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Goals and Objectives

Topic of the thesis is the modelling and control of the underactuated walking robots.

More specifically, the goals of the thesis are as follows:

1. To find mathematical models of both the continuous-time swing phase and the

impulsive impact phase for Acrobot and 4-link being the simplest representatives

of underactuated walking robots.

2. To design control methods for Acrobot walking including state feedback controllers

and reference trajectory design based on partially linear form of Acrobot. Further,

to develop methods for observer design to replace unmeasured states of Acrobot.

3. To verify stability of the newly developed tracking algorithms in the application of

the feedback tracking of the reference trajectory during more steps to demonstrate

the ability of Acrobot walking during a priori unlimited number of steps.

4. To extend the developed results for Acrobot, i.e. the state feedback controller, the

reference trajectory and the observer design, to 4-link being a more realistic walking

model.
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Abstract

This thesis is focused on the design of novel methods for underactuated walking robot

control in a way resembling a human walk. The methods are based on partially linear

form of Acrobot as the representative of a class of underactuated walking robots. Indeed,

Acrobot is the simplest underactuated walking robot theoretically able to walk. Later

on, a general method is proposed enabling to extend directly results for Acrobot to any

general planar n-link chain underactuated at its pivot point. This technique is referred

to as the so-called generalized Acrobot embedding. By virtue of the partial linearization

property it is possible to transform the original nonlinear representation of Acrobot into

its partially linear form having a one-dimensional nonlinear component only. The newly

obtained results include design methods for Acrobot walking, i.e. state feedback con-

trollers, observers and planning of walking-like reference trajectories to be tracked. To

be more specific, state feedback controllers are based on the knowledge of time varying

entries resulting from approximate linearization of the mentioned nonlinear component

along selected Acrobot walking-like reference trajectory. In one particular case of the

controller design only bounds of these time varying entries are taken into the account.

Alternatively, information about time varying entries including time derivative of the en-

tries up to the order four is used. As already noted, reference trajectory design methods

belong to the thesis original results as well. To accommodate the impact effect, the de-

veloped reference trajectory is also using the idea that the angular velocities at the end of

the previous step and at the beginning of the next step have to be in a ratio determined

by the impact properties. Next, due to the absence of the actuator at the pivot point, it

is not easy to directly measure all states of Acrobot. Therefore, two algorithms to observe

unmeasurable states of Acrobot were developed here based on particular knowledge of

angular positions and velocities. Finally, due to its simple geometry, Acrobot is able to

walk only theoretically, as it would always hit the ground by its swing leg. Therefore, the

results developed for Acrobot are extended to the so-called 4-link using the above men-

tioned embedding method. As a matter of fact, 4-link may serve as a reasonable model of

pair of legs with knees thereby providing a more realistic walking model, though without

a torso.
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Chapter 1

Introduction

The aim of this thesis is the design of the control strategies for the simplest underactuated

walking robot, called in the literature as the Acrobot or the Compass gait biped and some

extensions of these strategies to more complex walking models. Acrobot has two degrees of

freedom, namely, two rigid links, and one actuator placed between them. Underactuated

walking robots form a subclass of bipedal robots, however, they are usually footless. As

a consequence, the angle between the ground and the leg which is in a contact with

the ground is not directly actuated. One can simply imagine the locomotion of the

underactuated walking robot like a walk of a human on his/her stilts.

Underactuated walking robots present a particular case of underactuated mechanical

systems, which are, in general, mechanical systems with actuators having less actuators

than the number of degrees of freedom. An efficient control of underactuated mechanical

systems is a challenging task of last decades by virtue of their broad application domain

in real-life systems including robotics, e.g. mobile or walking robots, aerospace vehicles

like aircrafts, spacecrafts, helicopters or satellites, marine vehicles like submarines or

swimming robots, see [104, 115]. In the literature, one can find various examples of

underactuated mechanical systems. Among the simplest ones are e.g. cart pole system,

Furuta pendulum, convey-crane system, Pendubot, Acrobot, reaction wheel pendulum,

ball and beam system etc., for details see [39].

As already noted, the typical representatives of the underactuated mechanical systems

are Acrobot and Pendubot. Despite the fact that the representative systems feature,

indeed, the elementary design, they possess nonlinearities which implicate their effective

control as a challenging task of recent decades. Among the first results in this field are

McGeer’s passive walker [85], Fukuda’s brachiation robot [107, 108], Acrobot [21, 89]

or Pendubot [2, 40, 121]. Of course, it is not enough to develop an efficient control

of representatives systems or systems mentioned above only, however, occasionally it is

possible to convert a real system under some assumptions, simplifications or embedding
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methods into already mentioned underactuated systems or similar systems. That is why

their efficient control is worth studying.

Recently, numerous works have addressed the stabilization of Acrobot inverted posi-

tion and extending its domain of attraction, see [21, 89]. However, slightly more challeng-

ing task is a swing up control, i.e. to move Acrobot from its downward stable position,

or stable equilibrium, to its upward unstable position, or unstable equilibrium, and con-

trol Acrobot in its upward position. The first results in this field were demonstrated

using inverted pendulum [43, 132] whereas the swing up control of Acrobot was done

in [118, 119]. It was shown in [114] that the fully actuated robots are exact feedback

linearizable whereas it was shown in [116, 117] that the method of partial feedback lin-

earization [59] is applicable for Acrobot control.

Indeed, the partial feedback linearization method based on a change of coordinates

that transforms the original nonlinear system into a partially linear system appears conve-

nient for underactuated mechanical systems control. In the literature [116, 117], one can

find two application examples of partial feedback linearization applied to Acrobot. The

first one, called collocated linearization, is based on the output equation related to the

actuated angle, whereas the second one, called non-collocated linearization, is based on

the output equation related to the underactuated angle. The non-collocated linearization

is possible under a special condition on a inertia matrix called strong inertia coupling,

see [115, 116].

The related non-collocated linearization property is valid only for a restricted class of

underactuated systems, therefore, a classification of underactuated mechanical systems

into classes with identical properties were introduced. By virtue of the classification,

a control technique developed for a system within one class can be simply adapted to any

other system which belongs to the same class. It was shown in [95, 96], that underactuated

mechanical systems can be divided into eight classes based on stabilization. In [81, 135]

one can find different classification based on a full linearizability. Another classification

based on mechanical properties is given in [78].

1.1 State of the art

In this section, a brief introduction into history of bipedal robots is presented at first

to show that walking robots research topic has been of deep interest for quite some

time. Secondly, the current state of the art in control of underactuated walking robot is

presented.
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1.1.1 Brief history of robotic in walking

From the historical point of view, the first reference to a legged locomotion was done by

Aristotle 350 B.C. in his work Progression of Animals [16]. One of the first researchers

who focused on the design of various robotic systems and actually enhanced robotics

into science was Leonardo do Vinci. Nevertheless, the first actual legged mechanisms

are the Mechanical Horse patented in 1893 by L.A. Ryggs [106, 111] and the Steam

Man, a biped machine, proposed in 1893 by Georges Moore, see [111]. Moreover, the

Steam Man is probably the first really constructed biped able to walk. In [93] one can

find a detailed description of historical evolution of walking robotic systems. Since the

Mechanical Horse or the Steam Man the research on legged robot locomotion has grown

into a multidisciplinary field involving physiology, classical mechanics, computer science,

control theory and general robotics. To give a short introduction to this field, a few

of pioneering legged robot prototypes will be described. For more extensive and more

detailed list see [93, 111, 130].

One of the earliest legged machine able to walk is the quadrupedal General Electric

Walking Truck, also know as the General Electric Quadruped, constructed by Mosher [77]

in the 1960s. This vehicle was over 3 m by 3 m in its size and weighted 1400 Kg. It

required an external power source to drive its hydraulic actuators. It carried a single

operator who was responsible for controlling each of twelve servo loops that controlled

legs. It was capable of a top speed of 2.2 m/s and could carry 220 kg payload. The

General Electric Quadruped has demonstrated capabilities of walking machines, i.e. easy

overcoming of obstacles or good movement in a terrain. Nevertheless, it was clear that

automatic control system instead of an operator is essential for such legged machine

control. The first four leg walking robot, called as Phony Pony, fully controlled by an

automatic control system was built by McGhee and Frank in 1966, see [112].

The first biped able to walk called WAP-1 was developed by Kato in 1969. Kato

continued in the research and in 1970 he developed WAP-2. A movement of WAP-2 was

significantly faster than movement of WAP-1. Moreover, in 1971 Kato developed WAP-3.

WAP-3 was able to move in the three-dimensional way as the first biped in the world at

all.

In addition to these pioneering machines, there have been a lot of other prototypes

developed in recent years. Many prototypes of bipedal walking robots differing in struc-

ture, degrees of freedom, walking capabilities or control and analysis of bipedal gaits were

built. For more complete treatments of legged machine history see [19, 34, 70, 93, 103,

105, 112, 125, 127].

Among others, the most word-wide famous bipeds to-date are ASIMO developed by

the Honda Corporation [36, 55], Robonaut 2, designed jointly by NASA’s Johnson Space
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Center and General Motors [37], Atlas - The Agile Anthropomorphic Robot developed by

Boston Dynamics, WABIAN-2 of Waseda University [53, 94] or Humanoid robot HRP-

4 developed by the National Institute of Advanced Industrial Science and Technology

(AIST) [65]. These robots are capable of walking, running at certain speeds and moving

in a rough terrain. Moreover, they can use their hands to manipulate objects.

However, only a few prototypes were built in the field of the underactuated walking

robots. Probably the first underactuated biped able to walk down the slope was a passive

walker constructed by McGeer [85]. He showed that a simple planar mechanism with two

legs could be made to steadily walk down a slight slope with no other energy input

or control. This system acts like two coupled pendulums. The stance leg acts like an

inverted pendulum and the swing leg acts like a free downward pendulum attached to

the stance leg at the hip. With sufficient mass at the hip the system has a stable limit

cycle, that is, a nominal trajectory that repeats itself and returns to this trajectory even if

slightly perturbed. A natural extension of the two-segment passive walker includes knees,

which provide natural ground clearance without need for any additional mechanisms. It

is shown in [86] that even with knees the system has a stable limit cycle. As a matter

of fact, McGeer built a four-link planar passive walker. This mechanism featured locking

knees to prevent leg collapse and circular feet to give a rolling ground contact. It weighted

3.5 Kg, was 0.5 m tall and could stably walk down the 1.4 degree slope at about 0.4 m/s.

The McGeer’s mechanism was duplicated in [44] and detailed analysis of its dynamics was

performed together with dynamics of several passive walkers with similar morphologies.

It is shown in [47] that a two-link planar passive walker with prismatic legs can also

exhibit stable gaits. By adding a torque acting between legs and adding a control to

regulate the biped’s total energy, it is possible to increase the set of initial conditions

from which solutions converge to the stable gait.

A two-legged passive walker in 3-D is analyzed in [71]. This system is similar to the

McGeer’s original walker, except that it has an extra degree-of-freedom allowing for side-

to-side rocking. There is no stable limit cycle, although the stability of its planar motion

is preserved. The instability is in a single mode, similar to an inverted pendulum unstable

mode. A three-dimensional version of the McGeer’s passive walker is presented in [35].

This passive walker weighted 4.8 Kg and measured 0.85 m in height. With carefully

designed feet and pendular arms, it was able to walk down the 3.1 degree slope at about

0.5 m/s.

Last but not least, the so-called Rabbit and MABEL are listed here as the most famous

examples of the current prototypes of the underactuated walking robots. Rabbit is the

five-link planar bipedal walker constructed in 1999 by a group of several French research

laboratories and the University of Michigan, see [130]. MABEL is a planar bipedal robot
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comprised of five links assembled to form a torso and two legs terminated in point feet

with knees, see [50]. MABEL was constructed in 2008 as a result of collaboration of the

University of Michigan and the Robotic Institute of Carnegie Mellon University. Main

difference between the Rabbit and the MABEL consists in the location of the actuators.

MABEL’s actuators are located in the torso, and, moreover, actuated degrees of freedom

of each leg are not equivalent to angles in knees or in the hip, see [50]. The brand new

construction of the MABEL facilitates not only a stable walking but also a running.

1.1.2 Control of biped robot locomotion

The control of a biped robot locomotion has been studied over few decades and yet it

is not satisfactory solved by now. A detailed survey of an initial research on the biped

robot locomotion topic can be found e.g. in [127, 128]. One of the common approaches

of the biped robot control consists in a tracking of a precomputed reference trajectory.

Nevertheless, many studies corresponding to a ballistic motion of the robot based on

pointwise ground contact were published, see e.g. [45, 47, 85]. The reference trajectory to

be tracked can be determined in various ways, e.g. to be equivalent to a reference system,

like a human or a passive system able to move in a desired way [124, 126]. Moreover, the

reference trajectory can be found as a result of optimization of some cost criterion, see

e.g. [32, 33, 38, 52]. By virtue of the reference trajectory, standard tracking methods can

be used. A tracking via a PID controller was proposed in [1, 42, 99] whereas a computed

torque method or a sliding mode control were proposed e.g. in [31, 66, 82, 99, 102].

In contrast to a common approach based on a reference trajectory tracking a com-

pletely different approach based on building in desired system’s dynamics via a set of

constraining functions with desired dynamics is widely used in walking robot control.

This idea was for the first time presented in [103] and expanded by Koditschek in

[25, 26, 91, 110] later on. This approach was exploited e.g. in [41, 57, 60, 62, 90] as

well.

An alternative biped control technique to a reference trajectory tracking is a technique

based on total energy control or angular momentum control demonstrated e.g. in [47, 57,

58, 61, 97, 98, 100, 101, 109]. This control mode is the first stage of the control approach

based on constraining functions with desired dynamics.

However, it was not possible to obtain any rigorous stability proof of biped control

using the above cited control approaches. Therefore, in [49] a new control strategy based

on virtual constraints approach was designed in such a way that facilitates application

of the method of Poincaré sections. Exponentially stable controllers for biped robots

were designed in [131] by virtue of newly defined concept of hybrid zero dynamics. The

hybrid zero dynamics is an extension of the well-known zero dynamics [59] taking into
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the account the impact map. The zero dynamics of the swing phase modelled by ordinary

differential equations was studied e.g. in [18, 84, 119].

It was shown in [123] that biped dynamics can be represented by a partially linear

model by virtue of suitable choice of coordinates. In [27] a construction of scalar functions

depending on configuration variables with appropriate relative degrees was shown, more-

over, the functions were used to control an underactuated biped in single support phase.

This result was extended in [51] where it was shown that if the generalized momentum

conjugate to the cyclic variable is not conserved (as it is the case of Acrobot) then there

exists a set of outputs that define one-dimensional exponentially stable zero dynamics.

The change of coordinates defined in [29, 30, 136] which results in a partial feedback form

of Acrobot is extension of results in [27, 51, 96]. The partially linear form of Acrobot

presented in [29, 30, 136] is the crucial one for new results presented in this thesis later

on.

Control approaches briefly compiled in the previous paragraphs are based on the

measurements of all necessary robot’s states. However, this assumption is rarely fulfilled

in real applications of the underactuated biped walking. Due to that fact, some research

has been done to cope with this problem, namely, the observer design for estimation of

angular positions and angular velocities from available measurement. However, there are

very few results in the field of the observer design in contrast to the field of the biped

walking control, especially in the area of observers based on nonlinear techniques. Kalman

filter was designed for angular velocities estimation from angular positions measurement

in [87]. A high gain observer [20], that estimates the absolute angular positions and

velocities of a biped robot using a measurement of the actuated relative angular positions

only is suggested in [72]. An observer based on the second order sliding mode approach is

suggested in [74] to determine absolute angular positions and velocities based on relative

angular positions measurements only. Furthermore, the observer based on the step-by-

step higher order sliding mode approach [22] is suggested in [73, 75, 76]. Last but not

least, observers for the biped robot based both on fuzzy and on disturbance alternation

approach can be found in the literature as well.

Despite the fact that many results were published in the field of reliable and economic

walking or running of bipeds, no complete solution has been found yet. Therefore, the

underactuated biped control topics are worth further wider and deeper research.

1.2 Goals of the thesis and methods to achieve them

The main goal of the thesis is to study the novel methods of the underactuated walking

robots control using intrinsically nonlinear techniques in order to improve the existing
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control approaches. More specifically, a movement of Acrobot in a way resembling a hu-

man walk based on partially exact feedback linearized form of Acrobot will be analyzed.

In this sense, the thesis will continue in a research initiated in [30, 133, 134, 136] where

the exact partial feedback linearization of order 3 of Acrobot was introduced. For the

purpose of Acrobot movement, the feedback controller and the walking trajectory to be

tracked will be design based on partially linear form of Acrobot as well. Moreover, an

observer for unmeasured states of Acrobot will be designed in order to apply the devel-

oped results on a real model of an underactuated walking robot in the future. Acrobot

is able to walk theoretically only because his leg would stumble upon the ground during

the step. Therefore, “knees” will be added into “legs” and results developed for Acrobot

will be extended to the so-called 4-link.

These goals will be achieved using both theoretical analysis of nonlinear control meth-

ods and systematic and extensive numerical simulations and experiments.

1.3 The main contribution of the thesis

The main contribution of the thesis aims to develop the novel techniques of the feedback

tracking of the reference trajectory to move Acrobot in a way resembling a human walk.

By virtue of the partial linearization property of Acrobot it is possible to transform the

nonlinear representation of Acrobot into its partially linear form with a one-dimensional

nonlinear component only. The newly developed state feedback controllers are based

on a more or less deeper knowledge of time varying entries resulting from approximate

linearization of the mentioned nonlinear component along selected Acrobot reference tra-

jectory. The developed reference trajectory uses the idea that the angular velocities at

the end of the previous step and at the beginning of the next step have to be in a ra-

tio determined by the impact properties. The control approach based on the reference

trajectory tracking using the developed feedback controller minimizes errors arisen from

some tenuous inaccuracies during the step. In contrast to another control methods based

on a numerical approach where the robot is “pushed forward” from previously exactly

computed initial conditions in order to finish the step in desired time and configura-

tion, our methods using the feedback controllers during the swing phase are more robust

against disturbances and, moreover, these methods are simpler when extended to more

complicated walking structures. Finally, the developed feedback controllers and walking

trajectories are supplemented by the estimator in order to apply the control approach to

a real laboratory model of walking robot with point feet in the future. Acrobot is able to

walk only theoretically due to its simple geometry. As a matter of fact, it would always

hit the ground by its swing leg. Therefore, the results originally developed for Acrobot
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are extended to a more realistic model of walking robot, to the so-called 4-link which

resembles pair of legs with knees and without a body or even a torso.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. Chapter 2 introduces some preliminary

knowledge about modelling of walking robots. Chapter 3 presents the exact partial

feedback linearization method and introduces the partially linear form of Acrobot. It

also introduces the concept of the embedding of the so-called generalized Acrobot into

4-link. Chapters 4 to 7 presents the novel contribution of the thesis. More specifically,

Chapter 4 presents the trajectory design for Acrobot, while Chapter 5 presents various

state feedback controllers exponentially tracking Acrobot target trajectory based on the

partial feedback linearization approach. Extension of these results to the 4-link case

using the mentioned embedding technique is provided as well. Two nonlinear observers

for Acrobot are presented in Chapter 6. In Chapter 7 stability tests of Acrobot walking

controlled by feedback controllers from Chapter 5 combined with the impact effect during

many steps are provided. Finally, thesis results are summarized in Chapter 8 together

with the outlooks for future research.
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Chapter 2

Modelling of the n-link

underactuated mechanical systems

Mathematical models of two underactuated walking robot structures are derived in this

chapter. These models include both the so-called swing phase and the impact map of

angular velocities at the impact moment. One can find many models of underactuated

mechanical systems in the literature, see e.g. in [54, 124] for survey. Some information is

repeated here in order to keep the thesis self-contained.

More specifically, the so-called Acrobot and 4-link are considered here, see Fig-

ures 2.1a, 2.1b. These mechanical systems have similar structures. They are special

cases of the n-link chain with n− 1 actuators between them supported at one of its ends

at a pivot point on a flat surface. Acrobot is the 2-link with two degrees of freedom (DOF)

and with one actuator placed between these links, therefore, it is perhaps the simplest

underactuated mechanical system. The 4-link is, roughly speaking, Acrobot with knees.

It consists of four links with three actuators between them. In both cases the point where

these structures touch the ground is not actuated. In other words, both of them belong

to the class of underactuated walking robots.

Both Acrobot and 4-link are typical representatives of the so-called Lagrangian hybrid

systems, i.e. mechanical systems, described by the Lagrangian approach, with a collision

or, in other words, with an impact, which causes a discontinuous change in angular

velocities while angular positions remain continuous. Indeed, both mechanical systems

have continuous-time and discrete-time phases of their dynamics. The continuous-time

phase is described by the system of differential equations whereas the discrete-time phase

is described by the algebraic map. Both dynamics are covered by the general hybrid

9



system model in the following form

ẋ = F (x, u), x ∈ C(x),(2.1)

x+ = G(x−, u), x ∈ D(x),(2.2)

where x ∈ Rn, F (x) and G(x) are smooth functions, C(x) and D(x) are subsets of Rn and

u is an input. Moreover, C(x) ∪D(x) = Rn and x−, x+ stand for the system state just

before and just after the impact, respectively. Trajectory of the model (2.1), (2.2) starting

from the initial condition x(t0) = x0 ∈ C(x) is determined as follows: for x(t) ∈ C(x(t))

it is a solution of the ordinary differential equation (2.1). When x(t̄ ) ∈ D(x(t̄ )), for some

t̄, it continues as another solution of (2.1) denoted x̃(t), t ≥ t̄, having the “re-set” initial

condition x̃(t̄ ) = G(x(t̄ ), u). General hybrid model (2.1), (2.2) describes wide variety of

systems. In addition to mechanical systems with collision, one can mention e.g. switching

systems, hybrid system automata, discrete events in biological systems etc.

Acrobot depicted in Figure 2.1a has two “legs” with only one actuator placed between

them. 4-link depicted in Figure 2.1b has two “legs” as well, moreover, both legs have

a “knee”. Acrobot or 4-link walking consists of the continuous part, i.e. when one leg,

usually called swing leg is in the air and of the impulsive part which occurs when the

swing leg hits the ground. For the sake of completeness, the second leg which is in contact

with the ground during the step is usually called as the stance leg.

The continuous part, when the swing leg is in the air, is modelled by the well-known

Lagrangian approach and it is usually called in the literature as the swing-phase. Dur-

ing the swing-phase the configuration of Acrobot or 4-link is described by generalized

coordinates q and it is bounded by an one-sided constraint as two solid bodies cannot

penetrate each other. In our case, that limitation means that the swing leg cannot go

under the ground, i.e. the height of the swing leg’s end-point has to be hendpoin(q) ≥ 0.

The next section will present the derivation of the dynamical model for Acrobot and

4-link in detail.

When the swing leg hits the ground, i.e. hendpoint(q) = 0, the so-called impact occurs.

The result of this event is an instantaneous jump of angular velocities q̇ while angular

positions q remain continuous. The impact is modelled as a contact between two rigid

bodies. To derive the impact mapping, the so-called extended inertia matrix De(qe) plays

a crucial role. Detailed derivation of the impact model for Acrobot and for 4-link will be

presented in the second part of this chapter. The event when the swing leg touches the

ground is in the literature usually referred to as the so-called double-phase.

Integration of continuous-time and discrete-time phases into the general model of

hybrid systems (2.1), (2.2) is surveyed e.g. in [10, 49, 131].

10
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Figure 2.1b. 4-link

2.1 Dynamical model of the 2-link and the 4-link me-

chanical system

The well-known Euler-Lagrangian approach, see [39, 48, 113] will be used here. First,

define Lagrangian L(q, q̇) given by the difference between kinetic K and potential P
energy of the modelled mechanical system

(2.3) L(q, q̇) = K − P .

Kinetic energy K of a rigid link can be computed as the sum of kinetic energy of the

rotation movements and kinetic energy of the translation movements. For the purpose

of simplification, the entire mass of the rigid link is supposed to be concentrated in the

center of mass of the link. In this case, kinetic energy of the rigid link is expressed as

follows

(2.4) K =
1

2
mvTv +

1

2
ωTIω,

where m is total mass of the rigid link, v and ω are linear and angular velocity vectors,

respectively, and I is the symmetric 3 x 3 and positive definite inertia matrix. Linear and

angular velocity vectors and the inertia matrix are expressed with respect to a predefined

inertia frame. Potential energy P of a rigid link can be computed as follows

(2.5) P = mgh,

where h is height of the center of mass of the link.

11



A general set of differential equations describing the time evolution of Acrobot or

4-link is obtained as follows. Let the underactuated angle at the pivot point be denoted

as q1, then the Euler-Lagrange equations give

(2.6)


d
dt
∂L
∂q̇1
− ∂L

∂q1

d
dt
∂L
∂q̇2
− ∂L

∂q2
...

d
dt

∂L
∂q̇n
− ∂L

∂qn

 = u =


0

τ2

...

τn

 ,

where u stands for the vector of the external controlled forces. System (2.6) is the so-

called underactuated mechanical system having the degree of the underactuation equal

to one. Equation (2.6) leads to the dynamical equation in the form

(2.7) D(q)q̈ + C(q, q̇)q̇ +G(q) = u,

where D(q) is the inertia matrix, D(q) = D(q)T > 0, C(q, q̇) contains Coriolis and

centrifugal terms, G(q) contains gravity terms and u stands for the vector of external

forces.

For the simplicity, the dynamical model of the mechanical system with rigid links

and without friction is considered here. Moreover, the rigid links are simplified into the

massless links with their whole masses placed in the center of mass of the corresponding

link. See Figure 2.2 for link’s length specifications for Acrobot. Notations and link’s

length specifications for 4-link are analogous.

The way of acquiring the equations for kinetic and potential energy of Acrobot or

4-link is based on the approach described in [113]. The advantage of that approach

consists in its straightforward expandability to the case of general n-link system. In the

following subsection, the model of Acrobot is derived in detail, while Subsection 2.1.2

will be focused on the model of 4-link.

2.1.1 Dynamical model of Acrobot

First of all, define the rotational matrices between two frames. The so-called base frame is

the frame related to the horizontal and the vertical direction. Rotational matrix between

the base frame and the first link orientation is denoted as R0
1, while the one between the

first link orientation and the second link orientation is denoted as R1
2. One has that:

(2.8) R0
1 =


sin q1 − cos q1 0

cos q1 sin q1 0

0 0 1

 , R1
2 =


cos q2 sin q2 0

− sin q2 cos q2 0

0 0 1

 ,
12
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Figure 2.2. Geometry of Acrobot

see Figure 2.2 for the definition of angles q1 and q2. The rotational transformation between

the base frame and the second link is then given by

(2.9) R0
2 = R0

1 R
1
2 .

The absolute value of angular velocities between the base frame and the first link and

between the first link and the second link are denoted by q̇1 and q̇2, respectively. Vectors

of these angular velocities are expressed as follows

(2.10) ω0
0 1 =

[
0 0 q̇1

]T

, ω1
1 2 =

[
0 0 q̇2

]T

.

Here the upper index corresponds to the frame where the angular velocity is defined

while the bottom indices represent two frames that rotate each with respect to other.

The angular velocity ω1
1 2 is expressed in the base frame using the rotational matrix R0

1

as follows

(2.11) ω0
1 2 = ω0

0 1 +R0
1ω

1
1 2 =

[
0 0 q̇1+q̇2

]T

.

The next step is to express the translational velocity of the center of mass of the first

link v0
c1 and the translational velocity of the end of the first link v0

1. Generally, the

translational velocity of a point on a rotational link is given by the vector product of

the vector of angular velocity of the link ω and radius vector of a point on the link r.

Therefore, the translational velocity is given by v = ω × r. In the case of the first link,

13



the position vector of the end point r1
p1 and the position vector of the center of mass r1

c1

are expressed in coordinates of the first link, therefore they have the following form

r1
p1 =

[
l1 0 0

]T

, r1
c1 =

[
lc1 0 0

]T

.

Using the rotational matrix R0
1 it is easy to obtain expression of the position vectors in

base frame coordinates as follows

r0
p1 = R0

1 r
1
p1, r0

c1 = R0
1 r

1
c1.

The analogous position vectors can be expressed for the second link

(2.12) r0
p2 = R0

2 r
2
p2 = R0

2

[
l2 0 0

]T

, r0
c2 = R0

2 r
2
c2 = R0

2

[
lc2 0 0

]T

.

Finally, the translational velocity v0
c1 of the center of mass of the first link can be

expressed as follows

(2.13) v0
c1 = v0

1 + ω0
0 1 × r0

c1,

where v0
1 is equal to zero because it means the velocity of the base frame and the remaining

entries ω0
0 1 and r0

c1 were defined earlier. The translational velocity v0
c2 of the center of

mass of the second link is expressed in the coordinates connected with the base frame as

follows

(2.14) v0
c2 = v0

2 + ω0
1 2 × r0

c2,

where v0
2 is equal to the translational velocity of the initial point of the second link,

namely v0
2 = ω0

0 1 × r0
p1, and the remaining entries ω0

1 2 and r0
c2 were defined earlier.

In such a way, all necessary parameters for computation of kinetic and potential energy

are known. General expression for kinetic and potential energy of the rigid rod is shown

in (2.15) and in (2.16). The final expression for the kinetic energy of Acrobot has the

following form

(2.15) K =
1

2
m1(v0

c1)Tv0
c1 +

1

2
(ω0

0 1)TI1ω
0
0 1 +

1

2
m2(v0

c2)Tv0
c2 +

1

2
(ω0

1 2)TI2ω
0
1 2

and the final expression for the potential energy of Acrobot has the form as follows

(2.16) P = m1glc1 cos(q1) +m2g (l1 cos(q1) + lc2 cos(q1 + q2)) .

After substitution of equations for kinetic (2.15) and potential energy (2.16) into La-

grangian equation (2.3) it is possible to determine Euler-Lagrangian equations (2.6).

The complete first line of Euler-Lagrange equations is as follows

0 =
(
m1l

2
c1 +m2l

2
1 + I1zz +m2l

2
c2 + I2zz + 2m2l1lc2 cos q2

)
q̈1 +(

m2l
2
c2 + I2zz +m2l1lc2 cos q2

)
q̈2 + 2m2l1lc2 sin q2q̇1q̇2 +m2l1lc2 sin q2q̇

2
2 −(2.17)

m2lc2g sin(q1+q2)− (m2l1 +m1lc1) g sin q1,

14



where the zero at the left hand side of the equation expresses the absented actuator at

the pivot point. The complete second line of Euler-Lagrange equations is as follows

(2.18) τ2 =
(
m2l

2
c2 + I2zz +m2l1lc2 cos q2

)
q̈1 +

(
m2l

2
c2 + I2zz

)
q̈2−

m2l1lc2 sin q2q̇
2
1 −m2lc2g sin(q1 +q2).

The following material parameter equations to be substituted into (2.17) and (2.18)

are introduced in [39]

(2.19)
θ1 = m1l

2
c1 +m2l

2
1 + I1zz, θ2 = m2l

2
c2 + I2zz,

θ3 = m2l1lc2, θ4 = m1lc1 +m2l1, θ5 = m2lc2,

where m1, m2 is the mass of the link #1, #2, respectively, l1, l2 is length of the link #1, #2,

respectively, lc1, lc2 is the distance to the center of mass of the link #1, #2, respectively,

I1zz, I2zz is the moment of inertia around z-axes of the link #1, #2, respectively, about

its center of mass, g is gravity acceleration, q1 is the angle that the link #1 makes with

the vertical, q2 is the angle that the link #2 makes with the link #1, τ2 is torque applied

at the joint between links #1 and #2.

Equations (2.17) and (2.18) can be rewritten using the material parameters (2.19)

into the following standard matrix form for mechanical systems (2.7), see e.g. [39]

D(q)q̈ + C(q, q̇)q̇ +G(q) = u,

where

D(q) =

 θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ2 + θ3 cos q2 θ2

 ,(2.20)

C(q, q̇) =

 −θ3 sin q2q̇2 −(q̇1 + q̇2)θ3 sin q2

θ3 sin q2q̇1 0

 ,(2.21)

G(q) =

 −θ4g sin q1 − θ5g sin (q1 + q2)

−θ5g sin (q1 + q2)

 .(2.22)

Recall, that the 2-dimensional configuration vector (q1, q2) is defined in Figure 2.1a and

it is slightly different that one defined in [39].

For Acrobot these computations lead to the second-order nonholonomic constraint

and the kinetic symmetry, i.e. the inertia matrix depends only on the second variable

q2. The kinetic symmetry plays crucial role in the partial exact feedback linearization

approach introduced in Subsection 3.1.3 later on.
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2.1.2 Dynamical model of 4-link

The approach presented in the previous section can be extended to the 4-link system. As

a matter of fact, it is just needed to add rotation matrices between the second and the

third link and between the third and the fourth link R2
3, R3

4, respectively:

(2.23) R2
3 =


cos q3 sin q3 0

− sin q3 cos q3 0

0 0 1

 , R3
4 =


cos q4 sin q4 0

− sin q4 cos q4 0

0 0 1

 ,
where the angles q3 and q4 are defined in Figure 2.1b. The rotational transformations

between the base frame and the third link and between the base frame and the fourth

link are given by

(2.24) R0
3 = R0

1 R
1
2 R

2
3, and R0

4 = R0
1 R

1
2 R

2
3 R

3
4, respectively.

Moreover, it is necessary to define angular velocities between the second and the third

link ω2
2 3 and between the third and the fourth link ω3

3 4. Their expression in the base frame

is done by an equation analogous to (2.11) with the appropriate rotational matrices R0
3

and R0
4 instead of R0

1.

Furthermore, position vectors of the center of mass has to be determined. It means, to

define position vectors r3
c3, r

4
c4 and their expression in the base frame coordinates, r0

c3, r
0
c4

according to equation (2.12) with the appropriate rotational matrices.

The last computation which has to be done to express the Lagrangian is to find

translational velocity of the center of mass of appropriate links v0
c3 and v0

c4 according to

equations (2.13) or (2.14).

After all previous computations, it is now possible to write down the expression for

kinetic energy of 4-link in the following form

(2.25) K =
1

2
m1(v0

c1)Tv0
c1 +

1

2
(ω0

0 1)TI1ω
0
0 1 +

1

2
m2(v0

c2)Tv0
c2 +

1

2
(ω0

1 2)TI2ω
0
1 2+

1

2
m3(v0

c3)Tv0
c3 +

1

2
(ω0

0 3)TI3ω
0
0 3 +

1

2
m4(v0

c4)Tv0
c4 +

1

2
(ω0

1 4)TI4ω
0
1 4.

The final expression for potential energy of 4-link has following form

V = m1glc1 cos(q1) +m2g (l1 cos(q1) + lc2 cos(q1+q3)) +m3gl1 cos(q1)+

m3g (l2 cos(q1+q3) + lc3 cos(q1+q3+q2)) +m4gl1 cos(q1)+(2.26)

m4g (l2 cos(q1+q3) + l3 cos(q1+q3+q2) + lc4 cos(q1+q3+q2+q4)) .

After substitution of equations for kinetic energy (2.25) and potential energy (2.27)

into Lagrangian equation (2.3) it is possible to determine four Euler-Lagrangian equa-

tions (2.6). Nevertheless, for brevity neither their form nor final model matrices D(q),

C(q̇, q), G(q) are given here in detail.
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2.2 The impact model

The impact occurs when the swing leg hits the walking surface. The impact mapping is

important for the design of the multi-step walking reference trajectory because it changes

discontinuously angular velocities of the swing and the stance leg at the end of the step

while the angular positions remain continuous. The idea of using the impact map during

the reference trajectory design is shown in detail in Section 4.2 later on.

The methods to obtain the impact model for Acrobot or for 4-link are similar for

both models. Therefore, the description how to obtain the impact model will be given in

a general way and detailed illustration will be provided using the Acrobot model. The

impact model for 4-link can be derived by a simple and straightforward extension.

For the development of the impact rules, the original dynamical model (2.7), especially

D(q) matrix, has to be extended by adding the Cartesian coordinates (z1, z2) of the tip

of the stance leg. Overall coordinates q1, q2, z
1, z2 represent the general situation of the

Acrobot model without any connection to the base frame1. Therefore, the previously

developed model with, in general, n DOF will have n + 2 DOF. In Acrobot case, the

extended model will have 4-DOF.

The extended model of the mechanical system, in our case of Acrobot, is easy to

obtain by applying the Lagrangian method and steps described in Subsection 2.1.1. In

equation (2.13) the translational velocity of the base frame v0
1 will be equal to the general

translational velocity [ż1, ż2, 0]. Moreover, equation for system potential energy (2.16) is

extended by y-coordinate represented by z2 in all entries of potential energy P .

In the case of Acrobot, the forms of the extended matrices De(q), Ce(q̇, q) and Ge(q)

are as follows

(2.27) De =



θ1+θ2+2θ3 cos q2 θ2 + θ3 cos q2
−θ4 cos q1−
θ5 cos (q1 + q2)

θ4 sin q1+
θ5 sin (q1 + q2)

θ2 + θ3 cos q2 θ2 −θ5 cos (q1 + q2) θ5 sin (q1 + q2)

−θ4 cos q1−
θ5 cos (q1 + q2)

−θ5 cos (q1+q2) m1 +m2 0

θ4 sin q1+
θ5 sin (q1 + q2)

θ5 sin (q1+q2) 0 m1 +m2


,

(2.28) Ce =


−θ3 sin q2q̇2 −θ3 sin q2(q̇1+q̇2) 0 0

θ3 sin q2q̇1 0 0 0

θ4 sin q1q̇1 + θ5 sin (q1+q2)(q̇1+q̇2) θ5 sin (q1+q2)(q̇1+q̇2) 0 0

θ4 cos q1q̇1 + θ5 cos (q1+q2)(q̇1+q̇2) θ5 cos (q1+q2)(q̇1+q̇2) 0 0

 ,
1Realize that the developed swing phase model (2.7) is connected to the coordinate origin, i.e.

(z1, z2) = (0, 0).
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(2.29) Ge =


−g (θ5 sin (q1 + q2) + θ4 sin q1)

−g θ5 sin (q1 + q2)

0

g (m1 +m2)

 .
The impact between the swing leg and the ground is modelled as a contact between

two rigid bodies. There are many different ways in the literature how the impact can be

modelled, see [24, 34, 49, 56], nevertheless, most of them are based on results of [23, 67].

During the impact the external impulsive forces Fext have effect on the model, therefore

the vector of impulsive external forces has to be taken into account. The extended model

with vector of impulsive external forces is as follows

(2.30) De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Beu+ δFext,

where qe is the extended coordinates vector qe = (q1, q2, z
1, z2) and δFext represents the

vector of the impulsive external forces acting on the robot at the contact point during

the impact, moreover Fext =
∫ t+
t−
δFext(τ)dτ .

The impact model introduced in [49] is derived here under the following hypotheses

that imply that the total angular momentum is conserved:

H1) the impact is caused by the collision of the swing leg tip with the ground;

H2) the impact is instantaneous;

H3) the impact results in no rebound and no slipping of the swing leg;

H4) at the moment of the impact, the stance leg lifts from the ground without further

interactions;

H5) external forces during the impact are represented by impulses;

H6) actuators cannot generate impulses and hence can be ignored during the impact;

H7) impulsive forces may cause the instantaneous change of the robot velocities, but

there is no instantaneous change of the robot configuration.

Following an identical development as in [49], the expression relating the velocity of

the robot just before to just after the impact may be written as

(2.31) De

[
q̇+
e − q̇−e

]
= Fext,

where q̇+
e , q̇−e , are the angular velocities just after and just before the impact, respectively.

According to the above assumptions, Fext is the effect of the impulsive forces acting at

the tip of the swing leg, namely

(2.32) Fext = E2(q−e )F2,
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where F2 =
[
F T FN

]′
and E2(qe) = ∂Υ(qe)

∂qe
. The variable Υ2 represents coordinates of

the tip point of the swing leg, i.e.

(2.33) Υ =

 z1 + l1 sin q1 + l2 sin (q1 + q2)

z2 + l1 cos q1 + l2 cos (q1 + q2)

 .
The expression for E2(q2) is therefore as follows

(2.34) E2(qe) =

 l1 cos q1 + l2 cos (q1 + q2) l2 cos (q1 + q2) 1 0

−l1 sin q1 − l2 sin (q1 + q2) −l2 sin (q1 + q2) 0 1

 .
The angular velocity just before the impact q̇−e is given by the extended model (2.30)

whereas the angular velocity just after the impact q̇+
e is given as the result of the impact

model. As a consequence of the impact model hypotheses H3, the swing leg neither

rebound nor slip and therefore the equation (2.31) is accompanied by the equation

(2.35) E2(q−e )q̇+
e = 0.

The angular velocity just after the impact q̇+
e and forces acting at the tip of the swing

leg are given by the set of equations (2.31) and (2.35) as follows

(2.36)

 De(q
−
e ) −E2(q−e )′

E2(q−e ) 02×2

 q̇+
e

F2

 =

 De(q
−
e )q̇−e

02×1

 .
During the impact, it is assumed that the swing leg and the stance leg becomes the new

stance leg and the new swing leg, respectively, and Acrobot coordinates q1 and q2 are

relabeled. To do so, consider Figure 2.3 where one can see the relation between Acrobot

angles at the end of the previous step, i.e. q1, q2, and relabeled Acrobot angles at the

beginning of the new step, i.e. q̃1, q̃2.

Using trigonometric laws, one can immediately see the following dependencies between

the angular positions at the end of the old step and the angular positions at the beginning

of the new step

(2.37) q̃1 = π − q1 − q2, q̃2 = 2π − q2.

Equation (2.37) represents the change of Acrobot coordinates due to its legs relabeling.

Furthermore, its time derivative is related as follows

(2.38) ˙̃q1 = −q̇1 − q̇2, ˙̃q2 = −q̇2,

2The notation Υ was used in [49].
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q̃2 q2

−q̃1 q1

Figure 2.3. The definition of Acrobot angles at the beginning (left side of Figure), and at the

end (right side of Figure), of the step.

which represents the change of Acrobot angular velocities q̇1, q̇2 due to legs relabeling.

Angular velocities q̇1, q̇2 in (2.38) are given by impact equation (2.36) as a result of the

impact at the end of the step.

The final form of the impact matrix Φ̃Ipm(q(T )) is obtained by solving the impact

equation (2.36) and implementing the change of legs and their relabeling expressed by

equations (2.37), (2.38). Therefore, the definition of the impact matrix of Acrobot is as

follows

(2.39) Φ̃Imp(q(T )) =


π

2π

0

0

+


−1 −1 0 0

0 −1 0 0

0 0 −1 −1

0 0 0 −1

×
 I2x2 02x2

02x2 Φ̄Imp(q(T ))

 ,

where Φ̄Imp(q(T )) represents appropriate part of the solution of (2.36). Nevertheless,

for the purpose of the multi-step walking reference trajectory design in Section 4.2, the

impact matrix including only angular velocities is defined as follows

(2.40) ΦImp(q(T )) =

 −1 −1

0 −1

× Φ̄Imp(q(T )),

where Φ̄Imp(q(T )) represents again the appropriate part of the solution of (2.36). This

matrix is used in the multi-step walking reference trajectory design where only angular

velocities are taken into the account.

In [10] an integration of the continuous-time and the discrete-time dynamics into

a general model of hybrid systems is provided.
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In the case of 4-link the idea of legs switching is the same. The relations between

angular positions at the end of the previous step and at the beginning of the new step

are as follows

(2.41) q̃1 = π − q1 − q2 − q3 − q4, q̃2 = 2π − q2, q̃3 = −q4, q̃4 = −q3.

Furthermore, their time derivatives representing the relations between angular velocities

at the end of the previous step after the impact and at the beginning of the new step of

4-link are given as follows

(2.42) ˙̃q1 = −q̇1 − q̇2 − q̇3 − q̇4, ˙̃q2 = −q̇2, ˙̃q3 = −q̇4, ˙̃q4 = −q̇3.

The definition of the impact matrix of 4-link corresponds to the definition of equation

(2.39) in Acrobot case. Summarizing, the relations given by Acrobot equations (2.37),

(2.38) or by 4-link equations (2.41), (2.42) form the matrix G(x, u) in (2.2).

2.3 Chapter conclusion

This chapter presented mathematical models of two underactuated walking robots, namely

Acrobot and 4-link using classical Euler-Lagrange approach. Both models are supple-

mented by the impact map of angular velocities in order to unambiguously define the

angular velocities of the robot after the swing leg hits the ground at the end of the step.

The developed mathematical models are used to design the pseudo-passive reference

trajectory or to design feedback controllers whereas the impact map is used in the multi-

step walking reference trajectory design or in a verification of a stability tracking during

more steps later on.
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Chapter 3

Exact feedback linearization

The purpose of this chapter is to present the partial exact feedback linearization of the

Acrobot model. Later on, the partially linear form of the 4-link model will be derived us-

ing the one of the Acrobot model and the so-called embedding of the generalized Acrobot

into 4-link. In other words, the majority of this chapter will be devoted to Acrobot.

It is not possible to apply a classical linear control approach directly to the Acrobot

model due to its nonlinearities. Therefore, in order to control Acrobot in a way resem-

bling the human walk, a nonlinear control method is used. In the literature, one can

find various control approaches applied to a general underactuated mechanical system

including Acrobot. In particular, a passive based control was used in order to control

a biped robot in [122], the underactuated biped is controlled via a sliding mode control

method in [92], a fuzzy control approach is used to control an underactuated robot in

[17], whereas a partial feedback linearization method is used in [117, 119] in order to con-

trol Acrobot in a desired way. The partial exact feedback linearization presented in this

section can be viewed as a generalization of the well-known and widely used in robotics

computed-torque method which corresponds to the full exact feedback linearization of

the fully actuated mechanical system.

3.1 Partial feedback linearization of Acrobot

The exact feedback linearization approach is based on the idea that the new nonlinear

control law is obtained as a controller for an inner-loop which exactly linearizes the

nonlinear system using a state space change of coordinates. The outer-loop control in

the new coordinates can be designed using a suitable classical linear method so that the

required control tasks are fulfilled. More specifically, consider the following nonlinear
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system in the standard form

(3.1)
ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R,
y = h(x), y ∈ R,

where f(x), g(x) are smooth vector fields defined on Rn and h(x) is smooth function

defined on Rn. The following state feedback transformation introducing new input v ∈ R

(3.2) u = α(x) + β(x) v

together with a change of variables

(3.3) z = T (x)

transforms the original nonlinear system (3.1) into its new equivalent form, provided (3.2)

and (3.3) define (locally or globally) smoothly invertible transformation between (x, u)

and (z, v). System (3.1) is then called as (locally or globally) exact feedback linearizable

if the corresponding equivalent system is the linear one.

The exact feedback linearization method is efficient method to handle nonlinear sys-

tems control, however, the field of applicability of these methods is, indeed, very limited,

especially in real applications. Nevertheless, the partial feedback linearization method

can be applied to a wider class of nonlinear systems on the assumption that the corre-

sponding zero dynamics is stable. The zero dynamics is in certain sense analogue of the

maximal unobservable part of a linear system. Stability of the zero dynamics has to be

verified so that the partial feedback linearized form of a nonlinear system can be used.

In general, to achieve either the full state feedback linearization or the partial feedback

linearization one can seek a suitable auxiliary output function h having the convenient

relative degree r [59]. In the case of the state feedback linearization technique, the relative

degree of the output function h is equal to the dimension of the nonlinear system, i.e. to n.

On the other hand, in the case of the partial feedback linearization technique, the relative

degree of the output function h is strictly lower than the degree of the nonlinear system

n. It is well-known [59] that the single-input single-output system has generically always

at least one-dimensional input-output exact linearizable part. Nevertheless, getting an

output function h with maximal relative degree r in order to have the smallest possible

zero dynamics is, in general, very difficult task [59, 68].
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3.1.1 The maximal order of exact linearization of Acrobot

To find the maximal degree of Acrobot linearization let us rewrite the original equation

of motion of Acrobot (2.7) into the following form

(3.4)

 q̈1

q̈2

 = −D−1(q)C(q, q̇)q̇ −D−1(q)G(q) +D−1(q)

 0

u

 .
Introducing x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, the original equation of motion of Acrobot

is expressed in the standard form (3.1), where vector fields f(x), g(x) are defined as follows

(3.5) f(x) =
[
f1(x), f2(x), f3(x), f4(x)

]T

, g(x) =
[
g1(x), g2(x), g3(x), g4(x)

]T

,

and where f1(x) = x2, f2(x) = −(d22c11−d12c21)x2−(d22c12−d12c22)x4−(d22G1−d12G2)

d11d22−d212
, f3(x) = x4,

f4(x) = −(d11c21−d12c11)x2−(d11c22−d12c12)x4−(d11G2−d12G1)

d11d22−d212
, g1 = 0, g2 = −d12

d11d22−d212
, g3 = 0,

g4 = d11
d11d22−d212

.

To determine maximal order of the partial exact feedback linearization of Acrobot,

the following definitions are given here in order to keep basic concepts from nonlinear

control theory.

Definition 3.1.1 Lie bracket of two vector fields f(x), g(x) is another vector field de-

noted [f, g](x) and defined as

[f, g](x) =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x).

Repeated bracketing of a vector field g(x) with the same vector field f(x) is possible. In

order to avoid a confusing notation in the form [f, [f, . . . , [f, g] . . .]], a recursive operation

is defined as follows

ad kfg(x) = [f, ad k−1
f g](x), k ≥ 1, ad 0

fg(x) = g(x).

Definition 3.1.2 A distribution is any collection of vector fields closed with respect to

linear operations. Moreover a distribution 4(x) is called involutive if the Lie bracket

[f1, f2](x) of any pair of vector fields f1(x) and f2(x) which belongs to 4(x) is a vector

field which belongs to 4(x), i.e.

f1(x) ∈ 4(x), f2(x) ∈ 4(x) ⇒ [f1, f2] (x) ∈ 4(x).
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Further, define a sequence of distributions, 40,41,42 related to a given system (3.1).

Namely the distribution 40(x) is defined as follows

(3.6) 40(x) = span{g}.

Recall that, any 1-dimensional regular distribution is involutive [59], so it is 40(x) pro-

vided g(0) 6= 0. Next, the distribution 4i+1(x), i ≥ 0 is defined as follows

(3.7) 4i+1(x) = span{g, adfg, . . . , ad
i+1
f g}.

To find the maximal linearizable part, Theorem 2.4.2 from [83], can be used and it is

repeated here for the reader’s convenience as the following

Theorem 3.1.3 Nonlinear system 3.1 is locally partially state feedback linearizable with

index r if the distribution 4r−2(x) has constant rank less than or equal to n − 1 in

neighborhood of the origin U0, and

adr−1
f g(x) /∈ 4r−2(x) = span{g, adfg, . . . , adr−2

f g}, ∀x ∈ U0.

To check conditions of Theorem 3.1.3 for Acrobot model (3.4), realize first that it is

system of the form (3.1) with (3.5). As g(x) is nonzero around working configuration, the

distribution 40 is one-dimensional, regular and therefore involutive. Next, Lie bracket

[f, g](x) is computed as follows

[f, g](x) =


θ2+θ3 cosx3

θ1θ2−θ23 cos2 x3

− θ3 sinx3(2x2+x4)

θ1θ2−θ23 cos2 x3

− θ1+θ2+2θ3 cosx3
θ1θ2−θ23 cos2 x3

(θ1x2+θ2x2+θ2x4+2θ3x2 cosx3+θ3x4 cosx3)

(2θ3 sinx3(θ2+θ3 cosx3))−1(θ1θ2−θ23 cos2 x3)2

 .

To show that the distribution 41(x) is involutive one has to check that the vector field[
g, [f, g]

]
(x) belongs to the distribution 41(x) for all x. The vector field

[
g, [f, g]

]
(x) is

computed as follows

[
g, [f, g]

]
(x) =


0

−2θ3 sinx3(θ1+θ3 cosx3)(θ2+θ3 cosx3)(θ2+θ3 cosx3)

(θ1θ2−θ23 cos2 x3)3

0
2θ3 sinx3(θ1+θ3 cosx3)(θ2+θ3 cosx3)(θ1+θ2+2θ3 cosx3)

(θ1θ2−θ23 cos2 x3)3

 ,

and therefore it holds

(3.8)
[
g, [f, g]

]
(x) =

2θ3 sinx3(θ1 + θ3 cosx3)(θ2 + θ3 cosx3)

(θ1θ2 − θ2
3 cos2 x3)2

g(x).
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So that the distribution 41(x) is, indeed, involutive.

Using Theorem 3.1.3 one can see that the involutivity of 41(x) actually guarantees

the partial exact linearization of Acrobot of order 3. Moreover, one can see that 42(x)

is not involutive. Again, it is the well-known result [83], Theorem 2.4.2 that involutivity

of 42(x) is necessary and sufficient condition for the full exact feedback linearization.

Summarizing, Acrobot has three dimensional exact feedback linearizable part and one

dimensional part that can never be linearized. Acrobot is a nice example of a nonlinear

system with partial feedback linearization property. Therefore, in following subsections

two different partial feedback linearization method for the Acrobot model are shown.

Before doing that, let us repeat that Euler-Lagrange equations of motions (2.6) lead

in the case of Acrobot to dynamical equation of motion of mechanical system (2.7) in the

form

D(q)q̈ + C(q, q̇)q̇ +G(q) =

 0

τ2

 ,
which gives 2-DOF underactuated mechanical system

d11q̈11 + d12q̈2 + c11q̇1 + c12q̇2 + g1 = 0,

d21q̈11 + d22q̈2 + c21q̇1 + c22q̇2 + g2 = τ2.(3.9)

The easiest way to find the exact feedback linearization is to define a suitable auxiliary

output with appropriate relative degree.

3.1.2 Spong exact feedback linearization of Acrobot of order 2

Due to the second order structure of (3.9) it is rather straightforward to find exact

feedback linearization of order 2, i.e. to define auxiliary output having relative degree

equal to 2. Namely, it was shown in [115, 120] that the invertible change of control input

(3.10) τ = α(q)u+ β(q, q̇)

transforms dynamics (3.9) into the partial linearized system of order 2. Namely, to do so

rewrite the first line of (3.9) as follows

(3.11) q̈1 = d−1
11 (−d12 q̈2 − c11q̇1 − c12q̇2 − g1)

and substitute into the second line of (3.9). After some rearrangement one has the

following form of the second line of (3.9)

(3.12)
(
d22 − d21d

−1
11 d12

)
q̈2+

(
c21 − d21d

−1
11 c11

)
q̇1+

(
c22 − d21d

−1
11 c12

)
q̇2+g2−d21d

−1
11 q1 = τ2.
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Now, a feedback linearizing controller for (3.9) could be defined as follows

(3.13) τ2 =
(
d22 − d21d

−1
11 d12

)
u+
(
c21 − d21d

−1
11 c11

)
q̇1+

(
c22 − d21d

−1
11 c12

)
q̇2+g2−d21d

−1
11 q1.

The original system is feedback equivalent to the following partial or input/output linear

system of order 2. The system is input/output linear from u to the output y2 = q2,

namely

d11q̈1 + c11q̇1 + c12q̇2 + g1 = −d12 u

q̈2 = u

y2 = q2.(3.14)

Equation (3.14) can be rewritten into the following form

q̇1 = p1

ṗ1 = −d−1
11 d12 u− d−1

11 c11 p1 − d−1
11 c12 p2 − d−1

11 g1

q̇2 = p2

ṗ2 = u.(3.15)

The output equation y2 = q2 is related with the location of Acrobot input τ2 which

directly actuates angle q2. Therefore, such partial linearization is called as the collocated

linearization of Acrobot, see [117]. In the same publication the so-called non-collocated

linearization is introduced, i.e. the input-output exact feedback linearization having the

underactuated angle q1 as the auxiliary output.

To sum up, it was shown in [117] that 2-DOF underactuated systems with input τ2

collocated with an output y = q2 can be partially linearized by the feedback

(3.16) τ2 =

(
d22 −

d21d12

d11

)
v +

(
f2 −

d21f1

d11

)
,

to obtain the original system (3.9) in the following partially linearized form

q̈1 = J(q)v +R(q, q̇),

q̈2 = v,(3.17)

where J(q) = −d12/d11 and R(q, q̇) = −f1/d11 are expressed via entries of the matrices

D(q) and F (q, q̇) = C(q, q̇)q̇ +G(q) in (2.7).

3.1.3 Partial exact feedback linearization of Acrobot of order 3

It was shown in [51, 96] that if a generalized momentum conjugated to a cyclic variable is

not conserved (as it is the case of Acrobot) then there exists a set of outputs that defines
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one-dimensional exponentially stable zero dynamics. In Acrobot case that means that it

is possible to find a function y(q, q̇) with relative degree 3 that transforms the original

system (2.7) by a local coordinate transformation z = T (q, q̇), namely

(3.18) z1 = y, z2 = ẏ, z3 = ÿ, z4 = f(q, q̇),

into a new input/output linear system with one-dimensional nonlinear zero dynamics:

(3.19) ż1 = z2, ż2 = z3, ż3 = α(q, q̇)τ2 + β(q, q̇) = w, ż4 = ψ1(q, q̇) + ψ2(q, q̇)τ2.

The following theorem, introduced in [96] deals with the transformation of Acrobot non-

linear dynamics equations (2.7) into a normal form (3.19).

Theorem 3.1.4 Consider underactuated system with two degrees of freedom (3.9) q1, q2

and symmetry property D(q) = D(q2). Assume the shape variable q2 is actuated. Then,

the following global change of coordinates:

z1 = q1 + γ(q2),

z2 = d11(q2)q̇1 + d12(q2)q̇2 := ∂L/∂q̇1,

ξ1 = q2,

ξ2 = q̇2(3.20)

transforms dynamics of (3.9) into a cascade nonlinear system in normal form

ż1 = m−1
11 (ξ1)z2,

ż2 = g(z1, ξ1),

ξ̇1 = ξ2,

ξ̇2 = u,(3.21)

where

γ(q2) =

∫ q2

0

d12(s)

d11(s)
ds, g(z1, ξ1) = −∂P(q)

∂q1

|q1=z1−γ(ξ1), q2=ξ1 .

By virtue of Theorem 3.1.4, in the case of Acrobot, there are two independent func-

tions with relative degree 3 transforming the original system into the desired normal form

(3.19), namely

σ =
∂L
∂q̇1

= (θ1 + θ2 + 2θ3 cos q2)q̇1 + (θ2 + θ3 cos q2)q̇2,(3.22)

p = q1 + γ(q2) = q1 +

∫ q2

0

d12(s)

d11(s)
ds.(3.23)
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After analytical computation of the integral in the equation above, the function p is

defined as follows

(3.24) p = q1 +
q2

2
+

2θ2 − θ1 − θ2√
(θ1 + θ2)2 − 4θ2

3

arctan

(√
θ1 + θ2 − 2θ3

θ1 + θ2 + 2θ3

tan
q2

2

)
.

Actually, time derivative of σ in (3.22) can be expressed as follows

(3.25) σ̇ =
d

dt

∂L
∂q̇1

,

moreover, after substitution (3.22) in the first line of Euler-Lagrange equation (2.6), which

corresponds to the underactuated angle q1, following relation holds

(3.26) σ̇ =
d

dt

∂L
∂q̇1

=
∂L
∂q1

= −θ4 g sin (q1)− θ5 g sin (q1 + q2) = −∂P(q)

∂q1

.

After substitution from material parameter equation (2.19) into (3.26) one can see that

the following expression holds

(3.27) σ̇ =
xcm

g(m1 +m2)
,

where xcm is x-position of the center of mass of Acrobot. In other words, σ̇ is proportional

to the x-position of Acrobot center of mass.

Moreover, σ̇ has relative degree 2, i.e. σ has relative degree 3. Furthermore, by some

straightforward but laborious computations the following relation holds

(3.28) ṗ = d11(q2)−1σ,

where d11(q2) = (θ1 + θ2 + 2θ3 cos q2) is the corresponding element of the inertia matrix

D(q) in (2.7), i.e. ṗ has relative degree 2 and therefore p should have relative degree 3 as

well.

The zero dynamics is used to investigate internal stability when the corresponding

output is constrained to zero. For the simplest cases, i.e. the auxiliary output is y = Cp(q)

or y = Cσ(q, q̇) the resulting zero dynamics is only critically stable. However, considering

the output function y = C1p(q) + C2σ(q, q̇) one gets the following zero dynamics ṗ +

C1[C2d11(q2)]−1p = 0 which is asymptotically stable whenever C1/C2 is positive, d11(q2)

being the corresponding part of the inertia matrix D(q) in (2.7). Unfortunately, the

corresponding transformations have a complex set of singularities, unless C1 is very small,

which is not suitable for practical purposes.

Finally, note that detailed classification of the underactuated mechanical systems

using variety of normal forms can be found in [95].
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It was shown in [30] that functions p, σ mentioned above having maximal relative

degree 3 can be used to a transformation of the original nonlinear equation of Acrobot

into the normal form using another transformation than the change of coordinates given

in Theorem 3.1.4. Namely, the following transformation can be defined:

(3.29) ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈,

where p and σ are given in (3.22), (3.24). Applying (3.28), (3.29) to (2.7) Acrobot

dynamics in partial exact linearized form is obtained

(3.30) ξ̇1 = d11(q2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4, ξ̇4 = α(q)τ2 + β(q, q̇) = w,

with new coordinates ξ and input w being well defined whenever α(q)−1 6= 0. An impor-

tant feature here is that the set of possible singularities where α(q)−1 = 0 depends only

on positions, not on velocities. In [30] the region where such a transformation can be

applied is expressed explicitly. Namely, straightforward computations show that

(3.31) ξ =


ξ1

ξ2

ξ3

ξ4

 = T (q1, q2, q̇1, q̇2) :=


T1

T2

T3

T4

 ,

where the transformation T (q1, q2, q̇1, q̇2) after reordering the second and the third line is

given as follows
T1

T3

T2

T4

 =


p(q1, q2)

θ4g sin q1 + θ5g sin(q1 + q2)

Φ2(q1, q2)

 q̇1

q̇2



 ,(3.32)

where σ and p are given by (3.22), (3.24) and Φ2 by (3.35) later on. It is obvious that

transformations T1 and T3 depend on angular positions q1 and q2 only. It holds by (3.31),

(3.32) that

(3.33)
∂[ξ1, ξ3, ξ2, ξ4]>

∂[q>, q̇>]>
=

 Φ1(q1, q2) 0

Φ3(q, q̇) Φ2(q1, q2)

 ,
where q := [q1, q2]>, Φ3(q, q̇) is a certain (2× 2) matrix of smooth functions while

(3.34) Φ1(q1, q2) =

 1 θ2+θ3 cos q2
θ1+θ2+2θ3 cos q2

θ4g cos q1 + θ5g cos(q1 + q2) θ5g cos(q1 + q2)

 ,
30



(3.35) Φ2(q1, q2) =

 θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2

θ4g cos q1 + θ5g cos(q1 + q2) θ5g cos(q1 + q2)

 .
3.2 Acrobot embedding into 4-link

The idea of Acrobot embedding into 4-link was presented in [28]. Acrobot embedding

method consists in selection of constraining functions for knees control φ3(q2), φ4(q2) with

dependence on the angle in the hip q2 whereas the angle in the hip is controlled in the

same way as it would be the Acrobot angle.

By virtue of the embedding method, it is not necessary to develop a new control

strategy for 4-link, instead, 4-link can be controlled using the already developed control

strategies for Acrobot together with constraining functions for bending of the swing leg

and straighten of the stance leg during one step.

Dependencies of angles q3 and q4 on angle q2 are represented by constraining func-

tions φ3(q2), φ4(q2) for knees control. New coordinates as q̄1, . . . , q̄4, ˙̄q1, . . . ˙̄q4, τ̄2, . . . , τ̄4

are crucial for the embedding method.

The coordinates change taking the “old” coordinates in (2.7) into new coordinates is

defined as follows:

(3.36)

q̄1 = q1, q̄2 = q2,

˙̄q1 = q̇1, ˙̄q2 = q̇2,

τ̄2 = τ2,

q̄3 = q3 − φ3(q2),

˙̄q3 = q̇3 − ∂φ3(q2)
∂q2

q̇2,

τ̄3 = q̈3 − ∂φ3(q2)
∂q2

q̈2 − ∂2φ3(q2)

∂q22
q̇2

2,

q̄4 = q4 − φ4(q2),

˙̄q4 = q̇4 − ∂φ4(q2)
∂q2

q̇2,

τ̄4 = q̈4 − ∂φ4(q2)
∂q2

q̈2 − ∂2φ4(q2)

∂q22
q̇2

2,

where q̈2, q̈3, q̈4 are substituted from original dynamical equation for 4-link, represented by

general equation (2.7). The definition of constraining functions φ3(q2), φ4(q2) for knees

control will be discussed later. It is shown in [28] that the transformation of coordinates

(3.36) is invertible. For more details see [28].
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By virtue of embedding method, results developed for Acrobot can be simply adapted

here. The following transformation is defined

(3.37) ξ = T (q̄, ˙̄q) : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈,

where p and σ are well known linearizing functions (3.22), (3.24) in new coordinates

(3.36), namely

σ =
∂L
∂ ˙̄q1

,(3.38)

p = q̄1 +

∫ q̄2

0

d̄11(s)−1d̄12(s)ds.(3.39)

The bar above q, q̇ represents new coordinates (3.36) and the same bar above dynamic

equation’s matrices (2.7) represents the dynamics of the embedded Acrobot in new coordi-

nates (3.36). After substitution (3.38), (3.39) into (3.37) particular form of transformation

(3.37) in new coordinates (3.36) is as follows

(3.40)

ξ1 = q̄1 +
∫ q̄2

0
d̄11(s)−1d̄12(s)ds,

ξ2 = d̄11(q̄2) ˙̄q1 + d̄12(q̄2) ˙̄q2,

ξ3 = −G1(q̄),

ξ4 = −∂G1

∂q̄1
(q̄) ˙̄q1 − ∂G1

∂q̄2
(q̄) ˙̄q2,

w = − ˙̄q
> ∂2G1

∂q̄2
(q̄) ˙̄q −

[
∂G1

∂q̄1
(q̄), ∂G1

∂q̄2
(q̄)
]
×D(q̄)−1

 0

τ̄

− C(q̄, ˙̄q) ˙̄q −G(q̄)

 .
New matrices D(q2), C(q1,2, q̇1,2) and G(q1, q2) are defined as follows

(3.41) D(q̄) = φ
>
D(q)φ,

(3.42) C(q̄, ˙̄q) = φ
>
C(q, q̇)φ+ φ

>
D(q)


0 0 0 0

0 0 0 0

0 ∂2φ3(q2)

∂q22
q̇2 0 0

0 ∂2φ4(q2)

∂q22
q̇2 0 0

 ,

(3.43) G(q̄) = φ
>
G(q)φ,

32



where matrices D(q), C(q, q̇) and G(q) are matrices of 4-link dynamical model equation.

Function φ is defined as follows

(3.44) φ =


1 0 0 0

0 1 0 0

0 ∂φ3(q2)
∂q2

q̇2 1 0

0 ∂φ4(q2)
∂q2

q̇2 0 1

 .

Moreover, the first derivatives of G1 with respect to q̄, i.e. ∂G1

∂q̄1
(q̄) and ∂G1

∂q̄2
(q̄) are defined

as follows

(3.45)
∂G1(q̄)

∂q̄1

=
∂G1(q)

∂q1

,
∂G1(q̄)

∂q̄2

=
∂G1(q)

∂q2

+
∂G1(q)

∂q3

∂φ3(q2)

∂q2

q̇2 +
∂G1(q)

∂q4

∂φ4(q2)

∂q2

q̇2.

The second derivative of G1(q̄) with respect to q̄, i.e. ∂2G1(q̄)
∂q̄2

is defined as follows

(3.46)
∂2G1(q̄)

∂q̄2
=

 1 0 0 0

0 1 ∂φ3(q2)
∂q2

q̇2
∂φ4(q2)
∂q2

q̇2

 ∂2G1(q)

∂q2


1 0

0 1

0 ∂φ3(q2)
∂q2

q̇2

0 ∂φ4(q2)
∂q2

q̇2

+

 0 0

0 ∂G1(q)
∂q3

φ
′′
3 + ∂G1(q)

∂q4
φ
′′
4

 .
To complete the definition of G1(q̄) above, the second time derivatives of constraining

functions φ
′′
3 and φ

′′
4 are defined as follows

(3.47) φ
′′

3 =
∂φ3(q2)

∂q2

q̈2 +
∂2φ3(q2)

∂q2
2

q̇2
2, φ

′′

4 =
∂φ4(q2)

∂q2

q̈2 +
∂2φ4(q2)

∂q2
2

q̇2
2.

The dynamics of the embedded Acrobot expressed in partial exact linearized form,

i.e. linearizing coordinates (3.40) with dependence (3.28) in new coordinates (3.36) are

as follows

ξ̇1 = d̄11(q̄2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q̄)τ2 + β(q̄, ˙̄q) = w(3.48)

with the new coordinates ξ and the input w being well defined wherever α(q̄)−1 6= 0.

3.3 Chapter conclusion

In this chapter the exact feedback linearization was applied to a general nonlinear model of

Acrobot such that the original nonlinear dynamics of Acrobot (2.7) was transformed using
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change of coordinates (3.29) and property (3.28) into partially linearized form (3.30). The

partially linearized form of Acrobot (3.30) can be used for a reference trajectory design

or an exponentially stable state feedback design to track a given reference trajectory.

Furthermore, the so-called generalized Acrobot was defined and embedded into the 4-

link system to facilitate the walking design for the 4-link case later on.
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Chapter 4

Walking trajectory design

The aim of this chapter is to present methods to design walking trajectories for two

underactuated walking robots, namely for Acrobot and for 4-link. With slight abuse of

notations we will refer to them in the sequel as to pseudo-passive trajectory and multi-step

walking trajectory.

4.1 Pseudo-passive trajectory design

The pseudo-passive trajectory was firstly introduced for Acrobot in [30]. The trajectory

design is done in ξ coordinates in such a way a reference model fulfills one step according to

desired time of the step and desired length of the step. From the partially linearized form

and from the meaning of the variables it can be seen that the pseudo-passive trajectory

ensures a movement of the center of mass of the walking robot horizontally forward with

constant horizontal velocity. Initial conditions on the pseudo-passive trajectory result

in no input action in the exact feedback linearized coordinates (3.29), i.e. wref ≡ 0.

The word “pseudo” expresses the fact that real torque is not zero, but τ ref2 = (β(q, q̇)−
wref )/α(q, q̇), due to the linearizing relation between real torque τ2 and the virtual input

w in the partial exact linearized form (3.30).

In [30], the algorithm was presented enabling computing the initial positions q(0)

and velocities q̇(0) ensuring the step starts and ends with both “legs” on the ground

with required length of the step together with required time duration of the step. The

trajectory was successfully used in Acrobot walking control in [3, 4, 14]. The trajectory

design was extended in [28] by virtue of the embedding method and the pseudo-passive

trajectory for 4-link was successfully used in the application of 4-link walking control.

A design of the algorithm for Acrobot and its extension to 4-link will be briefly repeated

here.
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4.1.1 Pseudo-passive trajectory for Acrobot

To generate the pseudo-passive reference trajectory of the swing phase, a reference model

of Acrobot is considered. Therefore, consider the reference model of Acrobot in the follow-

ing partial exact linearized coordinates related to coordinates of original Acrobot (3.29)

(4.1) ξref1 = pref , ξref2 = σref , ξref3 = σ̇ref , ξref4 = σ̈ref .

Reference coordinates lead to the reference model of Acrobot with reference dynamics

related to dynamics of original Acrobot (3.30) as follows

(4.2) ξ̇ref1 = d11(q2)−1ξref2 , ξ̇ref2 = ξref3 , ξ̇ref3 = ξref4 , ξ̇ref4 = wref .

The Acrobot step is designed in order to fulfill three assumptions

1. step symmetry, i.e. the initial and the final angular positions are the same,

2. the step is done in desired time T ,

3. the Acrobot center of mass is horizontally shifted in desired length D.

The reference step design is performed using linearizing coordinates ξ. Reference system

(4.2) performs the step according to given initial conditions ξ1(0), ξ2(0), ξ3(0) and ξ4(0)

and input control wref .

From meaning of linearizing coordinates (3.29) it follows that coordinates ξ1 and ξ3 are

related to the angular positions whereas coordinates ξ2 and ξ4 are related to the angular

velocities. First assumption for the step design comes from the step symmetry. It means

that the initial and the final angular positions are exactly the same and together with the

last assumption, i.e. from required length of the step D, initial conditions for coordinates

ξ1(0) and ξ3(0) are directly given by transformation (3.32). Coordinate ξ4 is related

to horizontal velocity of the Acrobot center of mass. Clearly, in (3.27) the dependence

between σ̇ and x-position of the center of mass of Acrobot is defined. According to

reference Acrobot coordinates (4.1) and reference Acrobot dynamics (4.2) it is necessary

to define input control wref = 0, otherwise the Acrobot center of mass would accelerate

or decelerate. Therefore, the initial condition for coordinate ξ4(0) is given from desired

length of the step D and from the desired time T of the step. The last initial condition

for remaining coordinate ξ2(0) is tuned up numerically in a way the swing step finishes

the step exactly on the ground.

The reference pseudo-passive trajectory has been successfully tested in simulations,

especially in applications of its tracking by “real” Acrobot, see Chapter 5. In Figures 4.1a

and b one can see courses of reference angular positions and velocities of the reference

pseudo-passive trajectory, respectively. In Figure 4.2 one can see the animation of the

reference pseudo-passive step.
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Figure 4.1. Course of the reference angular positions (a) and velocities (b) of the reference

pseudo-passive step. Black lines represent q1, q̇1 and blue lines represent q2, q̇2.

Figure 4.2. The animation of the reference pseudo-passive step.
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4.1.2 Pseudo-passive trajectory for 4-link

The design of the pseudo-passive trajectory for 4-link is based on Acrobot design, es-

pecially on the design of initial conditions for linearized coordinates ξ1(0), ξ2(0), ξ3(0)

and ξ4(0). Moreover, in addition to Acrobot design, it is necessary to design constrain-

ing functions for knees of both legs in 4-link case. Therefore, the design of constraining

functions φ3(q2) and φ4(q2) will be done at first.

In the case of 4-link depicted in Figure 2.1b, the virtual constraint functions φ3(q2)

and φ4(q2) are defined as follows

(4.3)
φ3 = 16bstance

(q2−q20 )2(q2−q2T )2

(−q20+q2T )4
+ q30 ,

φ4 = 16bswing
(q2−q20 )2(q2−q2T )2

(−q20+q2T )4
+ q40 ,

where q20 and q2T are the values of the angle q2 at the beginning and the end of the step,

respectively, while q30 and q40 are the initial values of the angle q3 and q4, respectively.

Finally, bstance and bswing are the maximal values of the stretching of the stance and the

bending of the swing leg, respectively. Note also, that in Figure 2.1b the angle q3 is defined

to be negative at the beginning of the step, so its growing indeed corresponds to stretching

the “knee” of the stance leg, while q4 is defined to be positive at the beginning of the step,

so its growing indeed corresponds to the bending of the swing leg. In Figure 4.4 one can

see that the stance leg is stretching until the middle of the step then it is bending back

to its initial value. The swing leg is doing other way around. Parameters bstance, bswing

can be used to adjust those bending and stretching, so that hitting the ground during

the step is avoided.

The rest of the pseudo-passive reference trajectory design for 4-link is the same as in

the case of Acrobot thanks to the embedding method, i.e. it is necessary to define initial

conditions of linearized coordinates ξ1(0), ξ3(0) and ξ4(0) for the embedded Acrobot

(3.40) according to the desired configuration of the step. The initial value of ξ2(0) is

found numerically in a way that the swing leg finishes on the ground at the end of the

step. Performing the step during numerical tuning or during a simulation is done with

predefined input control wref = 0.

In Figures 4.3a and b one can see courses of the reference angular positions and

velocities of the pseudo-passive reference trajectory, respectively. In Figure 4.4 one can

see the duration of the reference pseudo-passive step.

4.2 Multi-step trajectory design

The aim of this section is to present an algorithm to design a cyclic walking-like trajectory

which is crucial to have a hybrid exponentially stable multi-step tracking of this trajectory
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Figure 4.3. Course of the reference angular positions (a) and velocities (b) of the reference

pseudo-passive step. Black lines represent q1, q̇1, blue lines represent q2, q̇2, green lines represent

q3, q̇3, and yellow lines represent q4, q̇4. In the figure (b), the curve of angular velocities q̇3 is

covered by the curve of angular velocities q̇4.

Figure 4.4. The animation of the reference pseudo-passive step.
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later on. This design is not an easy task because initial conditions of the multi-step

walking trajectory are changed during the single step into different end conditions and

these should be subsequently mapped by the impact map into the same initial conditions

of the next step as they were at the beginning of the previous step. Partial linearized

coordinates are used to design of the multi-step walking trajectory. Such a trajectory is

then used to demonstrate the sustainable walking based on the swing phase exponentially

stable tracking.

The idea of the multi-step walking trajectory for Acrobot was firstly introduced in [6]

and its extension to 4-link was done in [11]. The main advantage of the cyclic walking

like trajectory consists in almost no initial error at the beginning of the new step. In

contrast, the pseudo-passive trajectory in [28, 30] would have a “renewed” fixed initial

error at the beginning of each next step. The multi-step walking trajectory can be simply

described as follows

(4.4) q̇(0) = ΦImp(q(T )) q̇(T−),

where ΦImp(q(T )) is the impact matrix including legs relabeling influence, q(T ) is a con-

figuration of Acrobot or 4-link at the end of the step, q̇(T−) are angular velocities “just

before” the impact, while q̇(0) are angular velocities at the beginning of the next step and

by (4.4) they are requested to be equal to those “just after” the impact and re-labeling.

For the Acrobot case, the impact matrix is defined by (2.40). Its extension for 4-link is

straightforward.

Summarizing, the crucial element in the multi-step walking trajectory design is the

impact matrix ΦImp(q(T )) that determines the relation between angular velocities at the

beginning of the new step and angular velocities at the end of the previous step and it

is given by (2.40). Recall that the way how the impact matrix is obtained including legs

relabeling effect was shown in detail in Section 2.2.

4.2.1 Acrobot multi-step walking trajectory design

In this section, the design of the multi-step walking trajectory for Acrobot will be pre-

sented. The key issue here is to design proper initial angular velocities of Acrobot as its

angular positions are naturally continuous even after the impact and due to the symmetry

of the postures (the both “legs” of Acrobot are supposed to have the same length).

Based on the impact map, the cyclic multi-step walking trajectory may be derived in

the following way. First, denote as ΦImp(q) the impact matrix realizing the influence of

the impact on angular velocities including their relabeling due to switching of the legs.
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More precisely, it holds that

(4.5)

 q̇1(T+)

q̇2(T+)

 = ΦImp(q(T ))

 q̇1(T−)

q̇2(T−)

 ,
where q̇1(T−), q̇2(T−) are the angular velocities “just before” the impact, while q̇1(T+),

q̇2(T+) are the angular velocities “just after” the impact and the relabeling, q(T ) is the

angular configuration of Acrobot at the end of the step. The cyclic multi-step walking

trajectory is defined to be such a trajectory that

(4.6)

 q̇1(T+)

q̇2(T+)

 =

 q̇1(0)

q̇2(0)

 ,
i.e. after the impact at the end of the step the configuration and the angular velocities

after relabeling are the same as at the beginning of that step and thereby the next step

can repeat exactly the previous one. Notice, that the impact does not affect the angular

configuration of Acrobot being affected just by the relabeling only, i.e. q1(T ), q2(T ) are

relabeled into q1(T+), q2(T+) by (2.37) and by symmetry of postures q1(T+) = q1(0) and

q2(T+) = q2(0). Course of the step is given by velocities q̇1(0), q̇2(0) and input torque τ ref2 ,

or wref in partial exact feedback linearized coordinates. The input wref will be searched

in the form wref = a + b t, a, b ∈ R. Therefore, the target trajectory design consists

in finding 4 scalar real parameters a, b, q̇1(0), q̇2(0) to fulfill 4 independent requirements:

average velocity of the center of mass should be D/T , the swing leg should end exactly

on the ground for t = T and two conditions (4.6).

In new coordinates (3.31), (3.32), the angular configuration of the step uniquely de-

termines ξ1,3(0) as follows:

ξ1(0) = p(q1(0), q2(0)),

ξ3(0) = G1(q1(0), q2(0)),

where G1 is gravitational term component given by (2.22). Moreover, the length of the

step D > 0 is clearly related to ξ3(T ) − ξ3(0), as it will be shown later on (actually, ξ3

is proportional to the value of the distance between the stance leg pivot point and the

projection of the center of mass onto the walking surface). The course speed of the step

is given by the initial angular velocities q̇1(0), q̇2(0) being uniquely related (thanks to the

partial exact feedback linearizing change of coordinates (3.31), (3.32)), to ξ2(0) and ξ4(0)

as follows  ξ2(0)

ξ4(0)

 = Φ2(q(0))

 q̇1(0)

q̇2(0)

 ,(4.7)
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where the matrix Φ2 is given by (3.35) which in turns stems from exact feedback lin-

earization, see [30] or Section 3.1.3 for details.

As a matter of fact, substituting ξ3 from change of coordinates (3.32) into (3.27), the

variable ξ3 provides the following nice interpretation

(4.8)
ξ3

g
(m1 +m2)−1 = xc,

where xc is the horizontal Cartesian coordinate of the center of mass with respect to

the origin placed into the pivot point of the stance leg. Both legs have the same mass,

therefore, the previous equation can be also interpreted as follows

(4.9) ξ3(T )− ξ3(0) = D g 2m.

As a consequence, the desired step can be designed choosing

(4.10) wref = a+ b t, a, b ∈ R

in such a way that

a) ξ3(T ) = ξ3(0) +D g 2m,

b) q1(T ) is such that both legs are on the ground,

c)
[
q̇1(T+), q̇2(T (+))

]′
= [q̇1(0), q̇2(0)]′ .

Substituting the above wref (4.10) into the Acrobot model in ξ coordinates gives

ξ̇1(t) = d−1
11 (q2)ξ2(t),

ξ2(t) = ξ2(0) + ξ3(0)t+ ξ4(0)
t2

2
+ a

t3

6
+ b

t4

24
,

ξ3(t) = ξ3(0) + ξ4(0)t+ a
t2

2
+ b

t3

6
,

ξ4(t) = ξ4(0) + at+ b
t2

2
,

while by condition b) and by (4.9) one has

D g 2m = ξ3(T )− ξ3(0) = ξ4(0)T + a
T 2

2
+ b

T 3

6
,

and therefore

(4.11) ξ4(0) =

(
D g 2m− aT

2

2
− bT

3

6

)
T−1.
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Moreover, by condition c) it holds

(4.12)

 q̇1(0)

q̇2(0)

 = ΦImp(q(T ))

 q̇1(T−)

q̇2(T−)

 = ΦImp(q(T ))Φ−1
2 (q(T ))

 ξ2(T )

ξ4(T )

 =

ΦImp(q(T ))Φ−1
2 (q(T ))×

 ξ2(0) + ξ3(0)T + ξ4(0)T
2

2
+ aT

3

6
+ bT

4

24

ξ4(0) + aT + bT
2

2

 =

ΦImp(q(T ))Φ−1
2 (q(T ))×( ξ2(0)

0

+

 ξ3(0)(T ) +D gmT
D g 2m
T

+

 a(T 3

6
− T 3

4

)
b
(
T 4

24
− T 4

12

)
a
(
T − T

2

)
b
(
T 2

2
− T 2

6

)).
Summarizing

(4.13)

 ξ2(0)
D g 2m
T
− aT

2
− bT 2

6

 = Φ2(q(0))ΦImp(q(T ))×

Φ−1
2 (q(T ))

( ξ2(0)

0

+

 ξ3(0)(T ) +D gmT
D g 2m
T

+

−T 3

12
−T 4

24

T
2

T 2

3

 a
b

).
This means that

(4.14)

 a
b

 =

(
Φ2(q(0))ΦImp(q(T ))Φ−1

2 (q(T ))×

−T 3

12
−T 4

24

T
6

T 2

3

+

 0 0

T
2

T 2

6

)−1

×

( 0
D g 2m
T

− Φ2(q(0))ΦImp(q(T ))Φ−1
2 (q(T ))×

 ξ3(0)T +D gmT
D g 2m
T

+

[
I − Φ2(q(0))ΦImp(q(T ))Φ−1

2 (q(T ))
]  ξ2(0)

0

).
The last relation suggests the following algorithm for cyclic multi-step walking trajectory

tuning. For any given initial condition ξ2(0) one computes by (4.14) a, b and consequently

also by (4.11) ξ4(0) such that “if impact occurs”, then angular velocities after the impact

and relabeling are exactly the same as at the beginning of the step. Therefore, the only

issue to be solved and tuned is that, indeed, exactly at t = T impact occurs, i.e. the

swing leg hits the ground exactly at t = T . This is done by numerical tuning of ξ2(0)

being the only remaining free parameter. Simple dichotomy algorithm is able to repeat

the above procedure adjusting ξ2(0) until the swing leg ends exactly on the ground at

t = T .
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In Figures 4.5a and b, one can see the course of reference angular positions and

velocities of the multi-step walking reference trajectory, respectively. In Figure 4.6 one

can see the animation of the multi-step walking reference trajectory.
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Figure 4.5. Course of the reference angular positions (a) and velocities (b) of the multi-step

walking reference trajectory. Black lines represent q1, q̇1 and blue lines represent q2, q̇2.

Figure 4.6. The animation of the multi-step walking reference trajectory.

To demonstrate the multi-step walking trajectory, this trajectory has been tuned

and then tracked during 3 steps. The feedback control strategy described in [3] and in

Chapter 5 later on was used. The corresponding simulations are shown in Figures 4.7a, b.

For the sake of comparison, the feedback tracking of the pseudo-passive trajectory was

simulated during 2 steps with the same control approach. The corresponding simulations

are shown in Figures 4.8a, b. At the end of the first step the “real” trajectory is close to

the pseudo-passive reference trajectory, however, after the impact the beginning of the
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“real” trajectory is mapped far away from the beginning of the reference one and the

tracking algorithm is not able to minimize the initial error caused by the impact. As

a consequence, the simulation crashes in the middle of the second step. In the contrast

to the cyclic trajectory, there is an additional initial error, caused by the impact, which

has to be minimized during the step for the pseudo-passive trajectory.
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Figure 4.7. Tracking of the multi-step walking reference trajectory. Angular positions (a) and

angular velocities (b).
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Figure 4.8. Tracking the pseudo-passive reference trajectory during two steps. Angular positions

(a) and angular velocities (b).

4.2.2 4-link multi-step walking trajectory design

In this section, the design of the multi-step walking trajectory for 4-link will be sug-

gested. The trajectory design is based on the Acrobot multi-step walking trajectory
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design by virtue of the so-called embedding method and it is extended by yet another

algorithm helping to define the proper values of the initial and the final derivatives of the

constraining functions.

Proper initial angular velocities of 4-link are crucial for the multi-step walking trajec-

tory design as it was in Acrobot case. Conditions for angular positions are automatically

satisfied due to matching of 4-link postures at the beginning and at the end of the step.

The walking like cyclic trajectory is again such a trajectory where the angular velocities

just after the impact at the end of the step are equal to velocities at the beginning of the

next step, i.e.

(4.15)


q̇1(T+)

q̇2(T+)

q̇3(T+)

q̇4(T+)

 =


q̇1(0)

q̇2(0)

q̇3(0)

q̇4(0)

 ,

where q̇x(T+) represents the angular velocity at the end of the step after the impact and

the relabeling whereas q̇x(0) represents the angular velocity at the beginning of the step.

In such a way, the next step starts in the same way as the previous one.

The relation between angular velocities at the end of the step before and after the

impact is given by the impact matrix ΦImp(q) as follows

(4.16)


q̇1(T+)

q̇2(T+)

q̇3(T+)

q̇4(T+)

 = ΦImp(q(T ))


q̇1(T−)

q̇2(T−)

q̇3(T−)

q̇4(T−)

 ,

where q̇x(T−) are angular velocities “just before” the impact, while q̇x(T+) are angular

velocities “just after” the impact and the relabeling. For details about obtaining (4.16)

see Section 2.2. In the case of 4-link, the impact matrix has the following form

(4.17) ΦImp(q(T )) =


φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44

 ,

where φxx are scalar entries of the impact matrix.

By virtue of the method of embedding the generalized Acrobot into 4-link, the angles

in knees q3 and q4 depend on the angle in the hip q2 via constraining functions φ3(q2) and
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φ4(q2). Moreover, angular velocities in knees q̇3 and q̇4 depend on the angular velocity in

the hip q̇2 as follows

(4.18) q̇3 =
∂φ3(q2)

∂q2

q̇2, q̇4 =
∂φ4(q2)

∂q2

q̇2.

One can see from equation (4.18) that the angular velocities in knees and in the hip

are connected through virtual constraints derivatives. The idea of presented multi-step

walking trajectory design consists in a design of values q̇3 and q̇4 at the beginning and

at the end of the step in such a way that (4.18) is preserved by the impact whatever q̇1,

q̇2, q̇3, q̇4 are. Afterward, the design of initial and final values of q̇1 and q̇2 will be done

separately for embedded generalized Acrobot (3.40).

The initial and the final value design of derivatives of constraining functions

To simplify the forthcoming derivation of suitable values ∂φ3(q2)
∂q2

and ∂φ4(q2)
∂q2

the following

notation is introduced

(4.19) b3 =
∂φ3(q2(0))

∂q2

, f3 =
∂φ3(q2(T ))

∂q2

,

(4.20) b4 =
∂φ4(q2(0))

∂q2

, f4 =
∂φ4(q2(T ))

∂q2

.

For the same reason, in the forthcoming derivation, the angular velocities at the end of

the step “just before” the impact are denoted as q̇1234(T ) instead of q̇1234(T−). Therefore

equation (4.16) has the following form

(4.21)


q̇1(0)

q̇2(0)

q̇3(0)

q̇4(0)

 = ΦImp(q(T ))


q̇1(T )

q̇2(T )

f3 q̇2(T )

f4 q̇2(T )

 .

From (4.21) one has as follows

(4.22)

 q̇1(0)

q̇2(0)

 =

φ11 φ12 + φ13f3 + φ14f4

φ21 φ22 + φ23f3 + φ24f4

 q̇1(T )

q̇2(T )



(4.23)

 q̇3(0)

q̇4(0)

 =

φ31 φ32 + φ33f3 + φ34f4

φ41 φ42 + φ43f3 + φ44f4

 q̇1(T )

q̇2(T )

 .
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Indeed, substituting q̇2(0) from (4.22) into (4.18) gives

(4.24)

 q̇3(0)

q̇4(0)

 =

 b3 q̇2(0)

b4 q̇2(0)

 =

 b3 (φ21q̇1(T ) + (φ22 + φ23f3 + φ24f4) q̇2(T ))

b4 (φ21q̇1(T ) + (φ22 + φ23f3 + φ24f4) q̇2(T ))


and substituting equation (4.24) into (4.23) gives the final equation as follows

(4.25)

 b3 (φ21q̇1(T ) + (φ22 + φ23f3 + φ24f4) q̇2(T ))

b4 (φ21q̇1(T ) + (φ22 + φ23f3 + φ24f4) q̇2(T ))

 =

φ31 φ32 + φ33f3 + φ34f4

φ41 φ42 + φ43f3 + φ44f4

 q̇1(T )

q̇2(T )

 .
After rearrangement, the form of equation (4.25) is as follows

(4.26)


b3φ21 − φ31

b3 (φ22 + φ23f3 + φ24f4)

−φ32 − φ33f3 − φ34f4

b4φ21 − φ41

b4 (φ22 + φ23f3 + φ24f4)

−φ42 − φ43f3 − φ44f4


 q̇1(T )

q̇2(T )

 = 0.

Values of coefficients b3, b4, f3 and f4 are computed realizing that (4.26) should hold for

every q̇1(T ), q̇2(T ). Therefore, the matrix on the left hand side of (4.26) should be zero.

This gives b3, b4, f3 and f4 as follows

(4.27) b3 =
φ31

φ21

, b4 =
φ41

φ21

,

(4.28)

 f3

f4

 =

φ23
φ31
φ21
− φ33 φ24

φ31
φ21
− φ34

φ23
φ41
φ21
− φ43 φ24

φ41
φ21
− φ44

−1 φ32 − φ22
φ31
φ21

φ42 − φ22
φ41
φ21

 .
Multi-step walking trajectory design for embedded Acrobot

In the previous part, the initial and the final derivatives of constraining functions φ3(q2),

φ4(q2) were defined in order to separate the design of initial and final values of angular

velocities q̇1, q̇2 from q̇3, q̇4. The initial and the final values of angular velocities q̇3 and

q̇4 are given by equations (4.27), (4.28) whereas the initial and the final values of q̇1, q̇2

will be determined here.

Remaining values of angular velocities q̇1, q̇2 at the beginning and at the end of the

step will be determined by adaptation of already developed method for Acrobot in [6] by
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virtue of the embedding method of generalized Acrobot into 4-link. For this reason, only

main points of the multi-step walking trajectory design will be mentioned here.

The angular configuration of the step is given by q1(0), q2(0), time of the step T

and length of the step D are given as well. Moreover, the impact does not affect the

angular configuration being affected by the relabeling only. Course of the step is given by

velocities q̇1(0), q̇2(0) and input torque τ ref2 , or wref in partial exact feedback linearized

coordinates. We aim to look for the input wref in the form wref = a + b t, a, b ∈ R.

Therefore, the target trajectory design consists in finding 4 scalar real parameters a, b,

q̇1(0), q̇2(0) to fulfill 4 independent requirements: the average velocity of the center of

mass should be D/T , the swing leg should end exactly on the ground for t = T and the

first two conditions from (4.15).

The design will be done in ξ coordinates (3.40). According to the coordinates def-

inition, the coordinates ξ1(0) and ξ3(0) are given by angular configuration of the step,

moreover, ξ3(T )− ξ3(0) = 2D gm, where m is total mass of 4-link and D is length of the

step. The coordinate ξ4(0) is defined according to (4.11) as follows

(4.29) ξ4(0) =
ξ3(T )− ξ3(0)

T
− aT

2
− bT

2

6
.

Parameters a, b are defined as follows

(4.30)

 a
b

 = (A− B)−1 C,

where

(4.31) A =

−T 3

12
−T 4

24

T
2

T 2

3

 , B = Φξ
Imp

 0 0

−T
2
−T 2

6

 ,

(4.32) C =

 ξ2(0) + ξ3(T )−ξ3(0)
T

T 2

2
+ ξ3(0)T

ξ3(T )−ξ3(0)
T

− Φξ
Imp

 ξ2(0)
ξ3(T )−ξ3(0)

T

 .
Φξ

Imp is the impact matrix expressed in ξ coordinates. The only remaining parameter

to be defined is ξ2(0). This parameter is determined by a simple numerical dichotomy

algorithm ensuring that the swing leg finishes exactly on the ground at the desired time

T .

In Figures 4.9a and b, one can see the course of the reference angular positions and

velocities of the multi-step walking reference trajectory, respectively. In Figure 4.10 one

can see the animation of the reference multi-step walking trajectory.

49



0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

A
n
g
u
la

r 
p
o
s
it
io

n
 [
ra

d
]

Time [s]
0 0.1 0.2 0.3 0.4 0.5

−6

−5

−4

−3

−2

−1

0

1

2

3

4

A
n
g
u
la

r 
v
e
lo

c
it
ie

s
 [
ra

d
/s

]

Time [s]

(a) (b)

Figure 4.9. Course of the reference angular positions (a) and velocities (b) of the reference

multi-step walking trajectory. Black lines represent q1, q̇1, blue lines represent q2, q̇2, green

lines represent q3, q̇3, and yellow lines represent q4, q̇4.

Figure 4.10. The animation of the reference multi-step walking trajectory.
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The advantage of the multi-step walking trajectory for the generalized Acrobot can be

demonstrated similarly as in the case of the multi-step walking trajectory for Acrobot.

Both trajectories, the pseudo-passive trajectory and the multi-step walking trajectory

have been tracked during several steps with a feedback control strategy from [28]. The

corresponding simulations of the multi-step walking reference trajectory tracking dur-

ing 3 steps with an initial error in angular positions and velocities are shown in Fig-

ures 4.11a, b and 4.12a, b. One can easily see that the convergence during three steps

to reference angular positions and velocities depicted in figures with dotted line is not

significantly influenced by the impact. However, in simulations of pseudo-passive refer-

ence trajectory tracking in two steps, depicted in Figures 4.13a, b and 4.14a, b, one can

see that after the impact the beginning of the 4-link trajectory is mapped far away from

the beginning of the reference one and the tracking algorithm is not able to minimize the

initial error caused by the impact and therefore the simulation crashes at the beginning

of the second step.
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Figure 4.11. Tracking of the multi-step walking reference trajectory for 3 steps walking. Angular

positions q1 (black line), q2 (blue line) and references (dotted line) (a) and angular velocities q̇1

(black line), q̇2 (blue line) and references (dotted line) (b).

4.3 Chapter conclusions

Algorithms for the design of two reference trajectories for Acrobot and for 4-link have been

presented in this chapter and used to tune either the so-called pseudo-passive reference

trajectory or the so-called multi-step walking reference trajectory. The pseudo-passive

trajectory ensures a movement of the center of mass of the walking robot horizontally

forward with constant horizontal velocity whereas the multi-step walking trajectory have
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Figure 4.12. Tracking of the multi-step walking reference trajectory for 3 steps walking. Angular

positions q3 (green line), q4 (yellow line) and references (dotted line) (a) and angular velocities

q̇3 (green line), q̇4 (yellow line) and references (dotted line) (b).
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Figure 4.13. Tracking of the pseudo-passive reference trajectory in 2 steps. Angular positions

q1 (black line), q2 (blue line) and references (dotted line) (a) and angular velocities q̇1 (black

line), q̇2 (blue line) and references (dotted line) (b).
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Figure 4.14. Tracking of the pseudo-passive reference trajectory in 2 steps. Angular positions

q3 (green line), q4 (yellow line) and references (dotted line) (a) and angular velocities q̇3 (green

line), q̇4 (yellow line) and references (dotted line) (b).

after the impact and re-labeling the same initial angular velocities as at the beginning of

the step. The clear advantages of the multi-step reference trajectory have been demon-

strated.
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Chapter 5

Reference trajectory tracking

A control application usually consists of two independent parts. The first part involves

generation of a reference trajectory to be tracked whereas the second part involves a con-

troller design according to a robust, optimal or another criterion. The reference trajectory

was already developed in the previous chapter and in the current chapter it is to be tracked

in order to achieve walking like movement resemblant to a human walk. As it might have

been expected, asymptotic or even exponential tracking constitutes a principally more

complicated problem than the stabilization since the corresponding error dynamics has

a more complex time dependent structure than Acrobot or 4-link itself.

Ideas of the feedback tracking derived and firstly presented in [30, 136], or in [134],

are given here as well as their extensions presented in [3, 7, 9, 14, 28]. Roughly speaking,

to achieve state feedback tracking of the desired trajectory generated by the reference

input wref one has to set w = wref + feedb(e1, e2, e3, e4, t), where feedb(·) is a suitable

state error feedback, possibly depending on time. The method in [14] is based on the

robust approach whereas methods in [3, 7, 9, 28] are based on a deeper knowledge of the

reference system to be tracked.

The current chapter is related to Acrobot control, nevertheless by virtue of the em-

bedding method, the proposed control algorithms can be straightforwardly extended to

the 4-link control as well. Moreover, tracking of the pseudo-passive trajectory only is

considered in this chapter.

5.1 Tracking task in linearized coordinates

In the application of the reference trajectory tracking, the reference trajectory is generated

by an open loop control of “reference” Acrobot. In more detail, the reference system in
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the partial exact linearized coordinates (4.2)

(5.1) ξ̇ref1 = d11(q2)−1ξref2 , ξ̇ref2 = ξref3 , ξ̇ref3 = ξref4 , ξ̇ref4 = wref

generates the desired reference trajectory using a suitable open loop control wref in order

to generate either the pseudo-passive or the multi-step walking reference trajectory to

be tracked by Acrobot. To do so, “real” Acrobot dynamics in partial exact linearized

form (3.30)

(5.2) ξ̇1 = d11(q2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4, ξ̇4 = α(q)τ2 + β(q, q̇) = w

is used too.

To obtain the exponentially stable state feedback, subtract the “reference” system

(5.1) from the “real” one (5.2), i.e. introduce error e =: ξ − ξref for which it holds

(5.3)
ė1 = d−1

11 (φ2(ξ1, ξ3))ξ2 − d−1
11 (φ2(ξref1 , ξref3 ))ξref2 ,

ė2 = e3, ė3 = e4, ė4 = w − wref .

Moreover, straightforward computations based on Taylor expansions adjust the first line

of the error dynamics into the following form

(5.4)
ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3 + o(e),

ė2 = e3, ė3 = e4, ė4 = w − wref ,

which depicts dependency of ė1 on errors e1, e2, e3 using known functions µ1(t), µ2(t)

and µ3(t) defined as follows

µ1(t) = ξref2 (t)
∂[d−1

11 ]

∂q2

∂φ2

∂ξ1

(qref2 (t)),(5.5)

µ2(t) = d−1
11 (qref2 (t)),(5.6)

µ3(t) = ξref2 (t)
∂[d−1

11 ]

∂q2

∂φ2

∂ξ3

(qref2 (t)).(5.7)

Functions µ1,2,3(t) can be simply expressed by virtue of the error dynamics definition for

both reference trajectory for Acrobot or for 4-link. In Figures 5.16, 5.17 one can see

their real waveforms. Their detailed analytical expression for the Acrobot pseudo-passive

reference trajectory could be found in [3]. In those figures one can easily see that functions

µ1,2,3(t) are bounded, continuous and differentiable. All the properties are exploited in

feedback control algorithms in [3, 7, 9, 14, 28] presented later on.

It is straightforward to express error dynamics (5.4) as the open-loop continuous

time-varying linear system

(5.8) ė = A(t)e+Bu,
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where

A(t) =


µ1(t) µ2(t) µ3(t) 0

0 0 1 0

0 0 0 1

0 0 0 0

 , B =


0

0

0

1

 .

Then the tracking problem consists in finding a state-feedback controller in its typical

form

(5.9) u = Ke, K =
(
K1 K2 K3 K4

)
,

producing the following closed-loop system

(5.10) ė = (A+BK) e =


µ1(t) µ2(t) µ3(t) 0

0 0 1 0

0 0 0 1

K1 K2 K3 K4

 e,

where bounds for µ(t) = (µ1(t), µ2(t), µ3(t)) are given by (5.5)-(5.7).

In [30], the exponential tracking of the suitable target trajectory generated by an

open-loop reference control was obtained. In particular, designed tracking feedback could

handle limited initial tracking error only and its performance was limited to the case when

the Acrobot walking-like movement was very slow. This was caused by the specific and

analytic method to stabilize tracking error dynamics there. Following chapters demon-

strate an extension of the control approach initiated in [30] in order to find either a robust

or a more precise controller for Acrobot or for 4-link.

5.2 LMI based stabilization of the error dynamics

In this section, the error dynamics stabilization via a numerical tuning using an LMI

approach is used to improve the limited results from [30]. The basic idea from [15, 14] is

interpreted here.

Despite the fact that entries of µ(t) are known functions the basic idea here is to

treat them as unknown disturbances satisfying some constraints. If constraints are tight

enough, one can think about solving quadratic stability conditions and design a unique

feedback stabilization of such an “uncertain” system. Obviously, such a feedback would

be at the same time solving tracking problem (5.9), (5.10).
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To pursue this idea, LMI conditions for a quadratic stability were obtained in [15, 14].

Consider the well-known Lyapunov inequality to be solved for all boundary values of µ(t)

by finding a suitable symmetric positive definite matrix S and a vector K

(5.11) (A(µ) +BK)T S + S (A(µ) +BK) � 0,

(5.12) S = ST � 0.

Such a problem is in fact bilinear with respect to unknowns. Denoting

(5.13) Q = S−1, Y = KS−1

the following LMI condition for the quadratically stabilizing feedback design is derived:

(5.14) QAT(µ) + A(µ)Q+ Y TBT +BY � 0.

Notice that the pair (A(µ), B) is controllable if and only if

(5.15) µ1µ3 + µ2 6= 0.

If the set of possible values of µ(t) contains, or stays close to the singular set given by

(5.15), LMI (5.14) becomes infeasible or almost infeasible.

As already indicated, bounds on µ(t) during a single step of Acrobot can be obtained

numerically, see Figures 5.1a, b where the trajectory µ(t) for the pseudo-passive reference

trajectory is depicted. Two cases of LMI solving are considered here. Firstly, when the

trajectory µ(t) is estimated by a box-like (rectangular) set and secondly by a prism-like

(non-rectangular) set.

Consider the first case when the convex set is defined as a rectangular box, see Fig-

ure 5.1a. Each vertex of the box is defined by a combination of upper and lower bounds

on entries of µ(t). Summarizing, we have 8 constraints

(5.16)

QAT
i + AiQ+ Y TBT +BY � 0, i = 1, . . . , 8,

A1 = A (µ1, µ2, µ3) , A2 = A
(
µ1, µ2, µ3

)
, . . . ,

A7 = A
(
µ1, µ2, µ3

)
, A8 = A

(
µ1, µ2, µ3

)
.

In the second case the parameter set is reduced to a convex set much closer to the actual

trajectory µ(t). The number of LMI constraints is thereby reduced to 6. Two constraints

are the same as previously, remaining 4 constraints are defined via vertices relatively close

to each other and centered around parameters value at the middle of the step. It is nicely

seen from Figure 5.1b that this set is reasonably small. In both cases, LMIs are solved

using the YALMIP parser and the SeDuMi solver with Matlab.
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Figure 5.1. The trajectory µ(t) for the pseudo-passive reference trajectory encapsulated by

a rectangular box (a) and the trajectory µ(t) for the pseudo-passive reference trajectory encap-

sulated by a prismatic box (b).

Simulations - Convex rectangular parameter set

Solving the resulting LMI with 8 constraints according to Figure 5.1a gives the state-

feedback gain K = 105 · (−3.5810, −1.8147, −0.1854, −0.0037). In simulations of the

reference trajectory tracking, the errors in initial angular positions are zero but the errors

in initial angular velocities are about 5% of reference initial angular velocities. The initial

torque as a result of quite large gain is unrealistic for the “real” model of Acrobot, so,

a saturation limit in the range ±25 Nm is used, see Figure 5.3a.

The effect of the saturation limit during the trajectory tracking is clearly visible in

Figures 5.2a, b. Experimentally, the saturation limit could not be further lowered without

loosing the stable tracking. Yet it is still quite unrealistic. Acrobot walking with that

saturation limit is shown in Figure 5.3b.

Summarizing, using the rectangular box to estimate the values of µ(t) produces highly

conservative and practically unacceptable design. Fortunately, tighter bounding sets can

be used to estimate the values of µ(t), as shown below.

Simulations - Convex prismatic parameter set

Solving the resulting LMI with 6 constraints according to Figure 5.1b yields the state-

feedback gain K = 104 · (−1.9087 −1.2097 −0.1781 −0.0090). The gains are significantly

smaller than in the case of the rectangular box. One can see the quality of the tracking

in Figures 5.4a, b and can compare the effect of the saturation limit. Convergence is very

good now and the saturation limit in the range ±10Nm now ensures a realistic imple-
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Figure 5.2. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±25 Nm and references (dotted line) for the rectangular bounds on µ(t).
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Figure 5.3. (a) Torque τ2 with and without saturation ±25 Nm for rectangular bounds on µ(t).

(b) The animation of the single step with sampling time 0.08 s. The dashed line is the reference,

the full line represents “real” Acrobot.
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mentation. In simulations of the reference trajectory tracking, errors in initial angular

velocities are about 5% of the reference initial angular velocities.

Finally, Figure 5.5b shows the animation of Acrobot walking with the prismatic pa-

rameter set based controller and torque saturation in the range ±10Nm. The course of

the required torque with and without saturation limit is depicted in Figure 5.5a.
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Figure 5.4. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±10 Nm and references (dotted line) for prismatic bounds on µ(t).

5.3 Analytical design of the exponential tracking

This section aims to describe results presented in [3] where the exponential tracking of

the pseudo-passive reference trajectory based on the precise knowledge of the function

µ3(t) was obtained. Moreover, it also uses its differentiability and the knowledge of

ranges of functions µ1,2,3(t) and µ̇3(t). In fact, this time functions are well-known from

the reference model and therefore required information is available. Namely, in [3] the

following theorem was obtained.

Theorem 5.3.1 Consider the following notation

(5.17) e1 = e1 − µ3(t)e2, µ2(t) = µ2(t) + µ1(t)µ3(t)− µ̇3(t).
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Figure 5.5. (a) Torque τ2 with and without saturation ±10 Nm for the prismatic bounds on

µ(t). (b) The animation of the single step with sampling time 0.08 s. The dashed line is the

reference, the full line represents the “real” Acrobot.

Then the system (5.4) takes the following form

(5.18)

ė1 = µ1(t)e1 + µ2(t)e2,

ė2 = e3,

ė3 = e4,

ė4 = Θ3K̃1e1 + Θ3K̃2e2 + Θ2K̃3e3 + ΘK̃4e4.

Furthermore, assume that there exist suitable real constants M1,M2,M
2 ∈ R+ such that

∀t ≥ 0 it holds:

(5.19)
|µ1| ≤M1,

0 < M2 ≤ µ2(t) ≤M2.

Assume that K̃2,3,4 are such that the polynomial λ3 + K̃4λ
2 + K̃3λ + K̃2 is Hurwitz and,

moreover,

(5.20) M1 −M2
K̃1

K̃2

< 0.

Then there exists a sufficiently large Θ > 0 such that the feedback

w = Θ3K̃1e1 + Θ3[K̃2 − K̃1µ3(t)]e2 + Θ2K̃3e3 + ΘK̃4e4

globally exponentially stabilizes original system (5.4).
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The proof of Theorem 5.3.1 is given in [3]. The computation and analytical analysis of the

expression µ2(t) + µ1(t)µ3(t) − µ̇3(t) is laborious, nevertheless, numerical computation,

depicted in Figure 5.6 shows that the assumption of Theorem 5.3.1 regarding limits of

that expression is nicely satisfied.
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Figure 5.6. Graph of the dependence of µ2(t) + µ1(t)µ3(t)− µ̇3(t) on time.

Simulations

To track the above pseudo-passive reference trajectory, Theorem 5.3.1 is used with gains

K̃ = −(9, 6, 12, 8) and with the “amplifying” parameter Θ = 20. One can clearly see the

quality of tracking with and without saturation limit in Figures 5.7a, b. In simulations

of the reference trajectory tracking, errors in initial angular velocities are about 5% of

reference initial angular velocities.

Finally, an animation of corresponding Acrobot walking with torque saturation in

the range ±10Nm is shown in Figure 5.8b. The course of the required torque with and

without saturation limit is depicted in Figure 5.8a.

5.4 Extended analytical design of the exponential

tracking

This section aims to describe results presented in [7] where the exponential tracking of

the multi-step walking reference trajectory based on the precise knowledge of functions

µ1,2,3(t) was obtained. This approach uses the knowledge of ranges of functions µ1,2,3(t)

and differentiability of functions µ1,2,3(t) up to the order three or four in the case of

function µ2(t). A time-varying linear feedback in the form w−wr = K̂1(t)e1+. . .+K̂4(t)e4
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Figure 5.7. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±10 Nm and references (dotted line).
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Figure 5.8. (a) Torque τ2, with and without saturation ±10 Nm. (b) The animation of the

single step is shown with sampling time ∆t = 0.08 s. The dashed line is the reference, the full

line represents the “real” Acrobot.
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is used here. To derive such a feedback, a time varying system was transformed using

a time varying transformation and a feedback into a simple linear system with constant

coefficients. This transformed system was stabilized using a linear constant feedback later

on and recomputed into original coordinates thereby resulting in a time varying feedback.

In this sense it is direct extension of the approach from [3] presented in Section 5.3 where

ranges of functions µ1,2,3(t) and the precise knowledge of function µ3(t) and its derivative

were taken into the account.

To present this approach in detail, continue in transformation started in Section 5.3,

i.e. equation (5.17) and its time derivatives are used here in order to transform the

original system (5.4) into a simple linear system with constant coefficients. By virtue of

this, a design of a fundamental matrix of the error dynamics (5.4) in an explicit form is

enabled.
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Theorem 5.4.1 Let ē = (ē1, . . . , ē4)> be a new error variable related to e = (e1, . . . , e4)>

defined in (5.4) as follows

ē1 = e1 − µ3e2,(5.21)

ē2 = µ1ē1 + µ̄2e2 = µ1e1 + (µ2 − µ̇3)e2,(5.22)

ē3 = (µ̇1 + µ2
1)e1 + (µ̇2 − µ̈3 + µ1µ2)e2 + µ̄2e3,(5.23)

ē4 = (µ1(µ̇1+µ2
1)+µ̈1+2µ1µ̇1)e1+(µ2(µ̇1+µ2

1)+µ̈2−µ(3)
2 + µ1µ̇2+µ̇1µ2)e2 +(5.24)

(µ3(µ̇1 + µ2
1) + µ̇2−µ̈2+µ1µ2+ ˙̄µ2)e3+µ̄2e4,

w̄ = (µ1α + µ̇1β + µ1γ + µ
(3)
1 + 2µ̇1µ̇1 + 2µ1µ̈1)e1 + (µ2α+µ̇2β+µ2γ+(5.25)

µ
(3)
2 −µ

(4)
2 + 2µ̇1µ̇2+µ1µ̈2+µ̈1µ2)e2 + ˙̄µ2e4 + µ̄2(w − wr) +

(µ3α+µ̇3β+µ3γ+µ̈2−µ(3)
2 +µ̇1µ2+µ1µ̇2+¨̄µ2)e3,

where µ̄2 = µ2 + µ1µ3 − µ̇3, α = µ1(µ̇1 + µ2
1) + µ̈1 + 2µ1µ̇1, β = µ̇1 + µ2

1, γ = µ̈1 + 2µ1µ̇1.

Then the original system (5.4) takes the following linear form

˙̄e1 = ē2, ˙̄e2 = ē3, ˙̄e3 = ē4, ˙̄e4 = w̄.(5.26)

The proof of Theorem 5.4.1 is given in [7].

The above transformation between e, w − wr and ē, w̄ can be written in a compact

form as follows

ē = X(t)e, w̄ = K̃(t)e+ L(t)(w − wr),(5.27)

e = X−1ē, w − wr = L−1(t)(w̄ − K̃(t)e),(5.28)

where the matrix X(t) has the following form

(5.29) X(t) =



1 −µ3 0 0

µ1 µ2 − µ̇3 0 0

µ̇1 + µ2
1 µ1µ2 + µ̇2 − µ̈2 µ̄2 0

µ1(3µ̇1+µ2
1)

+µ̈1

µ2(2µ̇1+µ2
1) + µ̈2

−µ(3)
2 + µ1µ̇2

µ3(µ̇1+µ2
1) + µ̇2

−µ̈2 + µ1µ2+ ˙̄µ2

µ̄2


,

and the vector K̃(t) and the scalar L(t) are as follows

(5.30) K̃(t) =


µ1α + µ̇1β + µ1γ + µ

(3)
1 + 2µ̇1µ̇1 + 2µ1µ̈1

µ2α+µ̇2β+µ2γ+µ
(3)
2 −µ

(4)
2 +2µ̇1µ̇2+µ1µ̈2+µ̈1µ2

µ3α+µ̇3β+µ3γ+µ̈2−µ(3)
2 +µ̇1µ2+µ1µ̇2+¨̄µ2

˙̄µ2


T

, L(t) = µ̄2 .

65



Using transformations (5.21)-(5.24) the open-loop system (5.8) is transformed into the

following form

(5.31) ˙̄e = Ãē+ B̃w̄, Ã =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 , B̃ =


0

0

0

1

 ,

where by (5.27), (5.8) Ã and B̃ are given as follows

Ã=X(t)
(
A(t)−BL−1(t)K̃(t)

)
X−1(t)+

dX(t)

dt
X−1(t),(5.32)

B̃=X(t)BL−1(t).(5.33)

Choosing a linear constant feedback w̄ = K1ē1 + . . . + K4ē4, the closed-loop sys-

tem (5.31) has the following form

(5.34) ˙̄e =
(
Ã+ B̃K

)
ē =


0 1 0 0

0 0 1 0

0 0 0 1

K1 K2 K3 K4

 ē.

The resulting time-varying feedback for original system (5.8) is therefore by (5.27)-(5.34)

as follows

(5.35) w − wr = L−1(t)(KX(t)e− K̃(t)e) := K̂(t)e.

The solution of differential equations (5.34) is easy to find by standard linear methods.

Then, using transformations (5.27)-(5.28) one can compute the explicit solution of the

closed loop system in original e coordinates. This fact will be used in the sequel to analyze

a hybrid stability later on.

Simulations

Higher derivations of functions µ1,2,3(t) are complicated and their computations during

a simulation are time-consuming. Therefore, their derivations along the reference trajec-

tory were computed off-line in approximately 300 points for one step. Values of reference

functions µ1,2,3(t) and their derivations were interpolated among these points during the

simulation. Consequently, this approach is possible to use in the on-line control of Ac-

robot.
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Figure 5.9. Higher derivations of functions µ1,2,3(t) (a) the first derivation (b) the second

derivation (c) the third derivation (d) the fourth derivation of µ2(t).
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In Figure (5.9) one can see the higher derivations of functions µ1,2,3(t) up to the order

three, moreover, up to the order four in the case of µ2(t) function.

In [7], Theorem 5.4.1 was demonstrated in simulations via feedback tracking of the

multi-step walking reference trajectory. Nevertheless, to keep the consistency in pre-

sented simulations in this chapter, the simulation of Acrobot pseudo-passive reference

trajectory tracking is shown here. Theorem 5.4.1 is used to track the pseudo-passive

reference trajectory with gains K̃ = 103 · (−75.000, −19.250, −1.775, −0.070). One can

clearly see the quality of the feedback tracking with and without torque saturation in

Figures 5.10a, b. In reference trajectory tracking simulations, errors in initial angular

velocities are about 5% of reference initial angular velocities.

Finally, the animation of corresponding Acrobot walking with torque saturation in

the range ±15Nm is shown in Figure 5.11b. The course of the required torque with and

without saturation limit is depicted in Figure 5.11a.
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Figure 5.10. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±15 Nm and references (dotted line).

5.5 Approximate analytical design of the exponential

tracking

This section aims to describe results presented in [9] where the theoretical framework

enabling a design of an exponential feedback tracking for a general Acrobot trajectory

allowing rigorous convergence proof was presented. It is based on the partial exact feed-

back linearization of Acrobot followed by further approximate feedback linearization [69]
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Figure 5.11. (a) Torque τ2, with and without saturation ±15 Nm. (b) The animation of the

single step is shown with sampling time ∆t = 0.08 s. The dashed line is the reference, the full

line represents “real” Acrobot.

of tracking error dynamics for an arbitrary target trajectory. The novelty of the new

approach lies in a neglecting made with respect to a tracking error along any general

trajectory to be tracked, not just in some neighborhood of a fixed working point.

Previous techniques provide feedback to stabilize the above error dynamics. Their

drawbacks are either high degree of conservatism or heuristic character. The basic diffi-

culty here is a presence of a term depending linearly on e3 in the first row of (5.4) with

a time varying coefficient, which prevents an analytic design. As a matter of fact, this

linear term can be removed by further exact state and a feedback transformation of the

extended system (4.2), (5.3). This approach was successfully used in [9] and it is shown

below.

Theorem 5.5.1 Consider the extended system (4.2), (5.3) as the dynamical system hav-

ing 8 dimensional state space, a controlled input w and a reference input wr. Then there

exists the following change of coordinates and a feedback transformation (locally regular

in e)

(5.36) η = Φ(ξr1, ξ
r
2, ξ

r
3, ξ

r
4, e1, e2, e3, e4),

(5.37) µ = γ(w,wr, ξr1, ξ
r
2, ξ

r
3, ξ

r
4, e1, e2, e3, e4),

where Φ1,2,3,4 are defined as follows

(5.38) Φ1 ≡ ξr1, Φ2 ≡ ξr2, Φ3 ≡ ξr3, Φ4 ≡ ξr4
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and Φ5,6,7,8 fulfill following conditions

(5.39) Φk(ξ
r
1, ξ

r
2, ξ

r
3, ξ

r
4, 0, 0, 0, 0) ≡ 0, ∀k = 5, 6, 7, 8.

The transformation transforms the extended system (4.2), (5.3) into the following form

with state η, a controlled input µ and a reference input wr

(5.40) η̇1 = d−1
11 (qr2)η2, η̇2 = η3, η̇3 = η4, η̇4 = wr,

(5.41) η̇5 = η6 + o(η), η̇6 = η7, η̇7 = η8, η̇8 = µ.

The proof of Theorem 5.5.1 is in [9].

The first part of transformed system (5.40) was relabeled only. Instead of ξ in (4.2) η

is used in (5.40). However, the second part of transformed system (5.41) was significantly

changed according to its original form (5.3). Using the transformation, defined below,

a linear dependence on e3 was removed from the first line of original system (5.3). The

resulting system (5.41) contains only higher degree of the dependence on e3 which could

be neglected. Afterwards, the remaining system is composed of a chain of integrators and

it could be stabilized using the standard linear approach, i.e. using the state feedback in

the following form

(5.42) µ = k1 η5 + k2 η6 + k3 η7 + k4 η8,

where gains k1,2,3,4 can be designed using the standard technique, such that the matrix

(5.43)


0 1 0 0

0 0 1 0

0 0 0 1

k1 k2 k3 k4


is Hurwitz.

To demonstrate the proof of Theorem 5.5.1 and to obtain explicit expressions for µ

given there consider the general error dynamics (5.3) and consider its first row in a more

detail. Namely, one has

ė1 =
∂d−1

11 (φ2(ξr1,3))

∂ξ1

(ξr2 +e2)e1 + d−1
11 (φ2(ξr1,3))e2 +

∂d−1
11 (φ2(ξr1,3))

∂ξ3

(ξr2 +e2)e3

+d−1
11 (φ2(ξ1,3))ξ2 − d−1

11 (φ2(ξr1,3))(ξr2 +e2)−
∂d−1

11 (φ2(ξr1,3))

∂ξ1

(ξr2 +e2)e1 −

∂d−1
11 (φ2(ξr1,3))

∂ξ3

(ξr2 +e2)e3,
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which gives

(5.44) ė1 =
∂d−1

11 (φ2(ξr1, ξ
r
3))

∂ξ1

(ξr2 + e2)e1 +
∂d−1

11 (φ2(ξr1, ξ
r
3))

∂ξ3

(ξr2 + e2)e3+

d−1
11 (φ2(ξr1, ξ

r
3))e2 + (ξr2 + e2)o(‖(e1, e3)T‖),

where

(5.45) (ξr2 + e2)o(‖(e1, e3)T‖) = (ξr2 + e2)

(
d−1

11 (φ2(ξr1 + e1, ξ
r
3 + e2))−

d−1
11 (φ2(ξr1, ξ

r
3)) −∂d

−1
11 (φ2(ξr1, ξ

r
3))

∂ξ1

e1 −
∂d−1

11 (φ2(ξr1, ξ
r
3))

∂ξ3

e3

)
.

Therefore it holds

(5.46) ė1 = ψ1(qr1, q
r
2)(ξr2+e2)e1 +ψ2(qr2)e2 +ψ3(qr1, q

r
2)(ξr2+e2)e3 +(ξr2 +e2)o(‖(e1, e3)T‖),

where

ψ1(qr1, q
r
2) :=

∂d−1
11 (q2(ξr1, ξ

r
3))

∂ξr1
=
∂d−1

11

∂q2

(qr2)
∂q2

∂ξr1
,

ψ2(qr2) := d−1
11 (φ2(ξr1, ξ

r
3)),

ψ3(qr1, q
r
2) :=

∂d−1
11 (q2(ξr1, ξ

r
3))

∂ξr3
=
∂d−1

11

∂q2

(qr2)
∂q2

∂ξr3
.

Functions ψ1,2,3(qr1, q
r
2) are equivalent to functions µ1,2,3(t) defined in (5.5), (5.6), (5.7).

The only difference between functions ψ1,2,3(qr1, q
r
2) and µ1,2,3(t) consists in dependency

on a reference trajectory. Functions ψ1,2,3(qr1, q
r
2) depend on a general reference trajectory

through angular positions qr1 and qr2. Whereas functions µ1,2,3(t) depend on a particular

reference trajectory through time t. Summarizing

ė1 = ψ1(qr1, q
r
2)(ξr2 +e2)e1+ψ2(qr2)e2+ψ3(qr1, q

r
2)(ξr2 +e2)e3+(5.47)

(ξr2 +e2)o(‖(e1, e3)T‖),
ė2 = e3, ė3 = e4, ė4 = w − wr.

Consider the following transformation

(5.48) η5 := e1 − ψ3(qr1, q
r
2)

[
(ξr2 +e2)2 − (ξr2)2

2

]
.

The specific form of the transformation enables to make the full order linearization of (5.3)

because the term connected with e3 will be deleted from the first line of (5.48) and it will

appear in the next line. From (5.48) we get

(5.49) η̇5 = ė1 − ψ3(qr1, q
r
2)
[
ė2(ξr2 +e2) + e2ξ̇

r
2

]
− ψ(I)

3 (qr1, q
r
2)

[
(ξr2 +e2)2 − (ξr2)2

2

]
.
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Substituting from (5.3) we obtain

(5.50) η̇5 = ψ1(qr1, q
r
2)(ξr2 +e2)e1 + ψ2(qr2)e2 − ψ3(qr1, q

r
2)e2ξ̇

r
2−

ψ
(I)
3 (qr1, q

r
2)

[
(ξr2 +e2)2 − (ξr2)2

2

]
+ (ξr2 + e2)o(‖(e1, e3)T‖).

Now, we have the almost linearized the first equation by setting the new coordinate as

follows

(5.51) η6 = ψ1(qr1, q
r
2)(ξr2+e2)e1+ψ2(qr2)e2−ψ3(qr1, q

r
2)e2ξ̇

r
2−ψ

(I)
3 (qr1, q

r
2)

[
(ξr2 +e2)2 − (ξr2)2

2

]
,

which transforms the first equation

(5.52) η̇5 = η6 + (ξr2 + e2)o(‖(e1, e3)T‖).

Differentiating η6 along system trajectories by performing the usual algorithm of com-

puting further time derivatives one obtains

η̇6 = ψ
(I)
1 (qr1, q

r
2)(ξr2 +e2)e1 + ψ1(qr1, q

r
2)(ξ̇r2 +e3)e1 +(5.53)

ψ1(qr1, q
r
2)(ξr2 +e2)

(
d−1

11 (φ2(ξr1 +e1, ξ
r
3 +e3))(ξr2 +e2)−d−1

11 (φ2(ξr1, ξ
r
3))ξr2

)
+

∂ψ2

∂qr2
(qr2)q̇r2e2 + ψ2(qr2)e3 − ψ3(qr1, q

r
2)e3ξ̇

r
2 − ψ3(qr1, q

r
2)e2ξ̈

r
2 −

ψ
(II)
3 (qr1, q

r
2)

[
(ξr2 +e2)2−(ξr2)2

2

]
− ψ(I)

3 (qr1, q
r
2)
[
e3(ξr2 +e2) + 2e2ξ̇

r
2

]
.

Denoting the right hand side of (5.53) as η7 := η7(ξr1, . . . , ξ
r
4, e1, e2, e3) one has the trans-

formed equation as follows

(5.54) η̇6 = η7(ξr1, . . . , ξ
r
4, e1, e2, e3).

Now, differentiating further η7 and η8 with respect to time along system trajectories one

has that

(5.55) η̇7 = η8(ξr1, . . . , ξ
r
4, e1, . . . , e4),

(5.56) η̇8 = µ(w,wr, ξr1, . . . , ξ
r
4, e1, . . . , e4).

However, this has increasing complexity and, therefore, it is left for sake of shortness.

Obviously, (5.55), (5.56) give the rest of transformations mentioned in theorem formula-

tions. It can be also straightforwardly checked that the overall transformation is locally

one-to-one.
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Simulations

In [9], Theorem 5.5.1 was demonstrated in simulations via feedback tracking of the multi-

step walking reference trajectory for Acrobot. Nevertheless, to be consistent with pre-

sented simulations in this chapter, the simulation of Acrobot pseudo-passive reference

trajectory tracking is shown here in order that one can compare the corresponding sim-

ulations with simulations of remaining techniques to stabilize the error dynamics.

To track the pseudo-passive reference trajectory, Theorem 5.5.1 is used with gains

K̃ = −105·[5.2958, 2.9152, 0.4415, 0.0145]. One can clearly see the quality of the feedback

tracking with and without torque saturation in Figures 5.12a, b. In simulations of the

reference trajectory tracking, errors in initial angular velocities are about 5% of reference

initial angular velocities.

Finally, the animation of corresponding Acrobot walking with torque saturation in

the range ±10 Nm is shown in Figure 5.13b. The course of the required torque with and

without saturation limit is depicted in Figure 5.13a.
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Figure 5.12. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±10 Nm and references (dotted line).

5.6 Yet another analytical design of the exponential

tracking

This section aims to describe results presented in [28] where the exponential tracking

of the pseudo-passive reference trajectory based on the precise knowledge of functions

µ1,2,3(t) and time derivative of µ̇3(t) was obtained. In fact, this time functions are well
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Figure 5.13. (a) Torque τ2, with and without saturation ±10 Nm. (b) The animation of the

single step is shown with sampling time ∆t = 0.08 s. The dashed line is the reference, the full

line represents “real” Acrobot.

known from the reference model and therefore required information is available. In con-

trast to results described in Section 5.3, where only knowledge of function µ3(t) was taken

into account, the following technique seems to be even better.

Namely, in [28] the following theorem was obtained.

Theorem 5.6.1 Let ẽ = (ẽ1, . . . , ẽ4)> be a new error variable related to e = (e1, . . . , e4)>

defined in (5.4) as follows

ẽ1 =
e1 − µ3e2

µ1µ3 − µ̇3 + µ2

, ẽ2 = e2, ẽ3 = e3, ẽ4 = e4.

Then the error dynamics of ẽ is as follows

(5.57)

˙̃e1 = µ̃1(t)ẽ1 + ẽ2

˙̃e2 = ẽ3

˙̃e3 = ẽ4

˙̃e4 = w,

where

(5.58) µ̃1(t) = µ1 −
µ̇1µ3 + µ1µ̇3 − µ̈3 + µ̇2

µ1µ3 − µ̇3 + µ2

.

Furthermore, assume that there exists M1 ∈ R+ such that |µ̃1(t)| ≤M1, ∀t ≥ 0, then there

exists a linear feedback law w = K1ẽ1 + K2ẽ2 + K3ẽ3 + K4ẽ4 that globally exponentially
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stabilizes system (5.57). Moreover, if in addition there exist M2,M
2 ∈ R+, such that

M2 > µ1(t)µ3(t)− µ̇3(t) + µ2(t) ≥M2, ∀t ≥ 0, then the feedback

w = K1
e1 − µ3e2

µ1µ3 − µ̇3 + µ2

+K2e2 +K3e3 +K4e4

globally exponentially stabilizes original system (5.4).

Proof of Theorem 5.6.1 is given in [28].

Simulations

In [28], the presented theorem was demonstrated in simulations via feedback tracking

of the pseudo-passive reference trajectory for 4-link. However, to be consistent with

presented simulations in this chapter, the Acrobot pseudo-passive reference trajectory

was tracked in order that one can compare simulations results of presented technique to

stabilize the error dynamics.

To track the above pseudo-passive reference trajectory, Theorem 5.6.1 is used with

gains (K1, K2, K3, K4) = (−16,−32,−24,−8) and the “amplifying” parameter Θ = 10.

One can clearly see the quality of tracking with and without saturation in Figures 5.14a, b.

In simulations of the reference trajectory tracking, errors in initial angular velocities are

about 5% of reference initial angular velocities.

Finally, the animation of corresponding Acrobot walking with torque saturation in

the range ±15Nm is shown in Figure 5.15b. The course of the required torque with and

without saturation limit is depicted in Figure 5.15a.
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Figure 5.14. Angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b) with and without

saturation ±10 Nm and references (dotted line).
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Figure 5.15. (a) Torque τ2, with and without saturation ±15 Nm. (b) The animation of the

single step is shown with sampling time ∆t = 0.08 s. The dashed line is the reference, the full

line represents “real” Acrobot.

5.7 Ability of a general reference trajectory tracking

Tracking techniques presented in previous sections of this chapter were demonstrated

in an application of a feedback tracking of the pseudo-passive reference trajectory for

Acrobot only. Indeed, tracking techniques would be able to track either the multi-step

walking reference trajectory for Acrobot or both reference trajectories for 4-link, i.e. the

pseudo-passive and the multi-step walking reference trajectory. Nevertheless, simulations

of feedback tracking of remaining reference trajectories are omitted for thesis space rea-

sons. Obviously, there is no principal difference in the tracking various types of references

during a single step.

The tracking ability of a reference trajectory depends on functions µ123(t) which are

given by the reference trajectory to be tracked. One can see the course of functions µ123(t)

depicted in Figures 5.16a, b for Acrobot reference trajectories and in Figures 5.17a, b

for 4-link reference trajectories. Conditions and requirements given by theorems and

tracking techniques presented in this chapter are fulfilled by functions µ123(t) depicted

in Figures 5.16a, b and 5.17a, b. Therefore, the presented tracking techniques could be

used in the application of the feedback tracking of both reference trajectories either for

Acrobot or for 4-link.
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Figure 5.16. Trajectory µ123(t) for the pseudo-passive (a) and the multi-step walking (b) refer-

ence trajectory for Acrobot.
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Figure 5.17. Trajectory µ123(t) for the pseudo-passive (a) and the multi-step walking (b) refer-

ence trajectory for 4-link.
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5.8 Chapter conclusion

This chapter describes the results from [3, 7, 9, 14, 28] related to the tracking of the

reference trajectory for the underactuated walking robot. Tracking techniques are based

on the partially linear feedback form of Acrobot or by virtue of the embedding method

of 4-link. The techniques are based either on a robust approach or on deeper knowledge

of the reference system to be tracked to minimize the error between the reference and

the “real” system. By virtue of the partial exact feedback linearization method, tracking

techniques are able to track various type of reference trajectories, though they were

demonstrated for the pseudo-passive one only.
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Chapter 6

Observers

In the previous section, tracking methods based on the partial exact feedback linearization

were developed under the assumption that all state variables are available for measure-

ments. Nevertheless, this assumption is rarely fulfilled in real applications by virtue of

either non-existent or too expensive appropriate sensor. In this case, it is possible either

to manage the situation with measurable state variables only or to estimate remaining

state variables. Both approaches are possible, nevertheless, neither exact linearization

techniques nor state feedback techniques are generally usable with partially measurable

state variables only. Therefore, the estimation of non-measurable state variables using

available measurements is admissible alternative endorsed with a separation principle,

i.e. an observer design can be done independently of a controller design. An observer

is, roughly speaking, a dynamical system driven by the output of the original dynamical

system, having the crucial property that observer states converge to those of the origi-

nal dynamical system. Precise mathematical definition of the observer for a dynamical

system will be given later on.

In the case of Acrobot or 4-link, it is difficult to measure the angle between its stance

leg and the surface directly. Actually, this angle is underactuated and it is defined at

a generally unknown point. Therefore, it is essential to design an observer for Acrobot

or for 4-link such that the observer estimates unmeasurable states of the walking robot.

This chapter summarizes results achieved in this respect. More specifically, two observers

were designed for Acrobot. Both of them are based on the partial feedback linearized

form of Acrobot.

First, the so-called reduced observer for Acrobot based on angular positions q1,2 mea-

surement was suggested in [4]. Angular velocities q̇1,2 were estimated by the reduced

observer. Moreover, the underactuated angle q1 can be measured indirectly using a laser-

beam sensor and a triangulation method. From the definition of coordinates change

(3.29), (3.31) coordinates ξ1, ξ3 depend on measured variables. They are determined
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directly from measurements, however, remaining coordinates ξ2, ξ4 need to be estimated.

Secondly, another option of the observer design for Acrobot was presented in [5] where

the design of the high gain observer based on angular position q2 and angular velocity

q̇1 measurement was obtained. In this case, the high-gain observer estimates angular

position q1 and angular velocity q̇2. Furthermore, the stability of a feedback tracking of

a desired reference trajectory with estimated states by the high-gain observer was verified

in [8] using the method of Poincaré sections, moreover, it was demonstrated in simulations

as well. The high-gain observer was extended and applied to 4-link in [12] such that it

estimates the underactuated angle of 4-link.

6.1 Observer design

Roughly speaking, an observer is a dynamical system driven by output of the original

dynamical system with major property that observer states converge to states of the orig-

inal dynamical system states. The well-known definition of the observer for a dynamical

system is as follows.

Definition 6.1.1 Consider the dynamical system

(6.1)
ẋ = f(x, u), x ∈ Rn, u ∈ R,
y = h(x), y ∈ R,

than the observer of the dynamical system is the following system

(6.2) ż = f̃(z, h(x), u), x̃ ∈ Rn, u ∈ R,

ensuring that for each bounded trajectory and input of system (6.1) for all t ≥ t0

(6.3) lim
t→∞

e(t) = 0, where e(t) := z(t)− x(t).

In the case of a linear system, the linear observer is constructed with the same structure as

the original system and the output error term is added in order to ensure the convergence

of the observation error to zero. Namely, the observer is defined as follows

(6.4) ˙̂x = Ax̂(t) +Bu(t)− L(Cx̂− y(t)).

In the case of linear time invariant systems (LTI), the observer is known as the Luenberger

observer [79, 80]. The gain L is selected according to the condition that eigenvalues of

A − LC are placed in the left complex half-plane. Whereas in the case of linear time

variant systems (LTV), the gain L has to be determined so that it is optimal in an

appropriate sense. In virtue of this, the observer is called Kalman-Bucy filter [63, 64].
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By virtue of a broad class of nonlinear systems several different types of observers for

nonlinear systems were developed. One can find a survey of various observers for nonlinear

systems in [88]. Particular observers different from each other in application field based

on a particular form of the nonlinear system.

In the following subsections, the reduced observer from [4] and the high-gain observer

from [5] for Acrobot are introduced and studied.

6.1.1 Reduced observer for Acrobot

Design of the reduced observer for angular velocities q̇1, q̇2 is based on the ability to

measure the angular positions q1 and q2. It is not difficult to see that the knowledge of

angles q1 and q2 is equivalent to the knowledge of variables ξ1,3 in partial exact feedback

linearization (3.30) due to transformations (3.32). The remaining variables ξ2,4 will be

estimated using the reduced observer. The angle q2 is actuated, therefore, it is elementary

to measure this angle directly using e.g. a rotary resolver. However, the underactuated

angle q1, which is defined at a previously unknown point during the step, is not easy

to measure directly. Therefore, some indirect method should be used for the angle q1

measurement.

In [4] a method based on a certain distance measurement using the laser beam sensor is

suggested. On the support leg of Acrobot the device for the optical distance measurement

is mounted. The angle between the direction of the laser beam and the stance leg is equal

to a carefully selected angle α, see Figures 6.1, 6.2. Namely, 0 < α < q̃1 and sinα should

not be too small, see (6.8) later on, so that some trade off is necessary. Nevertheless, q̃1 is

the angle between the stance leg and the ground surface which for a reasonable step varies

in the range (5π/12, 7π/12). Therefore, α = π/3 is still reasonable with sinα =
√

3/2.

To compute the underactuated angle q1, recall that it is defined in Figure 2.1a, realize

first that q1 = q̃1 − π/2 where q̃1 is defined in Figures 6.1, 6.2, i.e. in the sequel one

need to compute the angle q̃1 only. To do so, realize that the length of the stance leg l is

known and it is same as the length of the swing leg. The distance l1 between the optical

laser beam distance sensor and the ground is measured and known.

It is not difficult to see that using the well-known trigonometric laws, the unknown

angle q̃1 is the following function q̃1(l1) of the distance l1:

(6.5) q̃1(l1) =


arcsin l1 sinα√

l2+l21−2ll1 cosα
, l1 ≥ l

cosα
,

π−arcsin l1 sinα√
l2+l21−2ll1 cosα

, l1 ≤ l
cosα

.
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One can easily see that

(6.6) q̃1

(
l

cosα

)
= arcsin

 l
cosα

sinα√
l2 + l2

cos2 α
− 2l2

 =

arcsin

(
sinα√

− cos2 α + 1

)
= arcsin (1) =

π

2
,

and therefore the function q̃1(l1) in (6.5) is a well defined continuous function. Moreover,

(6.7)
∂q̃1

∂l1
=

sign(l1 cosα− l) sinα√
1− l21 sin2 α

l2+l21−2ll1 cosα

√
l2+l21−2ll1 cosα− l1(2l1−2 cosα)

2
√
l2+l21−2ll1 cosα

l2 + l21 − 2ll1 cosα
=

− l sinα

l2 + l21 − 2ll1 cosα
, ∀l1.

Relations (6.5), (6.6), (6.7) imply that q̃1(l1) is smooth function of l1 for ∀l1 ⇒ 0 if and

only if q̃1 < π. Moreover, one can check directly that

(6.8) |∂q̃1

∂l1
| ≤ 1

l sinα
, ∀l1,

so that the sensitivity of q̃1(l1) with respect to the error in measurement of l1 is very

good.

x

y

q2

q̃1

α

l
cosα

l1l l

Figure 6.1. Measurement of the angle q1 using a laser beam sensor at the beginning of the step.

Based on the previous considerations, consider the following problem to observe ξ2,4

in (3.30) based on knowledge of ξ1,3. To do so, consider following equations

(6.9)
∂

∂t

(
ξ̃2

)
= ξ3 − k2

2ξ1d
−1
11 (q2)− k2ξ̃2d

−1
11 (q2),

82



x

y

−q2

q̃1

α
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Figure 6.2. Measurement of the angle q1 using a laser beam sensor at the end of the step.

(6.10)
∂

∂t
(ξ2 − k2ξ1) = ξ3 − d−1

11 (q2)ξ2k2,

then the observer error e2 can be expressed as follows

(6.11) e2 = ξ̃2 − ξ2 + k2ξ1.

Dynamics of the error estimate e2 is given by the following differential equation

(6.12) ė2 = −k2d
−1
11 (q2(t))

(
ξ̃2 + k2ξ1 − ξ2

)
= −k2d

−1
11 (q2(t))e2.

The solution of differential equation (6.12) is

(6.13) e2 = e2(0) exp−k2
∫ t
0 d
−1
11 (q2(τ))dτ .

And therefore for k2 > 0 and t→∞, it holds that e2 → 0 exponentially and ξ̃2+k2ξ1 → ξ2

exponentially as well.

Furthermore, consider the following equations

(6.14)
∂

∂t

(
ξ̃4

)
= α(q)τ2 + β(q, ˙̂q)− k2

4ξ3 − k4ξ̃4,

(6.15)
∂

∂t
(ξ4 − k4ξ3) = α(q)τ2 + β(q, ˙̂q)− k4ξ4,

then the observer error e4 can be expressed as follows

(6.16) e4 = ξ̃4 − ξ4 + k4ξ3.
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Dynamics of the error estimate e4 is given by the following differential equation

(6.17) ė4 = −k4

(
ξ̃4 − ξ4 + k4ξ3

)
+ β(q, ˙̂q)− β(q, q̇).

Equation (6.17) can be rewritten in the following form

(6.18) ė4 = −k4e4 + ϕ (ξ1, ξ2, ξ3, ξ4, e2, e4) .

As a consequence, for k4 > 0 and t → ∞, it holds that e4 → 0 exponentially. And

therefore ξ̃4 + k4ξ3 → ξ4 exponentially as well.

Simulations

A feedback tracking of the pseudo-passive reference trajectory with observed angular

velocities q̇1, q̇2 using the reduced observer is demonstrated here by simulations. In Fig-

ure 6.3a one can see a course of measured angular positions during the tracking. In

Figure 6.3b one can see a time response of observed angular velocities and ability of the

feedback tracking for observer gain k2 = 10 and k4 = 10. Initial errors of the observer, in

ξ̃2, ξ̃4, are approximately 50% of real values ξ2, ξ4. In Figure 6.4a one can see convergence

of the estimated coordinates ξ̂2, ξ̂4 to real coordinates ξ2, ξ4 and time responses of errors

of estimates e2, e4.

It was shown in [4] that the lowest possible gains of the observer k2 = 1 and k4 = 2

could be used with initial observer errors approximately 2% of real values ξ2, ξ4. Moreover,

in [4] an effect of higher gains for the observer is shown as well. The bigger gains for the

observer are, the more quickly the estimates of coordinates converge to real coordinates.

On the other hand, higher gains tend to amplify existing noise, thus reducing the accuracy

of the estimates.

Finally, Figure 6.4b shows the animation of Acrobot walking during one step with

observed angular velocities q̇1, q̇2 for observer gains k2 = 10 and k4 = 10.

6.1.2 High gain observer for Acrobot

By virtue of the form of Acrobot in partial linearized coordinates (3.30), a high gain

observer [46, 68] is an appropriate observer for Acrobot. The design of the high gain ob-

server for Acrobot is presented here. The design was firstly presented in [5] and extended

in [8] and [12] later on. The high gain observer estimates states of Acrobot in linearizing

coordinates (3.29), (3.31) as Acrobot controller (5.3) works in these coordinates as well.

However, the high gain observer can not properly estimate Acrobot states in linearizing

coordinates ξ without an output measurement to minimize the observer error. To do

so, the original linearizing function p (3.24) is slightly changed such that the linearizing
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Figure 6.3. (a) Directly or indirectly measured angular positions q1, q2. (b) Observed and real

angular velocities q̇1, q̇2 for k2 = 10 and k4 = 10 and references (dotted line).
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Figure 6.4. (a) Convergence of estimates ξ̂2,4 to real values of ξ2,4 and a time response of errors

of estimates e2,4. (b) The animation of the single step with sampling time 0.08 s. The dashed

line is the reference system, the full line represents “real” Acrobot.
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function could be computed from accessible measurements only. As a consequence, the

changed linearizing function p is used to minimize the observer error whereas remaining

three linear coordinates ξ2,3,4 are estimated using the high gain observer because they

depend on unmeasured Acrobot states. To do so, define

(6.19) η1(q2) = p− q1,

depending only on angular position q2 measurement. Remaining linearizing functions

η2, η3, η4 are based on the original linearizing function σ defined in (3.22) and its time

derivatives

(6.20) η2 = σ, η3 = σ̇, η4 = σ̈.

Taking time derivative of (6.19) gives η̇1 = ṗ− q̇1 and by (3.28) Acrobot dynamics in the

alternative partial exact linearized form is as follows

(6.21)

η̇1 = d−1
11 (q2) η2 − q̇1,

η̇2 = η3,

η̇3 = η4,

η̇4 = β(η) + α(η1, η3) τ2.

Recall that η1, η2, η3, η4 are given by (6.19), (6.20) The new form (6.21) facilitates the

high gain observer design. By virtue of Acrobot measurable outputs q2 and q̇1, the new

linearizing coordinate η1 is measurable. Only for completeness, the angular velocity q̇1

is measurable using a gyroscope and the angular position q2 is measurable using e.g.

a rotary resolver. Then, the high gain observer for Acrobot takes the following form

(6.22)

˙̂η1 = −L1(η1−η̂1) + d−1
11 (q2) η̂2 − q̇1,

˙̂η2 = −L2(η1−η̂1) + η̂3,

˙̂η3 = −L3(η1−η̂1) + η̂4,

˙̂η4 = −L4(η1−η̂1) + β(η̂) + α(η1, η̂3) τ2.

Denoting the observer error as e = η̂ − η, one has

(6.23)

ė1 = L1e1 + d−1
11 (q2) e2,

ė2 = L2e1 + e3,

ė3 = L3e1 + e4,

ė4 = L4e1 + β(η̂)−β(η)+(α(η1, η̂3)−α(η1, η3)) τ2.
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Now, gains L1,2,3,4 can be designed using standard high-gain techniques, namely, take any

L̃1,2,3,4 such that the following matrix

(6.24)


L̃1 1 0 0

L̃2 0 1 0

L̃3 0 0 1

L̃4 0 0 0


is Hurwitz and define

(6.25) L1 = ΘL̃1, L2 = Θ2L̃2, L3 = Θ3L̃3, L4 = Θ4L̃4.

It is proved in [5] that system (6.23), (6.24), (6.25) is exponentially stable for Θ large

enough. Therefore e(t) = η̂(t)−η(t)→ 0, i.e. η̂(t)→ η(t), as t→∞ and therefore (6.22)

is the exponential observer for (6.21).

Summarizing, Acrobot dynamics in the partial exact linearized form together with

the high gain observer have the following form

(6.26)

ξ̇1 = d11(q2)−1η̂2,

ξ̇2 = η̂3,

ξ̇3 = η̂4,

ξ̇4 = α(q, q̇)τ2 + β(q, q̇) = w,

˙̂η1 = −L1(η1−η̂1) + d−1
11 (q2) η̂2 − q̇1,

˙̂η2 = −L2(η1−η̂1) + η̂3,

˙̂η3 = −L3(η1−η̂1) + η̂4,

˙̂η4 = −L4(η1−η̂1) + β(η̂) + α(η1, η̂3) τ2.

Simulation

To demonstrate the usability of the presented high gain observer and its straightforward

combination with a state feedback controller, the exponential tracking of the pseudo-

passive reference trajectory is considered here. One can see a quality of the feedback

tracking in Figures 6.5a, b, especially in Figure 6.5a one can see a time response of the

estimated angular position q1. Furthermore, the angular position q2 is measured while in

Figure 6.5b one can see a time response of the estimated angular velocity q̇2. The angular

velocity q̇1 is measured. In Figure 6.6a one can see a time response of errors of estimates

e2,3,4.
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The observer gain L is given by (6.25), where L̃ = −104 · [0.0046, 0.0791, 0.6026,

1.7160], and “amplifying” parameter Θ = 20. Initial errors of the observer are approxi-

mately 20% of real values of ξ2, ξ3, ξ4. For the sake of comparison with feedback tracking

with the reduced observer shown in the previous subsection, the used feedback controller

with feedback gain and initial conditions of the reference and the real step are taken the

same.

Finally, Figure 6.6b shows the animation of Acrobot walking during one step with the

observed angular position q1 and angular velocity q̇2 using the high gain observer.
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Figure 6.5. Observed and measured angular positions q1, q2 (a) and angular velocities q̇1, q̇2 (b)

for high gain observer and references (dotted line) during a feedback tracking of the pseudo-

passive reference trajectory during one step.

6.1.3 High gain observer for 4-link

In [12] the high gain observer for 4-link was introduced. This observer is based on the

original high gain observer for Acrobot and by virtue of embedding method it is simply

extended and used in an application of feedback tracking of a reference trajectory without

the underactuated angle q1 measurement. In contrast to the original high gain observer

for Acrobot, angular position and velocity are measured in actuated links of 4-link in

order to transform “old” coordinates in (2.7) into “new” coordinates defined in (3.36).

In the case of the first link, i.e. the not actuated link, the angular velocity q̇1 is measured

only.
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Figure 6.6. (a) Convergence of estimates η2,3,4 to real values of ξ2,3,4 and a time response of

errors of estimates e2,3,4. (b) The animation of the single step with sampling time 0.08 s. The

dashed line is the reference system, the full line represents the “real” Acrobot.

6.2 Chapter conclusion

Two algorithms how to observe any state of Acrobot based on the knowledge of position

variables only or on the knowledge of one angular position variable and one angular

velocity variable were provided. Both observers can be combined with the current state

feedback approach presented in the previous chapter in order to provide Acrobot reference

trajectory tracking using measurement feedback.
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Chapter 7

Underactuated walking hybrid

stability

In this chapter a stability analysis of Acrobot walking is done using a method of Poincaré

sections. Acrobot or 4-link walking consists of a periodic change of a swing phase and

a double support phase. Therefore, it is not possible to determine the walking stabil-

ity without taking the double support phase and the impact into the account. The

swing phase of the walking is consecutively controlled using tracking method presented

in the previous chapter. Each tracking method is distributively verified by the method

of Poincaré sections whether it is able to stabilize not only the swing phase of the step

but whole walking including the swing phase, the impact and switch of legs. The stabil-

ity analysis is done only for Acrobot, nevertheless, by virtue of the embedding method,

its extension for 4-link is straightforward. Results of stability analysis by method of

Poincaré sections are demonstrated by simulations of Acrobot walking during approxi-

mately 150 steps. It demonstrates the ability of Acrobot walking control to make a priory

unlimited number of steps.

7.1 Method of Poincaré sections

The walking features the so-called limit cycle resulting from time-continuous phase, im-

pact detection and reinitialization rules. To determine the stability of such hybrid non-

linear system with impulse effects, the method of Poincaré sections is used here. The

same idea of stability determination of a biped walking is done e.g. in [129, 130].

The application of the method of Poincaré sections is straightforward. Roughly speak-

ing, a solution φ(t, x) of a system is sampled according to usually event-based or time-

based rule and then the stability of an equilibrium point of the sampled system is eval-

uated. The event-based or time-based rule is in the literature usually called Poincaré
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section S, which is determined by crossing a plane being transversal to a trajectory of

the system solution φ(t, x). The correspondence between two subsequent crossing of S by

the trajectory of the system solution φ(t, x) is called in the literature as the Poincaré re-

turn map P , P : S → S. In another words, the Poincaré return map P is a mapping

from an initial point x ∈ S to the intersection of the surface S with the solution φ(t, x),

i.e. P(x) := φ(t, x).

In our case, the Poincaré section is defined at the middle of the step time T
2
, where T

is total step time. The Poincaré return map is defined by the Poincaré section S and it

represents the evolution of Acrobot swing phase from this point until the end of the step

through the impact phase including change of legs and Acrobot swing phase in the next

step until it intersects the Poincaré section S in the middle of the next step.

A point x∗ ∈ S is called a fixed point of the Poincaré map if P(x∗) = x∗. The known

cyclic motion of coordinates q, q̇ gives a unique fixed point x∗ = (q1(T
2
), q2(T

2
), q̇1(T

2
),

q̇2(T
2
)) which depends on used feedback controller. By definition, the Poincaré return

map

(7.1) x[k + 1] = P(x[k])

is a discrete-time system on the Poincaré section S. Define δxz[k] = xz[k] − x∗ the

Poincaré return map linearized about the fixed-point x∗, then it gives rise to a linearized

system

(7.2) δxz[k + 1] = Azδxz[k],

where the (4x4) square matrix Az is the Jacobian of the Poincaré map and it is computed

as follows

(7.3) Az = [Az1 Az2 Az3 Az4]4x4 ,

where

(7.4) Azi =
P (x∗ + ∆xzi )− P (x∗ −∆xzi )

2 ∆xzi
, i = 1, 2, 3, 4,

and ∆xzi = ∆q1,2 for i = 1, 2 and ∆xzi = ∆q̇1,2 for i = 3, 4. A fixed-point x∗ of the

Poincaré return map is locally exponentially stable if, and only if, the eigenvalues of

Az lie inside the unit circle. For more details see e.g. [130].

The calculation of the matrix Az requires eight evaluations of the Poincaré return

map P , two evaluations for each coordinate. Each evaluation of the Poincaré return

map is composed of the integration of the swing phase from t = T
2

to the collision with

the ground, the calculation of the influence of the impact on angular velocities including

their relabeling due to switching the swing and the stance leg and relabeling of angular

positions and the integration of the swing phase until t = T
2
.
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7.2 Stability analysis

The stability analysis of Acrobot walking using the method of Poincaré sections is done

here. Acrobot is controlled using tracking methods presented in Chapter 5. If eigenvalues

of matrix Az defined in (7.3) lie inside the unit circle, the corresponding tracking method

is stable. This analysis is performed in the sequel for each of tracking methods presented

in Sections 5.2-5.6 of Chapter 5.

Stability analysis - LMI design

To track the multi-step walking reference trajectory by Acrobot using the LMI design

described in Section 5.2, the feedback gain K = −105 · [5.2958, 2.9152, 0.4415, 0.0145] is

used. The corresponding matrix Az has the following form

Az =


−0.6072 0.0549 −0.1692 0.0121

0.0157 0.0857 −0.0319 −0.0156

2.5882 −0.2576 0.7308 −0.0478

3.9368 −1.2556 1.4751 0.0795


and its eigenvalues are as follows

eig(Az) = [0.2174, 0.0689, 0.0037, −0.0011] ,

therefore, Acrobot walking controlled by the LMI method is stable according to the

Poincaré test of stability.

Figures 7.1a, b show phase-plane plots of variables q1 and q2. The convergence towards

a periodic motion is clearly seen from simulations of approximately 150 steps.

Stability analysis - Analytical design

To track the multi-step walking reference trajectory for Acrobot using the analytical

design described in Section 5.3, the feedback gain K̃ = −(9, 6, 12, 8) is used together with

the “amplifying” parameter Θ = 15. The corresponding matrix Az has the following form

Az =


−0.3046 0.0660 −0.1609 0.0060

2.3486 0.0524 0.4040 −0.0916

2.7134 −0.4604 1.2364 −0.0649

−0.8721 −2.4579 3.5321 0.2259


and its eigenvalues are as follows

eig(Az) = [0.6456, 0.5514, 0.0153, −0.0021] .
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Figure 7.1. Phase-plane plots of the LMI design for (a) q1, (b) q2. The initial state is represented

by a red circle.

One can see that the Poincaré test of stability is fulfilled, therefore, Acrobot walking

controlled using the analytical design approach is stable.

Figures 7.2a, b show phase-plane plots of variables q1 and q2. The convergence towards

a periodic motion is clearly seen from simulations of approximately 150 steps.

−0.2 −0.1 0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

2

2.5

q
1
 [rad]

d
q

1
 [

ra
d

/s
]

2.6 2.8 3 3.2 3.4 3.6 3.8 4
−6

−5

−4

−3

−2

−1

0

1

2

3

q
2
 [rad]

d
q

2
 [

ra
d

/s
]

(a) (b)

Figure 7.2. Phase-plane plots of (a) q1, (b) q2. Acrobot walking is controlled using the analytical

approach. The initial state is represented by a red circle.
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Stability analysis - Extended analytical design

The advantage of the extended analytical approach, presented in Section 5.4, consists in

a time varying state and a feedback transformation which enable to design a fundamental

matrix of the error dynamics in an explicit form. Moreover, a product of that fundamental

matrix at the end of the single support walking phase, i.e. at the end of the step,

by the Jacobian of the impact map enables directly prove a stability of the multi-step

walking reference trajectory tracking by computing certain 4x4 matrix and determining

numerically whether its eigenvalues lie within the unit circle or not. Therefore, the

stability proof is done here using an analytical method in contrast to the numerical

method used in previous cases.

By virtue of transformation (5.21)-(5.24), the corresponding error dynamics (5.34) has

a form enabling to simply solve the matrix exponential, i.e. to find the state transition

matrix. Just to remind, equation (5.34) has following form

˙̄e =
(
Ã+ B̃K

)
ē =


0 1 0 0

0 0 1 0

0 0 0 1

K1 K2 K3 K4

 ē.

The solution of (5.34) will be used to determine the analytical proof of the Acrobot

walking stability. The stability analysis is based on the eigenvalues of the matrix e(T+)

which is defined below. This matrix corresponds to the error after one step followed by

the impact.

(7.5) e(T+) =
∂Φ̃ξ

Imp

∂ξ
(ξ(T ))×X−1(T )Φ(T )X(0)e0,

where e0 is the initial error, Φ(T ) is the solution of differential equation (5.34) and

Φ̃ξ
Imp(ξ(T )) is a matrix realizing influence of the impact on angular velocities including

their relabeling due to switching the swing and the stance leg and relabeling of angular

positions in ξ coordinates. And X(0) and X(T ) defined in 5.29 are evaluated at the

beginning or at the end of the step, respectively. The impact matrix Φ̃Imp(q(T )) ini-

tially developed in q, q̇ coordinates, see Section 2.2, is extended by the transformation

T expressed in (3.31) related with transformation from q, q̇ coordinates to ξ coordinates

obtained in [30].

For the sake of an easier and compact notation the transformation T is represented
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as follows 
T1

T3

T2

T4

 =


p(q1, q2)

θ4g sin q1 + θ5g sin(q1 + q2)

Φ2(q1, q2)

 q̇1

q̇2



 ,

where p is given by (3.22) and Φ2(q) is defined in (3.35).

In Section 2.2 impact matrix Φ̃Imp(q(T )) (2.39) was developed realizing the influence

of the impact on angular velocities including their relabeling and relabeling of angular

positions in q coordinates. The impact matrix has the following meaning

(7.6)
[
q+

1 q+
2 q̇+

1 q̇+
2

]T
= Φ̃Imp(q(T ))

[
q−1 q−2 q̇−1 q̇−2

]T
,

where q̇−1 , q̇−2 are velocities “just before” the impact, while q̇+
1 , q̇+

2 are velocities “just

after” the impact and relabeling. Angular positions do not change during the impact,

therefore q+
1 , q+

2 denote angular positions after relabeling only.

Its Jacobian
∂Φ̃Imp(q(T ))

∂(q,q̇)
is as follows

(7.7)
∂Φ̃Imp(q(T ))

∂(q, q̇)
=


−1 −1

0 −1

0 0

0 0[
∂ ¯̄ΦImp

∂q1

∂ ¯̄ΦImp

∂q2

]
q̇ ¯̄ΦImp

 ,
where, ¯̄ΦImp represents adapted solution of (2.36). Only the first and the second column

and row of (2.36) are taken into the account, moreover in contrast to Φ̄Imp, the second

row is subtracted from the first row of the sub-matrix. This adaptation is done according

to the definition of the impact matrix (2.39).

Nevertheless, in order to express the Jacobian of the impact matrix in ξ coordinates,

it is necessary to permute the second and the third component of the Jacobian of the

transformation T originally expressed in equation (3.31). Therefore, denote as Tr a matrix

permuting the second and the third component, than the Jacobian of the transformation

T is as follows

(7.8) Tr
∂T

∂(q, q̇)
T−1
r =

Φ1(q) 0

Φ3(q, q̇) Φ2(q)

 ,
where Φ1(q) is defined in (3.34), Φ2(q) is defined in (3.35) and Φ3(q, q̇) is a certain (2×2)

matrix of smooth functions.

The final form of equation (7.5) is as follows

(7.9) e(T+) =
∂T

∂(q, q̇)

∂Φ̃Imp(q(T ))

∂(q, q̇)

(
∂T

∂(q, q̇)

)−1

×X−1(T ) Φ(T )X(0) e0,
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where the first three therms express the impact matrix Φ̃ξ
Imp(ξ(T )) in ξ coordinates.

Substituting (7.8), (7.7) in (7.9) the equation for computing eigenvalues of the matrix

e(T+) is as follows

(7.10) e(T+) = Tr

Φ1 0

Φ3 Φ2




−1 −1

0 −1

0 0

0 0[
∂ ¯̄ΦImp

∂q1

∂ ¯̄ΦImp

∂q2

]
q̇ ¯̄ΦImp


 Φ−1

1 0

−Φ3Φ−1
1 Φ−1

2 Φ−1
2

T−1
r ×

X−1(T ) Φ(T )X(0) e0.

To analyze the stability of Acrobot walking it is necessary to compute eigenvalues of

the matrix e(T+). Matrices X(T ) and X(0) defined in (5.29) are evaluated at the end

and at the beginning of the step, respectively, using values of reference functions µ1,2,3(t)

and its time derivative. Matrices
∂ΦImpq,q̇

∂(q,q̇)
and ∂T

∂(q,q̇)
are evaluated at the end of the step

as well. Feedback gains for the system (5.31) have to be chosen so that the closed-loop

system (5.34) is stable.

For feedback gains K = −106 · [1.2150, 0.1688, 0.0079, 0.0002] the degree of eigenvalues

of the matrix e(T+) is less than 10−3, therefore, using this feedback approach Acrobot

walking is stable and it converges to the stable walking cycle. This proof of the Acrobot

walking stability is equivalent to the stability proof by Poincaré sections. The Poincaré

test gives eigenvalues, indeed, inside the unit circle.

Figures 7.3a, b show phase-plane plots of variables q1 and q2. The convergence towards

a periodic motion is clearly seen from simulations of approximately 150 steps.
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Figure 7.3. Phase-plane plots for (a) q1, (b) q2. Acrobot walking is controlled using the extended

analytical approach. The initial state is represented by a red circle.
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Stability analysis - Approximate analytical design

To track the multi-step walking reference trajectory by Acrobot using the approximate

analytical tracking technique described in Section 5.5, the feedback gain K = −105 ×
[5.2958, 2.9152, 0.4415, 0.0145] is used. The corresponding matrix Az has the following

form

Az =


0.0358 −0.0042 0.0027 −0.0002

0.3112 −0.0395 0.0265 −0.0020

1.8303 −0.1626 0.0755 −0.0055

24.9280 −2.2151 1.0107 −0.0733


and its eigenvalues are as follows

eig(Az) = [−0.0126, 0.0092, 0.0001, 0.0017] .

One can see that the Poincaré test of stability is fulfilled, therefore, Acrobot walking

controlled using the approximate analytical design approach is stable.

Figures 7.4a, b show phase-plane plots of variables q1 and q2. The convergence towards

a periodic motion is clearly seen from simulations of approximately 150 steps.
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Figure 7.4. Phase-plane plots for (a) q1, (b) q2. Acrobot walking is controlled using the approx-

imate analytical approach. The initial state is represented by a red circle.

Stability analysis - Yet another analytical design

To track the multi-step walking reference trajectory by Acrobot using the yet another

analytical design described in Section 5.6, the feedback gain K = [−16, −32, −24, −8]
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is used together with the “amplifying” parameter Θ = 15. The corresponding matrix Az

has the following form

Az =


0.0358 −0.0042 0.0027 −0.0002

0.3112 −0.0395 0.0265 −0.0020

1.8303 −0.1626 0.0755 −0.0055

24.9280 −2.2151 1.0107 −0.0733


and its eigenvalues are as follows

eig(Az) = [−0.0126, 0.0092, 0.0001, 0.0017] .

One can see that the Poincaré test of stability is fulfilled, therefore, Acrobot walking

controlled using the yet another analytical design approach is stable.

Figures 7.5a, b show phase-plane plots of variables q1 and q2. The convergence towards

a periodic motion is clearly seen from simulations of approximately 150 steps.
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Figure 7.5. Phase-plane plots for (a) q1, (b) q2. Acrobot walking is controlled using the yet

another analytical approach. The initial state is represented by a red circle.

7.3 Chapter conclusion

The chapter deals with the stability analysis of Acrobot walking controlled by techniques

presented in Chapter 5. The walking includes time-continuous phase, impact detection

and re-initialization rules. Therefore, the stability analysis was done using the method

of Poincaré sections. In the case of the extended analytical approach which allows to
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transform the Acrobot error dynamics into a linear form, the stability test was performed

using a fundamental matrix of the transformed error dynamics.
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Chapter 8

Conclusions and outlooks

8.1 Summary

This thesis was devoted to the study of the novel methods of underactuated walking robot

control using nonlinear control methods in order to improve the existing approaches.

Some new theoretical properties of underactuated walking robot control were developed.

These methods depend crucially on partial feedback linearization techniques. In partic-

ular, new feedback controllers, state observers and reference trajectories were developed

based on the partial linear form of Acrobot as the representative of a class of underac-

tuated walking robots. More specifically, few state feedback controllers were developed

based on either a robust approach or on the more or less deeper knowledge of the refer-

ence Acrobot model. Two observers to estimate any state of Acrobot based on particular

knowledge of angular positions and velocities were developed. The newly developed multi-

step reference trajectory keep a relation between angular velocities at the end and at the

beginning of the step via the impact model and, therefore, the multi-step reference trajec-

tory minimizes initial errors at the beginning of the new step. The main contributions of

the thesis are the novel techniques ensuring a movement of Acrobot in a way resembling

a human walk. In contrast to another control methods based on a numerical approach,

the novel tracking techniques use the feedback controller to track the carefully designed

reference trajectory. By virtue of this, Acrobot can make practically unlimited number of

steps. Moreover, these methods are simpler when extended to more complicated walking

structures. Finally, the so-called embedding method was suggested to extend Acrobot

results to more general planar walking models.
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8.2 Future research outlooks

Besides the numerical simulation, verification of theoretical concepts will be done on

an existing simple laboratory model of 4-link mechanical system with four actuators,

imitating legs with a hip and knees without a body or even a torso. A description of that

real laboratory model can be found in [13].

The future research related to real mechanical models of the underactuated walking

robots will be also devoted to another aspects of observers for their precision and depen-

dence on output noise measurements. Probably a sensor fusion problem will be necessary

to solve. Furthermore, the impact model and its accuracy is connected with measurement

of model states. Actually, these two problems are closely related as it is an important

issue how to estimate the time of the impact, which heavily depends on accuracy of the

measurements and the estimation precision of state variables as well as the accuracy of

the impact model.
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Fulfillment of Stated Goals and

Objectives

Structured according to their formulations on page xi, the goals and objectives fulfillment

can be summarized as follows:

1. This goal was achieved in Chapter 2. The basic approaches of obtaining mathe-

matical models of walking robots were repeated there and they were used to find

mathematical models of the swing phase and the double phase of Acrobot and

4-link.

2. This goal was obtained in Section 4.2.1 and in Chapters 5 and 6. Namely, in

Section 4.2.1 a new reference trajectory taking into the account the impact effect

to minimize initial errors during tracking was developed. In Chapter 5 new state

feedback controllers to track a given reference trajectory based on partially linear

form of Acrobot were obtained to improve the existing tracking approaches. Finally,

two observers for Acrobot were developed in Chapter 6 to observe the unmeasured

states of Acrobot.

3. This goal was fulfilled in Chapter 7, where the stability of the newly developed

tracking algorithms was proved. It was shown there that Acrobot can make a priori

unlimited number of steps by virtue of tracking of the new reference trajectory

using the newly developed feedback controllers.

4. This goal was achieved in Sections 3.2, 4.1.2, 4.2.2. Namely, the partial feedback

linearization of 4-link was obtained in Sections 3.2 where the so-called embedding

method was introduced. Based on that, two reference trajectories for 4-link and

their tracking were developed in Sections 4.1.2, 4.2.2. and 5.7. Finally, the high

gain observer for 4-link is obtained using the mentioned embedding method in

Section 6.1.3.
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[136] J. Zikmund, S. Čelikovský, and C.H. Moog. Nonlinear control design for the ac-

robot. In Preprints of the 3rd IFAC Symposium on Systems Structure Control, Foz

do Iguassu, Brazil, 2007.

117



118



Curriculum Vitae
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de Control Automático (ACCA), Santiago de Chile, CL, November 2014.

Contribution: 50%
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M. Anderle and S. Čelikovský. Feedback design for the Acrobot walking-like trajectory

tracking and computational test of its exponential stability. Proceedings of the IEEE

International Symposium on Computer-Aided Control System Design (CACSD), Denver

Colorado, US, September 2011.

Contribution: 50%
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