
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Distributed Mobile Graphics

by

Jiřı́ Danihelka

A thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

PhD program: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Prague, 2015

ii

Thesis Supervisor:
Jiřı́ Žára
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering
Czech Technical University in Prague

Copyright c© 2015 by Jiřı́ Danihelka

Acknowledgments

Acknowledgments from the most important related publications:

[A.1] This research has been partially supported by the Technology Agency of the Czech
Republic under research program TE01020415 (V3C – Visual Computing Competence
Center) and by Microsoft Czech Republic.

[A.2] This research has been partially supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS10/291/OHK3/3T/13, the research program
LC-06008 (Center for Computer Graphics), Microsoft Innovation Cluster for Embedded
Software (ICES) and by Vodafone Foundation Czech Republic.

[A.3] This project was partially sponsored by Microsoft Czech Republic and the CTU FEE
Interoperability Lab. Many thanks also belong to researchers in the Microsoft Research
Redmond Connections and Networking Research Group, especially Dr. Judith Bishop,
Dr. Victor Bahl and Dr. Stefan Saroiu, for initial project consultations. This work was
supported by the Grant Agency of the Czech Technical University in Prague, grant No.
SGS10/291/OHK3/3T/13. The research was supported by the grant No. DF12P01OVV028
of the Ministry of Culture of the Czech Republic.

[A.4] The project has been sponsored by the Microsoft Innovation Cluster for Embedded
Software (ICES). We thank Abouzar Noori for his initial contribution to the project and
the anonymous reviewers for their inspiring and insightful feedback.

[A.5] This research has been partially supported by the MSMT under the research program
MSM 6840770014, the research program LC-06008 (Center for Computer Graphics) and
by Vodafone Foundation Czech Republic.

iii

iv

Contents

List of Abbreviations 1

Abstract 3

1 Introduction 5
1.1 Goals of the Thesis . 5

1.2 Definition of Mobile Graphics . 6

1.3 Hardware Components Used in Mobile Devices 7

1.3.1 Mobile Touchscreen Displays 7

1.3.2 Connectivity . 8

1.3.3 Battery . 9

1.4 Thesis Structure . 10

I Rendering of Facial Models 13

2 Facial Animation on Mobile Devices 15
2.1 Introduction to Facial Animation . 15

2.1.1 Applications of Facial Animation 15

2.1.2 Applications of Voice Interfaces 16

2.1.3 Head Models for Facial Animation 16

2.1.4 Existing Scripting Languages for Facial Animation 17

2.2 Face Animation Principles . 17

2.2.1 Phonemes and Visemes . 17

2.2.2 MPEG-4 Animation . 18

3 Semantic Reduction of Face Meshes 21
3.1 Existing Reduction Methods . 21

3.2 Definitions . 22

v

vi CONTENTS

3.2.1 Polygonal-mesh Dissimilarity 24

3.2.2 Dissimilarity for Sets of Polygonal Meshes 24

3.2.3 Reduction Problem Definition 25

3.3 Finding the Optimal Solution . 25

3.4 Implementation . 29

3.5 Performance Validation . 29

4 Framework for Creating 3D Head Applications 31
4.1 Brief Framework Description and Related Work 31

4.2 Distributed Design Analysis . 33

4.2.1 Speech Synthesis . 33

4.2.2 Speech Recognition . 33

4.2.3 Graphics Rendering and Streaming 34

4.2.4 Connection Requirements . 35

4.3 Performance Measurements . 36

4.3.1 Graphics Benchmarks . 36

4.3.2 Power Consumption . 37

4.4 Architecture Discussion and Selection 38

4.5 Synchronization of Face Animation with Speech 39

4.6 Framework Implementation . 40

4.7 Chapter Conclusions . 41

II Collaborative Computer Graphics in Distributed Environments 45

5 Collaborative Device-to-Device Video Streaming 47
5.1 Introduction . 47

5.2 Related Work . 48

5.2.1 Opportunistic Content Sharing 48

5.2.2 Comparison of Dissemination Techniques 49

5.2.3 Techniques for Avoiding Congestion 50

5.3 System Architecture . 50

5.3.1 Scenario . 50

5.3.2 Media Recording and Subscription Service 51

5.3.3 Dissemination Service . 51

5.3.4 Strategies . 54

5.4 Initial Spreading Strategies . 55

CONTENTS vii

5.4.1 Fixed Ratio Spread . 55

5.4.2 K-armed Bandit Strategy . 56

5.4.3 Initial / Deadline Balance . 56

5.5 Dissemination Strategies . 57

5.5.1 Client-only Dissemination . 57

5.5.2 Cloud-based Dissemination . 57

5.5.3 Adaptive Cloud-based Dissemination 57

5.6 System Implementation . 58

5.6.1 Cloud Services . 58

5.6.2 Mobile Devices . 58

5.6.3 Signaling . 59

5.6.4 D2D Communication . 60

5.6.5 System Setting . 60

5.7 Evaluation . 61

5.7.1 Automated Testing System . 62

5.7.2 Evaluation with Nomadic Users 64

5.8 Open Issues and Discussion . 66

5.8.1 Distribution of Application Updates and OS Integration 66

5.8.2 Fairness . 66

5.9 Chapter Conclusion . 67

III Virtual Cities on Mobile Devices 69

6 Procedural Generation of Cities 71
6.1 City Modeling Approaches . 71

6.1.1 Behavioral City Modeling . 71

6.1.2 Geometric City Modeling . 72

6.1.3 Combined City Modeling . 72

6.2 City Modeling Workflow . 73

6.3 Previous Work in City Modeling . 75

6.4 Chapter Conclusion . 78

7 Stateless Generation of Distributed Worlds 79
7.1 Introduction . 79

7.2 Stateless Generation Approach . 81

7.3 General Algorithm for Stateless Infinite Worlds 82

viii CONTENTS

7.4 Tessellation Algorithm . 83
7.5 Generating the Tessellation Fragment Interfaces 88
7.6 Constrained Street-generation Algorithm 90
7.7 Generating Building Lots and Geometry 95
7.8 Limitations and Potential Extension . 96
7.9 Applications . 97
7.10 Implementation . 98
7.11 Performance and Measurements . 100
7.12 Chapter Conclusions . 102
7.13 Future Work . 104

IV Closing Part 105

8 Conclusions 107
8.1 Future of Mobile Graphics . 107
8.2 Fulfillment of the Goals . 107
8.3 Rendering of Facial Models . 108
8.4 Collaborative Distributed Computer Graphics 109
8.5 Virtual Cities on Mobile Devices . 109

Bibliography 111

Author’s publications related to the thesis 123

Author’s publications not related to the thesis 127

Citations of publications 129

List of supervised students 137

List of Figures 138

List of Tables 140

List of Abbreviations

2D two-dimensional
3D three-dimensional
AML Avatar Markup Language
API application programming interface
ARM Advanced RISC Machines
BTS Base Transceiver Station
CGA Computer Generated Architecture
CPU central processing unit
ECA embodied conversational agent
ECAF Authoring Language for Embodied Conversational Agents
FAP Facial Animation Parameters
ES embedded systems
FP feature point
FPS frames per second
FPU Floating-Point Unit
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
HSTP Hyperspeech Transfer Protocol
HTC High Tech Computers (Taiwan manufacturer of portable devices)
IEEE Institute of Electrical and Electronics Engineers
ISO International Standards Organization
Java ME Java Micro Edition
JIT Just-In-Time compilation
JPEG Joint Photographic Experts Group - an image file format

1

2 CONTENTS

LCD liquid crystal display
LOD Level-Of-Detail – a technique for showing simpler models for

far-away objects to speed up rendering
LTE Long Term Evolution – a mobile communication standard
MPEG Motion Picture Experts Group
MS Microsoft
NPR non-photorealistic rendering
OpenGL Open Graphics Library
OpenGL ES Open Graphics Library for Embedded Systems
OS operating system
PC personal computer
P2P peer-to-peer
PDA personal digital assistant
PNG Portable Network Graphics - an image file format
RAM random access memory
RGB red-green-blue color space
RISC Reduced Instruction Set CPU
ROM Read-Only Memory
qVGA quarter video graphics array resolution – 320×240 or 240×320

pixels
SDK software development kit
SQL Structured Query Language
SMIL-Agent Synchronized Multichannel Integration Language for Synthetic

Agents
SVGA super video graphics array
UI user interface
URL Universal Resource Locator - an internet link
VGA video graphics array
VRML Virtual Reality Markup Language
WiDi Wireless Display
WiMAX Worldwide Interoperability for Microwave Access
WWTW World-Wide Telecom Web
WWW World-Wide Web
XML Extensible Markup Language

Abstract

Mobile networking technologies are the most ubiquitously spread among mankind and with
the technological advances of mobile clients are becoming a prime target for innovative
3D graphics applications.

Our research, presented in this thesis, focuses on new methods of reducing polygonal
models and other commonly used graphical structures in order to bring 3D computer
graphics to devices with limited processor speeds and memory, such as mobile phones.
These environments bring new challenges in algorithm efficiency and data reduction. We
concentrated our effort in three areas: 1. Facial animation on mobile phones, 2. Cooperative
computer graphics in distributed environments and 3. Procedurally generated cities and
buildings.

The aim of the thesis is to be a multidisciplinary publication that combines research
results from fields of computer graphics and mobile networking. We focused on novel
ways to utilize the properties of distributed mobile environments to perform graphical tasks
and overcome various problems in distributed graphical applications caused by occasional
unreliable mobile device network connections.

3

4 CONTENTS

Chapter 1

Introduction

1.1 Goals of the Thesis

This thesis is focused on two main goals:

Our first goal is to implement graphical scenarios common on desktop computers
yet thus far not possible on mobile devices due to their limited resources. We decided
to especially focus on semantic-based methods for content reduction and procedural
generation. These methods can reduce the amount of resources required by mobile devices
and allow us to deliver new experiences to users. Semantic-based reduction can detect
graphic content that is unimportant to the user and remove it from memory or network
transfers. Such content might for example be outside the current view of the user or
possibly replaced by other very similar content already present on the device. Procedural
generation creates required content on demand rather than downloading it. The mobile
device also saves memory by releasing certain cached content when it can be re-generated
again as needed. We aim to propose graphical scenarios where procedural generation can
save both bandwidth and memory resources.

The second goal of the thesis is to utilize wireless connection on mobile devices in new
graphical scenarios. These devices can use traditional client-server or a modern client-cloud
connection to offload computational-intensive tasks to powerful servers. Our goal is to
decide how to distribute tasks between these two parts to save bandwidth, battery and other
mobile device resources. Moreover certain mobile devices are capable of communicating
directly (without routers or base stations) over short distances using Bluetooth or WiFi
Direct technology. We attempt to utilize such communication in innovative graphical
applications. We further propose how to deal with unreliable wireless connections of
mobile devices in various graphical scenarios. Users may bring their smartphones to places

5

6 CHAPTER 1. INTRODUCTION

with no WiFi or cellular signal; Bluetooth connections may be interfered with or there will
be no device within range. We attempt to design new graphical mobile applications that
can work with only occasional connectivity.

1.2 Definition of Mobile Graphics

For our purposes we define mobile graphics as computer graphics displayed on a mobile
device. However, there are several definitions for devices considered as mobile. These are
the two most common:

1. A mobile device is a device that has a battery and can be fully used while walking.

2. A mobile device is a device that uses a mobile operating system. (see Figure1.1)

For our purposes the exact definition for mobile devices is not important and we take
all devices as mobile as long as they confirm at least one of the above definitions.

Mobile devices usually have wireless connection to access remote servers and services.
In many cases both data processing and storage are moved from the mobile device to
powerful and centralized computing platforms located on servers or in clouds. These
approaches may be also used in computer graphics and we discuss them in this thesis as
well.

Figure 1.1: The most commonly used mobile operating systems - Google Android (left),
Apple iOS (middle) and Microsoft Windows Phone (right). Less commonly used mobile
operating systems are Symbian OS, BlackBerry OS, Palm OS and Windows Mobile

1.3. HARDWARE COMPONENTS USED IN MOBILE DEVICES 7

1.3 Hardware Components Used in Mobile Devices

Mobile devices have a range of specific hardware characteristics. In this section we discuss
those that are important for computer graphics.

1.3.1 Mobile Touchscreen Displays

Usual display resolutions vary from 320× 200 pixels (qVGA resolution) to 2560× 1440

pixels (WQXGA resolution) for smartphones. Resolution of tablet devices can range up
to 3200 × 1800 pixels (Lenovo Yoga 2 Pro). Mobile devices most commonly use LCD
displays that consume constant power regardless of content displayed.

The second most frequent technology for mobile displays is AMOLED. The consump-
tion of AMOLED displays depends upon the image displayed on the screen. An entirely
white image on an AMOLED display consumes approximately three times more power that
an LCD. However, for mostly black images the AMOLED displays are far more effective.
This image-consumption dependency opens new challenges in mobile computer graphics.
For example, Windows Phone operating system is designed for effective handling with an
AMOLED display. The system extensively uses black color to reduce the total amount of
display energy consumption.

Displays used in mobile devices may use various touch technologies:

• Non-touch screen
Some mobile devices still lack a screen that responds to touch. This is particularly
typical of devices with hardware keyboards. Most modern operating systems for
mobile devices rely on touchscreen interfaces and cannot be used without the.
A screen without touch support is typical for devices with Blackberry operating
system, although the modern versions also support touch interfaces. Mobile devices
with Windows Mobile and Android operating systems can also operate without a
touchscreen ,although this option is rarely used.

• Resistive touchscreens

The main disadvantage of resistive touchscreens is the support of only one touch
point. The display responds to any pressure made by finger or passive stylus.
Resistive touchscreens are now considered obsolete, although they are still used in
the new Nintendo game tablet for console Wii U.

8 CHAPTER 1. INTRODUCTION

• Capacitive touchscreen

Capacitive touchscreens respond to the touch of human fingers or conductive mate-
rials. Capacitive displays usually support multi-touch up to 10 fingers. Capacitive
touchscreens on some devices do not respond to finger touch when the user wears
gloves.

• Active stylus

This touchscreen technology uses wireless communication between the screen and
stylus to detect stylus position even when it is not touching the screen. Multiple
other parameters can be also transmitted, such as stylus tip pressure, stylus tilt or
state of other stylus buttons. Although this style of interaction has been used for
many years in the domain of desktop and laptop computers it is quite new for tablets
without a hardware keyboard. Active stylus can be used e.g. for Windows Surface
Pro tablets or Samsung Galaxy Note tablets.

• Other types of touch interaction

Rarely we do encounter new types of touchscreen interaction. PlayStation Vita uses
a dual touch screen (a touch screen with a rear touchpad). This allows the user to
control the application without obscuring the display. Some mobile devices use
cameras for gesture recognition without touching the actual screen. There are also
other systems based on infrared rays and detectors that work without actual touch.
The disadvantage of the infrared approach is the raised edge of the display, due to
the placement of infrared transmitters and receivers.

1.3.2 Connectivity

• Wired connection

Wired data transfers once were used to synchronize mobile devices with desktop
computers. In recent years synchronization is preferred using a cloud synchronization
service accessible via a wireless network. However, wired synchronization is still
used for transfers of large amounts of data, e.g. in multimedia collections. One
indisputable benefit of using wired connections is that the phone can charge itself
when connected, therefore some energy-demanding scenarios may prefer to run
when external power is available. Most smartphones currently use a Micro-USB for
charging and wired-data transfer.

1.3. HARDWARE COMPONENTS USED IN MOBILE DEVICES 9

• Mobile internet connection

Mobile devices often have the capability of connection to wireless networks. There
are several types of standards for wireless data transfer. Mobile operators usually
use a pay-as-you-go business model, where users pay according to the amount of
data transfer they use or a monthly-based data-transfer limit. Technologies used
by mobile operators and their maximum transfer speeds are illustrated in the table
below. Maximum speed of data transfer is important when planning a distributed
scenarios for graphical applications.

Abbreviation Full name Max speed
GPRS (1G) General Packet Radio Service 8 kB/s

EDGE (2G) Enhanced Data rates for GSM Evolution 33 kB/s

UMTS (3G) Universal Mobile Telecommunications System 48 kB/s

HSDPA (3.5G) High-Speed Downlink Packet Access 225 kB/s

LTE (4G) Long Term Evolution 12.5 MB/s

WiFi WiFi 108 MB/s

Bluetooth Bluetooth 3 MB/s

• WiFi and WiMAX wireless technology standards
Usually neither WiFi nor WiMAX connection means a bottleneck for mobile ap-
plications. The bandwidth is in most cases sufficient for even the most demanding
scenario such as video-streaming. However, problems may occur when multiple
users want to utilize a single wireless router or when the speed of the wired connec-
tion of the router is not sufficient. WiFi connection is now supported by almost all
kinds of mobile devices. On the other hand WiMAX, (an outdoor alternative for
WiFi) connection is not currently available on many mobile devices, but we expect
future expansion of supported devices.

• Other connection possibilities

Some mobile device can use other types of wireless connections such as infrared,
Bluetooth or NFC (Near Field Communication). Some mobile devices also use
wireless streaming standards such as WiDi or Miracast.

1.3.3 Battery

Mobile devices require battery power. The processing power of integrated circuits
increases according to Moore’s law, roughly by 50% per year, although this is

10 CHAPTER 1. INTRODUCTION

certainly not the case of battery capacity. The energy capacity of batteries increases
by approximately by 10% per year. This phenomenon is partially compensated by
Gene’s law. It states that the power usage of integrated circuits drops by half every 18
months. The effect of Gene’s law allows building smaller and faster mobile devices.

1.4 Thesis Structure

The subsequent parts of the thesis are organized as follows:

In Part I we present our effort in the area of facial animation on mobile devices.
We describe our supplementary semantic-based method for reduction of animated 3D
polygonal models. Further, we present our framework for the easy creation of interactive,
platform-independent voice-services with an animated 3D talking-head interface that uses
our reduction method. Thise framework supports automated multi-modal interaction using
speech and 3D graphics on mobile phones.

Chapter 2 explains the terms used in the area of facial animation on mobile devices
and discusses applications of the technology.

In chapter 3 we present a novel supplementary semantic-based method for the reduction
of animated 3D polygonal models. The method is mainly applicable in the animation
of human faces and is based upon the semantic-based merger of visemes represented by
key polygonal meshes. It is useful for devices with limited CPU and memory resources
such as mobile phones or other embedded devices. Using this approach, we can reduce
operation memory needs and time required to load the model from storage. We describe
the algorithm for viseme merger and prove that our method is optimal for selected metrics.
We also validate method performance on an example and compare it with the case when
only traditional methods for 3D model reductions are used.

In chapter 4 we introduce our framework for the easy creation of interactive 3D talking-
head applications on mobile phones. We address the difficulty of synchronizing audio
stream to animation and discuss alternatives for distributed network control of animation
and application logic. We also compare various possible architectures for talking-head
applications and prove that our solution is most effective in the majority of cases.

Part II describes scalable cloud-based 3D environments that allow cooperation and
interaction of multiple users in a single world. We discuss synchronization issues due to
network and cloud-operation delays.

Chapter 5 describes our application for a cloud-controlled system for device-to-device
content distribution. The aim of the application is to reduce the traffic load of cellular

1.4. THESIS STRUCTURE 11

networks by dynamically distributing content from the cloud to a subset of subscribed
users and allow these users to spread the content with device-to-device communication.

In Part III we describe methods used for procedural city generation. We focus on
recent and future approaches to achieve semantic-based reduction of generated cities
in order to accomplish automatic level-of-detail and bring them to devices with limited
resources such as embedded devices, PDA or mobile phones. We also discuss applications
of city models on such devices.

Chapter 6 describes recent approaches in the area of procedural city modeling. We
further describe standard city modeling workflow and current open problems related to
automatically generating building models in multiple level-of-detail and generating infinite
city models in real-time.

In chapter 7 we present our stateless generation algorithm that creates infinite on-
demand generated 3D virtual worlds in distributed environments. The algorithm can
be useful in multiuser virtual worlds with mobile clients using independent geometry
generators. The algorithm ensures that overlapping areas will contain the same geometry
for all clients.

Conclusions of our research are presented in chapter 8.

12 CHAPTER 1. INTRODUCTION

Part I

Rendering of Facial Models

This part is based on our work published in [A.2], [A.5], [A.10], [A.11], [A.12] and [A.13].

Current smartphones and pocket computers have rather limited RAM memory. A
large part of this memory is occupied by the operating system (OS) itself or by OS exten-
sions like HTC TouchFLO or Samsung TouchWiz. Early pocket computers had only 16
or 32 MB of operation memory, but the OS was stored in read-only memory rather than
in RAM. Lack of memory is a bottleneck for animations computed by interpolation of
polygonal meshes, because it requires many possibly large polygonal meshes loaded in the
memory.

To achieve the lowest memory requirements, we decided to create an algorithm that
allows us to reduce both the amount of polygons in the mesh and the number of key meshes.
We propose a dissimilarity metric to detect similar keyframe-animation meshes, as well as
a technique to merge them. We also prove our merging technique is optimal for the given
dissimilarity metric.

13

Chapter 2

Facial Animation on Mobile Devices

2.1 Introduction to Facial Animation

The rapid proliferation of mobile devices over the past decade and their enormous im-
provements in computing power and display quality opens new possibilities in using 3D
representations for complementing voice-based user interaction. Their rendering power
allows creation of new user interfaces that combine 3D graphics with speech recognition
and synthesis. Likewise, powerful speech-recognition and synthesis tools are becoming
widely available to mobile clients or readily accessible over the network, using standardized
protocols and APIs.

An interface with a 3-dimensional talking head on a mobile phone display represents
a promising alternative to the traditional menu/windows/icons interface for sophisticated
applications, as well as a more complete and natural communication alternative to purely
voice- or tone-based interaction. Such interfaces have proven to often be useful as a virtual
news reader [7], weather forecast [60], healthcare communication assistant [52], and blog
enhancement [61]. The talking-head interfaces can be especially useful in developing
regions where people often cannot read and write.

2.1.1 Applications of Facial Animation

3D user interfaces are a general trend across multiple disciplines [17], due to their natural
interaction aspect and the increasing availability of relevant technology. In the domain of
desktop computing, with large displays and multimedia support, the use of multi-modal
interaction and 3D virtual characters has been on the rise. Virtual characters improve
telepresence (the notion of customer and seller sharing the same space) in e-commerce [95]
as well as interaction with technology for elderly people [82]. Learning exercises with

15

16 CHAPTER 2. FACIAL ANIMATION ON MOBILE DEVICES

virtual characters [116] have shown that audio components improve their perception and
that 3D virtual characters are far better perceived than 2D ones. Much effort has also been
concentrated on building multi-modal mobile interaction platforms [29].

Research into Embodied Conversational Agents (ECA), agents with a human shape
using verbal and non-verbal communications [31], shows that people prefer human-like
agents over caricatures, abstract shapes or animals and, moreover, agents with a similar
personality to their own [31, 80].

2.1.2 Applications of Voice Interfaces

Natural interaction with the resources of the global network (especially using voice) is a
growing field of interest. Recent works, for example, have developed the idea of the World
Wide Telecom Web (WWTW) [4, 5, 59], a voice-driven ecosystem parallel to the existing
WWW. It consists of interconnected voice-driven applications hosted in the network [59],
a Voice Browser providing access to the many voice sites [4] and the Hyperspeech Transfer
Protocol (HSTP) [5] allowing their seamless interconnection. Developing regions with a
large proliferation of phones but little Internet literacy are set to benefit.

Similarly, mobile platforms will benefit from improved interaction. For example,
mobile Web browsing has been shown to be less convenient than desktop browsing [101].
Augmenting the interaction with voice and graphics assistance ought to improve it. Con-
versely, pure voice-response systems have been shown to benefit from augmenting with a
visual interface [126]. This motivates the addition more modalities into the mobile-user
interactions with Web.

Research in assistive technologies has focused on Web interaction by voice and its
applicability for the handicapped or elderly. For example, the HearSay audio Web
browser [98, 111] allows for automatic creation of voice applications from web docu-
ments. An even larger group of handicapped may be reached if more modalities are used
for interaction, allowing the use of animations or sign-language.

2.1.3 Head Models for Facial Animation

Detailed 3D-face rendering has so far avoided the domain of mobile clients, due to limited
computing capacity, display quality and battery lifetime. Previous attempts to render an
avatar face on a mobile client continue to use non-photorealistic rendering (NPR), such as
the cartoon shading [22]. The platform in [22] also has ambitions for strong interactivity,
allowing for visual interaction based on video capture and server-based face-expression

2.2. FACE ANIMATION PRINCIPLES 17

recognition. However, the character is not automated, but merely conveying the visual
expression of the person at the other end of the communication channel.

A more advanced physics-based model, dedicated for powerful desktop computers or
offline rendering [6], have also been presented. This model is relying on co-articulation –
the coloring of a speech segment by surrounding segments and a distributed model [91]
(based on phoneme timestamps) for synchronizing facial animations with speech.

2.1.4 Existing Scripting Languages for Facial Animation

Several languages convenient for talking-head scripting are available. We exploit the
SMIL-Agent (Synchronized Multichannel Integration Language for Synthetic Agents) [13]
scripting language, based on XML. Related languages developed for talking head scripting
are AML (Avatar Markup Language) [58] and ECAF (Authoring Language for Embodied
Conversational Agents) [60].

An open modular facial-animation system has been described in [118]. Commercial
systems such as FaceGen [104] can be used to create face meshes and the Xface [11]
represents an open toolkit for facial animations. We take inspiration from these tools,
targeted for PC platforms and extend them with network connection functionality, taking
the features of mobile clients and their power-consumption limitations into consideration.

2.2 Face Animation Principles

2.2.1 Phonemes and Visemes

When using face animation in talking-head applications, we must consider both visual and
audio effects. They are described as visemes and phonemes. A phoneme is an element of
spoken language, as a letter is an element of written language. A viseme is an element of
facial animation. It describes the particular facial position when pronouncing a phoneme.
Usually one phoneme corresponds to one viseme, but occasionally multiple phonemes
share the same viseme. This occurs when the facial position of two or more phonemes
differ only by the position of non-displayed body parts such as vocal cords or a tongue.

The frequencies of occurrence of phonemes and visemes depend on spoken language
and there are also differences e.g. between frequencies in British and American English.
Both British and American English have 40 different phonemes.

For our reduction algorithm described in the next chapter we must know the frequencies
of phonemes and visemes. The frequencies of phonemes can be determined converting

18 CHAPTER 2. FACIAL ANIMATION ON MOBILE DEVICES

a long text (at least several pages) using a phonetic transcription software and then by
counting the phoneme frequencies in the transcribed text. This process is usually part
of text-to-speech-engine pre-processing of text input for voice synthesis. There is also a
free transcription engine available together with typical frequencies of American English
phonemes [34]. Knowing the frequencies of phonemes, one can determine the frequencies
of visemes using the phoneme-to-viseme mapping function. It usually occurs that multiple
phonemes map onto one viseme.

For our experiments we use the FaceGen facial editor [104] to generate human head
visemes. This editor generates 16 different visemes.

2.2.2 MPEG-4 Animation

The most widely accepted standard for human face animation is the ISO standard MPEG-4
released by the Moving Pictures Experts Group in 1999 [46,47]. In this standard 84 feature
points (FPs) are specified on the human face (see figure 2.1). The facial animation is
controlled by 68 parameters called Facial Animation Parameters (FAPs).

The MPEG-4 standard allows two ways of facial animation. The first manipulates
feature points individually and can achieve various ranges of facial expression. The second
is based on interpolating between two keyframe meshes. This interpolation can be done
either linearly (see equation 2.1) or with the cubic interpolation function (see equation 2.2).

m(t) = (1− t) ·m(0) + t ·m(1); t ∈< 0, 1 > (2.1)

m(t) = (1− 3t2 + 2t3) ·m(0) + (3t2 − 2t3) ·m(1); t ∈< 0, 1 > (2.2)

In our research we focus on keyframe facial animation, using linear interpolation
because it is faster. This approach is less CPU intensive and the visual results of this
animation are sufficient for mobile phones and embedded devices. The advantage of the
keyframe-morphing system is simplicity and speed of implementation, but it requires a lot
of space for model storage and much work to prepare the keyframe meshes.

2.2. FACE ANIMATION PRINCIPLES 19

Figure 2.1: Feature points (FP) defined in MPEG-4 facial animation standard [47]

20 CHAPTER 2. FACIAL ANIMATION ON MOBILE DEVICES

Chapter 3

Semantic Reduction of Face Meshes

This chapter describes our novel algorithm that allows reduction in both the amount of
polygons in a mesh of a face model and the number of keyframe-animation meshes (see
figure 3.1).

3.1 Existing Reduction Methods

Traditional methods for the reduction of polygonal models are based on reducing the
number of polygons. These methods are sometimes not sufficient to reduce the size of
a head model. Therefore we focused on methods for reducing the number of polygonal
meshes. Using both the reduction of the number of polygons and the reduction of the
number of polygonal meshes, we are able to save far more operation memory. Traditional
methods for polygonal reduction are sufficiently covered by Kurs et al. [57] and Pasman
et al. [87] – see Figure 3.2 for samples of results. Specific aspects concerning geometric
rendering and model reduction on mobile phones and embedded devices were presented
by Pulli et al. [94].

An interesting way to speed up morphing animation on embedded devices was proposed
by Berner [14]. It is based on optimization strategies that omit less important polygonal
meshes during animation.

In our research we aim to develop software compatible with the Xface animation
framework developed by Balci et al. [10, 12] that is open-source and widely used in
academia. There are also more advanced animation frameworks that use a skeleton-muscle
animation model published by Sifakis et al. [102] instead of MPEG-4 standard. The
best known of them is Greta [36, 81, 88]. A method of anatomical musculature modeling
to achieve realistic and real-time figure animation was proposed by Zuo Li et al. [66].

21

22 CHAPTER 3. SEMANTIC REDUCTION OF FACE MESHES

Figure 3.1: Mergeing of keyframes meshes of faces: A talking head keyframe mesh
articulating the phoneme ”f” (left) is similar to a keyframe mesh articulating the phoneme
”th” (right). Our algorithm detects such similarity and replaces both meshes with one
merged mesh (down).

However none of the above works focus on reducing the number of visemes (as we do).

3.2 Definitions

Polygonal mesh

For the purposes of this thesis, the polygonal mesh is a triplet (V, E, P) of vertices V, edges
E, and polygons P. To avoid rendering problems with general polygons after geometric
transformations, we triangulate all polygons in advance.

Fully triangulated meshes allow us to use a specific metric for mesh comparison (see

3.2. DEFINITIONS 23

Figure 3.2: Basic model reduction can be done with reducing the number of polygons.
Applications on powerful desktop PCs use high-polygon meshes (left). For mobile phones
and embedded systems we use low-polygon meshes (right). If the model size is not
sufficiently reduced, it is possible to reduce the number of visemes (key meshes) using our
reduction algorithm.

section 3.2.1). They also fit very well into commonly used graphics libraries for mobile
phones and embedded devices like OpenGL ES (OpenGL for Embedded Systems) [56]
which are optimized only for processing triangles.

Interpolable set of meshes

We call a pair of polygon meshes interpolable if they differ only in coordinates of their
vertices. Interpolable meshes have the same topology and the same number of vertices,
edges and polygons. There must also be given a bijection function that matches the
corresponding vertices/edges/polygons. We call a set of meshes interpolable if every pair
of meshes from the set is interpolable. A collection of facial animation visemes is a typical
example of an interpolable set of meshes. A set of keyframe-animation meshes also forms
an interpolable set of meshes.

24 CHAPTER 3. SEMANTIC REDUCTION OF FACE MESHES

3.2.1 Polygonal-mesh Dissimilarity

We define the polygonal-model dissimilarity as a metric (distance function) ρ for two
interpolable meshes.

ρ(A,B) :=

‖V ‖∑
k=1

w(vk)‖vA,k − vB,k‖2 (3.1)

where
A and B are the polygonal meshes.
w(v) is the weight of the vertex v. It represents the importance of the vertex in the model.
The author of the model can set higher weights for vertices important for human perception.

For models with unspecified weights, we have considered two general metrics:

ρ1(A,B) :=

‖V ‖∑
k=1

‖vA,k − vB,k‖2 (3.2)

ρ2(A,B) :=

‖V ‖∑
k=1

S(vN,k) ‖vA,k − vB,k‖2 (3.3)

where
S(vN,k) is a sum of surfaces of triangles incident with vertex vN,k. Since the triangle surface
may differ for individual visemes, we work with polygon surfaces in the neutral-expression
mesh of the model N = (VN , EN , PN).

The first metric assumes that more important areas of the model are modeled in higher
detail and thus contain more vertices. The weight of a model area (e.g. cheek, lip, chin) is
estimated by the number of its vertices. The more vertices a certain model area has the
more time it affects the polygonal model dissimilarity due to the sum

∑‖V ‖
k=1.

The second metric supposes each model area surface is equally important for the
animation. If we use this metric it is necessary to first split all polygons into triangles as
mentioned in section 3.3. We have proven that both metrics give the same results if applied
in our reduction algorithm. Thus the actual implementation can utilize the first and simpler
metric.

3.2.2 Dissimilarity for Sets of Polygonal Meshes

Let A = {A1, A2, . . . , An}, B = {B1, B2, . . . , Bm} are two sets of polygonal meshes that
represent visemes of the same face model. Let f(A1), f(A2), . . . , f(An) are frequencies
of visemes in A. If we have a dissimilarity metric for polygonal meshes ρ(A,B), we can

3.3. FINDING THE OPTIMAL SOLUTION 25

define dissimilarity for two sets of polygonal meshes ρf (A,B) as:

ρf (A,B) =
n∑

i=1

f(Ai) min
j=1...m

ρ(Ai, Bj) (3.4)

The formula contains the sum of distances from each mesh from A to its most similar
mesh in B. Note that the dissimilarity function for sets of polygonal meshes is not a metric
because it is not symmetrical.

3.2.3 Reduction Problem Definition

We describe an algorithm for the following problem:
Input:

Set of polygonal meshes A = {A1, A2, . . . , An}. These meshes represent visemes of a
human face model that have frequencies f(A1), f(A2), . . . , f(An). An integer number m;
m < n

Task:

Find a set of new polygonal meshes with m elements B = {B1, B2, . . . , Bm} that is the
most similar to A. (ρf (A,B) is minimal for all such sets of polygonal meshes)

3.3 Finding the Optimal Solution

The solution for the problem is described in two steps: Firstly, we describe how to solve
the extreme case when m = ‖B‖ = 1. Then we describe the solution for an arbitrary value
of ‖B‖.

Case ‖B‖ = m = 1

We must find such a set of polygonal meshes B = (B) with one element for which the
expression in equation (3.4) is minimal.

B = argmin
B ; ‖B‖=1

(ρf (A,B)) (3.5)

We use the definition of the dissimilarity for sets (see equation (3.4)):

B = argmin
B ; ‖B‖=1

(
n∑

i=1

f(Ai) min
j=1...m

ρ(Ai, Bj)) (3.6)

26 CHAPTER 3. SEMANTIC REDUCTION OF FACE MESHES

Because m = 1, we can leave out the second minimum.

B = argmin
B

(
n∑

i=1

f(Ai)ρ(Ai, B)) (3.7)

Now we use the definition of mesh dissimilarity metric (see equation (3.1)).

B = argmin
B

(
n∑

i=1

f(Ai)

‖V ‖∑
k=1

w(vk)‖vAi,k − vB,k‖2) (3.8)

We swap the summations.

B = argmin
B

(

‖V ‖∑
k=1

n∑
i=1

f(Ai)w(vk)‖vAi,k − vB,k‖2) (3.9)

Since the vertices of mesh B are mutually independent, we can calculate each of them
individually.

VB,k = argmin
VB,k

(
n∑

i=1

f(Ai)w(vk)‖vAi,k − vB,k‖2) (3.10)

The vertex weight w(vk) remains constant for an individual vertex. Thus it does not affect
the argmin expression. It can be left out.

VB,k = argmin
VB,k

(
n∑

i=1

f(Ai)‖vAi,k − vB,k‖2) (3.11)

We use the definition of the Euclidian distance.

vAi,k = [xAi,k, yAi,k, zAi,k] (3.12)

vB,k = [xB,k, yB,k, zB,k] (3.13)

VB,k = argmin
[xB,k,yB,k,zB,k]

n∑
i=1

f(Ai)(xAi,k − xB,k)
2 + (3.14)

+f(Ai)(yAi,k − yB,k)
2 + f(Ai)(zAi,k − zB,k)

2

We can determine individual coordinates separately, because they are independent of each

3.3. FINDING THE OPTIMAL SOLUTION 27

other. Let us consider the x-coordinate only:

xB,k = argmin
xB,k

n∑
i=1

f(Ai)(xAi,k − xB,k)
2 (3.15)

We expand the expression.

xB,k = argmin
xB,k

n∑
i=1

f(Ai)(x
2
Ai,k
− 2xAi,kxB,k + x2B,k) (3.16)

In order to find the minimum, we find where the derivation is equal to 0.

0 =
∂

∂xB,k

n∑
i=1

f(Ai)(x
2
Ai,k
− 2xAi,kxB,k + x2B,k) (3.17)

After the derivation we arrive at:

0 =
n∑

i=1

f(Ai)(−2xAi,k + 2xB,k) (3.18)

The second derivation is equal to 2
∑n

i=1 f(Ai). This is greater than 0 because all of the
frequencies are positive. Thus this is a minimum. We express the xB,k.

xB,k =

∑n
i=1 f(Ai)xAi,k∑n

i=1 f(Ai)
(3.19)

We express the vertex vB,k:

vB,k =

∑n
i=1 f(Ai)vAi,k∑n

i=1 f(Ai)
(3.20)

We finally express the mesh B:

B =

∑n
i=1 f(Ai)Ai∑n
i=1 f(Ai)

(3.21)

Case ‖B‖ = m > 1

We must find such a set of polygonal meshes B = (B1, B2, . . . , Bm) with m elements for
which the expression in formula 3.4 is minimal.

B = argmin
B ; ‖B‖=m

(ρf (A,B)) (3.22)

28 CHAPTER 3. SEMANTIC REDUCTION OF FACE MESHES

We use a dynamic programming approach:
Let minDis[T, p] be an array of real numbers indexed by a subset T ⊂ A and an integer
p ∈ {1 . . .m} defined as:

minDis[T, p] := min
U ; ‖U‖=p

(ρf (T,U)) (3.23)

This array represents the distance for all subsets of A to its optimal reductions of size
p. If we are able to fill the array, we can find the answer to our problem in the field
minDis[A,m]. We describe an algorithm to fill the array minDis[T, p] with values. For
p = 1 we can use the equation (3.21).

minDis[T, 1] = ρf (T, {
∑n

i=1 f(Ti)Ti∑n
i=1 f(Ti)

}) (3.24)

Now we can increase the value of p step-by-step and compute the values of the remaining
fields of the array minDis. We try to find a subset V ⊂ T that is reduced to a single mesh
during the optimal reduction. The reduction is optimal if the sum of reduction of V to one
mesh and reduction of T \ V to p− 1 meshes is minimal.

minDis[T, p] = min
V⊂T

(minDis[V, 1] +minDis[T \ V, p− 1]) (3.25)

Using the algorithm above we can compute the dissimilarity during the optimal reduction.
We can easily find the set B itself by making notes on the performed reductions (found
sets V) during the algorithm.

The time complexity of the algorithm is O(n2n‖V ‖+ 4nm). The spacial complexity
of the algorithm is O(n‖V ‖ + 2nm). The algorithm is exponential to n. This is not a
principal drawback because the values of n and m are small (we usually use a modeling
software that exports each model as a set of meshes with 16 visemes) and we use this
reduction only once as a pre-processing for each set of meshes.

3.4. IMPLEMENTATION 29

Algorithm 1 Algorithm for optimal mesh reduction
1: input A
2: input f(A1), f(A2) . . . f(An)
3: input m
4: for T ⊂ A do
5: minDis[T, 1] := ρf

(
T,
∑n

i=1 f(Ti)Ti∑n
i=1 f(Ti)

)
6: end for
7: for p := 2 to m do
8: for T ⊂ A do
9: currentMinDistance :=∞

10: for V ⊂ T do
11: distance := minDis[V, 1] +minDis[T \ V, p− 1]
12: if distance < currentMinDistance then
13: currentMinDistance := distance
14: end if
15: end for
16: minDis[T, p] := currentMinDistance
17: end for
18: end for
19: output minDis[A,m]

3.4 Implementation

We have implemented the algorithm in Java. For our measurement we used a computer
with Intel Core Duo processor T8300 2.4GHz with 2 GB of RAM. (Our implementation
is single thread only.) We measured the time needed to reduce 16 visemes to 10 visemes.
Each of these visemes was represented by a polygonal mesh with 3000 triangles. Initial
reductions for the case p = 1 took 2 minutes and 43 seconds. Dynamic programming
reductions for the case p > 1 took 2 minutes and 23 seconds. Input/output operations took
12 seconds. The total time was 5 minutes and 18 seconds.

We use VRML (Virtual Reality Markup Language) as our input and output format for
polygonal meshes. The output from our application is compatible with XfaceEd face editor
proposed by Balci [12].

3.5 Performance Validation

To validate the performance of the reduction method we compared animation of a head
before and after reduction on several head meshes exported from a head modeling software

30 CHAPTER 3. SEMANTIC REDUCTION OF FACE MESHES

FaceGen [104]. We used a textured head model in a resolution that has approximately
3000 triangles (the exact number differs based on the model properties used - e.g. male or
female). The exported unreduced set always contained 16 visemes. For our measurements
we used Windows Mobile phone HTC Touch Pro with OpenGL ES [56] support. From
our previous experience we know that we have to reduce the number of visemes to at least
10 to ensure all the geometry will fit into the device memory. Therefore we have used
reduction to 10 visemes.

Our mobile-rendering application with the unreduced number of meshes required 18
seconds for startup, while the same application with the reduced number of meshes required
only 8 seconds for startup. The size of input file with geometry of meshes was 960 kB for
the unreduced and 609 kB for the reduced version. The speed of the model animation was
5.4 FPS for the unreduced and 12.2 FPS for the reduced version. The unreduced version
was slowed by memory swapping. The animation of the reduced version appeared much
smoother thanks to higher achieved framerate.

Although our reduction method primarily focuses on the head animation it is sufficiently
general for use in other animation techniques using polygonal mesh interpolation (e.g.
human body, animals).

Chapter 4

Framework for Creating 3D Head
Applications

4.1 Brief Framework Description and Related Work

We designed and developed a framework for the easy creation of interactive, platform-
independent voice-services with an animated 3D talking-head interface, on mobile phones.
The framework supports automated multi-modal interaction using speech and 3D graphics.

We address the difficulty of synchronizing the audio stream to the animation and
discuss alternatives for distributed network control of the animation and application logic.
We document the ability of modern mobile devices to handle such applications and show
that the power consumption trade-off of rendering on the mobile phone versus streaming
from the server favors the phone.

The tools presented will help empower other developers and researchers in future
research and usability studies in the area of mobile talking-head applications. These may
be used, for example, in entertainment, commerce, health care or education.

By providing a general tool to create interactive talking-head applications on mobile
platforms, we aim to spark future research in this area. It may open up space for many
useful applications, such as interactive mobile virtual assistants, coaches or customer-care,
e-government platforms, interactive assistants for the handicapped, elderly or illiterate,
as well as 3D gaming or navigation, quiz competitions or education [116]. It may be
used for secure authentication, for enriching communication with emotional aspects or for
customizing the communicating-partner’s appearance.

3D talking-heads have their disadvantages as well - consuming a lot of resources and
not being appropriate for all types of information exchange (such as complex lists or maps).

31

32 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Figure 4.1: Talking-head application on a Windows Mobile 6.1 device (HTC Touch Pro). It
is capable of articulating speech phonemes and showing facial expressions (anger, disgust,
fear, sadness, smile, surprise).

The first aspect should take care of itself by the evolution of computing power, the second
by adding further modalities to the interactive environment.

Previous existing mobile frameworks for easy application creation [49, 83, 85] were
restricted to a particular mobile platform, yet there currently exist many mobile operating
systems. Our proposed framework is not only platform independent, but also compatible
with desktop facial-modeling tools.

4.2. DISTRIBUTED DESIGN ANALYSIS 33

4.2 Distributed Design Analysis

During the design process of our framework we considered several possible architectures
for talking-head-enhanced applications. For a natural conversation between the (real) user
and the (virtual) head we need components for 3D rendering, speech recognition, speech
synthesis, and application logic. Each of these components can either reside on the client or
server side. This section discusses possible architecture alternatives (see also Figures 4.2,
4.3 and 4.4).

4.2.1 Speech Synthesis

Speech can be synthesized either on the mobile device or a remote server. In the past,
components for speech synthesis (also called Text-to-Speech engines) on mobile devices
had somewhat lower quality than components for synthesis on desktop/server PCs, which
possess more resources. However, the computational power and available memory of
present mobile devices allows generating voice output with a quality that satisfies the needs
for computer-human dialogue. So the impact in quality is virtually unrecognizable.

Synchronizing speech and face animation (lip movement) is a challenging task. We
address the synchronization problem by using phoneme/viseme timestamps [91] (for
details of the complete solution see Section 4.5). For this type of synchronization, speech
synthesis and animation components must be co-located together. This is why we only
support speech synthesis on the client. Nevertheless, as discussed in Section 4.3, client-side
synthesis is more energy-efficient and should therefore be preferred over the server-side
variant.

Synchronizing voice (speech) with animation (lip movement) has also been addressed
in previous work, but mainly on desktop platforms. The BEAT animation toolkit [19]
(based on language tagging) allows animators to input text to be spoken by an animated
head and to obtain synchronized nonverbal behaviors and synthesized speech that can be
input to a variety of animation systems. The DECface toolkit [119] focuses on correctly
synchronizing synthesized speech with lip animation of virtual characters.

4.2.2 Speech Recognition

Speech recognition is significantly more CPU- and memory-intensive than speech synthesis.
Suitable mobile speech-recognition solutions are available for scenarios where the set of
recognized words is greatly limited (e.g. yes/no answers, one-of-N options or voice dial).
Without such constraints (e.g. dictating an arbitrary letter), available mobile solutions are

34 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

quite error-prone. For speech recognition it is better in such cases to send the recorded
voice to a remote server.

Unlike in the case of speech synthesis, our framework supports both server- and client-
side speech recognition. However, client-side speech recognition is limited to very small
dictionaries (about 50 words) with a simple acoustic and language model.

4.2.3 Graphics Rendering and Streaming

Visual application content can be rendered either on a mobile phone or a remote server
followed by video-streaming to the phone. The second approach can be easily implemented
as platform-independent because there is little code on the client side. Yet it has also
multiple disadvantages.

Video streaming requires a lot of bandwidth that is often limited in mobile networks.
Such architecture moves most components to the server side (see Fig. 4.2). The server
renders video, synthesizes and both are then streamed over the network to the client. The
entire application logic resides on the server side.

We attempted the video-streaming approach and our experiments show that latency
of up to 400 ms, caused by video compression and network latency, may occur between
the user input and response from the server. Such latency may make voice interface
unpleasant, especially if the user expects an immediate response (e.g. using buttons to
move a camera within a virtual world). Video-streaming on mobile phones is usually also
more power-demanding.

Figure 4.2: Video-streaming architecture is convenient for less powerful mobile phones
with fast Internet connections, because it delegates most of the application work to a remote
server. It can easily be implemented as platform-independent. We did not include such
architecture in our framework, because it is not energy efficient.

4.2. DISTRIBUTED DESIGN ANALYSIS 35

Client-side graphics rendering is less power-demanding, however, it is far more chal-
lenging in its implementation as platform-independent and with the limited resources of a
mobile systems. Different mobile phone platforms and devices have different rendering
capabilities with different APIs. In our framework we use OpenGL ES [56] as the most
common and platform-independent mobile rendering API. For head/face rendering we use
models generated from FaceGen [104] editor with applied polygon reduction [40, 69, 99]
and viseme reduction techniques as described in the previous chapter to reduce the model
complexity.

4.2.4 Connection Requirements

According to our experiments, at least a 100 kbps connection throughput is needed for
video streaming; otherwise the video quality is not acceptable for a user on a mobile client
screen with a resolution 320x240. For audio streaming architectures (see Fig. 4.3), 12 kbps
data connection is sufficient. The usual throughput on connections for mobile phones is:
GPRS 40 kbps, EDGE 100 kbps, UMTS 300 kbps, Wi-Fi on mobiles 600 kbps. While
audio streaming works over all of the above, video streaming requires a higher-bandwidth
connection.

Figure 4.3: Client-server configuration using the server for application-logic processing
and speech recognition. Results of the recognition process are directly provided to the
application-logic module. The client side is used for text-to-speech processing, face
animation and their synchronization. This architecture is supported by our framework.

36 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Figure 4.4: Client-server configuration using only the server side for application-logic
processing. Our framework supports this type of configuration. It is suitable only for
mobile devices with high computational power. This configuration is also convenient in
situations where only low bandwidth is available.

4.3 Performance Measurements

4.3.1 Graphics Benchmarks

We performed several benchmark tests to validate 3D rendering performance and power
consumption. For CPU utilization measurement we used the acbTaskMan utility [2].
All measurements and tests were performed on the HTC Touch Pro mobile device with
Qualcomm 528 MHz processor and Windows Mobile 6.1 operating system. Qualcomm
chipsets are the most common in current Windows Mobile phones. For demonstration and
testing we developed an OpenGL ES rendering application called GLESBenchmark (see
Fig. 4.5), inspired by [53], which renders a 3D head in real-time. Selected performance
test results are summarized in Table 4.1.

We conclude that the phone is able to render up to 8000 triangles illuminated by one
directional light at 15 frames per second, but the speed drops considerably when using a
point light. Surprisingly, the rendering speed does not depend on the choice of shading
method (flat or smooth shading).

According to GLBenchmark [53], some other phones (iPhone, Symbian phones) have
no difficulty with rendering 3D objects illuminated by point light (the rendering speed
is nearly the same as in the case of the directional light). Textures only affect rendering
performance minimally.

We used a 512x512 pixel texture in our experiments. Maximum texture size in OpenGL
ES is limited to 1024x1024 pixels or less on most mobile platforms.

4.3. PERFORMANCE MEASUREMENTS 37

Figure 4.5: Snapshots of the GLESBenchmark application created. The head is animated
during performance measurements.

4.3.2 Power Consumption

We made estimates and rough measurements of power consumption for each of the
architectures discussed. During tests, the Wi-Fi module with audio streaming was on,
the display backlight was set to its minimum value and the automatic turn-off of the
display (phone sleep mode) was disabled. Our rendering and Wi-Fi consumption values
closely reflect those published at [75], [3] and [30]. Our own measurements (see Table 4.2)
show lower power consumption than estimated in these works, but have identical relative
correspondence. This is likely due to the lower per-instruction power consumption budget
of novel mobile devices.

For video streaming, bandwidth and power consumption do not depend on the number
of rendered triangles, because we assume them to be processed at a sufficiently fast server.

Female face Male face
Triangles 8864 6352
Flat Shading 23.70 33.32
Smooth Shading 23.69 33.42
Flat, Directional Light 12.56 15.77
Smooth, Directional Light 12.58 15.76
Smooth, Point Light 3.76 5.77
Smooth, Directional, Textures 12.42 15.55
Flat, Directional, Textures 12.45 15.69

Table 4.1: The speed of face rendering in frames per second (FPS) depending on lighting,
shading and texture settings

38 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Consumption
OpenGL rendering (8192 triangles), WiFi on 899 mW
Video streaming WiFi (100 kb/s) 1144 mW
Video streaming EDGE (100 kb/s), WiFi off 2252 mW
Playing pre-downloaded video, WiFi on 752 mW
Display on, WiFi on 402 mW
Client voice recognition (PocketSphinx) 433 mW
Server voice recognition using WiFi 1659 mW

Table 4.2: HTC Touch Pro power consumption

However, highly textured models can negatively affect the video-compression rate.

In cases where the 3D model is rendered on the client at stable FPS, power consumption
rises with the number of triangles because every triangle needs some CPU instructions
to be processed. Although we performed measurements with only three different sizes
of models, results show that we can expect power consumption to grow linearly with the
number of rendered triangles.

The measurements demonstrate that video-streaming power consumption is about twice
that of rendering power consumption. A typical 1340 mAh / 3.7 V battery supplies 260
minutes of video streaming or 460 minutes of rendering of a high-detail (2000 triangles)
scene.

Mobile device energy-efficiency computational tradeoffs are set to continuously im-
prove, as reported in [55]. The number of computations per kWh doubles approximately
every 1.6 years, which is a long-term industry trend. Therefore, the power needed to
perform a task requiring a fixed number of computations will halve every 1.6 years, or the
performance of mobile devices will continue to double every 1.6 years, while maintaining
the same battery lifetime. Mobile wireless interfaces follow the same trend due to the
vast processing required [89, 103] and are therefore unlikely to change the above balance
favoring more computing on the mobile client rather than network data streaming.

4.4 Architecture Discussion and Selection

Various applications and mobile phones have different needs. Hardware performance of
mobile devices differs greatly. That is why we decided to support both server and client
speech recognition. We prefer server-side speech recognition over the client-side due to
the limitation of memory and computational power of present mobile devices.

Solutions for speech recognition on mobile phones have lower quality than on servers,

4.5. SYNCHRONIZATION OF FACE ANIMATION WITH SPEECH 39

which possess more resources and produce more natural speech dialog. Speech recognition
is also memory- and CPU-intensive and both these resources are required for rendering.
However, with future increases of computing power of mobile devices, we expect this to
change in favor of client-side recognition.

Our video-streaming experiments have shown that latency of up to 400 ms may occur
between user input and response from the server. According to this and the power con-
sumption estimates and tests in Section 4.3, an architecture with graphics rendered on the
mobile phone appears more convenient and efficient than one with the video streamed.

We prefer and support 3D-rendering and speech synthesis to be performed on the client
only. It reduces client power consumption and connection-bandwidth needs, and is also
more flexible in terms of user interaction and animation synchronization. Speech synthesis
can be performed with sufficient quality on the more powerful mobile phones.

Therefore, we recommend creating applications with server speech recognition, appli-
cation logic and client synthesis and graphics rendering (see Fig. 4.3).

4.5 Synchronization of Face Animation with Speech

The synchronization process is shown in Figure 4.6. Text is sent to the Text-to-Speech
module where the synthesis is performed. During the speech-synthesis process, information
about each generated phoneme and its duration is logged. While the audio wave data,
created during the process, do not require any further processing and are directly saved
into the audio stream, the logged phonemes and durations are passed to the conversion
(Phoneme to Viseme Conversion). This conversion translates every phoneme to the relevant
viseme (basic unit of speech in visual domain).

Figure 4.6: Process for generating face animation based on phoneme duration

40 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Finally, based on the visemes and the timing information (durations), Facial Animation
Parameters (FAPs) are generated and saved as animation streams. The synchronization of
face and voice is then guaranteed when both streams are played simultaneously.

Figure 4.7: Final framework architecture

4.6 Framework Implementation

On the basis of the above findings we designed and implemented a platform-independent
framework for creating talking-head applications for mobile devices. We chose the Qt
library [96] for the user interface development and as a base for the entire framework for its
flexibility and cross-platform portability. The framework is divided into several software
modules and components (see Fig. 4.7).

The modules User Interface, 3D Renderer and Multimedia are responsible for inter-
action with the user in both the visual and acoustic domain. Rendering of 3D contents is
performed by OpenGL ES [56] as discussed in section 4.2.3.

Face animation is generated and processed by the Face Animation module. We chose
to use keyframe animation as defined in MPEG4 Facial Animation standard [84] (MPEG4
FA) for the animation of talking head and for a face-model features description.

For that purpose we modified and optimized the Xface [11] library to allow running
on mobile devices and platforms. This library provides an API for the MPEG4-FA-based
animation and the tools for face-model description. The Xface library also contains a
parser of the SMIL-Agent [13] (Synchronized Multichannel Integration Language for
Synthetic Agents) scripting language. It is an XML-based scripting language for creating
and animating embodied conversational agents.

4.7. CHAPTER CONCLUSIONS 41

We use this language for creating dialogues between the user and the talking head.
The application is then created by connecting SMIL-Agent scripts into a graph, where the
nodes correspond to SMIL-Agent scripts and edges to user decisions (see Fig. 4.9).

Speech recognition and synthesis is provided by the Automated Speech Recognition
(ASR) and Text-to-Speech (TTS) components. Both components have universal interfaces
for supporting different engines via plugins. Our framework has built-in support for the
Flite TTS engine [16] and the PocketSphinx ASR engine [43]. However, support for other
engines is feasible with minor effort.

Moreover, the framework also contains Media Resource Control Protocol (MRCP)
client for speech recognition, so any existing MRCP server with ASR media support can be
used for speech recognition. While the ASR component may reside either on the client or
server side, TTS must reside on the client side only, due to the necessity of synchronization
of face animation and voice.

Application logic and context (e.g. user’s session) is handled on the server side. The
client communicates with the server using standard HTTP requests and responses. A
standard web server is used for this purposes, but instead of HTML output the SMIL-Agent
script is used as a response.

Applications created by our framework run on Windows Mobile, Symbian platforms,
desktop Windows, Linux and Mac OS (separate source code compilation for each of the
platforms is required). We are currently working on support for the Android, iPhone and
MeeGo platforms.

Using our framework we created two example cross-platform applications. The first
is a virtual customer–care center and the second is a virtual shop (see Fig. 4.9). The
applications use talking heads generated by FaceGen and are capable of rendering an
animated head model with 1466 triangles (see Fig.4.1 and Fig.4.8). The rendering speed
of the applications is above 15 FPS (usual mobile video capturing framerate).

4.7 Chapter Conclusions

Using our framework we demonstrated that as mobile clients become more powerful, real-
time rendering of a voice-interactive talking head is within their reach and we expect a boom
in voice-interactive 3D mobile applications in fields such as entertainment, commerce,
education or virtual assistance. The client-server architecture with local rendering and
synchronizing 3D and audio components and remote logic control and speech processing
allows applications to be less power-hungry with improved quality of virtual-character
interaction.

42 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Figure 4.8: A synthetized word ”Recently” contains three syllables (down) and it is visually
represented by seven visemes (up). The viseme position in the timeline is set by the speech
synthesizer. During the animation process the polygons of the model blend between
adjacent visemes.

<par system-language="english">
<speech channel="face" id="speech1">

The tariff has been activated.
Thank you for using the virtual operator.

</speech>
<seq channel="face" >

<speech-animation affect="Rest"/>
<speech-animation affect="SmileClosed"/>

</seq>
</par>

Figure 4.9: An example of a created application – Virtual mobile phone operator. A snippet
of our server application logic scripting – decision tree map (up) and corresponding script
using XML based SMIL-Agent [13] scripting language (down, simplified)

4.7. CHAPTER CONCLUSIONS 43

Today, mobile-phone speech-application developers must deal with many platform-
dependent interfaces. Speech application development can be facilitated by integrating
synthesis and recognition libraries to the mobile operating systems. (Currently only Apple
iPhone OS and Google Android OS support native speech synthesis.)

In our future work we plan usability testing of performance, voice recognition ac-
curacy and user emotional response. We also hope to focus on the upcoming operation
systems from Windows Phone [73] family that supports both speech synthesis and speech
recognition through classes that are also a part of .NET Compact Framework 4.0 [122].

In the area of distributed architectures, we intend to enable the easy provision of mobile
talking-head applications using cloud services. We see the future in such applications
because they offer reduced server cost (paid incrementally as a utility), better reliability
(automated server duplicating), flexibility in computation power and storage space, highly
automated server maintenance, scalability, and allowing software developers to focus more
on their core work.

The main challenge will likely be portability, as cloud application must be in a special
form (e.g. .NET managed code for Microsoft Azure [72]) and we anticipate certain
difficulties in porting current server applications to the cloud.

In our future work, we intend to investigate further reduction techniques as part of our
ongoing effort to design an open platform for development of talking-head applications on
mobile phones (using the Xface framework developed by Balci [10, 11]).

44 CHAPTER 4. FRAMEWORK FOR CREATING 3D HEAD APPLICATIONS

Part II

Collaborative Computer Graphics in
Distributed Environments

Part II is based on our work published in [A.3], [A.4], [A.6] and [A.9].

Due to the exponential growth of mobile data traffic and bandwidth-hungry appli-
cations, there is a demand for new approaches to access content. We take an experimental
approach to design and implement a cloud-controlled system for device-to-device (D2D)
content distribution. Our objective is to reduce the traffic load of the cellular network by
dynamically distributing the content from the cloud to a subset of subscribed users and
allow these users to spread the content using D2D communication.

We investigate strategies for distributing the content with the cloud logic. We imple-
ment our system using real cloud service and mobile devices, evaluate our system using
a video application running on smartphones and compare our solution with alternative
approaches without the cloud infrastructure.

We take practical design aspects into consideration and study how different levels of
feedback from the users impact performance. We show that solutions controlled by the
cloud are more efficient in terms of traffic offload than approaches without cloud logic.

45

Chapter 5

Collaborative Device-to-Device Video
Streaming

5.1 Introduction

A recent forecast study made by Cisco Inc. [25] shows that mobile phone workloads on
cellular networks will double or triple every year. This dramatic traffic growth is driven by
mobile video streaming, which is forecast to reach 69% of all traffic by 2018. Although
the problem can be postponed by building the next generation of cellular networks, it is
expected that the principal challenges will remain the unchanged [44].

As a limitation of Bluetooth technology, a device cannot accept a Bluetooth connection
while (a) it is trying to connect to another device, or (b) while it is scanning for nearby
devices. We then must consider that, when either (a) or (b) is concluded, the device waits
for a random-length interval t for other incoming connections before actively scanning,
where t ∈ [t1, t2] and (t2 − t1) is the listening period.

In our work, we focused on devices with two wireless network interfaces – one for
connection to the Internet (e.g. cellular connection or Wi-Fi), and another for opportunistic
communication to nearby devices on a device-to-device basis (D2D; e.g. Bluetooth or
Wi-Fi Direct).

Recently, it was experimentally shown that such devices can cooperate to download
video content and share it using their opportunistic wireless connection, thus addressing the
cellular bandwidth crunch problem [51]. This approach is of interest for those applications
where a local group of users, carrying their own mobile devices, expects to watch a popular
Internet video (e.g. a live streaming of a popular sports event or an educational video that
is watched by all students in a class).

47

48 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

While the above approach is more effective than using the current naive way of each
device independently downloading video using its own cellular connection, several open
questions in the architecture design and the implementation remain. First, it is still unknown
how to conveniently deploy a system in the cellular network backhaul to deliver content.
Second, users are nomadic and the available bandwidth of D2D communication can change
greatly over time, thus affecting opportunities to offload traffic to D2D links. In order to
answer to these challenges, we make the following contributions:

• We design a cloud service that coordinates D2D dissemination steps, based on
inputs such as which device received which part of the content and information from
opportunistic wireless network topology.

• We introduce several novel cloud–based strategies to reduce the load of the cellular
networks and study how varied levels of inputs/feedbacks from mobile devices affect
overall offloading capability.

• We implement our architecture, using Windows Azure cloud service and create an
app running in smartphones and test our implementation in representative experi-
ments.

We measure the performance of our methods with up to 16 smartphones and further
emulate environments where congestion of opportunistic D2D channels may occur. In our
emulation environment in a controlled setup, we achieve up to 71% of saved bandwidth
with all the phones in D2D range. Our practical experiment with fewer phones in D2D
range shows that users can save 39% on average and 53% in peak values.

5.2 Related Work

5.2.1 Opportunistic Content Sharing

The principles of cooperative techniques to disseminate content have been presented in [33],
motivating cooperation will become one of the key technologies enabling improved cellular
networks. Ramadan et al. [97] described an experimental cooperative video-streaming
architecture with mobile devices sharing a single access point and D2D connectivity.
Differently from [97], we designed strategies to disseminate the content under nomadic
users and variable D2D network topology and congestion, testing these strategies with
experiments.

5.2. RELATED WORK 49

The authors of [50, 65] studied a cooperative technique for opportunistic podcast and
feed distribution. In their work, they assumed there is absence of cellular infrastructure,
while we assume that this infrastructure exists, but the bandwidth does not suffice to
disseminate popular content to all subscribed users.

The research work [42] allowed single video content to be received by multiple mobile
devices using multicast from a common base station. Those devices outside the range
of the base station can receive content only by using D2D opportunistic communication.
Multicast increases the cost of complexity of the cellular base stations and requires traffic
to be sent at lower rates [51].

Jung et al. [48] proposed a mobile system for collaborative bandwidth sharing that
reduces the required cellular downloads. Based on decision tables, users decide whether or
not to help other users download certain content and how much it should help.

In our design, we consider that all devices help to disseminate content and rather
focus on strategies that reduce the cellular overload as much as possible. Our work shows
that this comes at negligible cost in terms of fair download of content from the cellular
network. All of the above works focused on groups of cooperating mobile devices without
implementing a central coordinator in the cloud.

5.2.2 Comparison of Dissemination Techniques

Most of dissemination techniques that uses two wireless interfaces for communication
were studied through simulations. The only related work that implements dissemination
techniques is from Keller et al. [51], proposing a system called MicroCast for cooperative
video streaming using cellular connection and Wi-Fi peer-to-peer connection. Their
algorithm assigns the next segment of a video to be downloaded to whichever phone has
the smallest set of segments to download from the cellular network.

In our system, we take a step ahead and consider practical problems such as the
congestion of D2D communication, an adaptive algorithm that can choose the exact
number m of devices such that the saved bandwidth is maximized.

Wirtz et al. [123] proposed a system for opportunistic mobile networking with a cloud
component called ICON. Our approach differs from the previous two works by using
techniques to avoid the congestion of opportunistic communication. A theoretical and
experimental analysis of opportunistic dissemination algorithms was made by [105]. They
proposed two variants of the opportunistic dissemination algorithm and compared them
with the traditional client-server architecture.

Han et al. [41] made a case study for cellular traffic offloading using opportunistic

50 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

connections. They proposed heuristics to select the target set of users in order to minimize
the cellular data traffic. However, they did not look at strategies during the dissemination
period. Their analysis was evaluated by means of simulations, rather than studying and
deploying a cloud-based infrastructure and experimental testbeds as in our work.

A peer-to-peer mobile system for video streaming with guaranteed quality was proposed
by Navid et al. [1] and by Wihtbeck et al. [121]. They considered a group of co-located peer
devices with dual-wireless interfaces that desire to receive synchronously a live content
stream divided into chunks. Their algorithm decides which peer broadcasts a chunk on an
opportunistic channel at each time and how long the transmissions should take place for
each block. They then present an algorithm that ensures that quality-of-service targets can
be met for each device.

5.2.3 Techniques for Avoiding Congestion

The authors of [106] proposed a strategy for message delivery in a delay-tolerant network,
which alleviates congestion in intermittently connected mobile wireless networks. [100]
described a set of algorithms for handling storage congestion by migrating stored data to
neighbors. The algorithms decide which messages should be migrated to which neighbors
and when. However, this approach works without cellular network infrastructure, without
guaranteed delays and does not consider the problem of alleviating the cellular network
load. Their experiments showed that the approach can improve the message completion
rate by as much as 48% for some storage-constrained networks.

Burleigh et al. [18] investigated cases where network applications must communicate
across disparate networking environments, often with high latency and potential for conges-
tion. The authors presented a congestion avoidance and control mechanisms and promote
carefully engineered congestion avoidance in networks.

5.3 System Architecture

We first introduce the scenario which is objective of investigation in this chapter and then
present our system architecture.

5.3.1 Scenario

In this work, we suppose that there are N smartphones that subscribed to a common
content. The phones may retrieve content from the cellular network while they are able to

5.3. SYSTEM ARCHITECTURE 51

perform opportunistic communication using their short-range wireless interface. In order
to disseminate the content, we consider that such content is initially given to m devices
that spread it throughout the opportunistic network to devices without such content.

When the deadline Tc for receiving the latest data content becomes close, there are
m′ devices that have not yet received the data chunk through either cellular networks or
opportunistic communication. These devices request the chunk to the cloud via cellular
infrastructure. This allows for guaranteed delays of the content delivery and to use an
application like video-streaming without interruption in the service.

Overall, the total number of data transmissions through cellular network would be
D = m + m′ ≤ N . We study the design of a system architecture that leverages the
potential of the cloud to control opportunistic dissemination. The goal is to offload the
traffic M from the cellular network as far as possible, while meeting the requirement that
all devices have received the content before the specified deadline Tc.

In order to design such a system, we consider an architecture that is made of a cloud
part and a client mobile part. A schema of the whole system is shown in Figure 5.1. In the
following sections, we discuss the components of our architecture.

5.3.2 Media Recording and Subscription Service

The cloud part of the distribution system contains a media recording service that is capable
of listening to online video streams on the Internet. Because mobile devices do not
handle all video formats, the media recording service also converts the video to a specific
compression format and splits its length into fixed intervals. We refer to these short video
files as chunks. The media recording service stores them afterwards in a cloud virtual drive
called Chunk storage.

A newcomer mobile device can register to desired channels using the Subscription ser-
vice, see Figure 5.1. One device can be subscribed to multiple channels. The subscription
preferences of the device are stored in the Subscription database.

5.3.3 Dissemination Service

The central component of the cloud is Dissemination service. Its main goal is to select the
m devices that will be used for initial content spread. The initial spreading time of chunk
k to m devices is denoted spread period, as shown in Figure 5.2. According to the specific
strategy, the dissemination service might also provide additional information.

Once this injection from the cloud is concluded, the devices enter the dissemination

period, which is the time T designated for D2D dissemination of the chunk to other devices.

52 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

Figure 5.1: Schema of the cloud-based distribution system; Black – streaming data flow;
Green – new content request from the device on the left; Blue - a database query

In our work, we use Bluetooth for D2D communication. Each mobile device attempts
to connect to another device within its Bluetooth proximity. In case of the successful
establishment of a connection, the two devices compare their lists of chunks that have
previously been downloaded.

In order to increase the transfer rate, the dissemination periods of different chunks in a
video-sequence can overlap, so it is possible to share more than just the last chunk. The
overlap of different chunks is shown in Figure 5.2. A random order for delivery is defined
for chunks present in only one of the two devices. The devices disconnect when there
are no other chunks to be shared, or when their connection has been interrupted due to
a communication failure. After that, both devices begin searching for another device to
connect to.

5.3. SYSTEM ARCHITECTURE 53

Legend Recording Spread Period Dissemination Period Panic Period Playback

Tc

chunk k

chunk k + 1

chunk k + 3

chunk k + 2

T

Figure 5.2: Timeline graph for content distribution: Each line represents the distribution
of one content chunk. Note that the dissemination periods of chunks can overlap.

All deliveries from the cloud take place either before (m deliveries) or after (m′

deliveries) the dissemination period. This has the advantage of avoiding monitoring how
information spreads during the dissemination period. We use the term dissemination

deadline to denote a point in time when the time for opportunistic dissemination ends for
a particular chunk. After this moment, the devices must utilize their cellular connection
to download the chunk. We refer to the time interval after the dissemination deadline as
panic period (see Figure 5.2), because the devices use their costly connection to download
the chunk shortly before its playback should begin.

A detailed example of different phases of content distribution for video chunks is
illustrated in Figure 5.3, and is described as follows:

1. The cloud service begins recording a new video chunk from a web stream;

2. Device A begins receiving the recorded video chunk from the cloud from cellular
connection or Wi-Fi;

3. We enter in the opportunistic dissemination period;

4. Device B receives the video chunks using an opportunistic wireless connection;

5. We reach the dissemination deadline;

6. We enter into the panic period, and Device B begins receiving the missing video
chunk from the cloud from cellular connection or Wi-Fi;

7. Finally, the devices begin displaying the video;

54 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

Figure 5.3: Example of communication for content distribution (UML interaction diagram)

5.3.4 Strategies

In this chapter, we investigate two general types of strategies that aim to reduce the traffic
load of cellular networks:

• Initial spreading strategies: decide how many (m) and which devices should be
selected for initial deliveries, when a new chunk is available (Section 5.4).

• Dissemination strategies: determine when and which devices should connect for
D2D communication during the dissemination period, and which data they should
share (Section 5.5).

We divide the strategies into those that utilize distribution logic in the Dissemination
service component in the cloud and those that use distribution logic only in client mobile
devices. One benefit of the cloud logic is that it can collect timely information about
opportunistic network topology and use this information for the next deliveries through the
cellular network.

5.4. INITIAL SPREADING STRATEGIES 55

In particular, we use the control connection from mobile devices to the cloud Dissemi-
nation service to report the list of other mobile devices that are visible in an opportunistic
range. The distribution strategy subsequently uses this feedback to optimize the delivery
of chunks.

The distribution strategies are described in detail in the following sections.

5.4 Initial Spreading Strategies

We introduce three strategies to initially inject copies of the chunks to m mobile devices
during the Spread Period. In these strategies, we randomly select the m devices. This
guarantees that there is no unfair usage of cellular network (e.g. some users using more
their cellular connection than others for the same video content) as well as unfair internal
battery depletion among the devices caused by higher use of cellular interface.

In the strategies where we have feedback concerning the D2D network topology, we
further make sure that there is one device that receives the chunk per each connected
component. This guarantees that all devices from one connected component of the corre-
sponding D2D topology graph have the chance to receive one copy of the chunk before the
end of the dissemination period. It avoids the problem that all the devices of one connected
component may all need to download the chunk from the cloud during the panic period.

Next, we describe how to select the number m of devices.

5.4.1 Fixed Ratio Spread

As a simple distribution strategy for initial spread, we distribute the content to a fixed ratio
of the number of devices subscribed to the content. (In other words the number of initially
spread packets m is constant.) The benefit of this strategy is that it is easy to implement
and does not need feedback from past distribution attempts (i.e. past chunks delivered).

With some minor modifications, this strategy can also be implemented in scenarios
that do not use distribution logic in a cloud component (and thus client-only). In this case,
at the beginning of the distribution of each chunk, a mobile device downloads the chunk in
the initial spread period with given probability. In terms of performance, the difference
between implementing this strategy with a cloud logic and with client-only approach is
that the latter does not know the D2D network topology, and thus it may be possible that
none of the devices in the same connected component decide to download the content
through the cellular network.

Fixed ratio spread strategy has the disadvantage that a constant m may be sub-optimal

56 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

to save cellular bandwidth. For instance, in the case of too low initial spread, a high rate of
chunks m′ may be downloaded in the panic period after the dissemination deadline, which
may result in total number of deliveries from the cellular network D which is higher than
with some adaptive strategy.

5.4.2 K-armed Bandit Strategy

The second strategy builds on a classical problem of exploration vs. exploitation trade-
off [112]. It attempts both to maximize the short-term reward based on current findings and
to discover optimal parameters for long-term rewards in future. In the original K-armed
bandit problem a gambler faces a row of slot machines and has to decide which machine
to play in each of a number of games. Each machine provides a random reward from a
distribution specific to that machine. The gambler’s objective is to maximize the sum of
the rewards earned through a sequence of lever pulls.

We identified an analogy between the K-armed bandit problem and our chunk distribu-
tion problem. The number of games in the K-armed bandit problem corresponds to the
number of data chunks in the video stream, as they both represent the number of rounds in
the problem. The number of levers K corresponds to the length of the chunk sequence
in the video. The chosen lever can be interpreted as the number of initially disseminated
data chunks. The gambler’s reward is analogous to the number of cellular chunk deliveries,
which has been saved by using opportunistic data saving.

5.4.3 Initial / Deadline Balance

The dynamics of the content distribution system is subject to changes. For instance,
inter–contact time statistics may vary depending on the time of the day [20]. Therefore,
the initial spreading strategies should adapt its decision on the value of m according
to latest behaviors of the system. We then take advantage of the fact that the cloud
dissemination service can record the number of chunks m′ that were distributed after the
former dissemination period. Thus, in order to deliver the new chunk k, this strategy
includes a feedback mechanism that accordingly adjusts the number of initially spread
chunks.

In order to select m, this strategy considers that a large number of downloads after the
dissemination deadline might indicate insufficient initial spread of chunks by the cloud,
and vice versa. According to the strategy, we then have to inject the chunks from the cloud
in such way that we balance the number of initially spread chunks with the number of
chunks distributed after the dissemination deadline (that is m = m′).

5.5. DISSEMINATION STRATEGIES 57

With Initial / deadline balance strategy, we avoid the situation in which only a few users
receive the content (by delivering a number of chunks m through cellular communication
at the beginning), as well as the situation in which few users miss out (by delivering
through cellular communication m′ chunks at the end of the period). Our experiment
results approve this theory and show that feedback balancing of initially and deadline
distributed chunks yield a higher number of peer-to-peer disseminated chunks compared
with a fixed number of initially spread chunks.

5.5 Dissemination Strategies

We present three strategies to disseminate the content chunks during the dissemination
period.

5.5.1 Client-only Dissemination

After the initial spread phase, each mobile device attempts to connect to a random device
within its Bluetooth proximity. In the event that connection is successfully established,
the two connected devices compare their lists of downloaded chunks stored with ongoing
dissemination period. The client-only dissemination strategy uses the cloud only for
downloading the chunks, both in the spread and panic periods.

5.5.2 Cloud-based Dissemination

In this strategy, each mobile device reports every chunk downloaded from D2D dissemina-
tion to the cloud service. When a mobile device completes its scanning of nearby Bluetooth
devices, it downloads a list of their chunks from the Dissemination service in the cloud.
This ensures that the mobile device will avoid connecting to other mobile devices that have
no chunks available for sharing. On the other hand, the increased communication with the
Dissemination service means some additional signaling load.

5.5.3 Adaptive Cloud-based Dissemination

In those cases where many Bluetooth devices are in proximity, their communication may
interfere and, as a result, there will be more unsuccessful connection attempts. To deal
with this situation, we propose a protocol that reduces the frequency of communication
attempts in cases when there are too many connection failures, which increases the random
period when the devices are listening for incoming connections.

58 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

In the event of an unsuccessful Bluetooth connection attempt, this strategy will increase
the listening period (t2 − t1) by the multiplication-factor parameter α. In the event of a
connection success, the strategy will decrease the listening period by the multiplication-
factor parameter β.

5.6 System Implementation

In this section, we introduce the implementation details of our cloud-controlled system for
D2D content distribution.

5.6.1 Cloud Services

All our cloud services are based on Microsoft technologies and are hosted in the Windows
Azure environment. Applications for Microsoft Azure are written in C# using .NET li-
braries. The Recording service and the Dissemination service run as worker–role instances.
Chunk storage is implemented like cloud blob storage.

We use Azure Mobile Services technology for the Subscription service, which allows
seamless integration of cloud services into mobile client code with support from develop-
ment tools. The subscription database is based on Azure SQL Database (the cloud version
of the Microsoft SQL Server).

A new device can register to desired video channels and the worker role of the Dissem-
ination service is then notified about the new device and its content requests. It will then
consider the new device in its future data delivery schedules.

When a new chunk is available, the device may be notified by the Azure Mobile Service
that it may download the chunk from the cloud. Otherwise the device will download the
chunk using opportunistic communication during the opportunistic dissemination period.
If the content is not available after the dissemination period, the device will request it from
the cloud.

5.6.2 Mobile Devices

We implement a video streaming app that runs on Windows Phone 8 mobile devices. We
chose Windows for its better integration with Windows Azure cloud service. We used
HTC8S smartphones to test the application.

For purposes of our research, we use Bluetooth 3.1 communication, which depletes
the battery less than Wi-Fi Direct. (In addition, Wi-Fi Direct is not yet supported by the

5.6. SYSTEM IMPLEMENTATION 59

Windows Phone 8 platform.). The video in the app is transparent to the actual wireless
interface used to receive the content chunks. The app handles initial D2D discovery and can
send signaling messages to the cloud, if requested by the strategy. Time synchronization is
performed with Windows Phone time server.

5.6.3 Signaling

For the strategies with cloud logic, the signaling mechanism is controlled by the mobile
device. When a new chunk is available, the device queries the Azure Mobile Service. The
reply will state whether the chunk should be downloaded immediately (or not) from the
cloud during the spread period. In the latter case, the device will try to get the content
during the dissemination period. In case the device has not yet received the chunk by the
end of the dissemination period, it will make a new query to the Azure Mobile Service
to request the chunk. Therefore, at least one query and up to two queries per chunk are
necessary.

Figure 5.4 shows the format of the request from the device to the Azure Mobile Service
and the corresponding reply. Overall, the size of the signaling is such that it is largely
negligible for reasonable chunk sizes, such as the ones for video content. The request from
the device to the cloud (D2C) has a Strategy field, which indicates the strategy used.

Not shown in the figure, the last bit of the Strategy field is a flag, indicating whether
the device is in spread period or panic period. Next, there is the chunk ID that the
device is querying for download (Request Chunk). Depending on the Strategy field
value, it will further send the list of chunks downloaded by the devices and available for

D2C request

160B28B

0−188B

Nearby devicesDissemination Chunks

Optional FieldsRequest Chunk

2B

Strategy

1B

Strategy

D2C reply

Optional Fields

0−414B

0−384B

Nearby Devices − Chunks per DeviceChunk URI

30B

1B

Figure 5.4: Packets format of signaling between the device and the cloud (device to cloud -
D2C).

60 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

D2D communication (the ones that are currently within their dissemination period, i.e.
Dissemination Chunks) as well as the devices in D2D range (Nearby Devices).

The first field of the response from the Azure mobile service is the Strategy field. As
in the request, the last bit of the Strategy field is a flag. For a response, the flag indicates
whether the device should download the chunk or not from the cloud. In case of a positive
reply, the uniform resource identifier (URI) is given to the chunk to identify the path in
Chunk Storage (Chunk URI). If requested by the strategy and if the device did not indicate
that it is in panic period, a list of nearby devices and their chunks can also be provided
(Nearby Devices - Chunks per Device).

5.6.4 D2D Communication

D2D packets are encapsulated by Windows Phone OS using a high-level API that abstracts
the communication to a data stream. The communication is initiated by one device (device
A) after an active scanning. Device A connects to a device (device B) which is in Bluetooth
listening mode. The communication is composed by a handshake to exchange the set of
chunks in dissemination period that are available and that are missing. By comparing the
two lists, device A and B will then exchange the chunks missing to the peering device, if
locally available. The chunks are sent according to a random order.

There are also some practical aspects to take into account in the implementation.
In particular, the visibility relationship between mobile devices is not always perfectly
symmetrical. This is because the devices scan for nearby devices at different points in time
and other factors. Thus, in our implementation it suffices that one device reports it is in
Bluetooth range to another and to include them in the same connected component of the
D2D topology graph.

5.6.5 System Setting

The main parameters are summarized in Table 5.1. In our implementation, we use a con-
tent’s deadline of Tc = 100 sec and a playback delay for the dissemination of 110 seconds.
For higher content dissemination it is better to use longer playback delays because it takes
several seconds to scan for devices withinin Bluetooth proximity or to create a Bluetooth
connection. Content’s deadline of 100 seconds allow devices to perform multiple attempts
for content dissemination.

For the D2D opportunistic communication, we set the dissemination opportunity
interval to T = 55 sec to provide enough time for D2D content dissemination. Because

5.7. EVALUATION 61

Parameters used in experiments common to all strategies
Video compression MPEG

Video resolution 426× 240 pixels
Content’s deadline Tc = 100 sec

Playback delay 110 sec
Recording time for each chunk 10 sec

Initial spread phase length 15 sec
Dissemination period length T = 55 sec

Panic period length 30 sec
Playback time for each chunk 10 sec

Average chunk size 512 kB
Default listening period t1 = 5 sec; t2 = 15 sec

Parameters specific to individual strategies
Fixed spread ratio 25%

Exploration probability ε 10%
Adaptive factor α 1.15
Adaptive factor β 0.95

Kp (Initial/deadline balance strategy) 0.2
Ki (Initial/deadline balance strategy) 0.1176

γ (K-bandit strategy) 0.9

Table 5.1: Setting used in the experimental evaluation

this period is 55 sec and the recording interval is 10 sec, up to 6 chunks can be exchanged
between two devices during one D2D connection.

Regarding the parameters Kp and Ki of the initial/deadline balance strategy, they
must be chosen as a trade-off between a stable and reactive system, using Ziegler-Nichols
rules [35] and imposing the stability constraint on the closed-loop gain.

Finally, for the purposes of testing and performance measurements, we use prerecorded
video streams rather than live streaming. This approach circumvents any problems with
the streaming source and the reproducibility of the tests. To this end, we use prearranged
chunk files in Chunk storage.

5.7 Evaluation

We perform two different evaluations, first using a controlled setup, and then measuring
performance with nomadic users.

62 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

5.7.1 Automated Testing System

In order to compare and evaluate the dissemination strategies described above, we imple-
ment an automated testing module that tests the performance of the Dissemination service.
The module repeatedly sends a short video stream (10 minutes) to mobile devices. Logs
from the devices are then collected at the end of each experiment. After each test, the
module changes the dissemination strategy that is used, or its parameters. The module can
also place a mobile phone temporarily outside the dissemination process for one test by
sending a command to turn off its Bluetooth connection. This step enables measurements
to be made for groups between 2 and 16 phones.

We run the experiments overnight to minimize interference from other 2.4GHz radio
sources. By subsequently analyzing the logs, we can compare the effectiveness of dissemi-
nation strategies under different conditions. The results of automated testing are shown
in Figure 5.5 that displays the saved bandwidth over the number of devices used in the
experiments. The saved bandwidth is defined as the amount of data in bytes downloaded
over D2D communication over the total video size in bytes downloaded to watch the video.

We first analyze the result of initial spreading strategy. As a baseline strategy for the
comparison, we use Cloud-based dissemination as our reference dissemination strategy.

Results of initial spread strategy in Figure 5.5 show that K-armed bandit strategy

2 4 6 8 10 12 14 16
25

50

75

Number of devices

S
av
ed

B
an
dw

id
th
[%
]

Fixed ratio + Cloud−based
Fixed ratio + Client−only
Fixed ratio + Adaptive cloud−based
Initial/deadline balance + Cloud−based
Initial/deadline balance + Adaptive−cloud based
K−armed bandit + Cloud−based
K−armed bandit + Adaptive cloud−based

Figure 5.5: Comparison of saved bandwidth for different strategies: Each value is the
average over three tests (each test is 10 minutes long). As you can see, for a larger number
of devices the saved bandwidth is declining, probably due to wireless congestion.

5.7. EVALUATION 63

and the Initial/deadline balance strategy achieve similar performance in terms of saved
bandwidth. However, while the K-armed bandit achieves slightly better performance for a
small number of devices in range, the opposite holds for higher numbers of devices. The
reason the Initial/deadline balance strategy is slightly worse than expected is likely due
to the fact that this strategy implicitly assumes that, at any point in time, the probability
that there are two contacts (two D2D communications in parallel) is negligible. In reality,
this hypothesis does not hold, due to protocol artifacts such as the fact that Bluetooth
applies frequency hopping and thus parallel communications may occur on different radio
frequencies. In contrast, K-armed bandit strategy does not rely on this assumption.

We further notice that a Fixed ratio strategy achieves poor performance and even that
performance decreases for more than 12 devices. This is because the bandwidth available
for D2D communication becomes a bottleneck and thus more injections in absolute in the
spread periods have the effect of increasing the failed attempt of D2D communication.

We then study the dissemination strategy and show the results in Figure 5.5. As baseline
for the comparison, we use Fixed ratio spread as our initial spreading strategy and look
at which dissemination strategy helps reduce congestion of the D2D communication. We
observe that Cloud-based strategies outperform Client-only strategies.

Not shown in the figure, results with Client-only get even worse with higher fixed
spread ratios. For instance, we report 31.43% of saved bandwidth with 16 devices rather
than 36.66% using a fixed spread ratio of 50% rather than 25%. The best performing
dissemination strategy is the Adaptive cloud-based strategy.

Finally, we compare the initial-deadline balance and K-armed bandit, using the Adap-
tive cloud-based as our dissemination strategy. The plot in Figure 5.5 shows that the
combination of K-armed bandit and Adaptive cloud-based strategies generally outperforms
any other strategies, with up to 71% of saved bandwidth.

We analyze in more detail the performance loss for high numbers of devices. We
define the congestion signal as the number (in percentage) of unsuccessful opportunistic
connections between mobile devices over the total number of attempts.

Figure 5.6 shows that a Client-only strategy is greatly affected by a very high rate of
congestion signals for increasing numbers of devices. Thus, the devices are not able to
download the chunk from D2D communication, despite devices in range with a copy of
it. In contrast, the adaptive cloud strategy shows a quite stable level of congestion signal,
which explains why it outperforms other strategies in terms of saved bandwidth.

64 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
25

30

35

40

45

50

55

60

Number of devices

C
on

ge
st

io
n

si
gn

al
[%

]

Client−only
Cloud−based
Adaptive cloud−based

Figure 5.6: Congestion signal of D2D communication for the three different dissemination
strategies

5.7.2 Evaluation with Nomadic Users

To evaluate our system in practical applications, we organized two experiments on different
days with volunteers that carry a mobile device with our application. The volunteers
have been working in the same building and carried their mobile devices all the time. In
Experiment I , we had 16 volunteers and the test lasted for approximately 4 hours. In
Experiment II , we had 12 volunteers over an 8-hour period. For Experiment I , we use a
Fixed ratio as initial strategy and Client-only as dissemination strategy. For Experiment II ,
we use the K-armed bandit as our initial spreading strategy and the Adaptive cloud-based
dissemination as our dissemination strategy.

Both experiments were performed during working time when most of the volunteers
are inside the building or in its proximity. The devices streamed a video with a bit rate
close to 400 kb/s (a usual bandwidth for a low-resolution YouTube video). The experiment
attempted to emulate situations when multiple users want to access the same video content
and may have the opportunity to be in D2D communication range. The logs of the
experiments were retrieved manually from the devices after the test is over.

We first compared the Empirical Cumulative Distribution Function (ECDF) of both
experiments in Fig 5.7. On the left of the figure, we show the saved bandwidth with
nomadic users during the same period of time (from approximately 12:00 to 16:00).
Each sample is the average saved bandwidth over a short time interval of ≈ 15 minutes.
The figure clearly shows that Experiment II, using a combination of initial spread and
dissemination strategies gave superior performance in the automated testing system in

5.7. EVALUATION 65

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Saved Bandwidth [%]

E
C
D
F

ECDF using the Average Saved Bandwidth over Time

Experiment I
Experiment II

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Data from the Cloud [%]

E
C
D
F

ECDF using the Average Data from Cloud per Device

Experiment I
Experiment II

Figure 5.7: Comparison of Experiment I and Experiment II – On the left: ECDF
of average saved bandwidth over 4 hours. On the right: ECDF using the average data
downloaded from the cloud per each device.

the previous section and obtains significantly higher saved bandwidths than Experiment I.
This results has been achieved despite more opportunities to share the chunks with D2D
communication in Experiment I, which reports 3.53 devices in range on average, while
Experiment II reports 2.52 devices.

We then studied the amount of data (in bytes) that each device downloads from the cloud
over the total amount of data downloaded from both the cloud and D2D communication
and compute how fair the injection of chunks from the cloud is using different strategies.
For each device, we computed the average over the entire test, and plotted the ECDF of
data downloaded from the cloud on the right of Figure 5.7. We measured a Jain’s fairness
index of 0.989 for Experiment I and 0.967 for Experiment II. This result shows there
is a fair access to the costly wireless network interface (such as 3/4G). Concluding, a
Cloud-based approach is preferable in terms of saved bandwidth and comes at negligible
cost in terms of fairness.

In Figure 5.8, we then depicted the saved bandwidth, and the average number of nearby
devices after Bluetooth scanning for Experiment II as a function of the time. The resulting
saved bandwidth was 39% on average and 53% in two peak values at 10:45 and 13:45. The
figure shows that the amount of saved bandwidth tends to increase and decrease according
to the number of nearby devices in range, with a high Pearson correlation coefficient
between the two variables of 0.79. As a result of this high correlation, we also observed
that the strategy can adapt to variable conditions of the D2D network topology.

66 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
25

30

35

40

45

50

55

S
av
ed

B
an

dw
id
th

[%
]

1.5

2

2.5

3

3.5

4

4.5

Time [h:m]

D
ev
ic
es

in
D
2D

ra
ng

e

Saved bandwidth
Devices in D2D range

Figure 5.8: Bandwidth savings in the practical experiment for Experiment II and average
number of nearby devices after Bluetooth scanning

5.8 Open Issues and Discussion

5.8.1 Distribution of Application Updates and OS Integration

Peer-to-peer wireless sharing is currently not integrated into phone operating systems.
Windows Phone and iOS apps run in a sandbox that restricts some operations required for
communication with other devices, especially when the user is not using the application.
Application updates are also managed on the system level and cannot be managed by 3rd
party code, however the approach can be implemented as a part of phone OS. We are
aware that Windows Phone 8 OS uses a cloud pre-compiled code for particular device
hardware and therefore devices with different hardware cannot share application updates.
However this step is only optional and phones are capable of compiling the whole app from
a hardware independent binary code called Common Intermediate Language. Windows
Phone 7 OS use on-device code compilation from Common Intermediate Language.

5.8.2 Fairness

When multiple users use pay-as-you-go resources, we must consider fairness of cost
distribution among the users. In some scenarios certain malicious users may misuse
the paid resources of other participants. Our current implementation appears to be safe
against such attacks on principle because users access the paid cellular connection only to
download content they need. Therefore the users accessing the system will not pay more

5.9. CHAPTER CONCLUSION 67

compared to those not using it. Attackers may still misuse the system by downloading
content through Bluetooth and saving some battery, e.g. by not sharing their chunks with
others, but this would do no serious harm. However non-experimental applications should
tackle this issue.

5.9 Chapter Conclusion

In this chapter, we have shown that cloud logic can help alleviate the saturation of cellular
network traffic. Using the cloud, we implemented and experimentally evaluated a novel
architecture to disseminate popular video content to subscribed users. Our measurements
showed that opportunistic dissemination techniques utilizing a coordinating cloud service
can achieve higher offloading rates than techniques compared to those without cloud logic.
Use of cloud services also allows achieving better effectiveness in environments with large
numbers of mobile devices where it avoids the congestion of wireless channels.

We envision that the inherent scalability properties of the cloud allows content providers
to deploy multiple instances of media recording services for a large number of requested
media streams and dynamically adapt the allocated network resources according to the
number of subscribed users and the dynamics of D2D communication.

For common usage of delay-tolerant networks and opportunistic data offloading for
mobile devices in developed countries, it is necessary to integrate support for this service
to the phone operating system. If not, the technique will suffer from lack of supporting
devices. A standardized dissemination Bluetooth protocol would allow cross-platform
dissemination (e.g. Android – iPhone – Windows Phone) and thus significantly increase
the group of involved devices.

In addition to media streaming, it would also be useful for RSS readers or application
updates, because some applications are installed on many phones.

68 CHAPTER 5. COLLABORATIVE DEVICE-TO-DEVICE VIDEO STREAMING

Part III

Virtual Cities on Mobile Devices

The content of Part III is based on our work published in [A.1], [A.3], [A.7], [A.8]
and [A.9].

In this part we present novel techniques for implementing possibly infinite on-demand
generated 3D virtual worlds in distributed environments. Our approach is useful under two
scenarios:

1. A multiuser virtual world with mobile clients having sufficient CPU and GPU power
but limited network speed. This reflects current mobile phones, tablets and laptops
in areas without high-speed mobile connections or Wi-Fi connectivity.

2. Virtual world on-demand generation in a cloud environment that would be useful for
scalable and massive multiplayer games.

If multiple independent generators create areas that overlap, our method ensures that the
intersection of these areas will contain the same geometry for all of them. For this reason,
we call our method Stateless Generation.

69

Chapter 6

Procedural Generation of Cities

In this chapter we describe approaches in procedural city modeling, workflow for proce-
dural city modeling, procedural generating building and the previous state in real-time
procedural city generation of cities.

6.1 City Modeling Approaches

There are two main approaches to procedural city modeling – behavioral and geometric.
However recently, researchers succeeded in combining both approaches.

6.1.1 Behavioral City Modeling

The behavioral approach focuses on simulation of city development in time. The simulation
begins with a city layout acquired from a map of a real city or form an artificial one.
It is important to know the types of buildings, because they have a significant effect
on city development. The systems usually distinguish at least three building types –
residential, commercial and industrial. The city simulation is often restricted to a regular
rectangular grid, so only a few behavioral modeling systems can work with arbitrarily
oriented buildings. Visualization of the city is not usually too important. Some systems for
behavioral city modeling use only simple 2D visualization. An external program (such
as SimCity) can be used for the visualization. A terrain height/heightmap is usually not
considered during the modeling.

Behavioral city modeling is usually used for city development prediction, urban plan-
ning or computer game simulations.

71

72 CHAPTER 6. PROCEDURAL GENERATION OF CITIES

Figure 6.1: An example of behavioral city modeling published by Lechner et al. [63] (top)
and its visualization using SimCity 3000 (down). SimCity 3000 is a commercial computer
game developed by Maxis in 1999. Different colors represent different building types/land
utilization.

6.1.2 Geometric City Modeling

The geometric approach focuses on the creation of a visually pleasant 3D city model
that does not evolve over time. This approach is usually used for computer games that
require a static city model. A realistic look of the city is the primary goal in geometrical
city modeling. The modeling systems use a heightmap and may have arbitrarily oriented
buildings. The output of the modeling software is usually a detailed polygonal city model
with textures.

6.1.3 Combined City Modeling

In recent years some researchers have attempted to combine both previous approaches.
In 2009, Vanegas et al. [113] presented a system that combines both the geometrical and
behavioral approach in city modeling. Their approach combined both city evolution over
time and a detailed realistic 3D look of the city. Weber et al. [120] presented a system in
2009 that can quite precisely predict city development from a city map or create an entirely
new city.

6.2. CITY MODELING WORKFLOW 73

Figure 6.2: General pipeline for city modeling. [114]

6.2 City Modeling Workflow

This section presents the most common workflow for city generating, based on a street
network. This approach was presented for the first time by Parish et al. [86] in 2001 and is
now used in nearly all research works concerning geometrical procedural city modeling.

The key element in the workflow is a city road network that is modeled first. The
road model is created using an L-systems [93] technique extended by context sensitive
rules [86]. The L-systems were originally developed for procedural modeling of plants,
but they can be used for road network modeling as well.

In 2006 Müller proposed a new language called CGA (Computer Generated Architec-
ture) [76] that can be used for writing rules for procedural building modeling. The CGA
language is also based on the L-systems, but has many substantial extensions. Since then
the CGA language became popular in the procedural building modeling area, because the
previous modeling techniques were not much suitable.

CGA rules can be retrieved from existing building using automatic, semi-automatic or
manual approaches. For our experiments we prepared several CGA rules from photographs
of existing buildings - see Figure 6.3.

We briefly explain some of the terms used in the area of procedural city modeling:

• Major roads usually represent highways or other large roads. In some modeling
systems these roads must be manually placed. Creating the major roads is the first
step in the city modeling workflow.

• A quarter is a land area enclosed by major roads (with no major roads inside).
Quarters are usually subdivided by minor roads and populated by buildings.

• A minor road is a road inside a quarter used to subdivide the quarter. Minor roads
are usually generated by context-sensitive L-systems.

74 CHAPTER 6. PROCEDURAL GENERATION OF CITIES

Figure 6.3: CGA rules created for existing buildings; Left column: Original photograph;
Right column: A building generated using the extracted CGA rules; We would like to
thank Jakub Vampola for his work on preparing CGA rules of existing buildings.

6.3. PREVIOUS WORK IN CITY MODELING 75

Figure 6.4: Several generations of the buildings derivation: Sometimes the interim
models can be used for LOD. [32, 86] This approach cannot be used when the models are
textured.

• A block is a polygonal-shaped land area enclosed by roads (with no roads inside).
Usually several buildings will be generated inside one block lot. Block lots are
usually subdivided to several building lots.

• A building lot is a land area dedicated for generation of a single building.

• Building mass modeling creates a rough geometric shape of the building. A build-
ing mass is usually generated by CGA grammar rules.

• Building facade modeling splits buildings to levels and creates wall geometry.
Building facades are usually generated by CGA grammar rules.

6.3 Previous Work in City Modeling

The most advanced approach for procedural building generation was published by Müller
et al. [76] in 2006, improving upon the previous method by Wonka et al. [124] in 2003.
The lot and street geometry can also be generated procedurally. The first such algorithm
for finite cities was published by Parish and Müller [86].

In 2003, Geuter et al. [38, 39] presented an algorithm for the on-demand generation of
infinite cities in a regular rectangular grid. In their approach, the street network has to be
aligned with the main axis, and all building lots must have the same square shape and size
(see Figure 6.5). The visible buildings are determined and procedurally generated according
to the viewing frustum. Each building lot is assigned an integer number according to its

76 CHAPTER 6. PROCEDURAL GENERATION OF CITIES

coordinates using a hash function. This number is used as another seed for the pseudo-
random building generation of that building lot. Some of these ideas are applied and
extended in our approach. According to the viewing frustum, the visible buildings are
determined and procedurally generated. Each building lot gets an integer number according
to its coordinates using a hash function (see fig. 6.6). This number is used as a seed for
the pseudo-random building generation of that building lot (see fig. 6.7). The generated
buildings are saved into cache to save system resources.

Figure 6.5: Previous approach in infinite-city rendering published by Greuter et al. [38,39]
showing street level view. Note the regular rectangular shape of the street network.

Figure 6.6: Determining building generator seeds from coordinates: The rendered
buildings are determined using intersection of the viewing frustum and building bounding
boxes.(left) A hash function assigns a seed for the pseudo-random building generator to
each building lot according to its coordinates.(right) Source: [38]

A method for real-time generation of detailed procedural cities from GIS data was
published by Cullen and O’Sullivan [27]. Their system uses a client-server approach,
allowing multiple clients to generate any part of the city without requiring the full data-set.
It creates the building geometry on-demand from the provided lot database and, in contrast
to our work, does not address street and lot generation. Vanegas et al. [115] presented
an interactive method for procedural generation of city parcels. They generate spatial
configurations of parcels similar to real-world cities and support consistent lot locations

6.3. PREVIOUS WORK IN CITY MODELING 77

Figure 6.7: Generating floor shapes: In the method of procedural generation of buildings
proposed at [38] the building is generated from top to bottom. The roof of the floor consists
of two random primitive shapes. The top floor has the shape of a slightly enlarged roof.
Each additional floor adds one random primitive shape to its shape. At the end of the
process the bottom of the last floor is slightly reduced. The created building has to be
rescaled to fit into its building lot.

relative to their containing blocks. Their approach generates parcels highly similar to those
observed in real-word cities, but it mainly focuses on parcel layout and does not address
all the phases of the city-generation process, unlike our method.

Aliaga et al. [9] presented a system for synthesizing urban landscapes by example.
They proposed a random walk algorithm for obtaining parameters from existing cities that
are later used in the generation process. Their system was somewhat capable of on-demand
generation, but it was neither intended nor suitable for distributed environments because it
required knowledge of all previously generated geometries for each future step.

On-demand world generation is highly related to texture synthesis algorithms. The
main difference between these two approaches is the use of the generated results and
whether the algorithm generates vector or raster output. Algorithms for texture synthesis
usually use Voronoi diagrams [28] of randomly distributed points. One of the pioneering
works in this area was published by Worley [125], who uses a function that complements
Perlin fractal noise to produce textured surfaces resembling flagstone-like tiled areas,
an organic crusty skin, crumpled paper, ice, rock, mountain ranges, and craters. Our
algorithms are inspired by his function to determine the nth-closest points that affect the
structure of the texture at the currently generated area. We aim for a similar goal, but we
use Delaunay triangulation instead. We also use techniques based on Voronoi diagrams to
divide areas that are affected by different geometrical elements.

78 CHAPTER 6. PROCEDURAL GENERATION OF CITIES

Liang et al. [67] presented another algorithm for synthesizing textures from an input
sample in real-time, but they use a significantly different approach than ours and their
results are not isotropic, which is important for stateless generation. Texture synthesis can
also be used to generate street patterns [37, 110], but these works use different approaches
that are difficult to adjust for the purposes of infinite cities. Lefebvre and Hoppe [64]
presented an algorithm for parallel on-demand texture synthesis based on a neighborhood
matching approach. Their scheme defines an infinite, deterministic, aperiodic texture from
which rectangular views can be computed in real-time on a GPU. Another advance in
infinite texture generation was made by Cohen et al. [26]. They utilized a small set of Wang
Tiles to tile a plane non-periodically. Using a proper tile set, the texture can be extended
on-demand. In 2007, Merrell [70] presented an algorithm for generating 3D buildings
and cities from a set of 3D tiles. Merrell’s later work [71] was focused on continuous city
model synthesis. These techniques are, however, limited to structures aligned with the
main axes.

To generate a realistic world structure, we must first analyze examples to acquire
characteristics that are later used in procedural modeling. Important progress in inverse
procedural modeling was made by Stava et al. [107]. They create parametric context-free
L-systems that represent an input 2D model. Their approach is based on vector shape
recognition, clustering in the transformation spaces and detecting structures as L-system
rules. Elements and structures can be edited by changing the L-system parameters.

6.4 Chapter Conclusion

In our stateless-generation algorithm presented in the next chapter we aim to create a
generator for infinite cities that would not be restricted to a regular rectangular grid. The
key to this generator is a proper pseudo-random infinite generator of major roads. Because
the major roads are at the beginning of the generating workflow, the rest of the city could
be generated automatically using existing tools.

Our approach follows up on the related works above, combining their benefits and
removing some of their limitations. Unlike [38, 39, 70, 71], our building lots can have
various sizes and shapes, streets can be arbitrarily oriented, and the street network is not
periodic. Unlike [9], our approach adds capabilities for distributed environments as well as
the ability to generate only content related to the view frustum of the client.

Chapter 7

Stateless Generation of Distributed
Worlds

7.1 Introduction

Much attention is currently focused on multi-user virtual environments hosted in the
cloud for both gaming and non-gaming purposes [23, 45, 79]. With the arrival of massive
multiplayer online games, game creators have had to deal with limited server capacity
in terms of world size or number of players [21], but virtual-world services must be
scalable [117]. Current cloud computing technologies are able to provide additional
resources on-demand, but virtual-world systems are rarely able to generate on-demand
game content (to save memory for world parts not needed at the moment). Another problem
is the limited network connectivity of mobile clients in cellular networks, which is often
too slow for downloading the content generated on the server, thus having a highly negative
impact on the emerging and ubiquitous mobile gaming.

Our method is innovative in that it eliminates the need to synchronize the static content
that was procedurally-generated on multiple devices. This will allow virtual-world servers
to dedicate additional machines from the cloud environment to parallel content generation,
or even to generate content on client devices. Because the content is generated on-demand,
the virtual world can be considered theoretically infinite.

We refer to our method as Stateless Generation because it allows for locally generating
only the content of the world that is relevant to the viewing frustum of the clients, and this
content is generated independently, without knowledge of the states of the other generators.

As one of the most difficult virtual environments to generate, our efforts focus on
generating an urban landscape (see Figure 7.1). City environments are generally complex

79

80 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

because they are structured and are both detailed and enormous. Procedural generation is
a convenient tool for saving storage space and/or Internet bandwidth. When in the view
frustum, buildings can be created on-demand from their lots (land parcels) using generating
grammars.

Moreover, our method is general enough to be applicable to other types of structured
landscapes (e.g., countryside, caves, labyrinths). Structured landscapes are generally more
difficult to generate than unstructured landscapes (e.g., forests).

We provide a general purpose guideline for scalable algorithms generating virtual
worlds that is applicable to most types of landscapes. We formalize the requirements and
constraints such algorithms must fulfill. We then provide a novel algorithm for generating
an infinite and scalable city-street layout, including a novel sub-algorithm for generating
streets in a constrained environment, which could also be useful in traditional approaches
to procedural city generation [114].

Figure 7.1: A stateless infinite city generated by our method

7.2. STATELESS GENERATION APPROACH 81

7.2 Stateless Generation Approach

We have laid down the following general requirements for our world generator:

1. The generated world is infinite and is not periodic.

2. Clients and/or servers are able to generate the static part of the world on-demand; they
do not have to download it from a single (common) place. They should download
only one random generator seed (or hash function) for the whole world.

3. Generation of the world can start from any point. The client will generate only those
parts that are relevant (e.g., visible) to it.

4. The generation process is deterministic (usually achieved using pseudo-random
generators). The results are always identical, regardless of the starting point or the
area relevant to the client.

If a generator fulfills the above requirements, we call it a stateless generator. This
is because its results do not depend on the results (or inner states) of other generators
working in parallel or on its previously generated content. The defined requirements have
the following outcomes:

a. Generated parts of the world can be cached. When any part of the world is cleared from
the cache, it can be re-generated again, and it will be exactly the same as the original.

b. When multiple clients and/or servers generate the world, the intersected areas are
exactly the same, and the generated virtual worlds connect seamlessly, despite that they
started generating at different starting points and have not communicated with each
other.

We assume that the world is infinite in two dimensions only and consists of buildings
or other objects on an infinite plane. The 3D model is created later from the generated
layout on the plane. We provide both a general purpose guideline and a specific version for
generating the infinite urban landscape. The specific algorithm follows the standard city-
generation workflow proposed by Parish and Müller [86], initially designed for finite cities.
The workflow starts with the city street network, and buildings are generated afterward
(phases: a. street network, b. building blocks/lots, c. building geometry). We explain
our approach to city street-network generation, while the other phases remain nearly the
same as in the case of finite cities. When working with infinite structures, we assume that
we will compute only those values that are needed due to the intersection with the view
frustum.

82 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Street-network characteristics

To achieve the desired city appearance, our algorithms use parameters that can either be
provided by the user or measured from an example of a city map. We will denote these
parameters as street-network characteristics.

When processing a map of an existing city, streets are replaced by straight segments
between street junctions. These segments are called street segments. Street segments are
also created during the generation process, and they are converted to streets in the final
phase of the algorithm.

To acquire the street-network characteristics from a map, we use the random walk
algorithm as described by Aliaga et al. [9] applied to city-map street segments. A detailed
description of the street network characteristics and the corresponding terminology we
adopt can also be found there. For our purposes, the street network characteristics contain
the following parameters:

1. average length of a street segment and its variance

2. average unoriented angle between two consecutive street segments and its variance

3. average number of street junctions on a surface unit (e.g., a square kilometer)

4. average number of street segments on a surface unit

5. street tortuosity – the average ratio between street length and the corresponding
street segment length

Our algorithms make an effort to ensure that the generated street network will have
similar network characteristics to those of the original city map, but currently the resulting
distribution exactly corresponds only in mean values.

7.3 General Algorithm for Stateless Infinite Worlds

This section describes general guidelines for designing algorithms for stateless infinite
worlds. Later, we show how we apply this algorithm template to urban landscapes.

The algorithm input consists of items shared among generators (in the case of multiple
generators): the generator parameters (e.g., street-network characteristics); the tessellation
grid parameter d - as described below; and the hash function for the pseudo random genera-
tor. Other input parameters are individual per each generator: the position, orientation and
field-of-view of the camera in the infinite world, with near and far clipping plane distance
(this is usually called the view frustum).

7.4. TESSELLATION ALGORITHM 83

The algorithm output is the geometry of objects within the view frustum. Note that
because the algorithm works in a 2D plane, we work with view frustum projections to the
plane rather than the corresponding 3D representation. The shape is not important for the
algorithm; it works with any bounded 2D area.

Each step of the algorithm is now described in greater detail below:

Step 1 – Tessellation:

Create a non-periodic tessellation of the infinite plane. The tessellation is only an
auxiliary structure not visible in the final model. Subdividing the plane into a set of
bounded areas (called tessellation fragments) allows us to transform the problem into
sub-problems of generating content only in the areas intersected with the view frustum.
In Section 7.4, we provide a novel sub-algorithm for the tessellation of an infinite plane
into a non-periodical set of arbitrarily oriented triangles. We prove that this algorithm
fulfills the requirements for Stateless Generation.

Step 2 – Generation of interfaces:

Use a pseudo-random generator to define interfaces (objects that cross the fragment
boundary) between the adjacent tessellation fragments. In Section 7.5, we provide a
sub-algorithm that generates a street layout for an urban landscape, where the interfaces
are the street-segments that intersect tessellation fragment boundaries.

Step 3 – Constrained generation:

Generate the inner part of the fragments while preserving the constraints set by the
interfaces. In Section 7.6, we provide another novel sub-algorithm for generating a
street network in a constrained environment that solves this problem for street layouts.

Step 4 – Procedural generation:

Use traditional procedural generation to finish the landscape. This is the only step
performed in 3D.

7.4 Tessellation Algorithm

This algorithm divides the infinite plane into a tessellation of triangular tessellation frag-
ments. It provides only those fragments that are fully or partially within the client’s view
frustum.

The algorithm input parameters are the view frustum; a hash function; and the grid
size parameter d. As its output, the tessellation fragments that intersect the frustum are

84 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Figure 7.2: Tessellation algorithm visualization – Left: An infinite tessellation grid (step
1) with pseudo-randomly generated tessellation points (step 2); Right: Infinite Delaunay
triangulation that forms tessellation fragments (step 3); These structures are only auxiliary
for further phases and do not represent the final city geometry.

provided. Note that the geometry of the fragments remains consistent in the case of
multiple overlapping queries.

First, we present a theoretical approach that operates with infinite structures. Then, we
provide practical instructions about how to correctly generate the content within the view
frustum using limited computational resources. We achieve this by omitting data that do
not impact the content of the view frustum. Note that, due to the connected structure of the
world, even objects near but outside the view frustum can affect objects inside the view
frustum; we have to take this into account. The approach is similar to the lazy-evaluation
method used in functional programming languages (e.g., Haskell) to work with infinite
data structures.

Theoretical approach

Theoretical step 1:

Suppose we have a plane dedicated for generating the world. Create a regular infinite
square grid on the plane. (The segment length of the grid should be a configurable
generator parameter. Let us denote the length as d.) We denote the grid as the tessellation
grid. The grid will divide the infinite plane space into squares. Each of these squares
has an X and Y integer coordinate (positive or negative). Apply a hash function to each
pair of coordinates to acquire a pseudo-random generator seed for each square (see
Figure 7.2). We use universal hashing functions for integer vectors of size 2.

Theoretical step 2:

Use the seed to generate a pseudo-random position inside the given square (with

7.4. TESSELLATION ALGORITHM 85

uniform distribution) and place a node on that position. We will refer to these nodes as
tessellation nodes.

Theoretical step 3:

Create a Delaunay triangulation using the tessellation nodes. All tessellation nodes are
connected with triangulation edges to form an infinitely large tessellation. In Section 7.4,
we prove that Delaunay triangulation always produces the same results, regardless of its
starting area, and can be performed partially only using a finite subset of tessellation
points for any bounded area. We use the triangulation technique described below to find
the proper edges.

Triangulation

We must select a robust and unequivocal triangulation method that requires knowledge
only of the local surroundings of the processed nodes, as an infinite number of nodes
cannot fit into memory. Delaunay triangulation has these desirable properties for Stateless
Generation.

Definition of Delaunay triangulation:

Three nodes form a triangle that belongs to Delaunay triangulation if and only if there
are no other nodes inside its circumcircle.

We will now prove that Delaunay triangulation has properties of Stateless Generation.
We will start with several lemmas.

Lemma 1:

In a tessellation grid, any circle with a radius greater than
√
2d has at least one tessella-

tion node inside it.

Proof:

Such a circle contains at least one whole grid square inside. Therefore, it also contains
a tessellation node corresponding to that square (see Figure 7.3).

Lemma 2:

In a tessellation grid with Delaunay triangulation performed on its tessellation nodes,
no triangulation edge may be longer than 2

√
2d.

Proof:

According to the definition of Delaunay triangulation and lemma 1, every triangulation
edge has to be part of a triangle with a circumcircle radius smaller than

√
2d. Edges

greater than 2
√
2d will not fit into the circumcircles.

86 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

d

Figure 7.3: The circle has a radius slightly less than
√
2d and does not contain any of the

squares of the infinite grid. It is obvious that every circle with a radius greater than
√
2d

contains at least one whole square and its tessellation node.

Lemma 3:

If we remove some nodes from a Delaunay triangulation and perform a new Delaunay
triangulation on the reduced set of nodes, all triangles from the original triangulation
that were not using any of the removed nodes will be present in the new triangulation.
(Some new triangles may emerge, but that is fine.)

Proof:

It is an outcome of the definition of Delaunay triangulation. (No new nodes will appear
inside the original circumcircles.)

Lemma 4:

When we have Delaunay triangulation performed on tessellation nodes of a tessellation
grid and a bounded area, removing the nodes that are farther from the area than 2

√
2d

will have no effect on the triangles that intersect with the area.

Proof:

It is a direct outcome of lemma 2 and 3.

Theorem:

The Delaunay triangulation performed on tessellation nodes of a tessellation grid fulfills
the definition of Stateless Generation described in Section 7.2.

Proof:

We will follow the definition from Section 7.2:

7.4. TESSELLATION ALGORITHM 87

1. The structure is infinite and is not periodic.

2. The triangulation can be generated by multiple generators independently.

3. Parts not relevant to a bounded area can be removed using lemma 4.

4. The process is deterministic.

Delaunay triangulation is unique except for situations where there are 4 nodes on a
circle. This, however, happens with negligible probability for randomly generated points.
We use computation with particular high-precision real numbers, which substantially
decreases the probability of such cases and provides the same results on different operating
systems and CPUs.

Practical approach

This approach describes how to generate the part of the infinite tessellation that is within
the view frustum.

Step 1:

Take the view frustum and enlarge it by 2
√
2d in all directions. (Due to lemma 4 from

the previous section, it is guaranteed that triangulation inside the view frustum will not
be affected by content outside the enlarged view frustum.)

Step 2:

Take all squares that intersect with the enlarged view frustum and generate their cor-
responding tessellation nodes. Filter out the tessellation nodes that are outside the
extended frustum. We now have all the tessellation nodes that are within the extended
view frustum.

Step 3:

Create Delaunay triangulation on those nodes. Lemma 4 guarantees that we generate
all triangles that intersect the view frustum correctly. Filter out triangles that are
completely outside the original frustum (these may not be generated correctly). We
have now acquired the part of the tessellation that is visible in the view frustum and
conforms to the Stateless Generation properties.

Complexity:

The most complex step of the algorithm is the triangulation. The well-known DeWall
algorithm [24] creates a Delaunay triangulation for n nodes in O(n log log n) time.
However, we use the previous incremental algorithm for Delaunay triangulation [62],

88 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

with time complexity O(n log n), which allows us to include additional nodes in the
triangulation once the initial set is finished. This is a nice feature in cases when the user
and his or her view frustum move and thus the visible area changes over time. Each
additional node can be added in O(log n) time.

7.5 Generating the Tessellation Fragment Interfaces

In the case of an urban landscape, the interfaces consist of street segments that cross the
tessellation fragment boundary. These street segments form constraints that guarantee a
continuous street network between the tessellation fragments.

The generation takes as its Input the processed tessellation fragment together with
the tessellation fragments adjacent to it, plus the street-network characteristics. Its
Output is the street segments that cross the boundary. The street segments do not cross
each other and each of them intersects the target tessellation fragment and exactly one
other tessellation fragment.

First, we must create a seed for the pseudo-random generator to generate random
numbers consistently. We create one pseudo-random generator for each boundary edge.
To do this, we take the coordinates of the grid squares in which the tessellation nodes
were created (4 integers from two squares related to the edge endpoints) and apply a
hash function to them to find the seed. We use the hashing function

h = [c1(x1 + x2) + c2(y1 + y2)] mod c3

where c1, c2, c3 are random large prime number constants. This ensures that the
results are the same when we start generating from the other tessellation fragment and
that the transition of the street network is seamless.

For each of the boundary edges we use the Poisson distribution to determine the
number of street segments that cross the edge. The distribution mean is set proportionally
to the product of the boundary-edge length, of the average street-segment length and of
the average number of street segments on a unit surface to reflect the original network
characteristics. For each street segment, we generate a point on the boundary edge
where the street segment crosses the edge (uniform distribution), the length of the
street segment (normal distribution according to the average street segment-length and
variance), the portion of the street segment that will be in the target fragment (uniform
distribution) and the angle between the street segment and the edge (the distribution is
proportional to the sine of the angle). See Figure 7.4 for examples.

7.5. GENERATING THE TESSELLATION FRAGMENT INTERFACES 89

Figure 7.4: Variance in street segment interface generation – (a) reference case, (b)
different numbers of street segments, (c) different crossing points, (d) different lengths, (e)
different portion of street segments in the target fragment, (f) different angles

Figure 7.5: A tessellation fragment (blue) and its generated interface street segments
(black); The endpoints of the street segments must be closer to its boundary edge, i.e.,
they must be within the dotted green boundary.

90 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Figure 7.6: Constrained street-generation algorithm visualization – Top-left: A tessel-
lation fragment (blue) with street network interfaces (black) during the phase of generating
junction candidates using Poisson disks Top-right: Street network segment candidates
graph (green) Bottom-left: The found dual path PL (red, dashed) with minimum evaluation
in the line graph. Bottom-right: Path P (black) added to the street network; crossing
street-network candidates have been removed.

Each of the generated street segments is then tested for the following conditions:

1. The street segment does not cross any previously generated street segment for this
boundary edge.

2. The endpoints of the street segment are closer to its boundary edge than to any other
boundary edge. (see Figure 7.5)

If the street segment does not fulfill the conditions above, we discard it and generate a
new one instead.

7.6 Constrained Street-generation Algorithm

This algorithm generates the interior of the tessellation fragment with respect to the
constraints set by interfaces that consist of street segments. Currently, the algorithm
can be used only for a street network with no superimposed pattern. The algorithm will
not produce rectangular street networks (New York, Chicago) or radial to center street
networks (Paris). Those and other types of street network patterns are described in [86].

7.6. CONSTRAINED STREET-GENERATION ALGORITHM 91

It is possible to create another Stateless Generation algorithm for each of these patterns,
but it seems to be difficult to find a universal algorithm for all of them due to the already
fixed positions of the tessellation fragment interfaces generated in the previous phase.

The algorithm Input parameters are the following: a convex shape (i.e., the tessella-
tion fragment) with street segments crossing its boundaries (from the previous phase);
and a pseudo-random generator (from the coordinates of the tessellation nodes of the
triangle). The algorithm works generally for any convex shape, although in practice we
use triangular shapes generated by the previous tessellation algorithm. Its Output is the
generated street network inside the shape that takes the interfaces into account.

Each step of the algorithm is shown in Figure 7.6. First, we use the pseudo-
random generator to place nodes that will be junction candidates. We use Poisson disk
distribution for this task, and for simplification, the radius is equal to one-fourth the
average street-segment length from the street-network characteristics. The end points
of the interface street segments are also junction candidates. Next, we connect each
pair of junction candidates with an edge (which we call a street-segment candidate)
except for the following: (i) those that are too improbable according to the average
street-segment length and its variance in the street-network characteristics (exceeding
a predefined threshold) and (ii) those that would cross the interface street segments.
We then add the interface street segments to the set of street-segment candidates. To
generate the street network, we incrementally add the paths of street-segment candidates
into the street network. We try to add paths that are in accordance with the street
network characteristics. To do this step, we create an evaluation function to determine
the appropriate paths to be added. Using this function, we transform our problem to
finding the shortest path in a weighted graph.

Street-segment path evaluation

We now must define a set of evaluation functions f for street segments, angles and
paths. For realistic street generation, we have to create functions that assign a low value
to paths according to the street-network characteristics. For street segments (e ∈ E)
and angles between two adjacent street segments (α), we have defined the evaluation
functions as follows:

f(e) =
1

fx(length(e))
(7.1)

f(α) =
1

fx(α)
(7.2)

92 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

where fx is the probability density from the street network characteristics (normal
distribution based on the average length/angle and its variance)

For paths, we have defined the path evaluation function f(P) as follows: Let
P = (e1, e2, ..., en) be a path, then its evaluation is defined as:

f(P) = B(e1)B(en)[f(e1) + f(α1,2) +

f(e2) + f(α2,3) + · · ·+ f(αn−1,n) + f(en)] (7.3)

where B(e) is a penalty for path-ending street segments based on the degree of the
end nodes (i.e., junctions) of the path (the number of incident street segments already
added to the street network). Note the difference between added street segments and
street-segment candidates.

B(e) = 10 for degree = 0 (i.e. dead end)

B(e) = 1 if e is an interface street segment

B(e) = degree for degree > 0, not an interface

The purpose of the penalty function is to prefer paths that connect street-segment
interfaces and to reduce the number of paths with dead ends. The values of the penalty
function are empirical.

Our goal is to find a path in G with the minimum sum of evaluation values on its
edges and angles. Because the common path-finding algorithms do not work for values
on angles, we transform the original graph G to its dual form, called the line graph
L(G). This transforms angles to edges. After we find the evaluation for paths in L(G)
using a standard pathfinding algorithm, we perform a reverse transformation to obtain
the path evaluations in graph G.

The line graph (also called the edge-to-vertex dual graph) L(G) represents the
adjacencies between the edges of G, and it has the following properties:

1. Each node of L(G) represents an edge of G.

2. Two nodes of L(G) have a common edge if and only if their corresponding edges in
G share a common node.

Let us define the evaluation function f for the edges in the line graph:
Let eLa,b be an edge in L(G) corresponding to a pair of adjacent edges ea and eb in G.
Let αa,b be an angle between the edges ea and eb

7.6. CONSTRAINED STREET-GENERATION ALGORITHM 93

Let us define the evaluation function for the edge in the line graph f(eLa,b) as:

f(eLa,b) =
1

2
f(ea) + f(αa,b) +

1

2
f(eb) (7.4)

Let PL = (eL1,2, e
L
2,3, . . . , e

L
n−1,n) be a path in the line graph; we define f(PL) as:

f(PL) = f(eL1,2) + f(eL2,3) + · · ·+ f(eLn−1,n) (7.5)

Let us substitute eLa,b using formula 7.4:

f(PL) =

(
1

2
f(e1) + f(α1,2) +

1

2
f(e2)

)
+(

1

2
f(e2) + f(α2,3) +

1

2
f(e3)

)
+ · · ·+(

1

2
f(en−1) + f(αn−1,n) +

1

2
f(en)

)
(7.6)

We simplify the expression to:

f(PL) = 1
2
f(e1) + f(α1,2) + f(e2) + f(α2,3) +

f(e3) + · · ·+ f(en−1) + f(αn−1,n) +
1
2
f(en)

We use the substitution from formula 7.3:

f(PL) =
f(P)

B(e1)B(en)
− 1

2
(f(e1) + f(en)) (7.7)

We express f(P) from the previous formula:

f(P) =

(
f(PL) +

f(e1) + f(en)

2

)
B(e1)B(en) (7.8)

Minimum evaluation path-adding algorithm

1. From a given graph G, create its line graph L(G).

2. Using the Floyd-Warshall algorithm, find the path with the smallest evaluation f(PL)

between each pair of nodes in L(G).

94 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Figure 7.7: Top left: Generated street network from top view; Top right: Added building
lots; Bottom: Added building geometry

3. Using formula 7.8, compute f(P) for paths dual to the paths from the previous step.
(Note that dual paths have a minimal evaluation in G between the appropriate nodes
as an outcome of formula 7.8. Also, note that f(e1), f(en), B(e1) and B(en) are
constant for all paths between edges e1 and en.)

4. Find the path in G with the minimum evaluation.

5. Add the path to the street network.

6. Remove all street segment candidates that cross the added path.

7. Repeat steps 1 – 6 until either the average number of street segments on a surface
unit in the processed fragment is higher than the number from the street network
characteristics, or no street candidates are left.

8. Add all remaining street network interfaces to the street network if they were not
added by previous steps (this is quite rare because street network interfaces are
preferred by the penalty function.)

The described path-adding algorithm presents an issue we must address. It is not
guaranteed that the path in G with the minimum evaluation value will not cross itself,

7.7. GENERATING BUILDING LOTS AND GEOMETRY 95

which is a situation we want to avoid. This happens quite rarely because self-crossing
paths usually have a high evaluation value, but it is still possible. For this reason,
we check the selected path for self-crossing. If self-crossing is found, we do not add
the street segment that crosses a previously added street segment in step 5 and any
subsequent segment of the processed path.

Complexity:

Because of the Poisson disk distribution of the junction candidates, the number of
street-segment candidates is linear to the number of junction candidates O(n). The
number of edges and vertices of the line graph L(G) is also O(n). The Floyd-Warshall
algorithm requires O(n3) time to compute the evaluation for all possible paths. The
path evaluation has to be re-computed in each cycle, so the total time complexity is
O(n4) in the worst case. The average case is faster because we add more than one
street-segment candidate with an average path.

Optional post-processing:

When the process of generating street segments is finished, we generate the rest of the
city using a combination of existing algorithms. As the first step, we can optionally
convert the straight street segments into curved streets. This step is not needed when
we work with short average street segments. We do this using the well-known midpoint
displacements algorithm based on the measured tortuosity. To guarantee that the
curved streets will not intersect, we create a Voronoi diagram for the original street
segments and re-generate all displacement operations that are outside the bounds of the
corresponding Voronoi cell until the displacement is within the cell.

7.7 Generating Building Lots and Geometry

When the street network is complete, we create building blocks out of the areas bounded by
streets. In the next step, we subdivide them into building lots, using an algorithm described
by Parish and Müller [86]. Figure 7.7 shows different phases of the modeling process. The
subdivision algorithm described by Aliaga et al. [9] would also be suitable.

To generate the building geometry from the corresponding lots, we use an approach
based on L-systems [92] that was extended by Wonka et al. [124] and later significantly
improved by Müller et al. [76]. This approach generates a building geometry using CGA
(Computer Generated Architecture) grammar that could be created by a model designer or
obtained from existing buildings using a semi-automatic process proposed in [8]. We use

96 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

an existing grammar that is provided with the CityEngine [32] modeling software. One
CGA grammar can generate many building variations.

7.8 Limitations and Potential Extension

This section discusses the limitations of our approach and offers suggestions on how they
could be overcome. We also discuss how to combine our algorithms with previous related
work. Our current implementation does not contain these techniques.

The street generation algorithm presented here does not currently support multiple
street types (e.g., highways, main roads and narrow streets), but it can be extended to
support them. First, we need to acquire separate street-network characteristics for each
type of road. Then, we create street-interfaces for all types of streets. The constraint
generation phase is performed multiple times for each street type, from the widest to the
narrowest.

Our current implementation also does not take into account space-correlations of
individual building types (e.g., industrial buildings are often placed together in existing
cities, as are skyscrapers). This can be solved by creating an additional overlapping infinite
quarter-type structure (e.g., a grid or a different pseudo-randomly generated Delaunay
triangulation) that will provide building-type-probability parameters for the used CGA
grammar. The quarter type would be determined by a hash function for each cell of the
structure.

Currently, we are working with cities on a flat terrain only. However, our approach can
be combined with existing techniques for procedural terrain generation, e.g. [15], to create
more realistic infinite cities. The corresponding street-generation algorithm also has to be
altered, e.g., to prefer streets on a flat terrain rather than on a bumpy one.

Procedurally generated architectures using our approach can be combined with a
finite number of manually designed buildings. We suppose that the designed content is
surrounded by a street loop. In such a case, we add all the endpoints of the street segments
of the street loop to the pool of junction candidates when we perform the constrained
street-generation algorithm of the corresponding Delaunay triangle. In the later phase, we
choose the segments of the street loop first, and we do not perform an evaluation for them.
We can proceed similarly when the designed content crosses the border of two or more
Delaunay triangles.

By substituting the constrained generation algorithm, one can generate different types
of worlds than cities, such as mazes, building interiors or electric circuits. Every new type
of content will require certain minor modifications.

7.9. APPLICATIONS 97

Moreover, we have identified certain weaknesses of the algorithm that we are unable
to overcome at the moment. Our method does not provide good results when the input
street-network characteristics have been obtained from an existing map with diverse types
of street layouts, e.g., city center and surrounding suburbs. In such cases, the resulting
street layout does not reflect either of the original structures. Another problem arises when
distances between street crossings are relatively long compared to the tessellation fragments
- this can occur particularly in the case of highways. In such cases, the constrained street-
generation algorithm does not produce adequate results. We have also noticed performance
problems in the case of high-density street layouts with large tessellation fragments due
to the O(n4) complexity of the algorithm. We therefore recommend the use of smaller
tessellation fragments for dense street layouts with short streets and greater ones for a
sparse layout with long streets. Our method is also limited to simple CGA grammars that
can be generated in real time and that provide a reasonably low number of polygons per
building (up to 50). The sizes of the generated lots must also reflect the possibilities of the
CGA grammar — some grammars can have a limit on the maximum or minimum lot sizes.
Fortunately, most grammars can overcome this limitation by generating a simple standby
geometry, usually an empty lot or a parking space.

7.9 Applications

We have found two main scenarios that perfectly take advantage of our approach:

The first scenario uses a distributed 3D world on multiple client devices with sufficient
computation power but with limited network throughput. This reflects current mobile
phones, tablets and laptops in areas without a high-speed mobile connection or Wi-Fi
connectivity. The devices would use a simple server infrastructure to share the hash
function and would then be able to generate the static content of the world on their own.
They only need to synchronize dynamic changes and positions of users in the world.

The second scenario uses servers in the cloud environment for generating the world and
providing the generated content to the connected clients. The Stateless Generation property
allows us to dynamically add more instances of the server on-demand based on the number
of clients connected and on the area that needs to be covered. The servers can generate
content independently, and they do not have to synchronize their work. Nevertheless,
having a common cache for already generated content would be beneficial to them. This
scenario is useful for a demanding world-generation process and for clients with limited
computational power (e.g., low-end mobile phones, streaming to TV). This can also be
used in computer games to prevent players from cheating by preventing the client from

98 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

accessing data it does not need to display. Content is generated in the cloud and is then
sent to the client devices as vector geometry or is streamed as video. In the case of vector
geometry, the client device caches received content to save bandwidth for future queries.

7.10 Implementation

To verify that our approach is suitable on multiple platforms, we have developed mobile,
laptop/tablet, and web browser applications that interactively generate infinite street net-
works according to the generator parameters. Our implementation follows the first scenario
from the previous section. We did not implement the second scenario.

The mobile application runs on the Windows Phone 8 operating system using WinPRT
technology. The laptop/tablet application uses WinRT technology and can be used on
Windows 8 laptops and tablets (e.g., Microsoft Surface), including the limited Windows RT
operating system. The web application uses Silverlight 5 technology [74] (.Net equivalent
of a Java applet). All our implementations are written in C# and share common parts of
the code using C# Portable Libraries. The graphics are rendered using the cross-platform
XNA library [68, 90].

We have considered using existing software for geometry generation from CGA gram-
mars to avoid re-implementing them. However, none of the common procedural building
modeling tools currently support on-demand generation controlled by 3rd party programs.
We therefore created an automatic export module for the CityEngine for on-demand gener-
ation using its Jython scripting (Python based on Java Runtime), although plugins are not
officially supported by this software. According to CityEngine customer support, future
versions should contain official support for plugins. The plugin allows us to generate
buildings on demand from their lot shapes. This approach enabled us to generate the city
without re-implementing the CGA grammar interpreter. In real scenarios, it is not suitable
to include CityEngine in the client application because of its licensing policy. CityEngine
cannot be executed on mobile phones, so we run it remotely on a separate server in that
case. For the requirements of real future computer games and simulations, we assume
that the CGA grammar interpreter will be implemented as a sub-program of the client
application. CityEngine plugin details are shown in Figure 7.8.

Because different platforms provide different implementations of their standard pseudo-
random generators, we provide our own unified implementation of the pseudo-random
generators and the hash function that is based on Donald E. Knuth’s subtractive random
number generator algorithm [54].

7.10. IMPLEMENTATION 99

Figure 7.8: CityEngine plugin scheme; The plugin can connect to the CityEngine appli-
cation from a remote station and take advantage of the CityEngine tools from distance in
real time. The user can also remotely set grammar rules for desired building models. For
the implementation of the plugin we chose Jython scripting language that is integrated in
the CityEngine. Our solution consists of the server part written in Jython that controls the
modeling software and the client part that can query the server part for building geometry.
The server part is capable to receive grammar rules for generating of geometry and a shape
of the initial lot for the requested building. Then the server part returns the desired building
geometry to the client part. We would like to thank Jaroslav Minařı́k for help with the
implementation of the CityEngine plugin.

100 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Figure 7.9: Comparison of the performance of methods for city-layout generation (average
from 10 measurements with different seeds). Our method is more demanding.

7.11 Performance and Measurements

We measured the performance of the application on a Sony Vaio S15 laptop (Windows 8;
processor: Intel Core i7-3612QM Quad-core 2.1 GHz; 8 GB RAM; graphics card: Intel
HD 4000; resolution: 1920× 1080). First, we measured the time until the first frame is
rendered. This requires that all buildings in the view frustum be generated beforehand.
We compare our method with the previous method published by Greuter et al. [38]. Their
approach creates many more streets and fewer buildings per surface unit. To compensate
for this , we used different view frustum sizes for each of the methods to achieve roughly
the same number of buildings in the view frustum. We performed the measurements for
multiple frustum sizes that are in accordance with multiple numbers of generated buildings,
see Figure 7.9.

Our method is slightly slower, as it generates more advanced streets, but both methods
run at approximately the same speed. Next, we measured the number of frames per second
(FPS) for a static camera and a moving camera. The moving view frustum case has to
address on-demand generation of the street network and additional buildings. Figure 7.10
shows how a walking or running user fits into the real-time frame-rate rendering speed.
The interactive frame-rate (above 5 FPS) is still maintained for a higher speed.

To prove that our approach can be used on mobile phones, we performed measurements
on a Nokia Lumia 920 smartphone (Windows Phone 8, Qualcomm MSM8960 Snapdragon

7.11. PERFORMANCE AND MEASUREMENTS 101

Figure 7.10: Rendering speed for a moving user; the content is generated on-demand
(average from 10 measurements with different seeds). The experiment was performed with
a view frustum that contains approximately 1000 simultaneously displayed buildings. The
average building in the measurement has 35.4 textured polygons.

Figure 7.11: Examples of street network varieties - Left: A dense street network based
on triangular street shapes; Middle: A medium-dense network based on rectangular street
shapes; Right: A low-density street network based on hexagonal shapes; Note that the
results do not perfectly reflect the geometrical shapes of the original network.

102 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

Figure 7.12: Rendering speed for different numbers of buildings on a Nokia Lumia 920.
The phone refresh limit is 30 FPS.

Dual-core 1.5 GHz processor, 1 GB RAM, Adreno 225 graphics card, resolution 1280×
768). In this case, the mobile phone is used to render a geometry that is generated on a
remote computer. The results are shown in Figure 7.12. The phone is capable of rendering
up to 800 buildings in real time. In this test, we do not consider any delay caused by data
transfer from a remote computer. These issues are discussed in [A.3].

7.12 Chapter Conclusions

We have developed an algorithm for generating a possibly infinite street network on-
demand. The main advantage of the algorithm is that it can generate only the content that
is visible to the client and that the generated content is consistent in the case of multiple
clients. Our appearance of an infinite city looks more natural than that of the previous
approach developed by Geuter et al. (compare the results in figures 7.1 and 6.5), although
it does not perfectly simulate the patterns of the example of existing street network, as the
path-selection heuristics do not necessarily result in a perfectly corresponding distribution
of segment lengths - see examples in Figure 7.11. Additional examples of our method are
shown in Figure 7.13. The algorithm can be used in real-time both on personal computers
and on mobile phones. We have also defined requirements and general guidelines for
Stateless Generation that can be used for other algorithms.

7.12. CHAPTER CONCLUSIONS 103

Figure 7.13: Examples of our Stateless Generation method Top row: Street network
generated from street-network characteristics of Berlin. Detailed view of the generated city;
Following rows: Generated cities with alternative CGA grammars - ancient Pompeii [77],
Venice and city suburbs

104 CHAPTER 7. STATELESS GENERATION OF DISTRIBUTED WORLDS

7.13 Future Work

The use of the algorithm presented here is limited to static virtual-world content. The
system could be enhanced to handle both static and dynamic content, in which case
synchronization among clients will be necessary. Currently, our method does not guarantee
an appropriate distribution of street length patterns and angles. The distributions only
correspond in mean values. Although the result is already visually attractive, it may be
possible to improve the algorithm to simulate the original street patterns more faithfully by
reflecting this need more strongly, for example, in the characteristics of the Poisson-disk
distribution or in the path selection heuristics.

Thus far, we have not implemented and evaluated the second scenario from section 7.9.
We expect that this will be interesting from the viewpoints of scalability and synchro-
nization. Other generating algorithms could be adapted to fulfill Stateless Generation
requirements and could be combined with our approach. This would be interesting es-
pecially with popular terrain-generating algorithms and engines. Müller et al. [78] have
presented an algorithm for synthesizing building façades by example. It would be inter-
esting to combine their approach with ours to automatically generate infinite cities with a
structure that matches the maps of existing cities in terms of both building types and street
structure.

On-demand real-time generated cities can benefit from techniques such as occlusion
detection or level-of-detail of procedurally generated models to increase rendering perfor-
mance. Previous post-processing tools and techniques must be altered to support models
created on-demand. Important progress has been made in a concurrent work by Stein-
berger et al. [108, 109]. They use GPU for real-time shape-grammar-based generation and
rendering of urban landscapes and utilize methods of visibility pruning and adaptive levels
of detail to dynamically generate only the geometry needed to render the current view.

Part IV

Closing Part

105

Chapter 8

Conclusions

This chapter summarizes the results of research presented in this thesis.

8.1 Future of Mobile Graphics

Mobile devices are becoming popular and this field of technology is evolving rapidly.
Although new devices have several times more memory and computational power than a
few years ago, novel algorithms for saving resources will be still required. This is because a
new kinds of wearable mobile devices began to appear. Soon people will be using wearable
computers on their wrists, attached to their keys or integrated into their glasses. The size
of these devices limits amount of its resources and effective algorithms will be needed.
In future we can expect even smaller wearable devices shaped e.g. as a rings or contact
lenses. Distributed offloading of computational tasks to cloud servers or a more powerful
local mobile device will likely be a necessity.

8.2 Fulfillment of the Goals

The first goal of the thesis was to propose novel methods for semantic-based reduction
and procedural generation to allow previously impossible graphical scenarios on mobile
devices.

• Our viseme-reduction algorithm uses semantic methods to greatly reduce the amount
of memory needed for facial animations and allows creations of fluent talking-head
applications that were not possible before.

107

108 CHAPTER 8. CONCLUSIONS

• The proposed Stateless-Generation algorithm detects which parts of the huge city
architecture are visible to the user and avoids consuming resources on currently
unnecessary areas.

• The same algorithm also uses procedural generation to create city content on-demand
and reduces required data download. Using the algorithm, we can display infinitely
large urban landscapes on mobile devices where they were not possible before.

The second goal of the thesis was to improve graphical scenarios in distributed archi-
tectures common to mobile devices, considering task offloading and possibly-unreliable
wireless connectivity.

• Our framework for creating 3D head applications discusses optimal distribution of
tasks between a mobile–client and a server–computer for graphic scenarios with
facial animations.

• Our cloud-controlled system for device-to-device content distribution system uti-
lizes systems for cooperative device-to-device video streaming using occasionally-
connected opportunistic connections. All participating mobile devices are managed
by a central server located in a cloud.

• We proposed Stateless-Generation algorithm that allows the generation and syn-
chronizing of urban architecture on mobile devices even when those devices are not
always connected to the server. The algorithm can also be used to allow seamless
scaling of resources in a cases of huge procedurally-generated worlds in the cloud.

8.3 Rendering of Facial Models

Using our framework we demonstrated that as mobile clients are becoming more powerful,
real-time rendering of a voice-interactive talking head is within their reach. We may
expect a boom in voice-interactive 3D mobile applications in fields such as entertainment,
commerce, education or virtual assistance. Client-server architecture, rendering and
synchronizing 3D and audio components locally and controlling the logic and speech
processing remotely, allows applications to be less power-hungry and improves the quality
of virtual-character interaction. Our algorithm for viseme reduction is able to reduce size of
mesh geometries by more than one third and increases rendering speeds more than twofold.
We provided a framework for the easy creation of virtual-character based applications on
mobile phones to spark future research and application development in this area. This

8.4. COLLABORATIVE DISTRIBUTED COMPUTER GRAPHICS 109

framework has been used by a major internet company (Answers.com) to enhance their
mobile app with a virtual talking assistant (see. Figure 8.1). We were involved in both the
application development and model preparation.

8.4 Collaborative Distributed Computer Graphics

Our cloud-controlled system for device-to-device content distribution showed that cloud
logic helps alleviate the saturation of cellular network traffic. Using the cloud, we imple-
mented and experimentally evaluated a novel architecture to disseminate popular video
content to subscribed users. Our measurements showed that opportunistic dissemination
techniques utilizing a coordinating cloud service can achieve a higher offloading rates
than those techniques lacking cloud logic. Using cloud services also allows achieving
better effectiveness in environments with large numbers of mobile devices, avoiding the
congestion of wireless channels.

In our controlled test, we achieved up to 71% saved bandwidth compared to naive inde-
pendent downloading approaches that are currently widely used. Our practical experiment
showed that having users in the same device-to-device range can save 39% of bandwidth
(and a maximum of 53%) by using opportunistic connections when streaming the same
live video. Our work makes important progress by demonstrating the feasibility of easily
sharing graphical data using the cloud on mobile as well as fixed terminals. Our ultimate
goal is to provide an open platform for other researchers to build upon and a tool for the
easy deployment of 3D services. This could have huge potential impact in many interactive
domains (e-commerce, assistive technologies, real-time interaction, gaming, etc.).

8.5 Virtual Cities on Mobile Devices

Our proposed stateless generation algorithm can generate a possibly infinite street network
on-demand. The main advantage of the algorithm is that it can generate only the content
that is visible to the client and that the generated content remains consistent in the case of
multiple clients. The content maintains consistency even when the network connection
of a client becomes unavailable as commonly happens for mobile clients with wireless
connections. Our appearance of an infinite city looks more natural than that of the
previous works, although it does not perfectly simulate the patterns of the existing street-
network example, as the path-selection heuristics do not necessarily result in a perfectly
corresponding distribution of segment lengths. The algorithm can be used in real-time
both on personal computers and mobile phones.

110 CHAPTER 8. CONCLUSIONS

Figure 8.1: Animated head models for virtual mobile assistants: The head models have
been created using FaceGen Modeller by Jiri Danihelka.

Bibliography

[1] Navid Abedini, Swetha Sampath, Rajarshi Bhattacharyya, Suman Paul, and Srinivas
Shakkottai. Realtime streaming with guaranteed QoS over wireless D2D networks.
In Proceedings of the fourteenth ACM international symposium on Mobile ad hoc

networking and computing, pages 197–206. ACM, 2013.

[2] AcbPocketSoft. acbTaskMan for PocketPC. http://www.acbpocketsoft.com.

[3] Andrea Acquaviva, Emanuele Lattanzi, and Alessandro Bogliolo. Power-Aware

Network Swapping for Wireless Palmtop PCS, pages 198–213. Springer US, 2004.

[4] S. Agarwal, A. Kumar, A. A. Nanavati, and N. Rajput. The world wide telecom
web browser. In Proceeding of the 17th international conference on World Wide

Web, pages 1121–1122. ACM, 2008.

[5] Sheetal K. Agarwal, Dipanjan Chakraborty, Arun Kumar, Amit Anil Nanavati, and
Nitendra Rajput. Hstp: hyperspeech transfer protocol. In HT ’07: Proceedings of

the eighteenth conference on Hypertext and hypermedia, pages 67–76, New York,
NY, USA, 2007. ACM.

[6] I. Albrecht, J. Haber, and H. P. Seidel. Speech synchronization for physics-based
facial animation. Proceedings WSCG 2002, pages 9–16, 2002.

[7] Marc Alexa, Uwe Berner, Michael Hellenschmidt, and Thomas Rieger. An anima-
tion system for user interface agents. In Proceedings of WSCG, 2001.

[8] D. G. Aliaga, P. A. Rosen, and D. R. Bekins. Style grammars for interactive
visualization of architecture. IEEE Transactions on Visualization and Computer

Graphics, 13(4):786–797, 2007.

[9] D. G. Aliaga, C. A. Vanegas, and B. Beneš. Interactive example-based urban layout
synthesis. In ACM Transactions on Graphics (TOG), volume 27, 2008.

111

112 BIBLIOGRAPHY

[10] Koray Balci. Xface: Mpeg-4 based open source toolkit for 3d facial animation.
In AVI ’04: Proceedings of the working conference on Advanced visual interfaces,
pages 399–402, New York, NY, USA, 2004. ACM.

[11] Koray Balci. Xface: Open Source Toolkit for Creating 3D Faces of an Embodied

Conversational Agent, pages 263–266. Springer Berlin / Heidelberg, 2005.

[12] Koray Balci. Xfaceed: authoring tool for embodied conversational agents. In ICMI

’05: Proceedings of the 7th international conference on Multimodal interfaces, pages
208–213, New York, NY, USA, 2005. ACM.

[13] Koray Balci, Elena Not, Massimo Zancanaro, and Fabio Pianesi. Xface open source
project and smil-agent scripting language for creating and animating embodied
conversational agents. In MULTIMEDIA ’07: Proceedings of the 15th international

conference on Multimedia, pages 1013–1016, New York, NY, USA, 2007. ACM.

[14] Uwe Berner. Optimized face animation with morph-targets. Journal of WSCG 2004,
12, 2004.

[15] Fernando Bevilacqua, Cesar Tadeu Pozzer, and Marcos Cordeiro d’Ornellas.
Charack: Tool for real-time generation of pseudo-infinite virtual worlds for 3D
games. In Proceedings of the VIII Brazilian Symposium on Games and Digital

Entertainment, pages 111–120. IEEE Computer Society, 2009.

[16] A. W. Black and K. A. Lenzo. Flite: a small fast run-time synthesis engine. In 4th

ISCA Tutorial and Research Workshop (ITRW) on Speech Synthesis, pages 20–24,
2001.

[17] D. A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Kitamura, K. Kiyokawa,
and W. Stuerzlinger. 3D User Interfaces: New Directions and Perspectives. IEEE

Computer Graphics and Applications, 28(6):20–36, 2008.

[18] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst,
Keith Scott, and Howard Weiss. Delay-tolerant networking: an approach to inter-
planetary internet. Communications Magazine, IEEE, 41(6):128–136, 2003.

[19] Justine Cassell, Hannes Högni Vilhjálmsson, and Timothy Bickmore. Beat: the
behavior expression animation toolkit. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages
477–486, New York, 2001. ACM.

BIBLIOGRAPHY 113

[20] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and
James Scott. Impact of human mobility on opportunistic forwarding algorithms.
IEEE Transactions on Mobile Computing, 6(6):606–620, 2007.

[21] K. T. Chen, P. Huang, C. Y. Huang, and C. L. Lei. Game traffic analysis: An
MMORPG perspective. In Proceedings of the international workshop on Network

and operating systems support for digital audio and video, pages 19–24. ACM,
2005.

[22] Soo-Mi Choi, Yong-Guk Kim, Don-Soo Lee, Sung-Oh Lee, and Gwi-Tae Park.
Non-photorealistic 3-d facial animation on the PDA based on facial expression
recognition. In Proceedings 4th International Symposium on Smart Graphics, LNCS

3031, pages 11–20, 2004.

[23] B. G. Chun and P. Maniatis. Augmented smartphone applications through clone
cloud execution. In Proceedings of the 12th conference on Hot topics in operating

systems, pages 8–11. USENIX Association, 2009.

[24] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. Dewall: A fast divide
and conquer delaunay triangulation algorithm in Ed. Computer-Aided Design,
30(5):333–341, 1998.

[25] Cisco. Visual networking index: Global mobile data traffic forecast update, 2012–
2017. White Paper, 2013.

[26] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and texture
generation. ACM Transactions on Graphics, 22(3):287–294, 2003.

[27] Brian Cullen and Carol O’Sullivan. A caching approach to real-time procedural
generation of cities from gis data. Journal of WSCG, 19(3):119–126, 2011.

[28] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational geometry. Springer, 2000.

[29] L. Deng, Y. Wang, K. Wang, A. Acero, H. Hon, J. Droppo, C. Boulis, M. Mahajan,
and XD Huang. Speech and language processing for multimodal human-computer
interaction. The Journal of VLSI Signal Processing, 36(2):161–187, 2004.

[30] Pierre Devevey, Nicolas Lorenzon, and Chaibou Tambary. Measuring wireless
energy consumption on PDAs and on laptops. Universite del la Franche Comte-

DISI, Universita di Genova, 2005.

114 BIBLIOGRAPHY

[31] D. C. Dryer. Getting personal with computers: How to design personalities for
agents. Applied Artifcial Intelligence, 13(3):273–295, 1999.

[32] Esri. CityEngine – 3D modeling software for urban environments, 2008.
http://www.esri.com/software/cityengine.

[33] Frank HP Fitzek and Marcos D Katz. Cooperation in wireless networks: Principles

and applications. Springer, 2006.

[34] Foreignword.
English-Truespel (USA Accent) Text Conversion Tool.
http://www.foreignword.com/dictionary/truespel/transpel.htm.

[35] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital Control of Dynamic

Systems. Addison-Wesley, 2nd edition, 1990.

[36] Gersende Georg, Catherine Pelachaud, and Marc Cavazza. Emotional reading of
medical texts using conversational agents. In AAMAS ’08: Proceedings of the 7th

international joint conference on Autonomous agents and multiagent systems, pages
1285–1288, Richland, SC, 2008. International Foundation for Autonomous Agents
and Multiagent Systems.

[37] Kevin R Glass, Chantelle Morkel, and Shaun D Bangay. Duplicating road patterns
in south african informal settlements using procedural techniques. In Proceedings of

the 4th international conference on Computer graphics, virtual reality, visualisation

and interaction in Africa, pages 161–169. ACM, 2006.

[38] S. Greuter, J. Parker, N. Stewart, and G. Leach. Real-time procedural generation
of pseudo infinite cities. In Proceedings of the 1st international conference on

Computer graphics and interactive techniques in Australasia and South East Asia,
pages 87–95. ACM, 2003.

[39] Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Undiscovered
worlds – Towards a framework for real-time procedural world generation. In Fifth

International Digital Arts and Culture Conference, Melbourne, Australia, 2003.

[40] B. Hamann. A data reduction scheme for triangulated surfaces. Computer Aided

Geometric Design, 11(2):197–214, 1994.

[41] Bo Han, Pan Hui, VS Kumar, Madhav V Marathe, Guanhong Pei, and Aravind
Srinivasan. Cellular traffic offloading through opportunistic communications: a case

BIBLIOGRAPHY 115

study. In Proceedings of the 5th ACM workshop on Challenged networks, pages
31–38. ACM, 2010.

[42] Sha Hua, Yang Guo, Yong Liu, Hang Liu, and Shivendra S Panwar. Scalable
video multicast in hybrid 3g/ad-hoc networks. IEEE Transactions on Multimedia,
13(2):402–413, 2011.

[43] D. Huggins-Daines, M. Kumar, A. Chan, AW Black, M. Ravishankar, and AI Rud-
nicky. Pocketsphinx: A free, real-time continuous speech recognition system for
hand-held devices. In IEEE International Conference on Acoustics, Speech and

Signal Processing. ICASSP Proceedings, volume 1, 2006.

[44] Suk Yu Hui and Kai Hau Yeung. Challenges in the migration to 4g mobile systems.
Communications Magazine, IEEE, 41(12):54–59, 2003.

[45] A. Iosup, A. Lăscăteu, and N. Ţăpuş. Cameo: enabling social networks for massively
multiplayer online games through continuous analytics and cloud computing. In
Proceedings of the 9th Annual Workshop on Network and Systems Support for

Games, page 7. IEEE Press, 2010.

[46] ISO/IEC 14496-1. Information technology – Coding of audio-visual objects – Part 1:

Systems. ISO, Geneva, Switzerland, 1999.

[47] ISO/IEC 14496-2. Information technology – Coding of audio-visual objects – Part 2:

Visual. ISO, Geneva, Switzerland, 1999.

[48] Eric Jung, Yichuan Wang, Iuri Prilepov, Frank Maker, Xin Liu, and Venkatesh
Akella. User-profile-driven collaborative bandwidth sharing on mobile phones. In
Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services:

Social Networks and Beyond, page 2. ACM, 2010.

[49] M.W. Kadous and C. Sammut. Mobile conversational characters. HF2002: Vir-

tual Conversational Characters: Applications, Methods, and Research Challenge,

Melbourne, Australia, 2002.

[50] Gunnar Karlsson, Vincent Lenders, and Martin May. Delay-tolerant broadcasting.
IEEE Transactions on Broadcasting, 53(1):369–381, 2007.

[51] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and
Athina Markopoulou. Microcast: cooperative video streaming on smartphones. In

116 BIBLIOGRAPHY

Proceedings of the 10th international conference on Mobile systems, applications,

and services, pages 57–70. ACM, 2012.

[52] C. Keskin, K. Balci, O. Aran, B. Sankur, and L. Akarun. A multimodal 3D healthcare
communication system. In 3DTV Conference, pages 1–4, 2007.

[53] Kishonti Informatics. GL Benchmark. http://glbenchmark.com.

[54] Donald Ervin Knuth. The art of computer programming 4th edition, volume 2,

section 3.2. Addison-Wesley, 2006.

[55] Jonathan G. Koommey, Stephen Berard, Marla Sanchez, and Henry Wong. Assess-
ing trends in the electrical efficiency of computation over time. IEEE Annals of the

History of Computing, 2009.

[56] Kronous Groups. OpenGL ES - The Standard for Embedded Accelerated 3D
Graphics. http://www.khronos.org/opengles/.

[57] Mike Krus, Patrick Bourdot, Françoise Guisnel, and Gullaume Thibault. Levels of
detail & polygonal simplification. Crossroads, 3(4):13–19, 1997.

[58] Sumedha Kshirsagar, Nadia Magnenat-Thalmann, Anthony Guye-Vuillème, Daniel
Thalmann, Kaveh Kamyab, and Ebrahim Mamdani. Avatar markup language. In
EGVE ’02: Proceedings of the workshop on Virtual environments, pages 169–177,
Aire-la-Ville, Switzerland, 2002. Eurographics Association.

[59] Arun Kumar, Nitendra Rajput, Dipanjan Chakraborty, Sheetal K. Agarwal, and
Amit A. Nanavati. Wwtw: the world wide telecom web. In NSDR ’07: Proceedings

of the workshop on Networked systems for developing regions, pages 1–6, New
York, NY, USA, 2007. ACM.

[60] Ladislav Kunc and Jan Kleindienst. ECAF: Authoring Language for Embodied

Conversational Agents, pages 206–213. Springer, 2007.

[61] Ladislav Kunc, Pavel Slavik, and Jan Kleindienst. Talking head as life blog. In Text,

Speech and Dialogue, Lecture Notes in Computer Science, pages 365–372, 2008.

[62] Geo Leach. Improving worst-case optimal delaunay triangulation algorithms. In 4th

Canadian Conference on Computational Geometry, pages 340–346. Citeseer, 1992.

BIBLIOGRAPHY 117

[63] T. Lechner, B. Watson, U. Wilensky, and M. Felsen. Procedural modeling of land
use in cities. In Midgraph Conference, Washington University, St. Louis, MO.
Citeseer, 2003.

[64] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. ACM Transactions

on Graphics (TOG), 24(3):777–786, 2005.

[65] Vincent Lenders, Gunnar Karlsson, and Martin May. Wireless ad hoc podcasting.
In 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad

Hoc Communications and Networks SECON’07, pages 273–283. IEEE, 2007.

[66] Zuo Li, LI Jin-tao, and Wang Zhao-qi. Anatomical human musculature modeling
for real-time deformation. Journal of WSCG 2003, 11, 2003.

[67] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. Real-time
texture synthesis by patch-based sampling. ACM Transactions on Graphics (ToG),
20(3):127–150, 2001.

[68] Wallace B McClure, Nathan Blevins, John J Croft IV, et al. Cross Platform Android

and iOS Mobile Development. Wrox, 2012.

[69] S. Melax. A simple, fast, and effective polygon reduction algorithm. Game Devel-

oper, 11:44–49, 1998.

[70] P. Merrell. Example-based model synthesis. In Proceedings of the 2007 symposium

on Interactive 3D graphics and games, pages 105–112. ACM, 2007.

[71] P. Merrell and D. Manocha. Continuous model synthesis. In ACM Transactions on

Graphics (TOG), 2008.

[72] Microsoft. Windows Azure. http://www.microsoft.com/windowsazure.

[73] Microsoft. Windows Phone 7. http://www.windowsphone7.com.

[74] Microsoft. Silverlight, 2007. http://www.silverlight.net/.

[75] Bren Mochocki, Kanishka Lahiri, and Srihari Cadambi. Power analysis of mobile 3d
graphics. In DATE ’06: Proceedings of the conference on Design, automation and

test in Europe, pages 502–507, 3001 Leuven, Belgium, Belgium, 2006. European
Design and Automation Association.

118 BIBLIOGRAPHY

[76] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural modeling

of buildings, volume 25. ACM, 2006.

[77] Pascal Müller, Tijl Vereenooghe, Andreas Ulmer, and Luc Van Gool. Automatic re-
construction of Roman housing architecture. Recording, modeling and visualization

of cultural heritage, pages 287–298, 2005.

[78] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based procedural
modeling of facades. ACM Transactions on Graphics, 26(3), 2007.

[79] M. T. Najaran and C. Krasic. Scaling online games with adaptive interest manage-
ment in the cloud. In Proceedings of the 9th Annual Workshop on Network and

Systems Support for Games, page 9. IEEE Press, 2010.

[80] Clifford Nass, Youngme Moon, B. J. Fogg, Byron Reeves, and Chris Dryer. Can
computer personalities be human personalities? In CHI ’95: Conference companion

on Human factors in computing systems, pages 228–229, New York, NY, USA,
1995. ACM.

[81] Radoslaw Niewiadomski, Elisabetta Bevacqua, Maurizio Mancini, and Catherine
Pelachaud. Greta: an interactive expressive ECA system. In AAMAS ’09: Proceed-

ings of The 8th International Conference on Autonomous Agents and Multiagent

Systems, pages 1399–1400, Richland, SC, 2009. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[82] Amalia Ortiz, Maria del Puy Carretero, David Oyarzun, Jose Yanguas, Cristina
Buiza, M. Gonzalez, and Igone Etxeberria. Elderly Users in Ambient Intelligence:

Does an Avatar Improve the Interaction?, pages 99–114. Springer Berlin / Heidel-
berg, 2007.

[83] Igor S. Pandzic. Facial animation framework for the web and mobile platforms.
In Web3D ’02: Proceedings of the seventh international conference on 3D Web

technology, pages 27–34, New York, USA, 2002. ACM.

[84] Igor S. Pandzic and Robert Forchheimer. MPEG-4 Facial Animation: The Standard,

Implementation and Applications, pages 15–61. Wiley, 2002.

[85] I.S. Pandzic, J. Ahlberg, M. Wzorek, P. Rudol, and M. Mosmondor. Faces every-
where: towards ubiquitous production and delivery of face animation. In Proceed-

ings of the 2nd International Conference on Mobile and Ubiquitous Multimedia,

Norrkoping, Sweden, 2003.

BIBLIOGRAPHY 119

[86] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages
301–308. ACM, 2001.

[87] W. Pasman and F. W. Jansen. Scheduling level of detail with guaranteed quality and
cost. In Web3D ’02: Proceedings of the seventh international conference on 3D

Web technology, pages 43–51, New York, NY, USA, 2002. ACM.

[88] Catherine Pelachaud. Multimodal expressive embodied conversational agents. In
MULTIMEDIA ’05: Proceedings of the 13th annual ACM international conference

on Multimedia, pages 683–689, New York, NY, USA, 2005. ACM.

[89] Kostas Pentikousis. In search of energy-efficient mobile networking. IEEE Commu-

nications Magazine, 48(1):95–103, 2010.

[90] Charles Petzold. Microsoft XNA Framework Edition: Programming Windows Phone

7. Microsoft press, 2010.

[91] P. Poller and J. Muller. Distributed audio-visual speech synchronization. In Seventh

International Conference on Spoken Language Processing, 2002.

[92] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of plants. Springer,
1991.

[93] P. Prusinkiewicz, A. Lindenmayer, J. S. Hanan, F. D. Fracchia, D. R. Fowler, M. J. M.
de Boer, and L. Mercer. The algorithmic beauty of plants. Springer New York,
1990.

[94] Kari Pulli, Jani Vaarala, Ville Miettinen, Robert Simpson, Tomi Aarnio, and Mark
Callow. The mobile 3d ecosystem. In ACM SIGGRAPH courses, page 1, New York,
NY, USA, 2007. ACM.

[95] Lingyun Qiu and Izak Benbasat. An investigation into the effects of text-to-speech
voice and 3d avatars on the perception of presence and flow of live help in electronic
commerce. ACM Trans. Comput.-Hum. Interact., 12(4):329–355, 2005.

[96] Qt Software. Qt Application Framework. http://trolltech.com/products.

[97] Marwan Ramadan, Layla El Zein, and Zaher Dawy. Implementation and evaluation
of cooperative video streaming for mobile devices. In IEEE 19th International

Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
pages 1–5. IEEE, 2008.

120 BIBLIOGRAPHY

[98] I. V. Ramakrishnan, Amanda Stent, and Guizhen Yang. Hearsay: enabling audio
browsing on hypertext content. In WWW ’04: Proceedings of the 13th international

conference on World Wide Web, pages 80–89, New York, NY, USA, 2004. ACM.

[99] M. Reddy. SCROOGE: Perceptually-driven polygon reduction. In Computer

Graphics Forum, volume 15, pages 191–203. John Wiley & Sons, 2003.

[100] Matthew Seligman, Kevin Fall, and Padma Mundur. Alternative custodians for
congestion control in delay tolerant networks. In Proceedings of the SIGCOMM

workshop on Challenged networks, pages 229–236. ACM, 2006.

[101] Sujan Shrestha. Mobile web browsing: usability study. In Mobility ’07: Proceedings

of the 4th international conference on mobile technology, applications, and systems

and the 1st international symposium on Computer human interaction in mobile

technology, pages 187–194, New York, NY, USA, 2007. ACM.

[102] Eftychios Sifakis, Andrew Selle, Avram Robinson-Mosher, and Ronald Fedkiw.
Simulating speech with a physics-based facial muscle model. In SCA ’06: Proceed-

ings of the ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 261–270, Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics Asso-
ciation.

[103] Olli Silven and Kari Jyrkka. Observations on power-efficiency trends in mobile
communication devices. EURASIP Journal on Embedded Systems, 2007.

[104] Singular Inversion. FaceGen. www.facegen.com.

[105] A Prasad Sistla, Ouri Wolfson, and Bo Xu. Opportunistic data dissemination in
mobile peer-to-peer networks. In Advances in Spatial and Temporal Databases,
pages 346–363. Springer, 2005.

[106] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
Spray and wait: an efficient routing scheme for intermittently connected mobile
networks. In Proceedings of the ACM SIGCOMM workshop on Delay-tolerant

networking, pages 252–259. ACM, 2005.

[107] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof. Inverse procedural
modeling by automatic generation of L-systems. In Computer Graphics Forum,
volume 29, pages 665–674. Wiley Online Library, 2010.

BIBLIOGRAPHY 121

[108] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Joerg Mueller, Peter Wonka,
and Dieter Schmalstieg. Parallel generation of architecture on the GPU. In Computer

Graphics Forum, volume 33, 2014.

[109] Markus Steinberger, Michael Kenzel, Bernhard Kainz, Peter Wonka, and Dieter
Schmalstieg. On-the-fly generation and rendering of infinite cities on the GPU. In
Computer Graphics Forum, volume 33, 2014.

[110] Jing Sun, Xiaobo Yu, George Baciu, and Mark Green. Template-based generation
of road networks for virtual city modeling. In Proceedings of the ACM symposium

on Virtual reality software and technology, pages 33–40. ACM, 2002.

[111] Zan Sun, Amanda Stent, and I. V. Ramakrishnan. Dialog generation for voice
browsing. In W4A ’06: Proceedings of the international cross-disciplinary workshop

on Web accessibility (W4A), pages 49–56, New York, NY, USA, 2006. ACM.

[112] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction, volume 1.
Cambridge Univ Press, 1998.

[113] C. A. Vanegas, D. G. Aliaga, B. Beneš, and P. A. Waddell. Interactive design of
urban spaces using geometrical and behavioral modeling. In ACM SIGGRAPH Asia

papers, pages 1–10. Citeseer, 2009.

[114] C. A. Vanegas, D. G. Aliaga, P. Wonka, P. Müller, P. Waddell, and B. Watson.
Modelling the appearance and behaviour of urban spaces. In Computer Graphics

Forum, volume 29, pages 25–42. Wiley Online Library, 2010.

[115] Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and
Pascal Müller. Procedural generation of parcels in urban modeling. In Computer

Graphics Forum, volume 31, pages 681–690. Wiley Online Library, 2012.

[116] Daniel Wagner, Mark Billinghurst, and Dieter Schmalstieg. How real should
virtual characters be? In ACE ’06: Proceedings of the ACM SIGCHI international

conference on Advances in computer entertainment technology, page 57, New York,
NY, USA, 2006. ACM.

[117] J. Waldo. Scaling in games and virtual worlds. Communications of the ACM,
51(8):38–44, 2008.

122 BIBLIOGRAPHY

[118] Alice Wang, Michael Emmi, and Petros Faloutsos. Assembling an expressive facial
animation system. In Sandbox ’07: Proceedings of the ACM SIGGRAPH symposium

on Video games, pages 21–26, New York, NY, USA, 2007. ACM.

[119] K. Waters and T.M. Levergood. DECface: An automatic lip-synchronization algo-
rithm for synthetic faces. Digital Equipment Corp, Cambridge Research Laboratory,

Technical Report Series 93, 4, 1993.

[120] B. Weber, P. Muller, P. Wonka, and M. Gross. Interactive geometric simulation of
4D cities. In Computer Graphics Forum, volume 28, pages 481–492. Blackwell
Publishing, 2009.

[121] John Whitbeck, Marcelo Amorim, Yoann Lopez, Jeremie Leguay, and Vania Conan.
Relieving the wireless infrastructure: When opportunistic networks meet guaranteed
delays. In IEEE International Symposium on a World of Wireless, Mobile and

Multimedia Networks (WoWMoM), pages 1–10. IEEE, 2011.

[122] A. Wigley, M. Sutton, S. Wheelwright, R. Burbidge, and R. Mcloud. Microsoft. Net

Compact Framework: Core Reference. Microsoft Press Redmond, WA, USA, 2002.

[123] Hanno Wirtz, Jan Rüth, Torsten Zimmermann, and Klaus Wehrle. Interest-based
cloud-facilitated opportunistic networking. In Proceedings of the 8th ACM MobiCom

workshop on challenged networks, pages 63–68. ACM, 2013.

[124] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture, volume 22.
ACM, 2003.

[125] Steven Worley. A cellular texture basis function. In Proceedings of the 23rd annual

conference on computer graphics and interactive techniques, pages 291–294. ACM,
1996.

[126] Min Yin and Shumin Zhai. The benefits of augmenting telephone voice menu
navigation with visual browsing and search. In CHI ’06: Proceedings of the

SIGCHI conference on human factors in computing systems, pages 319–328, New
York, NY, USA, 2006. ACM.

Author’s publications related to the
thesis

Publications in journals
[A.1] Jiri Danihelka, Lukas Kencl, and Jiri Zara

Stateless generation of distributed virtual worlds
In Computers & Graphics Journal, volume 44, pages 33-44, Elsevier, 2014.
12 pages
WoS citations: 0 Google Scholar citations: 0
Journal impact factor: 1.029
(Ratio: 75%, 15%, 10%) [Indexed in Web of Science]

[A.2] Jiri Danihelka, Roman Hak, Lukas Kencl, and Jiri Zara
3D talking-head interface to voice-interactive services on mobile phones
In Mobile HCI SiMPE 2010 Papers Proceedings, 2010
8 pages

The paper has been selected as the best paper and published in a journal:
International Journal of Mobile Human Computer Interaction (IJMHCI)

pages 50-64, volume 3, IGI global, 2011
14 pages
Journal impact factor: 0.15

Consequently the paper has been published in a book:
Developments in Technologies for Human-Centric Mobile Computing and

Applications

pages 130-144, ISBN13 9781466620681, ISBN10 1466620684, IGI global, 2012
14 pages
WoS citations: 3 Google Scholar citations: 9
(Ratio: 40%, 30%, 20%, 10%)

123

124 AUTHOR’S PUBLICATIONS RELATED TO THE THESIS

Publications indexed in Web of Science and SCOPUS

[A.3] Jiri Danihelka, and Lukas Kencl
Collaborative 3D environments over Windows Azure
Proceedings of the IEEE 7th International Symposium on Service Oriented System

Engineering (SOSE), 2013.
6 pages
WoS citations: 2 Google Scholar citations: 3
(Ratio: 60%, 40%) [Indexed in Web of Science, Scopus]

[A.4] Jiri Danihelka, Domenico Giustiniano, and Theus Hossmann
HyCloud: A system for device-to-device content distribution controlled by the
cloud
In Proceedings of The 15th IEEE International Symposium on a World of Wireless,

Mobile and Multimedia Networks (IEEE WoWMoM 2014) , 16-19 June 2014, Syd-
ney, Australia.
5 pages
WoS citations: 0 Google Scholar citations: 0
(Ratio: 70%, 15%, 15%) [Indexed in Web of Science]

[A.5] Jiri Danihelka, Lukas Kencl, and Jiri Zara
Reduction of animated models for embedded devices
In WSCG 2010 Communication Papers Proceedings, 2010.
5 pages
WoS citations: 3 Google Scholar citations: 8
(Ratio: 80%, 10%, 10%) [Indexed in Web of Science]

AUTHOR’S PUBLICATIONS RELATED TO THE THESIS 125

Other publications

[A.6] Jiri Danihelka, Domenico Giustiniano, and Bernhard Plattner
On a Cloud-Controlled Architecture for Device-to-Device Content Distribution
In Proceedings of the 10th ACM workshop on Challenged networks (ACM CHANTS

2015) , 11th September 2015, Paris, France.
6 pages
(Ratio: 50%, 40%, 10%) [To appear]

[A.7] David Sedlacek, Jiri Danihelka, Zdenek Travnicek, Michal Lukac, Roman Berka,
Jiri Zara
Virtual Cities in Time And Space (ViCiTiS)
CTU in Prague: Department of Computer Graphics and Interaction
CS-TR-DCGI-2012-4, ISSN 1805-6180, 2012
53 pages, technical report
WoS citations: 1 Google Scholar citations: 0
(Ratio: 25%, 25%, 15%, 15%, 10%, 10%)

[A.8] Jiri Danihelka, and Jiri Zara
Procedural generation of infinite cities
In Proceedings of the Eurographics Conference 2011, pages 31–33, The Eurograph-
ics Association.
3 pages + poster
(Ratio: 80%, 20%)

[A.9] Jiri Danihelka, and Lukas Kencl
Interactive 3D environments over Windows Azure
In Proceedings of the Cloud Futures Workshop 2012, Berkeley, California, USA,
2012.
5 pages
(Ratio: 60%, 40%)

126 AUTHOR’S PUBLICATIONS RELATED TO THE THESIS

[A.10] Jiri Danihelka, Roman Hak, Lukas Kencl, Jiri Zara
Demo: Interacting with a 3D talking-head on a mobile phone
In Mobile HCI SiMPE 2010 Demo Papers Proceedings, 2010.
1 page
(Ratio: 40%, 30%, 20%, 10%)

[A.11] Jiri Danihelka, Lukas Kencl, Roman Hak
Talking with an avatar on a mobile client
In International Conference on Advances in Computer Entertainment Technology,

Salon de ACE. ACM, 2009.
poster
(Ratio: 50%, 25%, 25%)

[A.12] Jiri Danihelka, Lukas Kencl, Roman Hak
Client-server talking head on mobile
Science beyond Fiction: The European Future Technologies Conference (FET09)
Prague 2009
poster
(Ratio: 50%, 25%, 25%)

[A.13] Jiri Danihelka, Roman Hak, Lukas Kencl, Jiri Zara
Talking avatar on PDA device
Poster 2010 - 14th International Student Conference on Electrical Engineering
CTU Prague 2010
2 pages and poster
(Ratio: 40%, 30%, 20%, 10%)

Author’s publications not related to the
thesis

Publications indexed in Web of Science and SCOPUS

[A.14] Katerina Dufkova, Jiri Danihelka, Michal Ficek, Ivan Gregor, and Jan Kouba
Can active tracking of inroamer location optimise a live GSM network?
In Proceedings of the 2007 ACM CoNEXT conference, ISBN: 978-1-59593-770-4,
ACM, 2007.
2 pages + poster
WoS citations: 1 Google Scholar citations: 3
(Ratio: 20%, 20%, 20%, 20%, 20%) [Indexed in Scopus]

[A.15] Katerina Dufkova, Michal Ficek, Lukas Kencl, Jan Novak, Jan Kouba, Ivan Gregor,
and Jiri Danihelka
Active GSM Cell-ID tracking: Where did you disappear?
In Proceedings of the first ACM international workshop on Mobile entity localization

and tracking in GPS-less environments, pages 7–12. ACM, 2008.
6 pages
WoS citations: 5 Google Scholar citations: 21
(Ratio: 20%, 20%, 20%, 10%, 10%, 10%, 10%) [Indexed in Scopus]

Organized conferences

[A.16] Microsoft Fest 2012, Czech Technical University in Prague
Chairman: Jiri Danihelka
Keynote to mobile development track: XAML language
Second talk: Advanced UI design with Expression Blend
http://www.ms-fest.cz/2012/

127

128 AUTHOR’S PUBLICATIONS NOT RELATED TO THE THESIS

Citations of publications

Self-citations are included.

Web of Science citations of [A.2]

[C.1] Jiri Danihelka and Lukas Kencl. Collaborative 3d environments over Windows
Azure. In IEEE 7th International Symposium on Service Oriented System Engi-

neering (SOSE), pages 472–477. IEEE, 2013.

[C.2] Roman Hak, Jakub Dolezal, and Tomas Zeman. Manitou: A multimodal interaction
platform. In 5th Joint IFIP Wireless and Mobile Networking Conference (WMNC),
pages 60–63. IEEE, 2012.

[C.3] Cristian Negrescu, Amelia Ciobanu, and Marija D. Ilie. Specific acoustic unit
processing in concatenative romanian speech synthesis used for talking agents. In
7th Conference on Speech Technology and Human-Computer Dialogue (SpeD),
pages 1–8. IEEE, 2013.

Google Scholar citations of [A.2]

[C.4] Jiri Danihelka and Lukas Kencl. Interactive 3d environments over Windows Azure.
In Proceedings of the Cloud Futures Workshop, 2012.

[C.5] Jiri Danihelka and Lukas Kencl. Collaborative 3d environments over Windows
Azure. In IEEE 7th International Symposium on Service Oriented System Engi-

neering (SOSE), pages 472–477. IEEE, 2013.

[C.6] Roman Hak, Jakub Dolezal, and Tomas Zeman. Manitou: A multimodal interaction
platform. In 5th Joint IFIP on Wireless and Mobile Networking Conference

(WMNC), pages 60–63. IEEE, 2012.

129

130 CITATIONS OF PUBLICATIONS

[C.7] Mohd Najib Hamdan and Ahmad Zamzuri Mohamad Ali. User satisfaction of
non-realistic three-dimensional talking-head animation courseware (3d-nr).

[C.8] Mohd Najib Hamdan and Ahmad Zamzuri Mohamad Ali. Developing and evaluat-
ing of non-realistic three-dimensional (3d-nr) and two-dimensional (2d) talking-
head animation courseware. Malaysian Online Journal of Educational Technology,
2015.

[C.9] Marija D Ilie, Amelia Ciobanu, Cristian Negrescu, and Dumitru Stanomir. To-
wards expressive romanian speaking 3d avatars for multimedia interfaces. In 20th

International Conference on Systems, Signals and Image Processing (IWSSIP),
pages 47–50. IEEE, 2013.

[C.10] Huijie Lin, Jia Jia, Xiangjin Wu, and Lianhong Cai. Talkingandroid: An interac-
tive, multimodal and real-time talking avatar application on mobile phones. In
Asia-Pacific Signal and Information Processing Association Annual Summit and

Conference (APSIPA), pages 1–4. IEEE, 2013.

[C.11] Cristian Negrescu, Amelia Ciobanu, and Marija D Ilie. Specific acoustic unit
processing in concatenative romanian speech synthesis used for talking agents. In
7th Conference Speech Technology and Human-Computer Dialogue (SpeD), pages
1–8. IEEE, 2013.

[C.12] Marcos Santos Pérez. Análisis y Optimización de Agentes Conversacionales 3D

para Sistemas Empotrados. PhD thesis, Universidad de Málaga, 2014.

Web of Science citations of [A.3]

[C.13] Jiri Danihelka, Lukas Kencl, and Jiri Zara. Stateless generation of distributed
virtual worlds. Computers & Graphics, 44:33–44, 2014.

[C.14] Ondrej Tomanek and Lukas Kencl. Claudit: Planetary-scale cloud latency auditing
platform. In IEEE 2nd International Conference on Cloud Networking (CloudNet),
pages 138–146. IEEE, 2013.

Google Scholar citations of [A.3]

[C.15] José López Cı́vico. Measuring latency in Windows Azure using a collaborative 3d
environment. 2013.

CITATIONS OF PUBLICATIONS 131

[C.16] Jiri Danihelka, Lukas Kencl, and Jiri Zara. Stateless generation of distributed
virtual worlds. Computers & Graphics, 44:33–44, 2014.

[C.17] Ondrej Tomanek and Lukas Kencl. Claudit: Planetary-scale cloud latency auditing
platform. In IEEE 2nd International Conference on Cloud Networking (CloudNet),
pages 138–146. IEEE, 2013.

Web of Science citations of [A.5]

[C.18] Jiri Danihelka and Lukas Kencl. Collaborative 3d environments over Windows
Azure. In IEEE 7th International Symposium on Service Oriented System Engi-

neering (SOSE), pages 472–477. IEEE, 2013.

[C.19] Engin Mendi. A 3d face animation system for mobile devices. Journal of Intelligent

& Fuzzy Systems: Applications in Engineering and Technology, 26(1):11–18, 2014.

[C.20] Engin Mendi and Coskun Bayrak. Text-to-audiovisual speech synthesizer for
children with learning disabilities. Telemedicine and e-Health, 19(1):31–35, 2013.

Google Scholar citations of [A.5]

[C.21] Jiri Danihelka, Roman Hak, Lukas Kencl, and Jiri Zara. 3d talking-head interface
to voice-interactive services on mobile phones. Developments in Technologies for

Human-Centric Mobile Computing and Applications, page 130, 2012.

[C.22] Jiri Danihelka and Lukas Kencl. Interactive 3d environments over Windows Azure.
In Proceedings of the Cloud Futures Workshop, 2012.

[C.23] Jiri Danihelka and Lukas Kencl. Collaborative 3d environments over Windows
Azure. In 7th International Symposium on Service Oriented System Engineering

(SOSE), 2013 , pages 472–477. IEEE, 2013.

[C.24] Bc Jakub Doležal. Openspeechplatform: Návrh a implementace komplexnı́ hlasové
aplikace.

[C.25] Engin Mendi. A 3d face animation system for mobile devices. Journal of Intelligent

& Fuzzy Systems: Applications in Engineering and Technology, 26(1):11–18, 2014.

132 CITATIONS OF PUBLICATIONS

[C.26] Engin Mendi and Coskun Bayrak. Facial animation framework for web and mobile
platforms. In 13th International Conference on e-Health Networking Applications

and Services (Healthcom), pages 52–55. IEEE, 2011.

[C.27] Engin Mendi and Coskun Bayrak. Text-to-audiovisual speech synthesizer for
children with learning disabilities. Telemedicine and e-Health, 19(1):31–35, 2013.

[C.28] Matthew David Ramage. Disproving visemes as the basic visual unit of speech.
2013.

Web of Science citations of [A.7]

[C.29] Jiri Danihelka, Lukas Kencl, and Jiri Zara. Stateless generation of distributed
virtual worlds. Computers & Graphics, 44:33–44, 2014.

Web of Science citations of [A.14]

[C.30] Michal Ficek, Tomáš Pop, and Lukáš Kencl. Active tracking in mobile networks:
An in-depth view. Computer Networks, 57(9):1936–1954, 2013.

Google Scholar citations of [A.14]

[C.31] Michal Ficek. Tracking users in mobile networks: Data acquisition methods and
their limits. 2013.

[C.32] Michal Ficek, Tomáš Pop, and Lukáš Kencl. Active tracking in mobile networks:
An in-depth view. Computer Networks, 57(9):1936–1954, 2013.

[C.33] Jakub Novák and Jana Temelová. Každodennı́ život a prostorová mobilita mladỳch
Pražanů: pilotnı́ studie využitı́ lokalizačnı́ch dat mobilnı́ch telefonů. Sociologickỳ

časopis/Czech Sociological Review, (05):911–938, 2012.

Web of Science citations of [A.15]

[C.34] Kateřina Dufková, Jean-Yves Le Boudec, Lukáš Kencl, and Milan Bjelica. Predict-
ing user-cell association in cellular networks from tracked data. In Mobile Entity

Localization and Tracking in GPS-less Environnments, pages 19–33. Springer,
2009.

CITATIONS OF PUBLICATIONS 133

[C.35] Jakub Novak and Jana Temelova. Everyday life and spatial mobility of young
people in prague: a pilot study using mobile phone location data. Sociologicky

Casopis-Czech Sociological Review, 48(5):911–938, 2012.

[C.36] Guang Yang. Discovering significant places from mobile phones–a mass market
solution. In Mobile Entity Localization and Tracking in GPS-less Environnments,
pages 34–49. Springer, 2009.

Google Scholar citations of [A.15]

[C.37] Carlos Azevedo, Gorete Dinis, and Zélia Breda. Understanding visitors’ spatio-
temporal distribution through data collection using information and communication
technologies.

[C.38] Kateřina Dufková, Milan Bjelica, Byongkwon Moon, Lukáš Kencl, and J.-Y.
Le Boudec. Energy savings for cellular network with evaluation of impact on data
traffic performance. In Wireless Conference (EW), 2010 European, pages 916–923.
IEEE, 2010.

[C.39] Kateřina Dufková, Jean-Yves Le Boudec, Lukáš Kencl, and Milan Bjelica. Predict-
ing user-cell association in cellular networks from tracked data. In Mobile Entity

Localization and Tracking in GPS-less Environnments, pages 19–33. Springer,
2009.

[C.40] Michal Ficek. Tracking users in mobile networks: Data acquisition methods and
their limits. 2013.

[C.41] Michal Ficek and Lukáš Kencl. Improving roamer retention by exposing weak lo-
cations in gsm networks. In Proceedings of the 5th international student workshop

on Emerging networking experiments and technologies, pages 17–18. ACM, 2009.

[C.42] Michal Ficek and Lukas Kencl. Inter-call mobility model: a spatio-temporal
refinement of call data records using a gaussian mixture model. In INFOCOM

proceedings, pages 469–477. IEEE, 2012.

[C.43] Michal Ficek, Tomáš Pop, and Lukáš Kencl. Active tracking in mobile networks:
An in-depth view. Computer Networks, 57(9):1936–1954, 2013.

134 CITATIONS OF PUBLICATIONS

[C.44] Michal Ficek, Tomáš Pop, Petr Vláčil, Kateřina Dufková, Lukáš Kencl, and Martin
Tomek. Performance study of active tracking in a cellular network using a modular
signaling platform. In Proceedings of the 8th international conference on Mobile

systems, applications, and services, pages 239–254. ACM, 2010.

[C.45] Matthew Kwan. Visualization and analysis of mobile phone location data. PhD
thesis, RMIT University, 2012.

[C.46] Kari Laasonen et al. Mining cell transition data. 2009.

[C.47] Teddy Mantoro, Abi Dzar Jaafar, Mohd Fadhli Md Aris, Media Ayu, et al. Hajjloca-
tor: A hajj pilgrimage tracking framework in crowded ubiquitous environment. In
International Conference on Multimedia Computing and Systems (ICMCS), pages
1–6. IEEE, 2011.

[C.48] Eduardo Baena Martinez, Michal Ficek, and Lukas Kencl. Mobility data
anonymization by obfuscating the cellular network topology graph. In Inter-

national Conference on Communications (ICC), pages 2032–2036. IEEE, 2013.

[C.49] Abdel Meniem, H. Mohamed, Ahmed M. Hamad, and Eman Shaaban. Relative
RSS-based GSM localization technique. In Electro/Information Technology (EIT),

2013 IEEE International Conference, pages 1–6. IEEE, 2013.

[C.50] Abdel Meniem, H. Mohamed , Ahmed M. Hamad, and Eman Shaaban. GSM-based
positioning technique using relative received signal strength. International Journal

of Handheld Computing Research (IJHCR), 4(4):38–51, 2013.

[C.51] Jakub Novák and Jana Temelová. Každodennı́ život a prostorová mobilita mladỳch
Pražanů: pilotnı́ studie využitı́ lokalizačnı́ch dat mobilnı́ch telefonů. Sociologickỳ

časopis/Czech Sociological Review, (05):911–938, 2012.

[C.52] Biplav Srivastava, Tran Viet Huan, Wei Xiong Shang, Ullas Nambiar, Vivek Tyagi,
and Shivkumar Kalyanaraman. Towards a sustainable services ecosystem for traffic
management. In Annual SRII Global Conference (SRII), pages 392–400. IEEE,
2011.

[C.53] RRSS Strength. Practical positioning and traffic estimation techniques using
relative received signal.

[C.54] Keen Sung, Brian Neil Levine, and Marc Liberatore. Location privacy without
carrier cooperation. Proc. IEEE.

CITATIONS OF PUBLICATIONS 135

[C.55] Shang Weixiong, Zhu Yanfeng, Zhou Jin, and Ying Chun. Collecting and analyzing
mobility data from mobile network. In IC-BNMT’09. 2nd IEEE International

Conference on Broadband Network & Multimedia Technology, pages 810–815.
IEEE, 2009.

[C.56] Kuldeep Yadav and Vinayak Naik. Geo-localization and location-aware oppor-
tunistic communication for mobile phones. 2014.

[C.57] Guang Yang. Discovering significant places from mobile phones–a mass market
solution. In Mobile Entity Localization and Tracking in GPS-less Environnments,
pages 34–49. Springer, 2009.

136 CITATIONS OF PUBLICATIONS

List of Supervised Students

These students were supervised by Jiri Danihelka during his PhD study.

1. Michal Holanec
Comparison of programs for editing 2D graphics
bachelor thesis

2. Jan Kvasnička
Sign language visualization on PDA
bachelor thesis

3. Jan Pavlovský
Virtual worlds on PDAs
bachelor thesis

4. Martin Svatek
Interactive model of RDC lab
bachelor thesis

5. Jan Zı́ka
Model of the GSM network using VRML
bachelor thesis

6. Petr Švestka
Usage of interface agents
diploma thesis

7. Marek Loucký
Virtual worlds gallery
bachelor thesis

137

138 CITATIONS OF PUBLICATIONS

8. Matous Bednář
Demo applications for flystick
bachelor thesis

9. Aleš Havlı́ček
The use of technology VRML for sale of goods and services offer
bachelor thesis

10. Rymzhan Bayekeyeva
Graphic libraries for Windows Mobile
bachelor thesis

11. Jaroslav Minařı́k
Connection between Cave and CityEngine
bachelor thesis

12. Radek Sedláček
Virtual customer care center
bachelor thesis

13. Jakub Vampola
Grammar for the generating current Prague architecture
bachelor thesis

14. Martin Šembera
The modeler’s guide in the CGA language
bachelor thesis

All bachelor and diploma theses are available online on the Czech Technical University
web page: https://dip.felk.cvut.cz/

https://dip.felk.cvut.cz/

List of Figures

1.1 The most commonly used mobile operating systems 6

2.1 Feature points defined in MPEG-4 facial animation standard 19

3.1 Merging of keyframes meshes of faces 22

3.2 Basic model reduction . 23

4.1 Talking-head application on a Windows Mobile 6.1 device 32

4.2 Video-streaming architecture for 3D talking-head applications 34

4.3 Client-server architecture with speech-recognition on client-side 35

4.4 Client-server architecture with speech-recognition on server-side 36

4.5 GLESBenchmark application . 37

4.6 Process for generating face animation based on phoneme duration 39

4.7 Final framework architecture . 40

4.8 A synthetized word ”Recently” visually represented by seven visemes . . 42

4.9 An example of a created application . 42

5.1 Schema of the cloud-based distribution system 52

5.2 Timeline graph for content distribution 53

5.3 Example of communication for content distribution (UML interaction
diagram) . 54

5.4 Packets format of signaling between the device and the cloud 59

5.5 Comparison of saved bandwidth for different strategies 62

5.6 Congestion signal of D2D communication for the three different dissemi-
nation strategies . 64

5.7 Comparison of Experiment I and Experiment II 65

5.8 Bandwidth savings in the practical experiment for Experiment II and
average number of nearby devices after Bluetooth scanning 66

139

140 LIST OF FIGURES

6.1 An example of behavioral city modeling 72
6.2 General pipeline for city modeling . 73
6.3 CGA rules created for existing building 74
6.4 Several generations of the buildings derivation 75
6.5 Regular rectangular grid of building lots 76
6.6 Determining building generator seeds from coordinates 76
6.7 Generating floor shapes . 77

7.1 A stateless infinite city generated by our method 80
7.2 Tessellation algorithm visualization . 84
7.3 Every circle with a radius greater than

√
2d contains at least one whole

square . 86
7.4 Variance in street segment interface generation 89
7.5 A tessellation fragment and its generated interface street segments 89
7.6 Constrained street-generation algorithm visualization 90
7.7 Generated city from top view . 94
7.8 CityEngine plugin scheme . 99
7.9 Comparison of the performance of methods for city-layout generation . . 100
7.10 Rendering speed for a moving user . 101
7.11 Examples of street network varieties . 101
7.12 Rendering speed for different numbers of buildings 102
7.13 Examples of our Stateless Generation method 103

8.1 Animated head models for virtual mobile assistants 110

List of Tables

4.1 The speed of face rendering . 37
4.2 HTC Touch Pro power consumption . 38

5.1 Setting used in the experimental evaluation 61

141

142 LIST OF TABLES

	List of Abbreviations
	Abstract
	Introduction
	Goals of the Thesis
	Definition of Mobile Graphics
	Hardware Components Used in Mobile Devices
	Mobile Touchscreen Displays
	Connectivity
	Battery

	Thesis Structure

	I Rendering of Facial Models
	Facial Animation on Mobile Devices
	Introduction to Facial Animation
	Applications of Facial Animation
	Applications of Voice Interfaces
	Head Models for Facial Animation
	Existing Scripting Languages for Facial Animation

	Face Animation Principles
	Phonemes and Visemes
	MPEG-4 Animation

	Semantic Reduction of Face Meshes
	Existing Reduction Methods
	Definitions
	Polygonal-mesh Dissimilarity
	Dissimilarity for Sets of Polygonal Meshes
	Reduction Problem Definition

	Finding the Optimal Solution
	Implementation
	Performance Validation

	Framework for Creating 3D Head Applications
	Brief Framework Description and Related Work
	Distributed Design Analysis
	Speech Synthesis
	Speech Recognition
	Graphics Rendering and Streaming
	Connection Requirements

	Performance Measurements
	Graphics Benchmarks
	Power Consumption

	Architecture Discussion and Selection
	Synchronization of Face Animation with Speech
	Framework Implementation
	Chapter Conclusions

	II Collaborative Computer Graphics in Distributed Environments
	Collaborative Device-to-Device Video Streaming
	Introduction
	Related Work
	Opportunistic Content Sharing
	Comparison of Dissemination Techniques
	Techniques for Avoiding Congestion

	System Architecture
	Scenario
	Media Recording and Subscription Service
	Dissemination Service
	Strategies

	Initial Spreading Strategies
	Fixed Ratio Spread
	K-armed Bandit Strategy
	Initial / Deadline Balance

	Dissemination Strategies
	Client-only Dissemination
	Cloud-based Dissemination
	Adaptive Cloud-based Dissemination

	System Implementation
	Cloud Services
	Mobile Devices
	Signaling
	D2D Communication
	System Setting

	Evaluation
	Automated Testing System
	Evaluation with Nomadic Users

	Open Issues and Discussion
	Distribution of Application Updates and OS Integration
	Fairness

	Chapter Conclusion

	III Virtual Cities on Mobile Devices
	Procedural Generation of Cities
	City Modeling Approaches
	Behavioral City Modeling
	Geometric City Modeling
	Combined City Modeling

	City Modeling Workflow
	Previous Work in City Modeling
	Chapter Conclusion

	Stateless Generation of Distributed Worlds
	Introduction
	Stateless Generation Approach
	General Algorithm for Stateless Infinite Worlds
	Tessellation Algorithm
	Generating the Tessellation Fragment Interfaces
	Constrained Street-generation Algorithm
	Generating Building Lots and Geometry
	Limitations and Potential Extension
	Applications
	Implementation
	Performance and Measurements
	Chapter Conclusions
	Future Work

	IV Closing Part
	Conclusions
	Future of Mobile Graphics
	Fulfillment of the Goals
	Rendering of Facial Models
	Collaborative Distributed Computer Graphics
	Virtual Cities on Mobile Devices

	Bibliography
	Author's publications related to the thesis
	Author's publications not related to the thesis
	Citations of publications
	List of supervised students
	List of Figures
	List of Tables

