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ABSTRACT

Thesis deals with the problem of generation, description and utilisation

of high-amplitude acoustic fields in closed cavities. A one dimensional,

second-order partial differential model equation describing a sound field

inside an axi-symmetrical variable-radius resonator is derived from basic

fluid mechanics equations. Linearised model of the coupled loudspeaker-

resonator acousto-mechanical system which includes the model of energy

losses in the boundary layer due to turbulence is presented. A new evolu-

tion algorithm-based method for optimization of the acoustic-resonator

shapes for generation of high-amplitude acoustic fields is presented. Nu-

merical results show that use of a properly optimized resonant cavity

results in substantially stronger acoustic field compared with simple-

shaped resonators of similar dimensions. An acoustic compressor is built

using the optimally-shaped acoustic resonator and a low-cost compres-

sion driver. It is shown that the performance of such a simple compressor

is comparable or better than the acoustic compressors built previously

by other researchers using non-optimally shaped resonators with more

sophisticated driving mechanisms and valve arrangements.
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ABSTRAKT

Dizertačná práca sa zaoberá problémom generovania, popisu a využitia

extrémne silných zvukových polí v uzavretýh priestoroch. Jednorozmerná

parciálna diferenciálna modelová rovnica druhého stupňa popisujúca zvu-

kové pole v osovo symetrickom rezonátore premenlivého prierezu je odvo-

dená zo základných rovníc mechaniky kontinua. Je prezentovaný lineari-

zovaný model akusto-mechanického systému, ktorý zahrňuje turbulentné

straty v okrajovej vrstve. Ďalej je predstavená nová metóda pre optimal-

izáciu tvaru akustického rezonátoru založená na evolučných algoritmoch.

Numerické výsledky ukazujú, že v porovnaní s rezonátormi jednoduchých

tvarov, použitie optimalizovaných rezonátorov umožňuje dosiahnuť výra-

zne silnejšie akustické polia. Akustický kompresor je zkonštruovaný použi-

tím optimalizovaného rezonátoru a bežne dostupného kompresného tlak-

ového reproduktoru. Je ukázané, že parametre takého kompresoru sú

porovnateľné alebo lepšie ako parametre kompresorov postavených in-

ými výskumníkmi používajúcimi neoptimalizované rezonátory s komp-

likovanejším budením a komplikovanejším systémom ventilov.
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1
INTRODUCTION

1.1 literature

High amplitude standing waves in closed cavities have been studied ex-

tensively by many researchers. Much of the effort has been devoted to

the study of finite amplitude standing waves in resonators driven at,

or close to, one of its resonance modes. In order to achieve very high

acoustic pressures, various powerful sources of excitation were used by

researches (electrodynamic shakers were used by Lawrenson et al. [37]

and Cruikshank [15], electromagnetic vibrators by Coppens and Sanders

[14]). However, no matter how strong the excitation, the maximum acous-

tic pressure amplitudes obtained in the constant cross-section resonators

were limited. It is now a well known fact that when resonators of cylin-

drical shape are excited at their resonant frequency, acoustic energy is

transferred from the fundamental harmonic component to higher harmon-

ics due to non-linear wave interactions. This leads to the distortion of the

wave profile and eventually to the formation of shock. Because dissipation

of acoustic energy is directly proportional to square of frequency, shock

formation sets the upper limit for maximum acoustic pressure in such

a resonator – the effect known as acoustic saturation. For practical pur-

poses (e. g. acoustic compressors, stabilization of electric discharges for

plasma-chemical reactors, thermoacoustic devices, acoustic mixers) this

1



1.1 literature 2

is an undesirable effect and hence several techniques for achieving high

pressure amplitudes have been proposed.

Gaitan and Atchley [20] showed that it is possible to prevent forma-

tion of shock waves in resonators with a variable cross-section, in which

energy transfer from the fundamental harmonic component to the higher

ones is significantly reduced. Major breakthrough in the field occurred

in the year 1998 when Lawrenson et al. [37] published their experimen-

tal paper in which they introduced the concept of Resonant Macrosonic

Synthesis (RMS). They showed that relative phases and amplitudes of

the harmonics can be controlled by the resonator geometry resulting in

shock-free waveforms of extremely high amplitudes. Acoustic pressure

amplitudes, which they obtained, were more than an order higher than it

had been possible before. Authors demonstrated a strong dependence of

obtained maximum amplitudes on the resonator shapes (cylindrical, con-

ical, horn-cone hybrid and bulb). Other methods for suppressing shock-

wave formation involve using multiple Helmholtz’s resonators tuned close

to the second harmonics frequency arranged along the tube described by

Sugimoto et al. [50], active feedback control where resonator is driven at

two frequencies – the fundamental harmonic and second harmonic whose

phase and gain are controlled by the feedback mechanism, see Huang

et al. [27] or utilization of the parametric amplification [21] or selective

absorbers [6].

Ilinskii et al. [30] presented in their theoretical paper a one-dimensional

mathematical model equation expressed in terms of the velocity poten-

tial for description of high-amplitude standing waves in axi-symmetric,

arbitrarily shaped acoustic resonators. The model includes nonlinearity,

viscous bulk attenuation and entire-resonator driving by an external force

(shaker-driving). They solved the model numerically in the frequency do-
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main using the Runge-Kutta method. Numerical results were in good

agreement with the experimental ones. The model was subsequently sup-

plemented to account for energy losses in the boundary-layer and the

losses due to acoustically generated turbulence, see Ilinskii et al. [31].

Chun and Kim [12] investigated numerically the influence of the shape

of an entirely-driven resonator on the compression ratio (ratio of the

maximum and minimum pressure attained at a chosen point in a res-

onator cavity during one period) using a quasi-one-dimensional model

equation based on the conservation laws integrated in the time-domain

using a high-order finite-difference scheme. From the several simple stud-

ied shapes (cylindrical, conical, 1/2-cosine and 3/4-cosine), the 1/2-cosine

offered the best performance.

Erickson and Zinn [18] used an algorithm based on the modified Galerkin-

method to solve the set of equations derived by Ilinsky et al. [30]. They

also showed that in the exponentially shaped resonator the compression

ratio strongly and non-trivially depends on its geometrical properties.

Luo et al. [39] studied theoretically the effect of the resonator shape

on its compression ratio for the case of axi-symmetric, low-aspect-ratio

exponential geometry. They found that the compression ratio decreases

with shortening of the resonator length and smaller radius-to-length ratio.

Li et al. [38] presented a method for optimization of parameters of

simple-shaped resonator cavities in order to maximize the compression

ratio. They used numerical simulations based on a nonlinear wave equa-

tion with volume acoustic energy attenuation model.

Min et al. [43] conducted experiments, showing that it is possible to

generate strongly nonlinear acoustic fields in loudspeaker-driven disso-

nant tubes.
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Resonator shapes investigated in all of the papers mentioned above

have one common feature: they were described by simple elementary

functions and more general resonator shapes were not considered.

Červenka and Bednařík [54], Šoltés and Červenka [58] and Červenka et

al. [55] used a more general approach of parameterizing acoustic resonator

shapes using control points interconnected with cubic-splines.

With the progress in both theoretical description and experimental

results in the field of high-amplitude acoustic fields a number of differ-

ent practical applications emerged, e. g. acoustic compressors, plasma-

chemical reactors [44], thermoacoustic devices [52], etc.

The possibility of constructing an acoustic compressor has been in-

vestigated by several authors (Bodine [8], Lucas [41], El-Sabbagh [16],

Masuda and Kawashima [42] and Hossain et al. [26]). Acoustic compres-

sors offer several advantages over the traditional ones. Most importantly

they do not contain moving parts which require oils to reduce friction

and wear – this is important in applications where mixing of oil with

the compressed fluid is undesirable. Moving parts also reduce reliability

of the compressor since they are subject to mechanical fatigue and fail-

ure. Another advantage is that acoustic compressors allow for a valveless

construction [41].

1.2 problem statement

This thesis aims to present an Evolutionary algorithm-based optimization

procedure for optimization of axi-symmetrical resonators based on linear

theory which includes a model of dissipation of acoustic energy in the

boundary layer. A method which allows to search in a much bigger space

of more general resonator shapes then was possible before is proposed.
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Loudspeaker driving was chosen as a means of introducing acoustic

energy into the resonator since this is probably the most interesting case

with respect to applications1.

Proposed optimization method needs to be validated experimentally

– resonator is manufactured and its performance is compared with the

theory. Practical utilisation of high-amplitude acoustic fields made pos-

sible by the optimized resonator is experimentally demonstrated by the

construction of a working example of a loudspeaker-driven acoustic com-

pressor.

1.3 overview of the thesis

Thesis is divided into three parts. In the first part the model equation for

description of standing waves in acoustic cavities is derived from the basic

conservation laws and equation of state. The model is then presented in

the form suitable for numerical calculations. Next, linearised model of the

coupled loudspeaker-acoustic resonator system is presented in a form con-

venient for application in an optimization algorithm. Moreover, a model

of acoustic energy dissipation in the boundary layer is incorporated into

the linearised loudspeaker-acoustic resonator model. Finally, after a short

review of different Evolutionary algorithms, an optimization procedure

for resonator shape optimization based on the Evolutionary strategies is

presented.

In the second part the loudspeaker-acoustic resonator system model

developed in the first part is experimentally validated. Performance of

the proposed optimization procedure is assessed and results of numerical

1 Proposed method can however work just as well with piston or entirely-driven res-

onators.
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experiments are presented and confirmed experimentally. Finally, the pos-

sibility of the construction of a loudspeaker-driven acoustic compressor

is demonstrated experimentally.

In the part III we conclude the thesis.

Details of the loudspeaker modelling are summarized in Appendix.

1.4 key thesis contributions

Several novel ideas are proposed in the thesis. First of all an Evolution-

ary algorithm-based optimization procedure which searches the space of

possible axi-symmetrical resonator shapes defined by n control-points

evenly distributed along the resonator axis of symmetry2 is presented.

This is a major difference compared with the previously used methods

which considered only resonator shapes given by elementary functions.

Moreover, the focus is on the optimization of the loudspeaker-acoustic

resonator system which was not considered before at all. Some of the

results were already published in papers [55] and [58]. A different opti-

mization constraints-handling method which was not published before is

presented in the thesis.

Furthermore, the possibility of the construction of a loudspeaker driven

acoustic compressor is demonstrated (again some of the experiments were

already published in paper [57]).

2 Resonator shape is given by the cubic spline interpolation of the n control-points.
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THEORETICAL PART



2
FLU ID MECHANICS EQUATIONS

Throughout this text the description of the acoustic field is based on

the theory of motion of a continuous fluid. Variables are described using

Euler coordinates1 in a Cartesian coordinate system. The state of the

fluid at any point r = (x1,x2,x3) and time t is given by six variables:

three velocity components v = [(v1 (r, t) , v2 (r, t) , v3 (r, t)] and three

state variables: pressure p (r, t), density ρ (r, t) and temperature Θ (r, t)

and thus system of six equations describing the relationships between

these variables are needed. Five of these equations are derived from the

conservation theorems and the last equation is the state equation of the

ideal gas2. By combining these equations, nonlinear model equation of

large-amplitude acoustic fields can be derived.

2.1 continuity equation

Continuity equation in fluid mechanics states that the mass is conserved

during the fluid motion. More specifically, we say that the increase per

time of the mass in a fixed arbitrary volume V is equal to the net influx

of the fluid through the boundary S surrounding the volume V . Mathe-

matically it is expressed as

1 Dependent variables are described in a fixed (but arbitrary) point.
2 We will be dealing with acoustic field in gases exclusively.

8



2.1 continuity equation 9

{

S

ρviνidS = − d
dt

y

V

ρdV , (2.1)

where ν = (ν1, ν2, ν3) is a normal unit vector pointing outwards from the

element area dS and ρviνidS is a notation that uses Einstein summation

convention

viνi ≡
3∑

k=1
viνi. (2.2)

Using Gauss’s divergence theorem3 we obtain

y

V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0. (2.3)

Since the volume V is chosen arbitrarily it follows that

∂ρ

∂t
+∇ · (ρv) = 0. (2.4)

Using vector identity

∇ · (ab) = a∇ · b+ (b ·∇)a,

Eq. (2.4) can be rewritten in the following form

Dρ
Dt + ρ∇ · v = 0, (2.5)

where operator D · /Dt is a substantial time derivative expressed as

Df
Dt =

∂f

∂t
+ (v ·∇) f .

3
t

V ∇ ·FdV =
v

S F ·ndS
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2.2 navier-stokes equations

Navier-Stokes equations are mathematical expression of conservation of

momentum theorem. It states that the increase per time of the momen-

tum inside a fixed arbitrary volume V is equal to the net influx per time

of the momentum inside the volume V plus the resultant of the outside

forces acting on the volume V . Mathematically it is expressed as

∂

∂t

y

V

ρvidV =
y

V

ρBidV +
{

S

σikdSk −
{

S

ρvivkdSk, (2.6)

where σik is the symmetric stress tensor and Bi is the volume force per

unit mass. Vector dS is defined as dS = νdS. Using Gauss’ theorem,

we obtain

∂

∂t
(ρvi) = ρBi +

∂

∂xk
(σik)−

∂

∂xk
(ρvivk) . (2.7)

Using Eq. (2.4) in Eq. (2.7) results in Newton’s second law of motion

ρ
Dvi
Dt ≡ ρ

∂vi
∂t

+ ρ
∂vi
∂xk

vk = ρBi +
∂

∂xk
(σik). (2.8)

It can be shown (see e.g. [9], [17]) that for isotropic viscous fluid, the

stress tensor σik is expressed as

σik = −pδik + σ′ik, (2.9)

where δik is the Kronecker’s delta4. First term on the right hand side of

this equation says that force of the value p acts on any unit area immersed

in fluid (ideal or viscous) and points in the opposite direction relative to

4 Kronecker’s delta is a mathematical operator defined as δik = 1 when i = k and

δik = 0 when i 6= k.
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the area’s normal vector. The second term, σ′ik, describes the resistance

experienced by the particles against their relative motion in a viscous

fluid. For ideal fluid

σ′ik = 0 (2.10)

and for viscous fluid, assuming the variation of the velocity field is small

enough5,

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3δik
∂vr
∂xr

)
+ δikζ

∂vr
∂xr

, (2.11)

where η is the shear viscosity coefficient and ζ is the bulk viscosity co-

efficient and both are assumed to be constants. Inserting Eq. (2.9) into

Eq. (2.7) we obtain the Navier-Stokes equations in the form

ρ

(
∂vi
∂t

+
∂vi
∂xk

vk

)
= ρBi −

∂p

∂xi
+ η

∂2vi
∂xk∂xk

+
(
ζ +

η

3

)
∂

∂xi

∂vk
∂xk

, (2.12)

or in vector notation

ρ

[
∂v

∂t
+ (v ·∇) v

]
= F −∇p+ η∇2v +

(
ζ +

η

3

)
∇ (∇ · v) , (2.13)

where F = ρB is a force per volume. Using vector identity

∇(∇ · v) = ∇2v +∇×∇× v

Eq. (2.13) can be rewritten in a more common form

ρ

[
∂v

∂t
+ (v ·∇)v

]
= F −∇p+

(
ζ +

4
3η
)
∇2v +

(
ζ +

η

3

)
∇×∇v.

(2.14)

5 Variation of the velocity field is described by the first derivative of the velocity with

regard to spatial coordinates.
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For the special case of inviscid flow, when ζ = η = 0, Eq (2.13) turns

into

ρ

[
∂v

∂t
+ (v ·∇)v

]
−F +∇p = 0. (2.15)

Eq. (2.15) together with the continuity Eq. (2.4) form a set of equations

referred to as Euler’s fundamental hydrodynamic equations.

2.3 conservation of energy

Conservation of energy law for fluid mechanics can be formulated in the

following fashion: increase per time of the energy content inside the fixed

arbitrary volume V surrounded by its boundary S is equal to the net

influx per time of the energy inside the volume V through S due to the

fluid motion, work per time done by the outside forces acting on the fluid

in the volume V and the net influx per time of the heat inside the volume

V through S. Mathematically it is expressed as

∂

∂t

y

V

ρedV = −
{

S

ρevidSi +
{

S

viσikdSk −
{

S

qidSi, (2.16)

where e is the total energy per mass and q is the heat flow density. Using

Gauss’ divergence theorem and the fact that V is arbitrary, Eq. (2.16)

can be rewritten as

∂

∂t
(ρe) +

∂

∂xi
(ρevi) +

∂qi
xi
− ∂

∂xk
(viσik) = 0, (2.17)

which is a differential form of the energy conservation theorem. Using

Eq. (2.9), Eq (2.17) can be rewritten in the following form

∂

∂t
(ρe) +

∂

∂xi
(ρevi) +

∂qi
xi
− ∂

∂xi
(pvi) +

∂σ′ik
∂xk

+ Φ, (2.18)
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where

Φ ≡ σ′ik
∂vi
∂xk

=
1
2η
(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
∂vr
∂xr

δik

)2
+ ζ

(
∂vk
∂xk

)2
. (2.19)

The total energy e is expressed as a sum of internal energy e(i) and

mechanical energy e(m)

e = e(i) + e(m), (2.20)

where mechanical energy e(m) is a sum of kinetic and potential energy.

Multiplying Eq. (2.8) by vi and assuming that Bi is conservative6, we

obtain

ρvi
Dvi
Dt = ρvi

∂Φ
∂xi

+ vi
∂σik
∂xk

, (2.21)

or using continuity equation and Eq. (2.9) we get

∂

∂t

(1
2ρv

2 + ρΦ
)
+

∂

∂xi

[
ρvi

(1
2v

2 + Φ
)]

= vi
∂σ′ik
∂xk

− vi
∂p

∂xi
, (2.22)

where v2 = vivi. Assuming that

e(m) = Φ +
1
2v

2 (2.23)

and subtracting Eq. (2.22) from Eq. (2.18) results in

∂

∂t

(
ρe(i)

)
+

∂

∂xk

(
ρe(i)vk

)
= − ∂qk

∂xk
− p∇ · v + Φ. (2.24)

For heat-conducting fluids, heat flow density vector q can be expressed,

using Fourier’s law, as

6 ρBi = −ρ ∂Φ
∂xi
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q = −κ∇Θ, (2.25)

where κ is the heat conduction coefficient and ∇Θ is the temperature

gradient7. Combining the first and second law of thermodynamics yields

the following well-known formula

de(i) = Θds− pd
(

1
ρ

)
, (2.26)

where s is entropy per mass. By substantial time derivation and using

continuity equation, Eq. (2.26) is transformed into

ρ
De(i)
Dt = ρΘ

Ds
Dt − p∇ · v. (2.27)

Using continuity equation (2.4) it can be observed that the following

formula holds for an arbitrary variable, for example for u(i) we have

ρ
De(i)
Dt =

∂

∂t

(
ρe(i)

)
+

∂

∂xk

(
ρe(i)vk

)
. (2.28)

Using Eq. (2.28) we can observe that the left-hand sides of equa-

tions (2.24) and (2.27) are equal. Putting the right-hand sides of these

equation equal and using Fourier’s law (2.25) and Eq. (2.19) results in

the following form of the energy conservation theorem

ρΘ
[
∂s

∂t
+ (v ·∇) s

]
= κ∇2Θ+ ζ (∇ · v)2 +

1
2η
(
∂vi
∂xk

+
∂vk
∂xi
− 2

3∇ · vδik
)2

.

(2.29)

In case the fluid is not heat-conducting (η = 0, ζ = 0, κ = 0),

Eq. (2.29) turns into

7 Equation holds for not-too-large temperature gradients. It is a first term of Taylor

series expansion of the q(Θ) function.
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(
∂s

∂t
+ vk

∂

∂xk

)
=

ds
dt = 0, (2.30)

which suggests that under these circumstances the entropy is constant.

2.4 equation of state

State equation for an ideal gas describes the relationship between pres-

sure, density and entropy per mass and can be derived from the first law

of thermodynamics [9]. Lets start with the relation for a perfect (ideal)

gas

de(i) = cV dΘ, (2.31)

where cV is the specific heat capacity of the fluid of constant volume.

Combining (2.31) and (2.26) results in

ds = cV
dΘ
Θ

+
p

Θ
d
(

1
ρ

)
. (2.32)

State equation of a perfect gas is expressed as

p

ρ
= RΘ, (2.33)

where R is a gas constant. Taking the logarithm of this equation results

in

ln p+ ln 1
ρ
= lnR+ ln Θ. (2.34)

By differentiating equation (2.34) following equation is obtained

dp
p

+
dv
v

=
dΘ
Θ

, (2.35)
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where v = 1/ρ is the specific volume. Substituting equation (2.35) into (2.32)

we get

ds = cV

(
dp
p

+
dv
v

)
+

p

Θ
dv. (2.36)

Using (2.33) and rearranging, eqation (2.36) can be expressed as

ds
cV

=
dp
p

+
cV +R

cV

dv
v

. (2.37)

Using Mayer’s relation R = cp− cV , where cp is the specific heat capacity

of the fluid of constant pressure, equation (2.37) is further modified into

ds
cV

=
dp
p

+ γ
dv
v

, (2.38)

where γ = cp/cV is the ratio of specific heats. By integrating this equa-

tion we get

s− s0
cV

= ln
[(

p

p0

) (
v

v0

)γ]
. (2.39)

By taking into account that v = 1/ρ and v0 = 1/ρ0 equation (2.39) can

be rewritten in the following form

p = p0

(
ρ

ρ0

)γ
e(s−s0)/cV . (2.40)

The change in entropy from its steady-state value due to acoustic wave

is in most cases very small and therefore this equation can be further

simplified, resulting in

p = p0

(
ρ

ρ0

)γ
. (2.41)

However there are cases when entropy can not be considered to be

constant. Some of these cases are
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• Extremely large amplitude shock waves.

• When acoustic wave propagates in a heat-conducting medium, where

entropy rises with the heat transfer.

• When numerous shock waves travel through the same area and

temperature locally rises.

There is no known universally valid state equation. However it is pos-

sible to express the pressure as a function of the density and the entropy

per mass using the Taylor expansion

p = p0 +

(
∂p

∂ρ

)
s,ρ=ρ0

(ρ− ρ0) +
1
2

(
∂2p

∂ρ2

)
s,ρ=ρ0

(ρ− ρ0)
2 +

+

(
∂p

∂s

)
ρ,s=s0

(s− s0) +

(
∂2p

∂ρ∂s

)
ρ=ρ0,s=s0

(ρ− ρ0) (s− s0) + ....

(2.42)

Omitting the last term, Eq. (2.42) can be rewritten in the following,

frequently used form

p− p0 ≈ A

(
ρ− ρ0
ρ0

)
+
B

2

(
ρ− ρ0
ρ0

)2
+

(
∂p

∂s

)
ρ,s=s0

(s− s0) , (2.43)

where

A = ρ0

(
∂p

∂ρ

)
s,ρ=ρ0

, (2.44)

B = ρ2
0

(
∂2p

∂ρ2

)
s,ρ=ρ0

. (2.45)

For an ideal gas, coefficients A and B are expressed as

A = ρ0c
2
0, (2.46)
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B = ρ0c
2
0(γ − 1), (2.47)

where

c20 =

(
∂p

∂ρ

)
s,ρ=ρ0

=
γp0
ρ0

. (2.48)

c0 is isentropic speed of sound. The ratio B/A, often called the parameter

of nonlinearity, is a measure of the wave distortion. It can be expressed

as

B

A
=
ρ0
c20

(
∂2p

∂ρ2

)
s,ρ=ρ0

=
2ρ0
c0

(
∂c

∂ρ

)
s,ρ=ρ0

= 2c0ρ0

(
∂c

∂p

)
s,p=p0

, (2.49)

where c is the speed of sound. Using Eq. (2.40) in Eq. (2.49), the param-

eter of nonlinearity for an ideal gas is obtained

B

A
= γ − 1. (2.50)

It can be shown (see e. g. [53]) that Eq. (2.43) can be further rewritten

in the following form

p′ = c20ρ
′ +

c20
2ρ0

(γ − 1) ρ′2 − κ
(

1
cV
− 1
cp

)
∇ · v, (2.51)

where p′ = p− p0 and ρ′ = ρ− ρ0.
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2.5 summary of the basic equations of fluid mechan-

ics

Sound waves in non-viscous, heat non-conducting fluids are described by

the system of Euler equations (Eq. (2.4), Eq. (2.15) and a state equation):

∂ρ

∂t
+∇ · (ρv) = 0, (2.52a)

ρ

[
∂v

∂t
+ (v ·∇) v

]
= F −∇p, (2.52b)

p = p(ρ). (2.52c)

Viscous, heat-conducting fluids are described by the following system

of equations (Eq. (2.4), Eq. (2.14), Eq. (2.29) and a state equation):

∂ρ

∂t
+∇ · (ρv) = 0, (2.53a)

ρ

[
∂v

∂t
+ (v ·∇)v

]
= F −∇p+

(
ζ +

4
3η
)
∇2v +

(
ζ +

η

3

)
∇×∇v,

(2.53b)

ρΘ
Ds
Dt = κ∇2Θ+ ζ (∇ · v)2 +

1
2η
(
∂vi
∂xk

+
∂vk
∂xi
− 2

3∇ · vδik
)2

, (2.53c)

p = p(ρ, s). (2.53d)

This system of equations is valid for nonlinear sound waver in viscous,

heat-conductive, homogeneous fluids in which quantities η, ζ and κ are

constant. In the case of heat-conducting gas, the state equation assumes

the form given in Eq. (2.51).



3
DESCRIPT ION OF THE NONL INEAR STANDING

WAVES IN ACOUST ICAL RESONATORS

In the following chapter the model equation for the axisymmetrical res-

onator of variable cross-section will be derived from the basic equations

of fluid mechanics presented in the previous chapter. Example of the ax-

isymmetrical resonator, with radius r(x) is shown in Fig. 1. It is assumed

that r(x)� λ, where λ is the wavelength, so that transverse modes are

not excited and only planar waves propagate inside the resonator. In this

situation acoustical quantities are function of only one spatial coordinate

x and a time t.

Figure 1: Cross-sectional view of the variable cross-section resonator.

20
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3.1 fluid mechanics equations in 1-d

For deriving one-dimensional model equations that describe nonlinear

standing waves in resonators basic fluid mechanics equations need to be

altered.

One-dimensional continuity equation for axisymmetric resonator can

be expressed as [30]

∂MD

∂t
+
∂MT

∂x
= 0, (3.1)

where MD is a fluid mass per unit length and MT is a fluid mass flux

through the resonator cross section of the radius r. They can be expressed

as

MD = ρπr2, (3.2a)

MT = ρvπr2. (3.2b)

Substituting Eq. (3.2a) and (3.2b) into Eq. (3.1) results in

∂ρ

∂t
+

1
r2

∂

∂x

(
r2ρv

)
= 0. (3.3)

In case of constant-radius resonator, Eq. (3.3) reduces to

∂ρ

∂t
+

∂

∂x
(ρv) = 0. (3.4)

By comparing Eq. (2.4) with Eq. (3.3) we find that divergence operator

∇· is in one dimension expressed as

∇ ·A =
1
r2

∂

∂x

(
r2A

)
. (3.5)

Using Eq. (3.5), momentum equation Eq. (2.14) can be rewritten for

variable-radius resonator in one-dimensional form
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∂v

∂t
+ v

∂v

∂x
= F − 1

ρ

∂p

∂x
+
ζ + 4η/3

ρ

∂

∂x

[
1
r2

∂

∂x

(
r2v

)]
, (3.6)

where F is a x-component of the volume forces vector per unit volume.

For constant-radius resonator, this equation reduces to

∂v

∂t
+ v

∂v

∂x
= F − 1

ρ

∂p

∂x
+
ζ + 4η/3

ρ

∂2v

∂x2 . (3.7)

Finally the 1-D state equation (2.51) for the ideal gas-filled variable-

radius resonator

p′ = c20ρ
′ +

c20
2ρ0

(γ − 1) ρ′2 − κ
(

1
cV
− 1
cp

)
1
r2

∂

∂x

(
r2v

)
(3.8)

and for the constant-radius resonator

p′ = c20ρ
′ +

c20
2ρ0

(γ − 1) ρ′2 − κ
(

1
cV
− 1
cp

)
∂v

∂x
. (3.9)

3.2 boundary layer

When viscous fluid moves along the wall of the resonator tube, viscous

forces cause molecules of the fluid to stick to the wall surface and hence

the component of the acoustic velocity parallel with the wall surface

tends to zero. Thin layer near the wall surface where an acoustic velocity

rapidly changes is called a boundary layer. It is assumed that movement

in the boundary layer has only a very small impact on the fluid outside

the boundary layer and that it is sufficient to use linearised equations

to describe small disturbances in the boundary layer [31]. Under these

assumptions, the continuity equation for the one-dimensional flow in ax-

isymmetric resonator with variable radius accounting for the boundary

layer effects can be expressed as [31]
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∂ρ

∂t
+

1
r2

∂

∂x

(
r2ρv

)
=

2ερ
r2

∂
(
∂−1/2 (rv)

)
∂x∂t−1/2 , (3.10)

where

ε =
√
ν

(
1 + γ − 1√

Pr

)
(3.11)

is a coefficient accounting for boundary-layer effects. ν = η/ρ0 is the

kinematic viscosity and

Pr =
ηcp
κ

(3.12)

is the Prandtl number. The minus-half-order partial derivative with re-

spect to time is defined using the following integro-differential opera-

tor [49]

∂−1/2f (t,x)
∂t−1/2 =

1√
π

∫ t

−∞

f (τ ,x)√
t− τ

dτ . (3.13)

3.3 model equation for the gas-filled axisymmetric

resonator with variable radius

For derivation of the model equation it is assumed that the fluid inside

the resonator is subject to the outside volume forces, thanks to which

the resonator cavity is moving with the acceleration a(t). Volume force

per unit volume can be expressed as

F = −ρa (t) . (3.14)

Acoustic quantities are assumed to be small
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|p− p0|
p0

=
|p′|
p0
∼ µ, |ρ− ρ0|

ρ0
=
|ρ′|
ρ0
∼ µ, |v|

c0
∼ µ,

where µ is a small dimensionless parameter, p0 is the barometric pres-

sure and p0 is the uniform density. Also it is assumed that the material

parameters η, ζ, κ ∼ µ and |a| ∼ µ2.

We limit ourselves to the second-order approximation so terms in the

respective equations of the third order and higher can be discarded and

first-order approximations are substituted in the second-order terms pro-

ducing error of the µ3 order. Regarding the derivation that follows it is

convenient to introduce a velocity potential function ϕ as

v =
∂ϕ

∂x
. (3.15)

In the first approximation the state equation (3.8) reduces to

ρ′ =
p′

c20
(3.16)

and the momentum equation (3.6) reduces to

ρ0
∂v

∂t
= −∂p

∂x
− ρ0a. (3.17)

Integrating this equation with respect to the spatial coordinate x and

introducing velocity potential leads to

p = −ρ0
∂ϕ

∂t
− ρ0ax+ p0, (3.18)

where p0 is an integration constant. Acoustic pressure p′ = p− p0 is then

expressed as

p′ = −ρ0
∂ϕ

∂t
− ρ0ax (3.19)
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and using Eq. (3.16), equation for acoustic density is obtained

ρ′ = −ρ0
c20

(
∂ϕ

∂t
+ ax

)
. (3.20)

Spatial derivatives can be eliminated by substituting the linear Webster’s

equation [7]

1
r2

∂

∂x

(
r2∂ϕ

∂x

)
=

1
c0

∂2ϕ

∂t2
(3.21)

into the second-order terms. Dropping third-order terms in momentum

equation (3.6), introducing velocity potential, substituting for acoustic

density from Eq. (3.20), using Eq. (3.21) in one of the second-order terms

and integrating with respect to the spatial coordinate x results in

p′ = −ρ0
∂ϕ

∂t
− ρ0ax+

ρ0
2c20

(
∂ϕ

∂t

)2
−

ρ0
2

(
∂ϕ

∂x

)2
+

1
c20

(
ζ +

4
3η
)
∂2ϕ

∂t2
. (3.22)

In similar manner, dropping third-order terms in continuity equation (3.10),

using velocity potential function and employing Eq. (3.16), Eq. (3.19) and

Eq. (3.21) in the second-order terms yields

∂ρ′

∂t
= −ρ0

r2
∂

∂x

(
r2∂ϕ

∂x

)
+

ρ0
2c40

∂

∂t

(
∂ϕ

∂t

)2
+

+
ρ0
2c20

∂

∂t

(
∂ϕ

∂x

)2
+

2ερ0
r2

∂1/2

∂x∂t−1/2

(
r
∂ϕ

∂x

)
. (3.23)

Differentiating Eq. (3.8) with respect to time, introducing velocity po-

tential and employing Eq. (3.16), Eq. (3.19) and Eq. (3.21) in the second-

order terms yields

∂p′

∂t
= c20

∂ρ′

∂t
+

ρ0
2c20

(γ − 1) ∂
∂t

(
∂ϕ

∂t

)2
− κ

c20

(
1
cV
− 1
cp

)
∂3ϕ

∂t
. (3.24)
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Finally, differentiating Eq. (3.22) with respect to time and using Eq. (3.23)

and Eq. (3.24) to eliminate acoustic pressure and acoustic density results

in

∂2ϕ

∂t2
− c20
r2

∂

∂x

(
r2∂ϕ

∂x

)
+

∂

∂t

(
∂ϕ

∂x

)2
+
γ − 1
2c20

∂

∂t

(
∂ϕ

∂t

)2
+

+x
da
dt −

δ

c20

∂3ϕ

∂t3
+

2c0ε
r2

∂1/2

∂x∂t−1/2

(
r
∂ϕ

∂x

)
= 0, (3.25)

where

δ =
1
ρ0

[
ζ +

4
3η+ κ

(
1
cV
− 1
cp

)]
(3.26)

is the diffusivity of sound.

Equation (3.25) is a second-order model equation describing a sound

field inside an axisymmetrical variable-radius resonator of arbitrary shape

that is moving (shaking) along its axis with acceleration a. The equation

takes into account viscosity and boundary-layer effects. For a resonator

which is not moving1 this equation reduces to

∂2ϕ

∂t2
− c20
r2

∂

∂x

(
r2∂ϕ

∂x

)
+

∂

∂t

(
∂ϕ

∂x

)2
+
γ − 1
2c20

∂

∂t

(
∂ϕ

∂t

)2
−

− δ

c20

∂3ϕ

∂t3
+

2c0ε
r2

∂1/2

∂x∂t−1/2

(
r
∂ϕ

∂x

)
= 0. (3.27)

1 Sound field excitation can be included in the boundary condition.



4
NUMERICAL SOLUTION OF THE MODEL

EQUATION

Since there is no known analytical solution to the Eq. (3.25) it has to

be solved numerically. For the purpose of numerical computation it is

convenient to introduce dimensionless variables, e. g. in the form

X =
x

lr
, R =

r

lr
, Φ =

ϕ̂

l2rω0
, Ω =

ω

ω0
,

V =
v̂

πc0
, P =

p̂′

π2ρ0c20
, A =

a

lrω2
0

, T = ωt, (4.1)

where lr is the total resonator length, ω = 2πf is the angular frequency

of the resonator excitation, f is the frequency and ω0 is the first eigenfre-

quency of a cylindrical resonator of the length lr, given by the equation

ω0 =
πc0
lr

. (4.2)

Using these dimensionless variables, Eq. (3.25) is transformed into

∂

∂X

(
R2 ∂Φ

∂X

)
− π2Ω2R2∂

2Φ
∂T 2 − π

2ΩR2 ∂

∂T

(
∂Φ
∂X

)2
−

−π4Ω3γ − 1
2 R2 ∂

∂T

(
∂Φ
∂T

)2
− π2ΩR2X

dA
dT +

+πGΩ3R2∂
3Φ
∂T 3 −

Γ√
Ω

∂1/2

∂−1/2∂X

(
R
∂Φ
∂X

)
= 0, (4.3)

where
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G =
πω0δ

c20
(4.4)

is a coefficient accounting for thermoviscous and volume dissipation and

Γ =
2ε√
πc0lr

(4.5)

is a coefficient accounting for boundary layer losses.

Eq. (4.3) can be rewritten into the set of two equations of the first–

order with respect to the spatial derivatives

∂Φ
∂X

=
W

R2 , (4.6a)

∂W

∂X
=π2Ω2R2∂

2Φ
∂T 2 +

π2Ω
R2

∂W 2

∂T
+

+ π4Ω3γ − 1
2 R2 ∂

∂T

(
∂Φ
∂T

)2
+ π2ΩR2X

dA
dT −

− πGΩ3R2∂
3Φ
∂T 3 +

Γ√
Ω

∂−1/2

∂T−1/2

(
1
R

∂W

∂X
− 1
R2

dR
dXW

)
. (4.6b)

Dimensionless acoustic pressure P and acoustic velocity V are then cal-

culated using the following formulas (from Eq. (3.22))

P = −Ω
∂Φ
∂T

+
π2Ω2

2

(
∂Φ
∂T

)2
− W 2

2R4 −AX +
G′Ω2

π

∂2Φ
∂T 2 , (4.7)

V =
W

R2 , (4.8)

where

G′ =
πω0
ρ0c20

(
ζ +

4
3η
)

. (4.9)
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Resonator excitation is assumed to be periodic and dimensionless ac-

celeration A in Eqs. (4.6) can be expressed by means of the complex

Fourier series

A (T ) =
∞∑

k=−∞
AkeikT , (4.10)

where i is the imaginary unit defined as i =
√
−1. Because acceleration

A is a real–valued function of time, it follows that A−k = A∗k, where

symbol ∗ signifies complex conjugate.

Because resonator excitation is assumed to be periodic, solution of the

Eqs. (4.6) can also be expressed using Fourier series

Φ (X,T ) =
∞∑

k=−∞
ΦkeikT , W (X,T ) =

∞∑
k=−∞

WkeikT (4.11)

and again Φ−k = Φ∗k andW−k = W ∗k , with Φ0 andW0 being real-valued

coefficients.

Derivatives of the function F (X,T ) expressed using Fourier series are

given by the following formulas

∂F

∂T
=

∞∑
k=−∞

ikFkeikT , ∂F

∂X
=

∞∑
k=−∞

dFk
dX eikT ,

∂2F

∂T 2 =
∞∑

k=−∞
−k2FkeikT , ∂2F

∂X2 =
∞∑

k=−∞

d2Fk
dX2 eikT .

Multiplication of the functions F (X,T ) and G (X,T ) is given by

FG =
∞∑

k=−∞

∞∑
j=−∞

FkGjei(k+j)T =
∞∑

k=−∞

∞∑
m=−∞

FkGk−meikT , (4.12)

where m = k+ j.
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For the purpose of numerical computation the number of harmonic

components in the Fourier series has to be finite and therefore acoustic

quantities are approximated using the following formulas

A =
N∑

k=−N
AkeikT , Φ =

N∑
k=−N

ΦkeikT , W =
N∑

k=−N
WkeikT , (4.13)

whereN is the number of harmonic components used for the computation.

k-th Fourier component of the multiplication of the functions F and G

can be expressed as

[FG]k =
N∑

m=−N+k

FmGk−m, (4.14)

for 0 ≤ k ≤ N . And again [FG]−k = [FG]∗k. Substituting Fourier series

expressions into Eqs. (4.6) a system of ordinary differential equations is

obtained in the following form

dΦk

dX =
Wk

R2 , (4.15a)

(
1− Γ√

ikΩR

)
dWk

dX = −k2π2Ω2R2Φk + ikπ
2Ω
R2

N∑
j=k−N

Wk−jWj−

−ikπ4Ω3γ − 1
2 R2

N∑
j=k−N

(k− j) jΦk−jΦj + ikπ2ΩR2XAk+

+ik3πGΩ3R2Φk −
Γ√

ikΩR2
dR
dXWk.

(4.15b)

This system of ordinary differential equations can be solved using e. g.

fifth-order Runge-Kutta method [45] with boundary conditions given by

Wk = 0 (4.16)
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for X = 0 and X = 1.

Finally, Fourier components of the dimensionless acoustic pressure and

acoustic velocity are expressed as

Pk =− ikΩΦk −
π2Ω2

2

N∑
j=k−N

(k− j) jΦk−jΦj −
1

2R4

N∑
j=k−N

Wk−jWj−

−XAk −
k2Ω2G

π
Φk, (4.17a)

Vk =
Wk

R2 . (4.17b)



5
L INEARISED MODEL OF THE

LOUDSPEAKER -ACOUST IC RESONATOR SYSTEM

5.1 linearised acoustic resonator model

Sound field inside the axisymmetrical resonator in the first-order approx-

imation can be obtained by dropping second-order terms in Eq. (3.27)

which results in the following equation

∂2ϕ

∂t2
− c20
r2

∂

∂x

(
r2∂ϕ

∂x

)
− δ

c20

∂3ϕ

∂t3
+

2c20ε
r2

∂1/2

∂x∂t−1/2

(
r
∂ϕ

∂x

)
= 0, (5.1)

which is a 1-D linear equation describing axisymmetrical, variable cross-

section, rigid-walled resonator in which thermo-viscous bulk attenuation

and boundary layer attenuation are accounted for.

Assuming steady-state harmonically varying sound field, acoustic quan-

tities can be expressed as

g (x, t) = <
[
ĝ (x) eiωt

]
. (5.2)

Substituting this formula in Eq. (5.1) results in

(
1− 2ε√

iωr

)
d
dx

(
r2 dϕ̂

dx

)
+

2ε√
iω

dr
dx

dϕ̂
dx +

ω2

c20

(
1− iωδ

c20

)
r2ϕ̂ = 0. (5.3)

Assuming the resonator is driven by the electrodynamic loudspeaker

attached at x = lr, where lr is the total length of the resonator and

32
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terminated by the rigid wall at x = 0, the boundary conditions are the

following

L
[
p̂′ (x = lr) , v̂ (x = lr) , û

]
= 0, (5.4a)

dϕ̂
dx

∣∣∣∣∣
x=0

= 0, (5.4b)

where L is a linear function of an acoustic pressure phasor p̂′, an acoustic

velocity phasor v̂ and a driving voltage phasor û modeling the louspeaker

driver. Since there is no known analytical solution to the Eq. (5.3) for a

general r(x), it has to be solved numerically. For this purpose it is conve-

nient to introduce dimensionless variables in the form given in Eqs. (4.1).

Using these variables, Eq. (5.3) can be expressed as

dΦ
dX =

W

R2 , (5.5a)(
1− Γ√

iΩ

)
dW
dX = −π2Ω2R2

(
1− iGΩ

π

)
Φ− Γ√

iΩR2
dR
dXW . (5.5b)

Equations (5.5) form a system of four linear first-order ordinary differ-

ential equations for real and imaginary parts of Φ andW variables. These

equations can be integrated numerically using e. g. fifth-order Runge-

Kutta method [45]. Boundary value problem can be solved using e. g.

the shooting method [45]. Dimensionless acoustic pressure and acoustic

velocity are calculated using the following equations

P = −iΩΦ− Ω2G′

π
Φ, (5.6a)

V =
W

R2 . (5.6b)
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5.2 loudspeaker

A loudspeaker is an electrodynamic type which can be modelled using

equivalent lumped-element circuit [56] shown in Fig. 2.

Figure 2: Lumped-element circuit of an electrodynamic loudspeaker.

Meaning of the symbols in Fig. 2 is the following: û is the phasor of

the input voltage present on the loudspeaker terminals, î is the phasor

of the electric current, v̂ is the phasor of the velocity, p̂′ is the phasor of

the acoustic pressure, B is the magnetic field strength in the magnet air

gap, l is the length of the voice coil wire, Sd is the diaphragm area,

ca =
V

ρ0c20
(5.7)

is the compliance of the air enclosed behind the diaphragm in the volume

V . Meaning of the rest of the symbols is clear from Table 1.

R2 and L2 are significant only at high frequencies [32] and therefore

will be neglected in further derivation. The relationship between input

voltage û, velocity v̂ and acoustic pressure p̂′ at the driver’s diaphragm

is given by the formula

[
ZeZ

′
m + (Bl)2]

v̂−Blû−ZeSdp̂′ = 0, (5.8)

see Fig. 2, where
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Electrical parameters

Rv Electrical resistance of the voice coil

Lv Electrical inductance of the voice coil (at low frequencies)

R2 Electrical resistance of the voice coil due to eddy currents

L2 Para-inductance of the voice coil (at high frequencies)

Mechanical parameters

mm Mass of a moving assembly (diaphragm, voice coil)

cm Suspension compliance

rm Mechanical resistance (mechanical losses)

Acoustical parameters

ca Compliance of the air behind the diaphragm

Za Radiation impedance

Table 1: List of symbols used in Fig. 2.

Ze = Rv + iωLv, (5.9)

Z ′m = Zm +
S2
d

iωca
, (5.10)

where

Zm = rm + iωmm +
1

iωcm
. (5.11)

Inserting Eq. (5.8) into boundary conditions given in Eq. (5.4) results

in

[
ZeZ

′
m + (Bl)2] dϕ̂

dx

∣∣∣∣∣
x=l

−Blû−ZeSdiωρ0ϕ̂|x=l = 0, (5.12a)
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dϕ̂
dx

∣∣∣∣∣
x=0

= 0. (5.12b)



6
ACOUST ICALY GENERATED TURBULENCE

In the following we will be dealing mostly with resonators with variable

cross-section. As shown in [37] these so-called dissonant resonators pos-

sess an important characteristic - their higher resonant modes are at

frequencies that are not integer multiples of the fundamental resonance

frequency. In effect non-linear energy transfer from the fundamental res-

onance to higher harmonic resonances is severely suppressed. As shown

in [31] in such a situation harmonic generation accounts for only about

10% to 20% of the excess losses that exceed linear losses. Most significant

factor contributing to energy losses in shaped resonators which suppress

harmonic generation is the increasing effective viscosity and thermal con-

ductivity associated with acoustically generated turbulence [31]. In the

following section losses due to turbulence in the boundary layer are esti-

mated using the eddy viscosity model. It is assumed that losses due to

turbulence in the volume of the resonator are negligible compared to the

losses due to turbulence in the boundary layer.

Viscosity coefficient can be expressed as

ηt = η+ ηe, (6.1)

where ηt is the total viscosity, η is the shear (dynamic) viscosity and ηe
is the eddy viscosity which can be expressed as

37
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ηe = ζrη


√√√√1 +

(
Re
Re0

)2
− 1

 , (6.2)

where ζr characterizes the ratio between the shear viscosity and the eddy

viscosity and is determined by matching measured and calculated dissi-

pation. Re is the Reynolds number in the boundary layer and can be

expressed as

Re =
√

2Mc0δt
ν

, (6.3)

where M is the Mach number in the boundary layer and δt is the bound-

ary layer thickness given by [36]

δt =

√
2νt
ω

, (6.4)

where νt is the total kinematic viscosity νt = ηt/ρ0. Re0 is the Reynolds

number at which transition to turbulence occurs Re = Re0 = 400. Using

the equations above we can express

ηt
η

= ν̃t = 1 + ζr

(√
1 + βM2ν̃t − 1

)
, (6.5)

where ν̃t = νt/ν = ηt/η is the normalized kinematic viscosity coefficient,

β =
4Re1ω0

πRe2
0ω

, (6.6)

where ω0 = πc0/lr and

Re1 =
ρ0c0lr
η0

, (6.7)

where lr is the length of the resonator. Normalized kinematic viscosity

coefficient can be therefore expressed as
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ν̃t = κ+
√
κ2 + 2ζr − 1, (6.8)

where

κ = 1− ζ + ζ2
rβM

2

2 . (6.9)

Eddy viscosity is taken into account by multiplying the kinematic vis-

cosity parameter in Eq. (3.11) with the normalized kinematic viscosity

coefficient ν̃ given in Eq. (6.5). Equation (3.11) is then then modified

into

εt =
√
νν̃t

(
1 + γ − 1√

Pr

)
. (6.10)

Substituting ε with εt in the system of equations (4.15) for numeri-

cal solution of the non-linear model equation Eq. (3.25) results in the

following system of equations

dΦk

dX =
Wk

R2 , (6.11a)

(
1−

√
ν̃Γ√

ikΩR

)
dWk

dX = −k2π2Ω2R2Φk + ikπ
2Ω
R2

N∑
j=k−N

Wk−jWj−

−ikπ4Ω3γ − 1
2 R2

N∑
j=k−N

(k− j) jΦk−jΦj + ikπ2ΩR2XAk+

+ik3πGΩ3R2Φk −
√
ν̃Γ√

ikΩR2
dR
dXWk.

(6.11b)

Likewise replacing ε with εt in the system of equations (5.5) for solving

linear model equation (5.3) results in
dΦ
dX =

W

R2 , (6.12a)(
1−
√
ν̃Γ√
iΩ

)
dW
dX = −π2Ω2R2

(
1− iGΩ

π

)
Φ−

√
ν̃Γ√

iΩR2
dR
dXW . (6.12b)



7
RESONATOR SHAPE OPTIMIZAT ION

7.1 introduction

There is an infinite number of different shapes the resonator can have.

Each shape having a different frequency response characteristic where

different maximum acoustic pressures correspond to different frequencies.

The optimisation problem is defined as follows: find a shape of an acoustic

resonator, subject to a given set of constraints (e. g. geometrical), which

maximizes the attained acoustic pressure amplitude inside the resonator.

To ensure that the searched shape-space is sufficiently general (i. e. not

limited to a simple elementary functions) individual shapes will have to

be defined by a number of parameters. These parameters could for ex-

ample serve as coordinates of a control points using which the resonator

shape is reconstructed by the means of interpolation (using polynomi-

als or a spline). This means that the space of possible resonator shapes

(search space) will be very complex (multi-dimensional) possibly with

many local optima. As can be seen in Fig. 3 even a two-dimensional op-

timisation problem can have a very complex search space and finding

the global optimum can be a rather difficult task. Simple methods (e. g.

gradient-based optimization) are of no use because they tend to get stuck

in local optima. Different methods for solving this kind of problems have

been proposed in the past such as random searches, simulated annealing,

and others (see e. g. [13]). Some of the most successful methods have

40
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proved to be random searches motivated by analogies with the natural

selection – evolutionary algorithms.

Figure 3: Example of a complex search space of a two-dimensional optimisa-

tion problem.

7.2 evolutionary algorithms

Evolutionary algorithms are population-based optimization algorithms

inspired by the processes of natural evolution and are a subset of a

broader field called Evolutionary computation. The three main branches

of Evolutionary algorithms are Genetic algorithms, developed by Hol-

land [25], Evolutionary strategies, developed by Rechenberg and Schwe-

fel [48] and Evolutionary programming, developed by Fogel [19]. These
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algorithms, in many ways similar to each other, all borrow ideas from the

field of evolutionary biology, i. e. take advantage of the collective learning

process of the population of individuals and use mechanisms that mimic

the processes of natural evolution.

Generally, the optimisation process has the following structure. The

algorithm starts with a population of individuals (candidate solutions to

the optimisation problem) which are spread randomly throughout the

search space. The population is then navigated towards the global opti-

mum over series of steps (generations) by means of a randomized process

of selection,mutation and (depending on the method) recombination. The

quality of different candidate solutions – their fit is measured by means of

objective function to be optimized. Individuals with higher fitness value

have a better chance to be promoted by the selection operator to become

parents of the next generation than those with lower fitness value. Re-

combination operator (analogous to the sexual reproduction) determines

how offspring are created from the parent population. Mutation operator

introduces (small) change to the offspring population thereby preventing

the loss of diversity in the population.

Evolutionary algorithms are general and since they usually do not make

any assumptions about the underlying fitness landscape, they can be

successfully applied to a wide range of different problems. Application of

these algorithms to the real-world problem has shown that evolutionary

algorithms are capable of solving large-scale complex problems with their

complex search spaces riddled with multiple local optima (e. g. [3]).

Notation introduced in Tab. 2 will be used throughout.

In the following section short overview of the three algorithms is pre-

sented.
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f : Rn → R Objective function to be optimized

I Space of individuals

z Vector of object variables

a ∈ I Individual

µ Number of parents

λ Number of offspring

Φ : I → R Fitness function

P (t) = {a1(t), ...,aµ(t)} Population at generation t

r : Iµ → Iλ Recombination operator

m : Iλ → Iλ Mutation operator

s :
(
Iλ ∪ Iµ+λ

)
→ Iµ Selection operator

Table 2: Notational convention.

7.2.1 Genetic algorithms (GAs)

Genetic algorithms are probably the most widely used Evolutionary algo-

rithms. In their original (sometimes called canonical) form proposed by

Holland, GAs work with individuals represented by fixed-length strings

of binary numbers. This is obviously advantageous for optimization of

pseudo-boolean functions but for optimization of continuous-parameter

functions, object variables need to be represented by binary numbers.

Each individual is divided into a number of segments, where each seg-

ment encodes one object variable. This creates a trade-off between size

of the individual (number of bits in every string) and accuracy.

In canonical GAs, crossover (recombination operator) plays a domi-

nant role in introducing variation in the population by combining use-
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ful segments from different individuals. Standard crossover operator is

the one-point crossover which can be expressed in the following way: if

s = (s1, ..., sl) and v = (v1, ..., vl) are two parents selected for reproduc-

tion by selection operator, one-point crossover creates two offspring s′

and v′ according to the formula

s′ = (s1, ..., sχ−1, sχ, vχ+1, ..., vl) ,

v′ = (v1, ..., vχ−1, vχ, sχ+1, ..., sl) ,

where χ ∈ 〈1..l〉 is a uniform random variable.

Crossover in GAs works directly on the bit string - ignoring the seman-

tic boundaries between the encoded variables. Exogenous parameter pc
is usually employed which determines whether parents undergo crossover

or they are passed to next generation unchanged. The usual values of pc
are in the range 〈0.5, 1.0〉.

Mutation operator in GAs has only a secondary role. Same as crossover

operator - it works directly on the bit strings - occasionally inverting

single bits with the probability pm (pm is usually a very small number

pm ≈ 10−3). Since mutation operator inverts bits randomly - resulting

change in phenotype is arbitrarily large.

Selection operator in GAs is a probabilistic, fitness-dependent one. Usu-

ally a so-called roulette-wheel selection is implemented where the proba-

bility of an individual ai being selected to become a parent is given by

its relative fitness

P (ai) =
Φ (ai)∑µ
j=1 Φ (aj)

. (7.1)

The method is analogous to the turning of a roulette wheel which is

divided into µ segments representing the individuals. The size of each
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segment is proportional to the fitness of an individual it represents. This

selection operator is preservative, i. e. even individual with worst fitness

has non-zero chance to pass its genes to the next generation.

7.2.2 Evolutionary programming (EP)

Evolutionary programming differs from GAs in several important aspects.

Most importantly it works directly with real-valued object variables, i. e.

it works directly on the phenotype and is not concerned with a genetic-

level abstraction. Furthermore Evolutionary programming relies entirely

on mutation as a means of introducing variation – recombination operator

is not used at all. Individual a is represented by the vector of object

variables z and a vector of strategy parameters ν which determine the

rate of mutation for every object variable, a = (z,η).

In general mutation can be expressed as

z′ = z + ∆z, (7.2)

where z is a vector of object variables before mutation, z′ is a vector

of object variables after mutation and ∆z is the mutational step size

vector. Mutation step size is determined by strategy parameters and a

random variable sampled from some probability distribution. Gaussian

distribution is the most common one however other distributions can also

be used e. g. Cauchy, Lévy, etc. (see e. g. [2]). Using Gaussian distribu-

tion together with self-adapting strategy parameters (strategy parame-

ters evolve together with object variables) offspring is generated using
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z′i,j = zi,j + ηi,jNi,j (0, 1) ,

η′i,j = ηi,je
τ ′Ni(0,1)+τNi,j(0,1), (7.3)

where subscripts i and j denote i-th individual and j-th component of the

vectors z, z′, η and η′.N (0, 1) is a normally distributed one-dimensional

random variable with mean zero and standard deviation σ = 1. Ni is

generated anew for every individual, Ni,j is generated anew for every j

and

τ =
1√

2
√
n

,

τ ′ =
1√
2n

, (7.4)

where n is the number of object variables (size of the vector z).

Same as GAs, Evolutionary programming uses probabilistic, fitness-

dependent selection operator in the form of tournament selection. For

each parent a = (z,η) and each offspring a′ = (z′,η′), q1 opponents

are randomly chosen from the pool of all parents and all offspring. For

each comparison, if the individual’s fitness is better than the opponent’s

it receives a "win". µ individuals that have most "wins" are then selected

from all parents and all offspring creating new generation. This selection

operator is extinctive, i. e. individuals with low fitness die out and elitist,

i. e. individual with highest fitness is guaranteed tu survive.

1 q being exogenous parameter.
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7.2.3 Evolutionary strategies (ES)

Evolutionary strategies, though developed independently, are rather sim-

ilar to Evolutionary programming. Both are known as Phenotypic algo-

rithms – they both operate directly on object variables whereas GAs

(Genotypic algorithm) operate on bit strings that represent object vari-

ables. Same as in Evolutionary programming the individual has two com-

ponents, vector of object variables z and vector of standard deviations

(strategy parameters) σ such that a ∈ I = R2n. Sometimes it is useful

to work with only one common standard deviation, i. e. a ∈ I = Rn+1.

Similarly to Evolutionary programming, mutation can be expressed as

σ′i,j = σi,je
τ ′Ni(0,1)+τNi,j(0,1), (7.5)

z′i,j = zi,j + σi,jNi,j (0, 1) . (7.6)

Most important difference between Evolutionary programming and

Evolutionary strategies is that the latter uses recombination operator.

Several different recombination mechanisms have been proposed. Off-

spring can either be created from two randomly selected parents or in its

global form the recombination mechanism creates offspring with compo-

nents from potentially all individuals in parent population. Furthermore

recombination is applied also to standard deviations vector and recom-

bination operator for object variables and standard deviations need not

to be the same. Description of different recombination mechanisms is

summarized in Table 3.

Subscripts S and T denote two different individuals selected randomly

from parent population and χ ∈ 〈0, 1〉 is a uniform random variable. In
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Offspring z′i component Description

zS,i No recombination

zS,i or zT ,i Discrete recombination

zS,i + χ (zT ,i − zS,i) Intermediate recombination

zSi,i or zTi,i Global discrete recombination

zSi,i + χi (zTi,i − zSi,i) Global intermediate recombination

Table 3: Different types of recombination mechanisms in Evolutionary strate-

gies.

global variants, for each component zi, both parents Si and Ti as well as

χi are sampled anew.

Selection operator, unlike in the other two algorithms is completely

deterministic selecting µ (1 ≤ µ ≤ λ) best individuals from the set of λ

offspring (termed (µ,λ)-ES) or from the union of all offspring and parents

(termed (µ+λ)-ES). In most cases (µ,λ)-ES is a preferred strategy with

an optimal ratio for µ/λ ≈ 1/7. This selection operator is extinctive.

7.2.4 Summary

Main characteristics of the three evolutionary algorithms are summarized

in the following table.

Brief discussion above describes the three evolutionary algorithms in

their standard form. There are different variants of these algorithms using

operators implemented in different manner (this is especially true for

GAs). More in-depth discussion can be found in [2].
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GAs EP ES

Representation Binary-

valued
Real-valued Real-valued

Self-adaptation No Yes Yes

Mutation Background

operator

Only opera-

tor

Main opera-

tor

Recombination Main opera-

tor
None Yes

Selection Probabilistic,

preservative

Probabilistic,

extinctive,

elitist

Deterministic,

extinctive

Table 4: Main characteristics of Evolutionary algorithms.

7.3 optimization procedure

7.3.1 Description of the resonator shape

As mentioned before, in order not to limit ourselves to a set of pre-defined

shapes given by elementary functions (exponential, conical, trigonomet-

ric), resonator shape is defined using N control points (object variables)

distributed regularly along the resonators axis of symmetry2 at positions

xi =
il

N − 1, i = 0, 1, ...,N − 1, (7.7)

where l is the length of the resonator. Generally resonator shape can be

expressed as

2 We assume axi-symmetrical resonator.
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r (x) = r (x, {[xi, ri]}) , (7.8)

where r (x) is resonator radius at x and [xi, ri] are control point pairs.

The resonator shape r (x) between the control points is obtained using

the cubic-spline interpolation.

7.3.2 Handling of constraints

Due to the nature of the problem we define constraints for two types of

parameters. Geometrical constraints – resonator radius r(x) is required

to stay within some pre-specified bounds

rmin ≤ r(x) ≤ rmax, x ∈ 〈0, l〉 . (7.9)

Also it might be desirable to restrict the resonance frequency of the

loudspeaker-resonator system to a certain limits

fmin ≤ fr ≤ fmax. (7.10)

If the individual meets both conditions we say that the individual lies

in the feasible parameter area. If it does not comply with any (or both) of

the conditions, it lies in the infeasible parameter area. Feasible area is a

rectangle defined by lower and upper boundary values for each parameter.

Situation is shown in Fig. 4. In our algorithm parameter constraints are

accounted for by introducing a penalty term in the fitness function. This

penalty term measures the distance of the constrained parameter from

the feasible area.

For geometrical parameters we use a box boundary handling algo-

rithm [24] such that each evaluated individual is guaranteed to lie in
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the feasible area. If resonator radius at xif lies outside the feasible area

(r(xif ) < rmin ∨ r(xif ) > rmax) the objective function of the correspond-

ing individual is evaluated at

r′ (xif ) = rfeas (xif ) , (7.11)

where rfeas(xif ) is the closest feasible radius (with minimal |rfeas(xif )−

r(xif )|), i. e. resonator radius is clipped on the boundary of feasible area.

The new feasible individual (resonator shape) is used for objective func-

tion evaluation only and is discarded afterwards. Penalty term pg that

measures the distance from the feasible area is calculated using the fol-

lowing equation

pg = max
(
|rfeas (x)− r (x) |
rmax − rmin

)
, ∀x ∈ 〈0, l〉 . (7.12)

Resonance frequency constraints are accounted for by introducing the

penalty term pf in the following way

pf =
|frfeas − fr|
fmax + fmin

2

, (7.13)

where frfeas is the closest boundary of the feasible area.

If the individual mutates into the infeasible area it is evaluated there

and the corresponding penalty term is added to the fitness function de-

scribed below.

7.3.3 Fitness function evaluation

The optimisation criterion is the one for maximisation of the objective

function – the acoustic pressure amplitude at the resonance frequency at
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Figure 4: Boundaries.

one of the resonator ends (x = 0). Mathematically, it can be expressed

as

f (z) =
|p̂′ (x = 0, Ω = Ωresonance) |

|û|
. (7.14)

Fitness function of an individual a = (z,σ) is calculated by adding

the penalty terms

Φ (a) = f (z) (1− pg)(1− pf )2. (7.15)

It is important to note that the fitness function of the resonator de-

pends on the length of the resonator (due to frequency-dependence of

the losses), maximum and minimum radii rmax, rmin and on the physical

parameters of the loudspeaker model.
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7.3.4 Algorithm

Because of the nature of the problem at hand (optimization of continuous

parameters) Evolutionary strategies of the (µ,λ)-ES type were chosen as

optimization algorithm.

The algorithm starts by generating a population of µ random individ-

uals according to the following formula.

ai = (zi,σi) , i = 1...µ, (7.16)

where

zi,j = rmin + (rmax − rmin)χi,j ,

σi,j = σ0,

where χ ∈ 〈0, 1〉 is a uniform random variable and σ0 is the initial stan-

dard deviation. After the initial population is created, algorithm proceeds

to the evolution. First, µ parents are recombined to produce λ offspring.

Offspring population is then mutated using equations (7.5) and (7.6). The

fitness function of each individual in the mutated offspring population is

then evaluated using Eq. (7.15)3 and the best µ individuals are selected

as parents for a next generation. This process of recombination, mutation

and selection is then repeated until pre-defined termination criterion is

met. The termination criterion used in our algorithm is the following: if

3 Acoustic field inside the resonator is computed numerically using equation (5.5).

Boundary value problem is solved using the shooting method. Resonance frequency

fr and acoustic pressure at resonance pf=fr are found using the golden section

search [45].
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the all-time best fitness is not improved in the last tterm generations the

optimization algorithm is terminated.

A pseudo-code description of the optimization algorithm is shown in

Algorithm 1.
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Algorithm 1 Optimization of the resonator shape

1: µ← Number of parents

2: λ← Number of offspring

3: n← Number of object variables

4: σ0 ← Initial standard deviation

5: tterm ← Termination criterion

6: rmin ← Minimal radius

7: rmax ← Maximal radius

8: fmin ← Minimal resonance frequency

9: fmax ← Maximal resonance frequency

10: l← Resonator length

11: speak ← Loudspeaker parameters

12: Global BI ← [] /*Best individual*/

13: Global BF ← 0.0 /*Best fitness*/

1: OptimalShape = Optimization(µ,λ,n,σ0, tterm, rmin, rmax, fmin, fmax, l, speak)

2: functionOptimization(µ,λ,n,σ0, tterm, rmin, rmax, fmin, fmax, l, speak)

3: Parents← GenerateRandomPopulation(µ,σ0,n, l, rmin, rmax)

4: while Termination criterion not met do

5: Offspring = Recombination(Parents,λ)

6: Offspring′ = Mutation(Offspring)

7: Parents = Selection(Offspring′,BI,BF ,µ,λ, rmin, rmax, fmin, fmax, speak)

8: end while

9: return BI
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1: function Selection(Population,BI,BF ,µ,λ, rmin, rmax, fmin, fmax, speak)

2: for i = 0 to λ− 1 do

3: fs ← GetFundamentalResonanceFreq(Population(i), speak)

4: p′ ← GetAcousticPressureAmplitude(Population(i), speak, fs)

5: Fitness(i) = GetF itness(Population(i), p′, fs, rmin, rmax, fmin, fmax)

6: end for

7: Sort(Population,Fitness)

8: if Fitness(0) > BF then

9: BI = Population(0)

10: BF = Fitness(0)

11: end if

12: return Population(0, 1, ..., µ− 1)
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8
EXPERIMENTAL VERIF ICAT ION OF THE

LOUDSPEAKER -RESONATOR MODEL

In the following section the theoretical model of the loudspeaker-acoustic

resonator system developed in previous chapters is compared with an

experiment. Results are presented for two different resonators - cylindrical

and conical. The experimental setup is shown in Fig. 5.

Loudspeaker
diaphragm

Loudspeaker driver

Internal
waveguide

External
waveguide

Microphone

Figure 5: Experimental setup.
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8.1 loudspeaker

Compression driver Selenium DT-405Ti was chosen for experiments. Lin-

ear parameters of the Selenium driver were determined by fitting the mea-

sured electrical input impedance characteristic and measured diaphragm

displacement characteristic with their modelled counterparts (details given

in the appendix A).

For better impedance matching, compression drivers usually utilize a

so-called phase plug, placed between the diaphragm and the (external)

waveguide throat, acting as an impedance transformer. Since this is not

desirable in our application the phase plug was removed from the driver

creating a short waveguide (internal waveguide). This short waveguide

inside the driver has a rather complex shape and for the purpose of

modelling had to be approximated (approximated geometry is shown

in Fig. 6). Formula describing the shape of the approximated internal

waveguide as well as the measured linear parameters of the Selenium

loudspeaker are shown in the appendix A.

Diaphragm

Figure 6: Approximated internal waveguide inside the Selenium DT-405Ti

compression driver with the phase plug removed from the driver.
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8.2 loudspeaker-resonator system

Resonator cavity is formed by the internal waveguide inside the driver

and external waveguide attached to the driver. The total resonator length

l is therefore given by

l = lint + lext, (8.1)

where lint is the length of the internal waveguide and lext is the length of

the external waveguide.

Experiments were performed with two different (external) resonators,

cylindrical and conical (shown in Fig. 7). Both resonators were lext =

300mm long with throat radius rt = 25mm.

ll
=

 3
0
0
 m

m
e
x
t

50 mm 10 mm

External waveguide

Internal waveguide

Diaphragm

Figure 7: Shapes of the resonator cavities used for the experiment.
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8.3 results

Fig. 8 shows measured and computed frequency characteristics for the

cylindrical resonator and Fig. 9 shows measured and computed frequency

characteristics for the conical resonator for four different input voltage

amplitudes (|U1| = 1V , |U2| = 5V , |U3| = 10V , |U4| = 15V ).

Acoustic pressure was measured using the NI PCI-6251 measurement

card and the G.R.A.S. 12AA pre-amplifier with the G.R.A.S. 40DP mi-

crophone which was placed at the closed end of the resonator, x = 0mm

(the loudspeaker diaphragm is assumed to be at x = l).

Frequency response characteristic was computed from Eq. (6.12) with

the turbulence coefficient ζr = 0.48. Equations were integrated numer-

ically using the adaptive-stepsize eight-order Runge-Kutta method [45].

Boundary value problem was solved using the shooting method (details

can be found in [45]). All numerical calculations were performed assum-

ing the resonator cavity was filled with air at room conditions (c0 =

345.2m/s, ρ0 = 1.21 kg/m3, γ = 1.402, cp = 1004 J/kgK, η = 1.827×

10−5 kg/ms, ζ = 1.096× 10−5 kg/ms, κ = 25.87 J/Kms).

It can be observed that in both cases an acceptable agreement between

theory and measurement is achieved regarding a resonance frequency as

well as acoustic pressure amplitudes.
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Figure 8: Measured and computed frequency response characteristics of the

loudspeaker-resonator system with the cylindrical external res-

onator.
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Figure 9: Measured and computed frequency response characteristics of the

loudspeaker-resonator system with the conical external resonator.



9
OPTIMISAT ION RESULTS

In the following chapter results of the optimisation procedure presented

in Chapter 7 are shown. Parameter values used in the optimization algo-

rithm are summarized in Table 5.

Parameter Value

Number of parents µ = 15

Number of offspring λ = 10µ

Number of control points N = 10

External resonator length lext = 0.3m

Maximum radius rmax = 25mm

Minimum radius rmin = 5mm

Termination condition tterm = 15

Initial standard deviation σ0 = 0.01(rmax − rmin)

Table 5: Optimization algorithm parameter values.

Length of the optimized (external) resonator was chosen to be fixed

lext = 0.3m so that the resulting shape can be directly compared to the

two non-optimized resonators described in the previous chapter. However,

because of the nature of the optimisation algorithm, the length of the

resonator can also be easily optimized along with its shape. A resonance

frequency constraints were not applied (frequency bounds were set to

fmin = 1Hz and fmax = 105 Hz).
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The optimisation procedure has been run number of times, each time

converging to the same result (finding the same resonator shape). Typical

results of a single run are presented in the following section.

9.1 optimisation run

It took 105 generations (15750 objective function evaluations) for the op-

timization algorithm to meet the termination criterion. Evolution of the

fitness function is shown in Fig. 10. A fitness function value of each in-

dividual within the offspring population lies in the green-coloured area1.

A mean fitness function value of all individuals in the offspring popu-

lation at a given generation is represented by the red-color line. It can

be observed that the optimization algorithm is able to find the optimal

resonator shape very quickly (converges quickly)2.

In Fig. 11 the evolution of the mean standard deviation is shown. The

mean standard deviation for i−th individual in the offspring population

is computed using the following formula

σ̄i =

∑N
j=1 σi,j

N
. (9.1)

Again, a mean standard deviation of each individual within the off-

spring population lies in the green-coloured area. The red-coloured line

represents an average standard deviation in the offspring population at a

given generation. For the first roughly 12 generations the mean standard

1 Lower and upper bounds of the green-coloured area represent lowest and highest

fitness function value within the offspring generation.
2 It is however possible, if is so desired, to make it even faster, especially the long

fine-tuning part of the procedure (long flat part of the characteristic) by defining

the smallest allowed mutation step - it makes little sense to optimize the shape with

precision significantly better than the manufacturing tolerance allows.
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Figure 10: Fitness function evolution. Fitness function value of each individ-

ual within the offspring population lies in the green-coloured area.

Red-coloured line represents average fitness function value of all

individuals within the offspring population.

deviation grows - large mutations are desirable. As the parent popula-

tion moves closer to the global optimum (and some parameter values get

closer to the boundary of the feasible area) smaller mutation is preferred

and the mean standard deviation decreases.

The resulting optimum resonator shape3 (the resonator shape with the

all-time best fitness) is shown in Figure 12. Coordinates of the control

points (shown as red crosses in Figure 12) are listed in Table 6. As ex-

pected the resonator cross-section area gets progressively smaller towards

the closed end of the resonator attaining r = rmin at x = 0m.

The computed frequency response characteristic of the acoustic pres-

sure amplitude at the closed end of the optimized resonator (at x = 0m)

3 Optimal resonator shape found by the optimization procedure is valid only for a given

loudspeaker, given set of constraints (rmin, rmax, fmin, fmax) and resonator length

l = 0.3m.
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Figure 11: Evolution of the mean standard deviation. Mean standard devia-

tion of each individual within the offspring population lies in the

green-coloured area. Red-coloured line represents average standard

deviation in the offspring population at a given generation.

x [mm] 0 33.3 66.7 100 133.3 166.7 200 233.3 266.7 300

r [mm] 5 5 5 5.4 7.6 10.6 15.1 23.1 25 25

Table 6: Coordinates of the ten control points for cubic-spline interpolation

describing the shape of the optimized resonator.
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Figure 12: Shape of the resonator with the all-time highest fitness function.

Red crosses denote positions of the control points for cubic-spline

interpolation. Part of the resonator to the right of the dashed line

represents the internal waveguide inside the Selenium driver.

is shown in Fig. 13. The resonance frequency of the loudspeaker-resonator

system is 574Hz. It can be observed that the acoustic pressure amplitude

inside the optimized cavity is almost six times greater than in the cylin-

drical cavity and 2.4 times greater than in the conical cavity. Also worth

noting is that the second resonance mode frequency is not twice the fun-

damental resonance one and therefore we can expect that generation of

the second (and higher) harmonics will be severely suppressed because

its frequency does not coincide with the resonance mode.

Fig. 14 shows an acoustic pressure amplitude distribution along the

spatial coordinate of the optimized resonator driven at the resonance

frequency with |Uin| = 1V input voltage amplitude.
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Fig. 15 shows a velocity amplitude distribution along the spatial coor-

dinate of the optimized resonator driven at the resonance frequency with

|Uin| = 1V input voltage amplitude.

Fig. 16 and 17 show computed acoustic pressure amplitude and veloc-

ity distributions along the spatial coordinate of the optimized resonator

versus frequency.

Furthermore, to show the effectiveness of the constraints-handling method,

Tab. 7 summarises results of the optimization procedure obtained with

different settings of the parameter constraints.
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Figure 13: Computed frequency response characteristics of the acoustic pres-

sure amplitude at the closed end of the optimized resonator (x =

0m) with |Uin| = 1V input voltage amplitude.
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Figure 14: Acoustic pressure amplitude distribution along the spatial coordi-

nate. Resonator driven at the resonance frequency with |Uin| = 1V

input voltage amplitude.
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Figure 15: Velocity amplitude distribution along the spatial coordinate. Res-

onator driven at the resonance frequency with |Uin| = 1V input

voltage amplitude.
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Figure 16: Acoustic pressure amplitude distribution along the spatial coordi-

nate versus frequency.

Figure 17: Velocity amplitude distribution along the spatial coordinate versus

frequency.
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rmin [mm] rmax [mm] fmin [Hz] fmax [Hz] fres [Hz] |p̂′fres
| [Pa]

2 25 1 10000 672 4506

5 25 1 10000 574 2749

5 25 580 1000 580 2734

5 25 590 1000 590 2698

5 25 1 560 560 2726

5 25 1 550 550 2711

5 25 1 540 540 2694

5 25 1 530 530 2675

5 25 1 520 520 2654

5 25 1 510 510 2628

Table 7: Results of the optimization procedure obtained with different settings

of the parameter constraints.
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9.2 experimental validation

The optimized resonator described above was manufactured4 and mea-

surements performed on the resonator were compared with theory. Fig. 18

shows a comparison between the calculated and measured acoustic pres-

sure amplitude frequency characteristic of the optimized resonator. The

agreement between theory and measurement is quite good, however the

measured resonance frequency at the driving amplitude |Uin| = 1V is

only frmeas = 551Hz which is slightly less than calculated fr calc =

574Hz (4 % difference). This discrepancy could probably be attributed

to the differences between the mathematical description of the optimized

resonator and the actual shape of the manufactured resonator. The fre-

quencies in Figure 18 were normalized to the individual resonance fre-

quencies Ω′ = f/frres for easier visual comparison. Also worth noting

is that the resonance frequency of the system shifts downward with in-

creasing input voltage amplitude (frmeas = 549Hz with |Uin| = 15V).

This softening-spring-like behaviour is also predicted in the calculated

characteristic.

Fig. 19 shows computed and measured acoustic pressure amplitudes

versus the input voltage of the loudspeaker-resonator system with the

optimized resonator. A very good agreement between theory and mea-

surement can be observed. Also worth mentioning is that the calculation

is valid even though non-linear generation of higher harmonics was not

considered here. Dissipation in the boundary layer due to turbulence

itself is able to capture the non-linear damping of the rising acoustic

pressure. The calculated acoustic pressure amplitude versus input volt-

age characteristic without considering turbulence (ν̃ = 1) is also shown

4 Machined from two pieces of duralumin block which were then joined together.
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Figure 18: Measured and computed acoustic pressure amplitude frequency

characteristics of the loudspeaker-resonator system with the opti-

mized resonator.

for comparison. Fig. 20 shows time-course of an acoustic pressure in the

resonator driven with a harmonic signal at the resonance frequency. Dis-

tortion of the waveform can be observed but a shock wave is not formed.
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Figure 19: Measured and computed acoustic pressure amplitude versus input

voltage of the loudspeaker-resonator system with the optimized res-

onator.
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Figure 20: Acoustic pressure versus time measured in the optimized resonator

driven at resonance (f = 549Hz, |Uin| = 15V).



10
S IMPLE ACOUST IC COMPRESSOR

10.1 acoustic compressor construction

The loudspeaker-acoustic resonator system described in the previous chap-

ter is utilized here to build a simple acoustic compressor.

The acoustic compressor was built by installing a suction port in the

resonator wall where the standing wave has its pressure node (at x =

272mm from the closed end of the resonator in our case) and a delivery

port in the resonator wall where the standing wave has its anti-node (at

x = 0mm).

With this arrangement alone, it is already possible to produce one-way

air flow1 [41], however the value of the air flow-rate obtained in this way is

very small. For this reason the delivery port was fitted with a valve which

rectifies the medium flow and therefore allows much higher values of air

flow-rate to be achieved. In the experiments a reed-type passive valve has

been used due to its simplicity and, more importantly, due to its ability

to operate at high frequencies. The valve opens when an acoustic pressure

inside the resonator cavity rises above the static ambient pressure at the

opposite side of the reed and closes when the acoustic pressure falls bellow

this static pressure level resulting in one-way air flow.

1 This is possible due to nonlinear properties of a fluid – with the rising acoustic pressure

amplitude inside the resonator, some small dc component emerges at the pressure anti-

node. This creates a static pressure gradient inside the resonator causing an air flow

between the suction port and the delivery port.
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A delivery port – a circular hole of 4mm diameter with the center

at the resonator axis of symmetry was drilled in the cap closing the

resonator at its narrow end (at x = 0mm). A delivery valve, enclosed

inside a small metal box, was installed in a way shown in Figure 21. This

box (the delivery valve housing) features two outlets for the connection

of the pressure gauge and the air-flow meter. It also features a small glass

window in its top wall, which can be used for the measurement of the

reed displacement using a laser vibrometer. Two holes of 2mm diameter

drilled in the opposite sides of the resonator wall at the pressure node

serve as suction ports.

Plastic reed

Transparent window

Valve housing

Clamp

Delivery
port

Rotameter

R
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s
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Pressure gauge Laser vibromoter

Air

Microphone

Hose clamp

Figure 21: Valve housing configuration.
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10.2 results

10.2.1 Experimental setup

All measurements were performed at room conditions using air as a com-

pressed medium. Electrical signal driving the loudspeaker was generated

with a computer using the LabVIEW environment and amplified with

the Akiyama AMD400 amplifier. Acoustic pressure measurements were

made in the LabVIEW environment using the NI PCI-6251 data acquisi-

tion card and the G.R.A.S. 12AA pre-amplifier with the G.R.A.S. 40DP

1/8 " microphone which was attached from the side of the resonator as

shown in Figure 21. Static pressure was measured using the PTL Pre-

matlak 2010 pressure gauge, air volume flow-rate was measured using

the Rheotest Medingen PG05 rotameter and the µε optoNCDT ILD2300

laser vibrometer was used for the reed displacement measurement.

Fig. 22 shows a photograph of the experimental setup.

10.2.2 Static pressure with no flow

When an acoustic pressure is present inside the resonator, the delivery

valve acts as a rectifier - increasing static pressure on the opposite side

of the valve. By closing the hose clamp that controls the air flow (see

Fig. 21), air is prevented from leaving the delivery valve housing result-

ing in the static pressure build-up. Since there is no air-flow out of the

delivery valve housing, an optimally performing valve would eventually

produce static pressure (pressure inside the delivery valve housing) equal

to the acoustic pressure amplitude (inside the resonator). Displacement

of the reed should decrease with the rising static pressure and the reed
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Figure 22: Acoustic compressor experimental setup. Selenium driver with the

resonator attached to it is in the left part of the picture. Delivery

valve housing is attached on the top of the resonator and laser vi-

brometer is placed above. Red hose connects the pressure gauge and

white hose with a hose clamp leads to the flow-meter. Microphone

is attached from the side of the resonator.
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should eventually stop vibrating once the steady-state is reached – when

the static pressure reaches the value of the acoustic pressure amplitude.

This is not possible in our simple arrangement where the reed is not

allowed to vibrate symmetrically but we can expect better performing

reeds having smaller displacement.

A number of different valve reeds were tested and it was found that

dimensions of reeds have a significant impact on their performance. In the

following we present results for the four different reeds shown in Fig. 23.

Each reed was made from a 130µm thick PVC foil.
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Figure 23: Valve reeds used in the experiment. Dimensions are in millimetres.

Circles in the middle of each reed denote the position of the delivery

port.

Fig. 24 shows measurement of the steady-state reed displacement ver-

sus time for the four different reeds shown in Fig. 23. The resonator was

driven with a sine-wave signal at the resonance frequency fres = 551Hz

with the input voltage amplitude |Uin| = 10V. It can be observed that

the valve reed 1 tracks the acoustic pressure well. It opens for only short

time interval during each cycle with the maximum displacement around

0.1mm. On the other hand the valve reed 4 does not track the acoustic

pressure very well. It is open during most of the cycle and its maximum

displacement is roughly seven times bigger than the maximum displace-
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ment of the valve reed 1. Valve reeds 2 and 3 behave somewhere between

these two extremes.
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Figure 24: Displacement versus time characteristics for four different valve

reeds shown in Fig. 23. Displacement was measured with the laser

beam pointing at the center of the delivery port.

Static pressures inside the delivery valve housing measured at these

conditions are summarized in Tab. 8.

It is clear that valve reeds which behave similarly to the ideal one

– exhibiting a smaller displacement, which are able to track the acous-

tic pressure more accurately (i.e. respond faster) produce higher static

pressures. Valve reed 1 will be used for all of the experiments described

below.

Fig. 25 shows the valve displacement amplitude versus the input volt-

age amplitude characteristics. It can be observed that the valve reed

displacement grows roughly proportionately with the input voltage sug-

gesting a good - linear behaviour of the valve.
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Reed number 1 2 3 4

Pressure [kPa] 20 16 7 0

Table 8: Static pressures measured inside of the delivery valve housing. The

resonator was driven at resonance with input voltage amplitude

|Uin| = 10V.

Fig. 26 shows the measured static pressure and the acoustic pressure

amplitudes versus the input voltage amplitude. It can be observed that

the system possesses the desired characteristic - most of the acoustic

pressure amplitude is rectified into the static pressure.
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Figure 25: Valve reed 1 displacement amplitude versus the input voltage am-

plitude.
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Figure 26: Acoustic pressure amplitude inside the resonator measured near the

delivery port (as shown in Figure 21) and static pressure measured

inside the delivery valve housing versus the input voltage ampli-

tude.

10.2.3 Resonator with air flow

By gradually releasing the hose clamp, air is allowed to escape the valve

housing resulting in the decrease of the static (delivery) pressure and

one-way air flow through the resonator. Fig. 27 shows the air volume

flow-rate versus the delivery pressure measured at three different input

voltage amplitudes.

It was observed that the frequency at which the maximum air flow is

achieved increases with opening of the hose clamp. However, it does not

depend on the absolute value of the air flow rate or on the delivery pres-

sure. Fig. 28 illustrates this frequency shift. The vertical axis represents

frequency at which the air flow is maximal (for a given hose clamp setting)

while the horizontal axis represents this air flow rate as a percentage of
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Figure 27: Air mass flow-rate versus delivery pressure measured for three dif-

ferent input voltage amplitudes.

the maximum possible air flow rate - with the hose clamp removed. This

is measured for three different input voltage amplitudes. In other words,

measured values represent how the air flow rate and the frequency at

which the air flow rate is maximal changes with the opening of the hose

clamp. It can be observed that the frequency shifts similarly (in relative

terms) for all three input voltages - irrespective of the absolute air flow

rate or the static pressure. It seems that the frequency at which air flow

rate is maximal depends only on how much the hose clamp is opened.

Possible explanation of this behaviour is that as the clamp is opened the

effective geometry of the cavity behind the delivery valve changes. Since

this cavity itself forms an acoustic system the change in its geometry

could affect the function of the delivery valve. Similar behaviour was also

observed by Masuda and Kawashima [42].

Measured frequency characteristic of the air volume flow-rate at the

input voltage |Uin| = 15V with the hose clamp removed is shown in
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Figure 28: Shift of the driving signal frequency at which the air flow-rate is

maximal as the hose clamp is opened. Description of the figure is

given in the text above.

Fig. 29. It can be observed that under these conditions adjusting the

driving frequency from the fres = 551Hz to f = 580Hz results in roughly

14% increase of the air volume flow-rate.
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Figure 29: Frequency characteristic of the air volume flow-rate at input voltage

|Uin| = 15V with the hose clamp removed.
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CONCLUS IONS

11.1 summary

This thesis deals with the problem of generation, description and utili-

sation of high-amplitude acoustic fields in closed cavities. First a one di-

mensional, second-order partial differential model equation describing a

sound field inside an axi-symmetrical variable-radius resonator is derived

from basic fluid mechanics equations (Chapters 2 and 3). The model

equation is then presented in the form suitable for numerical calcula-

tion (Chapter 4). Linearised model of the coupled loudspeaker-resonator

acousto-mechanical system is described in the Chapter 5 and the model

of energy losses in the boundary layer due to turbulence is presented in

Chapter 6.

A new evolution algorithm-based method for optimization of acoustic-

resonator shapes for generation of high-amplitude acoustic fields is pre-

sented in Chapter 7. The proposed method can be used to optimize

shapes of resonators driven by a piston, shaker or a loudspeaker driver

subject to a given set of constraints (resonance frequency constraints and

geometrical constraints).

Numerical results (showed in Chapter 9) show that use of a properly

optimized resonant cavity results in substantially stronger acoustic field

compared with simple-shaped resonators of similar dimensions. A good

agreement between the numerical results and the experimental data con-
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firms the necessity of introduction of the model of energy dissipation in

the boundary-layer due to turbulence in the governing equations.

Even if the optimization procedure cannot predict behaviour of strongly

nonlinear acoustic fields, as it is based on a linear theory, it provides a sys-

tematic means of design of resonant cavities for high-amplitude acoustic

applications such as e. g. thermoacoustic devices, plasma-chemical reac-

tors or acoustical compressors. Utilizing the appropriately optimized res-

onant cavities together with commercially available loudspeakers could

increase economic attractiveness of these promising applications.

The possibility of constructing a simple loudspeaker-driven acoustic

resonator is demonstrated in Chapter 10. It has been shown that using

the optimized resonator, construction of a acoustic compressor is possible

even when using a relatively inexpensive and simple driving mechanism

– a compression driver. Air volume flow-rates and delivery pressures we

have been able to achieve (Fig. 27), are comparable or better than the

ones reported by other authors ([16], [42] and [26]).

It was observed that dimensions of the reed, which acts as a delivery

valve, has a significant impact on the performance of the compressor

with better performing reeds exhibiting a smaller displacement and faster

response.

11.2 original contributions

• A novel – Evolutionary algorithm-based optimization procedure

which searches the space of possible axi-symmetrical resonator shapes

defined by n control-points evenly distributed along the resonator

axis of symmetry is presented. Resonator shape is given by the

cubic spline interpolation of the n control-points. This is a major
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difference compared with the previously used methods which con-

sidered only resonator shapes given by elementary functions. More-

over, the focus is on the optimization of the loudspeaker-acoustic

resonator system which was not considered before at all. Algorithm

is described in papers [58] and [55].

• A new optimization constraints-handling method which was not

published before is presented in the thesis.

• Possibility of construction of a loudspeaker-driven acoustic com-

pressor using the optimized resonator is demonstrated (experimen-

tal results were published in paper [57]).

11.3 recommendations for future work

Further research could focus on improving the performance of the pre-

sented acoustic compressor. As the shape of the optimized resonator and

the corresponding maximum acoustic pressure amplitude inside the res-

onator very much depend on the constraints used in the optimization

procedure, by choosing different parameter constraints (especially the

minimum radius rmin) optimization procedure would produce a different

resonator shape, possibly yielding higher acoustic pressure amplitude.

Acoustic compressor built using such a resonator is likely to have better

performance than the one presented in the thesis.

The performance of the described acoustic compressor could possibly

be further enhanced by using different (active) valve and by placing a

suction port with a valve in the resonator wall where a standing wave

has its pressure anti-node.
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LOUDSPEAKER MODELL ING

Cross-sectional view of the Selenium DT-405Ti compression driver is

shown in Fig. 30.

Figure 30: Cross–sectional view of the Selenium DT-405Ti compression driver.
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internal waveguide description

Compression drivers utilize a phase plug which acts as an acoustic trans-

former providing better impedance match between the diaphragm and

the waveguide throat. Phase plug is positioned in a close proximity to the

diaphragm, creating a very narrow compression chamber. Sound waves

have to travel through this narrow chamber and through the narrow slits

in the phase plug. This however causes the air to behave non-linearly

with increasing amplitude which is undesirable in our application. More-

over modelling of such a complex geometry becomes difficult, especially

if non-linearities and damping in the boundary layer is to be taken into

account. Since we intend to use the modelled loudspeaker to drive the

resonator, impedance matching is not important for us and therefore the

phase plug has been removed from the loudspeaker.

Looking at Fig. 30 it can be observed that what is left after phase

plug removal is a waveguide of a complicated geometry that includes

sudden contractions and cylindrical and conical sections. Moreover the

diaphragm has a shape of a spherical cap (dome). For the purpose of

modelling, this complex geometry had to be approximated. Fig. 31 shows

actual and approximated geometry of the internal waveguide in front of

the diaphragm.

Approximated geometry of the waveguide inside the loudspeaker is

given by the formula

r(x) =



r1 − x
r1 − r2
x1 , 0 ≤ x ≤ x1,

r2 − (x− x1)
r2 − r3
x2

, x1 ≤ x ≤ x1 + x2,

r3, x1 + x2 ≤ x ≤ x1 + x2 + x3,
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Figure 31: Actual (black color) and approximated (red color) shape of the

waveguide inside the Selenium loudspeaker.

where x2, x3, r2, r3 were measured directly (x2 = 21mm, x3 = 24mm,

r2 = 39.5mm, r3 = 25mm). r1 is calculated from the area of the di-

aphragm; r1 =
√
Sd/π = 53.5mm. Length of the first section of the in-

ternal waveguide x1 = 14mm was adjusted until good agreement between

measured and computed frequency response of the loudspeaker-resonator

acoustic system was achieved.

loudspeaker linear parameters measurement

Some of the unknown parameters in the lumped-element circuit (Fig. 2)

can be determined directly by measurement (volume of the back chamber

V , diaphragm area Sd) while others are determined indirectly by fitting

measured loudspeaker characteristics with its model.
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Assuming operation in vacuum we can eliminate acoustic quantities

(acoustical radiation impedance Za tends to zero and ca increases without

bounds) and input electrical impedance can be expressed as

Zin = Rv + iωLv +
R2iωL2
R2 + iωL2

+
1

1
Rem

+ iωCem + 1
iωLem

(A.1)

where

Rem =
(Bl)2

rm
, (A.2a)

Cem =
mm

(Bl)2 , (A.2b)

Lem = cm (Bl)2 . (A.2c)

Rem is the electrical resistance due to the mechanical losses, Cem is

the electrical capacitance representing mechanical mass of the moving

assembly and Lem is the electrical inductance representing the suspen-

sion compliance. All electrical parameters in Eq. (A.1) can be found by

fitting the right hand side of this equation to the measured input elec-

trical impedance of the loudspeaker in vacuum. Fig. 32 shows fitted and

measured input impedance characteristic of the modelled loudspeaker

in (near) vacuum (measurement was made in an airtight container from

which the air was sucked-away until static pressure of around 2 kPa was

achieved). Data were fitted in the least-square sense in MATLABr soft-

ware using its function lsqcurvefit.m. Electrical impedance was measured

using impedance analyzer Agilent 4294A.
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Figure 32: Modulus of input electrical impedance of a loudspeaker in an effec-

tive vacuum.

Bl-product and mechanical parameters estimation

Bl-product is usually determined using the added-mass or added-stiffness

method [56]. These methods, however, are not easily exploitable for deter-

mining the Bl-product of a compression driver and might not give results

accurate enough. Because of its accuracy a method based on non–contact

measurement of the diaphragm displacement ŷ using laser vibro-meter

was chosen (see [32]).

Assuming v̂ = iωŷ and eliminating acoustic quantities (vacuum) we

can write (see Fig. 2)

ŷ =
û

iωBl
Zem
Zin

, (A.3)

where
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Zem =
1

1
Rem

+ iωCem + 1
iωLem

(A.4)

and Zin is given in Eq. (A.1). Since all electrical parameters have already

been identified only unknown left is the Bl-product which is easily found

by the means of least-squares fitting algorithm. Fig. 33 shows fitted and

measured diaphragm displacement characteristic of the modelled loud-

speaker.
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Figure 33: Diaphragm displacement characteristic of the modelled loudspeaker

in an effective vacuum. Measurement was made using laser vibrom-

eter Polytec Scanning Vibrometer PSV-400.

Mechanical parameters were then computed using Eq. (A.2). Linear

parameters of the Selenium loudspeaker have thus been determined and

are shown in Tab. 9.
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Rv 6.5 Ω

Lv 6.7× 10−5 H

rm 6.8 kg s−1

cm 1.2× 10−5 s2kg−1

mm 4.1× 10−3 kg

V 1.7× 10−4 m3

ca 1.2× 10−9 m4kg−1s−2

Sd 90× 10−4 m2

Bl 9.6Tm

Table 9: Linear parameters of the Selenium D405Ti loudspeaker.
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