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Abstract

The need to relate measurements made by a camera to a different known coordinate system
arises in many engineering applications. Historically, it appeared for the first time in the
connection with cameras mounted on robotic systems. This problem is commonly known as
hand-eye calibration. In this thesis, we study the problem of hand-eye calibration as well as
a problem closely connected to it—the problem of robot-world calibration. The first objec-
tive of this work is to apply recent results in mathematical optimization to provide globally
optimal solution to these problems. The second objective is to formulate and study these
problems as minimization problems under some geometrically meaningful error measures
using image measurements directly. We also study global optimizers in situation where im-
age measurements are not available using the classical problem formulations. The solutions
presented in this thesis are compared to existing methods and validated by both synthetic and
real world data experiments.

In the first part of the thesis, we survey the state of the art of the camera-robot calibration
as well as of the main concepts of the geometrical computer vision. Further, we review
several results in the globally optimization techniques and their application in the computer
vision.

Next, we formulate the problem of hand-eye calibration as a minimization problem under
some geometrically meaningful error measures. We provide two solutions; the first solution
employs a Structure-from-Motion approach and the Second Order Cone Programming opti-
mization and the second one uses the Brand-and-Bound optimization strategy. Both solutions
provide globally optimal minimizers and work with image measurements directly, instead of
using them as a pre-step for explicitly calculating camera poses. Using a similar approach,
we also formulate a minimization task for the robot-world calibration problem. This time, to
solve the task we use the method of Linear Matrix Inequality relaxations.

Further, we investigate the problem of hand-eye calibration in situations, where the in-
formation about the rotation of the robot is not known. This problem arises when the robot
is not calibrated or the information from the robot is not available. We use the method of
Grobner basis to deal with this scenario.

Finally, we revisit the classical formulation of the hand-eye and robot-world calibration.
Using the method of Linear Matrix Inequality relaxations, we provide several global opti-
mizers in situations, where image measurements are not available and the calibration has to
be estimated from robot and camera poses only.






Anotace

Potieba porovnavat méfeni ziskand pomoci kamery s méfenimi ziskanymi v jinych soufad-
nych systémech vyvstavd v mnoha inZenyrskych aplikacich. Historicky se tento poZadavek
poprvé objevil ve spojitosti s kamerami spojenymi s robotickymi systémy, proto se pro tuto
ulohu vzilo oznacdeni kalibrace ruka-oko. V této préci studujeme problém kalibrace ruka-
oko a problém s nim uzce spojeny — kalibrace robot-svét. Hlavnim cilem této prace je ap-
likace modernich metod matematické optimalizace k ziskdni globdlné optimalnich feSeni
téchto dvou problémul. Dalsim cilem je formulace téchto problémi jako minimaliza¢nich
uloh které pracuji s fyzikdlné motivovanymi cilovymi funkcemi a kde vstupnimi daty jsou
pifimo méfeni v obraze. Metody a vysledky predstavené v této praci byly porovnany s jizZ ex-
istujicimi metodami a ovéfeny jak na syntetickych datech, tak na datech ziskanymi redlnymi
mefeni.

V prvni ¢asti disertace uvadime prehled existujicich metod pro kalibraci systému kamera-
robot a hlavnich metod a konceptii geometrie pocitacového vidéni. Déle nésleduje prehled
nékolika technik globalni optimalizace a jejich existujicich aplikaci v pocitaCovém vidéni.

V druhé ¢4sti disertace predkladdme vysledky naSeho origindlniho vyzkumu problému
kalibrace ruka-oko. Formulujeme zde tento problém jako optimalizacni dlohu s fyzikalné
motivovanou cilovou funkci a prezentujeme dvé feSeni. Prvni feSenf{ je zaloZeno na technice
vypoctu tvaru z pohybu (Structure-from-Motion) a kénickém programovani druhého fadu
(Second-Order Cone Programming), druhé pak na metod¢ vétvi a mezi (Branch-and-Bound).
Obe¢ formulace poskytuji globdln€ optimélni feSeni a méfeni v obraze zde slouzi pfimo jako
vstupni data problému misto toho, aby byly pouZzity pfi predzpracovini pro vypocet abso-
lutnich pozic kamery. Pomoci obdobného pfistupu také formulujeme optimalizacni tlohu
pro problém kalibrace robot-svét. V tomto ptipadé jsme pro vypocet feSeni pouzili metodu
relaxace linedrnich maticovych nerovnosti (Linear Matrix Inequality relaxations).

Diéle v této praci zkoumdme problém kalibrace ruka-oko v situacich, kdy informace o
rotaci robota neni znidma. Tento problém vyvstava v pripadé, kdy robot neni kalibrovin
nebo informace o poloze robota neni zndma. Pro feSeni tohoto problému vyuZivime metodu
Grobnerovych bazi (Grobner basis).

Nakonec pfedstavujeme mnozinu globalné optimdlnich feSeni, kde pomoci metody re-
laxace linedrnich maticovych nerovnosti fesime problémy kalibrace ruka-oko a robot-svét
pro pripady, kdy méfeni v obraze nejsou k dispozici nebo kdy je nutno kalibraci provést
pouze na zdkladé informaci o pozici kamery a robota.
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Introduction

The shortest distance between two points is often unbearable.
— Charles Bukowski

The idea of using cameras to help navigate robots is not new and has been an area of in-
tensive research for many decades. In such scenarios, a camera is used as a measuring
tool to measure angles and—with the help of more than one vantage point—distances. It
is indeed no surprise that in order to use a camera in this way, the camera needs to be cal-
ibrated, i.e., one needs to be able to determine the true direction of a ray projecting into
every pixel with respect to the camera pose. The problem of camera calibration is studied
in the fields of photogrammetry and geometric computer vision. The next step is to deter-
mine the transformation from the camera pose to the coordinate system connected with the
robot. In this work, we will be concerned with scenarios where a camera is rigidly connected
with a robotic arm, the so called eye-in-hand scenario, and with the problem of determining
this transformation—the hand-eye transformation. The problem of determining the hand-
eye transformation is commonly known as hand-eye calibration. The hand-eye calibration
problem arises also in seemingly unrelated fields ranging from medical applications such as
ultrasound and endoscopy to automotive industry. Another problem that arises when using
an eye-in-hand system is the problem of robot-world calibration—the problem of determin-
ing the transformation from the coordinate system connected with the base of the robotic
arm to the coordinate system connected with the world. This problem is closely connected
to the hand-eye calibration problem and can be shown to be algebraically equivalent to it.

Both problems have been extensively studied in the past. The main and novel idea behind
this work is to formulate the problems of hand-eye and robot-world calibration as minimiza-
tion problems under geometrically meaningful error measures in the image measurements
directly, without the need for explicit knowledge of the full camera poses. This approach
was not investigated in the past much and it is argued in the latter that this approach can
lead to superior results. The next step is to apply the recent results in global optimization to
provide global optimizers to these problems. Besides providing globally optimal solutions
to such formulations, we also investigate situations where the image measurements or part
of the robot pose are not available.

1.1 Thesis Outline

After the introductory Chapters 1 to 3, the presented work can be divided into two distinct
parts. Chapters 4 to 6 present what is commonly referred to as the state-of-the-art part of the
thesis. Chapters 7 trough 11 present our original research and the main contributions of this
work. The thesis is concluded in Chapter 12.



1.1. Thesis Outline

Chapter 4 deals with the fundamental concepts of the geometric computer vision to a level
pertinent to the main topic—camera-robot calibration. The problem of camera-robot calibra-
tion is formulated in Chapter 5. Here, most of the solution strategies are reviewed. Chapter 6
introduces several mathematical methods that can provide globally optimal solutions for cer-
tain classes of problems. Further, computer vision problems which were successfully solved
using these methods are discussed.

In Chapter 7, a method for hand-eye calibration in situation where the correct scale of
the scene is not known is presented. First, Structure-from-Motion (SfM) approach is used to
recover the rotational parts of the camera poses; using these rotations the rotational part of
the rigid hand-eye transformation can be recovered using any classical hand-eye calibration
solution. The translational part is recovered globally optimally as a solution to a Second
Order Cone Programming (SOCP) problem. For this part, the known rotation is used. The
need for prior knowledge of the camera poses is lifted altogether in a novel brand-and-bound
method presented in Chapter 8. The algorithm can recover the rotational and translational
parts simultaneously, globally optimally, and does need neither prior knowledge about the
scale of the scene nor any part of the camera poses information.

In Chapter 9, hand-eye calibration is investigated in situations where information about
the rotational part of the robotic arm is not available. The Grobner bases method is used to
recover the calibration in such cases.

The method of Linear Matrix Inequalities (LMI) relaxations is employed in Chapters 10
and 11. First, it is used to recover the globally optimal robot-world calibration in Chap-
ter 10 using known hand-eye calibration and image measurements. In the case the image
measurements are not available, the LMI method can still be used to recover globally opti-
mal solutions for both the hand-eye and the robot-world calibration problems, as shown in
Chapter 11.



Contribution

Results! Why, man, I have gotten a lot of results. I know several thousand things
that won’t work.

— Thomas Edison

This thesis focuses on applying global optimization techniques to the problems of robot-
world calibration. Besides providing globally optimal solutions, the main goal is to improve
accuracy by using geometrically meaningful error measures and to provide novel insights
into these problems. Most of the methods presented in this work are designed to use image
measurements directly, instead of using them as a pre-step for computing absolute or relative
camera poses. In situations where the image measurements are not available, we show that
globally optimal solutions, albeit based on different error measures, can still be recovered.
Primarily, the contributions are the following:

e Globally optimal hand-eye calibration algorithm. Chapter 8 presents a branch-and-
bound algorithm that provides global optimizers for the problem of hand-eye calibra-
tion. This algorithm is based on geometrically meaningful error measure and does not
require a known calibration device, e.g., works with unstructured scenes with unknown
scale based on image-to-image point correspondences.

e Globally optimal solution for the classical hand-eye calibration formulation. For situ-
ations when the image measurements are not available, Chapter 11 provides a set hand-
eye calibration formulations and iterative solutions. These solutions use the method of
convex linear matrix inequality (LMI) relaxations to effectively obtain globally opti-
mal solutions.

e Hand-eye calibration without hand orientation. Chapter 9 investigates a hand-eye
calibration scenario where the orientation of the robotic hand is not known. Such a sit-
uation arises when hand-eye calibration is to be performed on a internally uncalibrated
robot. Typically, external measuring device can only observe the translational part of
the motion of the robotic hand. The method presented in Chapter 9 uses the method
of Grobner bases for solving systems of polynomial equations to provide hand-eye
calibration in such situations.

e GpoSolver: A Matlab/C++ Toolbox for Global Polynomial Optimization. As a part of
this work, we developed a software for polynomial optimization based on the theory
of LMI relaxations, see Section 6.2.1.1. The software can be downloaded from the
project webpage at

http://cmp.felk.cvut.cz/gposolver.


http://cmp.felk.cvut.cz/gposolver

2.1.

Publications

e The implementations of the methods presented in Chapters 8, 9, and 11 available at

2.1

http://cmp.felk.cvut.cz/~hellejl/bbhec,
http://cmp.felk.cvut.cz/minimal/handeye.php,
http://cmp.felk.cvut.cz/~hellejl/mpherwc.
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Notation and Concepts

We demand rigidly defined areas of doubt and uncertainty!

3.1

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Notation

The following list summarized the notation used throughout this thesis.

scalars
sets

. column vectors

matrices
n-dimensional spaces

real numbers

quaternions

dual quaternions

special orthogonal group, group of all rotations about the origin of
RB

special Euclidean group, set of all transformation matrices of the

form
{(ORT J; )’ReSO(S),teR?’}

ring of multivariate polynomials in the n-tuple of variables
X = (-7317:1:27 s 73371)'

vector of zeros

vector norm

Lo-norm

L ,-norm

Frobenius norm

vector cross product

M — N is a positive semidefinite matrix
image correspondence

angle between vectors u and v




3.2. Abbreviations

3.2 Abbreviations

The following is the list of abbreviation.

SVD singular value decomposition

LP linear programming

SOCP second-order cone programming

LMI linear matrix inequality

SDP semidefinite programming

StM structure-from-motion

EXIF exchangeable image file format used in digital cameras
RANSAC random sample consensus

3.3 Basic Definitions

All vectors in this work are column vectors and are considered n x 1 matrices when multiplied
by a matrix. ( a; a, ... a, ) denotes a matrix A € R™*", which columns are vectors
a;,as,...,a, € R™.

Definition 3.1 (Skew-symmetric matrix). Let a = (a1, az,a3)" € R3\{(0,0,0)"}, then
], is the skew-symmetric matrix

[a]x = as 0 —Qa
—Q2 —Q1 0
Definition 3.2 (Operator vec). Let A € R™*" be an m x n matrix and let a] ,a, ,...,a
be the rows of the matrix A. Then vec(A) € R™" is the mn vector

ap

and vec™!(a) € R™*" is the m X n matrix vec™!(a) = A.

Definition 3.3 (Kronecker product). Let A be an m x n matrix and B an p X ¢ matrix. Then
the Kronecker product A ® B is the mp X nq block matrix

aHB e CllnB

AeB%Y

aym1B o amnB



3.4. Rotation Formalisms In Three Dimensions

3.4 Rotation Formalisms In Three Dimensions

The concept of rotation and its mathematical formalism plays a pivotal role in the develop-
ment of the theory presented in this work. A rotation about the origin is a linear transforma-
tion that preserves length of vectors and orientation of space. Since the composition of two
rotations is another rotation, every rotation has a unique inverse rotation, and the identity
map satisfies the definition of a rotation, the set of all rotations is a group under composition.
This group is often denoted SO(3).

3.4.1 Rotation Matrix

As is the case with all linear maps on finite-dimensional vector spaces, a rotation can be
always expressed by a matrix R, in this case of dimensions 3 X 3. Since a rotation maps
orthonormal basis of R? to another orthonormal basis, the columns of matrix R

Uy vV w1
R = Uy Vg Wo = ( u v w )
Uz V3 wWs

must form an orthonormal basis. This fact can be express using matrix multiplication as
R'R=1

The group of all orthogonal matrices is denoted O(3). Besides preserving length, rotations
also preserve orientation. Whether an orthogonal matrix preserves orientation or not depends
on the sign of its determinant. Since

detR" =detR and R'R=1 = detR = %1,

only orthogonal matrices with detR = 1 preserve orientation. The group of all orthogonal
matrices R such that det R = 1 is called special orthogonal group, SO(3).
The fact that the columns of R form a orthonormal basis can be also written as

T

V'V 1,
u'u 1,
viu = 0,
viu = Ww.

This constitutes 6 constraints on the elements of the matrix R, leaving it with 3 degrees of
freedom.

The successive application of rotations Ri,Ry € SO(3) is easily expressed by matrix
multiplication RoR;. This operation in three dimension is generally not commutative.

3.4.2 Angle-Axis

In the angle-axis parametrization, a vector « € B, = {a € R? : ||a|| < 7} represents the
rotation about axis o/ ||a|| by angle ||c||. The fact that all rotations can be described by a



3.4. Rotation Formalisms In Three Dimensions

simple rotation about a single rotation axis is called Euler’s rotation theorem [48]. This can
we expressed in the matrix form as

VR € SO(3) Ja such that Rer = «.

In other words, every rotation matrix R has an eigenvector v with the eigenvalue A = 1.
Since

det(R —I) =det(R—1I)") =det(R" —I) =det(R™' —I) =det —R"'(R —I)
= —det(R"")det(R — I) = —det(R — I) = det(R—1I)=0, (3.1)

A = lisindeed an eigenvalue of R, i.e., det(R — AI) = 0. This shows that the matrix (R — I)
is singular and that « lies in its null space, i.e., & € ker(R — I). Once the axis of rotation «
is known, one can determine the angle of rotation ¢ as the angle between a vector v and Rv,

such that v is perpendicular to «,
0 = Z(v,Rv).

Since the special orthogonal group SO(3) is a Lie group, there is a Lie algebra associated
with it. This Lie algebra is denoted so(3) and consists of all skew symmetric matrices 3 x 3.
The conversion between matrix and angle-axis parametrization can be also performed using
the exponential map exp: so(3) — SO(3). Let & € B, be a vector representing a rotation.
The corresponding matrix parametrization R € SO(3) can be obtained as

[, sin [lee]| | [af (1~ cos|le|)

R=explax|, =1+
ple, Tl Tal

(3.2)

This relation is also known as Rodrigues’ rotation formula. The inverse map is obtained
using logarithmic map log: SO(3) — so(3) as

1

[a],, =logR = R—R'). (3.3)

sin (arccos fr(R) 1) (
_FR
3.4.3 Quaternions

Quaternions, @, form a four-dimensional associative normed division algebra over the real
numbers. A quaternion q € Q consists of a real part and an imaginary part and is usually
denoted as

q=q + @i+ gj+ @k,

where i, j, k are the imaginary units such that
i’=j=k*=ijk=—1.
As a set, quaternions are equal to R* and it is sometimes useful to write them as vectors

q= (Q1aCI27(]3aQ4)T = (q17qT)Ta
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where q € R? is the imaginary part of the quaternion. Addition of two quaternions p,q € Q
P = (pi,p2.ps,pa) = pi+poi+psj+pik,
4 = (0.¢aa) = @+eitei+ak
is equivalent to addition in R%:
P+a=(p1,p2301) +(01,¢2,03,0) = (1 + @1, p2+ G2, 03+ s, pa + q1) . (3.4)
Quaternion multiplication, however, does not have a counterpart operation on vector spaces:
p*q= (p1,p2,p37p4)T * (q1, G2, g3, Q4)T = (p1q1 — P2G2 — P3G3 — Paa

D1G2 + P2q1 + P3qs — Daqs,
P1g3 — P2qa + P3q1 + Paqa, (3.5)

P1gs + Pags — Psgz + Paqn) |-

The quaternion multiplication can be also written as a matrix multiplication as

Pr —p2 —P3 P4 il
- T
b1 —-Pp il b2 p1 —pPs+  P3 42
*xq=M = _ _ _ =

pra="Hp) (p p11+[p]x><q) Py Pa P1 P2 o
bs —p3 P2 D1 44

(3.6)

We can also use the matrix form to formally switch the order of the multipliers:

=T
Y a1 —q P1
xq=M =M = Z _ . (3.7)
p*q=M(p)q = M(q)p ( a al—[d, ) ( b )

Because the group of unit quaternions with multiplication, modulo the negative sign,
is isomorphic to the group of rotations with composition, they can be used to represent
rotations. When used in this way, the components of a unit quaternions are sometimes called

Euler-Rodrigues parameters. Rotation about axis a = (o, oo, a3) 7, | ||| = 1, by angle ¢
is represented by q € Q of the form

9 . : .0
q=cosg + (11 + asj + ask) sin 7

A vectorv € R3 = (v1, v, v3) " can be rotated by identifying it with an imaginary quaternion
v1i + v2j + vsk and evaluating the Hamilton product

Viot = ( * (07711>U2,U3)T *q,
where q* is the quaternion conjugate of q:
q" = cos 5 (i + asj + ask) sin 3

The composition of two rotations q;, q2 € Q is done by multiplication q = g3 *q;. Rotation
matrix R € SO(3) equivalent to the unit quaternion q = (q1, g2, g3, ga) can be constructed
using the following formula:

G+6G—6G—04G 200 —2un 2¢2q1 + 2431
R = 2043 + 201 G — G+ G — 4G 234 — 220 . (3.8)
24201 — 24301 234 + 2001 @} — @3 — @+ 43
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3.5 Screw Theory

The screw motion theory is based on the fact that a general rigid body transformation can
be accomplished by means of a translation along an unique axis and a rotation about the
same axis. This is known as Chasles theorem [32] and such a description of a rigid motion
is known as a screw. A screw can be represented using a rotation angle ¢, 0 < 6 < 2,
the amount of translational displacement d and vectors ¢, n € R3, such that the line ¢ + tn,
t € R is the common motion axis.

3.5.1 Dual Quaternions

Dual quaternions are the algebraic counterparts of screws. They form a Clifford algebra; a
dual quaternion q € H can be represented in the form

q=9q+¢q,

where q,q' € Q and € is the dual unit, ee = 0, that commutes with every element of the
algebra. It is also convenient to write dual quaternions as vectors (q',q'")", since the set of

dual quaternions is equal to R®. Addition of two dual quaternions p,q € H,p = (p',p'") T

. T. . o e .
q = (qT, q T) is equivalent to addition in R®. Multiplication can be expressed using
quaternion multiplication as

pa=(p*q),(pxd +p'*q)")".

Similar to the way rotations in R can be represented by the quaternions of unit length, rigid
motions in R? can be represented by unit dual quaternions [122]: rotation represented by a
quaternion p € Q followed by translation t € R? is represented by a dual quaternion of the
form

a(p,t) = (p", ((0,5t") " *p)")". (3.9)

Unity of a dual quaternion ¢ can be expressed using its conjugate ¢* = (q* ' , q'* T)T

Q" ® q = 1 or using the quaternion parts as

as

q'q=1 and qigs + G206 + G3q7 + quqs = 0.



Fundamental Concepts of
Geometric Computer Vision

Let no one ignorant of geometry enter here.

— Plato

In this chapter, camera models and fundamental concepts of geometric computer vision are
reviewed to a level significant to our work. By a camera we understand a device that records
and stores two-dimensional images of the real world. A modern review of the camera models
with the emphasis on omnidirectional cameras can be found in [15]. It is presumed that
the reader has a basic knowledge of analytic projective geometry. Work [127] provides
an introduction to the concepts of analytic perspective geometry and its connection to the
computer vision. Book [71] is the ultimate reference for the geometry of computer vision.

4.1 Camera models

A computational model of a camera tells how to project 3D entities (points, lines, ...) onto
the image and how to back-project image coordinates onto directional vectors in 3D. Differ-
ent taxonomies can be devised for camera models. Here, the most important division of the
camera models is into

1. central camera models, were a single optical center through which all rays entering
the camera pass exists, and

2. non-central camera models, which do not poses a single optical center.

In this work, we will be concerned with central cameras only. An abundance of camera types
can be modeled as central cameras, ranging from the “classical” directional pinhole camera
to omnidirectional catadioptric [10, 23] and fish-eye [187, 80, 126] cameras, see Figure 4.1.

4.1.1 Pinhole camera

Pinhole camera, or standard central perspective camera, model is based on projective geom-
etry and relates the coordinates of 3D points expressed in the coordinates connected with the
camera coordinate system and the respective image points by the so-called calibration matrix

fu S Ty
K= 0 fo wo
0O 0 1

11
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The calibration matrix K € R3*3 depends on up to five intrinsic (internal) camera parame-
ters: f., [, express the focal length measured in pixels, s is the skew term and x, y, are the
coordinates of the principal point—the intersection point of the optical axis and the image
plane. Since the pixels of modern digital cameras are almost perfectly square, the calibration
matrix used nowadays has typically the following simplified form

f 0 xo
K=1| 0 f %
0 0 1

The origin of the camera coordinate system coincides with the optical center of the camera
and the z-axis with the optical axis. It is customary to set the camera facing the positive
direction of the z-axis and the x, y-axes to be collinear with the x, y-axes of the image. Let’s
suppose that

is a point expressed in the coordinates connected with the world coordinate system. The
relation of the world coordinate system and the coordinate system connected with the camera
is captured by the extrinsic (external) camera parameters as

X' =RX +t,
where
Ty Ty T3 i
R=|[r r5 16 | €SO(3) and t=| t, | €R®
r7 T8 Ty t3

are the rotation matrix and the translation vector, respectively, and X’ € R? is the trans-
formed point. Standard central perspective camera model expressed in the language of pro-
jective geometry states that

x:p(}f>:K[R t}(?), 4.1)

where P € R3** is the so-called camera projection matrix and x € R3*\{(0,0,0) "} is the
projective representation of the image point [71]. The pinhole camera model allows for easy
back-projection of the image point X using the inverse calibration matrix as K~ 'x.

If we wanted to express the relation using the Euclidean coordinates instead, the elegant
matrix formula transforms into the following rational expression

T 4Ty +1r3z+t
’ f r7x+r8y+r9z+t3+$0
T3T Ty + 152 + 1o ’

f r7x+r8y+r9z—|—t3+y0

where x’ € R? are the pixel coordinates of the image point.
The pinhole camera model is very intuitive and easy to use, however, it does not suffi-
ciently model real cameras with lenses. The model has been enhanced by various terms for
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(a) (b)
Figure 4.1: (a) Directional camera—scene points are represented by straight lines. (b) Om-
nidirectional camera—scene points are represented by half-lines. (Adopted from [125])

radial, tangential, and other types of distortions [21, 152, 56]. A variant of Brown-Conrady
distortion model [40, 21] is the common model that combines the radial and tangential distor-
tions. Let x; = (g4, yd)T € IR? be the distorted image point projected onto the image plane.
The undistorted image point as projected by the pin-hole camera model x,, = (., yu)T € R?
is computed as

Tqg = X4 — To,
Yda = Yd — Yo,

2 —2 —2
rg = Tg+Ygs

Ty = xg+ pi(r]+255) + 2paTala + Ta Z ki,
=1

Yo = Ya+ 201%a¥a+ p2(ri + 203) + a Z kird,
=1

where p, po are the tangential distortion coefficients and k;,» = 1, . .., n the radial distortion
coefficients.

4.1.2 Omnidirectional camera

Central omnidirectional camera is any panoramic camera having a single effective viewpoint.
Standard central perspective camera model is expressed in Equation 4.1. In this model all
scene points lying on the same line passing through the optical center of the camera—in
front as well as behind the camera—are represented by one image point, see 4.1a. This
representation may be sufficient for directional cameras with field of view smaller than 180°,
however, it is unsuitable for modeling omnidirectional cameras, where points behind the
camera and points in front of the camera are projected onto different image points. This issue
is addressed by the spherical model, where lines are split into half-lines, see Figure 4.1b. In
this model, a vector x € IR3 represents one half-line, so that one image point represents all
scene points lying on a half of a line passing through the center of the camera and another
image point represents all scene points lying on the opposite half of the same line. This fact
formulates as

da > 0: ax = PX, 4.2)

13
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sensor plane

() (b) (c)

Figure 4.2: Omnidirectional image formation. (a-b) Mapping of a scene point X into a
sensor plane point u” for a fish-eye lens. (c¢) The sensor plane with field of view circle.
(Adopted from [125])

where X, x and P are the same as in equation 4.1.

There are many camera models for omnidirectional cameras [59, 60, 124, 125]. Let us
here briefly summarize a model for central omnidirectional cameras as described in [125].
In the next, it is assumed that the lenses and mirrors are

1. symmetric w.r.t. an axis and
2. the axis of the lens, or the mirror, is perpendicular to the sensor plane.

Figure 4.2 shows the process of image formation. Using the spherical model, the projection
of a scene point X is represented by a unit vector q” € S* = {v € R?: ||v| = 1}. From
assumptions 1 and 2 one infers that there always exists a vector p” = (x"7, 2" )T € R3 and
a vector u” € R? in the sensor plane, for which the following holds:

doeR": p’ = ad’,
JBeRt: X' = pu’, (4.3)
y B h(”u//H 7a-//) u//
P = ( g (Hu//H 7a//) . 4.4)

Functions h, g: R™ x R — R are rotationally symmetric and depend on ||u”||, that is on the
distance between the optical axis and u”, and on a vector of parameters a” € R", where n is
the number of parameters. The functions capture the type of a omnidirectional camera. The
function g typically depend on the shape of the mirror for catadioptric omnidirectional cam-
eras, the function h captures the projection of the camera. Note that 5 from Equation (4.3),
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(b)

Figure 4.3: Digitization process. (a-b) Affine transformation of the field of view circle.
(Adopted from [125])

explicitly stating the collinearity of u” and x”, equals A (||u”||,a”) from Equation (4.4).
Figures 4.2a-b show general relation between an image point u” and corresponding vector
I)//

The next step in the image formation process is digitization. The process of transforming
sensor plane point u” into digital image point u’ can be modeled by an affine transformation

u’ =Au +t, 4.5)

where A’ € R?*? is a regular matrix, t' € R? is a translation vector and u’ is a point in a
digital image. The digitization process is depicted in Figure 4.3a—b. By plugging the image
formation process into Equation (4.2) the complete projection equation for omnidirectional
cameras can be written as

ot — o (PO W R et ()
sz ap —“< g’y )=\ g+ ,a") -
(4.6)

Since a camera model is always a compromise between correctness and computability, sim-
ple definitions of g, h are preferred, with back-projection in mind.

4.2 Camera Calibration

By camera calibration we understand the process of recovering intrinsic camera parameters
of an appropriate camera model for a given real camera. An abundance of literature covering
this topic exists. The historical results on camera calibration come from the photogrammetric
community [20, 49]. An overview of the topic can be found in [123] and a modern treatment
from the computer vision standpoint in [71]. Practically, we can divide the camera calibration
techniques into two categories:

1. Photogrammetric calibration, when a camera with fixed internal parameters observes
a known rigid 3D object and

15
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R, t
() (b)

Figure 4.4: Absolute and relative camera poses.

2. Self-calibration, when camera is to be calibrated from images of an unknown rigid
scene.

The input data to the problem of photogrammetric calibration is a collection of 3D-2D cor-
respondences. The classical calibration algorithm is due to Tsai [181]. Assuming that the
known 3D calibration object is non-planar, the DLT algorithm [71] can be used to compute
projection matrix P and matrix K can be recovered by its subsequent factorization. The DLT
algorithm should be always followed by nonlinear optimization to refine the result with re-
spect to some geometrically meaningful objective function. For omnidirectional camera cal-
ibration, many researchers used hollow calibration devices with walls covered by a known
structure [19, 11]. A method similar to the DLT algorithm was developed in [13] also for
central catadioptric cameras.

Many researchers were concerned with planar camera calibration—planar calibration
targets are easier to manufacture and handle. For pinhole camera model, methods [171, 189]
provide closed form solutions. Again, they should be followed by a nonlinear optimization
step.

Of course, other calibration methods exist, e.g., using one-dimensional objects [190],
collimators [175, 38], or images of individual geometric primitives, e.g., [136, 83, 6, 34, 138].

Camera calibration can be also performed without a known calibration target—so called
camera self-calibration. A set of 2D-2D correspondences in images of a unknown rigid
scene sufficiently constraints the calibration problem [121, 114]. Of course, self-calibration
methods for omnidirectional cameras also exist [124, 12, 39, 158].

4.3 Absolute Pose Estimation

The problem of absolute pose estimation is to estimate the extrinsic camera parameters R €
SO(3), t € R? given a known object in the world coordinate frame, see Figure 4.4a. Itis also
referred to as camera resectioning problem. Usually, the problem is solved from point or line
correspondences. In case of point correspondences, at least 3 must be given. In this case the
problem has up to four solutions [53]. Approaches combining intrinsic parameters also exist,
for example given four 3D-2D correspondences, focal length can be recovered [179, 24] as
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(b)

Figure 4.5: Epipolar geometry. (a) Epipolar geometry of standard perspective cameras. (b)
Epipolar geometry of omnidirectional central cameras. (Adopted from [125]).

well as a radial distortion parameter [84, 25]. These minimal solutions are combined with
RANSAC loop [53] to estimate the maximal inlier set. This step is usually followed by
a non-linear optimization refinement of the solution found on the inlier set. The non-linear
optimization step is in the context of geometric computer vision known as bundle adjustment.

Methods minimizing over all available data at once also exist. For example, meth-
ods [112, 101] deliver fast and accurate results, albeit suboptimal. Methods by Zhang [188]
and Hartley and Kahl [68] solved the problem globally optimally with respect to L .,-norm,
Agarwal et al. [87] solved it for the uncalibrated case with respect to Lo-norm. [145], the
authors used polynomial optimization methods to derive globally optimal Ls-norm solution
with respect to the object space error.

4.4 Epipolar geometry

The epipolar geometry is a central notion of the geometry of two views. It is motivated by
stereo matching, i.e., by searching for the projections of a scene point X € R? taken by a
camera in two different poses as u; € R? in the first view and as u, € R? in the second,
see Figure 4.5. Let us start with the calibrated case, i.e., with the camera calibration matrix
K = I. Now, let us suppose that the first pose is the canonic pose. The scene point X is

17
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(@) (b) (©)

Figure 4.6: Example of the epipolar geometry of two images. (a) Several image correspon-
dences found by an automatic method and their apparent movement between the two views.
(b) Image correspondences and their respective epipolar lines. Notice that the epipoles are
not visible in the images. (c) 3D points as triangulated from the image correspondences and
the relative poses of the images recovered from the fundamental matrix F. (Created using
VisualSFM [3])

projected by the pinhole camera model as

w =1 0}(51().

Further, suppose that R € SO(3), t € R? describe the second camera pose. The scene point

1s now projected as
X
w=[R t] ( 1 )

Vectors u; and u; in this configuration form an image correspondence, u; <> u,. From the
fundamental properties of central projection follows that the centers of the cameras C;, C,
and the vectors Ruy, us, and X are coplanar. This fact is referred to as the epipolar con-
straint. Scene points together with baseline C;C, create a pencil of planes called epipolar
planes. All epipolar planes intersect the projective planes of the two views in straight lines—
epipolar lines. Epipolar lines again form pencils of lines in their respective projective planes,
that intersect in two respective points e, e, called epipoles. Epipoles can be equivalently
described as projections of the camera centers into the image planes of the opposite view. An
example of the epipolar geometry of two perspective cameras is given in Figure 4.5a. The
fact that the vectors Ruy, uy, and X are coplanar can be expressed using cross product as

0 =uy (t x Ruy) = u, ([t R)u; = uy Eu; = 0.

The matrix E = [t]«R is called the essential matrix.
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(a) (b) (c) (d)

Figure 4.7: Example of the epipolar geometry of two omnidirectional images. Two image
pairs acquired by a fish-eye lens with field of view of 180° with respective epipolar ge-
ometries. Images were transformed so it would appear as if they had been acquired by s
para-catadioptric camera in order to transform the epipolar curves into circles. (a—b) An im-
age pair resulting from a lateral move of the camera. Both epipoles are visible. (c—d) An
image pair resulting from a forward move of the camera. Only one epipole is visible.

In the case the calibration matrix X is not an identity, the projections of the point X must
be modified as
w = K[I 0}(}1(),

u, = K[R t](?),

and the epipolar constraint now looks as follows
(K 'up) " (t x R(K 'uy)) = uy (K "[t]xRK")u; = uy Fu; = 0.

The matrix F = K~ '[t] RK~! is called the fundamental matrix. The fundamental matrix
realizes the mapping u; +— 1, ie., it maps the image points from the first image to the
epipolar lines in the second image as

I = Fuq,

from which follows that rank(F) = 2. Figure 4.6 shows an example of the epipolar geometry
for two views of a paper model of the Daliborka Tower. Historically, the essential matrix
was introduced by Longuet-Higgins [107] before the fundamental matrix. The above form
of fundamental matrix was introduced by Faugeras [50] and Hartley [72] in 1992.

An analogy to the epipolar geometry of central perspective cameras can be formulated
for central omnidirectional cameras. The difference between directional and omnidirectional
cameras is the shape of the retinas as well as the distinguishability of the rays orientations.
The pencil of planes intersect the spherical retinas of the spherical model in great circles,
which are projected into sensor plane as epipolar curves, intersecting the C;C, baseline in
two epipoles, ey 1, e, 5 in the first view, ey 1, €22 in the second view, see Figure 4.5b. The
epipolar curves are conics for quadric catadioptric cameras [172] and more general curves

19



4.5. Relative Pose Estimation

20

for fish-eye lenses [125]. In the case of omnidirectional cameras, the epipolar constraint can
be formulated with the back-projected vectors p/ and p’ only, see Figure 4.5b, as

p, Ep} =0, (4.7)

where E is again called the essential matrix. Figures 4.7a—d show examples of two image
pairs with denoted epipolar geometries.

4.5 Relative Pose Estimation

The problem of relative pose estimation, sometimes also known as motion or egomotion
estimation is the problem of estimating the relative transformation R € SO(3), t € R?
between the coordinate frames connected with cameras in two different absolute poses, see
Figure 4.4b, using only image matches between the images. It is closely connected to the
problem of estimation of the epipolar geometry, i.e., matrices F and E, since both encode the
relative transformation and both can be factorized to extract it.

Again, relative pose estimation problem can be formulated as a minimal problem that is
used inside a RANSAC style loop. It has been known for a long time that 5 image point
correspondences are enough to estimate the relative pose [92] and that it leads up to 10
theoretical solutions. The first practical 5-point minimal solution is due to Nistér [130];
other solution followed [103, 93, 95]. In [102, 28, 95, 93, 165], it has been shown that by
adding one more point correspondence focal length can also be estimated. The RANSAC
loop should always be followed by the bundle adjustment procedure.

Global solution in L..-norm was proposed by Hartley and Kahl [69]. It is based on the
branch-and-bound search over the space of all rotations.

4.6 Bundle Adjustment

The non-linear optimization of all unknowns is in the context of geometry of vision known
as bundle adjustment. The unknowns may include intrinsic and extrinsic camera parameters
as well as scene point positions. It is also implied that a geometrically meaningful objective
function is minimized, e.g., reprojection or object space error. The minimization method of
choice is often the Levenberg—Marquardt algorithm [119]. The work by Triggs et al. [180]
provides an excellent reference on bundle adjustment.

The underlying geometrical structure of the bundle adjustment problem—relatively less
cameras compared to the number of points with the point typically visible only in a subset
of cameras—reflect in the relative sparsity of the problem. This sparsity can be exploited via
the Shur complement trick [180], as it is in the case of SBA, sparse bundle adjustment library
by Lourakis and Argyros [109]. The sparsity structure can also be exploited via Cholesky
factorization [35, 108] or conjugate gradient methods [29, 30, 5].
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4.7 Structure-from-Motion

Given a sequence or a set of images with pairwise image correspondences, one may want
to recover not only the pairwise relative pose information, but also the relative poses of
all cameras (as well as the intrinsic parameters). This problem is known as structure-from-
motion (SfM) [174, 71]. Despite its easy formulation, this optimization problem is inherently
highly non-linear and no closed-form solution is known to the date. The work [176] by
Tomasi and Kanade can be cited as one of the SfM methods. It applies the factorization
technique on affine cameras. This method was extended by Sturm et al. [170] for perspective
cameras.

Even though global approaches to SfM exist [139, 120], most of the nowadays SfM
methods are based on incremental reconstruction. These methods start with a small seed
reconstruction—two or three images—and add cameras and points to grow the initial re-
construction [14, 15, 153]. The incremental adding of cameras is based on the techniques
of absolute and relative camera poses recovery. The fundamental role in the incremental
SfM is that of bundle adjustment, which has to be performed periodically after adding a
certain number of cameras and points. Without this step, the chances of recovering a re-
alistic results are slim to none [154]. Even when using the state-of-the-art approaches to
bundle adjustment, this step can become the bottle neck of the whole SfM procedure. Sev-
eral methods were proposed to decrease the size of the bundle adjustment problems han-
dled. In [155], Snavely et al. proposed the concept of skeletal graph covering the set of
cameras. Similarly, Li et al. [104] proposed to use iconic scene graphs. In parallel, divide-
and-conquer approaches that divide the SfM problem into many smaller subproblems were
developed [54, 131, 157, 55].

4.8 Conclusion

This chapter reviewed the state of the art of the fundamental concepts of geometric computer
vision pertinent to development of the presented robot-camera calibration methods. In the
latter chapters, we will assume all cameras to be calibrated and that we are able to back-
project the image points, i.e., to recover the 3D directions of the rays that projected into the
respective image points.
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Camera-Robot Calibration

I’'m completely operational and all my circuits are functioning normally.
— HAL 9000

The need to relate measurements made by a camera to a different known coordinate system
arises in many engineering applications. Historically, it appeared for the first time in the
connection with cameras mounted on robotic systems. This problem is commonly known
as hand-eye calibration. The hand-eye calibration problem arises also in seemingly un-
related fields ranging from medical applications such as ultrasound [98, 17, 184, 16] and
endoscopy [144, 185, 143, 117] to automotive industry [140]. However, in this work we will
be concerned with the robotic hand-eye—sometimes also known as eye-in-hand—systems.
The presented results can be easily extended to other applications as well.

The classical robotic hand-eye setup is shown in Figure 5.1. It shows a Mitsubishi
MELFA-RV 6S serial manipulator equipped with a Canon 350D DSLR camera mounted
on the robotic end-effector (gripper); Figure 5.2 depicts the situation schematically. The
problem of hand-eye calibration is the problem of recovering the rigid transformation that
connects a camera and robotic gripper coordinate systems. It is customary to express this
transformation as a 4 x 4 matrix X € SE(3),

o Ry tx
(34

see Figure 5.2, where Ry € SO(3) is a 3 x 3 orthonormal matrix describing the rotational
part of the transformation and ty € R3 is a 3-dimensional vector describing the translation.

5.1 Hand-Eye Calibration

Let us suppose that a hand-eye robotic system has been manipulated into two distinct poses,
see Figure 5.2. Let us denote the transformation from the world coordinate system to the
camera coordinate system in the first pose of the rig as A} and the transformation in the
second pose as A,. Now, we can express the camera’s relative motion (pose) from the first
pose the second one as

-1
pa— (B Tt} _ [ By ty Ryp ty VG
OT 1 OT 1 OT 1 271

where Ry, € SO(3) is a 3 x 3 rotation matrix and t, € R? is a 3-dimensional translational
vector. Analogically, relative motion (pose) of the robotic end-effector can be described as

-1
() (7 5) (3 ) e
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(b)

Figure 5.1: Hand-eye calibration robotic setup. (a) A Mitsubishi MELFA-RV 6S serial
manipulator equipped with a Canon 350D DSLR camera. (b) Detail of the hand-eye setup.

with B}, Bf being the respective transformations from the end-effector’s coordinate system
to the robot base coordinate system. In the rest of this work, we will call A} and B absolute
camera and robot poses, respectively. Assuming we have measured two sets of absolute
poses A, and B], we can compute the relative posesA and B and the problem of hand-eye
calibration can be expressed analytically as the solution to the following matrix equation:

AX = XB. (5.1)

The earliest solution strategies can by found in [182, 183, 149, 37, 186]. All of these authors
realized that Equation 5.1 forms an underdetermined system and that two absolute robot
poses are not enough to uniquely determine the transformation X. In [149], Shiu and Ah-
mad showed that at least two relative poses with non-parallel rotational axes are needed. In
practice, the robot is manipulated into m absolute poses, giving rise to the set of matrices
Al B, i = 1,...,m. These absolute poses are then combined into n relative poses A;, B;,
t = 1,...,n. Which pairs of the n absolute poses are combined to produce the relative poses
depends on the application and ultimately on the user’s decision. For example, all possible
combinations of the absolute poses lead to n = (’;) relative poses. Unless the absolute poses

can be measured with perfect accuracy—we get a noisy system of matrix equations

AMX = XB,
AQX - XBQ, (52)
A X = XB,.

Since System 5.2 can be expressed in more detail as

Ry, ta, Rx ¢ Ry ¢ Rg., tg, .
(oé* fl)(fﬁ 1x>:(0§ 1x><0%; 1}31),@:1,...,71 53)

it can be further decomposed into rotational matrix equations and translational vector equa-
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Figure 5.2: Schematics of hand-eye calibration. A Robotic arm in two different poses.

tions

R'AiRX = RXRBZ'; 1= 1,...,” (54)
RAitX -+ tAi = thBi + tx, 1= 1, o, (55)

Notice that Equations 5.4 do not depend on the unknown translation tx. Once rotation Ry is
known, Equations 5.5 are simply a system of linear equations in ty and the translation can
be easily determined using the tools of linear algebra.

Work [148] contains a concise review of the classical solutions to hand-eye calibration.
The classical solution strategies of the hand-eye calibration problem can be divided into tree
categories:

1. decomposed closed-form solutions that explicitly use the decomposition of Equation 5.2
into Equations 5.4 and 5.5,

2. simultaneous closed-form solutions, and

3. simultaneous iterative solutions that employ techniques of mathematical optimization.

5.1.1 Decomposed Solutions

In [149], Shiu and Ahmad proposed the first solution to the hand-eye calibration problem for-
mulated as Equation 5.1. They used the angle-axis parametrization of the group of rotations
SO(3), see Section 3.4.2. The authors observed that if exp [a], = Ry and exp [3],, = R,
then

a = Ry[3. (5.6)

A general solution to Equation 5.6 can be found as a rotation about axis perpendicular to
both x and 3 as
RXi = €Xp [aza] X eXp [Tw] N
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where w = a x B and r = atan2(|a x B[, a' 3). Considering two relative movement, we
can write

RX1 - RX2 9
exp (a1, exp [riwi], = expacar], exp [rows], .
This leads to a system of 9 linear equations in four unknowns sin a;, cos ai, sin as, cos as.
Once the rotation Ry is known, the translational part is recovered from the linear system 5.5.

Tsai and Lenz [183] again used the angle-axis representation. To recover Ry, they sug-
gested the following linear least square problem

o+ B w=0a,-B,i=1,...,n,

where
o — 2sin (|| % )Oéi
' [fe%| ’
2 (|8])
i Bl

and n is the number of relative poses. Once w' is recovered, Ry is computed as

2tan! [|o'|| ,]
X

Again, the translation tyx is recovered from the linear system 5.5.

Wang [186] suggested three methods that basically correspond to the solution [183]. He
compared his best method to the methods [149, 183] and concluded that method by Tsai and
Lenz [183] performed best.

In [134], based on the fact that a« = Rx/3, Park and Martin suggested a different mini-
mization problem to recover Ry:

n%}i(nz IRx3; — au|” . (5.7)
=1

Based on a matrix .
=1
they also provided a closed form solution
Ry = VM MM'.

Chou and Kamel [37] proposed to solve the hand-eye calibration problem using quater-
nion representation of rotation, see Section 3.4.3. They noticed that Equation 5.4 can be
written in the quaternion notation as

ga * gx = gx * gs,
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and used the matrix form of quaternion multiplication, see Equations 3.6 and 3.7, to construct
the following linear system:

M(da)ax — M(gs)ax = 0. (5.8)
The authors used singular value decomposition (SVD) [63] to solve System 5.8 with addi-
tional adjustments to obtain solution satisfying the unity condition ||qgx|| = 1.

In [81], Houraud and Dornaika proposed to recover Ry as a minimizer of the same objec-
tive function as [134]—Equation 5.7—this time, however, parametrized using quaternions:

Héinz ||qx * (Oaﬁi)T * gz — (0, O‘i)TH2 :
i=1

They provided a closed form solution as the eigenvector associated with the smallest positive
eigenvalue of the matrix

n _ T B
i=1
A different approach to the solution of Equation 5.4 was presented by Liang and Mao
in [105]. They proposed to use the Kronecker product together with vec operator, see Defi-
nitions 3.3 and 3.2, respectively, to rewrite Equation 5.4 as a linear system

(Ra; ® I — I ® Ry )vec(Ry) = Ax = 0.

Once this system is solved using SVD, the vector x is reorganized back into a 3 x 3 matrix
as R = vec™!(x). Since there are no additional constraints on the vector x, matrix R’ will
generally not be a rotation matrix. The authors also showed how to obtain Ry € SO(3), such
that ||R’ — Rx||r is minimal using SVD and a determinant sign test.

5.1.2 Simultaneous closed-form solutions

In [33], Chen employed the screw motion theory, see Section 3.5, to investigate the necessary
and sufficient conditions for the solutions of Equation 5.1. The author showed that for well-
defined screws, the necessary and sufficient condition for a unique solution is that the screw
axes of two robot motions are either skew or intersecting. Moreover, that even for undefined
and ambiguous screws a partial solution or even a complete solution may be recovered. The
author concluded that the rotational and translational parts of the transformation X should not
be decoupled, because otherwise the generality and efficacy of the resulting algorithm would
be negatively affected.

In [43, 44], Daniilidis and Bayro-Corrochano used dual quaternions to represent screws
and formulated Equation 5.1 as a linear system

q ) _
T ( a ) o (5.9)

where (q,q')" € H is the dual quaternion representing the hand-eye transformation X and
matrix T is a 6n X 8 matrix

T=(s] 8§ -~ S.) . (5.10)
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Let a; = a; + eal, BZ = b; + €b! be the unit dual quaternions representing the motions A;
and B;, respectively. Matrices S; are constructed using the quaternion parts as

éi - BZ [Z_ll —+ Bz} 03 O3><3
Si:<ai—5’i [é;+B;}i a, — b, [aH_B}X)a (5.11)

where the barred vectors represent the imaginary parts of the respective quaternions. Finally,
(q,d’ )T is found as an intersection of the null space of System 5.9 and the set of unit dual
quaternions. The authors compared the method to the method of Tsai and Lenz [183] and to
the nonlinear method of Houraud and Dornaika [81] and concluded that the dual quaternion
formulation outperforms the former methods. In [192], Zhao and Liu presented a similar
method derived directly from the geometry of the screw motion.

In [8], Andreff et al. proposed to linearize Equation 5.1 using Kronecker product as

(0)+(2)-(2),

where the matrix T has the same block structure as in Equation 5.10. Here, the matrices S;
are constructed as
o I- R’Ai ® R‘Bi O9><3
S; = ( I ®t; IR, ) . (5.12)
This system is solved using SVD. As is the case of method [105], such a solution will gen-
erally not yield a rotation matrix and it needs to be further orthogonalized as
sign(det(vec™!(ry)))

“(ry). 5.13
prm——F vec™ ' (ry) (5.13)

X =

However, the authors observe that the proposed solution is not independent of the physical
units used for the translation and that due to the orthogonalization step it is improbable to find
the corresponding correction on the translation. They conclude that a decomposed solution,
similar to [105], may provide more accurate results.

5.1.3 Simultaneous Iterative Solutions

Zhuang and Shiu [194] proposed an iterative non-linear method to minimize function

n
> llax — x|
=1

to simultaneously estimate the rotational and translational parts of X. As a part of [81],
Horaud and Dornaika also proposed a simultaneous iterative method based of quaternions
and Levenberg-Marquardt non-linear optimization [119]. They observed that the method
performed well only after introducing two ad hoc selected scaling factors. Both methods
need to be provided with an initial solution estimate and depending on its accuracy may not
converge to the global optimum.
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In [191], Zhao suggested two iterative methods based on second order cone programming
(SOCP). These methods are guaranteed to converge to a global optimum and do not require
an initial solution estimate. The first formulation is based on the method by Andreff et
al. [8]. Using S; from Equation 5.12 and linearization of the rotation matrix ry = vec(Rg),
the residual error of the -th relative motion is defined as

s ()~ ()l

The unknown hand-eye transformation is recovered as

€, =

(ry,ty) = min max e;. (5.14)
I'x,tx i=1,..., n
This min-max formulation can be also viewed as minimization of L.,-norm of the vector of
. T .
residuals e = (e, e9,...,¢,) ,i.c.,

* gk :
(ry, tx) = min [le]] .

Even though it is possible to recover the global optimum of Problem 5.14 using SOCP,
the resulting ry still needs to be orthogonalized, e.g., using Equation 5.13. The second
method suggested by Zhao is based on the dual quaternion method of Daniilidis and Bayro-
Corrochano [43, 44]. This time, the residual error of the i-th relative motion is defined using

S; from Equation 5.11 as
q

where (q, q')" is the dual quaternion representation of X. The minimum is again recovered
by solving Problem 5.14. However, an additional constraint is needed to avoid the trivial
solution.

Strobl and Hirzinger [167] suggested an iterative method based on a parametrization of
a stochastic model using a novel metric on SE(3). However, for their method to perform
optimally, some prior information on data noise characteristics is needed.

€ = 3

5.1.4 Image Measurement Error Minimization

Recently, several researchers proposed hand-eye calibration methods that use image mea-
surements directly to eliminate the errors resulting from explicit computation of matrices
AL

In [160], Stewenius proposed a hand-eye calibration method based on image point track-
ing. By formulating the problem using multilinear constraints and by executing robot move-
ment not involving robot rotation, i.e., Rg;, = I for all relative movements, the rotation Rx and
the internal camera calibration matrix K can be recovered using SVD. Once Ry is recovered,
the multilinear constraints can be now formulated with tx as the unknown and again solved
for using SVD. Using this approach, computation of matrices A, can be avoided, however,
the solution is not based on minimization of a geometrically meaningful function.

Kim et al. [91] proposed to minimize the variance of known 3D points, i.e., of the calibra-
tion target points measured in different robot poses. The authors proposed to use nonlinear
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minimization method by Powell and Brent to minimize the objective function. This method
can recover a local minimum and requires initial solution estimate. The author compared
their method to the methods of Tsai [183] and Strobl [167] and concluded that their method
outperforms both competitors.

The recent progress in globally optimal methods for computer vision problems [69] al-
lowed Seo et al. [146] to formulate a branch-and-bound algorithm to recover a globally
optimal solution for class of hand-eye calibration problems where only rotations are in-
volved, i.e., System 5.1 is reduced to System 5.4. The unknown rotation Ry is recovered
by minimizing a cost function based on the image reprojection error in L.,-norm. To avoid
working in the pixel space, the authors consider a calibrated camera scenario and work with
measurements represented by unit vectors pointing from the camera center to the respec-
tive 3D points. In a relative displacement of a rig that only involves rotation, two image
measurements—yv € R3 in the first camera position and u € R? in the second camera
pose—of the same world point are related as

u=R,v.

Considering n of such rotational displacements and m correspondences in each image pair,
we get
u;; = RAZ'Vija 1= 1, Loy, ] = 1, sy .

Since R, and Ry are related by Equation 5.4 as
Ry = RxRaRy

the authors suggest to use measure the error between u and R, v as the angle between the two
vectors

e = Z(u,RxRgR, V),

and to minimized the L., norm of the residual error vector e = (€11, €19, . . ., €nm), i-€.,
f(Bx) = n}1{in max Z(u;;, RXRBiR)—(rVij)- (5.15)
X 2y

The cost function f is minimized using a branch-and-bound strategy proposed in Hart-
ley [69]. This strategy is based on recursive subdivision of the angle-axis parametrization of
the rotational space represented by a cube C' = [—m, 7]°.

5.2 Robot-World Calibration

In [193], Zhuang et al. extended the hand-eye calibration problem to also include calibration
of the transformation from the coordinate system connected with the base of the robot to
the world coordinate frame, see Figure 5.3. The method of Zhuang et al. uses quaternion
rotation representation to solve an equation analogical to the Equation 5.1,

AM'X=2ZB,i=1,...,m, (5.16)
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Figure 5.3: Schematics of hand-eye and robot-world calibration. A Robotic arm in two
different poses.

where Z € SE(3) represents the robot-world transformation. In this case, the kinematic loop
is closed using the absolute camera and robot poses A, and B;. Dornaika and Horaud [46]
suggested a different solution, also based on quaternions. In [7], Li et al. proposed two dif-
ferent solutions based on Kronecker product and dual quaternions, analogous to the solutions
to the hand-eye calibration problem in [8] and [44], respectively.

In the dual quaternion solution [7], special care has to be taken of the orientation ambi-
guity of the rotational quaternions a;, b; when converting matrices A}, B, to dual quaternions
a;, b;. This is due to the fact that even though quaternions a;, —a; and b;, —b; represent the

same rotation, the sign matters when Equation 5.1 is expressed using dual quaternions, i.e.,
&;(au,ta,) ® dx — 4z @ by(by, ts,) # &i(—ay, ta,) © dx — Gz © by(by, t,),

where the notation q(q, t) stands for the dual quaternion representing the rotation q € Q
followed by the translation t € R?, see Equation 3.9, &;, IA)Z', qx and q are the dual quaternion
representations of A;, B;, X, and Z respectively, and ® is the dual quaternion multiplication.
The obvious solution it to try all of the 2™ sign combinations and keep the combination with
the smallest value of the criteria function. The sign problem is also inherent to the quaternion
method of Dornaika [46].

5.3 Obtaining matrices A, and B!

Most of the above discussed methods for hand-eye calibration considered the computation of
absolute pose matrices A, and B; to be a separate step, carried out prior to hand-eye calibration
itself. Once the matrices were known, an optimization step of computing X follows.
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Figure 5.4: The transformations between different coordinate systems at the first and the
second pose of the camera-gripper rig.

5.3.1 Matrix A’ —External Camera Calibration

Let us consider a point Y € R? that can be seen in both camera positions, see Figure 5.4.
The point Y is expressed in the world coordinate frame v as Y., € R® and as Y, € R?
in the coordinate system J; connected with the camera in it’s first absolute pose. Matrix A}
connects these two coordinates as

()= ()

If the same point Y is expressed as Y, € R? in the coordinate system [, connected with
the camera in it’s second absolute pose, then the matrix A, connects these two measurements

as
Y52 _ ! Y’Y
() -n( )

Matrix A, see Figure 5.4, represents the transformation from the coordinated system [3; to the

coordinate system 5 as
YﬂQ _ Yﬂl
()= )

A= N

and can be expressed as

In this sense, matrices A} and A}, represent the external camera parameters for the respective
camera poses, see Section 4.3, whereas matrix A represents the relative pose, see Section 4.5.

5.3.2 Matrix B —Forward kinematics

The transformation from the robotic end-effector to the robot base B’ can computed from
the values of the robot joint parameters by the process called forward kinematics. Robotic
kinematics [150] is a vast research and engineering field and reviewing it in its totality is
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Joints — 1 -
m; Joint 7 + 1

Figure 5.5: The positions of the (i — 1)-th and the i-th coordinate frames according to the
Denavit-Hartenberg convention. The four parameters describing the transformation between
these frames—=0;, d;, a;, a;—are displayed in red.

out of the scope of this work. Here, we will review only the most widely used kinematic
convention for the serial-link manipulators considered in our work—Denavit-Hartenberg
convention [45].

Let us suppose that we seek to describe a serial-link manipulator with £ links. In order to
define transformations between its joints and ultimately to describe the location of the end-
effector relative to the base of the robot, a coordinate frame has to be set up for each joint,
see Figure 5.5. First, we need to identify all motion axes miy, ..., 71, My, M1, .« ., Mgiq.
Next, we need to identify the shortest transversals t; between the motion axes 1, and mZH
If m; is parallel to 7,1, then an arbitrary ¢; can be taken, however the simplest choice is #;
that intersects tz_l. The center of the first coordinate frame, Oy, can be placed anywhere on
myq, but placing it such that Oy = H; is the simplest choice. The positions of the centers of

the coordinate frames O; and the points H;,7 = 1,...,k — 1, are fixed as
O; = ti N,
H, = my;A 75_;,

where symbol A stands for line intersection. The center of the last coordinate frame O can
be placed anywhere, but the simplest choice is to place it such that O, = H, = O;_;. Now
we can set up the z-axis of the first coordinate frame z, to be parallel with 17, ; we are free to
choose one of the two possible orientations. Next, we set up the z-axis X, to be parallel with
t1 and to point in the direction of O;. Finally, we set up the y-axis y, to complete the right-
handed coordinate frame. We place the rest of the z-axes z; along the m,, axis, preferably
to form a sharp angle with the previous axis z;_;and the rest of the z-axes x; along ¢; in the
direction O; — H;. In case m; and m;; intersect, then we select x; to be perpendicular to
both m,; and 7,1 and, again, preferably to form a sharp angle with the x; ; axis. We choose
the y; axes to complete right-handed coordinate frames.
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Now that we have set up a coordinate frame in each link, we need to derive a transforma-
tion relating each two consecutive links, *~'T; € SFE(3). Before we will do that, let us define
four transformation functions. Let’s 6 € R and t = (t1,%,,13)" € R3. Now we can define
three pure rotation transformations performing rotations about x, y and z axis, respectively,

1 0 0 0
0 cosd —sind O
Rot;(0) = 0 sind cosd 0O |’
0 0 0 1
cosd 0 sind 0O
0 1 0 0
Rot,(0) = —sind 0 cosd 0 |’
00 0 1
cosd —sind 0 0
sind cosd 0 O
Rot,(§) = 0 01 0 |
0 0 0 1
and the pure translation transformation
1 00 t
1010 ¢t
Trans(t) = 00 1 ¢
000 1

It can be shown that for rotary and prismatic joints typically used in robotics exactly 4 inde-
pendent variables are needed to describe the transformation between two consecutive joint
coordinate frames. In the Denavit-Hartenberg convention, these four parameters are typically
denoted 6, d;, a;, ; € R. The meaning of these parameters is as follows:

e 0, the angle from x;_; to x;, measured about z;_1,
e d;, the distance from O;_; to H;, measured along z; 1,
e a;, the distance from H; to O;, measured along x;, and

e «,, the angle from z; _; to z;, measured about x;.

For a rotary joint, §; varies, for a prismatic joint, d; varies. The transformation *~T; trans-
forming points in homogeneous coordinates from the coordinate frame connected with the
i-th link to the coordinate frame connected with the (i — 1)-th link can be expressed using
these parameters as

i_lTi(Qi, di7 a;, Oéi) = Rotz(ei)Trans((O, 0, di)T)Trans((ai, O, O)T)Rotz(ai),

and after expansion,

cosf; —sinb,;cosq; sin#;sino; a;cosb;

1T 0 d an ) — sin 6; cosb; cosa; —cosb;sinay; a;sinb;
’L( 79 Z)alaal) - :

0 sin «y; COS 4 d;

0 0 0 1

34



5.3. Obtaining matrices A} and B

Matrix “~'T; is sometimes called the Denavit-Hartenberg matrix.
The geometry of a k-link serial manipulator is completely described by a set of 4 x £
parameters

0 = (01,....00)7,
d = (di,...,d)",
a = (ay,...,ax)",
o = (ag,...,;)",

where 0,d,a, a € R¥. To solve the forward kinematics problem, that is to find the pose of
the coordinate frame connected with the last link of our k-link serial-link manipulator with
respect to its base frame, we chain the homogeneous transformations and get

OTk(07 d7 a, O{) = OTl(elv d17 ay, a1)1T2(927 d27 a2, (1(2) T k_lTk(9k7 dka ag, Oék)

Now let’s suppose that all of the £ joints are rotational and that the robot was manipulated
into a position such that § = (0;,0,,...,0;)" € RF are the values of the respective joint
offsets in radians. Then the matrix B’ associated with this pose can be computed as

B ='T(0 +4,d,a, ).

The classical Denavit-Hartenberg convention is quite satisfactory when used to solve the
forward kinematics task, however, several problems arise when the convention is used in a
robot calibration procedure. The main problem is that the constants in *~!T; vary by large
amounts for revolute joints with parallel or nearly parallel axes, in other words, small varia-
tions in the position and orientation of two consecutive links are modeled by large variations
of the link parameters. To tackle this issue, several modifications to the convention have
been proposed. Although it is slightly out of the scope of this work—since here we con-
cerned with robot-camera calibration and assume that the robot is already calibrated—we
will briefly review the modification proposed by Hayati and Mirmirani in [73].

The modified convention is identical to the classical Denavit-Hartenberg convention in
cases where the position of the transversal ¢ is “stable”. For situations where this is not the
case, i.e., in cases where the links have parallel or nearly parallel motion axes, the authors
proposed a new rule to determine the link parameters, see Figure 5.6. First, we pass a plane
7 that is perpendicular to the motion axis m; and contains O;_;. The intersection of the
plane 7 and the motion axis m;;, determines the position of O;. To transform the coordinate
frame connected with the i-th joint to the (i + 1)-th joint we rotate the frame about z;_; to
align x;_; with the line connecting frame centers O;_; and O;. This gives us the first link
parameter ;. Next, we translate the frame in the direction x;_; to align it with O; and obtain
the second link parameter d;. Finally, we rotate the frame about its intermediate x and y-axes
to align its z-axis with the z; axis of the (i + 1)-th joint, obtaining parameters «; and /3;. The
modified Denavit-Hartenberg matrix has now the following form:

i_lT;(Hi, d;, a;, B;) = Rot(6;) Trans((d;, 0, O)T)Rotx(ozi)Roty(ﬁi),
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Joint7 + 1

Joint7 — 1

Figure 5.6: The positions of the (i — 1)-th and the i-th coordinate frames according to the
modified Denavit-Hartenberg convention. The four parameters describing the transformation
between these frames—¥;, d;, o;, f;—are displayed in red.

and after expansion,

—sq;sB;86; + cBict; —cays;  sacBis0; +spPicl; dich;
sa;s Bicl; +cBisl; cayeld; —saueficl; +sBs0; diso;
—coys f; Sy caye B 0

0 0 0 1

i—1m/

where s and c are shorthands for sin and cos functions, respectively.
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Optimal Algorithms in
Computer Vision

If you’re teaching today what you were teaching five years ago, either the field
is dead or you are.

— Noam Chomsky

Optimization problems in computer vision and robotics arise when fitting a parametrized
models to some kind of measurements, in this case usually image data. To solve a problem,
one has to minimize a defined objective function, sometimes also called the cost function,
over a set of parameters. Let us consider a set of data measurements x;. A parametrized data
model will provide a set of predicted model values x;. In real life situations—that is in the
case of noisy data and imperfect model—the measured and predicted data will differ. We
can express this difference as a set of residuals

0 = |lxi — xil]

where ||-|| is a norm that is relevant to the problem at hand and to the space of the measure-
ments. Arranging the residuals into a vector, we get the vector of residuals § = (61,0s, ... ).
By solving for the model parameters we search to minimize an objective function that is a
norm of the vector of residuals.

Previous two decades of computer vision research led to the establishment of today’s
number one choice optimization technique—bundle adjustment. Bundle adjustment is the
problem of refining a visual reconstruction to produce a jointly optimal 3D structure and
viewing parameter estimates based on nonlinear least squares fit [180]. It is a fairly universal
tool that is easy to apply and, when used on a sparse problem, runs reasonably fast. However,
to its main drawbacks one can place the fact that, as any other optimization method based
on gradient descent, it is susceptible to running into a local minima of the objective function
in case of poor initial parameter estimates. It has been observed in [70] that many problems
arising in computer vision have multiple minima and for such problems bundle adjustment
does not guarantee finding the optimal solution.

A lot of research in previous decades has also gone into the field of algebraic methods.
These are often used to search for starting point for bundle adjustment, e.g., the 8-point al-
gorithm [107, 67, 178]. These methods are based on algebraic formulation of conditions that
hold true in the idealized mathematical model of the problem. Substituting the real measure-
ments in the problems formulations one searches to minimize a algebraic cost function to
satisfy the conditions. The algebraic cost function is typically minimized using the apparatus
of linear algebra. Even though the optimal solution in this sense can be found, it does not
tell us much about a real quality of such a solution since the algebraic cost function is often
in no simple and meaningful relation to the geometric structure of the problem.
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As aresult of these shortcomings a number of new methods with guaranteed and provable
optimal solutions have been investigated in the recent years. These methods use results from
the fields of convex and polynomial optimization and bring new ways of understanding the
problems in computer vision and robotics. A number of these problems has already been
successfully solved, yet others are still open. The work [68] provides an excellent review of
optimal methods in computer vision as well as of the successfully solved problems.

6.1 Optimal Solutions

Before talking about “globally optimal algorithms™ we are bound to consider whether so-
lutions that such algorithms provide, albeit optimal in the mathematical sense, qualify as
meaningful optimal solutions to the original problems.

6.1.1 Ls-norm

A popular cost function is based on error measurements minimization in Ly-norm. An argu-
ment can be put forth that the least square cost function formulation,

2
181, = > I — ]I
i

leads to the optimal solution assuming that the measured data is corrupted with Gaussian
noise. For Gaussian noise with variance o, we can express the probability of the i-th mea-

surement as
: 1 i — 1"
P(x;|x;) = —exp | ————— | .

V2o 202

Further, assuming the independence of the measured data and denoting the vector of param-
eters 6, we can write the probability of the whole set of measurements as

PUxHKO) = K [[exo (—W) ,

where K is a normalization constant. While maximizing the probability of a set of measure-
ments,

0 ; 202 P i 2052 ’

we can see that the maximum likelihood estimate 6* for the set of measurements also mini-
mizes ||J|,.

Although the minimization of a cost function based on L,-norm has proven a success-
ful tool for geometrical problems, such a cost function is often plagued with multiple local
minima [173, 156] and solving for L,-norm is a hard non-convex problem. Getting a certifi-
cate of optimality for Lo-norm based cost function is often next to impossible. Besides, the
assumption of Gaussian noise is unlikely to hold for measurements in a digital image.
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6.1.2 L. -norm

By replacing the assumption of Gaussian noise with the assumption of uniform bounded
noise, one can make an analogous argument in favor of L.,-norm.
Assuming the measurement error probability model

P30 = K T e (- (M)) ,

g

then the maximum likelihood estimate 6* for a set of measurements also minimizes
/||P
> lxi = xj|I”
i

As p increases to infinity, the probability distribution converges to a uniform distribution for
|x; — x}|| <oand ", |x; — x}||” converges to the L.-norm ||8]| .
Since the L.,-norm takes the largest component of a vector in absolute value and disre-
gards the rest,
min ||6]| = min max |x; — x}|

a potential disadvantage is that L.,-norm is not robust to outliers. By minimizing L.,-norm
we are fitting the outliers, not good data. It is therefore imperative to remove outliers before
starting the optimization. Several methods have been proposed to deal with the problem of
outliers in L,-norm minimization problems [151, 147].

6.2 Optimal Algorithms

There are several classes of methods that can provide globally optimal solutions to prob-
lems formulated as either Lo or L.,-norm minimization tasks. In the case the minimiza-
tion task is a problem of polynomial optimization, the method of linear matrix inequalities
(LMI) relaxations or its dual, the method of polynomial sums of squares (SOS), can be used.
Both methods relax the original problem to a problem of semidefinite programming. Quasi-
convex optimization and branch-and-bound methods can be employed in case of L.,-norm
minimization.

However, not all problems lead to minimization tasks. Many problems in computer vi-
sion can be modeled by systems of polynomial equations. Such systems can be solved nu-
merically or—as is more and more the case in recent years—using symbolic, i.e., algebraic,
methods.

6.2.1 Polynomial Optimization

From a theoretical point of view, every optimization problem—as long as it can be formu-
lated using polynomial functions—can solved globally optimally using tools of elementary
calculus by enumerating all stationary points of the cost function and checking for global
minima. The requirement of a differentiable polynomial cost function will hold for many
vision problems. The exception are those based on the L.,-norm, which are generally not
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differentiable. Although this approach is bound to find the optimum, because of the com-
putationally prohibitive demands, only small problems are tractable. It can be shown that
general problem of minimizing polynomial function is NP-hard [128], if the degree of the
polynomial is at least four.

Before formally introducing the problem of polynomial optimization, let us propose a
few definitions first.

Definition 6.1 (Monomial). Let x € R" be a real vector and o™ € N a integer vector. A
monomial is defined as

Definition 6.2 (Multivariate polynomial). A scalar multivariate polynomial p € R[x] of
degree d € N is a linear combination of monomials

p(X) = Z PaX™ = Z Paf?lxgg s Tt = (pa>\1\§d(xa)\a|§d7
la|<d la<d

where e € N" is the vector of indices, |a| = ||a||; = || + 2| + - + ||, (Pa)|aj<a IS
the vector of the polynomial coefficients and (xa)|a|§d is the polynomial basis.

Let p;(x) € R[x], 7 = 0,1,...,¢ be scalar multivariate polynomials in x € R™. For-
mally, the problem of multivariate polynomial optimization can be stated as follows:

Problem 6.3 (Polynomial optimization).

minimize po(x)
subjectto p;(x) >0,i=1,...,¢.
where x = (z1,79,...,2,)" € R™,
po(x), pi(x) € R[x].

Problem 6.3 can be also viewed as minimization of py(x) over the basic semialgebraic set .S,
S={xeR"|pi(x)>0,i=1,...,(}. (6.1)

It is a non-convex problem with many local minima. Several techniques for relaxing this
problem were developed, namely the Lasserre’s LMI relaxation hierarchy and its dual theory
of the polynomial sums of squares. It can be shown that under some circumstances these
techniques can recover the global optimum of the original problem as well as certify its op-
tionality. The work [100] provides an excellent survey of polynomial relaxation techniques.

6.2.1.1 Lasserre’s LMI Relaxations

In [99], Lasserre cast Problem 6.3 as a linear optimization problem over the infinite-dimen-
sional set of probability measures supported on S. A nice introduction to the Lasserre’s
hierarchy can be found in [78].
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Definition 6.4 (Riesz functional). Given a sequence ¥ = (Yo )aenn, the Riesz functional
Ly : R[x] — R is a linear functional that given a polynomial p(x) = ) _ paX® returns

Ly(p(x)) = ) _ Pala-

Definition 6.5 (Moment matrix). The moment matrix M,(y) of order d is the Gram matrix
of the quadratic form p(x) — Ly (p*(x)), where p(x) = >__ paX® is a polynomial of degree
d,i.e.,

Ly(p*(%)) = (Pa) " Ma(y)(pa).

Note, that from Definition 6.5 follows that M,(y) is a symmetrical matrix of dimensions

n X n, where
m+d (m+d)!
n = = -
m mld!

is the number of monomials of m variables of degree at most d. For example, if n = 2, then

Yoo Y10 Yo1
MO(Y) = Yoo, M (Y) = Yo Y20 Y
Yo1 Y11 Yoz

Definition 6.6 (Localizing matrix). The localizing matrix My(q,y) of order d of a polyno-
mial ¢(x) is the Gram matrix of the quadratic form p(x) — Ly (q(x)p*(x)), i.e.,

Ly(q(x)p*(x)) = (pa) Ma(q, y)(Pa)-

In [137], Putinar proved that probability measures can be represented via sequences
Y = (Ya)aen of its moments. Using this result, Lasserre showed that by truncating these
sequences one can construct a hierarchy of convex relaxations Py, Ps, ... that produces
a monotonically non-decreasing sequence of lower bounds on Problem 6.3 converging to
the global minimum. He also showed, that the series of the respective global optimizers
X7,x5,... of problems Py, P, ... asymptotically converges to x*, lim; ,,, x; = x*, and
that under some mild conditions global optimality of a relaxation can be detected and the
global minimizers can be extracted by the tools of linear algebra from the solution of the re-
laxation. Practically, (x});cn converges to x* in finitely many steps, i.e., there exists j € N,
such that x; = x*. Problems for which the finite convergence does not occur are in some
sense degenerate and exceptional [129].

The main point of the Lasserre’s hierarchy is the fact that the relaxations P; can be for-
mulated as semidefinite programs (SDP) and solved by any convenient SDP solver. The LMI
relaxation Py of order ¢ is built by linearizing all monomials x* of the objective function p,
up to degree 2, i.e., || < 2§ using the Riesz functional Ly (po(x)). If the objective function
contains monomials of a higher degree, one has to start with a relaxation of a higher order.
Next, the semialgebraic set S is relaxed using the localizing matrices Ms_1(p;(x),y) for the
polynomials p;, ¢ = 1,..., ¢ by introducing ¢ LMI constraints Ms_;(p;(x),y) = 0. Finally,
we add the moment matrix constraint M;s(y) >~ 0. Formally, the LMI relaxation Pj of order
0 can be written as
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Problem 6.7 (The LMI relaxation P; of order 0).

minimize Ly (po(X)) = >, Pala
subjectto Ms_1(pi(x),y) = 0,i=1,...,¢,
M;s(y) = 0.
Since there are exactly n = (") monomials in m variables up to degree 25, SDP
Problem 6.7 will have y € R"” linear variables. See [99] for the technical justification of this
procedure.

In [86], Kahl and Henrion first applied the LMI relaxation technique in the context of
computer vision to a number of classical vision problems: triangulation, pose estimation,
homography estimation and epipolar geometry estimation.

6.2.1.2 Sums of Squares Relaxations

The theory of polynomial sums of squares is the dual theory to the Lasserre’s LMI hier-
archy. First, let us consider a problem of unconstrained polynomial minimization problem
min po(x). It is an trivial observation, that this problem can be reformulated as

Problem 6.8 (Unconstrained polynomial minimization).

maximize -y
subjectto  po(x) —v > 0,
v € R.

A natural idea how to tackle the hard problem of the non-negativity condition is to replace it
by some simpler condition. Computationally more tractable than showing the non-negativity
of po(x) — is to solve a relaxed problem of showing that the polynomial po(x) —+y is a sum
of squares:

Definition 6.9 (Sum of squares). A multivariate polynomial p(x) is a sum of squares (SOS)
if there exist polynomials f;(x), ..., fx(x) such that

k
px) = > )

If a polynomial p(x) is an SOS, it follows that p(x) > 0 for all x € R™. It can be shown,
see [135] for the proof of this claim, that a polynomial p(x) of degree 2d is an SOS if and
only if there exists a positive semidefinite matrix Q, such that

p(x) = z(x) " Qz(x),

where z(x) is a vector containing monomials in x of degree less or equal to d. By comparing
the coefficient of the polynomials py(x) — 7 and z(x)"Qz(x), we get a system of linear

equations
v _
A ( vec(Q) > =b

in the unknown elements of matrix Q and . This leads to the relaxation of Problem 6.8,
where the non-negativity of py(x) — - is replaced by the constraint that py(x) — v is an SOS:
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Problem 6.10 (Unconstrained sum of squares relaxation).

maximize -y

. y -
subjectto A ( vee(Q) ) = b,
Q= 0,

v € R.

Notice that Problem 6.8 is in the form of a semidefinite program (SDP).

In the case of Problem 6.3, we have to minimize the polynomial py(x) — 7 over a basic
semialgebraic set S, see Equation 6.1. One way how to relax this problem is to consider a
sum of square decomposition po(x) — v = so(X) 4+ S+, 5i(x)pi(x), where 50(x), 5;(x) are
SOS. Such a decomposition does not directly lead to a semidefinite program, since cancella-
tion of terms may occur in the polynomial sy(x) + Zle si(x)p;(x) and it is not clear how
to bound the degrees of polynomials so(x), s;(x). However, once the degree is fixed, the
problem becomes a semidefinite program:

Problem 6.11 (Constrained sum of squares relaxation).

maximize -y
subject to  po(x) — v = so(x) + Zle si(x)pi(x),
,si(x),i=1,..., ¢ are SOS,

Using Problem 6.11, a hierarchy of SOS relaxations P;,P;, ... of the Problem 6.3 be
constructed by increasing the parameter ¢. This hierarchy starts with

2t > max(deg(p(x)), deg(so(x)), ..., deg(se¢(x)))

and as was the case of the Lasserre’s LMI hierarchy, the respective global optimizers x| <
x5 < x3 ... of problems Py, P;, P; ... asymptotically converge to x*, lim;_,., X;* = x*.
In [145], Schweighofer and Pinz applied the SOS relaxation method to the absolute ca-
mera pose problem to get the globally optimal solution in Ls-norm. They assumed a cali-
brated camera model and based the cost function on the object space residuals
T

€Z'(Xi,Ci,VZ') = H(I— T ) (RX2+t—CZ)

VvV, V;

Y

2

where X; € R3 are known 3D scene points, c;, v; € R3 represent the measurements of X
in the calibrated camera by the line of sight with the origins in c; and directions v;, and
R € SO(3),t € R3 represent the unknown absolute camera pose. In other words, the error
function e; measures the distance of a scene point X; from the line of sight back-projected
from the camera. Notice that the objective function ||e||> = ||(e1, €2, ... |3 is a polynomial
function. The translation can be factored out of the residuals e; by differentiating with re-
spect to t and equaling the result to zero. By further parametrizing the rotation R by a unit
quaternion q, see Equation 3.8, the cost function HeHg can be written as a quadratic polyno-
mial f in four unknowns q € Q. Using the SOS decomposition and the Positivstellensatz,
the authors relaxed the absolute pose problem as a solution to the following convex problem:
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Figure 6.1: (a) An example of a convex (top) and a non-convex (bottom) set. (b) An example
of a convex function. (¢) Optimization of a convex function over a convex domain.

Problem 6.12 (SOS relaxation of the absolute camera pose problem [145]).

maximize -y
subjectto  f(q) — v — A (Hq”é — 1) — oqy is SOS,
o is SOS.

6.2.2 Quasi-convex optimization

Quasi-convex optimization is closely related to convex optimization. First, let us define some
basic notions.

Definition 6.13 (Convex set). A set S C R" is convex if for any two points x,y € S and
any « such that 0 < o < 1, we have

ax+ (1 —a)y € S.

Definition 6.14 (Convex function). A function f: R™ — R is convex if dom f is a convex
set and if for all x,y € dom f and a such that 0 < o < 1, we have

flax+ (1 —a)y) < af(x)+ (1 —a)f(y).
Definition 6.15 (a-sublevel set). An a-sublevel set of a function f : R™ — R is defined as
Sa ={xedomf]|f(x) <a}l.

Definition 6.16 (Quasi-convex function). A function f: R®” — R is quasi-convex if its
domain and all its sublevels sets S,,, &« € R, are convex.
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(a) (b)

Figure 6.2: Example of quasi-convex functions.

Book [18] is a popular reference work on convex optimization. See Figures 6.1 and 6.2 for
examples of convex and quasi-convex functions.
A convex optimization problem is the one of the following form:

Problem 6.17 (Convex optimization problem).

minimize fj(x)
subjectto  f;(x) <0,i=1,...,m,
aij:bj,jzl,...,f,
where fo, ..., f,, are convex functions.

That is, we minimize a convex objective function over a convex set. A quasi-convex op-
timization problem is defined in the same way, except that the objective function fj(x) is
quasi-convex. An agreeable fact about a convex function is that the global minimum value
is attained at a single point, and there are no local minima apart from the global minimum.
That is also true for quasi-convex functions. Another useful property of both convex and
quasi-convex functions is that the point-wise maximum of a set of (quasi-)convex functions
is (quasi-)convex, see Figure 6.3.

In [85] Hartley and Kahl proposed a framework for optimally solving structure-from-
motion problems in L.,-norm. The authors considered problems for which the residuals e;
to be minimized can be written as
ei(x) = Hi?xibclil—’z,

and proposed to minimize the L.,-norm of the vector of residuals e = (eq, e, ... )T:

Problem 6.18.

minimize |le||_ = max; [[Fx + billy
o c, x+d;

subjectto ¢, x+d; > 0.
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max(f;)

Figure 6.3: The point-wise maximum of a set of quasi-convex functions is quasi-convex.

Since the individual residuals e;(x) are not convex functions in x on the feasible region,
Problem 6.18 is not a convex optimization problem, however, it is a quasi-convex problem.
By introducing an additional variable ~y, the problem can be transformed into the following
equivalent form:

Problem 6.19.
minimize -y
subjectto ||F;x + by, — v(c/x +d;) <0, for Vi ,
7> 0.

Problem 6.19 still isn’t a convex problem, however once 7 is fixed to a non-negative value,
it reduces to a second-order cone problem, which is a type of convex optimization problem
[18]. The authors of [85] employed a bisection scheme to solve Problem 6.19: for a fixed
value e > 0, the SOCP feasibility problem is solved. If the SOCP problem is feasible for
Yeest> then the minimum value of v must be less than 7.y, otherwise, it must be greater. Using
this framework, the authors solved several problems such as triangulation, 2D homography
estimation, camera resectioning, and the multiview structure-from-motion problem, assum-
ing known rotations. Independently, a similar framework for quasi-convex problems was
presented in [90].

6.2.3 Branch-and-Bound

The method [85] is not applicable to problems involving rotations since such problems are
no longer quasi-convex. Branch-and-bound algorithms have been recently used with success
to overcome this drawback.

Branch-and-bound algorithms are methods for global optimization of non-convex prob-
lems. They maintain a provable lower and upper bounds on the globally optimal objective
value and terminate with a certificate proving that the solution is within € > 0 of the global
optimum, for arbitrarily small e. The practical applicability of the algorithm depends on
whether one is able to cheaply compute such bounding functions and to reasonably bound
the parameter space.
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Let us consider f: R™ — R over a rectangle Q;,;; € R™ with f* being the minimum,

f*= min f(x).

XEQinit

For a rectangle () C @, we define

cI)rnin<62) = I)PEIS f(X)

Now, let 1,(Q), Py (Q) be functions that compute lower and upper bounds for ®,,;,(Q),

Pp(Q) < Prin(Q) < Pup(Q).

For the algorithm to converge, the functions ®1,(Q), Pu»(()) must become tighter as the
rectangle () shrinks to a point,

Ve > 046 > OVQ g Qinit: SiZG(Q) § 0 — q>ub(Q) — qle(Q) S €.

The algorithm recursively divides Qi into smaller rectangles until it finds ()*, such that
Pup(QF) — Pin(QF) < e.

This general method was used in [113, 87] to solve the Ls-norm multiview triangulation
problem and the uncalibrated camera resection problem.

In [69] Hartley and Kahl presented a method for global optimization through rotation
space search. They focused on the absolute and relative camera pose problems and gave
optimal solutions under the L.,-norm. Both of these problems require optimization over
translation as well as rotation. The authors used the branch-and-bound approach and for-
mulated the problems so that the the translation is not included in the branch-and-bound
parameter search. They chose the angle-axis representation of rotation for which the whole
space can be contained by a cube C' = [—, 7r]3. Parameter space C' is then subdivided in
the branch-and-bound algorithm. A lower bound function ®y,(C') is given such that it is the
lower bound for the reprojection errors that can be attained for every rotation in C' given
the optimal translation. It is formulated in the form of SOCP feasibility problem based on
the similar argumentation as in [85]. Resulting rotation and translation are thus optimal in
L -norm.

A recent work by Choi et al. [36] further extended this approach by explicitly formulating
the cost function based on pixel distance instead of the angular distance and by including the
focal length as a variable in addition to the pose.

6.2.4 Algebraic Methods

Solving systems of polynomial equations is a classical problem with abundance of solution
methods. One of the possible taxonomies of the solution strategies is into numerical and
algebraic methods and it is the latter that are currently receiving the most attention in the
computer vision community.

The idea behind the algebraic methods is to eliminate variables from the system and re-
duce the original problem to a problem of finding roots of univariate polynomials. The main
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representatives of the algebraic methods are resultant methods and Grobner basis methods.
An overview of classical symbolic methods can be found in [88, 41].

The resultant methods are based on the theory of determinants and form the basis of the
classical elimination theory. They were originally used to test whether a system of polyno-
mial equations has a common factor, however, they can be used to find its solution as well.
The idea behind the resultant methods is to linearize the original problem by construction
a system of n independent polynomial equations, where 7 is the number of monomials in
the original problem. An example of a resultant is the Sylvester determinant defined for two
univariate polynomials. In [115], Macaulay showed the construction of multivariate resul-
tants. Another examples of resultants are Bezout’s resultants [47], Dixon’s resultants [89],
and hidden variable resultants [42]. In the method of hidden variable resultants one or more
variables are considered as constants and to eliminate other variables from the system. This
method was used by Li to solve the five-point problem [103] and the six-point two-view
focal-length problem [102].

Whereas the resultant method is based on the linearization of the original problem, the
second class of algebraic methods—the Grobner basis methods—is based on polynomial
ideal theory and multivariate polynomial division. The Grobner basis is a base of the same
ideal as is the set of original polynomial equations, i.e., the solutions of the set of polynomial
equations forming the Grobner basis are the same as the solutions of the original polynomial
system. The main difference is the agreeable fact that the Grobner basis has the nice property
of being easily solvable. This reduces the problem of solving a system of polynomial equa-
tions to the problem of transforming the system into a Grobner basis. The theory of Grobner
bases was introduced by Bruno Buchberger [26]. He was also the first to provide an algo-
rithm for computing these bases based on S-polynomials and polynomial division [41, 42].
However, in many situations the standard Buchberger’s algorithm is prohibitively time and
space consuming. This led to the development of several improvements [57, 62, 58, 31]. A
well known algorithm that improves not only on the S-pair selection, but also on the mono-
mial reduction, is the F4 algorithm by Faugere [S1]. Another algorithm by the same author
called F5 [52] applies a reduction strategy that removes S-polynomials that would reduce to
zZero.

The algebraic methods of solving systems of polynomial equations were successfully
applied in computer vision, namely in the field of camera calibration. In [179], the method
of Macaulay’s resultant was used to solve the problem of estimating the absolute pose of a
camera with unknown focal length from four 2D-to-3D correspondences and the problem of
estimating the absolute pose of a camera with unknown focal length and unknown principal
point from five 2D-to-3D correspondences. The method of hidden variables resultants was
used by Li to solve the problems of estimating relative camera pose from five 2D-to-2D corre-
spondences [103] and from six 2D-to-2D correspondences and unknown focal length [102].

A specific property of many polynomial problems in geometrical computer vision is the
fact that these problem need to be solved many times, for example in a RANSAC loop,
and that the overall structure of the polynomials does not change, only their coefficients
do. This led to creation of specific polynomial solvers that are able to solve only prob-
lems with a predetermined polynomial structure, however, they are able to do it very fast.
In [162], Stewénius proposed a method for constructing solvers for polynomial problems
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based on Grobner bases. Based on this method, Stewénius et al. solved the five 2D-to-
2D correspondences problem [164], the six 2D-to-2D correspondences and unknown focal
length problem [166] as well as a few other geometrical problems [61, 163]. Similar ap-
proach has been successfully applied to the absolute pose problems [24, 84], the relative
pose problems [95, 96] and the panorama stitching problems [22, 27]. Also, issues of nu-
merical accuracy [28] and theoretical solvability [132] were addressed.
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Hand Eye Calibration Using
Structure-from-Motion

Research! A mere excuse for idleness; it has never achieved, and will never
achieve any results of the slightest value.

— Benjamin Jowett

This chapter presents a novel method for solving the hand-eye calibration problem. Using
a calibration target is not possible for many applications of hand-eye calibration. In such
situations structure-from-motion (SfM) approach of hand-eye calibration is commonly used
to recover the camera poses up to scaling. The presented method takes the advantage of
recent results in the quasi-convex optimization to recover the correct scale. Further, the
correctly scaled displacement of the hand-eye transformation is recovered solely from the
image correspondences and robot measurements, and it is guaranteed to be globally optimal
with respect to the L.,-norm. The method is experimentally validated using both synthetic
and real world datasets.

7.1 Introduction

The common aspect of most of the hand-eye calibration methods is that they do not work
with the camera measurements directly, but rather with the camera poses derived from them
by other methods. The camera poses are usually estimated by observing a known calibration
target. Since the calibration target has known dimensions, camera poses with correct scale
can be obtained. However, there are many situations where using an accurately manufac-
tured calibration target is not convenient or is not possible at all. Indeed, using a calibration
target in applications such as mobile robotics or endoscopy may be unacceptable due to the
restrictions in limited on-board weight or respectively to the strict sanitary conditions.

In [9], Andreff et al. proposed a method for “target-less” hand-eye calibration based on
the structure-from-motion approach. The authors employed SfM to recover the unknown
camera poses. Since SfM can recover camera poses up to scale only, the work introduced an
explicit scaling factor to the hand-eye calibration equation. A similar approach was presented
in [143], where the scaling factor was included into methods [81] and [44].

In this chapter, we present a modification to the SfTM approach to hand-eye calibration.
First, we estimate the rotational part of the hand-eye calibration separately using any con-
venient method. Next, we use second order cone programming to estimate the translational
part from the original image correspondences and robot measurements. This formulation
does not require the scaling factor to be estimated explicitly, but it can be recovered eas-
ily if needed. Furthermore, the estimated translation is globally optimal with respect to the
reprojection error and the L..,-norm.
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Starting
position

End position

Figure 7.1: A relative movement of the camera—gripper rig.

7.2 Problem Formulation

Let us present the notation used in this chapter. The objective of hand-eye calibration is to

derive the transformation
X — < g‘§ tf ) , (7.1)

where rotation Ry € SO(3) and tx € R are relating the coordinate frames of the gripper
and the camera, see Section 5.1. This can be done by manipulating the gripper into two or
more general positions and observing a scene from different camera viewpoints. In the rest
of this chapter we will assume that the internal calibration of the camera is known and that
the camera measurements are unit vectors representing the directions from the centers of the
cameras to the respective 3D points.

Now, let’s suppose that the gripper has been manipulated into n relative movements with
the camera measuring m correspondences u;; <+ v;;, 7 = 1,...,m for every movement
t = 1,...,n. The restriction for the equal number of correspondences m for every move-
ment is used here just to simplify the notation and can be easily removed by adding another
level of indexing. Let B; denote the transformation from the coordinate frame of the gripper
in its starting position to the coordinate system of the gripper’s end position. Transforma-
tions B; can be obtained from the robot’s positioning software and are thus considered to
be known (Section 5.3.2). Let A; denote the relative camera pose transformations. Camera
poses with correct scale can be determined by camera calibration with a known calibration
target (Section 4.3), or—up to scaling—using SfM approach (Section 4.7). As we known
from Section 5.1, transformations A;,B; and X are connected by the following relation, see
Figure 7.1:

A;X = XB,. (7.2)

This equation can be easily decomposed into rotational and translational parts

R’Ai R’X = R’XR'BZ'7 (7'3)
RAitX + StAi = thBi + tx, (74)
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where Ry, R, € SO(3), t,,, ts, € R? capture the respective rotations and translations. If
both t,, and tg, were measured using the same unit, Equation 7.4 would hold for scaling
factor s = 1. Note that Equation 7.3 can be solved for Ry regardless of the value of s.

7.3 Second order Cone Programming

It was observed in [85] that various problems from multiview geometry can be written in the
min-max form of Problem 6.18:

: [|Fix + b;ll,
min max —————=

subject to ¢, x +d; > 0,
x B C;rX—l—dl J 7 1

where x is the vector of unknowns to minimize over, ¢ is the number of measurements, F;
matrices, and b;, cZ-T vectors, all of compatible dimensions. If we consider the individual
functions ||F;x + b;||, / (¢/x + d;) as the components of a vector, Problem 6.18 may be
thought of as L.,-norm minimization of this vector. Problem 6.18 can also be formulated in
the following, more convenient, form (Problem 6.19):

minimize -y

subject to  [|F;x + by|[, — v (¢/x+d;) <0
Note that because each of the constraints is convex and the objective function is linear, Prob-

lem 6.19 has a unique solution.
The key observation in [85] is that since for a fixed v > 0 the constraint

IFix +bill, = 7 (¢/x+d;) <0

is a second-order cone constraint, we can formulate the following second-order cone pro-
gramming (SOCP) feasibility problem

Problem 7.1 (SOCP feasibility test).

Given vy
does there exist x
subject to  ||Fix + by, — v (¢/x+d;) <0
for Vi?

and to solve the original Problem 6.18 we can employ a bisection scheme for v > 0 and
evaluate the feasibility test 7.1 repeatedly for fixed values of .

Further, it was also observed in [85] that angular reprojection error can be minimized
using this approach. With known internal camera calibration, image measurements may be
taken to represent unit direction vectors in space. Given a correspondence u <+ v, u, v € R?
and assuming the angle /(u, v) is positive and smaller than 7 /2, the reprojection error can
be represented as
sin Z(u,v) | [l VH2

cosZ(u,v)  u'v

tan (Z(u,v)) =

: (7.5)

where matrix notation [u],, v represents the cross-product u x v.
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7.4 Feasibility Test

As we can see from Equation 7.2, the relative camera pose for the i-th relative rig movement
can be expressed in robot measurements, rotation Ry, and translation ty as

o =1 _ RAi StAi
A, = XBX _<0T M)

Ry, = RxRg,Ry, (7.6)
StA. = (I - RxRBZR;(r) tX -+ thBi‘
In was observed in [85, 69] that knowing a relative camera rotation R, correspondences
u; <> v;,7 = 1,...,m and error bound -, the bisection scheme can be used to solve for
relative camera translation t using the following feasibility problem formulation:

Problem 7.2 (Relative camera pose feasibility test).

Given R,y
do there exist t,Y;
subjectto  Z(u;,Y;) <~
Z(v;,RY;+1t) <~v
for 7=1,...,m?

Notice that since the pose transformation cannot be applied directly onto the correspon-
dences, scene points Y; € R? also need to be recovered.

In order to apply the bisection framework [85] to hand-eye calibration, we will use Prob-
lem 7.2 to formulate a related feasibility test with tx as the unknown. By substituting R = Ry,
and t = st,, from Equation 7.6 and repeating for all relative rig movements ¢ = 1,...,n we
get

Problem 7.3 (Hand-eye calibration feasibility test).

Given Rg,7y
do there exist tx, Y;;
subject to £ (w5, Y;;) <7
Z (vij, RxRe,Ry Y+
(I — RxRs,Ry ) tx + Ryts,) <~
for 1=1,...,n, 7=1,...,m?

Again, as a “by-product” of the problem formulation, scene points Y;; € R? are recovered.
Using the angular error formulation from Equation 7.5 we can formulate equivalent con-
straints so that they are linear in the optimized variables tyx and Y;;, making Problem 7.3 an
SOCEP feasibility problem solvable by any SOCP solver. Indeed, we can write the constraints
of the first type as

Z(w;,Yi) <7

Jui; < Y,

— . 7.7
oY, an (7) (1.7)

-~ H[uij]x YinQ — tan (’)/) u;‘erij <0.
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Equation 7.7 can be written in the formalism of Section 7.3 as

Fij x b;
r % ~\~ - ~ —_—N—
0 0 0 0 0 0 tx 0
0 [ull]x 0 0 0 0 Y11 0
0 0 0 [ui]’] « 0 0 YZ] + 0
0 0 0 0 0 [Wnml, Y.m 0 )
tx
Y
T :
—tan(y)| (0 O --- uj --- 0) Y, + 0 <0
YTL’H’L
N - A\ - 4 -~
cl. X dij
ij
Analogously, for the second type of constraints we get
Z(Vij R, Yij + sta;) <y
v;i X (R Yl + sty,
H J ( A; J Az) 2 Stan (7) (78)

V;; (RAzYlj + StAi)
= H ([Vij]x RXRglR;{rY” + [Vij]x (I — RXRBZR;(—) tx) + [Vij]x thBi ||2 —
tan (v) ((v,;BxRe,Ry Yi; + v, (I — RxBg,Ry ) tx) + v, Ryts,) < 0.

Again, Equation 7.8 can we written in the formalism of Section 7.3 as

Fii x b;;
— ~ < P A .
vij], (I —RxRa,Ry) O O 0 0 0 o 5
0 0 0 0 0 Y, 0
. . + :
0 0 O [vi] RxRaRy O O Y [vij], Rxts,
0 0 0 0 0 Yom 0 2
tx
Yll
—tan(y) [ (v (I—RxBg,Ry) 0 --- v/ RxRgRy -+ 0) Y] + v Rats, [ <0
Ynm
[\ - N\ - 7 s’
cl. X dij
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As can be observed from the formulation of Problem 7.3, since the actual values of transla-
tions t,, are not used, the scaling factor s does not need to be known. The correct scale of
ty is derived solely from tg,. However, the value of s can be computed using Equation 7.6 if
needed.

7.5 Bisection

In order to use the feasibility test 7.3 for the estimation of the translation ty, we employ a
simple bisection scheme. In every iteration, the value of + is fixed and the feasibility test 7.3
is solved. The algorithm starts with v = tan(mw/4) and the iteration loop ends once the
difference of the lower and upper bounds 7w, Yhignh reaches a prescribed accuracy e.

Algorithm 1 SfM Hand-Eye Bisection

Require: Ry,e > 0
Yow +~0
Vhigh < 2
while (Vigh — Yiow) > € do
Y (fyhigh + 710W)/2
(tx,feasible) < Feasibility test 7.3
if feasible then
Yhigh < 7Y
else
Yiow — Y
end if
end while
return ty

7.6 SfM Algorithm for Hand-Eye Calibration

Finally, we can formulate the complete algorithm for the hand-eye calibration using our StM
approach. Since both the SfM method and the method for Ry estimation can be changed at
the user’s convenience, this formulation can be seen as a meta-algorithm.

Algorithm 2 SfM Hand-Eye Calibration

1. Estimate the relative camera rotations Ry, using a convenient SfM method, e.g., method
[153].

2. Estimate Ry using Ry, and Rg_, e.g., using method [134].

3. Use Algorithm 1 to find the optimal ty using Rx and required precision e.




7.7. Experimental Results

10 250
=
E ol :
B 2200¢
O
B 10°l £
< =)
E 8 150}
z 107t §)
2 S 100
= o > r
ué 107 §
o
s 10° — s . t 50— — — — »
10° 10° 10 10° 10 10° 10° 10 107 10

prescribed accuracy e prescribed accuracy €

(a) (b)

Figure 7.2: ACCURACY experiment. (a) The mean error of the estimated ty for the various
values of € plotted in loglog scale together with the variance over the twenty constructed
tasks. (b) The mean convergence time of Algorithm 1 for the various values of € plotted in
semilogx scale together with the indicated variance.

7.7 Experimental Results

In this section, the proposed Algorithm 2 is validated both by synthetic and real data experi-
ments. We used method [134] to obtain Ry from Ry, and Rg, and SeDuMi [168] as the SOCP
solver. All the reported times were achieved using a standard Intel Core 2 based consumer
PC running 64-bit Linux and MATLAB 7.6.

7.7.1 Synthetic-data Experiment

A synthetic scene consisting of 100 3D points randomly generated into a ball of radius
1000 mm and 10 absolute camera poses set such that the cameras faced approximately the
center of the ball were created. The generated 3D points were measured in the respective
cameras giving raise to correspondences u;; <+ v;;. Two experiments were conducted with
the generated scene. First, the accuracy and efficiency of Algorithm 1 was studied for differ-
ent values of the prescribed accuracy e. Second, the performance of Algorithm 2 was tested
on noised correspondences.

ACCURACY experiment Twenty random transformations X were generated and the tasks
composed of the known Ry, the known correspondences u;; <+ v;;, and 9 relative movements
B;, computed from the known absolute camera poses and the generated transformations, were
constructed for each of them. These tasks were solved for 5 different values of € ranging from
107° to 10~% with equal steps on a logarithmic scale and the output was plotted to Figure 7.2.

The results show that not only the optimized maximum angular reprojection error but also
the error of the estimated tx, measured as the distance between the known and the estimated
value of ty, decreases rapidly with decreasing e. On the other hand, the convergence time
increases because more iterations are needed for the bisection.
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Figure 7.3: NOISE experiment. (a) The maximum angular reprojection error for the various
values of o2 recovered by Algorithm 2 with e = 107>, Blue: Mean maximum error for the
known Ry together with the variance over the twenty tasks. Red: Mean maximum error for
Rx computed by [134] from R,, from the noised correspondences u;; <+ v;; together with the
indicated variance. (b) The error of the estimated tx for the various values of 02, see (a) for
the description of the colors.

NOISE experiment The same twenty random transformations X and the corresponding
relative movements B; were used in the second experiment, where € was fixed to 10~ but
the measurements u;; <> v;; were corrupted with Gaussian noise in the angular domain.
11 noise levels were used, 0% € (0,107°) in 107" steps.

The experiment consisted of two parts, the first one testing the stability of the computa-
tion of tyx for known Ry by assigning relative camera rotations Ry, to the known values while
the latter one testing the stability of the whole proposed algorithm. Relative camera rotations
were computed by decomposing the essential matrices E,,, describing relative camera poses
up to scaling, robustly computed from the noised correspondences by RANSAC [53] using
the 5-point minimal relative pose problems for calibrated cameras [130] in the latter part.

Figure 7.3a shows the relation of the maximum angular reprojection error achieved by
Algorithm 2 for the various values of ¢ with ¢ = 107> both for the known and for the
computed Rx. The relation of the error of the estimated tx for the various o2 values for both
parts of the test can be seen in Figure 7.3b. As the mean length of the generated tx was
259.1 mm in our experiment, the error of the estimation stayed under 5% even for high noise
levels. The convergence times of the algorithm were around 3 minutes for the noise-free task
and increasing towards 4 minutes for the tasks using noised correspondences.

7.7.2 Real-data Experiment

A Mitsubishi MELFA-RV-6S serial manipulator with a Nikon D3000 digital SLR camera and
an AF-S DX NIKKOR 18-55mm VR lens (set to 55 mm) was used to acquire data for the
experiment, see Figure 7.4a. The robot was instructed to move the gripper along the surface
of a sphere of radius approximately 700 mm centered in the middle of the scene objects. The
position of the gripper was adjusted using the yaw and pitch angles measured from the center
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Figure 7.4: Real-data experiment. (a) A Mitsubishi MELFA-RV-6S serial manipulator used
to acquire the data for the experiment. A Nikon D3000 digital SLR camera mounted on the
gripper using a self-made mechanical reduction. (b) The 3D model output from Bundler
containing 10,680 triangulated 3D points and the poses of all the ten cameras.

of the sphere to reach ten different locations with five different yaw angles for each of the
two possible pitch angles. The gripper was set to face the center of the sphere up to a small
additive noise. The camera was set to manual mode and images of 3,872 x 2,592 pixels were
taken using a remote trigger.

Two image sets for two different scenes were acquired—a scene with a calibration target
used for obtaining internal camera calibration and a scene with general objects to show the
contribution of the proposed method over the hand-eye calibration approaches that rely on a
known calibration target. The calibration matrix together with two parameters of radial dis-
tortion were computed using [118] and images were radially undistorted prior being further
used in order to improve SfM results. Knowing the focal length of the camera, the angular
resolution of the acquired images could be computed as 1 pixel ~ 1.15x 10~ rad.

CALIBRATION scene Scene CALIBRATION, see Figure 7.5a—c, was primarily used for
internal camera calibration but since the calibration procedure outputs the u;; <> v;; cor-
respondences as its by-product, we used the scene for a hand-eye calibration experiment as
well. The approach used for the NOISE experiment with the synthetic data was also used to
obtain relative camera rotations R,, from the correspondences. Relative robot rotations Rg,
and translations tp, were obtained from the known gripper-to-base transformations B!.

A task composed of 9 motions, which were the relative motions between gripper posi-
tions 1-2, 2-3, ..., 9-10, and the respective correspondences u;; <+ v;;, totaling 1,583 en-
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Figure 7.5: Sample images of our scenes taken by the camera mounted on the gripper of the
robot. (a—c) Scene CALIBRATION. (d-f) Scene GENERAL.

tries was constructed. Algorithm 1 converged in 596 seconds for ¢ = 10~ giving a solution
with the maximum angular error 7.3 x 10~*rad. The computed rotation Ry was close to the
expected, rotation along the z-axis by —= /2, and the obtained translation from the gripper
to the camera center, —R, tx = (83.5,—19.3,130.6) ", was close to the result of the method
of Tsai [183], (83.9,—17.8,133.8) ", and corresponded with a rough physical measurement
on the mechanical reduction, (90, —20, 130) ", showing the validity of the obtained results.

GENERAL scene Scene GENERAL, see Figure 7.5d—f, was acquired in order to show the
performance of the method in the real-world conditions. SIFT [111] image features and
Bundler [153]—a state-of-the-art open source SfM implementation—were used to obtain
the camera poses. Camera focal length from the internal camera calibration was stored as
EXIF information in the individual images and Bundler was instructed to preserve the focal
lengths read from EXIF.

The resulting 3D model output from Bundler contained 10,680 triangulated points and
the poses of all the ten cameras, see Figure 7.4b. By examining the 3D point cloud,28 3D
points were manually labeled as erroneous and the projections of these points were excluded
from the correspondences. This procedure could have been skipped if an SfM method trian-
gulating 3D points from camera triplets instead of pairs was used, since the error rate of such
methods is close to zero. Relative camera rotations R, were computed from the camera pro-
jection matrices P,, output from Bundler and relative robot rotations Rg, and translations tg,
were again obtained from the known gripper-to-base transformations Tg,. Due to a high num-
ber of correspondences, only every tenth member of the set of correspondences u;; <+ v;;
was used for computation giving 1,929 entries in total for the task composed of the same
9 motions as in the previous experiment.
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Algorithm 1 converged in 1,067 seconds for ¢ = 107 giving a solution with the maxi-
mum angular error 6.1 x 10~* rad. Again, the computed rotation Ry was close to the expected
one and the obtained translation from the gripper to the camera center, (97.4, —14.0,129.9)T,
corresponded with the rough physical measurement. We suspect that the difference in the x
and y coordinates was caused by the fact that Bundler does not optimize for the position of
the principal point and therefore a simplified camera calibration was used, which led to a
slightly biased estimation of Ry, .
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Hand-Eye Calibration Using
Brand-and-Bound

The solution of every problem is another problem.

— Johann Wolfgang von Goethe

In the previous chapter, we proposed a method for optimal estimation of the translational
part from camera measurement. However, this method still requires prior knowledge of the
relative camera rotations and solves for rotation separately. In work by Seo et al. [146], the
rotational part is solved optimally but all the translations are assumed to be zero.

In this chapter, we solve for rotation and translation simultaneously by minimizing an
objective function based on the epipolar constraint without any prior knowledge of the ex-
ternal camera calibration. Our method is based on branch-and-bound search over the space
of rotations presented in [69] and is guaranteed to converge to the optimum with respect to
L -norm.

8.1 Problem Formulation

Again, Let us assume a camera that has been rigidly mounted on a robot’s gripper and we
want to determine the homogeneous transformation

[ Ry ty
(o),

such that rotation Ry € SO(3) C R3*3 and translation ty € R? transform point coordinates
from the coordinate system of the gripper to the coordinate system of the camera.

Now, let us suppose that the gripper has been manipulated into n + 1 positions resulting
into n relative robot and camera motions B; and A;, 2 = 1,...,n. These motions lead to the
well known hand-eye system

Figure 8.1: A gripper-camera rig motion.
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[Vij]xRa, 0ij
[Vij] xRa, Wij R
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Figure 8.2: (a) Geometric interpretation of the conic constraint with parameter € imposed by the
correspondence u;; <+ v;; on the position of t,,. The cyan vectors show examples of the admissible
configurations of t,,. (b) 3D view of the same.

see Figure 8.1. This system can be further decomposed to

RAZ' R‘X = RXRB7;7
Ry, tx +ts, = Rxtg, + ty,

where Ry, Rs, € SO(3) and t,,, ts, € R3. By substituting t; = —R, tx and isolating R,, and
t,,, respectively, we get

Ra, RxRs,Ry ,
tAi = Ry ((RBi - I) t;( + th‘) :
Further, suppose that the camera measured m correspondences u;; <+ v;5, j = 1,...,m in

the ¢-th motion. Again, we will assume that the camera’s internal calibration is known [66]
and that u;;, v;; € R? are unit vectors representing the directions to scene points from the re-
spective camera positions. We will also assume that the correspondences satisfy the cheiral-
ity condition [66], i.e., that u;;, v;; correspond to scene points Y;; € R? that lie in front of
the cameras.

Let us consider an elementary fact from the geometry of stereo vision known as the
epipolar constraint [66]. It states that vectors u;; and v;; form a correspondence for camera
motion A;, if t,, lies in the plane containing the two vectors. This fact is commonly expressed
in the form

ty, (Vij X (Ra,u;)) = 0.

Since we will work here with angular measurements, it is convenient to equivalently rephrase
the constraint as -
eij = Z([Vig] Rasig t;) — 5 = 0.
In case of noisy measurements, however, the epipolar constraint will not hold, i.e., e;;
won’t generally be zeros, and the values of |e;;| will encode the angular deviations of the esti-

mated camera translation t,, from the epipolar planes defined by correspondences u;; <+ v;;.
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This leads us to defining an e-epipolar constraint. The correspondences u;; <+ v;; and ca-
mera translation t,, satisfy the e-epipolar constraint with parameter € > 0, iff |e;;| < e. This
constraint can be equivalently expressed as

T
§ — € S l([VZ’j]X RAiuijJtAi> S

bo | 3

+ €,

i.e., t,, has to lie outside of the cone determined by axis [V,-j] . Ra,u;; and aperture m — 2,
see Figure 8.2. Note here that as a complement of a double cone e-epipolar constraint is not
a convex constraint. Let us rewrite the left inequality as

m m
5 €= LlVigl Rawig b)) & 5 e 2 L(= [Vigl Ra, tay)-

Now, we can formulate hand-eye calibration as the minimization of the e-epipolar constraint,

i.e., as L..-norm minimization of the vector of residuals € = (|e11], ..., |€nml):

Problem 8.1.

(Ry, ty) = arg min max |e;;| = arg min |||
Ry, tg 1] Rx,ty

The optimal residual error can be expressed as €., =

e(Ry, th) HOO After solving Problem
8.1, the optimal translation is determined as ty = —Ryt’y . This substitution may seem
superfluous, but it will allow us to prove Lemma 8.5.

In order to solve Problem 8.1 we employ branch-and-bound optimization to search over
the space of all rotations presented in [69]. The algorithm is based on the angle-axis pa-
rameterization of rotations, see Section 3.42. Leta« € B, = {B: B e R* A ||8| < 7},
then o represents the rotation about axis a/ ||| by angle ||c||. The corresponding matrix
parametrization R € SO(3) can be obtained as R = exp [a],,.. The inverse map is given by
la],, = logR.

For Ry, Ry € SO(3) we define the distance d,(Ry,Rs) as the angle 6 of the rotation R Ry,
i.e.,, [a], = log(R{Ry), such that 0 < 6 = ||| < . In the following, we will use the
notation “R € D, D C B.” to mean

R € {R' €S0(3): 3a € Dsuch thatR' = exp[a], } .

8.2 Branch and Bound

Let us consider Problem 8.1 restricted to D, where D, C B, is a cubic block in the rotation
space with side length 20 (Figure 8.3a) :

Problem 8.2.

(Ry, ty) = arg min max |e;;| .
RxeDg,t),( ¥

The schematic branch-and-bound algorithm for solving Problem 8.1 is now as follows:
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Figure 8.3: Branch-and-bound over the space of rotations.

1. Obtain an initial estimate of €,,;, for the optimal residual error of Problem 8.1.

2. Divide up the space of rotations into cubic subblocks D? (Figure 8.3b), s = 1,...,8
and repeat the following steps:

(a) For each block D; test whether there exists a solution to Problem 8.2 restricted
on D? having the residual error smaller than €,;,,. This test can be formulated as
a feasibility test, see Section 8.3.

(b) If the answer to the test is no, throw the block away (Figure 8.3c).

(c) Otherwise, evaluate the residual error € for some rotation from block D?. If
€ < €min then update the value €,,;, < €. Subdivide D into eight cubic sub-
blocks and continue to (a) (Figure 8.3d).

The iteration loop is terminated when the half-size of the blocks o reaches a sufficiently
small size opiy.

Note that although Problem 8.1 has 6 degrees of freedom, we search only over the three
dimensional space of rotations. By limiting rotations in angle-axis parametrization to D, we
are able to decide the feasibility test for Problem 8.2 effectively and optimally using LP. The
LP solution also provides t; needed to compute the residual error in step (c) and thus there
is no need to search over the space of translations.

8.3 Feasibility Test

In this section the feasibility test based on Problem 8.2 is formulated. First, let us introduce
a few more technical shorthands:

RAi = RXR‘BZ‘R)—(F’
EAi = RX ((R’Bi - I) t;( + tBi) )
Ry, = RxRgRy,

th, = Rx ((Bg, — I)tx +t5,).
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—c; Cik

(a) (b)

—Cik
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Figure 8.4: (a) If the apertures o, oy, are sufficiently large, cones C;; and Cj, intersect in up to
four lines 1,17, 12, 115, (b) The linear constraints imposed by correspondences uj; < vij,
u;, < v; are determined by the normals nzljk, n?j 1 nf’jk, nfjk. (c) Since Inequality 8.2 holds, the
nappes C{;, C;,g intersect in lijk and —I?jk. However, Inequality 8.3 does not hold and the cones

Cij, Cix do not form the pyramid P;j;. (d) The projection of the pyramid F;j; into the plane 7;

determined the boundary vectors b}j k> b?j . (2D projection of the situation in (b)).

8.3.1 Feasibility Test Formulation

The following is Problem 8.2 rephrased as a feasibility test:

Problem 8.3.
Given D, €min
do there exist Rx € D,, ty
such that Z(i [Vij]X RAiuij, tAl) S g + €min
for 1=1,...,n, j=1,...,m?

Problem 8.3 is a non-convex problem—its feasible set is an intersection of non-convex e-
epipolar constraints—and as such is hard to solve. In order to do so, we start by bringing
down the number of variables. We formulate a relaxation of Problem 8.3 where the rotation
is fixed. Let Ry be the rotation represented by the center of cube D, and let 3; € B, such
that exp [3;],, = Ra,.

K3
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Problem 8.4.

Given D, €min, Rx
does there exist ty
such that  Z(=£ [vy;], Ra, w5, ta,) < 5 + €min + 75
for 1=1,...,n, 7=1,...,m
such that /(4vy;, Ryuy;) > 2|8l sin(v/30/2) ?

Lemma 8.5 describes the relation between Problems 8.3 and 8.4 and its proof provides
the exact formulations of bounds ;;.

Lemma 8.5 (Relation between Problems 8.3 and 8.4). If Problem 8.3 is feasible, so is
Problem 8.4. If Problem 8.3 is infeasible, then D, may be split into subdomains D3, of
sufficiently small half-side length o' such that Problem 8.4 is infeasible in every D?,.

Note that Problem 8.4 contains one more set of constraints. These are prerequisites of
Lemma 8.15, see Section 8.6, which in turn is needed for the proof Lemma 8.5. Since this
proof is rather technical, it is deferred to Section 8.6.

Lemma 8.5 justifies the substitution of the hard 6-degrees-of-freedom Problem 8.3 by
3-degrees-of-freedom Problem 8.4 as the feasibility test for branch-and-bound algorithm.
Albeit easier, Problem 8.4 is still a non-convex problem. In the following section we propose
yet another relaxation of Problem 8.3. This time however, the relaxed problem will be convex
and easily decidable by Linear Programming.

8.3.2 Intersecting e-epipolar Constraints

Let once again D, C B, be a cubic block and Ry the rotation represented by the center of the
block. In Problem 8.4, a correspondence u;; <> v;; imposes a e-epipolar constraint on t,,
determined by the cone C;; with axis c;; = [v;;], Ry, u;; and aperture ov;; = 7 —2(€min +7ij)-
Another correspondence u;; <+ v;; from the same ¢-th motion imposes a different e-epipolar
constraint, this time determined by the cone C;;, with axis c;; = [v;], Ra,w;; and aperture
Qi = T — 2(Emin + 72]{))

Now let us consider the mutual configuration of cones C;; and Cj;. If the apertures
a;j, oy, are sufficiently large, the two cones intersect, see Figure 9.5b. Since the cones share
the same apex, they intersect in up to four lines—generatrices of the both cones—lilj s l?j s
1;?’]. i and lfj - These lines form the edges of a pyramid F;;; in which every vector satisfying
both e-epipolar constraints has to lie. The pyramid F;;;, has four faces lying in four planes,

: : : 1 2 3 4
see Figure 8.4b. These planes can be determined by their normals n;;,, n3;,, n?,, and n;;,
as

Nix = [liljk]xlzgk7
n?jk = [l?jk] Xl?jk?
n?jk = [l?jk] Xl?jk?
n;'ljlc = [I?jk] x lz'ljk
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It is easy to see that every vector t,, that satisfies both e-epipolar constrains satisfies all of
the following linear constraints as well

tT zyk’ Z O’
tT zyk’ > Oa (81)
tT zyk’ 2 O’
tyn., > 0.

Note that these constraints are also linear in t5.

On the other hand, if the apertures «;;, o;;, are too small, cones C;; and Cj;, don’t nec-
essarily have to intersect and the e-epipolar constraints cannot be replaced by the linear
ones. Figure 8.4c will help us to determine when exactly such a situation arises. Let
Cl? , CZ] , C , C,;. be the nappes of the cones C;;, C;;, determined by the vectors c”, —Cij,
Ciks —Cik; respectlvely. The nappes C’;; , C+ intersect in two line segments 1} 1 and —13 o AfT
Qj + Qg
— 5
In case of equality of the terms in 8.2 the nappes are tangential and share only one common
geferatnx Analogously, the line segments llj , and —lfj .. are the intersections of the nappes
Cr, O iff

7,]7

Z(Ciﬁ Cik) < (82)

L(cyj,—ca) < W (8.3)
Inequalities 8.2 and 8.3 are thus necessary and sufficient conditions for C;;, Cj; to form the

pyramid F;jj,.

Note that the intersection of cones C;; and Cj;, determines not only the pyramid P, but
also a pyramid P;;; symmetrical to P, with the origin as the point of symmetry. However,
since we assumed that the correspondences satisfy the cheirality condition, only constraints
relevant to one of the pyramids are applicable. In the following we will assume, without loss
of generality, that P,;;, forms the applicable constraints. Formulas for lines 1, , 12, 13 lfj &
can be obtained by using elementary algebra.

Now we can formulate a linear relaxation of Problem 8.4, which in turn is a non-convex
relaxation of Problem 8.3.

Problem 8.6.

ijk> “ijk? “ijk>

Given D, €min, Rx
does there exist ty
such that tT >0, 1:T >0
tT n, >0, tT ng, >0
for z—l .o, j,k—l,...,m
such that é(ﬂzvij, Rauij) > 2|83 sin(v/30/2)
and Inequalities 8.2 and 8.3 hold?

zyk zyk

An analogy to the formulation of Lemma 8.5 holds for Problems 8.4 and 8.6. Its proof
follows from the geometrical construction of the linear constraints as the convex hull of the
e-epipolar constraints.
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8.3.3 Selecting c-epipolar Constraints

It is easy to see that a naive implementation of Problem 8.6 would lead to prohibitively large
linear programs for problems with many correspondences. In this section we show how to re-
duce the number of linear constraints by selecting only few of the available correspondences
based on their relative positions.

Let us consider the ¢-th motion for a cubic block D, C B,. First, let C; be the list of
indexes of correspondences satisfying the assumptions of Lemma 8.15. Now, let us assume,
without loss of generality, that u;; <+ v;;, j € C; is the correspondence with the widest e-
epipolar constraint aperture «;;. In the rest of this section, we will call the j-th constraint the
base constraint. Next, let’s throw away from C; the indexes k standing for correspondences
u;; <> v, which do not intersect with the base constraint, i.e., indexes for which Inequalities
8.2 and 8.3 do not hold. Further, let us sort C; according to the distance of the cones axes
|cich,~k|,k: € C,; in the ascending order. The idea is to test the correspondences in C; that are
“more perpendicular” to the base constraint first, since they are more likely to form a tighter
pyramid P;;;, and thus tighter linear bounds. Also, since the smaller the value |CZT]czk] gets,
the more loose and skewed pyramid F;;, becomes—it is therefore reasonable to test only
first s < |C;| correspondences. In our experiments we set s = 20.

Algorithm 3 SelectEpipolarConstraints (Section 8.3.3)

Require: ¢, C;
feasible < 1,5 < 0,L;, b}, b? < ), j < arg max;, vy,
C; «+ C;\{j}sorted s.t. Vk < |Cy]:[c]jca] < |cficinq]
while (|C;| > 0) A (s < MAX_CONSTRAINTS) do
k < PopFront(C;)
if Z(Cij, :l:Czk:) < (aij + Ozzk)/Q then
(bij, bji) = GetBounds (1, 125, 10, 1y, 1y, m)
if b}, b? = () then
(bi, b) < (b, b7y)
L; < L; U {<Za nzljk>7 <i7 nzzjk>7 <i7 ng’jk% <i> nftjk:>}
else
(bj, b}) « IntersectBounds(b;, b7, b, b, )
if b}, b? = () then
feasible < 0
return {feasible,L;}
else
s+s5+1
L < L; U {<Zv nz‘ljk>7 <7;> n?jk>}
end if
end if
end if
end while

return {feasible,L;}




8.4. The Hand-Eye Calibration Algorithm

The second reason for intersecting all e-epipolar constraints with the base constraints is
that by projecting pyramids P, into the plane m; defined by vectors Ry, u;; and v;;, a sim-
ple test based on 2D feasibility of t,, can be constructed. Let 1';,, 17, 17, 17, € R?
be normalized 2D projections of the edges of the pyramid F;;;, into the plane ;, see Figure
8.4d. It is a trivial observation that the projection of the pyramid F;;; will be bounded by
two vectors b}jk, b?jk that will coincide with two of the projected edges. To decide which
edges will form the boundaries, projections n’ }jk, n’ ?jk € R? of the pyramid’s faces need to
considered as well. Since the face n}, is defined by edges 1, 17, one of the projections
V' U7, forming larger angle with the projection n'j;; will form the boundary. In the case
of the situation in Figure 8.4d, I'lin’}, > 17 n'l, so the b}, coincides with 1'7,. Analo-
gously, we can use n’;;, to decide that b7, coincides with I';;,. Faces nj;, and nj;; cannot
be used in this manner, since their projections to 7; are equally distant from the projection of
the respective edges forming them. Since Pj;;, forms constraints on the position of t,,, it is
easy to see that P;;; forms constraints on the projection t) . From this follows that the inter-
section of all R’jk, k € C; must not be empty for block D, to be feasible. The implication
in the opposite direction does not hold (two projections P}, P/, k, £ € C; can intersect,
even though F;;;, and P;;, do not), so the block can still be infeasible even if the intersection
is not empty. However, this simple pre-test can decide infeasibility for ca. 30% of infeasible
cubes. Practically, the correspondences are processed sequentially in the order given by C;
and a “running intersection” of projections is kept as b}, b?, compared and updated with

every upcoming projection, see Algorithm 3.

8.4 The Hand-Eye Calibration Algorithm

This section sums up the branch-and-bound algorithm for hand-eye calibration into a more
comprehensible pseudo-code form.

First, let us review the hand-eye feasibility test, see Algorithm 4. For every cubic block
D, the algorithm solves Problem 8.6. Due to the quite strict assumptions—Lemma 8.15 and
Inequalities 8.2, 8.3—mnot all correspondences produce linear constraints. Indeed, for a large
block there might be no feasible correspondences at all. Feasibility of such a block cannot be
decided by Problem 8.6 and it has to be declared feasible by default. However, the smaller
the blocks get, the more correspondences can produce linear constraints and Problem 8.6 is
more likely to be decidable.

Further, because Problem 8.6 is a feasibility problem, an LP solver will generally provide
a basic feasible solution that does not minimize the nonlinear objective function ||e|| . In
order to speed up the convergence of the algorithm, we use a feasible solution to Problem
8.6 as an initial estimate for the following non-linear optimization problem:

Probl 7. . =
roblem 8 Given Ry

minimize [le[; = 3, ;(£([Vij], Ra, Wiy, B,) — )2
for i=1,...,n, k=1,...,m
subject to  the initial estimate t.
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Algorithm 4 Feasibility Test

Require: D, e, > 0

Rx < rotation represented by the center of cube D

o < half-side length of D
L+ 0

for ; = 1 to number of motions do

/I Collect feasible correspondences s.t. Lemma 8.15

for j = 1 to number of correspondences do
if Z(j:vij, RAiuZ-j) > 2 ||/61H Sln(\/§0/2) then

C,«—CuU{j}
end if
end for

Il Collect linear constraints

(feasible, L;) < SelectEpipolarConstraints(, C;)

if feasible = 0 then
return feasible
else
L+~ LUL;
end if
end for

if L = () then
feasible <— 1, return feasible
end if

/I Solve Problem 8.6
ty < ty such thatV (i,n) € L: t, n >0
if such a t} does not exist then
feasible <— 0, return feasible
else
feasible < 1
€ < max; [ £([vij], Ra,ijs ta,) — 3
end if

// Solve Problem 8.7

th < ming >, - (Z([vij], Ra,wi, ta,) — 3

€+ max; ; | Z£([vi], Ra,wij, a, (t%)) — 2|
if € < € then € < ¢, t} < t} end if
return {feasible, ¢, Ry, t}}

)2
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Since Problem 8.7 minimizes ||e||,, it does not necessarily have to provide a solution
with better ||e|| . However, we observe that it helps to accelerate the overall convergence.

Finally, let us conclude with the branch-and-bound part of the algorithm, see Algorithm
5. The algorithm is initialized by the cubic block D, = (—7, 7). Such a block is redundant
since B, C (—m, m)?, but this fact does not impair the algorithm, since blocks D, N B, = ()
can be easily detected and thrown away. Feasible blocks are divided into 8 cubic subblocks
and stored in a queue QQ, making the algorithm breadth-first search. The search is terminated
when the size of the blocks ¢ reaches a sufficiently small size o ,,.

The proposed algorithm is easily parallelizable by running the feasibility test in multiple
threads consuming a mutual queue Q. Note that the parallel processing of the cubes can
theoretically result in accepting some cubes that would be rejected in single thread mode,
making Q larger. However, the experiments show that this is not a practical issue and that
the computation time is linear in the number of threads.

Algorithm 5 Branch and Bound
Require: initial estimate of €,,;,, stopping crit. oy,
D, + (—m,7)3,0 < 27
PushBack(Q, D)
while o > o0,,;, do
D < PopFront(Q), o < half-side length of D
{feasible, €, Ry, t}} + FeasibilityTest(D, €y )
if feasible = true then
if € < €, then
Ry < Ry
tl «— t)
€min < €
end if
PushBack(Q, SubdivideBlock(D))
end if
end while
ty < —Rxt}
return {Ry, tx, €min }

8.5 Experimental Results

Next, the performance of the proposed algorithm is evaluated using both synthetically gen-
erated and real world data measurements. The values of the initial estimate ¢,,;, and the
stopping criterion 20,,;, were set to 0.02 and 0.001 respectively. We use GLPK [4] to solve
Problem 8.6 and levmar [110] to solve nonlinear Problem 8.7. All the reported times were
achieved using a C++ implementation on a 32 x2.6 GHz AMD Opteron based computer run-
ning 64-bit Linux. The source code is available at http://cmp.felk.cvut.cz/~hellejl/bbhec/.
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8.5.1 Experiment with Synthetic Data

Ball Experiment. A synthetic scene consisting of 100 3D points was generated into a ball
of radius 1,000 mm. 10 absolute camera poses were set up so that (i) the centers of the
cameras were outside the ball but close to its “surface”, (i1) the centers were positioned
so that the offsets of the camera motions would be ~500 mm and (iii) the cameras faced
approximately the center of the ball. In order to simulate the effect of decreasing field of
view (FOV), 7 progressively smaller balls were generated inside the initial ball so that the
balls shared the centers and the volume of the newly created ball was half the volume of the
previous ball. This defined 8 FOV levels, namely 119°, 85°, 66°, 52°, 40°, 31°, 24°, and
19°. Additional 3D points were generated inside each of the smaller balls in order to have
exactly 100 3D points at each FOV level measured in the respective cameras giving raise to
correspondences u;; < v;;.

Further, fifty random transformations X were generated and the optimization tasks com-
posed of the known correspondences u;; <+ v;; and 9 motions B,—computed from the
known absolute camera poses and the generated X—were constructed for each of the 8 FOV
levels. Finally, the correspondences were corrupted with Gaussian noise in the angular do-
main using 11 levels, o € (0, 107%) in 10~* steps resulting to 88 tasks per transformation.

The results of the experiment are shown in Figures 8.5a—e. Note that the median of the
measured errors over all correspondences—denoted by red horizontal lines in Figure 8.5a—
is approximately one order of magnitude smaller than the maximum residual error. The ac-
tual errors of the calibration, i.e., the Euclidean distance between the 3D points transformed
to the gripper’s coordinate systems using ground truth X and the 3D points transformed to the
gripper’s coordinate systems using the estimated X, are higher for narrow FOV. The reason is
that the wide FOV situations contain correspondences that produce tighter linear bounds and
thus result in higher accuracy. Considering the computational times, the solutions are found
faster for wide FOV as the correspondences of narrow FOV camera pairs do not generate
enough linear constraints for large blocks and more blocks need to be subdivided.

Planar Experiment. In order to compare our method to the previously proposed ones, we
generated a planar calibration device consisting of a rectangular 11 x 11 grid with known 3D
position.The camera poses were set up so that camera centers were ~1,000 mm away from
the calibration device and the correspondences were corrupted by the same amount of Gaus-
sian noise as in Ball experiment. This time we generated twenty random transformations X
for 3 standard FOV levels 64°, 47° and 35° (by varying calibration device size). In order to
simulate the manufacturing and structural errors introduced while using a calibration device
we also corrupted the 3D positions of the grid points with systematic errors. We multiplied
the grid by 1.005 along the y-axis and deformed it using the function sin x cos y along the z-
axis, again, so as not to differ by more that 5% of the grid’s side length from the original, see
Figure 8.6b. Since most of the pre-existing methods require also the additional knowledge
of the external camera poses, these were recovered using EPnP algorithm [101]. Figure 8.6a
shows the results of the comparison using the same Euclidean distance measure as in Ball
experiment. The labels “Tsai89”, “Shiu89”, “Park94”, “Dan98”, “Heller11”, and “Zhaol1”
stand for methods [183, 149, 134, 44, 75], and [191], respectively. Label “Heller12” stands
for the proposed method.
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Figure 8.5: Ball experiment. (a) The maximum residual error of the obtained solutions for the vari-
ous values of o (red line) and the distribution of the measured errors over all correspondences (boxes).
(b) The mean Euclidean distance between the 3D points transformed to the gripper’s coordinate sys-
tems using ground truth X and the 3D points transformed to the gripper’s coordinate systems using
the estimated X. Different FOV levels were clustered into three groups. (c) Loglog plot of the compu-
tational time as a function of the number of threads. (d) The mean number of remaining cubes plotted
against the number of subdivision phases. Note that the computation starts after the fourth subdivi-
sion. (e) The mean residual error at the beginning of the respective subdivision phase. Different noise
levels were clustered into three groups.
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Figure 8.6: Planar experiment. (a) Comparison of the proposed method with pre-existing meth-
ods using Euclidean distance measure. (b) Grid deformation (shown out of proportions). (c) The
maximum (red line) and median (boxes) residual error of the solutions for the various values of o.

8.5.2 Experiment with Real Data

Motoman MA1400 Experiment. In the first real data experiment, an Asus Xtion Pro sen-
sor was rigidly attached to the Sth link of a Motoman MA1400 serial 6-DOF manipulator,
see Figure 8.7a. The manipulator was instructed into 18 poses B and in each position a
640 %480 picture of a calibration sheet consisting of 315 distinguishable dots was taken. A
optimization task consisting of 9 relative movements and totaling 2,835 correspondences was
constructed. The algorithm converged to a solution with residual error ||e[| , = 0.003 rad in
85 seconds (running in 8 threads).

In order to compare the result to the pre-existing methods, absolute camera poses A’
were recovered using EPnP algorithm [101], see Figure 8.7b. Next, hand-eye transforma-
tions Xi, k = 1,...,6 were computed by methods “Tsai89”, “Shiu89”, “Park94”, “Dan98”,
“Heller11”, and “Zhaol1” using the same relative movements. Figure 8.8a shows a distribu-
tion of the Euclidean distances between the 3D points of the calibration device C' and the 3D
points of the calibration device transformed by the relative movements A’} 'X,B'; 'B/X, ' A,
forz,7 = 1,...,18. Note that this error measure is different from the one used in the syn-
thetic experiment, since here the ground truth transformation X is not known. Also note that
lower error values do not necessarily mean “better” X, since both camera and robot calibra-
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Figure 8.7: Real data experiment. (a—b) Motoman MA1400. Close up of the camera-gripper rig,
sample images from the sequence; Camera poses reconstruction (c—d) Mitsubishi MELFA-RV-6S.
Close up of the camera-gripper rig, sample images from the sequence; Model resulting from SfM,
cameras are denoted by red pyramids.

tions can be slightly noisy. In this case, however, medians for all the methods—except for
“Shiu89”—are well below 0.5 mm, validating the result by the proposed method labeled as
G‘le,’.

Mitsubishi MELFA-RV-6S Experiment. A Mitsubishi MELFA-RV-6S serial manipulator
with a Canon 7D digital SLR camera and a Sigma 8 mm lens (pixel size ~0.0011 rad, FOV
~130°) were used to acquire data for the second real experiment. The robot was instructed
to move the gripper along the surface of a sphere of radius ~700 mm centered in the middle
of the scene objects. The position of the gripper was adjusted to reach 25 different locations
at four different pitch angles and the gripper was set to face the center of the sphere, see

Figure 8.7c. The internal calibration of the camera was obtained from several images of a
checkerboard using OCamCalib [142]

First, SfM software [177] was used to automatically generate correspondences, see Fig-
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Figure 8.8: Real data experiment error. (a) Motoman MA 1400 (b) Mitsubishi MELFA-RV-6S.

ure 8.7d. We used 7 motions B; and with 447 randomly selected correspondences to con-
struct the optimization task. The algorithm converged to a solution with residual error
le|l,, = 0.006 rad in 8 seconds (8 threads). The result is labeled as “H12S” in Figure
8.8b. We used the same optimization task to recover the calibration using the method [75],
labeled as “HI11S”.

Next, we detected the grid pattern in every image. Using the same 7 relative movements,
a calibration task consisting of 1,155 correspondences was constructed. The algorithm con-
verged to a solution with resudual error |le|| . = 0.005 rad in 56 seconds (8 threads). The
result is labeled as “H12B” in Figure 8.8b. Again, method [75] labeled “H11B” was used
with the same task. Finally, since the grid’s dimensions were known, the camera poses
were recovered in scale using EPnP algorithm and calibration was performed using methods
“T'sai89”, “Shiug9”, “Park94”, “Dan98”, and “Zhaol1”.

We can see in Figure 8.8b that the resulting calibrations are relatively worse than the
results in the MA 1400 experiment. We explain it by the fact that the MELFA-RV-6S robot
was slightly miscalibrated, showing the fact that the proposed method is more sensitive to
the robot calibration. This is probably since the error cannot be compensated by the known
camera positions as in the previous approaches. However, in case the robot is properly
calibrated, it can deliver comparable or better results than its competitors.

8.6 Theory

The following four lemmas are from [69].
Lemma 8.8. Let Ry, Ry € SO(3). Then forVv € R3

A(Rlv, RQV) S dl(Rl, RQ)
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Lemma 8.9. Let o,y € B, and Ri,Ry € SO(3) such that Ry = exp [a], and Ry =
exp o], The
d/(Ri,Re) < [Jo — |

Lemma 8.10. Let Ry be the rotation represented by the center of a cube D, C B, and
Ry € D,. Then forVv € R3
Z(Rxv,Ryv) < V/30.

Lemma 8.11. Let u,v,w € R? be unit vectors determining a spherical triangle on a unit
sphere and the edges be arcs of lengths u, v, and w respectively. Let «, B be the angles at v
and w respectively. It follows that if [3 is a right angle then sin o = sin v/ sin w.

The following two lemmas are from [146].
Lemma 8.12. Let Ry € SO(3) and 3 € B,.. Then

log (RX exXp [B]x R‘)—(r) = [RXIB]X :

Lemma 8.13. Let Ry be the rotation represented by the center of a cube D, C B,, 3 € B, .
Then forVRx € D,

IBxB — Rx B < 28| sin(v/30/2).
Let us prove two more lemmas here.

Lemma 8.14. Let Ry be the rotation represented by the center of a cube D, C B, 3 € B,.
Let Ry € D, and Ry = Ryexp [B], Ry, Ra = Rxexp [B], Ry . Then forVu € R?

Z(Ryu,Ryu) < 28| sin (V35/2) .

Proof. Note where Lemmas 8.8, 8.12, 8.9 and 8.6 were used, respectively.
A(RAIL RAU) S dl (ﬁ.A, RA)
= d(exp [RxB], ,exp [RxB],)

[Rx8 — RxB||
2|18|sin(v30/2).

]
Lemma 8.15. Let Ry be the rotation represented by the center of a cube D, C B,, 3 € B,
and u,v € R® Let Ry € D, and Ry = Ryexp|B], Ry, R = Ryexp|B], Ry. Then if
Z(+v,Ryu) > 2||B| sin(v/30/2), the following inequality holds
sin(2 18] sin(v/30/2))

Z([v]y Rau, [v], Ryu) < arcsin
1 — (vTRyu)’
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Figure 8.9: Illustration of the proof of Lemma 8.15.

Proof. We know from Lemma 8.14 that for every Ry € D, and u € R? the angle Z(Ryu, Ryu)
is limited by p = 2 ||3|| sin(v/30/2), see Figure 8.9. Let v € R? such that Z(£v,R,u) > p,
i.e., vectors +v do not lie in the cone C' determined by vector Ryu and radius p. Now let’s
consider the geometrical relation between vectors n = [v], Ryu and n = [v],_ R,u. Itis an
elementary geometrical fact, that if v, Ryu and Ryu are coplanar vectors, then Z(n,n) =
0. Let Ry € D, be a rotation such that the plane determined by vector n’ = [v] Rju
is tangential to the cone C. Trivially, VRxy € D,: Z(n,n) < Z(n,n’). Now the angle
a = /(n,n’) can be determined. By using Lemma 8.11 on vectors v, Rju and Ryu we get

_ sin Z([v], Rau, [V], Rau) sin p
sinaw = =

sin Z(v,Ryu) sinarccos v Ryu’

From this follows that for VRy € D,

Finally, we can proceed with the proof of Lemma 8.5.

Proof. First we prove the first part of the lemma. Let’s suppose that Ry € D, and t} € R?
constitute a feasible solution to Problem 8.3. We show that Ry, t} constitute a solution to
Problem 8.4 as well. Let us consider a correspondence u;; <> v;j. If é(i-vij, P_{Auij) <
2|3;|| sin(v/30 /2)—one of the preconditions of Lemma 8.15 is not fulfilled—we cannot
easily decide about the constraint imposed by the correspondence. If, on the other hand, this
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condition is met, we can write the following inequality

Z([Vij],, RasWij, ta,) (8.4)
< Z([vij], Rawij, [Vij], Rajuy) + 4([vw] Ra,Wij, ty,) + Z(ta,, ta,) (8.5)
< Z([vijly Rayug, [Vigl, Raguig) + 5 5 D e+ (8.6)

Z (Rx((Rs, — T)ty + ts,), Rx((Re, — I)ty + t,))
< Z([vig), Rayugg, [vig], Ry, W) + g + €min + V30 (8.7)
< arcsin sin (2 18] sin (\/_0/2)) + T + €min + V30 (8.8)
\/1 — V RA uw 2

To elaborate, we get from line 8.4 to line 8.5 by twice applying the triangle inequality, to line
8.6 using the presumption that Ry, t} constitute a solution to Problem 8.3, to line 8.7 using
Lemma 8.10, and finally to line 8.8 using Lemma 8.15. Note that because of the substitution
ty = —R; ty, translation vectors t A t A, can be written as products of rotation matrices ﬁx, Ry
and vector ((Rg, — I)t} +tg,). This makes it possible to apply Lemma 8.10 to term Z(t,,, t,,)
and justify the inequality of lines 8.6 and 8.7.

Now, line 8.8 gives us value of the bound ;; as

sin (2|83 sin (V30/2)) Vo

\/1 — (V;;RAZ.U.Z']')Q

7ij = arcsin

The proof of the second inequality,
_ _ 7
Z(— [vij], B wij, ta,) < 5 + €min + Vij,
is almost identical. We just use the fact that
Z(= [Vi), Raswij, — [Vig], Raswig) = Z([vig], Rawy, [Vig], Rasuiy)

and the presumption
A - 7
4(_ [Vij]x R’Aiuij7 tAz) < § + Emin-

The proof of the second part of the lemma is analogous to the proof of the second part of
Lemma 3 in [69]. [
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Hand-Eye Calibration without
Hand Orientation

Arithmetic! Algebra! Geometry! Grandiose trinity! Luminous triangle! Who-
ever has not known you is without sense!

— Comte de Lautréamont

In this chapter we will be concerned with a variation of hand-eye calibration problem that
has scarcely been addressed in the literature so far—hand-eye calibration with unknown hand
rotation. This problem arises when the robot is not calibrated or the information from the
robot is not available. In these situations, one has to measure the robot’s pose by an external
measurement device. In many cases such a measurement device is not able to measure the
whole pose, but only the translational part of it, since translation is much easier to measure
than rotation. Without the hand rotation measurements none of the previously discussed
methods can be used. A method presented in [194] addresses this problem by nonlinear
optimization and estimates simultaneously both rotational and translational parts. However,
it requires a good initial estimate of X.

In case of two relative motions, we formulate this problem as a system of seven equations
in seven unknowns and solve it using the Grobner basis method for solving systems of poly-
nomial equations. This provides an exact algebraic solution and has none of the problems of
the former numerical minimization methods, i.e., problems with convergence or the necessity
of having a good initial estimate. In case of three of more motions, we use a residual function
to select an initial solution among the candidates provided by the Grobner basis method to
initialize the method of [194]. By evaluating our solution on both synthetic and real scene
data, we demonstrate that it is efficient, fast, and numerically stable. Further, we show that
in case of more than two motions it provides a good estimate for nonlinear optimization.

9.1 Problem Formulation

First, let us consider the classical hand-eye calibration problem. The goal is to estimate the
relative pose, i.e., the rotation and the translation of the camera w.r.t. the gripper given n
absolute camera poses A, and robot poses B;, see Section 5.1. We describe the hand-eye

transformation by a homogeneous transformation matrix

. Ry tx
x_<0T 1). 9.1)

The hand-eye tranformation is constrained by the relative camera and robot poses A; =
A/Z'_HA;_I and B; = Blili_HB/i as
A;X = XB;, 9.2)
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which can be decomposed into a matrix and a vector equations

R’AZ‘ RX = R’XR'BZ' ) (9'3)
RAitx ‘l— tA - B’XtBi + tx. (94)

At least two relative poses with non-parallel rotation axes are required to solve this system
of equations. With two or more relative poses known, we obtain an overconstrained system
of polynomial equations.

In situations where one does not have the information from the robot’s positioning soft-
ware or the robot is not precisely calibrated transformations B are not readily known. To
recover them, one has to use some external measurement equipment. In this chapter, we
are interested in situations where such a measurement device does not allow to recover the
whole pose of the robotic gripper, but only its translational part.

Typically, the external measurement devices are able to recover absolute gripper’s po-
sitions t; w.r.t. robot’s base. However, in Equation 9.4 relative translations tg, appear. In
order to compute the relative translations tg, there has to be at least one position where the
full pose of the robot can be recovered, i.e., where the rotation Rgi is known as well. Even for
an uncalibrated robot, the robot’s home position can be used as such a priori known pose.
By constructing the relative movements in such a way as to always end in a position with a
known rotation Ry , relative translations tg, can be recovered. Since the positions with a pri-
ori known poses are usually hard to come by, it is advantageous for a method to be able to
calibrate from a minimal number of movements possible.

9.2 Minimal Hand-Eye Calibration

First, let us suppose that we can measure two gripper’s relative translations tg; and tg; and
two respective relative camera poses A; and A;. Now, notice that the vector Equation 9.4 does
not contain the unknown gripper’s rotations Rg,. By parametrizing the rotation Rx by the unit
quaternion ¢ = a + bi + ¢j + dk as

a2+ - —d? 2bc — 2ad 2ac + 2bd
Ry — R{ = 2ad + 2bc a? — b+ — d? 2cd — 2ab 9.5)
2bd — 2ac 2ab + 2cd a? - -+ d?

and substituting it into the vector Equation 9.4 we get three polynomial equations in seven
unknowns, i.e., three translation parameters for ty and four rotation parameters a, b, ¢, and
d. Now we can apply this substitution to the two motions 7 and j and by adding the equation
defining the unit quaternion ¢ we obtain the following system of equations:

Problem 9.1 (Minimal hand-eye calibration).
Given Ry,,Ry;,ta,, ta;, s, ts;
find Rx € SO(3),ty € R3
subject to Ry, tx + ty, = Rytg, + tx,
Ry tx + ta, = Rxtg, + tx,
a4+ +E+d?=1.
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Problem 9.1 is a well-constrained system of seven equations in seven unknowns. To
solve it for the unknown hand-eye calibration X, the Grobner basis method can be readily
used. This leads to a fast and non-iterative solution with no need for an initial solution
estimate. Note that the minimal number of two relative movements without rotations Rg, and
Rg, is needed to construct the system.

In the case rotations Rg, and R, need to be recovered as well, by substituting the solutions
for the rotation Ry into the Equation 9.3 we get the rotations as

Rs, = Ry 'RyRy, (9.6)

Rg. Ry Ra,Rx. 9.7)

J

9.2.1 Grobner Basis Method

The Grobner basis method for solving systems of polynomial equations has recently became
popular in computer vision and it has been used to create very fast, efficient and numerically
stable solvers to many difficult problems. The method is based on polynomial ideal theory
and 1s concerned with special bases of these ideals called Grobner bases [41]. Grobner bases
have the same solutions as the initial system of polynomial equations defining the ideal but
are often easier to solve. Grobner bases are usually used to construct special multiplication
(action) matrices [159], which can be viewed as a generalization of the companion matrix
used in solving one polynomial equation in one unknown. The solutions to the system of
polynomial equations is then obtained from the eigenvalues and eigenvectors of such ac-
tion matrices. See [41, 42] for more on Grobner basis methods and [161, 94, 24] for their
applications in computer vision.

Since general algorithms [41] for computing Grobner basis are not very efficient for
solving problems which appear for example in computer vision, an automatic generator of
specific polynomial equations solvers based on the Grobner basis method has been proposed
in [95]. These specific solvers often provide very efficient solutions to a class of systems
of polynomial equations consisting of the same monomials and differing only in the coeffi-
cients.

Computer vision problems, like the hand-eye calibration problem presented in this chap-
ter, share the convenient property that the monomials appearing in the set of initial polynomi-
als are always the same irrespective of the concrete coefficients arising from non-degenerate
measurements. Therefore it is possible to use efficient specific solvers instead of less efficient
general algorithms [41] for constructing the Grobner bases.

The process of creating the specific solvers consists of two phases. In the first “offline”
phase, the so-called “elimination templates” are found. These templates decide the elim-
ination sequence in order to obtain all polynomials from the Grobner basis or at least all
polynomials necessary for the construction of the action matrix. This phase is performed
only once for a given problem. In the second “online” phase, the elimination templates are
used with coefficients arising from the specific measurements to construct the action matrix.
Then, eigenvalues and eigenvectors of the action matrix provide solutions to the original
polynomial equations. The automatic generator presented in [95] performs the offline phase
automatically and for an input system of polynomial equations outputs an efficient online
solver.
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9.2.2 Grobner Basis Solver

To create an efficient solver for Problem 9.1 we used the automatic generator proposed
in [95]. The Grobner basis solver of the proposed hand-eye calibration problem starts with
seven equations in seven unknowns, i.e., three translation parameters for ty and four rotation
parameters a, b, ¢, and d.

From the generator we obtained an elimination template which encodes how to multiply
the seven input polynomials by the monomials and then how to eliminate the polynomias
using the Gauss-Jordan (G-J) elimination process to obtain all polynomials necessary for
the construction of the action matrix. In our case the automatic generator created the action
matrix M, for multiplication by a.

To get the elimination template the generator first generated all monomial multiples of
the initial seven polynomial equations up to the total degree of four. This resulted in 252
polynomials in 330 monomials. Then the generator removed all unnecessary polynomials
and monomials, i.e., polynomials and monomials that do not influence the resulting action
matrix. This resulted in matrix a 182 x 203 Q representing the polynomials for the construc-
tion of the action matrix M,, i.e., the elimination template.

The online solver then only performs one G-J elimination of matrix Q from the elimi-
nation template identified in the offline stage. This matrix contains coefficients which arise
from specific measurements, i.e., rotations Ry, and R,, and translations t,,,t,,ts,, and tg.
After G-J elimination of matrix Q, action matrix M, can be created from its rows. The solu-
tions to all seven unknowns can be found from the eigenvectors of the action matrix M,. The
online stage takes about 1 ms to finish in case of Problem 9.1.

This gives us a set &j; of up to 16 real solutions of X. However each of these solutions
appears twice, i.e., there are double roots. Therefore we have only up to 8 different real
solutions. Usually only one to four of them are geometrically feasible, i.e., are real and of
a reasonable length of the translation. The correct one can be chosen from the feasible so-
lutions manually using some prior knowledge about the transformation X or automatically
using an additional set of solutions for different relative movements. The next section de-
scribes an automatic procedure for selecting the correct transformation.

9.3 Automatic Solution Selection

In order to automatically select the geometrically correct solution among the algebraically
correct ones in Aj;, at least one more set of solutions to Problem 9.1 for a different combi-
nation of relative poses is needed. Let X}, be such a set for two additional relative poses k
and ¢. Supposing that the relative poses 7,7 and k, ¢ form a geometrically non-degenerate
configuration, we will find the geometrically correct solution as &j; N Xj,. In the presence
of noise however, the intersection &;; N X, will most likely be an empty set. In this case we
have to select a solution from the union Xj; U &), that best fits the equations of Problem 9.1
for different motions. We will measure the fitness of a solution X by the residual error of
Equation 9.4

€;(X) = Ry, tx + t), — Rxts, — tx. (9.8)

Now let us formalize the idea of selecting the best solution and to extend it to the case of



9.4. Experiments

more that two solution sets. Let n be the number of available relative movements and let /
be a set of pairs of indexes of the relative poses

Ic{{ij}:i,5<n}, |I]=2. 9.9)
Let X be a set of solutions to Problem 9.1 for the pairs from the index set /,
x=J (9.10)
{i,j}el

We select the geometrically correct solution among the solutions in X by solving the follow-
ing problem:

Problem 9.2 (Minimal hand-eye calibration for n relative poses).

Given R’AiatAmtBi) [72 = 1, o,
and a set of solutions X' = {Jy; ;X
find X* = argmingcy Y i, €:(X) e;(X)
As we can see from the above formulation, solving Problem 9.2 amounts to selecting a
minimum from a set of |X'| real numbers.

In the presence of noise and in case n > 2, we can further refine the solution by an
optimization method. For our experiments, we chose the method of Zhuang and Shiu [194]
which requires a good initial estimate X°. By setting X = X*, we can refine the solution by
solving the following minimization problem:

Problem 9.3 (Zhuang [194)]).

Given Ry, ty,tp,2=1,....n
and an initial solution estimate X°
find X}, =argmin) " e;(X) e;(X)
subjectto Rx € SO(3)

9.4 Experiments

To experimentally validate the proposed solutions, we use both synthetically generated and
real word calibration scenarios. First, we use synthetically generated ground truth scenes
to study the numerical stability of the proposed solution to Problem 9.1. Next, we study
the behavior of the solutions to Problem 9.2 and Problem 9.3 on synthetic scenes consisting
of 4 non-degenerate poses. Finally, we show the viability of the minimal solution in a real
life experiment with a Mitsubishi MELFA-RV-6S serial manipulator with four draw-wire
encoders attached to its end effector to recover the translations tg, .

In all of the experiments we scaled the lengths of the input translation vectors tg, and
t,, by the length of the largest one of them prior to running the Grobner basis solver. We
observe that this scaling improves the numerical stability of the solution.

The experiments were run on a 3GHz Intel Core 17 based desktop computer running 64-
bit Linux. The Matlab implementation of the proposed method used in the experiments is
available at http://cmp. felk.cvut.cz/minimal/handeye.php.
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Figure 9.1: log,, angular error of the estimated rotation Ry (Left) and log,, translation error
of tx (Right) for noise free data.

9.4.1 Experiments with Synthetic Data

Numerical Stability Experiment First, we studied the behavior of the proposed Grobner
basis solver of Problem 9.1 to check its numerical stability. We generated 1000 random
scenes with 100 points P* k=1,...,100, evenly distributed in the unit ball. Each scene
consisted of 3 random absolute camera poses A;. The cameras were positioned to (i) be facing
the center of the scene, (ii) see the scene points from the field of view (FOV) ranging from
40° to 80°. For every scene ground truth transformation X, was generated so that the angle
and the axis of Rx,, were random and uniformly distributed and that Htxgt H ~ 0.1. Absolute
robot poses B, were determined by chaining X;tl and the generated absolute camera positions.
For every combination of ground truth Ry, tx, and the recovered Rx, ty we measured the
error of the rotation as the angle 6 of the rotation R; Ry, such that 0 < 6 < 7 and the error
of translation as the relative error HtX — tx, H / Htx st H Figure 9.1 shows the histograms of
the respective errors, certifying the numerical stability of the solver.

Calibration Experiment  In this experiment we analyzed the performance with respect to
image noise. We used the same scheme to generate random scenes as in Numerical Stability
Experiment. This time, we generated four absolute robot poses in each scene and recovered
the absolute camera positions by P3P algorithm [133].

We started by computing P¥—the positions of the 100 random points P* with respect
to the coordinate systems of the cameras A}, ¢ = 1,...,4. Further, we normalized Pf to
get only the directional vectors p} that were progressively corrupted with angular Gaussian
noise. Finally, we used P3P in RANSAC loop to obtain noise corrupted absolute camera
poses AL, i=1,...4.

We experimented with 11 levels of angular Gaussian noise with the standard deviation
o ranging from 0 to 0.5 degrees, with the highest noise level translating to o of ca. 20—40
pixels for a 8MP camera with 40°-80° field of view. We generated and recovered camera

poses for 1000 random scenes for every noise level.
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Figure 9.2: Relative error of recovered translation tx for different levels of Gaussian noise.

We recovered hand-eye calibrations X by four different methods. The first method MHEC
identifies the results obtained by the Grobner basis solver with the solution selected accord-
ing to Problem 9.2. The second method MHEC+ZH stands for the results obtained by the
method [194] (Problem 9.3) when initialized by the results of MHEC. For completeness
sake, we include results obtained by the methods [183] labeled as TSAI and [44] labeled in
the figures as DAN. These methods are not the direct competitors, since they require known
robot rotations Rg. However, they can be used to gauge the accuracy of the results obtained
by MHEC and MHEC+ZH.

Figures 9.2, 9.3, and 9.4 show the statistics of the obtained solutions using the Matlab
boxplot function depicting values 25% to 75% quantile as a box with horizontal line at
median. Figures 9.2 and 9.3 show the respective errors of ty and Rx using the same measures
as described in Numerical Stability Experiment. Figure 9.4 shows the mean distance between
the points P¥ transformed into the coordinate system of the gripper using the ground truth
hand-eye transformation and the same points transformed into the coordinate system of the
gripper using the estimated X. Note that the points were generated into the unit ball, i.e.,
considering the diameter of this ball to be one meter means that the errors in Figure 9.4 are
in meters.

9.4.2 Real Scene Data Experiment

In order to acquire a real scene calibration data, four draw-wire encoders were connected to
the gripper of a Mitsubishi MELFA-RV-6S serial manipulator. A Canon 350D digital SLR
camera with a Sigma 8 mm lens (cca. 130° field of view) was also attached to the gripper to
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Figure 9.3: Angular error of recovered rotation Ry for different levels of Gaussian noise.

form a hand-eye system.

The robot was instructed to move the gripper to (i) the home position with the known
rotation w.r.t. the robot base, (ii) the four positions (backward, forward, left, right) distant
approximately 400 mm at 10 degree pitch, (iii) the same four positions at 20 degree pitch,
(iv) the position approximately 250 mm under the home position, and (v) the four positions
at this height at 10 and 20 degree pitch again. While the robot was moving, the camera was
remotely triggered to acquire 2,592 x 1,728 pixels large images of a circular view field with
1,040 pixels radius.

The internal calibration of the camera in the form of a two-parameter equiangular model
[125] was obtained using an image of a checkerboard with manually labeled corners. Then,
a state-of-the-art sequential structure-from-motion pipeline [177] was used to automatically
generate MSER, SIFT, and SURF feature points, perform approximate nearest neighbor
matching in the descriptor space, verify the matches by pairwise epipolar geometries esti-
mated by the 5-point algorithm [130] in a RANSAC loop, and create tracks and triangulated
3D points from verified matches spanning several images. The reconstructed 3D model was
scaled to millimeter units by knowing the real dimensions of the checkerboard and measuring
the distance of the corresponding 3D points in the model.

We used the system of four draw-wire encoders to determine the absolute positions of
the gripper w.r.t. the robot base. For the experiment we chose 2 motions ending in the robots
home position. Since the rotation of the robot in the home position is known, it is possible
to transform the positions provided by the draw-wire encoders into the home position coor-
dinate system and obtain translations tg, and tg,. We used tg, and tp, in combination with
A;, A, obtained from structure-from-motion to compute the hand-eye transformation X and
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Table 9.1: Angular rotation errors of estimated gripper rotations in degrees.

| | Rs [ Rs, [Rs [ Ry |
Rs,, || 084 — 089 ] —
Re,, | — | 061 | — | 1.09

the relative gripper rotations Rg, and Rg, .

For comparison, we also used tg,, and tg,, from robots positioning software with the
same camera motions A; and A, to compute hand-eye transformation X, Rg,, and Rg, .

Since the robot was calibrated, we can also compare the computed gripper rotations Rg,,
Rs,. Rs,, and Rg, with the rotations Rg,, and Rg,, from the robots positioning software, see
Table 9.1.

Finally, let us express the obtained translations from the gripper to the camera center
using the translation from the draw-wire encoders —R, tx = (110.2,26.2,47.9) ", and using
the translation from the robot, —R; tz = (126.5,28.7,51.1)".

These result are consistent with each other as well as with the rough physical measure-
ment of the mechanical reduction and show the validity of the obtained results.
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Figure 9.5: Real data experiment. (a) A Mitsubishi MELFA-RV 6S serial manupulator used
to acquire the data for the experiment. (b) The 3D model obtained from SfM. (c) Sample
images of our scene taken by the camera mounted on the gripper of the robot. (d) Close up
of the camera-gripper rig with draw-wire encoders.
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Robot-World Calibration by LMI
Relaxations

Work. Don’t Think. Relax.
— Ray Bradbury

This chapter presents a novel solution to the robot-world calibration problem. It is applica-
ble in situations where a known calibration target is observed by a camera attached to the
end effector of a robotic manipulator. The presented method works by minimizing geomet-
rically meaningful error function based on image projections. Our formulation leads to a
non-convex multivariate polynomial optimization problem of a constant size. However, we
show how such a problem can be relaxed using linear matrix inequality (LMI) relaxations
and effectively solved using Semidefinite Programming. Although the technique of LMI re-
laxations guaranties only a lower bound on the global minimum of the original problem, it
can provide a certificate of optimality in cases when the global minimum is reached. Indeed,
we reached the global minimum for all calibration tasks in our experiments with both syn-
thetic and real data. The experiments also show that the presented method is fast and noise
resistant.

10.1 Introduction

In this chapter, we study situations where a robotic manipulator is self-calibrating by observ-
ing known calibration target by a camera attached to the end effector of a the manipulator.
Specifically, we are interested in situation where the transformation relating the world coordi-
nate system with the base coordinate system of the robot is to be recovered—the robot-world
calibration problem [193, 46]—and can be considered as a subproblem of the complete robot
self-calibration.

We formulate the robot-world calibration problem as a special form of camera resection
problem under the so-called algebraic error minimization [64]. Historically, the algebraic
error has been sometimes unjustly dismissed in favor of the geometric error. This precon-
ception has been challenged in literature [65] since. Because the algebraic error function
does not contain division by the unknown coefficients, it can—as in the case of the formula-
tion presented in this chapter—Iead to polynomial optimization problems.

In theory, polynomial optimization problems can be handled using tools of elementary
calculus. In real life however, this is not always tractable, as it can be shown that general
problem of minimizing polynomial function is NP-hard [128], if the degree of the polyno-
mial is at least four. The field of polynomial optimization over semialgebraic sets received
significant research effort during the last decade. To tackle our problem, we leverage on the
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Figure 10.1: The world-robot transformation.

results presented by Lasserre in [99], see Section 6.2.1.1. Lasserre formulated a procedure to
construct a hierarchy of convex relaxations, so-called linear matrix inequality (LMI) relax-
ations, that form a monotonous series of lower bounds on the original non-convex problem.
These hierarchies lead to global optimal solutions for many practical problems, even for
relaxations of low orders. The method of LMI relaxations was first introduced to computer
vision community by Kahl and Henrion in [86]. The problem of camera resection was solved
in [145] using an approach similar to that presented in this chapter. However, this method is
not directly applicable to the robot-world calibration problem, since in this case the camera
transformation has further inner structure that changes with the robot position.

The main contribution of this chapter is in formulating the robot-world calibration as a
multivariate polynomial minimization problem of a constant size. Further, we show how to
build an LMI relaxation of the problem of order two. The order two relaxation had quickly
led to certifiably globally optimal solutions for all calibrations task in our experiment with
both synthetic an real data.

10.2 Problem Formulation

The objective of robot-world calibration is to derive a transformation

[ Rz tg
z_<0 1), (10.1)

R; € SO(3), t; € R3, relating the coordinate system connected with a robot’s base to
the world coordinate system, see Section 5.2. In this chapter, however, we will mean Z to
denote the inverse transformation, from the world coordinate system to the coordinate system
connected with the robot: the world-robot transformation, see Figure 10.1. This change
may seem superfluous, however, it will help us to simplify the notation, since the problem
formulation inherently requires the inverse direction of the transformation. To obtain the
robot-world transformation, one can simply inverse the resulting matrix ex post.

Let us suppose that a camera has been rigidly attached to the end effector of a robotic
manipulator. The camera’s coordinate system is connected to the coordinate system of the
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end effector by a transformation X. This transformation is commonly referred to as hand-eye
transformation and here is assumed to be known, i.e., estimated previously using any conve-
nient method. Let us manipulate the robot into n poses so that in each of them the camera
observes a calibration target consisting of known points Y, € R? in the world coordinate
frame, k = 1,..., m. The points Y, are measured by the camera in the i-th pose at pixel
positions u}, € R?. Since we will assume through the rest of the chapter that the camera is
internally calibrated [64], we can easily convert the pixel positions into directional vectors
u;, € R3. The algorithm does not require the same set of points to be visible in every ca-
mera pose, but we write formulas here assuming that it is so to simplify indexing. Finally,
the respective positions of the end effector in each pose can be obtained from the forward
kinematics of the robot in the form of transformations B, i = 1, ..., n, see Section 5.3.2.

The problem of world-robot calibration is closely connected to the problem of hand-
eye calibration. The classical approach to solving hand-eye calibration [183, 134, 44] is to
recover absolute camera poses A, using known points Y and projections u;; to construct
a set of relative camera movements A;; = AJA;™", see Section 5.3.1. Using A;; and relative
-1
(2

robot movements B;; = B'B;"", i, j = 1,...,n, an overconstrained system of equations

Ain:XBZ‘j, ’L,j = 1,...,n (102)

is solved. As noted in [193], a similar transformation loop can be constructed using absolute
poses and world-robot transformation as

AMlx =z7'B N (10.3)

Since X = AQZ_lBg_l, X can be eliminated from Equation 10.3 using an another pair of
transformations A%, B, and Equation 10.2 can be converted into an instance of hand-eye
calibration problem

ATz =727 'BT'B) (10.4)
Using this approach, world-robot calibration can be cast as hand-eye calibration and solved
by any method that solves Equation 10.2, inheriting any strengths and weaknesses of the
method at hand. In [193, 46] authors proposed to solve Equation 10.3 directly, obtaining
solution for X and Z simultaneously.

All of the above methods work with camera poses A.. In this chapter, we will show that
working with camera projections directly leads to superior results. To do this, we will formu-
late the world-robot calibration problem as a special form of camera resection problem [64].
The aim of camera resection is to find external camera pose given known 3D points and
the calibrated projections. First of all, let us parametrize the camera pose using the known
transformations B;, X and unknown transformation Z as

ay az asz ai

i yntg [ Ban ta | a4 a5 as an
Ai = XB;Z = ( 0 1 ) | ar as a9 arn | (10.5)
0O 0 0 1

. . . . T
Now, let us denote the coefficients of calibration target points Y,;; = ( Tij Yij  Zij ) and

. . T . . .
their projections u;; = ( Uij  Vij Wi ) . Points Y;; are transformed into the coordinate
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system of the camera as
Y/, =Ry Yo + by (10.6)

We can relate the projections u,; and the transformed points Y7; by the following equation

/

WUij Lij Zij01+Yija2+2ija3+aio

/
Wij . 25 . Tija7+yYijag+zijagt+aiz (10 7)
Vij i, Tijaq+yijas+zia6+ail ’ ’
Wij A Tijar+yijag+zijagtaiz

ij
Let’s multiply by z;; and subtract the left side to get

Wi

ZTijay -+ Yijaz + Zija3 “+ a9 — w—z_]j(xijm + Yijas -+ Z;ijQ9 + CL12>
P

ZTij04 + Yijs + Zij06 +a; — w#jj(xijm + Yijas + Zi509 + CL12>

) =0. (10.8)

By reorganizing the constant coefficients in Equation 10.8 into a 2 x 12 matrix

Tij Yij 2z 0 0 0 —Zlg, —Ziy,. 2. ] () 2L
Cz’j:< i Yij J wi; U w”yj w;i; T w”> (109)

- .. oo Mg Mg, Vi, Yig
0 0 0 @y wij =y we; Tij we; Yid we; i 01 we

and by vectorizing the coefficients of matrix A} as
ai=(a ay ... ap), (10.10)

we can write Equation 10.8 in a more concise form C;;a; = 0. In the presence of noise, the
residuals C;;a; won’t be zero vectors and we can formulate an objective function.

Problem 10.1 (World-robot Calibration).

minimize F(z) =", Z;n:l ||Cijai||2

10.11
subjectto Rz € SO(3). (10.11)

In [64], the length of the residual vector C;;a; is called algebraic error. It can be given
the following geometrical interpretation. Let 7 be a plane parallel to the projection plane
such that Y;; € 7. Let p be a ray in direction uy; originating from the camera center. The
algebraic error is the distance between point Y;; and the intersection of the ray p and the
plane 7. Because the error model doesn’t contain any division by the unknown parameters,
we use it to manipulate Problem 10.1 into a polynomial minimization problem. The choice
of the error model is also validated by the presented experiments.

Note that the unknown coefficients of the matrix Z are hidden in the vector a;. Due to the
fact that we need Rz to be a rotation matrix, Problem 10.1 is not a convex problem.

10.3 Polynomial World-robot Calibration

In this section we will show how to convert Problem 10.1 to a problem of polynomial min-
imization of a constant size. We will do it by detaching the unknown coefficient of Z from
a;.



10.3. Polynomial World-robot Calibration

First, let us parametrize the unknown transformation Z by the unit quaternion q; =
T
(@1 @ @ @) as

G+6—aG—2¢; 2¢2q3 — 2 2¢2q4 + 2¢3q1
Rz(qz) = 20203 + 201 G -G+ 0 — G 20304 — 2¢2¢n . (10.12)
2¢2q4 — 2q3q1 20301 + 221 @1 — @5 — @5 + 243

Further, let’s rearrange the columns of the re-parametrized matrix Z on top of each other into

vector z = (2] 2y z] =] ) and the first three rows d), djj, and dj; of the matrix
D; = XB; into a 12 x 16 matrix

d, 0 0 do 0 0 d3s 0O O 0O 0 O
T 0 do 0 O d2 0 O ds O O 0 O
‘ 0 0 das 0 O d O O dizs O 0 O

0O 0 0 0 0 0 0 0 0 dy dip diz

(10.13)

Thanks to this rearrangement we can write the residual C;;a; as C;;D; 2 Using the distributive
property of sums we can write the objective function F'(Z) of Problem 10.1 as

n m
=D el = 303 alccun =
i=1 j=1 i=1 j=1

n m

=z' Y > (0)clcyD)z=2"Ez, (10.14)

i=1 j=1

where E = (ey ) is a 16 x 16 matrix constructed from the known data. The above derivation
transformed the objective function F' into a polynomial function of degree 4 in 7 unknown
parameters ¢ and t; . The constraint R; € SO(3) is now replaced by the constraint ||qz||” =
1.

Next, we notice that F'is a quadratic function in t;. That means it has one global mini-
mum in t; that can be easily found by solving g—f; = 0. After a few tedious derivation steps
we find that

oF

Otz

where p* are polynomials in the unknown parameters qz and N is a 3 x3 matrix

= (p® p" p®) —nt, (10.15)

€13,13 €13,14 €13,15
N=-21 e314 €ia14 C1415 |- (10.16)
€13,15 €14,15 €15,15

Using 5x5 matrices P, see Equation 10.24, polynomials p* are constructed as
T
p'=(1 az )P°(1 az ) .
Finally, by solving g—f; = 0 we get the optimal t; as

th=(t 5 t5) =n"(p? pt po) . (10.17)
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*

To get the explicit formula for 7, ¢ = 1, ..., 3, let’s us denote the elements of the matrix Nt
as (ny,,). Now, by constructing matrices

H* = nj P + nj oP™ + nj gP"° = (), (10.18)
we can write the ¢7 explicitly as
tr=(1 qf JH(1 q ) ,i=1,...,3 (10.19)

The Substitution of t; into F(Z) yields a new objective function F’(qz). This substitution
takes the number of unknown parameters down to four.

Let us simplify the notation of F”(qz) a bit more. First, we notice from the formula for
the matrices H* that they have the same amount of non-zero elements as the matrices P*. Let
us rearrange these non-zero elements into a vector

hk:( h]f,1 hg,z h§,2 h§,3 hIZ,Q h]zf,?) h§,4 hlg,z hlg,?) hlg,4 h§,5 )T- (10.20)
Now, using a vector of 11 monomials

m:( 1 CI% q192 q% 4143 4243 CI?? q144 4294 4344 CJZ ), (10.21)

we can write ¢ = h*"m. In other words, h’ are the coordinates of t7 in the monomial basis
m. Since the monomial basis m can be used for all of the polynomials in the vector z, we
can stack their coordinates into a 16 x 11 matrix Q, see Equation 10.22, and write z as Qm.
Using this notation we can state an equivalent formulation of Problem 10.1:

Problem 10.2.
minimize F’(qz) =m' (Q'TEQ)m =m'E' " m

subjectto ¢? +q2 +q2 +q2 =1, (10.23)
¢ > 0.
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e 16 0 0 0 0
0 e1 ktee kteik 0 0 0
PP =2 0 2eri-cion) erx—con—cii 0 0 (10.24)
0 2(eg,k—€3,k) 2(e2,xtes k) —e1,ktes k—e1lk 0
0 2(e2,k—es,k) 2(e3,k+eo k) 2(e7 k+e1o,k) —e1,k—eq kel k

Problem 10.2 is a polynomial optimization problem of degree 4 in 4 unknowns and it is
a problem of a constant size, i.e., the dimensions of the matrix E' are 11 x 11 regardless of
the number of measurements u;;. Notice that we have replaced the constraint R; € SO(3)
with the constraint q; has to be a unit quaternion. Since for every rotation there are two
equivalent quaternions q and —q representing it, we have added another constraint ¢; > 0
to eliminate most of the double solutions. Suppose q; is the minimizer of Problem 10.2, the
optimal translation t; can be then computed using Equation 10.19.

10.4 Convex LMI Relaxations

Here, we will show the LMI relaxation of Problem 10.2 of order two. To do that, we need
monomial bases vy and v, in variables q,

vilaz) = (1 @1 @ 3 @
VQ(QZ) = (1 91 g2 43 44 Q192 q1493 QG144 Q243
G294  Qq3qa Q% qg q§ qi)T-

Further, we need to lift the variables in the objective function F”, the constraints and the two
moment matrices M; = v;(qz)vi(qz)" and My = v5(qz)va(qz)'. For the lack of space we
will show the results of the lifting for M; and the constraints only:

v (10.25)

9

1 Y1000 Yo100 Yooio Yooo1
Y1000 Y2000 Y1100 Y1010 Y1001
M = Yoio0 Y1100 Yo200 Yoi10 Yoio1 ) (10.26)
Yoo1o Yio10 Yoi10 Yoo20 Yooil
Yooor Y1001 Yoio1 Yooir Yooo2
G+ G+ = Y2000 + Yo200 + Yoo20 T Yooz,

1 = Yio00- (10.27)
Now, we can formulate the second LMI relaxation of 10.2 as
Problem 10.3 (The second LMI relaxation).
minimize  F'(y)
subject to (12000 + Y0200 + Yoo20 + Yoooz)M1 = 0,
— (Y2000 + Y0200 + Yoo20 + Yoooz)M1 = 0, (10.28)

Y1000M1 = 0,
My > 0.

Problem 10.3 is a semidefinite program and as such solvable by any SDP solver available.
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(a)

Figure 10.2: Examples of source images from the synthetic and real data sequences.
(a) 3 synthetically generated images of a 16x 16 calibration grid. No image noise is present.
(b) 3 images of the smaller 21 x 15 calibration grid from the real data experiment. (c) 3
images of the larger calibration grid.

10.5 Experiments

In this section, we present both synthetic and real data experiments to validate the proposed
algorithm. For the real data experiment we used a Motoman MA 1400 serial 6-DOF manipu-
lator with an Asus Xtion Pro sensor rigidly attached to it. The Xtion Pro sensor is equipped
with a camera with the resolution of 640 x 480 pixels. We simulated the same setup in
the synthetic experiment in order to better judge the result of the experiment with real data
experiment.

We implemented the calibration algorithm in MATLAB. We used GloptiPoly [79] to
convert the problem instances into the LMI relaxations and SeDuMi [168] as the SDP solver.
We used the LMI relaxations of the second order in both experiments, obtaining certified
global minimum for every calibration instance. We used a 3GHz Intel Core 17 based desktop
computer running 64-bit Linux to run the experiments. The mean time the SDP solver took
to converge was 0.31+0.006s.

10.5.1 Synthetic Experiment

In the synthetic experiment we investigated the influence of both image and joint noises on
the calibration accuracy. To do that we placed a planar calibration target consisting of 16x16
points in front of a simulated MA1400 serial manipulator. The distance between the points
was 12.5 mm in each direction, making the calibration device 200 x 200 mm in size.

For every calibration task, 9 camera positions A, were randomly generated in a half-
sphere of radius of ~ 30 mm facing approximately the center of the calibration device. To
better visualize such camera poses, Figure 10.2(a) shows an example of a sequence of 3
image taken by the virtual Xtion Pro sensor. Next, a hand-eye transformation X was randomly
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Figure 10.3: Results of the image noise experiment. (a) Error of Rz in degrees, (b) relative er-
ror of tz, (¢) 3D error of the transformation Z (see Equation 10.29), (d) value of the objective
function F”.

generated so that the rotation corresponds to the pose of the camera to a up to 5° degrees
difference in each axis. This reflects a typical situation when the camera faces the same
direction as the robot’s end effector. The translation was randomly generated to move the
camera up to ~ 200 mm away from end effector. The end effector poses B, were computed
from the camera poses and hand-eye transformation as X~ 'A’. Finally, we generated a world-
robot transformation Z using a random rotation and a random translation up to ~ 2000 mm
in length and transformed the grid points by the inverse Z~!. We generated 10 sets of camera
positions, 10 hand-eye transformations and 10 world-robot transformations and combined
them into 1000 calibration tasks.

We implemented several published method to pit our algorithm against: “Tsai89” [183],
“Park94” [134], “Dan98” [44], and “Dorn98” [46]. There are several points to bear in mind
while judging the comparison results. First, all of the above methods work with camera
transformations A rather than with projections u;; directly. We used EPnP algorithm [101]
to recover matrices A, for every calibration task. Next, “Tsai89”, “Park94”, and “Dan98” are
hand-eye calibration method, so Equation 10.4 was needed to cast the world-robot calibration
as hand-eye calibration problem. Since Equation 10.4 requires relative rather than absolute
transformations, we constructed all the 36 relative transformations as the input for these
methods. Finally, unlike our algorithm, none of the methods require prior knowledge of the
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hand-eye transformation X. To reflect this fact, we run our algorithm—marked as “mwbc” in
the plots—four times using X recovered by its competitors. We have also added a fifth case
that uses the ground truth X, marked as “oRx”.

Image Noise Experiment. To simulate the influence of image noise on the calibration
accuracy we corrupted the projections u;; in each calibration task with Gaussian noise in
the image domain in 13 noise levels, o € (0,3) px in !/4px steps. Figure 10.3(a) shows the
mean error of the rotational part Rz as the angle 6 of the rotation R} RS' such that 0 < 0 < 7
with RE® being the ground truth rotation. Here “mwbc” slightly outperforms the methods
from which it inherited the hand-eye transformation X. Figure 10.3(b) shows the mean error
of the translational part t; as ||tz — t%tH /|1t |; t£" being the ground truth translation. In
this regard “mwbc” performs better except for “mwbc+Dorn98” combination. The most in-
formative, however, is Figure 10.3(c), were the quality of the complete transformation Z is
gauged. We uniformly sampled the workspace of the robot with n = 9240 points Y ;. Fig-
ure 10.3(c) shows the mean distance between points transformed into the coordinate frame
of the cameras using recovered transformations Z, X and using ground truth transformations
78*, X&', Specifically,

9 n
E= 9in > |IxBizY; — x&'BzEY,|| . (10.29)
i=1 j=1
Using this measure, we can see “mbwc” to outperform its competitors by the factor of two,
with “mwbc+Dorn98” being an exception.

For reference, Figure 10.3(d) shows the mean value of the objective function F’ divided
by the number of projections of the respective calibration task. We call this measure normal-
ized problem cost.

Joint Noise Experiment. To see how our method performs in the presence of joint noise,
we generated 1000 calibration tasks using the same procedure used the image noise experi-
ment. Next, we recovered the joint coordinates [150] of the virtual MA 1400 manipulator for
every pose B; with respect to the Denavit—Hartenberg convention using the inverse kinemat-
ics [150]. Then, we corrupted the joint coordinates by random offsets—we used the same
offsets for the joint coordinates of the same task—in 11 noise levels, o € (0,0.25) deg in
steps of 0.025 degrees. Finally, we recovered noised poses B; as the forward kinematics task.
To further simulate the real world conditions, we corrupted projections u;; by image noise
of 0 = 0.5 px for every joint noise level.

Figures 10.4(a—d) show the resulting plots based on the same error criteria that were used
in Figures 10.3(a—d). The results are analogous to the results of the image noise experiment,
albeit with smaller performance gain of the “mwbc” based methods and with significantly
larger errors. This is to be expected, since this time the input data was significantly noisier.
Again, “mwbc+Dorn98” looses on the rest of the “mwbc” methods. However, Figure 10.4(c)
shows “mwbc+Tsai89”, “mwbc+Park94”, and “mwbc+Dorn98” outperforming the rest.

10.5.2 Real Data Experiment

Figure 10.5(a) shows an overview of the setup used for the real data experiment. We used
a real MA1400 serial manipulator with a Xtion Pro sensor attached to its 5th link, see Fig-
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Figure 10.4: Results of the joint noise experiment. (a) Error of Rz in degrees, (b) relative error
of tz, (c) 3D error of the transformation Z (see Equation 10.29), (d) value of the objective
function F”.

(b)

Figure 10.5: Real data experiment setup. (a) “Fisheye” view of the calibration setup. (b) De-
tail of the Xtion Pro sensor and the robot’s end effector.
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Figure 10.6: Real data experiment results. The plots show values of normalized problem
cost obtained for smaller (a) and larger (b) calibration grid. The numbers match to the cal-
ibration methods as follows: (1) “Tsai89”, (2) “Park94”, (3) “Dan98”, (4) “Dorn98”, (5)
“mwbc+Tsai89”, (6) “mwbc+Park94”, (7) “mwbc+Dan98”, (8) “mwbc+Dorn98”.

ure 10.5(b). OpenCV [2] library was used to obtain the internal calibration of the sensor.
We constructed two calibration tasks using calibration grids of different dimensions. In both
cases the calibration sequence consisted of 9 images of a 21 x 15 points calibration grid with
an “L” shape in the middle to help determine the grid’s orientation. The point spacing was
16 mm in the case of the smaller calibration grid, 40 mm in the case of the larger grid. Vali-
dation sequences of 2 images each were also taken. See Figures 10.2(a—b) for sample images
from the calibration sequences.

Since in this case there were no ground truth hand-eye and world-base calibrations avail-
able, we only show the normalized problem cost measure plots. Figures 10.5(a—b) show such
plots for different calibration methods for smaller and larger calibration grid respectively. As
in the case of the synthetic data experiments, we used methods “Tsai89”, “Park94”, “Dan98”,
and “Dorn98” and their respective combinations with our method to perform the calibration.
The plots show that the “mwbc” based methods outperform its competitors on both calibra-
tion and validation sequences. The plots also show that the results are systematically better
for larger calibration grids. This suggests that larger calibration grids might be preferable for
the world-base calibration in case of this setup.
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Hand-Eye and Robot-World
1 1 Calibration by LMI Relaxations

There is no subject so old that something new cannot be said about it.

— Fyodor Dostoyevsky

In this chapter, we propose a set of iterative methods to solve hand-eye and robot-world cali-
bration. Unlike the calibration techniques presented in the previous chapters, these methods
do not work with image measurements directly and require the absolute camera poses A’ to
be known. While working with image measurements directly can indeed eliminate the errors
resulting from explicit computation of absolute poses A, such an approach is only applicable
in situations where the image correspondences are available, which may not always be the
case. The proposed methods do not require initial estimates and provide globally optimal
solutions in Lo-norm. Further, these methods solve for the rotational and translational part
simultaneously. This is achieved by formulating the hand-eye and robot-world calibration
problems as multivariate polynomial optimization problems over semialgebraic sets and by
solving them using the method of convex linear matrix inequality (LMI) relaxations pre-
sented in Section 6.2.1.1.

11.1 Introduction

Let us briefly review the hand-eye and robot-world calibration problems from Sections 5.1
and 5.2. Let’s suppose that the hand-eye robotic system has been manipulated into two
distinct poses, see Figure 5.2. Let’s denote the absolute camera poses A} and A},. We can
express the camera’s relative pose as

-1
t Ry ty Ry ty -
A:<§§r 1A>:(0};2 11;2)(06% i1> :A/2A/11>

where Ry, € SO(3) is a 3 x 3 rotation matrix and t, € R? is a translation vector. Analogically,
relative movement of the robotic end-effector can be described as

-1
(0 1)-(3r) ()

with B}, B, € R*** being the respective transformations from the end-effector’s coordinate
system to the robot base coordinate system. Assuming we know the transformations A and B,
the problem of finding the rigid transformation X € R*** from the coordinate system of end-
effector to the coordinate system connected with the camera can be expressed analytically
using the following kinematic loop:

AX = XB. (11.1)

105



11.1. Introduction

Figure 11.1: Hand-eye (X) and robot-world (Z) transformations. A hand-eye system is de-
picted in two different poses.

All of the earliest researchers investigating this problem realized that System 11.1 is under-
determined and that two poses are not enough to uniquely determine the transformation X.
In [149], Shiu and Ahmad showed that at least two relative motions with non-parallel rota-
tional axes are needed. In practice, several relative motions are executed, leading to a set of
matrices A;,B;, = = 1,...,n and to an overdetermined and—unless we can measure A;, B;
with perfect accuracy—noisy system of equations

System 11.2 can be further decomposed in into a rotational matrix equation and translational
vector equation

RAZ-RX - RXRB” (113)
RAZ-tX + tAi - thBi + tx. (114)

Notice that Equation 11.3 does not depend on the unknown translation tx. Once rotation Ry
is known, Equation 11.4 leads to a system of linear equations in tx and the translation can
be easily determined using tools of linear algebra. This fact has been exploited by all of the
earliest solution strategies.

In [33], Chen employed the screw motion theory, see Section 3.5, to investigate the nec-
essary and sufficient conditions for the solutions of Equation 11.2. Chen concluded that in
the case of noisy inputs the computation of Rx and tyx should not be decoupled, because oth-
erwise the generality of the result would be negatively affected. In [43, 44], Daniilidis and
Bayro-Corrochano showed how to parametrize Equation 11.2 using the algebraic counter-
parts of screws—dual quaternions—and how to solve for rotational and translational parts of
X simultaneously. Another simultaneous solution to Equation 11.2 was proposed by Andreff
et al. in [8] using the Kronecker product. However, their solution needs to be followed by a
orthogonalization of the rotational part Ry.

Several researchers also proposed iterative solutions to Equation 11.2. In [194], Zhuang
and Shiu proposed an iterative non-linear method to minimize function Y7 ||A;X — XB;||*
to simultaneously estimate the rotational and translational parts of X. As a part of [81],
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Horaud and Dornaika also proposed a simultaneous iterative method based of quaternions
and Levenberg-Marquardt non-linear optimization [119]. They observed that the method
performed well only after introducing two ad hoc selected scaling factors. Both methods
need to be provided with an initial solution estimated and depending on its accuracy may
not converge to the global optimum. In [191], Zhao suggested an iterative method that
is guaranteed to converge globally optimally based on Second Order Cone Programming.
However, his iterative method does not enforce the orthogonality of the rotation matrix and
thus suffers the same rotational error propagation as does the method [8].

In [193], Zhuang et al. extended the hand-eye calibration problem to also include cali-
bration of the robot-world transformation Z, see Figure 5.2. Their method uses quaternion
rotation representation to solve an equation analogical to the Equation 11.2,

AN'X=2ZB,i=1,...,m, (11.5)

where Z € R*** represents transformation from the robot base coordinate system to the
world coordinate system. In this case, the kinematic loop is closed using the absolute camera
and robot poses A’, B.. Dornaika and Horaud [46] suggested a different solution, also based
on quaternions. In [7], Li et al. proposed two different solutions based on Kronecker product
and dual quaternions, analogous to the solutions to the hand-eye calibration problem in [8]
and [44], respectively.

In previous chapters, several calibration methods were proposed that use image measure-
ments directly, instead of using them to compute matrices A} as a pre-step. This approach
can also be seen in works [146, 91, 14]. While such an approach can indeed eliminate the
errors resulting from explicit computation of matrices A., it is only applicable in situations
where the image correspondences are available, which may not always be the case.

In this chapter, we propose a set of iterative methods to solve hand-eye and robot-world
calibration based on Equations 11.2 and 11.5 that do not require initial estimates and provide
globally optimal solutions in Lo-norm. Further, these methods solve for the rotational and
translational part simultaneously. In the experimental section, we provide a few implemen-
tation details and show the performance of the proposed solution using both synthetic and
real data calibration scenarios.

11.2 Hand-Eye Calibration

In this section, three formulation of the hand-eye calibration problem are presented. In the
first two, we formulate two parametrizations of of the following minimization problem:

n
i A;X — XB||
XelglEr(lg);H ; i,

i.e., the minimization the Frobenius norm

M1 = /S0 Y g2 = /o)
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on the special Euclidean group

SE(:),)Z{(ORT ';)‘Reso(s),teﬂ@}.

The third formulation uses the dual quaternion parametrization to minimize the vector Lo-

norm
n
ming ‘
*

where a;, f)i, qx are the dual quaternion representations of A;,B;, and X, respectively, and ®
is the dual quaternion multiplication.

All three formulations lead to the multivariate polynomial optimization problems. How-
ever, for the sake of brevity we will not cite the explicit form of the polynomials. The fact
that these formulations are indeed polynomial can be easily checked by any tool for symbolic
algebra computation.

2
a;®qgx —qx ®b;

Y

11.2.1 Orthonormal parametrization

As is the case with all linear maps on finite-dimensional vector spaces, a rotation can be
always expressed by a matrix R, in this case of size 3 x 3. Since a rotation maps orthonormal
basis of R? to another orthonormal basis, the columns u,v,w € R? of the matrix R =
(u, v, w) themselves must form an orthonormal basis. The fact that the columns of R form a
orthonormal basis can be also written as

viv=1l u'u=1,

viu=0, vxu=w.

This constitutes 6 constraints on the elements of the matrix R, leaving it with 3 degrees of
freedom. Using these constraints, we can parametrize the homogeneous transformation X as

X(u,v,t) = ( Au,v) ¢ ) |

where R(u, v) = (u,v,u x v). This leads to the following parametrization of the hand-eye
calibration problem:

Problem 11.1 (uvhec method).

minimize f;(uy, vy, tx) =
2?21 ||A,L'X(ux, Vx, tx) - X(uX7 Vx, tX)BlHQ

subjectto uyux = 1,v, vx = 1,u, vy = 0.

The objective function f; of Problem 11.1 is a polynomial function of degree 4 and it is
composed of 123 monomials in 9 variables.
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11.2. Hand-Eye Calibration

11.2.2 Quaternion parametrization

Quaternions, @@, form a four-dimensional associative normed division algebra over the real
numbers. A quaternion q € QQ consist of a real part and an imaginary part and is usually
denoted as

q=q + @i+ g+ qk,

where i, j, k are the imaginary units such that
i’=j=k*=ijk=—1.
As a set, quaternions are equal to R* and it is sometimes useful to write them as vectors

a= (g0 ¢ 0) =(@a’)

where q € R? is the imaginary part of the quaternion. Addition of two quaternions p,q € Q,
. ( ,-r)T . ( ,T)T . ival .. . 4 . .. .
Pp=(p,P') .a=(q1,q is equivalent to addition in R*. Quaternion multiplication,

however, does not have a counterpart operation on vector spaces:

pxq=((pg—p'a(ma+ap+pxa’)’.

Because the group of unit quaternions with multiplication, modulo the multiplication by
—1, is isomorphic to the group of rotations with composition, they can be used to represent
rotations. Rotation about axis & = (a1, a0, 3) ", ||x|| = 1, by angle 6 is represented by

qc€Qas
0 . . .0
q=cosg + (114 aoj + aszk)sin 3

. . . . . N\ T
The unity of a quaternion can be expressed using the quaternion conjugate q* = (ql, —qT)
as q* * q = 1 or using the inner product as q' q = 1. Transformation X can be parametrized
using the unit quaternion q = (q1, g2, ¢3, q4) as

X(q,t) = ( Ré?) 11: ) :

C+E-3-2¢7  2qq3-2quq 2¢2q4+2q3q1

where

R(q) = 2023 -F2uqn @i —a3+a3—43 2@30—2¢q
29294 —293q1 293qa+292q1 45 —d5—q3+243

is the quaternion parametrization of a rotation matrix. This leads to the following parametriza-
tion of the hand-eye calibration problem:

Problem 11.2 (ghec method).

minimize fo(qx, tx) =

Sy (1A% (ax, tx) — X(ax, tx)Bi|”
subjectto q, qx = 1,
qx1 = 0.
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11.2. Hand-Eye Calibration

The objective function f, of Problem 11.2 is a polynomial function of degree 4 and it is
composed of 85 monomials in 7 variables. Since the unit quaternions are a double cover
of SO(3), function f, has at least two global optima f5(q53,t5) = fo(—aj, t5). To help the
SDP solver, we add the semialgebraic constraint gxz; > 0 to Problem 11.2 to eliminate one
of the global optima in the majority of cases, that is when gy; # 0. The algebraic constraint
q, qx = 1 enforces the unity of the resulting quaternion.

11.2.3 Dual Quaternion parametrization

Dual quaternions are the algebraic counterparts of screws. They form a Clifford algebra; a
dual quaternion q € H can be represented in the form

4=q+eq,
where q,q" € Q and € is the dual unit, ee = 0, that commutes with every element of the
algebra. It is also convenient to write dual quaternions as vectors (q',q’") T, since the set of
o o . N . T
dual quaternions is equal to R®. Addition of two dual quaternions p,q € H, p = (pT, p T) ,

. T. . . e .
q = (qT, q T) is equivalent to addition in R®. Multiplication can be expressed using
quaternion multiplication as

pRa=((p*q),(pxd +p' xq)')".

Similar to the way rotations in R? can be represented by the quaternions of unit length, rigid
motions in R? can be represented by unit dual quaternions [122]: rotation represented by a
quaternion p € Q followed by translation t € R is represented by the dual quaternion

alp.t) = (", ((0,5t")" *p)")".
T /*T>T

Unity of a dual quaternion q can be expressed using its conjugate ¢* = (q* ', q
q" ® q = 1 or using the quaternion parts as

as

a'q=1 and qigs + q206 + G397 + qugs = 0.

Let &;, b; be the dual quaternion representation of transformations A;, B;, respectively.
Since Equation 11.2 can be expressed using dual quaternions multiplications as

4 ®aqr = Gx ® by, (11.6)

where qy is the dual quaternion representation of the transformation X, we can recover X
using the following formulation:

Problem 11.3 (dghec method).

minimize f(éx) = S0 || © ax — a0 by
subjectto q, qx = 1,
Ix19x5 T Gx29x6 + Gx3qx7 + Gxagxs = 0.
qx1 = 0.
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11.3. Simultaneous Hand-Eye and Robot-World Calibration

The objective function f3 of Problem 11.3 is a polynomial function of degree 4 and it is
composed of 177 monomials in 8 variables. Again, additional constraint gx; > 0 is added to
eliminate one of the two global optima in most of the cases. Since we are using dual quater-
nions directly, we have to take care of the orientation ambiguity of the rotational quaternions
a;, b; when converting matrices A;, B; into dual quaternions a;, Bi. This is due to the fact that
even though quaternions a;, —a; and b;, —b; represent the same rotation, the sign matters
when Equation 11.2 is expressed using dual quaternions, i.e.,

a;(a;,ty,) qx — qx ® Bi(butBi) #a;(—a;,ty,) q4x —qx ® Bi(butBi)-

To check the “compatibility” of the quaternions a; and b, the screw congruence theorem [33]
can be used. It provides a necessary condition for the solution of Equation 11.6:

,0qx =qx ® Bz = (a1, a,1)T = (b, bll)T‘

Dual quaternions were first applied to the hand-eye calibration problem by Daniilidis
and Bayro-Corrochano in [43, 44]. Their method, however, does not make use of all of the
information in the camera and robot motions. Since the method assumes that (ay,a}) "
(by,0,)T, it only uses the imaginary parts a;, a/, b;, b}. In [116], Malti and Barreto pro-
posed a method based on dual quaternions that uses also the real components, however their
solution does not solve for rotation and translation simultaneously.

11.3 Simultaneous Hand-Eye and Robot-World Calibration

Due to the apparent similarity of Equations 11.2 and 11.5, analogies to Problems 11.1, 11.2,
and 11.3 can be formulated for the simultaneous hand-eye and robot-world calibration prob-
lem.

11.3.1 Orthonormal parametrization

Problem 11.4 is based on orthonormal parametrization of Equation 11.5. The objective func-
tion f; is a polynomial function of degree 4 and it is composed of 280 monomials in 18
variables.

Problem 11.4 (uvherwc method).

minimize fy(ux, vx, tx, Uz, vz, tz) =

~ 2
2211 ||A; IX(uX7VX7tX) - Z(uZJVZJtZ>B§“
subjectto ujux = 1,vy vy = 1,u; vy =0,

u,uz=1,v,v; =11, v; =0.
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11.4. Experiments

11.3.2 Quaternion parametrization

Problem 11.5 is based on quaternion parametrization of Equation 11.5. The objective func-
tion f5 is a polynomial function of degree 4 and is composed of 209 monomials in 14 vari-
ables.

Problem 11.5 (gherwc method).

minimize f5(qx, tx, dz, tz) =

m — 2
Zi:1 HA; IX(QX,tx) - Z(Qz,tz)BgH
subjectto qy qx = 1, qr > 0,
a;4qz =1, gz1 > 0.

11.3.3 Dual Quaternion parametrization

Problem 11.6 is based on quaternion parametrization of Equation 11.5. Note that a; is the
dual quaternion representation of transformation A;~'. The objective function f; is a polyno-
mial function of degree 2 and it is composed of 112 monomials in 16 variables.

Problem 11.6 ( dgherwc method).

2

minimize f5(dx) = >0, ||&) @ dx — Gz © b}
subjectto qyqx =1, gx1 > 0,q;qz =1, qz1 > 0,
gx1Gx5 + qx2qx6 + qx3qx7 + Gxaqxs = 0,

471925 + Gz29z6 + Gz34z7 + qzagz8 = 0.

As is the case of Problem 11.3, we need to take care of the orientation ambiguity of the rota-
tional quaternions a;, b;. This time however, the screw congruence theorem does not apply.
The obvious solution it to try all of the 2™ sign combinations and keep the combination with
the smallest value of fs(q;). Running the SDP optimization 2™ times can be quite compu-
tationally expensive, so in our experiments we use the dual quaternion method of Li [7]—
which needs to be run 2" times in practice as well, since it suffers from the same quaternion
ambiguity problem—to recover the sign combination before running the SDP solver, because
it runs faster. The sign problem is also inherent to the method of Dornaika [46].

11.4 Experiments

In this section we present both synthetic and real data experiments to validate the proposed
calibration methods. For the real data experiment we used a Motoman MA1400 serial 6-
DOF manipulator with an Asus Xtion Pro sensor rigidly attached to it. The Xtion Pro sensor
was equipped with a camera with the resolution of 640 x 480 pixels. We simulated the same
setup in the synthetic experiment in order to better judge the result of the experiment with
real data.
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11.4. Experiments

11.4.1 Implementation

We implemented all 6 calibration methods in MATLAB using GloptiPoly [79], an interface
that automatically constructs LMI relaxations of polynomial problems and converts them
into a format understandable by the SDP solver SeDuMi [168]. Further, GloptiPoly can also
recover the solution to the original polynomial problem and certify its optimality. Using
YALMIP toolbox [106], the SeDuMi format can be further converted into the input formats
of several other SDP solvers. In our experiments, we used the LMI relaxations of the second
order and SeDuMi 1.3 and MOSEK [1] 7.0 as SDP solvers. GloptiPoly certified that global
optimum has been reached by all the methods for all the problem instances encountered dur-
ing the experiments. The following table sums up the relevant information on the proposed
methods:

8 =2 Z = @

5| E|®| S 3 E E
=z la| = = = =
whec | 9| 4] 124 715| 145 045
ghec | 7| 4] 85| 330| 048] 029
dghec | 8| 4177 | 495| 099 | 0.46
uvherwe | 18 | 4 | 280 | 7315 | 953.76 | 60.89
gherwe | 14| 4209 | 3060 | 68.38 | 7.91
dgherwe | 16 | 2 | 112 | 4845 | 309.25 | 16.85

1SeDuMi,?MOSEK

To obtain the timings, we used a 3.5GHz Intel Core i7 based desktop computer running 64-
bit Linux. The presented times include time spent in the SDP solver as well as GloptiPoly
and YALMIP overheads. To gauge the sizes of the SDP problems involved, the column
“Moments” specifies the number of moments (dimension of vector y in Problem ??) in the
second order LMI relaxation for the respective method. Note, that even though the objective
functions f; depend on n or m, i.e., on the number of relative motions or poses, the number
of monomials does not. This means that the sizes of the LMI relaxations and the sizes of the
resulting SDP problems also do not depend on n or m and are constant.

As a pre-step to all of the methods, we scale the translations t,,, tg, by the factor of
a = max; {||ty,] , ||ts,||}, so that the length of the longest translation is 1. This helps with
the convergence of the SDP solver and removes the influence of the chosen physical units
on the accuracy of the result. In cases where tx and t; are explicitly optimized, we add one
or two more constraints t; ty < 2, tZTtZ < 10. These constraints result from the way our
experiments were constructed and are not technically necessary, however, they help the SDP

solvers to further speed-up the converge. In the experiments, we set the SeDuMi parameter
eps = 10~%° and the MOSEK parameters MSK_DPAR_INTPNT_CO_TOL_{P|D3FEAS=10"2C .

11.4.2 Synthetic Experiments

In the synthetic experiments, we investigated the influence of both image and joint noises
on the calibration accuracy. We placed a virtual planar calibration target consisting of a grid
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Figure 11.2: Synthetic data experiment results. (a—b) Image noise experiment. (c—d) Joint
noise experiment.

of 16 x 16 known points in front of a simulated MA1400 serial manipulator. The distance
between the points was set to 12.5 mm in each direction, making the calibration target 200 x
200 mm in size.

To create a calibration task, we started with 9 camera poses A, randomly generated onto
half-sphere of radius of ~ 30 mm oriented as to face approximately the center of the cali-
bration target. To simulate the typical situation when the camera faces approximately the
same direction as the robot’s end effector, a hand-eye rotation Ry was randomly generated so
that the rotation corresponded to identity to a up to 5° degrees difference in each axis. The
translation tx was randomly generated to move the camera up to ~ 200 mm away from end
effector. The arm poses B, were computed using the camera poses and the hand-eye trans-
formation as X~'A}. Finally, we generated a robot-world transformation Z using a random
rotation and a random translation up to ~ 2000 mm in length and used Z to transform the grid
points from the robot into the world coordinate system. We generated 10 sets of 9 camera po-
sitions, 10 hand-eye transformations and 1 robot-world transformation and combined them
into 100 calibration tasks. For every calibration task, we also computed all possible relative
movements A;, B;, 7 = 1,...,36 to be used by the hand-eye calibration methods. In order
to better judge the accuracy the proposed methods, we implemented several hand-eye and
robot-world calibration methods to compare them against: Park94 [134] and Dan98 [44], as
representatives of hand-eye calibration methods, and Dorn98 [46] and Lil0, the dual quater-
nion variant of [7], as representatives of simultaneous hand-eye and robot-world calibration
methods.
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11.4. Experiments

(b)

Figure 11.3: Real data experiment setup. (a) Detail of the Xtion Pro sensor and the robot’s
end effector. (b) Examples of input images.

Image Noise Experiment

To simulate the influence of image noise, we projected the calibration points into 640 x 480
pixel images using the generated camera poses A, and corrupted the image projections u;;
in each calibration task with Gaussian noise in 13 noise levels, o € (0, 3) px in !/4px steps.
Finally, we recovered noised camera poses A} using EPnP algorithm [101].

In order to evaluate the performance of the hand-eye and robot-world calibration methods
uvherwc, gherwc, and dgherwc, we have sampled the virtual workspace of the robot—a
cube of size 70 x 70 x 70 cm around the calibration target—with uniformly distributed ¢ =
9240 points Y ;. Using these points, measured in the robot coordinate frame, we defined a
calibration error measure F'(X, Z) that expresses the error of the calibration as the difference
of the positions the workspace points transformed into the camera coordinate frame using
the computed transformations X, Z and the ground truth transformations X8, Z8* . Formally,

XB,1z7178Y; — x'B7VY || .

¢
E(X, Z) = i Z?:I Zj:l

To evaluate the performance of the hand-eye calibration methods uvhec, ghec, and dghec, we
do not have to transform the points Y ; into the world coordinate frame first, so we defined a
slightly simpler 3D error function

36 L ’_ ’_
E,<X) = ﬁ Zi:1 Zj:l HXBi le - thBi le

Figure 11.2(a) shows the mean of the values E’(X) for all 100 calibration tasks for dif-
ferent methods and image noise levels. It shows the best performance by the method dghec
followed by Dan98 and finally by Park94, uvhec, and ghec, all with the same performance
level. In this experiment, we used SeDuMi as the SDP solver.

Figure 11.2(b) shows the same statistics for the values of F'(X, Z) and suggest quite com-
parable performance of methods Dorn98, uvhewrc, and ghewbc. This time, the dual quater-
nion formulations Li/0 and dgherwc performed worse that the other methods. In this exper-
iment, we used MOSEK as the SDP solver. This resulted in much faster convergence times,
but also in slightly worse accuracy for the lower noise levels.

115



11.4. Experiments

2.5 2.5
_| & g 2 8 2
HN I 5 |7 5
o T I SLsp - T {515
[ o
£ | ! | | | = g I | g T
g2 g 2[ £ 1 EE '§1$ - -
|5} O - -
Q (%) — B~ =
& 2 1 - g 9 EE =
glg QBQ £ 1 EE &‘3‘0'5\ T EO'S 1 é é
~ 4 E obd L L L L 0 1 1
L T 1
obLt L 1 1L 1 0 T T
[ele] BOB o0 80_8
I ¥ o 2 S B o 2 9 =
S & 9 Q N X 9 Q
B EFETEEE Y Es 2zt
£ A 3 & g £ A 538 5 & A A4 3 T o A 3 5 T ©

(a) (b) () (d)

Figure 11.4: Real data experiment resuts. (a) Reprojection errors ¢;; of the calibration image
set (b) Reprojection errors e;j of the validation image set. (c) Reprojection errors e;; of the
calibration image set (d) Reprojection errors ¢;; of the validation image set. (the red line
marks the median, the edges of the box are the 25th and 75th percentiles)

Joint Noise Experiment

In this experiment, we simulated the performance in the presence of joint noise. We started
with the same 100 calibration tasks as in the case of the image noise experiment. Further, we
recovered the joint coordinates [150] of the virtual MA 1400 manipulator for every pose B
with respect to the Denavit—Hartenberg convention. Next, we corrupted the joint coordinates
by random offsets—we used the same offsets for the joint coordinates of the same task—in
11 noise levels, o € (0,0.25) deg in steps of 0.025 degrees. Finally, we recovered noised
poses B using the forward kinematics. To further simulate the real world conditions, we
corrupted projections u;; by image noise of ¢ = 0.5px for every joint noise level. We
evaluated the performance using the same error measures F/(X,Z) and E'(X).

Figures 11.2(c) and 11.2(d) show the mean of the values E’(X) and E’'(X,Z). Again, the
method ghec outperforms its competitors, whereas the dual quaternion formulations lose on
the rest in the simultaneous hand-eye and robot-world calibration experiment.

11.4.3 Real Data Experiment

For this experiment, we used a real MA1400 serial manipulator with a Xtion Pro sensor
attached to its Sth link, see Figure 11.3(a). We manipulated the robotic arm into 10 poses B,
and acquired a calibration image set consisting of the same number of images of a 30 x 30
points calibration grid. The grid was placed ~ 1 m in front of and ~ 0.5 m above the base of
the robotic arm. The point spacing of the calibration grid was 24 mm. We also acquired a
validation image set consisting of 3 images. See Figure 11.3(b) for example images from the
calibration sequences. Next, we used OpenCV [2] library to obtain the internal calibration
matrix K [64] of the sensor as well as the camera poses A}, i = 1,...,13.

Since there was no ground truth information available, we had to use a performance
measure different from E(X,Z) and E’(X) used in the synthetic data experiments. Suppose,
that a function P (Y, A}, K) projects calibration grid points Y; € R3, j = 1,...,900 in the
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world coordinate frame into the i-th image taken by a camera described by its pose A, and
internal camera calibration matrix K. The reprojection error of the point Y; is defined as
e;j(w;, Y, AL K) = |lu;; — P(Y,, A}, K)|, where u;; are the pixel coordinates of the point
Y, in the ¢-th image. In case a calibration method recovers both X and Z, we can judge
the quality of the calibration by expressing the reprojection error as e;;(u;, Y;, ZB;X 1, K).
However, in case only transformation X is recovered, the camera pose A} can be expressed
only with the help of an additional pose A; = A} XB} 'B/X~! and we have to define modified
reprojection error ¢j; = L Y7 e (uy;, Y, ALXBTBIX T K).

Figure 11.4(a) shows the statistics of the modified reprojection errors e;j computed from
the calibration image set created by the MATLAB function boxplot for methods Park94,
Dan99, uvhec, ghec, and dghec. Figure 11.4(b) shows the same statistics, this time for the
validation image set. As is the case of synthetics data experiments, dghec slightly outper-
forms its competitors. Figures 11.4(c,d) show the reprojection errors e;; computed for the
methods Dorn98, Lil0, uvherwc, gherwc, and dgherwc for the calibration and validation
image sets, respectively.
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Conclusions

They’ve done studies, you know. 60% of the time, it works every time.

— Brian Fantana

In this thesis, the hand-eye and robot-world calibration problems were thoroughly studied.
This work contributed to the state of the art by several algorithms, mainly by the branch-
and-bound method for hand-eye calibration. This method is the first that does not require
camera poses as the input. In the following, novel contributions of each chapter are briefly
summarized.

Chapter 7 presented a SfM-based hand-eye calibration method formulated as an L.-
norm optimization problem. This formulation recovers the hand-eye displacement with the
correct scale using image correspondences and robot measurements only. In addition, opti-
mality of the resulting displacement with respect to the reprojection error is guaranteed. The
performance of this novel SfM based hand-eye calibration method was successfully validated
by both synthetic and real data experiments.

In Chapter 8, we removed the requirement for known camera extrinsics from the hand-
eye calibration problem. Since the algorithm is completely independent on the scene ge-
ometry and scale, there is no need for a known calibration device and the calibration can
be performed solely from a general scene. Not only this makes the method immune to the
errors introduced by calibration device manufacturing process but also increases the calibra-
tion space to virtually arbitrary size. The theory shows that the algorithm is guaranteed to
be globally optimal with respect to L..-norm. Further, the experiments show that the algo-
rithm is also practically useful, since it is highly parallelizable and competitive in situation
where a calibration device is lacking in precision or is impractical due to the calibration
space requirements.

In Chapter 9, we presented the first minimal problem of hand-eye calibration for the
situations where the gripper’s rotations are not known. We formulated the problem as a
system of seven equations in seven unknowns and solved it using the Grobner basis method
for solving systems of polynomial equations providing the first exact algebraic solution to
the problem. This solution uses the minimal number of two relative movements. Further, we
showed how to select the geometrically correct solution using additional relative movements.
Finally, our experiments showed that the proposed solver is numerically stable, fast and—
since it can handle noisy inputs—that its results can be successfully used as initialization of
subsequent minimization methods.

Chapter 10 presented a novel solution to the robot-world calibration problem. We for-
mulated the world-base calibration problem as a problem of multivariate polynomial mini-
mization and used the method of LMI relaxations to solve it. The experiments showed that
LMI relaxation of the second order is enough to lead to certifiably globally optimal solutions
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for all calibrations task studied. The experiments also showed that the presented method
outperforms the traditional approaches and that it is fast and well-behaved in the presence of
both image and joint noise.

Finally in Chapter 11, we showed that the method of convex LMI relaxations can be
naturally applied to the hand-eye and robot-world calibration problems. We presented three
hand-eye and three hand-eye and robot-world calibration parametrizations and by applying
the method of convex LMI relaxations we obtained globally optimal solutions. These formu-
lations provide a new insight into the behavior and complexity of the original problem. The
ghec parametrization showed the best performance overall. Methods uvherwc and gherwc do
not necessarily provide more accurate results than the previously proposed methods, how-
ever, since they do not suffer from the quaternion sign ambiguity, the running time is constant
and not exponential in the number of poses.
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