for i = 1, 2, 3 then
21 Bag(v).remove(L(v))
22 Q.remove(L(v))
23 end
24 end
25 if insert then
26 next← (v, (C1(v), C2(v), C3(v)), current)
27 Bag(v).insert(next)
28 Q.insert(next)
29 end
30 end
31 end
32 return Bag(d)

Step 2: Label extension. Extract from the priority queue
Q the current minimum (in lexicographic order) label
current := (u, (l1(u), l2(u), l3(u)), LP (u)). For each edge
(u, v) out of node u, proceed as follows:

1) Compute new cost values (C1(v), C2(v), C3(v))
to node v by adding the costs of edge (u, v) to
(l1(u), l2(u), l3(u)). If the new cost values are not dominated
by any of existing labels L(v) ∈ Bag(v), we:
• create a new label (v, (C1(v), C2(v), C3(v)), current)

for node v;
• insert the new label into Q and Bag(v).
2) Check if any existing label L(v) ∈ Bag(v) is domi-

nated by the new cost values (C1(v), C2(v), C3(v)): If so,
remove the label from the priority queue Q and Bag(v).

Step 3: Pruning condition. Exit if the priority queue Q
becomes empty; otherwise, go to Step 2 and continue.
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Algorithm 2: Extract routes
Input: full Pareto set Set
Output: Pareto routes πp

1 p← 0
2 foreach label L ∈ Set do
3 πp ← ∅
4 while L != null do
5 u← L.getNode()
6 πp.insertAtBeginning(u)
7 L← L.getPredecessorLabel()
8 end
9 p← p+ 1

10 end

A drawback of the multi-label correcting algorithm is that
it can be quite slow since each node may be scanned multiple
times, and domination checks are costly. To accelerate the
algorithm, we record the predecessor label in the label data
structure; we then use the knowledge of the predecessor
label to avoid extending the labels (in Step 2) to the nodes
associated with the predecessor label (see lines 10–12 in
pseudocode of Algorithm 1). Also, our label data structure
facilitates the retrieval of routes πp, as illustrated in Algo-
rithm 2.

B. Route Selection Algorithm

The multi-label correcting algorithm may produce a very
large Pareto set of routes, many of which may be very similar
and thus uninteresting to the user. We therefore propose a
novel method for selecting a small representative subset of
Pareto routes. Our method is based on clustering routes {π}
in the physical space, leveraging the observation that routes
that share most of their segments usually have similar cost
values. By first clustering all Pareto routes by their physical
distance and then selecting only one solution in each of the
clusters, we extract routes that differ both spatially and in
terms of their cost values. The route selection algorithm is
composed of the following steps:

Step 1: Evaluation of route distance. We use Jaccard
distance [10] to measure the dissimilarity between Pareto
routes. For routes πp and πq , the route distance is computed
by dividing the difference of the sizes of the union and the
intersection of two route sets by the size of the union:

dJ(πp, πq) :=
| (πp ∪ πq) | − | (πp ∩ πq) |
| (πp ∪ πq)\{o, d} |

We exclude the origin o and the destination d since all
routes share the same origin and destination. Reasonably,
the route distance definition obeys the triangle inequality.

Step 2: Route clustering. Given the distance metric defined
in Step 1, we employ a hierarchical clustering method−single
linkage clustering [6] to group routes into nested sets of
clusters.

Step 3: Route selection. Route selection proceeds in two
steps. In the first step, we select the so-called single-cost

1
2

3 4 5

Fig. 1. Illustration of the route selection process. Red dots correspond to
single-cost optimum routes; blue dots correspond to routes chosen based on
their highest average distance to routes in the other clusters.

optimum Pareto routes, i.e., routes that have the lowest cost
value for one of the three criteria. In the second step, we only
consider the clusters that did not contain any of the single-
cost optimum routes. From each of the remaining clusters,
we select one route that has the highest average physical-
space distance to all routes in the other clusters. Thus, in the
end, we have at least one route from each of the clusters.

Route selection process is illustrated in Figure 1. Clusters
1 and 5 contain the three single-cost optimum routes (denoted
by red dots) selected. From each of the remaining three
clusters 2, 3 and 4, we selected one route (denoted by a
blue dot) based on its distance to the routes in the other
clusters.

IV. IMPLEMENTATION

We now describe important implementation details, in
particular related to creating instances of the bicycle routing
problem (see the definition in Section II-A) from real-
world map data. The instantiation of the routing problem
comprises of two steps. In the first step, the cycleway graph
is created from map data and its nodes and edges are assigned
respective map features. In the second step, the values of the
three criteria functions are calculated for each node and edge.

A. Data

OpenStreetMap (OSM) data is used to create the cy-
cleway graph. OSM data is organised into three entities:
nodes, ways and relations, which are associated with various
tags (features). Each map feature is denoted by a key
and a value in the form of entity::key::value, e.g.,
way::highway::primary. Latitude and longitude of
each node is mapped to function g, altitude of each node
is mapped to h. The following map elements relevant for
cyclists are loaded according to the information from OSM
tags associated with OSM nodes, ways, and relations. We
divide the map features into six categories:
• Surface: surface quality in terms of smoothness of the

surface and surface material, e.g., asphalt, gravel, or
cobblestone.

• Obstacles: steps and elevators.
• Dismount: places where cyclists need to dismount the

bicycle, e.g., pavement, or footway crossing.
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TABLE I
CATEGORIES OF MAP FEATURES TO CRITERIA FUNCTIONS MAPPING.

Criteria function Categories of map features
Travel Time c1 Surface, Obstacles, Dismount
Comfort c2 Surface, Obstacles, Dismount,

For bicycles, Motor roads, Crossings
Flatness c3 ∅

TABLE II
TRAVEL TIME AND COMFORT CRITERIA BASE VALUES FOR FEATURES

FROM THE SURFACE CATEGORY.

Entity Key Value r′1 r′2
way smoothness bad 0.7 3
way smoothness excellent 1 0.5
way smoothness horrible 0.5 2
way smoothness intermediate 0.8 1
way smoothness very bad 0.6 4
way surface cobblestone 0.7 5
way surface compacted 0.9 1.5
way surface dirt 0.7 3
way surface grass 0.65 5
way surface gravel 0.5 5
way surface ground 0.6 4
way surface mud 0.4 5
way surface paving stones 0.75 1.5
way surface sand 0.6 4
way surface setts 0.8 2
way surface unpaved 0.75 4
way surface wood 0.65 4

• For bicycles: description of the infrastructure for cy-
clists, e.g., dedicated cycleway, cycle lane, or shared
busway.

• Motor roads: category of a road that is also used by cars,
e.g., primary, secondary, residential, or living street.

• Crossings: crossings, crossroads, or traffic lights on
the road.

Geographical locations of all nodes in the OSM data are
represented as their latitude and longitude values using the
World Geodetic System (version WGS 84), a geographic
coordinate system type. In order to simplify the complex
calculation of the Euclidean distance between two nodes
expressed in the WGS 84 coordinates, we use a projected co-
ordinate system. For locations in Prague, the spatial reference
system “S-JTSK (Ferro) / Krovak” is used. The horizontal
length l of each edge is calculated based on the projected
coordinates. Elevation h for all nodes in the OSM data
is acquired using the Shuttle Radar Topography Mission
(SRTM) project.

B. OSM Tags Mapping

Based on the effect of map features to different criteria,
we further map the six category of features to the three
optimization criteria, as shown in Table I.

Then, we provide the criteria base values for each feature
in each category. The effect of OSM features from the surface
category on travel time and comfort criterion are shown in
Table II, where r′1 : F → R+ represents the criteria base
value on travel time and r′2 : F → R+ the criteria base
value on comfort. The total effect depends on all features
associated with an edge that contribute to the travel time

TABLE III
VALUES FOR THE FEATURE SLOWDOWN FUNCTION q′ .

Category Entity Key Value q′

crossing node crossing island 20
crossing node crossing traffic signals 30
crossing node crossing uncontrolled 15
crossing node crossing unmarked 20
crossing node crossing yes 15
crossing node crossing zebra 15
crossing node highway crossing 15
crossing node highway traffic signals 30
obstacles node highway elevator 75
obstacles node highway steps 25

Fig. 2. A snapshot of Prague cycleway network.

or comfort criterion. Suppose function f((u, v)) returns the
features associated with an edge (u, v) ∈ E, then the criteria
coefficients r1 and r2 are given by:

r1((u, v)) = min{r′1(p)|p ∈ f((u, v))}

r2((u, v)) = max{r′2(p)|p ∈ f((u, v))}
For the travel time criterion, the minimum base value is
used since we are interested in a feature that reduces the
cyclist’s speed the most. In the case of the comfort criterion,
the maximum base value is used since we take into account
a feature that negatively affects the comfort the most. In this
paper, we set r3((u, v)) = 1 for all edges to minimize uphill
rides exclusively.

Table III shows the slowdown base value q′ : F → N+
0

caused by each relevant feature p ∈ F . Similarly, the
total effect depends on all features associated with the edge
(u, v) ∈ E that may cause a slowdown in seconds, hence
the slowdown function q : ℘(F )→ N+

0 is given by:

q((u, v)) = max{q′(p)|p ∈ f((u, v))}

V. EXPERIMENTAL EVALUATION

A. Setting

We evaluated our approach on the real cycleway network
of Prague. Prague is a challenging experiment location due to
its complex geography and fragmented cycling infrastructure,
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TABLE IV
EVALUATION RESULTS.

Distance category ¯dod N̄p
¯dJp

¯dEp ¯rcc N̄s
¯dJs

¯dEs

Short 764.62 118.01 0.60 0.32 0.87 5.47 0.73 0.46
Medium 1616.66 820.18 0.65 0.28 0.83 5.68 0.83 0.49
Long 2582.14 2677.98 0.69 0.27 0.81 5.83 0.86 0.51

Fig. 3. Distribution of the number of Pareto routes. The dashed curve
reflects the polynomial fitting of the data points.

which raises the importance of proper multi-criteria routing.
For the experiments, we considered a strongly connected
component of the cycleway network in Prague with 9411
nodes and 20420 edges. A snapshot showing the cycleway
network of Prague is shown in Figure 2. Note that our aim
was not to study computational times of the algorithm but to
evaluate whether the proposed multi-criteria formalization of
the bike routing problem and the route selection algorithm
lead to practically useful routes.

The initialization parameters were set as follows: the
average cruising speed s = 14 km/h; the penalty coefficient
for uphill al = 13 (according to the route choice model
developed in user study [1]); the maximum downhill speed
multiplier sdmax = 2.5; the critical grade value d′c = 0.1;
and the number of clusters w = 5.

A total of 300 route requests, each specified by an origin-
destination pair, generated randomly with uniform spatial
distribution were used in the evaluation. Based on the
Euclidean origin-destination distance, we divide the route
requests into three subsets of 100 requests each, namely short
distance, medium distance, and long distance.

B. Results

To evaluate the difference between the full set of Pareto
routes and the selected ones, we count the following pa-
rameters: the average number of all Pareto routes N̄p and
of selected Pareto routes N̄s, the average Jaccard distance
between routes in the full Pareto set ¯dJp

and between selected
Pareto routes ¯dJs , and finally the Euclidean distance in the
normalized cost space between routes in the full Pareto set
¯dEp

and between selected Pareto routes ¯dEs
.

Fig. 4. Distribution of Pareto routes in the cost space. Routes that belong
to different clusters are marked by different colors, the selected ones are
marked by red stars with the cost values [travel time, comfort, flatness]
shown in the legend.

Table IV shows the evaluation results of each distance cat-
egory, where d̄od is the average Euclidean origin-destination
distance; r̄cc is a cophenetic correlation coefficient [6] re-
flecting the clustering quality. The closer the value of r̄cc is
to 1, the more accurately the clustering solution is. We can
observe that the average number of Pareto routes increases
notably with the distance. In addition, the network structure
around the origin and destination also affects the number
of Pareto routes; this can be seen from the distribution of
the number of all Pareto routes with distance as shown
in Figure 3, where the number of Pareto routes does not
monotonically increase. Also we note that the average Jac-
card distance and Euclidean distance in the normalized cost
space between selected Pareto routes are greater than that
between routes in the full Pareto set. This confirms that
the selected routes are more dissimilar when dissimilarity
is measured as distance in both the physical space and cost
space. The average value of the coefficient r̄cc is around 0.84,
which indicates that the hierarchical clustering method and
the distance metrics are effective for our problem.

To get further insight into the structure of the full set of
Pareto routes and the representative subset of selected Pareto
routes, we inspect one route request around a hilly area in
Zizkov, Prague 3 in detail. Figure 4 and 5 illustrate the
route distribution in the cost and physical space, respectively;
there are 503 routes in the full Pareto set out of which 5
are selected for the representative subset. We can observe
that our proposed method maintains the diversity of the
Pareto set, where the routes selected are much further and
more different both in the cost space and physical space.
Besides, the routes are reasonable from the practical point
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(a)

(b)

Fig. 5. Distribution of Pareto routes in the physical space. (a) Full set
of 503 Pareto routes, where the cycleway segments passed by more Pareto
routes are represented by wider and brighter lines. (b) The representative
subset of selected five Pareto routes, with the color corresponding to that
in Figure 4.

of view, trying to avoid the steepest areas and balancing
among travel time, comfort and quietness. We can see that
the route with the highest comfort (pink route in Figure 5)
goes across a pleasant park area, but it takes longer and has
the highest elevation gain among the five routes. The route
with the shortest travel time (green one) follows main roads;
it achieves time efficiency at the expense of relatively worse
comfort and flatness. The blue route and the cyan route in
Figure 5) go through different road areas, which have similar
values of flatness and a balance between travel time and
comfort. Finally, the flattest route (black one) goes through
main roads all the time and it is thus the most uncomfortable
among the five selected routes.

VI. CONCLUSIONS

We have investigated a multi-criteria approach to urban
bicycle routing. In contrast to existing work, we have pro-
vided a well-grounded formal model of multi-criteria bicycle
routing and we have applied a multi-criteria shortest path
algorithm to find the full set of Pareto routes. Since the
multi-criteria search can produce large Pareto sets with many
similar routes, we have proposed a hierarchical clustering-
based route selection method that can identify the most
representative routes. We have integrated our approach with
real-world OpenStreetMap data and evaluated it in challeng-
ing conditions of the city of Prague. The evaluation has
confirmed the usefulness of the multi-criteria approach to

bicycle routing and has shown that our specific method can
generate representative sets of practically useful routes.

The presented research opens a range of exciting future
research directions. The most immediate topic is the expan-
sion of the evaluation to geographically different and spa-
tially larger areas. The second, more challenging direction,
is speeding up the routing algorithm in order to support
real-time route planning1. Finally, the underlying cycleway
problem model could be extended to consider additional
aspects such as detailed junction models with traffic light
and turn penalty consideration, real-time traffic information
or weather conditions.
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RIDESHARING ON TIMETABLED TRANSPORT SERVICES:

A MULTIAGENT PLANNING APPROACH

JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

Abstract. Ridesharing, i.e., the problem of finding parts of routes that can

be shared by several travellers with different points of departure and desti-
nations, is a complex, multiagent decision-making problem. The problem has

been widely studied but only for the case of ridesharing using freely moving ve-

hicles not bound to fixed routes and/or schedules – ridesharing on timetabled
public transport services has not been previously considered. In this paper, we

address this problem and propose a solution employing strategic multiagent

planning that guarantees that for any shared journey plan found, each indi-
vidual is better off taking the shared ride rather than travelling alone, thus

providing a clear incentive to participate in it. We evaluate the proposed so-

lution on real-world scenarios in terms of the algorithm’s scalability and the
ability to address the inherent trade-off between cost savings and the pro-

longation of journey duration. The results show that under a wide range of

circumstances our algorithm finds attractive shared journey plans. In addition
to serving as a basis for traveller-oriented ridesharing service, our system al-

lows stakeholders to determine appropriate pricing policies to incentivise group
travel and to predict the effects of potential service changes.

1. Introduction

Travelling is an important and frequent activity, yet people willing to travel have
to face problems with rising fuel prices, carbon footprint and traffic jams. One
way to tackle these problems is through ridesharing, i.e., purposeful and explicit
planning to create groups of people travel together in a single vehicle for parts of
the journey. Participants in such schemes can benefit from ridesharing in several
ways: sharing parts of a journey may reduce cost (e.g., through group tickets),
carbon footprint (e.g., when sharing a private car), and travellers can enjoy the
company of others on a long journey.

In general, ridesharing is a widely studied problem – existing work, however,
focuses exclusively on ridesharing using vehicles that can move freely on a road
transport network. This overlooks the potential for innovative future transport
schemes that might exploit ridesharing using timetabled public transport. Here,
customised group discount schemes could be devised to balance the load across
different times of the day, or to make more efficient use of the capacity of public
modes of transport. Also, joint travel can be used to increase the comfort and
safety of individuals, e.g., for female travellers using night buses, or groups of
schoolchildren. In more advanced scenarios, one could imagine ridesharing on public
modes of transport being combined with working together while travelling, holding
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2 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

meetings on the road or meeting people with common interests. We would argue
that, in fact, any future intelligent transport scheme for citizens that attempts to
address the social dimension of travel will be incomplete if it does not take into
account timetabled public transport.

Except for our own earlier work (Hrnč́ı̌r and Rovatsos, 2012), no existing work
seems to attempt to compute joint travel plans based on public transport timetables
and geographical stop locations, let alone in a way that takes into account the strate-
gic nature of the problem, which comes about through the different (and potentially
conflicting) preferences of individual travellers. From the point of view of (multi-
agent) planning (de Weerdt and Clement, 2009), i.e., the problem of synthesising
sequences of actions to reach a certain goal – in this case, arrival at a destination
from a given point of departure – for several travellers in parallel, ridesharing on
timetabled services presents itself as a very complex application scenario: To begin
with, even if one restricted oneself to centralised planning, the domain is huge –
public transport data for the UK alone currently involves 240,590 timetable connec-
tions for trains and coaches (even excluding local city buses), which would have to
be translated to a quarter of a million planning actions, at least in a naive formalisa-
tion of the domain. This is the case even if we assume a non-strategic setting, where
individuals’ preferences are not taken into account, and we are simply looking for
a set of itinerary that gets everybody to their destination, without any regard for
how costly this might be for the individual, or how the joint plan might favour some
agents while putting others at a disadvantage. Moreover, considering a strategic
setting where we are looking for a plan for multiple self-interested agents that are
willing to cooperate only if it is beneficial for them is known to be exponentially
harder than planning for each agent individually (Brafman and Domshlak, 2008).
Yet any automated service that proposes joint journeys would have to guarantee
such strategic properties in order to be acceptable for human users (who could then
even leave it to the service to negotiate trips on their behalf).

In our previous paper (Hrnč́ı̌r and Rovatsos, 2012), we discussed the possibility
of using a pre-processing step to group users together in such a way that would
permit applying our algorithm to thousands or even millions of users in a larger
geographical area (e.g., an entire country). In this paper, we present an improved
version of our algorithm which includes a pre-processing step that clusters likely
co-travellers together based on the overall direction of their individual trips and the
distance between the origin and destination points of these individual trips. We
show that this pre-processing step enables us to reduce plan computation times from
over an hour to a few minutes in the worst case, while still resulting in substantial
benefits from ridesharing for those participating in shared journeys. The core of
our algorithm is based on a domain-independent best-response planning (Jonsson
and Rovatsos, 2011) approach which is the only available planner that can solve
strategic multiagent planning problems of the scale required, and whose properties
and assumptions combine particularly well with the ridesharing problem in hand.

The contribution of our work is threefold: Firstly, we show that current mul-
tiagent planning technology can be used in important planning domains such as
ridesharing by presenting its application to a practical problem that cannot be
solved with other existing techniques. In the process, we describe the engineering
steps that are necessary to deal with the challenges of real-world large-scale data
and propose suitable solutions. Secondly, we present an algorithm that combines
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different techniques in a practically-oriented way and works with real-world public
transport timetables and realistic travel demand even though it is largely based on
extensible, domain-independent, off-the-shelf heuristic problem solvers. Thirdly,
we evaluate the proposed algorithm on such real-world data, taking public trans-
port services of the Yorkshire region of the UK as an example. The evaluation not
only analyses the performance of the proposed approach but also provides insights
into general relationships between journey duration and cost in realistic ridesharing
scenarios.

We start off with an overview of the related work in Section 2. This is followed by
a formal specification of the timetabled transport ridesharing problem in Section 3
based on the model used in (Jonsson and Rovatsos, 2011). Section 4 introduces
our four-phase algorithm for strategic planning in ridesharing domains. An exten-
sive experimental evaluation of the algorithm is presented in Section 5. Section 6
presents a discussion of our results and Section 7 concludes.

2. Related Work

Ridesharing is a long known and widely studied problem – existing work, how-
ever, focuses exclusively on ridesharing using vehicles that can move freely on a road
transport network, without schedule or route restrictions. The work on such non-
timetabled ridesharing covers the whole spectrum from formal problem models,
through solution algorithms up to practical consumer-oriented services and appli-
cations.

On the theoretical side, the vehicle-based ridesharing problem is typically for-
malised as a Dial-a-Ride Problem (DARP). Different variants of DARPs exist, dif-
fering, for example, in the nature of traveller’s constraints, the distribution of pickup
and delivery locations, the criteria optimised, or the level of dynamism supported.
A comprehensive review of different variants of DARPs, along with a list of al-
gorithmic solution approaches, is given by Cordeau et al. (Cordeau and Laporte,
2007). Most of the existing approaches rely on a centralised coordination entity
responsible for collecting requests and producing vehicle assignment and schedules,
though more decentralised approaches have also been presented more recently (Wu
et al., 2008). Bergbelia et al. (Berbeglia et al., 2010) summarise recent advances
in real-time ridesharing, which has been gaining prominence with the growing pen-
etration of internet-connected smartphones and GPS-enabled vehicle localisation
technologies. Existing work almost exclusively considers a single mode of transport
only. One of few exceptions is the work of Horn et al. (Horn, 2002) which consid-
ers demand-responsive ridesharing in the context of flexible, multi-modal transport
systems; the actual ridesharing is, however, only supported for demand-responsive
non-timetabled journey legs. On the practical side, there exist various online ser-
vices for car (e.g., liftshare.com or citycarclub.co.uk), bike, and walk sharing as
well as services which assist users in negotiating shared journeys (e.g., compan-
ions2travel.co.uk, travbuddy.com).

Journey planning for timetabled public transport services has been extensively
studied in the single-agent case. The problem is typically formalised as the earli-
est arrival problem with two major ways to represent public transport timetables
for the planning algorithm as a search graph. A time-expanded approach (Pyrga
et al., 2008) where each event at a stop, e.g., the departure of a train, is modelled
as a node in the graph; and a time-dependent approach (Brodal and Jacob, 2004)
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where the graph contains only one node for each station. To speed up the search
process, many speed-up techniques for a basic shortest-path algorithm, e.g., Di-
jkstra’s algorithm, have been proposed, including the multi-level graph approach
(Schulz, 2005), access-node routing (Delling et al., 2009), and core-ALT (Pajor,
2009). These algorithms are the basis of public travel planning services (e.g., in
the UK, nationalrail.co.uk for trains, traveline.info and maps.google.com for multi-
modal transport) that automate individual travel planning for one or several modes
of transport.

So although both ridesharing using freely moving vehicle and single-agent jour-
ney planning for timetabled services have been extensively studied, the combination
of both, i.e., ridesharing on timetabled services, has not been – to the best of our
knowledge – studied before (with the exception of our previous paper).

Automated planning technology (Ghallab et al., 2004) has developed a variety
of scalable heuristic algorithms for tackling hard planning problems, where plans,
i.e., sequences of actions that achieve a given goal from a given initial state, are cal-
culated by domain-independent problem solvers. Unlike other approaches to route
planning and ridesharing, automated planning techniques permit a fairly straight-
forward formalisation of travel domains, and allow us to capture the joint action
space and complex cost landscape resulting from travellers’ concurrent activities.
In terms of algorithmic complexity, the kind of multiagent planning needed to com-
pute ridesharing plans for several agents is significantly harder than single-agent
planning for two reasons: Firstly, the ability of each agent to execute actions con-
currently (Boutilier and Brafman, 2001) may result in exponentially large sets of
actions available in each step in the worst case. Secondly, whenever individual
agents have different (and potentially conflicting) goals (Brafman et al., 2009a),
a joint solution must satisfy additional requirements, e.g., being compatible with
everyone’s individual preferences, or not providing any incentive for any individual
to deviate from the joint plan. Solving the general multiagent planning for prob-
lem sizes of the scale we are interested in real-world ridesharing is therefore not
currently possible using existing techniques.

Because of the desire to integrate different travellers’ individual plans, rideshar-
ing is quite similar to plan merging (e.g., (Foulser et al., 1992; Tsamardinos et al.,
2000), where individual agents’ plans are incrementally integrated into a joint so-
lution. Compared to these approaches, however, in our domain every agent can
always achieve their plan regardless of what others do, and agents do not require
others’ “help” to achieve their goals. This makes the problem simpler than those of
plan merging though, in return, we place much higher scalability demands on the
respective solution algorithms.

This explains also why, as will be shown below, we are able to achieve much
higher scalability than state-of-the-art multiagent plan synthesis algorithms, e.g.,
(Nissim et al., 2010; Dimopoulos et al., 2012; Torreno et al., 2012). These algo-
rithms exploit “locality” in different ways in order to be able to plan for parts of
a multiagent planning problem while temporarily ignoring others, e.g., by consider-
ing non-interacting subplans in isolation from each other. In a sense, our problem
involves even more loosely coupled sub-tasks, as these can be essentially solved in
a completely independent way, except in terms of cost optimisation.

The relationship between our work and approaches that focus more on decen-
tralised planning, plan co-ordination, and conflict resolution among independent
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planning agents (e.g., (Cox and Durfee, 2005, 2009)) is similar – as no hard conflicts
can arise among individual plans in ridesharing, it is not essential to co-ordinate
individual plans with each other, other than for cost optimisation purposes.

Finally, as far as the strategic aspect is concerned, this is obviously also rel-
evant to ridesharing as ultimately each co-traveller wants to achieve an optimal
solution for themselves. Various approaches have studied this problem in the past
(e.g., (Ephrati et al., 1995; van der Krogt et al., 2008; Brafman et al., 2009a), yet
none of them has been shown to scale to the type of domain we are interested in,
with the exception of (Jonsson and Rovatsos, 2011), which makes certain simpli-
fying assumptions to achieve scalability: it does not consider joint deviation from
equilibrium solutions (i.e., it only safeguards against individual agents opting out
of a joint plan, not whole sub-groups of agents), and it assumes that agents will
honour their promises when they have agreed on a joint plan. We believe that both
these assumptions are reasonable in ridesharing, as we are envisioning a platform on
which users would be automatically grouped together whenever a rideshare would
be beneficial to each one of them. On such a platform, it is reasonable to assume
that agreements could be enforced through a trusted third party, and that collusion
among travellers could be avoided by not disclosing their identities to each other
until the purchase of all tickets has been completed. Below, we describe how this
algorithm serves as the basic planning method used in our ridesharing system.

3. Problem Formulation

Informally, the problem we are trying to solve is the following: Assume a (po-
tentially very large) set of agents who represent individual travellers, with their
individual trips specified in terms of origin and target location. Assume also that
the agents want to optimise the individual utility accrued from a trip, and this
utility may depend on the travel cost and number of people travelling along each
leg of the journey (generally, we will assume that group travel has a positive effect
on utility, as we want to study the impact of this very aspect on travel behaviour).
Based on this information, we are looking for an algorithm that can identify ap-
propriate groups of travellers who could share parts of their journeys using the full
timetabling information of public transport systems, and determine a precise joint
travel plan for each group. Also, we want to be sure that if we propose a plan
to a group, none of the individual agents will have an incentive to improve on the
proposed solution by deviating from it, i.e., we only want to suggest rideshares from
which all travellers involved will benefit.

This section provides the formalisation of the timetabled transport ridesharing
problem, which is then used by the ridesharing planning algorithm described in the
next section. This formalisation builds on a representation of timetabled transport
services captured at two different levels of granularity, which we call the relaxed and
full transport services domain. From a planning perspective, problem formulation
builds on the definition of a multiagent planning problem, which is essentially the
combination of several individual planning problems involving an initial and goal
state, as well as a set of actions that can be performed by the agent, i.e., the public
transport services it can use.

We employ the multiagent paradigm because we want to account for every in-
dividual traveller’s preferences, and to satisfy certain game-theoretic properties for
solutions we calculate (i.e., joint travel plans, parts of which are shared among
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more than one agent). To our knowledge, such modelling of strategic interaction
situations cannot be done without an agent-based model.

3.1. Timetabled Transport Services Representation. Since the full travel
planning domain with a full granularity of timetabled connections is too large for
any current state-of-the-art planner to deal with, we distinguish the full transport
services domain from what we call the relaxed transport services domain, which we
will use to come up with an initial plan before mapping it to the full timetable
information in our algorithm below. Roughly speaking, the relaxed domain con-
tains information about all travel connections in the transport network with their
respective shortest travel times, and ignores any concrete service timetables and in-
formation about which passengers are using which services, which are only included
in the full domain (the relaxed domain also ignores direct connections among lo-
cations with intermediate stops, for reasons that will be explained below). Since
only trips that are possible in the relaxed domain are possible in the full domain,
this gives us a sound relaxation of the problem we can work with. This relaxation
is of course incomplete in the general case, as many trips that are possible in the-
ory cannot be performed in practice due to timetabling constraints, both regarding
transport services and participating travellers’ requirements.

The relaxed domain is a single-agent planning domain represented as a weighted
directed graph T = (V,E,w) where the set of nodes V represents the stops and the
set of edges E represents the connections provided by a service. The graph must
be directed because there exist stops that can only be used in one direction . There
is an edge e = (A,B) ∈ E from stop A to B in this graph if there is at least one
connection from A to B in the timetable. The weight w(e) of this edge is given
by the weight function w : E → R+

0 which returns the minimal time needed for
travelling from A to B. A plan Pi = 〈A1 → A2, A2 → A3, . . . , Ak−1 → Ak〉 found
in the relaxed domain for the agent i is a sequence of k − 1 connections to travel
from its origin A1 to its destination Ak.

A small example of the relaxed domain is shown in Figure 1. An example plan
for an agent travelling from C to F is P1 = 〈C → D,D → E,E → F 〉. To give an
idea of the difference between the relaxed domain and the full timetable in terms of
domain complexity, there are 497 connections in the relaxed domain for trains and
coaches in the Yorkshire area compared to 10,295 timetabled, actual connections.

A

B

C

D E

F

G

50 min 30 min

20 min30 min

120 min

80 min

60 min

Figure 1. An example of the relaxed domain showing basic con-
nection times (e.g., it takes 50 minutes to travel from A to B).

Direct trains that do not stop at every stop are filtered out from the relaxed
domain for the following reason: Assume that in Figure 1, there is only one agent
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travelling from C to F and that its plan in the relaxed domain is to use a direct
train from C to F . In this case, it is only possible to match its plan to direct
train connections from C to F , and not to trains that stop at C, D, E, and F .
Therefore, the agent’s plan cannot be matched against all possible trains between
C and F which is problematic especially in the case where the majority of trains
stop at every stop and only a few trains are direct. On the other hand, it is possible
to match a plan with a train stopping in every stop to a direct train, as explained
later in Section 4.4.

C

D E

F

S1

S2

S1

S3
S2

S4

S5

Figure 2. An example of the full domain with stops C, D, E

and F for the merged plan of two single-agent plans P = {C {1}−−→
D
{1,2}−−−→ E

{1}−−→ F}.

Assume a set N = {1, . . . , n} of agents in the full domain, where each agent i has
plan Pi from the relaxed domain. Then the full domain is a multiagent planning
domain constructed using a merged plan P of single-agent plans P1, . . . , Pn defined
by formula

P =
n⋃

i=1

Pi = (V ′, E′, l′)

where we interpret
⋃

as the union of graphs that would result from interpreting
each plan as a set of edges connecting stops. More specifically, given a set of single-
agent plans, the plan merging operator

⋃
computes its result in three steps: First,

it transforms every single-agent plan Pi to a directed graph Ti = (Vi, Ei) where the
nodes Vi are the stops from the single-agent plan Pi and the edges Ei represent the
atomic travel actions of Pi (for instance, a plan P1 = 〈C → D,D → E,E → F 〉
is transformed to a directed graph T1 = {C → D → E → F}). Second, the
merging operator performs a graph union operation

⋃n
i=1 Ti = (V ′, E′, l′) over

the directed graphs and sets V ′ =
⋃n

i=1 Vi, E
′ =

⋃n
i=1Ei, and labels every edge

e = (A,B) ∈ E′ with the numbers of agents that are using the edge by a labelling
function l′ : V ′ × V ′ → 2N . As an example , following Figure 1, the merged plan
of plans of agent 1 travelling from C to F and sharing a journey from D to E with
agent 2 would be computed as

〈C → D,D → E,E → F 〉 ∪ 〈D → E〉 = {C {1}−−→ D
{1,2}−−−→ E

{1}−−→ F}
With this, the full domain is represented as a labelled directed multigraph T ′ =
(V ′, Et, l, l

′) where the set of nodes V ′ represents the stops that are present in the
merged plan P of plans from the relaxed domain. A set of edges Et represents
the journey services from the timetable. The labelling function l : Et → 〈s, tA, τ〉
returns a triple of a unique service name s, a departure time tA from stop A,
and a duration τ of the service journey between stops A and B for each edge
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e = (A,B) ∈ Et. The labelling function l′ : V ′ × V ′ → 2N labels every edge e ∈ E′
with the number of agents using it.

A joint plan π with a timetable is a sequence π = 〈a1 . . . ak〉 of joint actions.
Each joint action aj from π represents a subset Nj ⊆ N of agents travelling together
using a specific service sj .

In the example of the full domain in Figure 2, the agents can travel using some
subset of five different services S1 to S5. The full domain example is based on the
group of agent 1 (travelling from C to F ) and agent 2 (travelling from D to E)
where initial single-agent plans have been found in the relaxed domain shown in
Figure 1. In order to travel from C to D using service S1, an agent must be present
at stop C before the departure of service S1 to D.

3.2. Multiagent Planning Problem. To model the ridesharing problem, we use
a multiagent planning formalism which is based on MA-STRIPS (Brafman and
Domshlak, 2008) and coalition-planning games (Brafman et al., 2009b). States
are represented by sets of ground fluents, actions are tuples a = 〈pre(a), eff (a)〉.
These fluents are logical propositions describing aspects of the current state that
may change over time, e.g., at(1 , l1 ) to express that agent 1 is at location l1.
After the execution of action a, positive fluents p from eff (a) are added to the
state and negative fluents ¬p are deleted from the state. For example, an action
travel(A,X ,Y ), when applied to the case of A = 1 travelling from X = l1 to Y = l2
would make at(1 , l1 ) false and at(1 , l2 ) true. Each agent has individual goals and
actions with associated costs. There is no extra reward for achieving the goal, the
total utility received by an agent is simply the inverse of the cost incurred by the
plan executed to achieve the goal. In the ridesharing domain, the agents are the
travellers, located in their origin locations in the initial state, and attempting to
achieve goal states where they are at their destination locations. Agents specify
the initial state and the goal state but their journey plans are computed for them
centrally.

More formally, following the notation of (Jonsson and Rovatsos, 2011), a multi-
agent planning problem is a tuple

Π = 〈N,F, I, {Gi}ni=1, {Ai}ni=1,Ψ, {ci}ni=1〉
where

• N = {1, . . . , n} is the set of agents,
• F is the set of fluents,
• I ⊆ F is the initial state,
• Gi ⊆ F is agent i’s goal,
• Ai is agent i’s action set,
• Ψ : A→ {0, 1} is an admissibility function,
• ci : ×n

i=1Ai → R is the cost function of agent i.

A = A1 × . . .×An is the joint action set assuming a concurrent, synchronous exe-
cution model, and G = ∧iGi is the conjunction of all agents’ individual goals. The
assumption of synchronous action among agents here is an important simplification
to make the problem more tractable. We will see below how it is possible to de-
termine specific synchronisation points for jointly travelling agents when mapping
the problem to the full timetabling information. A multiagent planning problem
typically imposes concurrency constraints regarding actions that cannot or have to
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be performed concurrently by different agents to succeed which the authors of (Jon-
sson and Rovatsos, 2011) encode using an admissibility function Ψ, with Ψ(a) = 1
if the joint action a is executable, and Ψ(a) = 0 otherwise.

A plan π = 〈a1, . . . , ak〉 is a sequence of joint actions aj ∈ A such that a1 is
applicable in the initial state I (i.e., pre(a1) ⊆ I), and aj is applicable following
the application of a1, . . . , aj−1. We say that π solves the multiagent planning
problem Π if the goal state G is satisfied following the application of all actions in

π in sequence. The cost of a plan π to agent i is given by Ci(π) =
∑k

j=1 ci(a
j).

Each agent’s contribution to a plan π is denoted by πi (a sequence of ai ∈ Ai).

3.3. Timetabled Transport Ridesharing Problem. The real-world rideshar-
ing domain used in this paper is based on the large and complex public transport
network in the UK. An agent representing a passenger is able to use different modes
of transport during its journey: walking, trains, and coaches. The aim of each agent
is to get from its starting location to its final destination at the lowest possible cost.
The cost of an agent’s journey can be based on the weighted sum of several criteria
such as journey duration, ticket price, mode of transport, and number of agents
travelling together.

For the purposes of this paper, we will make the assumption that sharing a part
of a journey with other agents is cheaper than travelling alone. While this may
not currently hold in many public transport systems, defining hypothetical cost
functions that reflect this would help assess the potential benefit of introducing
such pricing schemes. This means that our cost functions reflect synergies occurring
from the joint use of a resource, and this can be easily accommodated within the
framework of best-response planning, where these positive effects on cost are simply
treated as “negative contention”, i.e., the cost to each agent when sharing a resource
simply decreases instead of increasing. Note that this does not imply that every
time an agent decreases her local cost this will benefit everybody else. For example,
agent A might abandon the plan to share with B in order to reduce her overall
cost, and join agent C instead, thus increasing B’s cost, who will now travel alone.
Thereupon B will try to improve on this result (and so on), the important property
of BRP being that this process is guaranteed to terminate, and will result in a joint
plan in which no individual agent can improve further on. Also, it is worth pointing
out that a joint plan will not necessarily be globally optimal – its quality will depend
on the initial plan computed before the best-response process.

The ridesharing problem is then, for a given travel demand expressed as a set
of origin-destination pairs, one for each agent, finding groups of agents and corre-
sponding shared journey plans. We define the ridesharing problem more formally
by presenting definitions for problem instances and our formal solution concept:
A timetabled transport ridesharing problem is a triple P = 〈T, T ′, G〉, where

• T = (V,E,w) is the relaxed domain containing a set V of public transport
stops,
• T ′ = (V ′, Et, l, l

′) is the full domain over the subset V ′ ⊆ V of public
transport stops, and
• G = {(o1, d1), . . . , (oc, dc)} is a set of agent trips (an agent’s goal is to

travel from an origin to a destination), where each agent’s trip g ∈ G is
represented by a tuple g = (o, d) denoting the agent’s origin o ∈ V and
destination d ∈ V .
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A solution to this problem is a joint plan π = 〈a1, . . . , ak〉 specifying fully the
shared journeys of agents in terms of connections from the timetable and fulfilling
all agent trips g ∈ G. From the many joint plans possible, we are looking for such
a joint plan that correspond to a Nash equilibrium, i.e., where no agent/traveller
can unilaterally improve its individual journey cost.

4. Ridesharing Planning Algorithm

Once we have formalised the problem, we can proceed to a detailed description of
the ridesharing planning algorithm. The algorithm takes as an input the timetabled
transport ridesharing problem P = 〈T, T ′, G〉, a maximum travel group size nmax,
and a maximum bearing difference ∆ϕ. A bearing ϕ(t) for a trip t = (o, d) is
defined as an angle in degrees, measured in the clockwise direction, between the
north reference ray and the origin-destination ray. Bearing of a trip is used to
identify trips with a similar direction as these are more suitable for ridesharing
than trips with opposite bearing. The output of the algorithm is a joint plan
π = 〈a1, . . . , ak〉 that fulfils all agent trips g ∈ G.

The main problem when planning for an identified group of agents with a cen-
tralised multiagent planner is the exponential blowup in the action space which is
caused by using concurrent, independent actions (Jonsson and Rovatsos, 2011). Us-
ing a naive PDDL translation has proven that a direct application of a centralised
multiagent planner to this problem does not scale well. As mentioned above, we
tackle the complexity of the domain by breaking the planning process down into
different phases that avoid dealing with the full fine-grained timetable data from
the outset. The overall algorithm, which is shown in Figure 3, is designed to work
in four phases, which we will now describe in detail.

4.1. The Trip Grouping Phase. The algorithm starts with the trip grouping
phase where the trips G = {(o1, d1), . . . , (oc, dc)} are grouped into groups of at
most nmax agents. Groups are created incrementally from G, until G becomes
empty, in the following way: First, pick a trip g′ ∈ G at random. Then, create
a set of candidate trips G′ = {g ∈ G|bd(g, g′) ≤ ∆ϕ} that have a similar bearing
as g′ (function bd(g, g′) calculates the bearing difference between trips g and g′).
Next, create a group Gj ⊆ G′ by selecting at most nmax trips with minimum spatial
difference sd(·, g′) to g′. Here, the spatial difference sd(g, g′) of two trips g and g′

is defined as

sd(g, g′) = |o, o′|+ |d, d′|,
where |o, o′| denotes the direct distance between the origins of the two trips, and
|d, d′| the direct distance between their destinations. Once a group Gj is created,
the trips g ∈ Gj are deleted from the set of all trips G.

For each group Gj , a joint journey plan π with a timetable is found by applying
the next three phases of the algorithm.

4.2. The Trip Planning Phase. In the trip planning phase, an initial journey
is found for each agent i from the set of agents Gj using the relaxed domain T =
(V,E,w) where the action set is identical for every agent and contains all transport
services available in the transport network. A journey for each agent is calculated
independently of other agents in the scenario using a single-agent planner. As
a result, each agent is assigned a single-agent plan Pi which will be further optimised
in the next phase. This approach makes sense in our domain because the agents do
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Input

• Timetabled transport ridesharing problem P = 〈T, T ′, G〉
• Maximum travel group size nmax

• Maximum bearing difference ∆ϕ

1. The trip grouping phase
Set j = 0
While G 6= ∅ do

(1) Pick a trip g′ ∈ G at random
(2) Create a set of candidate trips G′ = {g ∈ G|bd(g, g′) ≤ ∆ϕ}
(3) Create a group Gj ⊆ G′ by selecting at most nmax trips with

minimum spatial difference sd(·, g′) to g′

(4) Delete trips t ∈ Gj from G
(5) Set j = j + 1

For each created group Gj = {1, . . . , n} do the next three phases

2. The trip planning phase

For i = 1, . . . , n do
Find an initial journey for agent i using a single-agent planner

3. The best-response phase

Do until no change in the cost of the joint plan
For i = 1, . . . , n do

(1) Create a simpler best-response planning problem from the
point of view of agent i

(2) Minimise the cost of i’s plan without changing the plans of
others

4. The timetabling phase

Identify independent groups of agents I = {u1, . . . , um}, where ui ∈ 2N

For i = 1, . . . ,m do

(1) Find the relevant timetable for group ui
(2) Match the joint plan of ui to timetable using a temporal

single-agent planner in the full domain with the relevant timetable

Output

• Joint plan π = 〈a1, . . . , ak〉 that fulfils all agent trips g ∈ G

Figure 3. Four-phase algorithm for finding shared journeys for agents.

not need each other to achieve their goals and they cannot invalidate each other’s
plans. A PDDL specification for the relaxed domain is shown in Section 4.5.2.

4.3. The Best-response Phase. The best-response phase is based on the relaxed
domain. Again, the action set is identical for every agent and contains all transport
services available in the transport network. The algorithm uses the best-response
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planning algorithm as described below. It iteratively creates and solves simpler
best-response planning problems from the point of view of each individual agent.
In the case of the relaxed domain, the best-response planning problem looks almost
the same as a problem of finding a single-agent journey. The difference is that, as we
have explained in Section 3.3, we make the assumption that the cost of travelling
is smaller when an agent uses a connection which is used by one or more other
agents. A specific cost function used for the evaluation of the algorithm is defined
in Section 5.2.

Iterations over agents continue until there is no change in the cost of the joint
plan between two successive iterations. This means that the joint plan cannot
be further improved using the best-response approach. The purpose of this is
not only to exploit local, “greedy” optimisations for single agents in an overall
schedule of plans. It also ensures that the proposed joint solution is compatible
with the incentives of individual agents, i.e., they could do no better on their
own by deviating from it. The fact that the first iteration of the best-response
optimisation starts from initial plans that agents can perform on their own ensures
this (any subsequent plan generated will be cheaper to them). The output of the
best-response phase is a merged plan P of the single-agent plans in the relaxed
domain (defined in Section 3.1) that specifies which connections the agents use for
their journeys and which segments of their journeys are shared. The merged plan P
will be matched to the timetable in the final phase of the algorithm.

4.3.1. Best-response Planning. The best-response planning algorithm proposed in
(Jonsson and Rovatsos, 2011) is an algorithm which, given a solution πk to a mul-
tiagent planning problem Π, finds a solution πk+1 to a transformed planning prob-
lem Πi with minimum cost Ci(π

k+1) for agent i among all possible solutions, while
considering all other agents’ plans to be fixed:

πk+1 = arg min{Ci(π)|π identical to πk for all j 6= i}
The transformed planning problem Πi is obtained by rewriting the original prob-
lem Π so that all other agents’ actions are fixed, and agent i can only choose its own
actions in such a way that all other agents still can perform their original actions.
Since Πi is a single-agent planning problem, any cost-optimal planner can be used
as a best-response planner.

In (Jonsson and Rovatsos, 2011), the authors show how for a class of congestion
planning problems, where all fluents are private, the transformation they propose
allows the algorithm to converge to a Nash equilibrium if agents iteratively perform
best-response steps using an optimal planner. This requires that every agent can
perform its actions without requiring another agent, and hence can achieve its
goal in principle on its own, and conversely, that no agent can invalidate other
agents’ plans. Assuming infinite capacity of vehicles (or, more realistically, large
enough capacities to accommodate at least the number of agents for whom we are
trying to find a plan), the relaxed domain is an instance of a congestion planning
problem: following the definition of a congestion planning problem in (Jonsson and
Rovatsos, 2011), all actions are private, as every agent can use modes of transport on
their own and the other agents’ concurrently taken actions only affect action cost.
The convergence of the best-response phase derives from the theorem presented
in (Jonsson and Rovatsos, 2011) which states that for any congestion planning
problem, best-response planning converges to a pure-strategy Nash equilibrium.
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The best-response planner works in two phases: In the first phase, an initial plan
for each agent is computed (e.g., each agent plans independently or a centralised
multiagent planner is used). In the second phase, the planner solves simpler best-
response planning problems from the point of view of each individual agent. The
goal of the planner in a best-response planning problem is to minimise the cost
of an agent’s plan without changing the plans of others (though the cost of their
plans might change as explained in Section 3.3). Consequently, it optimises a plan
of each agent with respect to the current joint plan.

This approach has several advantages. It supports full concurrency of actions
and the best-response phase avoids the exponential blowup in the action space
resulting in much improved scalability. For the class of potential games (Monderer
and Shapley, 1996), it guarantees convergence to a Nash equilibrium. On the other
hand, it does not guarantee the optimality of a solution, i.e., the quality of the
equilibrium in terms of overall efficiency is not guaranteed (it depends on which
initial plan the agents start off with). However, experiments have proven that it can
be successfully used for improving general multiagent plans (Jonsson and Rovatsos,
2011).

4.4. The Timetabling Phase. In the final timetabling phase, the optimised shared
journeys are matched against timetables using a temporal single-agent planner
which assumes the full domain. For this, in a first step, independent groups of
agents with respect to journey sharing are identified. An independent group of
agents is defined as an edge disjoint subgraph of the merged plan P . This means
that actions of independent groups do not affect each other so it is possible to find
a timetable for each independent group separately.

A

C D E F

G

B H

part 1

part 2

part 4

part 5

part 3

{1} {1}

{2} {2}

{1, 2} {1, 2} {1, 2}

Figure 4. Parts of the group journey of two agents.

Then, for every independent group, parts of the group journey are identified.
A part of the group journey is defined as a maximal continuous segment of the
group journey which is performed by the same set of agents. As an example, there
is a group of two agents that share a segment of their journeys in Figure 4: Agent 1
travels from A to G while agent 2 travels from B to H. Their group journey has
five parts, with the shared part (part 3) of their journey occurring between stops
C and F .

In order to use both direct and stopping trains when the group journey is matched
to the timetable, the relevant timetable for a group journey is composed in the
following way: for every part of the group journey, return all timetable services in
the direction of agents’ journeys which connect the stops in that part. An example
of the relevant timetable for a group of agents from the previous example is shown
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A

C D E F

G

B H

T1

T2 T2 T2

T1

T2

T3 T4

T5

T2

T1

Figure 5. The full domain with services from the relevant
timetable. There are five different trains T1 to T5, and train T1 is
a direct train.

in Figure 5. Now, the agents can travel using the direct train T1 or using train T2

with intermediate stops.
The relevant timetable for the group journey is used with the aim to cut down

the amount of data that will be given to a temporal single-agent planner. For
instance, there are 9,881 timetabled connections for trains in the Yorkshire area.
For an example journey of 4 agents, there are only 634 services in the relevant
timetable which is approximately 6% of the data. As a result, the temporal single-
agent planner gets only the necessary amount of data as input, to prevent the
time-consuming exploration of irrelevant regions of the state space.

In the timetabling phase, every agent in a group of agents tries to spend the
shortest possible time on its journey. When matching the plan to the timetable,
the temporal planner tries to minimise the sum of durations of agents’ journeys
including waiting times between services. A PDDL specification for the full domain
is shown in Section 4.5.2.

Once the timetabling phase finishes, the algorithm adds a joint plan πj =
〈a1, . . . , ak〉 for the identified group of agents Gj ∈ G to the final joint plan
π = π

⋃
πj . The algorithm then proceeds to the next group Gj ∈ G.

4.5. Implementation. This section describes two important aspects of the algo-
rithm implementation. It deals with the conversion of public transport timetables
data to the Planning Domain Definition Language and with the choice of planners
for implementing the individual phases of the algorithm.

4.5.1. Importing Timetables. To be able to use timetables data of public transport
services (cf. Section 5.1) with modern AI planning systems, it has to be converted
to the Planning Domain Definition Language (PDDL). We transformed the data
in three subsequent stages. First, we transformed the NPTDR and NaPTAN XML
data to a spatially-enabled PostgreSQL database. Second, we automatically pro-
cessed and optimised the data in the database. The data processing by SQL func-
tions in the procedural PL/pgSQL language included the following steps: merging
bus bays at bus stations and parts of train stations, introducing walking connections
to enable multi-modal journeys, and eliminating duplicates from the timetable. Fi-
nally, we created a script for generating PDDL specifications based on the data in
the database. More details about the data processing and PDDL specifications can
be found in (Hrnč́ı̌r, 2011).
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(define (domain travelplanner)

(:requirements :typing :action-costs)

(:types location)

(:predicates

(connection ?origin - location ?destination - location)

(at ?loc - location)

)

(:functions

(time ?origin - location ?destination - location)

(total-cost)

)

(:action go

:parameters (?o ?d - location)

:precondition (and (at ?o) (connection ?o ?d) )

:effect (and

(at ?d) (not (at ?o))

(increase (total-cost) (time ?o ?d)) )

)

)

Figure 6. The domain file for the relaxed domain.

(:durative-action go-agent-1-2_C-D

:parameters (?s - service)

:duration (= ?duration (+

(- (+ (departure C D ?s) (runtime C D ?s)) (agent-time agent1))

(- (+ (departure C D ?s) (runtime C D ?s)) (agent-time agent2))

))

:condition (and

(at start (connection C D ?s))

(at start (at agent1 C))

(at start (<= (agent-time agent1) (departure C D ?s)))

(at start (at agent2 C))

(at start (<= (agent-time agent2) (departure C D ?s)))

)

:effect (and

(at end (at agent1 D))

(at start (not (at agent1 C)))

(at end (assign (agent-time agent1)

(+ (departure C D ?s) (runtime C D ?s))))

(at end (at agent2 D))

(at start (not (at agent2 C)))

(at end (assign (agent-time agent2)

(+ (departure C D ?s) (runtime C D ?s))))

))

Figure 7. A durative action go-agent-1-2 C-D in the domain file
for the full domain.

4.5.2. PDDL definitions. In the relaxed domain used in the trip planning and best-
response phase, a single agent aims to travel from its origin to its destination.
The domain file contains two predicates, two functions and only one action, cf.
Figure 6. The predicate connection is true when there is an edge from ?origin

to ?destination (there are separate edges for walking, travel by bus or train), the
predicate at denotes the current location of the agent. The function time returns
the cost of travelling from the location ?origin to ?destination. The action go
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moves the agent from the location ?o to ?d and it increases the total cost of the
plan which is stored by the total-cost function. The problem file then contains
the origin and destination of the agent, the list of stops, and the list of connections
between the stops and their costs.

In the full domain used in the timetabling phase, multiple agents aim to travel
from their origins to their destinations. The full domain is a multiagent planning
domain constructed using a merged plan P of single-agent plans P1, . . . , Pn. There-
fore, it contains only the stops that are present in the union of these plans, with the
shared parts of the journeys and “who shares which part of the journey” already
specified. In the process of finding a plan for the full domain, a joint plan of the
group of agents is instantiated with concrete timetabled services.

The domain file contains a list of partially instantiated durative actions for trav-
elling from one stop to another, where origin, destination, and agents using this
action are instantiated, and the only free variable is the name of the service the
agents are going to use. The function (agent-time ?a - agent) is used to store
the current time of the agent ?a. An example of a durative action is shown in
Figure 7. The durative action go-agent-1-2 C-D enables agent 1 and 2 to travel
together from stop C to stop D. If the travel from C to D is shared by three
agents, the domain file would contain an action go-agent-1-2-3 C-D.

Let N be the number of agents travelling together, ati the current time of agent i,
dCD(s) the departure time of service s from the stop C toD and rCD(s) its duration.
Then, the duration DCD of the action to travel from the stop C to D is computed as

DCD =
∑N

i=1 (dCD(s) + rCD(s)− ati). The temporal planner tries to minimise the
sum of the durations of agents’ journeys. In other words, it tries to find a journey
with minimal waiting times between services.

The conditions of the action are the following: there must be a connection by
the service s between the stops C, D and the agents must be present at the stop C
before the departure of service s. Once the action is executed, the agents are located
at stop D and their current time is set to the arrival of the service s at stop D. The
problem file contains origins and destinations of the agents and the list of services
and their departures and durations.

4.5.3. Planners. All three single-agent planners used for the implementation were
taken from recent International Planning Competitions from 2008 and 2011. We use
LAMA (Richter and Westphal, 2008) in the trip planning phase and for each of the
individual single-agent best-response iterations in the best-response phase. LAMA
is a sequential satisficing (as opposed to cost-optimal) planner which searches for
any plan that solves a given problem and does not guarantee optimality of the plans
computed. LAMA is a propositional planning system based on heuristic state-space
search. Its core feature is the usage of landmarks, i.e., propositions that must be
true in every solution of a planning problem.

SGPlan6 (Hsu and Wah, 2008) and POPF2 (Coles et al., 2011) are the two
temporal satisficing planners used in the timetabling phase. Such temporal planners
take the duration of actions into account and try to minimise makespan (i.e., total
duration) of a plan but do not guarantee optimality. The two planners use different
search strategies and usually produce different results. This allows us to run them
in sequence on every problem and to pick the plan with the shortest duration. It is
not strictly necessary to run both planners, one could save computation effort by
trusting one of them.
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In many of the experiments, the SGPlan6 and POPF2 used in the timetabling
phase returned some plans in the first minute but then they continued exploration
of the search space without returning any better plan. To account for this, we
imposed a time limit for each planner in the temporal planning stage to 2 minutes
for a group of up to 4 agents and 4 minutes otherwise.

5. Evaluation

We have evaluated the proposed ridesharing algorithm on realistic scenarios
based on real-world public transport timetables and travel demand data for the
Yorkshire area of the United Kingdom. The size of the area was dictated solely
by our need to evaluate the algorithm on the whole travel demand (approximately
100,000 train trips per day). The ridesharing planning algorithm itself scales up
well up to the area of the whole UK, as was shown in our previous work (Hrnč́ı̌r
and Rovatsos, 2012). However, there the algorithm was evaluated on travel de-
mand that was very sparsely and randomly sampled, not necessarily showing any
correlation to actual travel demand profiles.

5.1. Domain Data. The timetables of public transport services were taken from
the National Public Transport Data Repository (NPTDR, data.gov.uk/dataset/
nptdr) which is publicly available from the Department for Transport of the British
Government. For the evaluation of the algorithm, we used data from 2010, which
is provided in TransXChange XML, in an XML-based UK standard for interchange
of route and timetable data.

National Public Transport Access Nodes (NaPTAN, data.gov.uk/dataset/nap-
tan) is a UK national system for uniquely identifying all the points of access to
public transport. Every point of access (bus stop, railway station, etc.) is identified
by an ATCO code (a unique identifier for all points of access to public transport in
the UK), e.g., 9100YORK for York Rail Station. Each stop in the NaPTAN XML
data is also supplemented by common name, latitude, longitude, address and other
pieces of information. This data also contains information about how the stops are
grouped together (e.g., several bus bays that are located at the same bus station).

Table 1. Numbers of trips per day in the Yorkshire area (Euro-
stat, 2012; Office for National Statistics, 2001).

Transport mode Modal split 100% trips 50% trips 5% trips
Trains 5.3% 106,035 53,017 5,302
Coaches 0.3% 6,002 3,001 300
Local buses 6.0% 120,039 60,020 6,002
Passenger cars 88.3% 1,766,576 883,288 88,329
Total 100.0% 1,998,651 999,326 99,933

The experiments are situated in the Yorkshire area (East and West Yorkshire,
East Riding of Yorkshire, York, and Selby administrative areas) which covers an
area of approximately 130 by 70 km, i.e., around 9,100 km2. According to the
UK origin-destination census data from 2001 (Office for National Statistics, 2001),
there are 2 million passenger trips a day in the Yorkshire area. In order to focus
on the timetabled public transport trips, the modal split in the UK across different
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Table 2. Experiment scenarios parameters overview.

Scenario parameter Parameter values
Travel demand generation {realistic, random}
Ridesharing demand proportion {100%, 50%, 5%}
Modes of transport {trains only, trains and coaches}
Maximum travel group size {2, 4, 6, 8}

modes of transport in 2001 (Eurostat, 2012) was used to estimate the number of
trips for each mode, cf. Table 1.

Since we assume that all agents are travelling on the same day and that all
journeys must be completed within 24 hours, in what follows below we consider
only public transport timetables data for Tuesdays (this is an arbitrary choice that
could be changed without any problem).

5.2. Cost Model. The timetable data used in this paper (cf. previous section)
contains neither information about ticket prices nor distances between adjacent
stops, only durations of journeys from one stop to another. This significantly
restricts the design of a cost functions used for the planning problems. Therefore,
the cost functions used in this paper are based solely on the duration of journeys.
The cost ci,n for agent i travelling from A to B in a group of n agents is then
defined by equation (5.1):

(5.1) ci,n =
(

1
n 0.8 + 0.2

)
ci

where ci is the individual cost of the single action to i when travelling alone. In
this paper, we take this to be equal to the duration of the journey from A to B.

This is designed to approximately model the discount for the passengers if they
buy a group ticket: The more agents travel together, the cheaper the shared (leg
of a) journey becomes for each agent. Also, an agent cannot travel any cheaper
than 20% of the single-agent cost. In reality, pricing for group tickets could vary,
and while our experimental results assume this specific setup, the actual price
calculation could be easily replaced by any alternative model.

5.3. Experiment Scenarios. We used the following parameters as factors in ex-
periment scenarios: (1) travel demand generation; (2) ridesharing demand pro-
portion; (3) modes of transport considered; (4) maximum travel group size. The
values of the parameters are summarised in Table 2. We set the maximum bearing
difference parameter of the algorithm to ∆ϕ = 25 degrees for all scenarios.

Travel Demand Generation. We use two types of travel demand. The real-
istic travel demand generation is based on the UK census 2001 origin-destination
data (Office for National Statistics, 2001) that contains numbers of trips carried out
from every origin district to every other destination district. District-to-district trip
counts are mapped to stop-to-stop trip counts in the following way: For each origin-
destination district pair, the desired number of trips is generated randomly from
the Cartesian product of stops in the origin and destination district. Since the UK
census origin-destination data is not provided at the level of granularity required to
select concrete stops in the travel network, we have sampled these within each dis-
trict with probability proportional to the density of services passing through a stop.
This is based on the assumption that service density roughly follows numbers of
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travellers using a stop. In addition to the realistic demand, we also experimented
using random travel demand generated randomly from the Cartesian product of
stops in the Yorkshire area, assuming a uniform distribution over stops.

From the travel demand distribution generated, only trips with a straight-line
distance between the origin and the destination in the interval 25–100 km are
used for the evaluation (when using roads or rail tracks, this interval stretches
approximately to a real distance of 40–160 km). This interval was chosen to filter
out trips that are too short to be planned in advance and therefore not very suitable
for sharing. This led to the removal of 86% of all trips in the realistic travel demand
generation process and to the removal of 30% of all trips in the random travel
demand generation process.

Ridesharing Demand Proportion. In order to observe the behaviour of the
system with different densities of trips we set the portion of travel demand to
100%, 50%, and 5% of the total number of trips.

Modes of Transport. In order to evaluate the behaviour of the algorithm on
both a unimodal and a multi-modal public transport network, trains only and
a combination of trains and coaches were used in the experiments. In the Yorkshire
area, there are 150 (201) stops, 330 (495) connections in the relaxed domain, and
9,881 (10,289) connections in the timetable for trains (and coaches).

Maximum Travel Group Size. The maximum travel group size nmax is one of
the algorithm’s inputs that restricts the size of groups created in the trip grouping
phase. We set this parameter to 2, 4, 6, and 8 as after initial testing, it became
clear that groups of a larger size are almost never practicable.

5.4. Metrics. We evaluate the performance of the algorithm in terms of three
different metrics: improvement in the cost of agents’ journeys, their prolongation,
and the computation time of the algorithm.

Cost Improvement. To evaluate the net benefit of using our method for rideshar-
ing, we calculate the cost improvement for the agents’ journeys. To calculate this,
recalling that Ci(π) =

∑
j ci(a

j) for a plan is the cost of a plan π = 〈a1, . . . , ak〉 to

agent i, assume n(aj) returns the number of agents with whom the jth step of the

plan is shared. We can define the cost of a shared travel plan C
′
i(π) =

∑
j ci,n(aj)(a

j)

using equation (5.1). With this, we can calculate the cost improvement ∆C as fol-
lows:

(5.2) ∆C =

∑
i∈N Ci(πi)−

∑
i∈N C

′
i(πN )∑

i∈N Ci(πi)

where N is the set of all agents, πi is the single-agent plan initially computed for
agent i, and πN is the final joint plan of all agents after completion of the algorithm
(which, though it is in reality a set of several plans for different subgroups of N , is
interpreted as a single plan for the “grand coalition” N and reflects how subgroups
within N share parts of their individual journeys).

Prolongation. On the one hand, ridesharing is beneficial in terms of cost. On the
other hand, a shared journey has a longer duration than a single-agent journey in
most cases, because agents have to take later services than they could use on their
own if they are waiting for co-travellers to arrive. In order to evaluate this trade-off,
we measure journey prolongation. Assume that Ti(π) is the total duration of a plan
to agent i in plan π, and, as above, πi/πN denote the initial single-agent plans and
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the shared joint plan at the end of the timetabling phase, respectively. Then, the
prolongation ∆T of a journey is defined as follows:

(5.3) ∆T =

∑
i∈N Ti(πN )−∑i∈N Ti(πi)∑

i∈N Ti(πi)

Computation Time. To assess the scalability of the algorithm, we measure the
amount of time needed to create groups of agents in the first phase of the algorithm
and then to plan shared journeys for all agents in each group.

5.5. Results. In this section, we present the results of the evaluation in terms of
journey cost improvement, journey prolongation, and computation time of the al-
gorithm. Exhaustive experiment design was used; all metrics were evaluated for all
combinations of all values of all scenario parameters. Specifically, for each type of
travel demand generation, we tested all combinations of modes of transport, and
for each ridesharing demand proportion, we generated the travel demand. Then for
each maximum group size, the whole travel demand is an input for the algorithm
which in its trip grouping phase creates the groups of agents for ridesharing. From
the set of all groups created, a detailed journey plan with a timetable is found in the
last three phases of the algorithm for a sample of 80 randomly chosen groups (sam-
pling was performed to reduce experiment computational time while maintaining
significance of the results). Each possible experiment configuration is averaged over
8 stochastic travel demand generation instances. This leads to an overall number
of 30,720 groups of agents over which the algorithm was evaluated. The results
obtained are based on running the algorithm on one core of a 3.2 GHz Intel Core i7
processor of a Linux desktop computer with a PostgreSQL 9.1 database (spatially
enabled with PostGIS 2.0.1).

Cost Improvement. The average cost improvement obtained in our experiments
is shown in Figure 8. It shows that the more agents are grouped together in the
trip grouping phase of the algorithm, the higher the improvement. These results
were obtained based on the specific cost function (5.1) we have introduced to favour
ridesharing, and which would have to be adapted to the specific cost structure that
is present in a given transport system. Also, the extent to which longer journey
times are acceptable for the traveller depends on their preferences, but these could
be easily adapted by using different cost functions.

Prolongation. The average prolongation of journeys is shown in Figure 8 where
8% of groups with prolongation greater than 100% is filtered out from the aver-
age calculation (these are the journeys which, though feasible, are unlikely to be
accepted by travellers). The graph shows that the more agents are grouped to-
gether in the trip grouping phase of the algorithm, the higher the prolongation.
Furthermore, the prolongation with the 5% ridesharing proportion is much higher
then when considering 50% or 100% ridesharing proportion. As the density of
trips drops, the agents in groups are more spatially dispersed, which causes higher
relative prolongation ratios.

Figure 9 shows a scatter plot of cost improvement versus prolongation for indi-
vidual trips for 5% and 50% ridesharing proportion. It can be observed that with
a higher ridesharing proportion, the majority of the groups has either prolongation
very close to 0% (identical trips are shared) or has a very high cost improvement
(between 50% and 60%). With a lower ridesharing proportion, there are many more
groups with lower cost improvement or higher prolongation. What is encouraging
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Figure 8. Average cost improvement and prolongation against
maximum group size (realistic travel demand, trains and coaches).
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Figure 9. Cost improvement against prolongation (realistic travel
demand, trains and coaches, maximum group size nmax = 4).

is that even for small populations of potential ridesharers, there are many shared
journeys with a good cost improvement and a reasonable prolongation. In our al-
gorithm, the balance between the two criteria could be calibrated by changing the
weights in the cost function.

Computation Time. The first graph in Figure 10 shows the overall computation
times of the algorithm for one created group of agents from the realistic demand and
a combination of trains and coaches. The trip grouping phase of the algorithm is
very fast (200 ms per group on average). The algorithm spends the majority of the
computation time solving the problem of finding a joint plan for the group of agents.
The graph indicates that the overall computation time grows roughly linearly with
increasing numbers of agents in a group, which confirms that the algorithm avoids
the exponential blowup in the action space characteristic for centralised multiagent
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Figure 10. Computation time against maximum group size
(trains and coaches).

planning. This is mainly a consequence of the best-response planning algorithm,
and an expected result.

The second graph in Figure 10 shows the overall computation times of the algo-
rithm for one created group of agents from the random demand and for a combi-
nation of trains and coaches. It can be observed that the algorithm is faster at the
realistic 5% ridesharing proportion than for random trips. At the 50% and 100%
ridesharing proportion, there is not a very big difference between the computation
times. This suggests that the trips from the realistic 5% ridesharing proportion
reflects the public transport network making the journey planning easier whereas
it is harder to plan for trips distributed randomly.

Regarding the modes of transport in the scenario, it is harder to find joint plans
when a combination of trains and coaches is considered (on average, runtimes are
25% higher for scenarios with trains and coaches). Considering a combination of
trains and coaches does not significantly affect neither the cost improvement, nor
the prolongation.

While the overall computation times are considerable (up to 2 minutes for a group
of 8 agents from the realistic 5% ridesharing proportion), we should emphasise that
the algorithm is effectively computing equilibrium solutions in multi-player games
with hundreds of thousands of states. Considering this, the linear growth hints at
having achieved a level of scalability based on the structure of the domain that is
far above naive approaches to plan jointly in such state spaces.

Finally, we have evaluated the overall computation time for all trips from the
travel demand. We were able to compute shared journey plans for approximately
13,500 trips from realistic 100% ridesharing proportion when considering a com-
bination of trains and coaches. It took less than 75 minutes for each setting of
maximum group size while using 8 cores of 3.2 GHz Intel Core i7 processor on
three computers in parallel.

The ridesharing algorithm can be further parallelised down to a level of individual
groups, bringing the computation time to few minutes for the whole demand. This
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follows from the structure of the algorithm: In the trip planning phase, the identi-
fication of initial single-agent plans for the travellers consists of a set of completely
independent problems. In the best-response and timetabling phase, the planning
problem of each group of agents is also completely independent from those of other
groups or individual travellers.

6. Discussion

Our proposed algorithm clearly improves the cost of agents’ journeys by shar-
ing parts of the journeys, even though there is an inherent trade-off between cost
improvement and the prolongation of journeys. On the one hand, the bigger the
group, the better the improvement. On the other hand, the more agents share
a journey, the higher the prolongation is likely to be. This will most likely lead to
results that are not acceptable for users in larger groups. Whether prolongation or
cost savings are more important in a given scenario will depend on the real pref-
erences of travellers, and our system would allow them to customise these settings
per individual on, for example, a Web-based ridesharing planner that would use
our algorithm. It is also important to point out that our framework can be used
without any significant modifications for any other cost function as appropriate
for the transport system in question, and, subject to availability of the required
real-world timetabled transport data, for any other geographical region.

Next, note that trip planning and best-response phases of the algorithm are
completely domain-independent and can therefore easily be used for other types of
transport problems, e.g., to plan routes that avoid traffic jams or to schedule parcel
deliveries. What is more, additional constraints such as staying at a location for
some time or travelling together with a specific person can be easily accommodated
within standard planning languages, and the use of standard planning technology
also implies that our method will directly benefit from future improvements in plan-
ning algorithms. On the other hand, the trip grouping and the timetabling phase
of the algorithm are domain-specific, providing an example of the specific design
choices that have to be made from an engineering point of view when applying
standard AI methods to problems of decentralised decision-making in transport.

From an algorithm and systems engineering perspective, using off-the-shelf prob-
lem solvers such as AI planning systems for a complex real-world domain like
ridesharing brings an additional benefit, which is that we do not need to engi-
neer novel optimisation algorithms for the combinatorial problems arising in this
family of problems from scratch. While it is certainly possible that faster algo-
rithms that produce better solutions may exist for specific problems, our approach
enables us to formalise different types of similar problems with comparatively little
effort and to make use of the best available search heuristics in a lightweight fash-
ion. We believe that this is an effective way of developing resource allocation and
process optimisation systems in domains like transport, where it can be expensive
to develop a custom solution for every different class of problems although many
of them share many common characteristics.

The presented experiments work with a demand for a whole day and therefore
the generated joint plans are not restricted to any particular part of a day. In
reality, however, travellers may not be so flexible in terms of timing their journeys.
This problem can be easily solved by considering time constraints in the clustering
performed in the trip grouping phase of the algorithm. Trips might for instance
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24 JAN HRNČÍŘ, MICHAEL ROVATSOS, AND MICHAL JAKOB

be put into one group only if their preferred departure and/or arrival times do not
differ by more than a given time difference. The performance achieved for lower
trip densities corresponding to 5% ridesharing proportion suggests that attractive
shared journeys would be found even for the maximum time difference of one hour
(one hour constitutes approximately 4% of a day), or even less during peek hours
when demand is more concentrated.

There are many potential uses of the proposed approach to real-world rideshar-
ing: From a traveller’s perspective, it can be used to exploit current ticket discounts
for group travel while enjoying the company of friends, fellow workers, and other
co-travellers. A web- or smartphone-based application can be built which would
collect user preferences and constraints and propose shared journey plans. Further,
in future applications our approach could be combined with the use of private cars
to mix public and private modes of transport. This can be achieved with fairly
small modifications. It would work in a similar way as walking is combined with
public transport in our evaluation, except that car travel enables non-timetabled
transport for more than one individual. This is an important extension, as in most
realistic settings, successful ridesharing would certainly include private cars. In
fact, without this, we are only considering a very hard problem, were travellers
have very limited flexibility. Naturally, if at least one person in each group has
a car, this opens up (orders of magnitude) more options for joint trips. Also, for
car sharing the cost benefit is arguably much higher, and can be much more ob-
jectively calculated than what we have assumed in our hypothetical cost function
(e.g., cost/km divided by number of car passengers).

From a public policy and transport planning perspective, stakeholders in the
public transport domain could use our method to predict customer behaviour when
considering modifications to timetables, the introduction of new services, and mod-
ifications to pricing schemes to optimise usage, environmental footprint, and busi-
ness revenue. Such scenario analysis could easily accommodate taking further fac-
tors into account, such as waiting times, travel interruptions for business and leisure
activities, preferences of individuals to share trips with particular co-travellers, etc.
In particular, it could give rise to new incentive schemes for ridesharing, such as
discounts for group travel that depend on the cumulative amount of sharing or
occupancy ratios along different legs of joint journeys involving various modes of
transport and changing groups of jointly travelling individuals.

7. Conclusion

We have presented a multiagent planning algorithm which is able to plan mean-
ingful shared journeys using timetabled public transport services. The algorithm
has been implemented and evaluated on realistic scenarios based on real-world UK
transport data. Experiments with realistic travel demand show that, for a wide
range of scenarios, the algorithm is capable of finding shared journeys with very
attractive trade-offs between cost saving and journey time prolongation.

The algorithm exhibits very good scalability, scaling linearly with the number of
trips processed, regardless of the size of travel groups considered. The algorithm
is also amenable to massive parallelisation which can bring the time required for
planning shared journeys for real-world travel demand down to minutes.

Finally, the cost of travel and flexibility of ridesharing can be significantly im-
proved by sharing private cars. In the future, we plan to extend the algorithm
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towards multi-modal ridesharing in which groups of travellers can seamlessly trans-
fer between timetabled and non-timetabled transport modes.
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Abstract

A number of real-world security scenarios can be cast as a
problem of transiting an area guarded by a mobile patroller,
where the transiting agent aims to choose its route so as to
minimize the probability of encountering the patrolling agent,
and vice versa. We model this problem as a two-player zero-
sum game on a graph, termed the transit game. In contrast to
the existing models of area transit, where one of the play-
ers is stationary, we assume both players are mobile. We
also explicitly model the limited endurance of the patroller
and the notion of a base to which the patroller has to repeat-
edly return. Noting the prohibitive size of the strategy spaces
of both players, we develop single- and double-oracle based
algorithms including a novel acceleration scheme, to obtain
optimum route selection strategies for both players. We eval-
uate the developed approach on a range of transit game in-
stances inspired by real-world security problems in the urban
and naval security domains.

Introduction
Hostile area transit and patrolling is an important problem
relevant to many real-world security scenarios, such as ille-
gal border crossing, smuggling interdiction or transport lo-
gistics in insecure regions (Gilpin 2009). For the transiting
agent, the problem is to choose such a route to get across
the hostile transit area that minimizes the risk that it will
be encountered and intercepted by the patrolling agent that
moves within the area; the objective of the patrolling agent
is the opposite.

Choosing the optimum routes becomes non-trivial if we
assume that the agents are aware of and capable of reason-
ing about each other’s objectives and/or whenever the sit-
uation happens repeatedly and the agents are able to learn
from experience. In both such cases, predictability is dis-
advantageous as it can be exploited by the opponent agent.
Randomized route selection can be used in these cases to
make exploitation more difficult by increasing the uncer-
tainty in opponent agent’s behavior. Game theory provides
a principled way of achieving optimum randomization, tak-
ing into account information, preferences and constraints of
both agents.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we model the area transit and patrolling
problem as a zero-sum game, termed transit game, between
two players – the Evader and the Patroller. Pure strategies of
both players correspond to routes in/through the transit area
and the utilities are directly related to the probability that the
Patroller will intercept the Evader.

Game-theoretic approach has been successfully applied to
similar problems in the past (Jain et al. 2010b), resulting in
a variety of games reflecting specific assumptions, domain
restrictions and player capabilities. In contrast to existing
models of area transit, where one of the players is always
stationary, our transit game assumes both players are mo-
bile; (Vaněk et al. 2010) is the sole exception but see Related
work section for differentiation. Unlike existing models, we
also allow to consider Patroller’s home base and maximum
endurance, both features frequently present and required in
real-world scenarios. Our objective is to find such a strat-
egy for the players that maximizes the minimum expected
utility the players can obtain, which — thanks to the zero-
sum property of the transit game — corresponds to a Nash
equilibrium of the game.

Unfortunately, the mobility of both players triggers com-
binatorial explosion in the number of possible strategies
and makes the application of standard methods for find-
ing Nash equilibria ineffective. For example, in a rect-
angular grid graph with 15 nodes, the number of possible
strategies exceeds 1010, rendering standard approaches for
computing Nash equilibria in normal-form games inappli-
cable. We therefore employ iterative solution techniques
known as oracle-based algorithms (Barnhart et al. 1994;
McMahan, Gordon, and Blum 2003) which do not require
explicit enumeration of strategies for the players. Unfor-
tunately, although the oracle-based approach alleviates the
problem to some extent, it requires repeated best response
calculation, which is hard in our case. We therefore propose
a novel variant of the oracle algorithms, termed accelerated
oracle, which reduces the need for best response calculation,
and thus speeds up the calculation of Nash equilibria.

We evaluate our approach on two classes of transit games,
directly inspired by real-world security applications — reg-
ular grid graphs suitable for modeling transit through open
areas and irregular planar graphs suitable for modeling tran-
sit through structured environments. For the former —
by employing agent-based simulation of maritime piracy

AAAI Technical Report SS-12-03 
Game Theory for Security, Sustainability and Health

75

123



AgentC (Jakob, Vaněk, and Pěchouček 2011) — we con-
duct experiments that transcend the game-theoretic frame-
work and allows us to validate the transit game model from
a broader perspective and compare its effectiveness to cur-
rently deployed solutions in the maritime domain.

Related Work
Game-theoretic framework has been applied to a wide range
of strategic problems where one of the players — termed
evader — wants to minimize the probability of being de-
tected and/or intercepted, while the other player — termed
patroller — wants to maximize the probability of detecting
the first player and/or thwarting its plans.

We can distinguish several classes of such games: ambush
games (Ruckle et al. 1976) and interdiction games (Wash-
burn and Wood 1995) model an immobile intercepting
player selecting static ambush points in an area represented
by a graph that the evading player tries to transit, recently
extended e.g. in (Dickerson et al. 2010; Jain et al. 2011).
The mobility of the players is reversed in search games (Gal
1980) where the evader is stationary and the searching player
is mobile. In hider-seeker games (Flood 1972), both players
are mobile; however the players have no explicit restrictions
on their trajectories and do not have additional goals.

Close to our model are infiltration games (Alpern 1992)
in which both the players are mobile and the evader tries to
cross a given area between defined entry and exit, however
the patrolling player can move freely and does not have a
base to return to. We further enrich this model by associat-
ing interception probability with each node and edge in the
graph (similar concept was used e.g. in (Brooks, Schwier,
and Griffin 2009)).

The techniques used to find solution of the transit game
are inspired by single- and double-oracle algorithms; the for-
mer usually termed column/constraint generation or branch
and price (Barnhart et al. 1994), used among others for
solving large-scale games (Jain et al. 2010a), extended
to double-oracle approach (McMahan, Gordon, and Blum
2003), used e.g. in (Halvorson, Conitzer, and Parr 2009).

The model of the transit game was first introduced
in (Vaněk et al. 2010). We extend the model by (1) allow-
ing the Evader to move freely on an arbitrary graph and by
(2) allowing the positioning of the Patroller’s base anywhere
in the environment. Moreover, we redefine the utility of the
game so that the relative direction of player’s movement is
taken into account, which results into a well-defined, proba-
bilistic interpretation of the game value.

Problem Definition
We formalize the problem of hostile area transit and pa-
trolling as follows: let us have a connected transit area with
defined entry and exit zones and a base location. There are
two players that move in the area: the Evader and the Pa-
troller. The Evader’s objective is to get from any location in
the entry zones to any location in the exit zones without en-
countering the Patroller. The Patroller’s objective is to inter-
cept the Evader’s transit by strategically moving through the

transit area. In addition, because of its limited endurance,
the Patroller has to repeatedly return to the base.

Modeling Assumptions
We make the following assumptions regarding the area tran-
sit problem: (1) both players have full knowledge about the
topology of the transit area, including the location of Pa-
troller’s base and the location of entry and exit zones. (2)
The Evader knows the Patroller’s capability to detect and
intercept the Evader at any position in the transit area (this
capability can vary due to environmental reasons). (3) The
Evader knows Patroller’s maximum endurance (and con-
sequently the limits on the maximum length of Patroller’s
walks). (4) The players have no information about the loca-
tion of the other player, unless they meet (at which point the
game ends). (5) The Patroller has no information of whether
the Evader has already entered the area. The Evader does
not know when the Patroller visits the base.

Transit Area Representation
We use discrete representation of space. We represent the
transit area as a simple directed graph with loops termed
transit graph G(N,E), N = {1, 2, . . . , n} denotes a set
of nodes represented directly by natural numbers, and E =
{(i1, j1), (i2, j2), . . . , (im, jm)} where ik ∈ N ∧ jk ∈ N is
the set of edges defining legal movement of players through
the transit area. Every edge has a unit length, i.e., each step
(see below) the player can move from one node to any ad-
jacent node. Three special types of nodes are defined on
the transit graph:(1) entry nodes Nin – the Evader can start
its path in any node of this type; (2) exit nodes Nout – the
Evader aims to reach any node of this type; (3) base node nb

– the node in which all Patroller’s walks start and end.

Player Movement
Analogously to space, time is also discretized. The move-
ment of both players happens simultaneously in synchro-
nized steps. During each step, a player can move to an ad-
jacent node or stay in the same node. Both players have the
same movement speed and all edges take a single step to
traverse. Player’s movement through the transit graph can
be unambiguously represented by a node walk, i.e., a se-
quence of nodes w = [n0, n1, . . . , nk]

1; we then denote |w|
the length of walk w, and w[j] the j-th node on the walk (for
0 ≤ j ≤ |w| − 1).

The following will be required for the definition of utili-
ties. For any finite walk w, we define infinite walk repetition
w∞[i] = w[i mod |w|] and shifted infinite walk repetition
w∞�m = w[(i − m) mod |w|]. E.g. for w = [1, 4, 7], we
have

index . . . [−2] [−1] [0] [1] [2] [3] [4] . . .
w . . . - - 1 4 7 - - . . .
w∞ . . . 4 7 1 4 7 1 4 . . .
w∞�1 . . . 1 4 7 1 4 7 1 . . .

1In a slight abuse of common mathematical notation and to em-
phasize similarity with the array data structure, we use brackets to
denote sequences and to index sequence items.
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Encounters We say two walks w1 and w2 have:

• a node encounter at node i ∈ N at step t if i = w1[t] =
w2[t] (being at the same node at the same time step);

• an edge encounter at edge (i, j) ∈ E at step t if i =
w1[t] = w2[t] ∧ j = w1[t + 1] = w2[t + 1] (traveling
the same edge simultaneously in the same direction) or
i = w1[t] = w2[t+ 1]∧ j = w1[t+ 1] = w2[t] (traveling
the same edge simultaneously in the opposite directions)

• an encounter at location l ∈ N ∪E at step t if w1 and w2

either have a node encounter or an edge encounter at l at
step t.

The encounter sequence of two walks w1 and w2 is a se-
quence [(l0, t0), (l1, t1), . . . , (ln, tn)] where ∀i ∈ {0 . . . n}
w1 and w2 have an encounter at li at step ti and ti ≤ ti+1,
i.e. the order in which the encounter locations appear on
walks w1 and w2 is preserved; the encounter location se-
quence, denoted as w1 ∩w2, is then the encounter sequence
without timestep indices but with the ordering preserved –
[l0, l1, . . . , ln].

As an example, let us consider w1 = [1, 4, 7, 6, 9, 2, 5, 3]
and w2 = [1, 4, 8, 6, 2, 9].

index [0] [1] [2] [3] [4] [5] [6] [7]
w1 1 4 7 6 9 2 5 3
w2 1 4 8 6 2 9 - -
w1 ∩ w2 1 (1,4) 4 6 (2,9)

The resulting encounter location sequence w1 ∩ w2 =
[1, (1, 4), 4, 6, (2, 9)].

Interceptions To provide more expressiveness to the tran-
sit game model, encounters are assumed to lead to intercep-
tions only with a defined location-specific interception prob-
ability p(l) ∀l ∈ N ∩ E. Interception probability may e.g.
reflect the likelihood that the Patroller will be able to detect
the Evader and/or will be able to physically apprehend the
Evader in a given location. The concept is similar to the
concept of sensors with probability of detection in (Brooks,
Schwier, and Griffin 2009).

Transit Game
The modeling assumptions allow us to model the transit
problem as a normal-form game between two players – the
Evader and the Patroller. In the following, we assume the
transit game takes place on a transit graph G = (N,E) with
entry nodes Nin, exit nodes Nout and base nb.

Strategy Spaces The set SE of all possible pure Evader’s
strategies is the set of all walks starting in an entry node and
ending in an exit node, with the nodes in between not being
an entry or exit node, i.e.,

SE = {[n0, . . . , nm]|n0 ∈ Nin ∧ nm ∈ Nout

∧ ni ∈ N \ {Nin ∪Nout} ∀i = {1, . . . ,m− 1}} (1)

Note that because in general Evader’s walks are unlimited,
the above set can be infinite, however we will limit the
Evader to visit every node at most once.

The set SP of all possible pure Patroller’s strategies is the
set of all closed walks starting and ending in the base with
length not exceeding LP , i.e.,

SP = {[n0, . . . , nm]|
m ≤ LP ∧ ni ∈ N ∧ n0 = nb ∧ (nm, nb) ∈ E} (2)

Note that if LP is so small that it does not allow the Pa-
troller to cross one of the Evader’s walks, then the Evader
will have a deterministic strategy that guarantees safe transit
of the graph. The threshold for LP under which this is the
case depends on the position of Patroller’s base and topol-
ogy of the transit graph. In contrast to the Evader, which
performs its walk only once, the Patroller executes its walk
repeatedly2.

We further denote ΣE and ΣP the set of all mixed strate-
gies of the Evader and the Patroller, respectively.

Utility Functions The utility function in the game is di-
rectly related to the probability of interception. First, given
an encounter location sequence I , we can express the prob-
ability π(I) that the Evader will be intercepted by the Pa-
troller as

π(I) =

|I|−1∑

i=0

p(I[i])
i−1∏

j=0

(1− p(I[j])) (3)

where

p(I[i])
i−1∏

j=0

(1− p(I[j])) (4)

is the probability that the Patroller will not intercept the
Evader at locations I[0], . . . , I[i − 1] and will intercept it
at location I[i].

To calculate the interception probability π(sE , sP ) of a
pair of pure strategies (sE , sP ) ∈ SE × SP , we need to de-
termine all possible encounter location sequences that can
result from executing these strategies. Recalling that the
Patroller has no knowledge on when the Evader enters the
transit area, we have to consider all possible mutual shifts of
Evader’s and Patroller’s walks; however, because Patroller’s
walk sP is perpetually repeated, we only need to consider
|sP | shift. The interception probability can therefore be cal-
culated as

π(sE , sP ) =
1

|sP |

|sP |−1∑

i=0

π(I�i) (5)

where
I�i = sE ∩ s∞�i

P (6)
For a given pure strategy pair (sE , sP ) ∈ SE × SP , we

now define the Patroller’s utility uP (sE , sP ) as equal to the
interception probability, i.e.,

uP (sE , sP ) = π(sE , sP ) (7)

We define the Evader’s utility as the opposite value of Pa-
troller’s utility, i.e.,

uE(sE , sP ) = −π(sE , sP ) (8)
2Patroller does not repeats the walk indefinitely, the game ends

once the Evader reaches one of the exit nodes.
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Finally, we define the transit game with deterministic en-
counters as a transit game with unit interception probabili-
ties at all nodes and edges; i.e., p(l) = 1 ∀l ∈ N ∪ E.

Solution
We employ mixed-strategy Nash equilibrium (NE) as a so-
lution concept for the transit game. However, because of
the enormous size of the strategy spaces of both players,
standard techniques for computing a NE of normal form
games, requiring the construction of the full game matrix,
are not applicable. We thus employ iterative techniques
known as oracle-based algorithms (McMahan, Gordon, and
Blum 2003). In the following, we first describe the iterative-
oracle-based search in general, independent of any particu-
lar normal-form game to which it is applied. The specifics of
the transit game only need to be considered when formulat-
ing specific oracles, used in applying the oracle algorithms
to the transit game.

Iterative Oracle-based NE Computation
Instead of searching for the NE of the full normal-form
game, oracle-based algorithms iteratively construct and
solve a growing succession of (significantly) smaller sub-
games until they reach a subgame whose NE is also a NE of
the full game. Depending on the structure of player’s strat-
egy spaces, a NE of the full game maybe found (long) before
the full game needs to be constructed and solved. Assuming
the computation of NE is significantly faster for the much
smaller subgames than for the full game, this may lead to
overall significantly faster computation.

Single-Oracle Algorithm Let us consider a two-player
normal-form zero-sum game Γ with pure strategy sets S1

and S2 for Player 1 and Player 2, respectively, and the cor-
responding mixed strategy sets Σ1 and Σ2. The single-
oracle algorithm iteratively constructs a sequence of sub-
games [Γ(0),Γ(1), . . .] where each game Γ(k) consists of the
complete pure strategy set S1 for Player 1 but only a subset
Ŝ
(k)
2 ⊆ S2 of the full pure strategy set S2 for Player 2. In

each iteration of the single-oracle algorithm, a Nash equi-
librium (σ1, σ2) ∈ Σ1 × Σ2 of the current subgame Γ(k) is
first sought using standard linear program approach. Next, a
Player’s 2 best-response oracle ω∗ : Σ1 	→ S2 is consulted
to obtain a pure best-response strategy s2 ∈ S2 of Player 2
against the Player’s 1 strategy σ1 ∈ Σ1; if the resulting pure
strategy s2 ∈ S2 is already in Ŝ2, the algorithm terminates
and the NE (σ1, σ2) is the NE of the full game Γ (McMa-
han, Gordon, and Blum 2003); otherwise, the strategy s2,
now termed subgame expanding strategy, is added to Ŝ2 and
the algorithm continues.

In the ideal case, the iterative oracle-based algorithm
would only add such pure strategies s ∈ S2 to the pure
strategy subset Ŝ2 that are in the support3 of the Player’s
2 resulting mixed NE strategy of the full game Γ. Best re-
sponse calculation can be viewed as a heuristic for selecting

3The support of a mixed strategy σi is a set of pure strategies
{si|σi(si) > 0}.

Algorithm 1 Accelerated Single-Oracle Algorithm. Heuris-
tic and best-response oracle denoted as ω and ω∗, respec-
tively.

equilibrium found ← false
Ŝ2 ← ∅
σ1 ← uniform distribution over all s1 ∈ S1

repeat
s ← ω(σ1)

if s /∈ Ŝ2 then
Ŝ2 ← Ŝ2 ∪ {s}

else
s∗ ← ω∗(σ1)

if (s∗ ∈ Ŝ2) then
equilibrium found ← true

else
Ŝ2 ← Ŝ2 ∪ {s∗}

end if
end if
(σ1, σ2) ← compute NE using LP for S1 and Ŝ2

until equilibrium found

such subgame expanding pure strategies s2 ∈ S2 that the
algorithm terminates after as few iterations as possible.

Accelerated Single-Oracle Algorithm The above rea-
soning paves the way for using alternative methods of select-
ing subgame expanding strategies. In principal, there can be
two reasons for doing so: (1) best response calculation is too
expensive to be invoked in each cycle and (2) the alternative
selection method may navigate the space of subgames more
effectively, resulting in a lower number of iterations. In ei-
ther case, we term the oracle that returns a subgame expand-
ing strategy the subgame expansion oracle (denoted as ω)
and the resulting method, which uses two distinct oracles,
the accelerated oracle algorithm.

Pseudocode of the accelerated oracle algorithm is given
in Algorithm 1. Note that we use the heuristic oracle ω to
obtain game expanding strategies; the termination condition
still uses the best response as only this ensures that the NE
obtained on the current subgame Γ(k) is an NE of the full
game Γ too.

Theorem 1 If pure strategy sets of both players are finite,
the Algorithm 1 with accelerated oracle finds the Nash equi-
librium of the full transit game.

Proof 1 At the worst case, the heuristic oracle of Player 2
adds all pure strategies to the Player’s 2 strategy subset and
the final subgame equals to the full game. If the algorithm
terminated before all Player’s 2 pure strategies were enu-
merated, then the best response for the current mixed strat-
egy σ1 of Player 1 had to be already in Player’s 2 strategy
subset Ŝ2. However, this is the termination condition of the
original oracle algorithm for which (see (McMahan, Gor-
don, and Blum 2003)) show that it is satisfied only if the
NE of the subgame corresponds to the NE of the full game.
Hence, this is also true for the accelerated oracle algorithm.

Double-Oracle Algorithm The double-oracle algorithm
(Algorithm 2) uses incrementally expanded strategy subsets
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Algorithm 2 Accelerated Double-Oracle Algorithm. Best-
response oracles for Player 1 and Player 2 denoted as ω∗

1 and
ω∗
2 , respectively. Heuristic oracle for Player 1 denoted as ω1.
equilibrium found ← false
Ŝ1 ← { arbitrary strategy s1 ∈ S1}
Ŝ2 ← { arbitrary strategy s2 ∈ S2}
repeat

(σ1, σ2) ← compute NE using LP for Ŝ1 and Ŝ2

s1 ← ω1(σ2)
s2 ← ω∗

2(σ1)

if (s1 ∈ Ŝ1) ∧ (s2 ∈ Ŝ2) then
s∗1 ← ω∗

1(σ2)
if s∗1 ∈ S1 then

equilibrium found ← true
else

Ŝ1 ← Ŝ1 ∪ {s∗1}
end if

else
Ŝ1 ← Ŝ1 ∪ {s1}
Ŝ2 ← Ŝ2 ∪ {s2}

end if
until equilibrium found

Ŝ1 and Ŝ2 for both players. Termination condition requires
that best responses for both players, computed by best re-
sponse oracula ω∗

1 and ω∗
2 , are already present in the respec-

tive strategy subsets. Analogously to the single-oracle algo-
rithm, distinct subgame expansion oracles can be used for
subgame expansion as long as the best response oracula ω∗

1
and ω∗

2 are used in the termination condition. For the sake
of simplicity and because of the way the double-oracle algo-
rithm is employed for solving the transit game, Algorithm 2
describes a variant where the subgame expansion oracle is
only employed for Player 1.

Transit Game Oracles
We now describe the implementation of the specific ora-
cles used in solving the transit game. The Evader and the
Patroller correspond to Player 1 and Player 2, respectively.
Correspondingly, we further use E and P instead of 1 and
2 to index players. The definition of utility (see Equations 5
and 7) — taking into account the relative directions of the
paths — prohibits the direct formulation of a best-response
as an (mixed-integer) linear program. The oracles thus em-
ploy standard search techniques to provide the best response
for each player.

Evader’s Best-Response Oracle In a given transit game,
the Evader’s best response oracle ω∗

E provides a pure strat-
egy s ∈ SE which is the Evader’s pure-strategy best re-
sponse to Patroller’s mixed strategy σP ∈ ΣP ; in other
words, such a walk s∗E ∈ SE from any entry node to any
exit node which minimizes the Patroller’s expected utility

s∗E = arg min
sE∈SE

∑

sP∈SP

u(sE , sP ) · σP (sP ) (9)

where σP (sP ) is the probability that sP ∈ SP is played in
σP .

The Evader’s best-response oracle ω∗
E is implemented as

a best-first-search algorithm, starting from all entry nodes
and expanding the best walk so far. To avoid infinite-length
walks, we require that the same node is not visited multiple
times. Partial-walk utility for each incomplete walk is com-
puted at each step and the best walk (i.e. the one with the
highest partial-walk utility) is chosen for further expansion.
If this best walk is complete (i.e. going from an entry node
all the way to an exit node), the algorithm terminates and
returns the walk. Because of the utility formulation (Equa-
tion 8), the Evader’s utility of an Evader’s walk cannot in-
crease with the walk’s expansion4, thus the first complete
walk is guaranteed to be the best response for the Evader.

Evader’s Subgame Expansion Oracle Due to the combi-
natorial explosion in the number of possible Evader’s walks,
best response calculation for the Evader is expensive. For
subgame expansion, we therefore employ a distinct subgame
expansion oracle ωE which determines the subgame expand-
ing strategy by searching for the best response s ∈ SE only
in the set of Evader’s walks of a limited maximum length.
The optimal maximum length depends on the structure of
the transit graph; as a reasonable estimate, the length of the
shortest path between the two most distant entry and exit
nodes can be used.

Patroller’s Best-Response Oracle Patroller’s best-
response oracle ω∗

P provides a pure strategy s∗ ∈ SP

which is the Patroller’s pure strategy best response to an
Evader’s mixed strategy σE ∈ ΣE ., i.e., a bounded-length
closed walk from Patroller’s base maximizing the expected
Patroller’s utility

s∗P = arg max
sp∈SP

∑

sE∈SE

u(sE , sP ) · σE(sE) (10)

Computation-wise, the Patroller’s best-response oracle ω∗
P

is implemented as a branch-and-bound depth-first search.

Evaluation
We present the evaluation of our approach on two character-
istic and application-relevant classes of transit games. We
begin with example solutions and then compare the prop-
erties of individual solution algorithms in terms of perfor-
mance, scalability and convergence. Finally, we validate
the game-theoretic strategies on an agent-based simulator of
maritime piracy.

Test Problems
We study the properties of the transit game and its solution
on two types of graphs, motivated by real-world domains:
(1) rectangular grid graphs and (2) planar city graphs. For
each graph, we examine the properties of the proposed algo-
rithms, both for a transit game with deterministic and non-
deterministic encounters.

A grid graph with cycles and diagonal edges (depicted on
the Figure 1a) is a suitable representation of a open transit

4Note that the complete-walk utility will be always lower than
or equal to the partial-walk utility so we can use the partial-walk
utility for the best-first estimate.
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Figure 1: Exemplar transit game on a rectangular grid graph with deterministic encounters; three entry nodes placed to the left,
three exit nodes placed to the right and Patroller’s base positioned in the middle. The final game value is 0.327, i.e. giving the
Patroller a chance of 32.7% to intercept the Evader.

areas (such as desert, forest or sea.). We denote the longer
and shorter side as length and width, respectively. In this
evaluation, we place the entry and exit locations on the op-
posite shorter sides of the grid and the base in the middle.

As a representative of planar city graphs, we use a road
network graph extracted from GIS data of part of Prague
(see Figure 2a).

Example Solutions
The solution of the transit game with deterministic encoun-
ters on the rectangular grid graph (of width w = 3, length
l = 6 and base b = 7) for the Evader and Patroller is pre-
sented in the form of a probability distribution over edges
on Figures 1b and 1c, respectively. The weight of an edge
is the probability of the respective player traversing that
edge if it plays its optimal mixed strategy. Note that, in
the transit games with deterministic encounters, the result-
ing Evader strategy contains only forward edges (i.e. edges
{(i, j)| d(j, o) < d(i, o), o ∈ Nout}5). The solution of the
transit game on the city graph is depicted on Figures 2b and
2c.

Note that all described variants of oracle algorithms pro-
vide the same solutions on the above test problems. In con-
trast, standard solution approach working with full strategy
sets for both players was not applicable on a standard desk-
top computer due to the size of the resulting linear program.

Computation Time
Although all described oracle algorithms provide the same
solution, the time required to compute the solution differs.
We evaluate the following three variants of oracle-based al-
gorithms:

1. Evader’s Single Oracle (ESO) is the standard single-
oracle algorithm utilizing only the Evader’s best-response
oracle for the Evader.

2. Evader’s Accelerated Single Oracle (ESO-A) is the accel-
erated single-oracle algorithm utilizing the Evader’s sub-
game expansion oracle.

3. Accelerated Double Oracle (DO) is the accelerated dou-
ble oracle algorithm utilizing Evader’s subgame expan-
sion oracle, and Patroller’s best-response oracle.

Note that the single-oracle algorithm utilizing Patroller’s
best-response oracle could not be used since the size of the
set of all possible Evader paths (that are needed to be enu-
merated completely) quickly exceeds the memory limits.

5d(j, o) denotes Chebyshev/L∞ distance and Nout is the set of
exit nodes.

Tables 1a and 1b summarize the computation times for
the algorithms on both types of graphs and with both deter-
ministic and non-deterministic encounters. The maximum
length of Patroller’s walk was LP = 7. The Evader’s accel-
erated single oracle ESO-A outperforms both the Evader’s
standard single oracle ESO and the double oracle DO on all
test instances. Interesting difference in performance can be
observed when solving games on grid and city graphs. The
number of all possible Patroller’s walks is 24463 for the grid
graph and only 185 for the city graph; this inequality is re-
flected in runtimes of DO (employing Patroller’s oracle). On
the grid graph, DO needs significantly more time to find a
NE than the single-oracle-based algorithms. However, on
the city graph, DO is not penalized by using the Patroller’s
oracle; in this case, the computation time is highest for ESO.

Note the higher number of iterations for DO compared
to ESO-A. Although both DO and ESO-A employ Evader’s
heuristic oracle, due to the incomplete enumeration of the
Patroller’s strategies, DO needs more iterations to converge.
For the single-oracle algorithms, the time spend on linear
programs computing NE of the subgames is higher than for
the double-oracle algorithm due to the fact that in the case
of single-oracle algorithms, the generated subgames contain
all Patroller’s strategies (i.e. all closed walks from the base)
and the resulting linear programs are significantly larger.

We explore the scalability of the fastest algorithm (ESO-
A) on set of rectangular grid graphs of various width and
length. The runtime of the algorithm depends both on the
size of the graph and the maximum length of Patroller’s path,
which was varied from 6 to 8. See the results in Figure 3. In
general, the limits of ESO-A were hit because of the Evader’s
subgame expansion oracle which turned up unable to find
a subgame expanding strategy on a grid graph 12x4 with
LP = 8.

Convergence and Approximation

We have studied the dynamics of the proposed oracle algo-
rithms with the ambition of utilizing the knowledge of their
convergence for trading time for optimality and producing
approximate solutions.

The speed of convergence of ESO-A and the time needed
to obtain a solution within required bounds is depicted on
the Figure 4. We denote the difference between the value of
the response provided by the oracle and the current subgame
value as δ and the final game value as V∗. The y-axis shows
the ratio ε = δ/V∗ which serves as the error upper bound, if
we terminate the algorithm at given time (x-axis).
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Figure 2: Exemplar transit game on a planar city graph with non-deterministic encounters. The graph contains 66 nodes and
100 edges and has one entry node in the eastern part of the graph (depicted as the full green circle), two exit nodes in the western
part of the graph (depicted as empty red circles) and the base (depicted as the blue square) in the middle. The final game value
is 0.146, i.e. giving the Patroller a chance of 14.6% to intercept the Evader.

Table 1: Runtime results in seconds for the transit game. EO
— Evader’s oracle time, PO — Patroller’s oracle time, CLP
— time to solve all subgames.

Simulation-based Evaluation
To validate the presented approach outside the very frame-
work of game theory and to provide a bridge towards more
applied work on maritime security, we have tested the game-
theoretic route selection strategies on an agent-based simu-
lation of maritime traffic (Vaněk et al. 2011). In contrast
with the highly abstracted transit game, the simulation rep-
resents the domain with a much higher level of detail with
near-continuous time and continuous space. We applied the
transit game solution from the perspective of a vessel (cor-
responding to the Evader) that needs to repeatedly transit
through the Gulf of Aden area. The pirate (corresponding to
the Patroller) was not employing game-theoretic model; in-
stead, in line with the domain knowledge, it was represented
as an adaptive agent capable of learning from its past suc-
cesses and failures in trying to intercept the transiting ves-
sel. The learning capability was implemented using a soft-
max multi-armed bandit model (Sundaram 2005). We repre-
sented the transit area as a 12x4 grid graph with Patroller’s
base placed on the node closest to the Bosaso harbor, known
as a major piracy hub. We computed the optimal Evader’s
strategy and deployed it in the simulation (Figure 5). We

Figure 3: Computation time of ESO-A for a transit game
with deterministic encounters on grid graphs of various size
and varying maximum length of Patroller’s walk LP .

Figure 4: Trade-off between solution accuracy and conver-
gence speed for various test problems for ESO-A.

then simulated 10000 transit runs and measured the pirate
success ratio after its performance converged.

We compared the game-theoretic solution (denoted as
GT) to two other transit strategies: the IRTC method rep-
resenting the current transit scheme in which the transport
vessels follow a fixed International Recommended Trans-
port Corridor6 and the UNIFORM method choosing ran-
domly with uniform distribution from all possible shortest
paths. Results in the Table 2 show that both the random-
ized strategies significantly outperform the current transiting
scheme, moreover, the game-theoretic randomization out-

6http://www.cusnc.navy.mil
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Figure 5: Gulf of Aden transit simulation with a deployed
game-theoretic solution. Best viewed in color.

performs the uniform randomization. The relatively small
difference between the two randomized strategies is given by
the fact that the symmetric and homogeneous nature of the
transit game leads to a solution which is close to uniform.
Higher differences can be expected if more detail and/or
structure is introduced (e.g. the real area in not strictly rect-
angular) however this is left for future work.

Strategy IRTC UNIFORM GT
Rate [%] 22 9.19 8.53

Table 2: Comparison different strategies in simulation of
transiting the Gulf of Aden.

Conclusions
We addressed the problem of a strategic confrontation be-
tween two mobile agents — an Evader trying to pass through
an area where a Patroller is trying to intercept its transit. In
order to find optimum route selection strategies, we have for-
malized the problem as a transit game, a novel security game
model which assumes both players to be mobile.

The huge size of the strategy spaces called for the appli-
cation of iterative oracle-based algorithms for NE computa-
tion. In order to limit the need for best response calculation,
which is hard for games on graphs, we have introduced a
novel accelerated variant of oracle algorithm which speeds
up NE computation without the loss of the optimality guar-
antee. We have evaluated the approach on two classes of
games inspired by real-world security applications and, in
one case, were even able to compare the effectiveness of
game-theoretic solution with currently deployed solutions.
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A Profit-Aware Negotiation Mechanism for On-Demand
Transport Services
Malcolm Egan and Michal Jakob 1

Abstract. As new markets for transportion arise, on-demand trans-
port services are set to grow as more passengers seek affordable per-
sonalized journeys. To reduce passenger prices and increase provider
revenue, these journeys will often be shared with other passengers.
As such, new negotiation mechanisms between passengers and the
service provider are required to plan and price journeys. In this pa-
per, we propose a novel profit-aware negotiation mechanism: a multi-
agent approach that accounts for both passenger and service provider
preferences. Our negotiation mechanism prices each passenger’s
journey, in addition to providing vehicle routing and scheduling. We
prove a stability property of our negotiation mechanism using a con-
nection to hedonic games. This connection yields new insights into
the link between vehicle routing and passenger pricing. We also show
via simulations the dependence of the service provider profit and pas-
senger prices on the number of passengers as well as passenger de-
mographics. In particular, our key observation is that increasing the
number of passengers has the effect of increasing passenger diversity,
which in turn increases the service provider’s profit.

1 Introduction

On-demand transportation services are initiated at the request of pas-
sengers, between flexible origins and destinations. In current trans-
port systems, on-demand transport plays an important role in the
form of taxi services, and transportation for the elderly and disabled
[6]. Looking to the near future, on-demand services are set to grow
dramatically with advances in online markets, increased data collec-
tion and analysis in transport systems, and near-ubiquitous mobile
communication services. Even now, numerous public (e.g. SUPER-
HUB [4]) and private (e.g. Lyft2 and Cabforce3) organizations have
begun R&D projects to implement open transport markets, supported
by intelligent data aggregation.

The traditional formulation of the journey planning problem for
on-demand transport is the dial-a-ride problem (DARP); a con-
strained version of the classical traveling salesman problem [9]. In
the DARP, a fleet of vehicles services passengers with pick-up and
drop-off time constraints. Importantly, the fleet of vehicles is op-
erated by a single provider. The optimal solution of the DARP is
then the minimum cost vehicle routes that satisfy all passenger con-
straints. An extensive collection of optimal and heuristic algorithms
have been proposed within the operations research literature to solve
the DARP, which are comprehensively summarized in [6].

1 Agent Technology Center, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic email:
{malcolm.egan,michal.jakob}@agents.fel.cvut.cz

2 https://www.lyft.me/
3 https://www.cabforce.com/home/

Despite the improved efficiency of the traditional DARP over un-
principled heuristics, it remains a centralized approach–well-known
to scale poorly as the size of the transport system increases. To over-
come the scaling problems in the traditional DARP, distributed ap-
proaches have been proposed. In particular, multi-agent techniques
have been employed, where passengers and vehicles are treated as
autonomous agents. For instance, multi-agent taxi scheduling was
proposed in [11, 1, 14] and multi-agent DARP (and related vehicular
routing problems) in [12, 7, 3, 2, 13].

Unfortunately, the state-of-the-art multi-agent DARP approaches
in [12, 7, 3, 2, 13] have largely focused on finding the minimum
cost routes for each vehicle (subject to passenger pick-up and deliv-
ery time constraints). In near-future transport markets, the optimal
vehicle routes will be determined by what passengers are prepared
to pay–hidden from the service provider–in addition to the cost of
vehicle routes. These price preferences were partially addressed in
[10] via a cost sharing mechanism; however, the intimate connection
between passenger pricing and journey planning was not considered.

In this paper, we propose a novel profit-aware negotiation mech-
anism for the DARP, to obtain vehicle routes, as well as passenger
allocations and prices. In particular, we develop a four-stage nego-
tiation between each passenger and the service provider; passenger
preferences, vehicle capacities, and route costs are all accounted for.
Our negotiation mechanism fundamentally differs from previous ap-
proaches to the multi-agent DARP as our focus is on the service
provider profit–explicitly accounting for the individual preferences
of both the provider and passengers–instead of costs that lump pref-
erences together. As such, our negotiation mechanism should in fact
be viewed as a market mechanism–a protocol to exchange services
for monetary payment. Our approach opens the way for the outcomes
of our negotiation to reflect the behaviors and motivations of service
providers and passengers in the real world.

In order to efficiently route and price each passenger’s journey,
we cluster passengers into feasible trips. Each vehicle’s route is then
found by routing through a subset of the passenger clusters. To en-
sure that the clusters are stable–i.e., no bias against any passenger–
we introduce the passenger cluster game and show that it is in fact a
type of hedonic game. We then prove that the stability of passenger
clusters (analogous to coalitions) is determined by the cost of trav-
elling between clusters and the price each passenger is offered. Our
result has the surprising implication that minimizing the cost for the
initial clustering is not necessarily optimal when cluster stability is
also required.

We then show via Monte Carlo simulations that the service
provider profits and passenger prices are highly dependent on the
number of potential passengers and the passenger demographic. In
particular, increasing the number of potential passengers increases
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diversity, which in turn increases the profit of the service provider.
We also show that our negotiation mechanism has the desirable prop-
erty that the service provider charges more when passengers are pre-
pared to pay more.

2 System Model
Consider an on-demand transportation network consisting of a sin-
gle service provider and N passengers. The service provider owns a
fleet of K vehicles, each with a capacity of C passengers. Passenger
pick-up and drop-off locations, and direct routes between locations
are represented by the graph G = (V,E). In particular, the pick-
up and drop-off locations are represented by vertices in the set V ,
while the direct routes between locations in V are represented by the
edges in the set E. We assume that all passengers to be serviced are
known before the negotiation begins4 and that each vehicle starts and
finishes at the same depot.

Associated to each vertex v ∈ V (corresponding to pick-up/drop-
off locations) is a service time sv , which represents the time required
for the vehicle to board passengers. Moreover, associated to each
edge e ∈ E (corresponding to direct routes between locations) are:

1. a start location u ∈ V ;
2. an end location w ∈ V ;
3. a cost ce ∈ [0,∞) to the service provider to traverse edge e ∈ E;
4. and an edge traversal time te ∈ {0, 1, 2, . . .}.

The edge cost ce and the edge traversal time te are found during
pre-processing where the service provider solves the shortest path
problem between u and w on the underlying road network.

2.1 Passenger Preferences
Before the passenger allocation is performed via our negotiation
mechanism, each passenger provides the following information to
the service provider:

1. pick-up and drop-off locations, denoted by vi,p ∈ V, vi,d ∈ V
for passenger i’s pick-up and locations, respectively;

2. pick-up time interval, denoted by (ai, bi) ∈ {0, 1, 2 . . .} ×
{0, 1, 2, . . .} with ai ≤ bi for the i-th passenger;

3. latest drop-off time, li ∈ {0, 1, 2, . . .} with li > bi for the i-th
passenger.

In addition to the travel requirements, each passenger also has
preferences for the amount she is willing to pay. In particular, we
assume that passenger i is prepared to pay a maximum price of
pi,max = ri,maxRi, where Ri is the distance as the crow flies be-
tween passenger i’s pick-up and drop-off locations5 and ri,max ∈
(0,∞) is a price rate in e /km, which converts the distance traveled
into euros.

To account for differences in price preferences between passen-
gers, we model ri,max as a random variable (independently and iden-
tically distributed for each passenger) distributed according to the
generalized Beta distribution on support [0, rmax]. In particular, the
cumulative distribution function (CDF) for the price rate rT,i is

Fri,max(x) =
1

B(α, β)

∫ x
rmax

0

tα−1(1− t)β−1dt (1)

4 This scenario is known as the static DARP and is known to be realistic for
several types of on-demand services [6].

5 Although the distance travelled may be significantly further than Ri, it is
often difficult for passengers to estimate the actual distance to be travelled.
As such, the distance as the crow flies is a reasonable estimate, on which
passengers can make price-related decisions.

for all i ∈ {1, 2, . . . , N}, where B(α, β) is the Beta function. We
have chosen the generalized beta distribution as it has a large number
of distributions with bounded support as special cases, which means
that our model can be tailored to a variety of demographics.

Importantly, the actual maximum price, pi,max that passenger i is
prepared to pay is known only to passenger i. The service provider
only knows the distribution of pi,max, for each passenger. This has
important consequences in the negotiation as the service provider
cannot initially be sure whether or not a passenger will accept an
offer.

2.2 Service Provider Preferences
The objective of the service provider is to maximize its profit; i.e the
difference between the total revenue obtained from all the passen-
gers it services, and the total cost of all vehicle journeys. This is fun-
damentally different from the traditional DARP, where the service
provider minimizes the total cost, which does not reflect passenger
price preferences. We note that the profit maximization problem is
always subject to the route feasibility constraints, as passengers will
not accept the service if pick-up or drop-off time constraints are not
satisfied.

There are two notions of profit maximization in this paper. The
first notion is that of the maximum expected revenue, which is appli-
cable when the service provider does not have any side information
about each passenger’s maximum price. On the other hand, the sec-
ond notion is that of the maximum minimum (maximin) revenue; that
is, the vehicle routes and passenger pricing that maximizes the min-
imum possible profit under the given routing and pricing policy. We
use the maximin approach when the service provider does have side
information about each passenger’s maximum price. As detailed in
Section 3, the maximum expected revenue is employed to generate
an initial offer to each passenger. Later in the negotiation, the service
provider uses the maximin revenue in the final offer to ensure that
passengers are guaranteed to accept.

3 Proposed Negotiation Mechanism
In this section, we propose our negotiation mechanism for the on-
demand transport network detailed in Section 2. Our negotiation
mechanism proceeds in four stages, which ends with a feasible jour-
ney plan for each vehicle and prices for each passenger. The stages
are summarized as follows:

1: The service provider offers each passenger a journey along with a
price.

2: Each passenger makes an initial decision whether to reject the of-
fer or to conditionally accept.

3: The service provider makes final offers to the passengers that con-
ditionally accepted.

4: Each remaining passenger makes its final decision whether to re-
ject or unconditionally accept the offer.

3.1 Stage 1: Initial Service Provider Offers
In the first stage of the negotiation, the service provider constructs
possible routes for each vehicle and prices the journey for each pas-
senger; summarized in Algorithm 1. It is important to note that the
passenger journeys are coupled, even though all passengers negoti-
ate independently of each other. This is due to vehicle capacity and
passenger pick-up/drop-off time constraints, which mean that the op-
timal vehicle allocation for a given passenger depends on which other
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passengers are also allocated to the vehicle. As the service provider
does not know a priori which passengers will ultimately accept their
offer, it must first enumerate multiple feasible journey plans for each
vehicle.

Algorithm 1 Summary of Stage 1
1. Group passengers into feasible clusters subject to constraints on

vehicle capacity, passenger pick-up interval, and passenger drop-
off time. This is illustrated in Fig. 1.

2. Enumerate journeys via the cluster tree (illustrated in Fig. 2).
Each branch is a feasible journey for a single vehicle. Vehicles are
allocated a single branch, each with distinct passengers.

3. Price each journey for each passenger. This is achieved by
solving the optimization problem in (7) to maximize the expected
profit for the service provider.

In practice, both the number of vehicles in the service provider’s
fleet and the number of potential passengers can be very large. As
such, it is not computationally feasible to enumerate all possible
routes for each vehicle through each subset of passengers. To over-
come this problem, we instead use a principled heuristic approach
based on passenger clustering.

3.1.1 Passenger Clustering and Journey Enumeration

Our journey enumeration algorithm first clusters passengers together
into (minimum cost) clusters and then enumerates feasible vehicle
routes between different clusters. As noted in [8, 9], minimum cost
clustering is a type of set partition problem6, which partitions the
passengers into routes, with the k-th vehicle route (chosen from the
set of all routes Ω) denoted yk and passengers in route yk (with edges
Ek ⊂ E) given by {i|δki = 1}. The minimum cost partition is then
the solution to

minimize
δ,yk

∑

k∈Ω

∑

a∈Ek

cayk

subject to
∑

k∈Ω
δkiyk = 1, i ∈ {1, 2, . . . , N}

yk ∈ {0, 1}, k ∈ Ω,

(2)

where a trip through cluster k (with passengers {i|δki = 1}) is fea-
sible with respect to vehicle capacity and passenger pick-up/drop-off
constraints.

For large on-demand transport networks, it is not practical to solve
(2) optimally. Instead, we adopt a heuristic clustering approach based
on [8], where the clustering is based on the locations of the pas-
sengers. The output of the passenger clustering is a set of clusters
C1, C2, . . ., each with an initial pick-up interval (corresponding to
the first passenger in the cluster) and final drop-off time (correspond-
ing to the last passenger in the cluster). The result of the passenger
clustering algorithm is illustrated in Fig. 1.

Once the clustering has been performed, feasible journeys between
clusters are enumerated. This is achieved by forming a tree (illus-
trated in Fig. 2), with each branch corresponding to a feasible route
between clusters. As each vehicle begins and ends at the same de-
pot, it is only necessary to enumerate the tree for a single vehicle.

6 We note that the set partitioning problem in (2) cannot be solved using
standard set partitioning approaches for coalition formation due to the con-
straints from vehicle capacities and passenger pick-up/drop-off times.
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Figure 1: Illustration of passenger clustering. The small circles represent pas-
senger pick-up and drop-off locations. If a given passenger is a member of a
cluster, then the cluster contains both the pick-up and drop-off locations.

This is because the multiple vehicle routes are obtained by allocating
vehicles branches with distinct passengers.

At the end of the journey enumeration step in Stage 1, the service
provider obtains the potential routes for each vehicle in its fleet, with
each journey enumeration corresponding to a different subset of the
potential users. In addition, the cost (to the service provider) of each
route is also given, which is used to compute passenger prices.
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Figure 2: Illustration of the journey enumeration tree.

3.1.2 Journey Pricing

The next step in Stage 1 in the negotiation is to allocate prices to each
passenger. As the service provider only knows the distribution of the
passengers’ maximum price, it maximizes its expected profit.

To formulate the optimization problem, we first define the profit
conditioned on the acceptance of a set S ⊂ {1, 2, . . . , N} (and all
other passengers rejecting the offer), denoted by PS(r) at price rate
r. There are two scenarios to consider: S consists of passengers that
can be served simultaneously by the K vehicles; and S consists of
passengers that cannot be served simultaneously. In the first scenario,
PS is given by

PS,1(r) =
∑

k∈S
rRk − cS , (3)

where cS is the cost to the provider of servicing passengers S and
Rk is the distance as the crow flies between passenger k’s pick-up
and drop-off locations, as detailed in Section 2.1.
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On the other hand, if the passengers in S cannot be served simul-
taneously then the service provider must choose the subset Sc ⊂ S
that can be served and maximizes the operators profit over S. As
the price rate is not known yet (it is the solution to the optimization
problem in (7)), we obtain Sc by solving

Sc = arg max
Sc⊂S

∑

k∈Sc

Rk − cSc , (4)

where cSc is the cost to the provider to service the passengers in Sc.
The conditional profit in the second scenario is then given by

PS,2(r) =
∑

k∈Sc

rRk − cSc . (5)

Finally, the conditional profit for the service provider when the set S
of passengers accept their offers is given by

PS(r) =

⎧
⎨
⎩

PS,1(r), if the service provider can simultaneously
serve all passengers in S;

PS,2(r), otherwise.
(6)

The total profit PT1 is then obtained using the law of total probability.
We find the passenger price rate, r, via the following optimization

problem.

max
r

E[PT1] = max
r

∑

S∈P
PS(r)FrT (r)

|S| (1− FrT (r))
N−|S| ,

(7)

where P is the power set of {1, 2, . . . , N} and FrT is the Beta dis-
tribution CDF in (1). In general, the optimization problem (7) is non-
convex. As such, the problem is numerically solved to find local max-
ima.

At the end of the first stage, each passenger k is offered their
desired journey at a price pk based on the price rate obtained in
(7). In particular, the offer price for passenger k is pk = rRk for
k ∈ {1, 2, . . . , N}7.

3.2 Stage 2: Initial Passenger Decisions
In the second stage of the negotiation, each passenger i makes a pre-
liminary decision based on the price pi that it has been quoted by the
service provider. The passenger can respond to the service provider’s
quote in one of two ways: conditionally accept; or reject.

If passenger i conditionally accepts, it means that she has formed
a contract with the service provider, which ensures that the service
must be paid for unless the service provider increases the price. On
the other hand, if passenger i rejects the offer then she no longer is
interested in a journey with the service provider.

3.3 Stage 3: Final Service Provider Offers
In the third stage of the negotiation, the service provider has addi-
tional information. In particular, the service provider knows: what
the users that conditionally accept are prepared to pay; and which
users have rejected the offer.

As not all passengers will usually accept their offer, the service
provider must update the passenger clusters. Although the cluster

7 Although we consider a common price rate for each passenger (largely for
the purposes of exposition), it is possible to extend to different price rates
for each passenger and even different price rates for each possible route (for
the same passenger).

sizes will change if not all passengers accept, we assume that the
service provider does not change the passenger clusters. The con-
sequences of this assumption are examined further in Section 4. We
emphasize that the journey enumeration from Stage 1 is still feasible,
even with changes in the cluster sizes.

To obtain final prices for each passenger, the service provider
solves the maximin profit problem over the passengers that have ac-
cepted in the previous stage. Let S∗ be the passengers that accepted
their offers in the previous stage and PT2 the final profit obtained
from our negotiation. The maximin profit problem is then

max
r

minPT2. (8)

As we have a lower bound on the maximum price each user is pre-
pared to pay, the maximin profit problem in (8) is equivalent to

S∗c = arg max
Sc⊂S∗

∑

k∈Sc

rRk − cSc , (9)

where the passengers in S∗c are charged rRk, k ∈ S∗c and the other
passengers are priced out.

The service provider uses the pricing in Stage 3 to ensure that
the passengers in desirable clusters accept, which in turn maximizes
the service provider’s profit. That is, the service provider will raise
the price of passengers that have conditionally accepted so that they
reject the final offer8. This means that Stage 3 is equivalent in concept
to the maximum determination problem in auctions (see e.g. [15]).

3.4 Stage 4: Final Passenger Decisions
In the fourth stage of the negotiation, the remaining passengers make
their final decision based on the latest offer from the service provider.
Each passenger either unconditionally accepts the final offer, or re-
jects it; i.e, passengers that conditionally accepted in Stage 2 now
either accept the offer if the maximum price did not rise above pi or
reject otherwise.

4 Passenger Cluster Stability
So far, we have focused on how the service provider can perform
pricing and journey planning in order to maximize its profits. We
now take the perspective of the passengers. Although the passengers
are not directly part of the service provider’s clustering algorithm in
Stage 1 (see Section 3.1.1), it is highly desirable from the perspec-
tive of fairness–an additional means for passengers to discriminate
between providers–that the clustering is not biased against any given
passenger; that is, the passenger cannot find a cluster where both the
passenger and the new cluster are better off. In order to avoid this
bias after Stage 2, the fact that some passengers are likely to have
rejected their offer must be accounted for in the original clustering
and passenger pricing.

In this section, we prove a new relationship between the stability
of the passenger clusters (defined precisely in Definition 2) and the
price each passenger is charged after the initial passenger decisions
in Stage 2. Our main result is a sufficient condition for the stability of
the passenger clusters, which guarantees that each passenger cannot
unilaterally find a different cluster that will improve her chance of
being serviced, while also improving the chance that the cluster she
seeks to join will be serviced.

8 We note that it is possible that passengers may accept service, even after the
price is raised. In this case the service provider can subcontract the journey
with no financial loss.
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To begin, we define the passenger cluster game, which naturally
arises from the notion of passenger clusters and is closely related to
a coalitional game.

Definition 1 The passenger cluster game is the set of players N =
{1, 2, . . . , n} and preference relation over the clusters � (analogous
to the payoff function), which for passenger i

{i} ∪ Cj �i {i} ∪ Ck, (10)

if
∑

m∈{i}∪Cj

pm − cCj∪{i} ≥
∑

m∈{i}∪Ck

pm − cCk∪{i}, (11)

where pm is the price offered to passenger m and cCk is the total
cost to the service provider of servicing cluster k (excluding the cost
of traveling to the cluster from another cluster or the depot).

Intuitively, a passenger i prefers cluster Cj over Ck if the profit
generated by {i} ∪ Cj for the service provider is greater than the
profit generated by {i} ∪ Ck. As neither the passengers nor the ser-
vice provider ultimately know the passengers that will accept, this
means that the service provider is more likely to route through clus-
ter {i} ∪ Cj than {i} ∪ Ck and hence passenger i is more likely to
be serviced.

Importantly, the passenger cluster game is a hedonic game9. A
practical notion of stability in hedonic games is individual stability,
which we state in terms of the passenger cluster game.

Definition 2 Suppose that the passengers have formed clusters Π =
{C1, C2 . . .}. Then, Π is individually stable if for every passenger i
and for all Ck ∈ Π, Ci �i Ck ∪ {i} or Ck �j Ck ∪ {i} for all
j ∈ Ck.

Intuitively, the clusters are individually stable if no passenger can
unilaterally find a new cluster that both the passenger and the cluster
it seeks to join prefer over the original clusters.

As we show in Theorem 1, the stability of passenger clusters is
intimately linked to the price each passenger is offered for its journey.

Theorem 1 All passengers are individually stable in their allocated
clusters if pi < cr,k ∀k 
= i, where cr,k is the minimum cost path
between cluster Ck and cluster Ci (containing passenger i).

Proof of Theorem 1: Observe that if passenger i is to pay pi, then
the profit of the new cluster, PCk∪{i}, is bounded by

PCk∪{i} ≤
∑

j∈Ck

pj + pi − cCk − cr,k (12)

since the cost of servicing passenger i is at least the cost of travelling
from a passenger in cluster k to the pick-up location of passenger i.
As such, when pi < cr,k it follows that

PCk∪{i} < PCk (13)

and the result follows. �
The main consequence of Theorem 1 is that the price the service

provider charges must be bounded by the cost of traveling between
clusters, to ensure cluster stability. Surprisingly, this means that ini-
tial clustering based on minimum cost is not necessarily optimal
when stability is required, even if the set partitioning problem in (2)
is solved optimally. In fact, both the cost of each cluster and the dis-
tance between clusters must be taken into account10.
9 A hedonic game is a coalitional game where the preference relation for each

player over coalitions depends only on the members of the coalitions and
nothing else.

10 We leave the design of clusters to optimally tradeoff between cost and
distance for future work.

5 Simulation Results
In this section, we perform a Monte Carlo simulation study of the in-
fluence of the number of passengers as well as passenger demograph-
ics on pricing and service provider profits. To the best of our knowl-
edge, this is the first study on the effect of the on-demand transport
network on service provider profits (as opposed to costs) and actual
passenger prices.
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Figure 3: Plot of the average profit per negotiation for a varying number of
potential passengers. Three passenger demographics are considered: “highest
demand” (α = 3, β = 1); “moderate demand” (α = β = 1); and “least
demand” (α = 1, β = 3).

Consider the on-demand transport network consisting of a service
provider with K = 3 unit capacity vehicles and N potential passen-
gers. This is a realistic fleet size when (as we consider) the passenger
pick-up and drop-off locations are placed randomly according to the
uniform distribution on [0, L] × [0, L], where L = 4 km, which
along with the direct routes between locations forms the graph G
(see Section 2). We also expect that the insights we obtain approxi-
mately hold for larger scale networks with a similar vehicle density
(≈ 5 vehicles/km2). We also assume that:

1. the start of the pick-up interval is uniformly distributed on
{1, 2, . . . , 60};

2. the duration of the pick-up interval is uniformly distributed on
{5, 6, . . . , 20};

3. the average vehicle velocity is v = 20 km/hour;
4. the maximum journey time is uniformly distributed on

{�3Ri/v
, �6Ri/v
, . . . , �7Ri/v
};
5. and the standard cost of vehicle journeys is cs = e 0.3/km.

As detailed in Section 2, the maximum price rate for passenger i is
distributed according to the generalized Beta distribution on [0, 10]
with parameters α, β. To model different passenger demographics,
we vary α and β, which in turn changes the shape of the correspond-
ing distribution function. In particular, we define a passenger demo-
graphic in terms of demand for services; for example, passengers at
peak hour typically have higher demand, and as such are prepared to
pay more. More precisely, we consider the following demand demo-
graphics:

1. α = 3 and β = 1 corresponds to the Beta distribution with the
largest proportion of the probability mass above e 5 (half of the
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maximum possible price rate), which means that the demographic
has a high proportion of “high-demand” passengers.

2. α = β = 1 corresponds to the Beta distribution with half the
probability mass above e 5, which means that the demographic
has a moderate proportion of “high-demand” passengers.

3. α = 1 and β = 3 corresponds to the Beta distribution with the
largest proportion of the probability mass belowe 5, which means
that the demographic has a low proportion of “high-demand” pas-
sengers.
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Figure 4: Plot of the average price rate for a varying number of potential
passengers. Three passenger demographics are considered: “highest demand”
(α = 3, β = 1); “moderate demand” (α = β = 1); and “least demand”
(α = 1, β = 3).

Fig. 3 shows the relationship between the average profit the service
provider makes from a single negotiation as the number of potential
passengers increases. We observe that for all passenger demograph-
ics (corresponding to different α, β) the average profit increases and
the number of potential passengers increases. This is due to the fact
that increasing the pool of potential passengers also increases the di-
versity, until the profit saturates. As such, it is possible to find cheaper
routes with passengers that pay more. We also observe that the de-
mographic with the lowest proportion of the high demand passengers
(α = 1, β = 3) also yields the lowest average profit. As the pro-
portion of wealthier passengers increases further (α = β = 1 and
α = 3, β = 1), the average profit also increases, for all sizes of the
potential passenger pool.

Fig. 4 shows the relationship between the average price rate paid
by each passenger as the number of potential passengers increases.
Observe that the average price rate reduces for a larger number of
passengers. This can be explained by noting that it is not always pos-
sible to find low cost passengers with only a small number to choose
from, which means that the price must be higher for the service to
be profitable. Also observe that as the proportion of the passengers
that have high demand increases, so does the average price rate. As
such, when the passengers are prepared to pay more for a journey,
the service provider will charge more.

6 Conclusions and Future Work
On-demand services are set to play an important role in transport
markets. In light of this, we have developed a negotiation mecha-

nism between passengers and the service provider to obtain vehicle
routes, as well as passenger allocation and pricing. In contrast with
previous work, we focus on the profit of the service provider instead
of the cost, which allows us to account for both service provider and
passenger preferences. Future extensions will account for larger scale
networks (using the testbed in [5]), dynamic passenger arrivals and
more complex passenger decision making processes.
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[12] J. Koźlak, ‘Multi-agent approach to dynamic pick-up and delivery prob-
lem with uncertain knowledge about future transport demands’, Funda-
menta Informaticae, 71, 27–36, (2006).

[13] M. Mes, M. van der Heijden, and A. van Harten, ‘Comparison of agent-
based scheduling to look-ahead heuristics for real-time transportation
problems’, European Journal of Operational Research, 181(1), 59–75,
(August 2007).

[14] K.T. Seow and D.H. Lee, ‘Performance of multiagent taxi dispath on
extended-runtime taxi availability: a simulation study’, IEEE Trans-
actions on intelligent Transportation Systems, 11(1), 231–236, (March
2010).

[15] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations, Cambridge University
Press, 2009.

M. Egan and M. Jakob / A Profit-Aware Negotiation Mechanism for On-Demand Transport Services278

138



Appendix I

Market Mechanism Design
for Profitable On-Demand
Transport Services

M. Egan and M. Jakob. Market Mechanism Design for Profitable On-Demand
Transport Services. Submitted to Transportation Research Part B: Methodologi-
cal. 2014.

139





1

Market Mechanism Design for Profitable

On-Demand Transport Services

Malcolm Egan1 and Michal Jakob1

1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.

Abstract

On-demand services in the form of dial-a-ride and taxi services are crucial features of all major

cities. However, not all on-demand services are equal. In particular, not-for-profit dial-a-ride service with

coordinated drivers drastically differ from profit-motivated taxi services with uncoordinated drivers. As

such, there are two key threads of research for efficient scheduling, routing, and pricing for passengers:

dial-a-ride services (first thread); and taxi services (second thread). Unfortunately, algorithms for joint

optimization of scheduling, routing, and pricing have not been developed in either thread; largely due

to the widespread assumption of fixed pricing. In this paper, we introduce the third thread: profit-

motivated on-demand services with coordinated drivers. To maximize provider profits and efficiency of

the service, we propose a new market mechanism for third thread on-demand services, where passengers

negotiate with the service provider. In sharp contrast to previous work, our mechanism jointly optimizes

scheduling, routing, and pricing. Ultimately, we demonstrate that our approach leads to higher profits,

compared with standard fixed price approaches, while maintaining comparable efficiency.
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I. INTRODUCTION

Call a taxi in any major city and it will often arrive within minutes. Despite the success and

widespread use of taxis and other on-demand services, there is room for improvement: higher

profits; reduced prices; and even lower waiting times, targeted at passengers that have the

highest demand for the service. Fortunately, the ubiquity of mobile internet and secure online

financial transactions offers has opened the way for highly efficient on-demand transport; able

to ensure that the right driver transports the right passenger at the right time.

At present, efficiently operating a fleet of on-demand vehicles remains difficult. The cause

is the coupling between three key sub-problems: which passengers should be serviced by each

vehicle (routing); at what time should each passenger be picked up (scheduling); and how much

each passenger should be charged (pricing). In efficient on-demand transport, the sub-problems

should be solved jointly; not be decoupled.

Unfortunately, there are few computational techniques to solve the three on-demand sub-

problems jointly; despite over three decades of research on related vehicle routing problems.

While this might seem surprising, there is good reason: there are in fact two distinct research

threads—each addressing a different niche.

The first thread is dial-a-ride services—targeted at the niche of elderly and disabled transport.

Vehicles in fleets offering this type of service are coordinated by a single provider. Each vehicle

collects passengers within requested pick-up time intervals and drops each passenger off before

a requested drop-off time. Dial-a-ride services are typically heavily subsidized by governments,

due to the important role they play for vulnerable members of the community; for instance,

by taking an elderly woman to the hospital for a check-up. These subsidies have an important

repercussion: dial-a-ride service providers are often not-for-profit organizations. As such, the

aim of providers is to minimize costs; as opposed to maximizing profits. This means that the

pricing sub-problem is not considered, and the most popular formalization known as the dial-

a-ride problem focuses on the routing and scheduling sub-problems. Both centralized (see [1]

for an extensive survey) and decentralized agent-based [2], [3] approaches have been proposed.

The second thread is taxi and private hire services. Taxi services contrast with dial-a-ride
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services in two key ways: they are profit-motivated; and vehicles are not heavily coordinated

by a single service provider. This is because the drivers are self-interested and unable to easily

determine the current locations and destinations of other nearby taxis. While taxi services

are profit-motivated, the most common pricing strategy is to use a fixed price-rate; i.e., the

price scales as a—usually linear—function of the distance (see [4] for pricing with a non-linear

function of distance). As such, the price-rate does not factor in the number and demand1 of

passengers that have ordered a ride. Moreover, the fixed price-rate means that the pricing sub-

problem is decoupled from routing and scheduling; instead, the focus is on reducing waiting

times and travel distance (and hence reducing costs) [5]–[9]. We note that the approach in [10]

does optimize pricing for single taxi operation via dynamic programming; however, scheduling

and routing for a fleet of taxis is not considered.

In essence, algorithms for the joint solution of the three on-demand sub-problems have not

been developed in either of these well-established threads of on-demand transport research.

As such, in this paper, we introduce a new niche—made practical with recent technological

developments—where joint solution is feasible: the third thread.

A. The Third Thread

The aim of the third thread of on-demand services is profitability and efficiency when

drivers are coordinated (as in dial-a-ride services) and providers are profit-motivated (as in taxi

services). It is worth noting that this niche only recently arose as more drivers and passengers

have adopted internet-enabled smartphones.

Looking from the computational perspective, standard algorithms for dial-a-ride or taxi

services cannot be directly applied. This is due to the fact that the first two threads decouple

pricing from routing and scheduling. As such, to solve the three sub-problems jointly, new

computational techniques are required.

1The notion of demand here can be easily misconstrued. We mean demand relative to factors such as cost of living and

time of day. We do not mean in terms of need; in particular, we believe that pricing should not be manipulated in emergency

situations.
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In this paper, we propose a new market-based approach for the third thread of on-demand

services. In fact, we are able to jointly solve the three sub-problems: routing; scheduling; and

pricing. There are two fundamental aspects of our approach: a new passenger model; and a

new market mechanism. The passenger model goes beyond the standard approach in the dial-

a-ride problem by providing a realistic probabilistic model for each passenger’s expectations—

ultimately allowing the provider to tailor journey offers to passenger that order the service. Our

new approach significantly extends on our initial work in [11] by enriching the passenger mod-

els, and improving the joint scheduling, routing and pricing algorithm to allow for deviations

from requested journeys.

B. Modeling Passenger Expectations

In traditional approaches to the dial-a-ride problem and taxi routing and scheduling, a

passenger is simply a request; that is, pick-up and drop-off times and locations. By viewing a

passenger in this way it is not possible to optimize the price for each passenger. This is due to

the fact that the service provider must also account for passenger preferences; in other words,

how likely a passenger is to accept a journey.

To enrich the passenger model, we account for the probability that a passenger will accept

an offer, on top of her request. Two key factors are considered: the price of the offer; and the

journey deviation. The journey deviation corresponds to the difference between the time that

passengers request pick-up and drop-off and the actual times. This passenger model forms the

basis for price optimization in our new mechanism for scheduling, routing, and pricing.

C. A Market Mechanism for the Third Thread

At its heart, the third thread of on-demand services is multiple, independent, passengers

ordering transportation from a service provider with multiple vehicles. A natural way forward

is to use a market, as markets, by definition, exchange goods or services for money.

In this paper, we propose a new market mechanism for third thread on-demand services—

profit-motivated service providers with coordinated drivers. Our market mechanism is designed
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to jointly route and schedule vehicles, and price passengers. In particular, we introduce a four-

stage mechanism, initiated by the service provider generating an offer for passengers, and

ending with passengers making a final decision of whether to accept or reject.

It is worth pointing out the key difference between our market mechanism and other nego-

tiation mechanisms used for on-demand services. That is, our mechanism ultimately schedules,

routes, and prices passengers. This is not the case in other approaches. The reason is that the

other negotiation mechanisms are used for, in a decentralized fashion, scheduling and routing

vehicles. There is no mention of how to price passengers. On the other hand, we are able to

price passengers (in addition to routing and scheduling vehicles) due to our enriched passenger

model, which captures passenger expectations.

D. Key Contributions

In this paper, we introduce third thread on-demand services—profit-motivated providers

and coordinated drivers—and a market mechanism to route, schedule, and price passengers.

We summarize our key contributions as follows:

1) Agent-based passenger modeling: We introduce new models for passengers that are

enriched to include expectations for price and deviations from requests, on top of the

standard request model.

2) Market mechanism: We propose a new market-mechanism to jointly schedule, route, and

price passengers. Offers are generated for passengers via an expected profit maximization

algorithm. We also analyze the effect of varying the time between when the mechanism

is run, which leads to closed-form expressions.

3) Business case: Third thread on-demand services are a new niche and as such there is a

genuine need for a business case. To this end, we perform a simulation study to evaluate

the potential for profits, and also efficient service of passengers. We demonstrate that

incorporating passenger expectations in our new passenger models does in fact improve

profitability over standard fixed price-rate approaches, while maintaining comparable

efficiency.
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II. MODELING AGENTS

Consider the network consisting of a single on-demand service provider and N passengers.

The service provider owns a fleet of K unit capacity vehicles that all start and finish their

journeys’ at a common depot; each vehicle traveling with average velocity ν. Each passenger

has requested pick-up and drop-off locations, which are represented by elements from the set of

vertices V in a directed graph G. The directed graph G represents the underlying road network.

As such, the set of edges E in G represent direct routes between locations in V .

Associated to each edge e ∈ E (corresponding to direct routes between locations) are:

1) a start location u ∈ V ;

2) an end location w ∈ V ;

3) a cost ce ∈ [0,∞) to the service provider to traverse edge e ∈ E;

4) and an edge traversal time τe ∈ Z+.

The edge cost ce and edge traversal time τe are found during pre-processing where the service

provider solves the shortest path problem between u and v on the underlying road network.

Note that when edge e connects the vertices u and w, the traversal time is denoted by τu,w. This

model is appropriate when drivers are salaried or pay a fixed commission, which can be easily

incorporated into the edge cost ce.

So far, we have simply described the basic service provider and passenger model used to

model dial-a-ride services. In order to enrich the model for third thread on-demand services,

we need to introduce two new features to the model:

1) passengers capable of making a decision whether or not to accept a journey offer;

2) and a service provider capable of evaluating the probability a passenger will accept an

offer.

A. Passengers

The first step in modeling passengers is descriptive. In particular, we identify two stylized

facts, which we believe hold for passengers using on-demand services. The concept of stylized

facts has been widely used in computational macroeconomics as a means of validating descrip-
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tive models of real markets [12]. Based on the stylized facts, we develop a passenger policy,

which is used to model how passenger decide whether or not to accept a journey.

Before introducing the stylized facts and passenger policy, we define the parameters that

determine passenger behavior. First, a request from passenger i consists of:

1) a pick-up location vi,p ∈ V ;

2) a drop-off location vi,d ∈ V ;

3) a pick-up time interval (ai, bi) ∈ {0, 1, 2 . . .} × {0, 1, 2, . . .}, with ai ≤ bi;

4) and a latest drop-off time li ∈ {0, 1, 2, . . .}, with li > bi.

In response to the requests, the service provider offers a journey to each passenger, which

consists of two components: the deviation of the journey from the request; and the price of the

journey. More precisely, the deviations are defined as follows.

Definition 1. Let Ti be the actual pick-up time and Li be the actual drop-off time, for passenger i.

The pick-up interval deviation, denoted by γp,i, is defined as

γp,i =





ai − Ti, if Ti < ai

Ti − bi, if Ti > bi

0, otherwise.

(1)

Similarly, the drop-off time deviation, denoted by γd,i, is defined as

γd,i =





Li − li, if Li > li

0, otherwise.
(2)

The deviation is then given by δi = γp,i + γd,i.

The next step towards the passenger policy is to introduce two stylized facts for passenger

behavior. Stylized facts—widely used in computational economics [13]—are important as they

provide a means of justifying the passenger policy as a plausible description of real passenger

decision-making relevant to on-demand transport.

Our first stylized fact is as follows.

Stylized Fact 1. The maximum price a passenger will pay for a journey and maximum deviation δ do

not vary significantly for passengers that regularly use on-demand services.
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We can justify this stylized fact by observing that passengers change transportation habits

with great difficulty [14]. As such, we expect that regular on-demand users will have a well-

defined maximum price they are prepared to pay.

Next, we have the second stylized fact.

Stylized Fact 2. The probability that a passenger will accept an offer decreases when either the price

increases with the deviation fixed, or the deviation increases with the price fixed.

More colloquially, this stylized fact is a formal statement of the intuitive notion that if there

is a better deal, more passengers will accept.

Based on the first stylized fact, we propose the following descriptive model for passenger

policies for whether or not to accept an offer:

1) If r < rmax and δ < δmax, then the passenger will accept;

2) Otherwise, then the passenger will reject.

Observe that this policy ensures that the first stylized fact holds. Moreover, our descriptive

model does not violate the second stylized fact, as the policy is concerned with individual

passenger decisions and the stylized fact is concerned with the aggregate.

B. Service Provider

The aim of the service provider is to schedule, route and price passengers to maximize its

expected profit. Previously, the price-rate was assumed to be fixed, and only the scheduling

and routing were optimized. This means that there is no uncertainty and the expected profit

can be maximized by minimizing the cost. The key new feature that we introduce for the

service provider is a probabilistic model of each passenger. As we show in Section III, this extra

information improves the expected profit over standard approaches.

We now detail the passenger model that the service provider uses. Importantly, we also show

that it satisfies both the stylized facts, which means that it is a plausible probabilistic descriptive

model of passengers.

In order for the service provider to infer demand at a given price, it requires the probability

each passenger will accept her offer. It is necessary to consider the probability an offer is accepted
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as the service provider does not perfectly know the maximum deviations and price that any

given passenger will accept. In particular, the probability passenger i accepts her offer is given

by

Pr(i accept) = Pr(δi ≤ δi,max, ri ≤ ri,max). (3)

Remark 1. We emphasize that the realizations of the maximum deviation δi,max and the maximum

price rate ri,max are not known to the service provider, only to passenger i.

To obtain the probability that any given passenger accepts, we assume that the service

provider knows the joint probability density function f(δi,max, ri,max). Our assumption that the

service provider has statistical knowledge of (δi,max, ri,max) ensures that each passenger is not

always charged at the maximum possible price she is prepared to pay–realistic in competitive

profit-motivated on-demand services. On the other hand, statistical knowledge is enough to

enable the service provider to optimize the expected profit, as we detail in Section III.

The density function f(ri,max, δi,max) will typically depend on factors such as time of day, or the

location of the service region. We focus on scenarios where the maximum deviations and price-

rate are independent, which occur when the factors determining the maximum deviations and

the financial factors affecting the price-rate are unrelated. An example is the taxi spot market,

where only a small deviation is acceptable. In these scenarios, the density function is separable;

i.e.,

f(ri,max, δi,max) = fr(ri,max)fδ(δi,max) (4)

We model fr(ri,max), fδ(δi,max) via the scaled Beta distribution with parameters (αr, βr), (αδ, βδ)

respectively. The reason for this is that the Beta distribution is a flexible distribution, which

generalizes a wide variety of distributions with bounded support. The density functions are

given by

fr(ri,max) =
1

ruB(αr, βr)

(
ri,max

ru

)αr−1(
1− ri,max

ru

)βr−1

,

fδ(δi,max) =
1

δuB(αδ, βδ)

(
δi,max

δu

)αδ−1(
1− δi,max

δu

)βδ−1

, (5)
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where B(α, β) is the Beta function, and the densities have support [0, ru] for ri,max and [0, δu] for

δi,max.

It is easy to see that both stylized facts are features of the passenger model that the service

provider uses. In particular, as ri,max and δi,max increase, the probability that a passenger will

accept is reduced. This means that both the descriptive passenger models we have detailed will

exhibit the features described by the stylistic facts.

C. On Prediction

So far, we have argued that our descriptive passenger models satisfy the stylized facts

exhibited by real passengers. However, at this point these stylized facts have only been shown

to hold under current conditions; that is, the present fixed price-rate approach. The remainder

of this paper is concerned with a new routing, scheduling, and pricing approach. Clearly this

is a structural change and as such, it is necessary to justify that the stylized facts still hold.

This is due to the fact that we are predicting the performance of a socio-technical system under

structural changes; known to be notoriously hard to do in many economic settings [13].

Fortunately, the stylized facts (Stylized Facts 1 and 2) are independent of how the service

provider performs scheduling, routing, and pricing. This suggests that the stylized facts should

hold even when the service provider changes the underlying algorithms and indeed the market.

Despite this, it is possible that the parameters of the distributions for the maximum price-rate

and deviation may vary when the pricing algorithm is changed. These variations can potentially

be overcome by updating the parameters αr, βr, αδ, βδ to appropriately model the passengers’

preferences.

The invariance of the stylized facts to service provider scheduling, routing, and pricing,

suggests that key features arising from analysis of our model will be consistent with real-world

practice.

III. OUR PROPOSED MARKET MECHANISM

In this section, we propose a new market-based approach for scheduling, routing, and pricing

in third thread on-demand services. We first detail the desiderata that our design should fulfill.
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We then overview the proposed market mechanism, and detail step-by-step the interactions

between the service provider and each passenger.

A. Design Desiderata

The design of personalized on-demand transport services is constrained by the physical

(i.e., the vehicle fleet) and financial resources of the service provider, and the expectations of

passengers. Ultimately, these constraints determine whether or not the provider is financially

viable.

To ensure that the resource constraints of the provider and the expectations of passengers

are satisfied, the design of our market mechanism is guided by three key desiderata:

1) The service provider should be profitable.

2) The passengers that desire the service the most should obtain it.

3) There should be a simple interface between passengers and the service provider.

Our first two desiderata are to ensure that the service provider is profitable and that vehicles

are allocated to the passengers that most value the service, while the third desiderata brings

our design in line with current trends that simplify access to transportation services.

We point out that our second desiderata is closely related to the standard notion of efficiency

in mechanism design [15]; that is, an efficient mechanism allocates service to the passengers

that are prepared to pay the most for it. In particular, we can formalize the value of a journey

to a given passenger as follows.

Definition 2. Denote the the maximum price for passenger i as pi,max. If the set of serviced

passengers is S, then the efficiency of our market mechanism is then defined as

E =
∑

i∈S
pi,max. (6)

Our third desiderata is to bring our mechanism in line with current trends towards sim-

plifying access to transpotation. The key impact of this desiderata on our approach is that

passengers are not required to price their own journey; instead, the service provider always

generates the first offer. This means that passengers do not need to be aware of the behavior
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of other passengers or how the service provider allocates vehicles. The only decision each

passenger needs to make is whether the journey offer is acceptable or not, which in our model

is determined by the deviation and price of the offered journey.

B. Overview

The three key design desiderata motivate a market mechanism, where passengers are not

required to price their own journeys and the service provider generates offers that maximize

its profits. In our approach, we propose the following mechanism structure:

1) The service provider makes each passenger an initial offer. The offer to each passenger

is based on vehicle allocations and passenger pricing done by the service provider to

maximize its average profit.

2) Each passenger responds to the initial offer by either rejecting or conditionally accepting

the offer. Conditional acceptance is a contract between the passenger and the service

provider, which requires the passenger to pay the amount offered unless either the price

is raised or the deviation from the requested journey increases.

3) The service provider computes final vehicle journey plans and passenger pricing.

4) The passenger either rejects the offer (due to the service provider breaking the contract)

or unconditionally accepts, where the passenger is required to pay the provider for the

service.

A key aspect of the mechanism is that the service provider generates initial offers to each

passenger via optimization of the average profit. There are two sets of variables associated to the

optimization problem. First is the sets of passengers allocated to the same vehicle, which leads

to the allocation C = {C1, . . . , CK} with Ci corresponding to the passengers allocated to the

i-th vehicle. Second is the price-rate, r that each passenger will pay. Formally, the optimization

problem is

maximize
C1,...,CK ,r

∑

S⊂N

(∑

i∈S
rRi − ci

)∏

i∈S
Pr(i accept)

∏

j∈Sc

(1− Pr(j accept))

subject to 0 ≤ r ≤ ru,

(7)
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where Pr(i accept) is given by (3), r is the price-rate offered to each passenger, and ci is the

cost of servicing passenger i.

It is important to note that this optimization problem generalizes the standard formulation

for dial-a-ride services. In particular, we optimize over the pricing (encoded in r) and the

scheduling and routing (encoded in the sets C1, . . . , CK). In contrast, minimum cost scheduling

and routing for dial-a-ride services does not consider pricing; i.e., the price-rate r is assumed

to be fixed. As such, there is potential for higher expected profit than simply using a minimum

cost approach.

We also point out that irrespective of how the scheduling and routing is performed, using

our approach in (7) will always lead to a higher expected profit. This is particularly important

in the case that it is not tractable to optimally solve the clustering problem and heuristics are

required.

While optimally scheduling, routing, and pricing passengers will yield a higher expected

profit, it is not straightforward to solve. In particular, the problem in (7) is difficult for two

reasons:

1) The objective is generally nonlinear and also non-convex.

2) The number of sets C1, . . . , CK to be searched is even greater than in the standard ap-

proaches as there are no feasibility constraints that constrain the passengers able to serviced

by a given vehicle. This occurs because we allow deviations from passenger requests.

To alleviate the two difficulties in solving (7), we adopt the “cluster-then-price” strategy;

that is, we solve the problem (7) in two stages. In the first stage we cluster passengers into

groups that are all served by the same vehicle. We note that the cluster formation is not a

straightforward extension of standard approaches (e.g., [16]) due to the profit-based objective.

We detail our clustering algorithm in Section III-C. We then show how the price-rate offered to

each passenger is obtained by pricing the passengers based on the clustering. The remainder of

section details the interactions between the service provider and passengers in our mechanism–

including how final vehicle allocations and prices are computed.
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Our proposed market mechanism is summarized in Fig. 1, where dependencies are illustrated

by arrows between each stage.

Stage 1:

A Reasonable 

Offer

Stage 2:

First Response

Stage 3:

Re-Orientation

Stage 4:

Final Decision

Passenger

Model

Clustering 

Algorithm

Pricing 

Algorithm

Fig. 1: Overview of the proposed market mechanism for pricing and vehicle allocation in on-

demand transport networks.

C. Stage 1: A Reasonable Offer

In the first stage of the mechanism, the service provider generates an offer for each passenger

i. The offer consists of:

1) maximum deviation, γi;

2) and the price, pi = rRi, where Ri is the distance between pick-up and drop-off locations

for passenger i.

To allow deviations from passenger requests during clustering, we introduce a probabilistic

feasibility constraint, which is closely related to the probability that a passenger will accept the

journey. The constraint is defined as follows.
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Definition 3. A journey is ǫ-feasible for passenger i, if

Pr(δmax ≥ δi) ≥ 1− ǫ, (8)

where δmax is a random variable representing the unknown maximum deviation for passenger i.

Moreover, a cluster is said to be ǫ-feasible if each passenger in the cluster is ǫ-feasible, with the set

of ǫ-feasible clusters denoted by Fǫ.

Intuitively, the notion of ǫ-feasible allocations generalizes the standard notion of feasible

clustering. That is, standard hard constraint clustering is 0-feasible; i.e., each passenger must

have a feasible journey with probability one. Importantly, ǫ-feasible allocations are a key feature

in our approach, as by relaxing the feasible constraints it is possible for the service provider

to offer journeys with deviations from requests to passengers. Ultimately, this can allow the

provider to service more passengers with a single vehicle, which (as we show in Section V)

leads to higher profits and efficiency of the market mechanism.

Passenger clustering: We now develop a clustering algorithm that minimizes the cost of clus-

ters subject to the probabilistic feasibility constraint detailed in Definition 3. In order to form

passenger clusters, we determine whether or not the addition of a passenger to a cluster is

ǫ-feasible. This is achieved by computing the times that the inserted passenger will picked up

and dropped off. To reduce complexity of the insertion algorithm, a passenger can be inserted

only if the new passenger does not affect the deviations of the passengers already in the cluster,

which means that previously clustered passenger pick-up and drop-off times are not changed

after the passenger has been allocated to a cluster.

To illustrate, consider a passenger 0 to be inserted into cluster Cj = {k1, . . . , k|Cj|}, where

passengers in Cj are in the order that they are serviced. There are three situations to consider:

insert passenger 0 before passenger k1; insert passenger 0 between passengers kl and kl+1, with

1 ≤ l < |Cj|; and insert passenger 0 after passenger k|Cj |.

To determine whether a passenger can potentially be inserted into the cluster, there are three

checks that need to be performed:

C1: Can the passenger be inserted without changing the deviation of previously clustered

passengers?
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C2: If C1 holds, what are the pick-up and drop-off times with the minimum deviation (i.e.,

δi)?

C3: Is the cost of traveling to the passenger’s pick-up location and from the drop-off location

less than any other previously checked cluster?

The checks are performed using the insertion algorithm detailed in Algorithm 2. In particular,

the algorithm attempts to insert passengers such that the new passenger does not change

the deviations of previously clustered passengers—corresponding to C1. In the case that it

is possible to insert the passenger without affecting other clustered passengers, the insertion

algorithm determines whether the passenger is ǫ-feasible and computes the pick-up and drop-off

times to minimize the deviation (implementing C2). Finally, the cost is computed and compared

with previously checked clusters, and the lowest cost, cbest, insertion is updated (based on C3).

The minimum deviation pick-up and drop-off times (for C2) are computed using simple

inequality tests due to the fact that the objective is linear; i.e., it is δ = γp + γd (from Section II).

In particular, there are three types of insertion tests: before the first passenger in the cluster;

between passengers j and j+1; and after the last passenger. To illustrate, consider the potential

insertion of passenger 0 between passengers j and j + 1. First, the new passenger’s journey

must fit. This means that Lj + τj,0+ τ0,0+ τ0,j+1 < Tj+1. Next, we choose the minimum deviation

insertion. This is done by checking whether Tj+1−τ0,j+1 ≤ l0, which means that the deviation can

only be caused by the pick-up time. The pick-up time is then chosen to minimize the deviation.

The case where Tj+1 − τ0,j+1 > l0 can be treated similarly.

The cost is computed as

ci,ins = cl−1,i + ci,l, (9)

where passenger i is inserted between passenger l − 1 (if l = 0, then this corresponds to the

depot), and passenger l (this may also be the depot).

With the insertion algorithm in hand, it is now possible to describe our cluster formation

algorithm. The cluster formation algorithm searches through the current clusters for each pas-

senger i to determine whether the passenger can be inserted. After checking each potential

cluster, passenger i is inserted into the lowest cost and feasible cluster, and the next passenger
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procedure INSERTION(cbest ,i,Cj)

Set passenger to be inserted as i.

Compute cost ci,ins for cluster {i} using (9).

if ci,ins < cbest then

cbest = ci,ins; lbest = l; jbest = j.

end if

Set cluster Cj = {k1, . . . , kM}, where M = |Cj|.

for 1 ≤ l ≤ |Cj|+ 1 do

Perform check C1.

Compute pick-up and drop-off times t∗p and t∗d (see discussion).

if Pr(δmax ≥ t∗p, γmax ≥ t∗d) ≥ 1− ǫ then

Compute cost ci,ins using (9).

if ci,ins < cbest then

cbest = ci,ins; lbest = l; jbest = j.

end if

end if

end for

return jbest, lbest, cbest.

end procedure

Fig. 2: Insertion algorithm.

is considered. Our cluster formation algorithm is detailed in Algorithm 3.

Passenger pricing: With the cluster formation algorithm in hand, we now introduce the joint

scheduling, routing, and pricing algorithm used by the service provider to generate expected
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procedure CLUSTERFORMATION

Randomly choose a unique index in N = {1, 2, . . . , N} for each passenger.

Initialize cluster C1 = {1};

Initialize allocation π = {C1} and partition index I = {1}.

Initialize the set of unclustered passengers U = {2, . . . , N}.

while U 6= ∅ do

Set J ← I

while J 6= ∅ do

Randomly choose an element j ∈ J .

Update jbest, lbest, cbest using Insertion(cbest),i, Cj) (see Algorithm 2).

J ← J \ j

end while

Update Cjbest by inserting i before lbest; U ← U \ i; J ← ∅.

end while

return Cluster allocation π

end procedure

Fig. 3: Cluster formation algorithm with probabilistic feasibility constraints.

profit maximizing offers. The algorithm approximately solves the following problem:

maximize
r,ǫ

E[P (r)]

subject to 0 ≤ r ≤ ru

0 ≤ ǫ ≤ 1

,

(10)

where E[P (r)] is the expected profit at price rate r, which is given by

E[P (r)] =
∑

S⊂N

(∑

i∈S
pi − ci

)∏

i∈S
Pr(i accept)

∏

j∈Sc

(1− Pr(j accept)) , (11)

with Pr(i accept) given by (3). Importantly, all price rates greater than ru are rejected by the

passengers with probability one (this follows from (5)). The price offered to each passenger i is
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procedure EXPECTEDPROFITMAXIMIZATION

Initialize ǫ and set Popt ← 0.

while ǫ > 0 do

Set ǫ← ǫ− ǫstep.

Solve (10) to obtain the optimal expected profit P ∗, with ǫ fixed.

if P ∗ > Popt then

Set Popt ← P ∗; ropt ← r.

Set Copt ← {C1, C2, . . .} (corresponding to clusters from Algorithm 3).

end if

end while

return Popt, ropt, Copt.

end procedure

Fig. 4: Joint pricing and clustering algorithm to maximize the expected profit for Stage 1 of our

market mechanism.

then given by pi = rRi, where Ri is the distance from passenger i’s pick-up to drop-off.

Our solution clusters passengers based on the probabilistic feasibility constraint with pa-

rameter ǫ1 ≈ 1 and then optimizing the price using a standard scalar nonlinear optimization

algorithm (i.e., a descent algorithm). This is repeated for parameter ǫk+1 = ǫk−ǫstep until ǫk+1 < 0,

with 0 < ǫstep ≤ 1. The pricing and clustering solution that maximizes the expected profit over

probabilistic feasibility parameters ǫ1, ǫ2, . . . is then chosen. As such, at the end of Stage 1, the

price rate r and passenger clusters C1, C2, . . . are obtained by the service provider. The procedure

is summarized in Algorithm 4.

The final output of the expected profit maximization algorithm is an offer consisting of

a journey deviation and price for each passenger. This offer is then communicated to the

passenger, and the service provider waits for the passengers response, given in the next stage.
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D. Stage 2: First Response

In the second stage of the negotiation, each passenger makes a preliminary decision to accept

or reject the conditional journey offered by the service provider. If passenger i accepts, it means

that she has accepted the journey offer as long as the service provider does not change the offer.

On the other hand, if passenger i rejects the offer then she is no longer interested in a journey

with the service provider.

We emphasize that if the passenger accepts, then she has agreed to a contract with the service

provider; that is, she must pay for the service unless the service provider either raises the price

or increases the journey deviation. We note that this type of contract is standard for other

transportation services, such as pre-booked trains or buses.

E. Stage 3: Re-Orientation

In the third stage of the negotiation, the service provider has additional information. In

particular, the service provider knows both what the users that conditionally accept are prepared

to pay, and which users have rejected the offer.

As not all passengers will usually accept their offer, the service provider must update the

passenger clusters. Although the cluster sizes will change if not all passengers accept, no

passengers are allocated to different clusters. This ensures that the maximum journey deviation

for each passenger does not change.

To obtain final prices for each passenger, the service provider solves the maximin profit

problem over the passengers that have accepted in the previous stage. Let S∗ be the passengers

that accepted their offers in the previous stage and Q the final profit obtained from the market

mechanism. The maximin profit problem is then

max
{ri}i∈S∗

minQ. (12)

We note that in this stage of the mechanism, different passengers can be offered journeys at

different price rates.

As the previous stages of the mechanism have revealed a lower bound on the maximum

price each user is prepared to pay, the maximin profit problem in (12) is equivalent to finding
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the set of passengers

S∗
c = arg max

Sc⊂S∗

∑

k∈Sc

rRk − cSc , (13)

and then pricing passengers such that the passengers in S∗
c are charged rRk, k ∈ S∗

c , while the

other passengers are charged at a higher price rate. This allows these passengers to find another

service or for the provider to subcontract the journeys, which avoids losses.

The service provider uses the pricing strategy in Stage 3 to ensure that the passengers in

desirable clusters accept, which in turn maximizes the service provider’s profit. That is, the

service provider will raise the price of users that have conditionally accepted so that they do not

require the provider to be exposed to large losses. Although undesirable from the perspective of

service provider reputation, we believe that this strategy is likely to be necessary in real-world

practice. This is due to the fact that service providers have both physical (i.e, fleet size) and

financial (i.e., initial capital) constraints. As such, it is not possible to service all passengers that

might accept without either investing in a larger fleet size or hiring additional vehicles. To cope

with these additional costs, it is necessary for passengers to be charged more when they are

difficult to serve.

F. Stage 4: Final Decision

In the fourth stage of the negotiation, the remaining passengers make their final decision

based on the latest offer from the service provider. Each passenger either unconditionally accepts

the final offer, or rejects it; i.e, passengers that conditionally accepted in Stage 2 now either

accept the offer or reject otherwise. We emphasize that a passenger can reject the offer unless

the provider has increased the price; otherwise, the passenger must pay for the journey.

We point out that the service provider cannot always service all passengers that accept; either

because there are not enough vehicles, or the passenger would cause a net loss for the provider.

As such, it is highly desirable from the perspective of financial solvency of the provider to be

able to raise the price and allow the passenger to find alternative transport. If the passenger

still accepts the journey even after the price has been raised, then the service provider can use

the additional revenue to hire an additional vehicle to service the passenger.
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At the end of Stage 4 of the mechanism, all passengers to be serviced are known to the

service provider, are priced, and have been allocated to vehicles. Moreover, each vehicle has a

journey plan. The performance of our market mechanism is evaluated in Section V. In the next

section, we analyze the role of the time interval between mechanism runs, which determines

the mechanism rate.

IV. MECHANISM PARAMETER DESIGN

A key assumption in our market mechanism is that the passengers are known to the provider

before the beginning of the mechanism. For dial-a-ride services this is known as the static

scenario, and is often problematic as passengers can make requests after one run of the mech-

anism and before the next. This was solved by allowing dynamic arrivals, where passengers

can be inserted while vehicles are on the road. However, the dynamic approach cannot be

directly used with our mechanism without statistics for the locations and the prices dynamic

passengers would be prepared to pay. While such an approach is in principle possible using

historical passenger prices, and pick-up and drop-off location data, an unprecedented level of

data refinement would be required.

To resolve this issue, we instead adapt the rate our market mechanism is run. Importantly, the

mechanism rate is in fact a fundamental feature of any on-demand market mechanism. There

are two key parameters that determine the mechanism rate: the probability that a passenger

request is ignored; and the probability that a passenger cannot be serviced before the next

mechanism run.

In this section, we derive simple analytical expressions for the probability a request is ignored,

Pignore, and the probability a passenger cannot be serviced in time, Povertime. The key purpose

of the analytical expressions are to guide design of the mechanism rate. In particular, we

demonstrate the tradeoff between Pignore and Povertime, as the time between mechanism runs

is increased.
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A. Analysis

Our analysis of Pignore and Povertime is based on a simplified probabilistic model of passengers

and vehicles. Although the simplifications lead to a coarse approximation of real-world on-

demand networks, conclusions from our analysis are supported by intuitive explanations. The

key assumptions are as follows:

1) The time between mechanism runs is T minutes and the corresponding rate is R = 1/T .

2) Each vehicle services only a single passenger per interval between mechanism runs. This

is reasonable for short intervals T .

3) The time for a vehicle to travel a distance z is given by νz, where ν is the average velocity.

4) The time each request arrives forms a homogeneous Poisson process with rate λ. Moreover,

the time between request delivery and the desired pick-up time, ∆, is exponentially

distributed with mean 1/λ.

5) Pick-up and drop-off locations are distributed according to a Poisson point process with

intensity ζ . Moreover, the drop-off location is the closest point to the pick-up locations,

which means that the distribution of the distance is2

fZ(z) = e−ζπz22πζz. (14)

We now turn to analysis of Pignore and Povertime. Our analysis is based on two new analytical

expressions for the probabilities. First, the probability a request is ignored, Pignore, is given in

the following proposition.

Proposition 1. The probability a request is ignored is given by

Pignore = 1− 1

λT

(
1− e−λT

)
, (15)

where a is the desired pick-up time, and ∆ is the time between a passenger’s request and desired pick-up

time.

Proof. See Appendix A.

2This result follows immediately by considering the probability that there is no point within radius R from the origin, which

is given by e−πR2

.
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Observe that as T → ∞, Pignore → 1, which means that as the interval between mechanism

runs increases, the probability a request is ignored tend to one–an intuitive result. On the other

hand, as T → 0, Pignore → 0.

The probability that a passenger cannot be serviced before the next mechanism run, Povertime,

is given in the following proposition.

Proposition 2. The probability a passenger cannot be serviced before the next mechanism run is given

by

Povertime =

(
1− 2πζT

ν

)
e−πζT 2/ν2 +

ν

T
√
ζ

(
1

2
−Q

(
T
√
2πζ

ν

))
(16)

where a is the earliest pick-up time, z is the distance between pick-up and drop-off, and Q(·) is the

Q-function, a standard special function defined in (22).

Proof. See Appendix B.

Observe that as T →∞, Povertime → 0, and as T → 0, Povertime → 1. This is an intuitive result

as it simply states that when the interval is large the probability that a passenger cannot be

serviced in time approaches zero. Importantly, this observation means that there is a tradeoff

between Pignore and Povertime. In other words, it is not possible to avoid passengers being ignored

and not being serviced, with probability one using the same mechanism rate.

B. Tradeoff

It is not immediately obvious from Propositions 1 and 2, which factors are key in determining

the tradeoff between Pignore and Povertime. As such, we now examine the behavior of Pignore and

Povertime numerically.

Fig. 5 plots the tradeoff between Pignore and Povertime for varying λ and ζ , based on our

analysis in Section IV-A. Observe that increasing λ, also leads to an increase in Pignore. On the

other hand, an increase in ζ leads to increase in Povertime. As such, the intersection between

Pignore and Povertime (the crossover rate) reduces when λ or ζ are increased.
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Fig. 5: Plot of the tradeoff between Pignore (from Proposition 1) and Povertime (from Proposition 2), for

varying time between mechanism runs T . We assume vehicles travel at 20 km/hr.

V. THE BUSINESS CASE: SIMULATION RESULTS

With our mechanism for third thread on-demand transport services in hand, we are ready

to present the business case. The benchmark we use for comparison is the fixed price-rate

approach, where passengers are charged the same price-rate, irrespective of the number of

potential passengers or the requested journeys. In particular, under the fixed price-rate policy,

each passenger is charged at a rate given by the expected maximum price-rate passengers are

prepared to pay, given by E[ri,max], which can be easily obtained from (5).

A. Key Trends

We now illustrate key trends in the expected profit and expected efficiency, based on a

network setup with K = 5 drivers and up to N = 13 potential passengers. Importantly, this

setting is practical—despite the small scale—when the serviced region is partitioned and sepa-

rate negotiations are performed in each partition. Such an approach is desirable as suboptimal
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heuristics do not need to be applied to ensure practical negotiation run-times. We demonstrate

the effect of heuristics on a large scale network in Section V-B.

The pick-up and drop-off locations of passengers in the network are drawn from real locations

in Prague, Czech Republic: K = 5 drivers; average vehicle velocity ν = 30 km/hr; cost/km of 0.4

euros/km; and a maximum price-rate for each passenger of 3 euros/km. We further assume that

there is an hour between each mechanism run, which means that the beginning of a passengers

pick-up interval is uniformly distributed over the 60 minute interval. The maximum length

of each passenger’s pick-up interval is 10 minutes, with the actual interval length uniformly

distributed.

We first demonstrate the performance mechanism with clustering using hard constraints (i.e.,

ǫ = 0). We note that the mechanism with a fixed price-rate given by E[ri,max] and clustering with

hard constraints is used as a benchmark.

Fig. 6 plots the expected profit per mechanism run for a varying number of potential passen-

gers, N . The key observation is that our mechanism with optimized price-rate always improves

the profit over the fixed price-rate approach, although the improvement depends on the pas-

senger demand; i.e., how much passengers are willing to pay. Observe that there is a significant

improvement in expected profit for both low and high demand, corresponding to αr = 1, βr = 3

and αr = 1, βr = 1, respectively. We also point out that rate of increase of expected profit with

the number of passengers, N , is reduced as N increases. This is due to a saturation effect, where

increasing the number of potential passengers in the network does not significantly improve

the profit.

Next, we turn to the expected efficiency (see (2)) of our mechanism. In this case, observe

that our mechanism improves the expected profit over the fixed price-rate approach for low

demand with N ≥ 7. This means that our mechanism outperforms the fixed price-rate approach

in both expected profit and efficiency. On the other hand, the fixed price-rate approach has a

higher efficiency for high demand. Next, we demonstrate the performance improvements that

can be obtained by using our optimized clustering algorithm. In particular, this improves the

efficiency in the case of high demand.
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Fig. 6: Plot of the expected profit for our mechanism with optimized price-rate and the standard fixed

price-rate approach, for varying number of potential passengers, N . High demand corresponds to αr = 3,

βr = 1, medium demand corresponds to αr = βr = 1, and low demand corresponds to αr = 1, βr = 3.

Simulation parameters: K = 5; average velocity of 30 km/hr; cost/km of 0.4; maximum price-rate of 3

euros/km; and hard feasibility constraints are enforced.

In Table I, the expected profit is compared with the number of potential passengers, with

and without optimized clustering. The optimized clustering solves (10) with ǫstep = 0.2, while

the algorithm without optimized clustering enforces the hard constraints (i.e., ǫ = 0). In both

cases, the price-rate is optimized. Observe that our optimized clustering algorithm improves the

expected profit, even with optimal pricing. In particular, gains of up to 4 euros per negotiation

can be achieved. This means that the expected profit for the fixed price-rate approach can

be improved significantly (up to 10 euros per negotiation with αr = βr = 1) by using both

optimized pricing and clustering.

In Table II, the expected efficiency (in euros/m) is compared with the number of potential

passengers, with and without optimized clustering. Observe that the expected efficiency of opti-
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Fig. 7: Plot of the expected efficiency for our mechanism with optimized price-rate and the standard

fixed price-rate approach, for varying number of potential passengers, N . High demand corresponds to

αr = 3, βr = 1, medium demand corresponds to αr = βr = 1, and low demand corresponds to αr = 1,

βr = 3. Simulation parameters: K = 5; average velocity of 30 km/hr; cost/km of 0.4 euros/km; maximum

price-rate of 3 euros/km; and hard feasibility constraints are enforced.

TABLE I: Expected profit per mechanism run (in euros) with and without optimized clustering.

Parameters: αr = βr = 1, αδ = 3, βδ = 1.

Potential Passengers N 5 7 9 11 13

With Optimized Clustering (euros) 17.5 23.2 26.3 28.1 30.0

Without Optimized Clustering (euros) 14.5 18.8 22.0 25.5 27.8

mized clustering outperforms the expected efficiency without optimized clustering. Importantly,

optimizing the clustering ensures that the expected efficiency of our mechanism is comparable

with the efficiency using the fixed price-rate approach. As such, our mechanism can outperform
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the fixed price-rate approach in both expected profit and expected efficiency.

TABLE II: Expected efficiency per mechanism run (in euros) with and without optimized

clustering. Parameters: αr = βr = 1, αδ = 3, βδ = 1.

Potential Passengers N 5 7 9 11 13

Optimized Clustering (euros/m) 0.0038 0.0051 0.0063 0.0074 0.0085

Without Optimized Clustering (euros/m) 0.0030 0.0038 0.0044 0.0052 0.0057

B. The Effect of Heuristic Approximations

We now turn to simulation results for a network with 30 vehicles and up to 100 passengers.

The average velocity, cost/km, maximum price-rate, and pick-up interval distributions are the

same as in Section V-A.

In order to apply our mechanism to a network of this scale, it is necessary to approximate the

objective of the optimization problem in (10), by truncating the sum involved in the expectation.

Moreover, clustering is limited to the finding the first feasible cluster. Based on this approxi-

mation, we next compare our mechanism using these approximations with the fixed price-rate

approach without clustering; i.e., each vehicle served up to one passenger per negotiation run.

Table III demonstrates the effect of the heuristic on the performance of the network. Observe

that in all cases the optimized pricing in our mechanism outperformed the fixed price-rate

approach, in terms of expected profit. Note that the expected profit for the fixed price-rate

approach is approximately constant, irrespective of the number of passengers. This is due to

the saturation effect also observed in Fig. 6. On the other hand, the expected profit for the

optimized pricing approach reduces as the number of potential passengers increases, in contrast

with the results in Section V-A. This is due to the approximation of the objective, which is less

accurate as the number of potential passengers increases.

The results in Table III suggest that using our mechanism, the appropriate method to dealing

with large-scale networks is to partition the network by simultaneously running several small-

scale negotiations. This means that approximations of the objective function are not required,
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TABLE III: Expected profit per mechanism run (in euros). Parameters: αr = βr = 1, αδ = 3,

βδ = 1.

Potential Passengers N 30 60 90

Optimized Pricing (euros) 83.7 66.7 52.9

Fixed Price-Rate (euros) 52.6 51.7 52.4

which in turn ensures that the expected profit increases as the number of potential passengers

increases.

VI. CONCLUSIONS

We have proposed a new market mechanism for third thread on-demand services, which

enables negotiations with passengers to both increase provider profits and select passengers that

value service the most. A key feature of our mechanism is that it jointly optimizes scheduling,

routing and passenger pricing; in sharp contrast with standard approaches for services targeted

at the elderly and disabled (first thread), and taxis (second thread).

Our mechanism is based on a new agent-based model, which emphasizes the role of provider

profit in allocating resources. In particular, we have developed new models that incorporate

price-based preferences for both the passengers and the provider. We also consider the effect

of deviations from passenger requests in our resource allocation.

Our business case for third thread on-demand services demonstrated that our market mecha-

nism improves the profitability of the service provider, compared with standard fixed price-rate

approaches, while maintaining comparable efficiency.

ACKNOWLEDGMENTS

Access to computing and storage facilities owned by parties and projects contributing to the

National Grid Infrastructure MetaCentrum, provided under the programme ”Projects of Large

Infrastructure for Research, Development, and Innovations” (LM2010005), is greatly appreciated.

30

170



APPENDIX A

PROOF OF PROPOSITION

Consider a time interval [nT, (n + 1)T ] (n ∈ N) between two consecutive mechanism runs,

with a ∈ [nT, (n + 1)T ). Then, the probability that a passenger’s request is ignored is given by

Pignore = 1− Pr(a+∆ ≥ (n + 1)T ). (17)

Since request arrive according to homogeneous Poisson process, the following lemma gives

the distribution of a.

Lemma 1. The earliest possible pick-up time a is uniformly distributed in [nT, (n + 1)T ), conditioned

on the number of requests in the interval.

This means that for a random request in the interval [nT, (n+1)T ), a is uniformly distributed.

Using Lemma 1 and conditioning on the time between the request arrival and desired pick-up

time, ∆, we have

Pignore =

∫ ∞

0

Pr(a ≥ (n + 1)T − δ|∆ = δ)κe−κδdδ. (18)

Integrating by parts, we obtain the required result.

APPENDIX B

PROOF OF PROPOSITION

As for Proposition A, consider a time interval [nT, (n+1)T ) (n ∈ N) between two consecutive

mechanism runs, with a ∈ [nT, (n + 1)T ). Then, the probability that a passenger cannot be

serviced before the next mechanism run is given by

Povertime = Pr(a+ νz ≥ (n+ 1)T )

=

∫ ∞

0

Pr(a ≥ (n+ 1)T − νz)fZ(z)dz, (19)

which follows by conditioning on the distance, Z. We note there is no loss in generality by

assuming that the pick-up location is at the origin by Slivnyak’s theorem [17].
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Using Lemma 1 and the fact that a ∈ [nT, (n+ 1)T ), it follows that

Povertime =
ν

T

∫ T/ν

0

zfZ(z)dz +

∫ ∞

T/ν

fZ(z)dz

=
ν

T

∫ T/ν

0

2πζz2e−πζz2dz + e−πζT 2/ν2 . (20)

Next we integrate by parts3 to obtain

Povertime =
ν

T

(
T

ν
e−πζT 2/ν2 +

∫ T/ν

0

e−πζz2dz

)
+ e−πζT 2/ν2 . (21)

We then apply the change of variables u =
√
2πζz and the definition of the Q-function, which

is given by

Q(x) =
1√
2π

∫ ∞

x

e−u2/2du. (22)

Using the fact that Q(0) = 1
2
, we then have

Povertime =

(
1− 2πζT

ν

)
e−πζT 2/ν2 +

ν

T
√
ζ

(
1

2
−Q

(
T
√
2πζ

ν

))
, (23)

as required.
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