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Abstract

The accuracy of predictive models is strongly ieflaed by the quality of their input
attributes. A model cannot exploit any informatithrat is not encoded in its inputs. An
important piece of information can be lost throufjle data preparation phase when the
attributes are extracted from various sources of data and are added to a modeling data
matrix.

A critical step of the selection of the input ditries is magnified in text mining tasks when
the documents written in a natural language arssiflad, clustered or retrieved. A written
text contains a huge amount of information thasdaattered over different linguistic levels.
The number of possible attributes that can be ddrftom each document is extremely high,
which is caused by the richness of natural langslage

The basic morphological level offers usually tefighmusands of attributes in the form of
different words or even word forms that have tahmroughly selected or transformed into a
manageable number of informative attributes. Howewsther useful information is hidden in

the higher structure levels. Such information cenrévealed from the context. Indeed, the
contextual ties play a critical role in the textngarehension and it is worth attempting to
extract same contextual attributes from text doaumeéo improve their classification and

other text mining tasks.

New structures called the context networks aregseg in the thesis. They encode contextual
ties among words, terms, topics or other builditacks of text documents. The contextual
ties are influenced by the neighborhood of thedigtic entities in a text. Inspired by standard
n-gram language models, a fixed length context eiwnds defined for each entity and all
contextual ties from all context windows within acdment are aggregated and encoded into
the document context network.

The structure of the document context network carather complicated; the network itself is

not an appropriate document representation, yetpkjgose to reduce it using centralities of
its nodes that represent selected linguistic estifThe method is preferably combined with an
extraction of higher comprehensive features likeid® to further reduce dimensionality of

final vectors that represent the documents.

An exact formula that estimates the reduction aftextual diversity of original documents
when they are encoded using the proposed repréisenia hard to express, hence the
experimental results are provided in the thesisthBsimulations and real collection
experiments confirm that the proposed represemigsaccessfully mix information about the
document content and its context. However, it waedamentally proved that an encoding of
within-document contextual ties does not generaityprove the quality of standard text
mining models with a few exceptions. These excegtioclude tasks where documents
cannot be distinguished by their context. Henceisitnot generally worth investing
computational resources to derive contextual aiteib of documents; representations that rely
on adjusted frequencies of linguistic entities oHedaster performance of text mining models
with the comparable quality.
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Foreword

People have developed the written text to the copteary state for ages. Writing systems
have been changed throughout historymany timespaogle of different cultures still use
different symbol sets and vocabularies in theiuratlanguages. The first texts appeared
approximately 5000 years ago. Ancient manuscrigibzed picture-writing, cuneiform-
writing of hieroglyphs. Current writing systems ui@ee kinds of symbols: alphabets,
syllabaries, or logographies. Any particular syste&an even have attributes of more than one
category. In the alphabetic category, there isaadsrd set of letters that are classified as
consonants or vowels. A syllabary is a set of emitsymbols that stand for syllables.
Logographic writing systems use a single symboltf@ whole word. For example, most
Chinese characters are classified as logogramsang syllabaries are present in Japanese or
Korean.

The diversity and complexity of natural languageseven reasonably higher than the diversity
of writing symbols. The number of active spokenglaages varies from 6000 to 700sed

on the definition of a language. They can be grdup& hundreds of language families. A
human being learns to speak, read and write hisflogiher tongue for many years and cannot
understand to the overwhelming majority of forelgnguages. Main causes of complexity of
natural languages include the size of vocabulalileguistic rule irregularities and ambiguity
of words or even phrases. Hence the level of lagguavareness can be evaluated using
different criteria such as the size of active vadaty, the knowledge of morphology and
syntax or the ability to recognize semantics. Foangple, The Dictionary of the Czech
Language includes approximately 192 thousands tifesh In addition, there are tens or
hundreds of morphological paradigms in Czech basethe distinction detail. Finally, it is
apparently impossible to count the true numberaiémptially correct phrases together with
their meanings.

If we focus on a single natural language only, we @ot able to efficiently and precisely
encode the full range of linguistic rules to impkmhthem into a computer program. If such
linguistic system was implemented, it would help tasrecognize the correctness of any
written text, to uncover hidden syntactic structuoe to establish semantic relations among
entities. Unfortunately, we are able to developpdified statistical models only that can for
example assign the probability of correctness t#xa or they can extract the most probable
syntax parse of a sentence. Nevertheless, thegiwhiany text processing statistical model is
computationally expensive. From a statistical poafit view the texts are samples of
categorical data of huge dimensionality. Hence needs an enormous volume of training
text data to submit enough examples of correct wardl phrases to the models. With respect
to the size of vocabulary it is evident that norently available collection of text documents
is large enough to supply the reasonable numbexafples. For example, if we consider a
simple model that evaluates each word triplet &haeljacent words or 3-grams) and we
restrict the vocabulary size to 50 thousand wowgs,can construct 125 trillion correct or
incorrect 3-grams. If only 0.1% of them are correet need approximately 2.5 million of
books of unique 3-grams to see them all just oRmgarding the high variability of the
frequency of distinct 3-grams in natural texts, weuld need even much more books. The
whole National Library of the Czech Republic offé< million printed book¥'. If we

! http://www.linguisticsociety.org/content/how-matanguages-are-there-world

2 http://lexiko.ujc.cas.cz/index.php?page=3

% The bibliographic questions and answers on higpii. ptejteseknihovny.cz/dotazy/pocet-knih-v-nk-cr-1
*In 2010 Google estimated that there were 1.30nilbooks all over the world (http://www.cnews.cdgte-na-
svete-je-presne-129-864-880-knih).
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consider the electronic text only, the large teatpases are built to statistically analyze
natural languages, but their sizes are also tooll smecover all possible contexts. For
example, balanced version of the Czech Nationap@oincludes 100 million wordsvhich

is equivalent approximately to 2000 books. To midleesituation even worse, we have to rely
on the positive examples only, no corpus of inadrtexts is available. On the other hand, the
volume of unstructured texts on the Internet isdigpgrowing. Beside newscasts there is the
huge number of blogs and messages on social netvibgt offer a massive source of text
data.

Contemporary common computers are not able to psoak available text data efficiently to
store such a complex model. But the human braih W@O0 billion neurons is able to learn
well at least one natural language in several y@@teout presenting such a large number of
books. The questions arise: What are the basidibgilblocks of a natural language? What
kind of rules and vocabularies should be storedjdb a useful language model? Can be
reading comprehension delegated to computers?

If we need a computer to efficiently manipulatetté@cuments, we must extract well-defined
structured attributes that properly describe tres@nted text. Apparently documents are not
only containers for letters, syllables or wordseTdrder of these basic components within a
document is always important because it reflectmsdor topics hidden behind the explicit
text and the relations among them. If we are ablextract such topics and relations, then the
structured representation of documents shouldrb#asito our perception of a text. A human
being usually does not remember a presented texttlgx but he/she is able to exploit
efficiently the information from the text. To enaldomputers to manipulate text documents
we may utilize our linguistic knowledge about bunlgl blocks of natural languages. Or we
can propose artificial compression of text streamhs structured vectors and investigate the
usefulness of these vectors for the tasks that emomn with text documents. Both
approaches have been intensively studied for maaysy Due to this research the basic
problems in the field of language technology areeptably solved. For example, they include
the spam detection or the extraction of namediestitom a text. Other problems that have
not been solved yet make promising progress. Thenples include the machine translation
or the sentiment recognition. Nevertheless, mamji@hging and tough problems like dialog
systems still wait for a satisfactory solution. Thasic research in the field of document
representation may help to find the reasonable effidient solution for many problems
associated with the text comprehension.

® The balanced corpus SYN2010 described on httjiilkeirpus.cz/doku.php/cnk:syn2010
5



1 Problem statement and goals

The goal of the thesis is to propose and test avestor representation of text documents that
takes into account the adjacency of any lingustitties within a document.

The quality of a text mining or data mining solutican be increased if appropriate
information is added to input attributes. Any maadglalgorithm is not able to provide

satisfactory predictions using improper inputs.tie text mining field co-occurrences or
associations among linguistic entities play a eaitirole in comprehension of the text and
unfortunately they are often neglected when docusnare transformed to structured vectors
that serve as model inputs.

In text mining applications, the input attributes alerived from free texts. They should
describe a complex structure of the written documérhe hidden meanings of the words and
phrases together with the order of ideas presentadext are the essential properties of the
documents and they contain valuable pieces of nmftion that is worth encoding into a
structured representation of documents.

The proposed procedure for feature extraction shbalreasonably fast to enable an efficient
extraction of features from large collections otdments. The features that constitute vectors
of the low number of dimensions are preferable beedhey can serve better as the input data
for convenient machine learning algorithms withthe need for the further preprocessing.
The input features should capture as much as pessildocument diversity to ensure quality
of the models. These two requirements (the smathber of features and the capture of
document diversity) are contradictory and the reabte trade-off needs to be selected.

With the above mentioned restrictions in mind tbalg of the thesis can summarized as:

* Propose a document representation that enablasgmve quality of standard text
mining solutions. A low-dimensional vector represgion of text documents that
encode both their contents and contexts is preferdlne dimensions may represent
any linguistic entities extracted from the text @tiger with their relations. The
proposed representation should include the redudfahe natural variability of the
text where the same topics can be expressed inatelierent ways.

» Develop the procedure for extraction of the fixemnber of features that does not rely
on huge linguistic resources and is not dependena éanguage. This requirement
ensures the faster processing of documents andiatagtees that the extraction
procedure is applicable for collections written different natural languages. The
extraction method that does not produce missingegais preferable.

* Prove theoretically that the proposed represemaiccodes well the order of selected
linguistic entities. Compare the reduction of dsigr of documents within a collection
using the proposed representation and a commoely tepresentation. Compare also
the reduction of diversity for different variantstbe proposed representation.

* Test the appropriateness of the proposed reprégentar common text mining tasks
on simulated documents. The simulated documentdl fll the assumptions of the
proposed procedures, hence the direct impact taiversity reduction and to the
model performance can be observed. Compare thé#segth the ones based on the
common document representation.



» Test the appropriateness of the proposed reprémentar common text mining tasks
on different collections of real documents. Thel @acuments may violate some
assumptions or to include some important relatibrag are not taken into account,
hence the proposed representation may interactielyiquith the text mining models.
Compare again the proposed representation witbahmemon representation.

2 Contribution of thesis

A new approach to extraction input attributes xttmining models in order to improve their
performance is presented in the thesis; the thesduces a new vector representation of
text documents. On the contrary to other documespresentations, the proposed
representation comprises also the information abioeitorder of selected linguistic entities
within a document. The proposed representationp@iable to any common linguistic
entities, hence the entity identification withidacument is a mandatory step performed in
advance. Entity frequency scores are enhancedrigxtoal scores in the proposed procedure
and several different methods of combining thessare tested. The proposed representation
can be based on low-level entities such as wordseons or on complex entities such as terms
or concepts. Even abstract or latent entities sisctopics can be used if their sequences are
identifiable within documents.

The main contribution of the thesis is the analgithe usefulness of the proposed contextual
enhancement of document vectors in the common n&ring tasks. The reduction of
document separability that is influenced by thetmecepresentation of unstructured texts is
studied theoretically and also in experiments. Thesis describes why the proposed
representations capture better the document caratedtiversity than the standard approaches.
It was experimentally shown that the proposed ecéments of document vectors seldom
improve document retrieval, classification or chustg. We suppose that while the contextual
information is critical for specialized languageogessing procedures such as the machine
translation, the standard text mining tasks sucth@eslocument classification are principally
sensitive to the document content. Hence we recordnusing simple standard frequency
scores of extracted linguistic entities to représemlocument by a numeric vector for text
mining models; the enhancements that reflect eatiljpcencies can be skipped to make the
document processing faster.

2.1 Organization of thesis

The thesis is organized as follows: The summarthefapproaches to representation of text
documents can be found in chapter 3. This summ&y focuses on the methods of

dimensionality reduction that are used in text mgnand can be applied in the process of
obtaining the proposed representation. Chaptersérities the proposed contextual vector
representation of text documents. The procedurélustrated by simple examples. The

theoretical aspects of the new document represemtate analyzed in chapter 5; we try to
assess how the document diversity is reduced bydiffierent representations using the

assumptions about the document genesis borrowedrfrgram language models.

Chapter 6 offers description of experiments. Thpeexnents are performed on simulated
documents and on different collections of real doents as well. The same chapter also
summarizes the results of these experiments. Téeratical assessments together with the
practical experiments imply the final conclusionsoat the usefulness of the proposed
representation. The conclusions are presentedaipteh?.



3 Related work

Text mining is an emerging area of computer sciemheh exhibits strong relations with
natural language processing, data mining, macteaening and knowledge management.
Text mining seeks to extract useful informationnfrainstructured textual data through the
identification and exploration of interesting patie (Feldman & Sanger, 2007).

The history of text mining started deeply in thetlaentury. Document indexing was
extensively studied already in the 1950s and th@049Luhn, 1958). In the late 1950s the
first automatic text retrieval system was suggestedhn, 1957). It was based on a
comparison of content identifiers attached botlsttred texts and to the users' information
gueries. Measurement of document similarity andudwnt clustering are also rather old
(Jardine & van Rijsbergen, 1971). Probably the nfi@gjuent text mining task classification
was solved already in the late 1980s when macleiaming algorithms started to be widely
used (Hayes & Weinstein, 1990). A classificatiomplegal to a text is sometimes referred as
text categorization (TC) (Sebastiani & Delle Riderc2002). In TC a set of documents is
automatically sorted into predefined categories. T employed in text filtering,
categorization of web pages or in sentiment analythile TC is supervised task, document
clustering (DC) deals with discovery of groups afcdments that minimize inner-cluster
similarity and maximize inter-cluster similarity.(Dhas been intensively studied since the
1990s (Anick & Vaithyanathan, 1997) and it is dtile emerging text mining area (Aggarwal
& Zhai, 2012).

There are many applications of basic text miningcpdures in order to solve more specific
tasks over unstructured texts. They include spatactien, market intelligence, detection of
plagiarism or enhancement of search engines. Tamgbes of currently emerging tasks are
text summarization (Mani, 2001) or sentiment analy®ey & Haque, 2008).

document
S vectors d

Figure 1: The general steps of text processing.

Regardless of the text mining task the unstructwesd from documents must be somehow
transformed to a structured representation. Prgliereach document is represented by a
vector of constant length; the document collectlman constitues a matrix of row vectors. In
the basic bag-of-words (BOW) representation (Sadtoal., 1975) a document is modeled as a
container of vocabulary tokens regardless of tlteoof tokens in a document. Vocabulary
tokens serve as features and frequencies of takenssed as weights. In the simplest case the
weights are 0/1 indicators and denote the presencabsence of particular tokens in a
document. The more sophisticated approaches faghigederivation were tested in the 1970s
and the 1980s (Salton & Buckley, 1988) and they stié widely used. The proposed
weighting schemas utilize the two-component muttgilve approach. The first component
reflects the token frequency in a particular docoiwehile the second component adjusts the
token importance by its global frequency in the ighdocument collection. From many
proposed weighting schemas the term frequency érgev document frequency (TF-IDF)
approach is the most often used one.

Apart from BOW approaches there are different mgshthat enable to construct feature
vectors from the documents that are consideredriags of characters or streams of words.
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The main difference between the stream representaid BOW representation is that the
former retains ordering information. The simplet mommonly used representations are
referred as n-gram representations. If a docunsetnsidered as a sequence of characters, n-
grams are subsequences of these characters @il In (Cavnar & Trenkle, 1994). Such a
representation is useful for example for multi-laage collections where universal
vocabulary is not available. Similarly to charactegrams, if a document is viewed as a
sequence of vocabulary words, n-grams are therequbaces of n words. The word n-grams
are essential for language models (Chomsky, 193@&revthe theory of Markov chains
(Markov, 1913) is exploited to estimate the probgbof a token conditionally on its context.
n-gram approaches take the order of text units aucount, so they make the additional
information hidden in a text available for miningsks. On the other hand, the context
encoding further increases the dimensionality oftraeted vectors. Therefore the
dimensionality reduction techniques must be takém account. n-gram language models can
be substituted by different approaches that takectintext of words into account as well
(Schwenk, 2007) (Mikolov et al., 2011). For exampleural network language models often
outperform n-gram models (Bengio et al., 2003), thair usefulness for an efficient
document vector representation is disputable.

The need for improvement of text documents reptasien caused that the computational
linguistics started to be important in the datappration phase of text mining projects
(Feldman & Sanger, 2007). Some essential proce@duesgsually borrowed from the natural
language processing (NLP). They include tokenima{iGrefenstette & Tapanainen, 1994),
stemming (Porter, 1980) (Xu & Croft, 1998), lemmation (Liu et al., 2012), part-of-speech
tagging (Brill, 1992) (Ratnaparkhi, 1996), word serdisambiguation (Ide & Véronis, 1198)
or even shallow parsing (Earley, 1970) (Tomita, @)9&harniak, 1997). The software kids
that offer transformation of text documents to Gieatvectors often enable to develop the
pipeline of these NLP procedures to comfortably tadex and structurally represent the text
documents. Instead of tokenization the above meetioprocedures are not necessary to
propose any BOW representation, but they are usefuhe partial dimensionality reduction.
Since they exploit a natural approach to the listizitext analysis, they are language
dependent and often resource intensive.

tokenization
non-linguistic entity filtering

spelling correction

~ stop-wordsexclusion index
_W database
7 lemmatization
"hamed entity recognition

Figure 2: An example of NLP pipeline.

Even though the tagging and the indexing of documanhieved by NLP procedures results
in an informative document representation in thaissructured format, it is still a too rich
representation to serve as an input data for furtiechine learning algorithms. And because
NLP procedures often rely on extensive languagemiggnt resources, text miners frequently
use more universal approaches for the reductioth@fdimensionality of the basic BOW

9



representation that reveal and utilize hidden imtahips among the words. The methods
provide either a small number of extracted featureshey filter out some input features

(Lewis, 1992). The comparison of feature selectapproaches for the purpose of the
document categorization is made in (Yang & Peder$@87). The feature selection methods
can be either unsupervised, such as the docunemniency thresholding, or supervised. The
supervised methods rely on a statistical evidericncassociation among tokens and target
categories such as the chi-square statistics anttieal information.

The feature extraction can be performed by thetetungy of extracted tokens. The weights of
the new extracted features are computed as sunosigifial token weights. In (Verbeek,
2000) the authors search for appropriate wordsdate the supervised clusters that provide a
reasonable predictive power for consequent classifiThey also propose the estimate of the
optimal number of clusters.

‘ cluster 2

/- 7
/ A L e
cluster 1

Figure 3: An example of unsupervised token clustein a token network. The thickness of
connections is proportional to an association betw&oken pairs. The association can be for example
derived from token co-occurrences within documents.

The widely used feature extraction methods utittee linking of original features. The new
feature weights are produced by different combamettiof the original ones; the extraction
process can be often described as a projectiondfcament representation to a new low
dimensional space. The common example of the featxtraction technique is Latent
Semantic Analysis (LSA) (Deerwester et al., 199A uses a linear projection to a low-
dimensional space of latent features that main@snsiuch variability of the original features
as possible. The new dimensions are determinetidogihgular value decomposition (SVD)
of the original document-tem matrix (Golub & Vandrm 1996). The additional enhancement
of LSA was introduced in the probabilistic Latenenfantic Indexing (pLSI) model
(Hofmann, 1999), also known as the Aspect ModeérEtough pLSI exploits the same SVD
approach as LSA, the theory behind it is based garerative model where each token in a
document is regarded as a result of a sampling feormixture model. The mixture
components are multinomial random variables thatbmviewed as representations of latent
topics. If one wish to consider an exchangeableesgmtation for documents and tokens a
more complex mixture models should be consideréds The of thinking leads to the model
of Latent Dirichlet Allocation (LDA) (Blei et al2003). The exchangeability in LDA implies
the model with a conditionally independent and taely distributed mixture of topics with
respect to an underlining latent parameter of eaidity distribution. LDA is then the
complex generative model which describes the gerdabserved documents and enables to
assign latent topics to individual tokens in a doeut. Instead of using the matrix algebra the
parameters of the LDA process are estimated byeitpectation—maximization algorithm
(ME) (Dempster et al., 1977). Note that all herentimmed standard methods of the feature
extraction are based on the bag-of-words assumptioch means that the order of tokens in
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a document can be neglected. In the probabilitprthehis assumption is referred as the
exchangeability of words in a document (Aldous, 3)98

The alternative way to represent documents by sofhiat are hidden in a text is Explicit
Semantic Analysis (ESA). ESA exploits some standaydabulary of the topics that are
known and described in advance. In (Gabrilovich &rkbvitch, 2007) the authors utilize
Wikipedia. They compare a document with Wikipediackes. The Wikipedia articles serve
as features and the similarity scores as weights.

All features extracted from unstructured texts banenhanced by features extracted from a
semi-structured representation like XML or someeottructured document data or metadata
such as the document source, the date or the altboexample DBpedia data set (Bizer et
al., 2009) that enables to semantically query threent of Wikipedia was extracted both from

the structured and the unstructured parts of Wikgperticles. Generally features extracted

from plain documents in the data preparation plese be merged with any hard coded

database structured data to provide a complex wawexplored units such as patients,

customers or products (SPSS Inc., 2008). Text miamd data mining share many machine
learning methods and they are considered as refiai@ains.

3.1 Dimensionality reduction in text mining

The quality and efficiency of any data mining taslch as classification, clustering or
regression is dependent on the information hiddethé features that are used as predictors.
On the contrary the noisiness of input features resluce the model quality. For example
commonly used tokens such as "the" may not be weejul in improving the quality of text
mining classifier. Therefore it is critical to selean appropriate set of features so that the
noisy ones are removed and the informative onesesaed before the model is built.

Feature selection methods can be organized inte thategories depending on how they
combine the feature selection search with the coctsbn of a text mining model: filter
techniques, wrappers and embedded methods (Satyds 2007). The filter techniques
evaluate the relevance of a feature by looking @tlintrinsic properties of input data; they
do not interact with the model. The wrapper metheeksrch for a relevant subset of features
using evaluation measures of the subsequent mbdelembedded methods are integral parts
of models; they are closely related to the modeéigprithm. Most of the feature selection
methods can perform the feature ranking when eagitt ifeature receives its rank or score
based on its individual predictive power. The exl®pof the feature selection methods
include the document frequency selection, the egtltased ranking or the term contribution.

In addition to the feature selection and featunekiregy methods, the number of usually
standalone feature extraction approaches is al®iléhe standard feature extraction methods
that are used in text mining to improve the quabfya document representation or to
compress a sparse document vectors include Latmaic Indexing (LSI), Probabilistic
Latent Semantic Indexing (pLSI), Latent Dirichlelig®ation (LDA) or Non-negative Matrix
Factorization (NMF). In these techniques correlai@mong tokens that occur in the same
documents are exploited in order to construct saee features that correspond to hidden
topics or principal components in a document ctitbec

3.1.1 Feature selection methods

Feature selection and ranking methods are commomrasy to apply in supervised problems
such as the document classification (Yang & Pederd®97) where target document
categories are available for training documentig@aly, the ranking can be performed by
measuring a correlation, building single variablassifiers or by exploiting information
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theoretic criteria (Guyon & Elisseeff, 2003). Basidommon measures that evaluate the
strength of a relation between a particular inpoatl @ target variable like chi-square or
correlation, the special methods used in text nginntlude BM25 (Robertson & Zaragoza,
2009), Relevance Propagation (Qin et al., 2009ageRank. However, a number of simple
and efficient unsupervised methods can be useekimtining as well. They often exploit the
document similarity measures (Grefenstette & Puln2010) that are applied in document
clustering (Sruthi & Reddy, 2013).

group distance examples

counts/indicator character counts, word counts, cosine similaritye gimilarity, Euclidian distance, city

vectors bock distance, Mahalanobis Distance, Pearson etioe] MASI distance, Jaccard
similarity, Sgrensen-Dice coefficient, Tversky irdeTanimoto distance, overlap
coefficient

stringology Hamming distance, Levenshtein distaf@@mnerau-Levenshtein distance, Jaro-Winkler

distance, ratio similarity, Lee distance

information theory,| Kullback-Leibler divergence, Kendall tau distancess-entropy, mutual information

probability
machine translation| BLEU,NIST, WER, ROUGE, METEOR,
ontology-based path similarity, Wu-Palmer similaritin similarity, Leacock-Chodorow similarity, Mao

similarity, Resnik similarity, Jiang similarity, Kappe similarity,

Table 1: Examples of document similarity measures

3.1.1.1 Document frequency selection

Probably the simplest and also often used methothéofeature selection is the exploitation
of the document frequency to filter out the useliesgures. The filtering of very frequent
words reduces their noise effect. The tokens whrehtoo frequent in the collection should be
removed because they are typically the commonhd userds such as "the" or "of" in
English. These non-discriminative tokens are refitas stop words (Rijsbergen, 1975). Stop
word lists are usually available for common natleabuages. They can be directly applied to
tokenized documents to remove the listed words. tYpieal stop word list includes several
hundreds items. Note that popular TF-IDF weightingthod (Salton & Buckley, 1988) can
also patrtially filter out very frequent words irsaft way, but the standard list of stop words
provide a universal set of words to prune indepetigen the collection.

In addition, the words that occur extremely infreqily should be removed from documents
as well. They do not exhibit any significant redeial pattern that can contribute to the model
building. Such words often include misspellings tgpographical errors. Especially the
document collections downloaded from blogs or daogworks likely contain these words
with the mistakes.

Similarly non-linguistic entities do not occur figently in a collection. The non-linguistic
entities include identifiers such as URLSs, phonenbers, e-mails, sometimes also dates or
numbers. They are recognized by special algoritlafter the tokenization. As the other
infrequent tokens they do not create useful pattdvat if the specific tokens are transformed
to vaguer ones, they can become useful featurasekample, exact phone numbers are
transformed to common tokens referred as "phonebedm

3.1.1.2 Term strength

The term strength (Wilbur & Sirotkin, 1992) measueow a word is informative for
identifying a relation between a pair of documerisstly, we have to define when two
documents are related. It is easy in the supensgedtions in which the predefined target
categories of documents are available. Becausenitti practical to create manually document
categories in large unsupervised collections, desirable to define the purely unsupervised
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concept where two documents are related. It isiplesto use the cosine similarity (Salton,
1983) to measure the relatedness of a document pair

Two documents are related if their cosine simyjastabove the threshold. Then the strength
z(w) of a termw is usually being defined over a random samplénefrelated documents as
the ratio of the number of pairs in whishoccurs in both documents divided by the number
of pairs in whichw occurs in the first document of the pair. Thetfdtecument of a pair can
be picked randomly.

In order to filter out the unimportant terms, tlem strength may be compared with the
expected strength. If the term strength is noteastl two standard deviations greater than the
average term strength, then the term is removed the documents.

This approach does not require any initial targeegories, but it can be directly used for the
feature selection in the supervised classificatisrwell (Yang, 1995). It is particularly suited
for similarity based methods such as the clustebegause the discriminative nature of the
features is defined on the basis of the similaittanong the documents and the similar
documents belong to the same category.

3.1.1.3 Entropy-based ranking

In the entropy-based ranking approach (Dash & 1897) the quality of a term is measured
by the reduction of the entropy when the term maeed from the collection. The entropy of
a termw in the collection oM documents is defined as

EW) ==Y s, logs,) + (-5 )logl-s, )] W

i=1 j=1

The similaritys; between documents andd; when the termv is filtered out is computed as

il

s =2". 2)

Bl

Herer; stands for the distance between documérdadd;, when the termwv is filtered out,i
is the average distance between the pairs of dousnadter the removal of the tenm The

definition of ; implies thag, (J(O1). A pair of documents with the average distancethes

similarity of one half. The resultant entrof(w) then describes the variability of the
similarity of documents after the term is removed. The terms with the low entropy are
filtered out form the collection.

Note that the computation of the term entrdpfw) is computationally intensive. The
derivation of the entropy itself require¥M?) operations plus we must add the distance
computation requirements. Hence the entropy-basetkirg is impractical for large
collections and the sampling methods must be cersid(Dash & Liu, 1997).

3.1.1.4 Term contribution

The term contribution selection method (Liu et @D03) is based on the fact that models
often rely on document similarity. The typical exgeis the document clustering where the
similar documents are grouped together. Therefogecontribution of a term can be viewed
as its contribution to the document similarity. thhe case of the commonly used cosine
similarity the similarity between two documentsdsmputed as the dot product of their
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normalized frequencies. Then the contribution téran to the similarity of two documents is
the product of their normalized frequencies in ghéscuments. To determine the contribution
of a term the products need to be summed ovepallment pairs in a collection.

Note that only the extraction of all document pairsaa collection ofM documents requires
o(M?) operations. Hence sampling methods must be caesider larger collections. The
second disadvantage of the term contribution sSelechethod is the fact that it favors highly
frequent terms without a regard to the specificrilisinative power of a term.

3.1.1.5 Concept decomposition using clustering

While the dimensionality reduction is often usedpasprocessing step for the document
clustering, the clustering itself can be used deature selection approach known as the
concept decomposition. The concept decompositidnlliin & Dharmendra, 2001) exploits
any clustering algorithm applied on the origingbresentation of documents. The frequent
terms in the centroids of the resultant clusters selected for the reduced document
representation.

This condensed conceptual representation allowth#®osecond step in the clustering task as
well as for other tasks such as the classificatiime computational requirements of the
concept decomposition depend mainly on the selexttestiering technique.

3.1.2 Feature extraction methods

3.1.2.1 Latent sematic indexing

The Latent Sematic Indexing (LSI) (Deerwester et 2390) analysis involves the Singular
Value Decomposition (SVD) (Golub & Van Loan, 1996)technique closely related to the
Eigenvector Decomposition and the Factor AnalyBmgythe et al., 1977). LSI as a feature
extraction method attempts to overcome problemhk wié variability in the word usage by
automatically organizing tokens into a sematiccttrte more appropriate for the information
retrieval and other text mining tasks. LS| assuies tokens contained in a document are
incomplete and unreliable indicators of the docutneentent. There is an underlying or latent
structure in patterns of the token usage hiddemnbdetme explicit document that is partially
obscured by the variability of the word choice. Ttatistical approach used to reveal this
latent structure gets rid of the obscuring noisé anables to represent documents in a new
low dimensional feature space.

In LSI large and a sparse document-term matrideothposed into a set of orthogonal latent
factors. Then only the most important ones arecsaflefor a new document representation.
The importance is usually measured by the varigtofi the original features explained by the
factor. More formally the rectangular document-temmatrix D of the size MxN is
decomposed into the product of three new matrises a

D=PAQ". (3)

The matrice$’ andQ of the sizedxL andNxL respectively have orthogonal columnsis a
square diagonal matrix.

PTP=I
Q'Q=I )
A =diag(A, Ay, A, )
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This is the Singular Value Decomposition (SVD) oétnx D, L=rank@) and/; are non-
negative singular values. The column vecfgrandq;, i=1...L, of the matrice$ andQ are
also referred as the left and right singular vextatisfying equations

DD'P = PA?
D'DQ =QA? ®)

Note that};? are the eigenvalues of both the document covagiamatrix DD and the term
covariance matriD'D. Let the singular values be sorted descending 4. The Singular
Value Decomposition enables a dyadic decomposiidhe document-term matrl as

D:Zpi Aq; . (6)

i=1

If only K largest singular values are kept along with theiresponding columns & andQ,
the approximation of the original document-termnmad can be defined as

D= pAd/. (7

i=1

Eckart—-Young theorem (Eckart & Young, 1936) conérthat it is the best approximation of
matrix D by a matrix of ranlkK and it holds true

b-8f = > . ®)

i=K+1

The matrix norm is Frobenius norm and the theorgia that the proposed approximation is
the closest one in the least squares sense. Tomatia idea for this approximation is that the
first K independent components capture the major assmwistructure oD and throws out
the noise.

The Singular Value Decomposition of the documentiteatrixD is usually performed with
a training set of documents. However, this methad be deployed for a new or a test
document as well using the derived set of orthobtawors. If a new document is originally
represented by a row veciyits approximation in the nek¢-dimensional space is

d=dQA™. 9)

The equation also describes the resultant lineajegtiion from the originalL-dimensional
space to the newiK-dimensional space which is achieved by the mudgplon by the
projection matrixQA™. Similarly to the transformation of documents te tlatent low-
dimensional space LSI enables to project the aaldgwatures to the same latent space using
the projection matrixPA™. Utilizing this dual projection we can concludeattthe terms
which occur in similar documents will be near eatiher in the new low-dimensional latent
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space even if they never co-occur in the same dentin$o the LSI representation captures
also term to term associations that are importantife information retrieval.

Due to the possible projections of both the documand the terms to the new latent space
LSI enables important comparisons between the thj®¢e can explore distances between
the pairs of documents, the pairs of terms and lbétween the document-term pairs. The
comparisons among the terms offer also anotherpir@ttion of LSI. The new latent
dimension can be viewed as a topic expressed iondects. These topics are generated by
the observed the terms which correspond to thehdri semantic meaning. Due to the
revealed term associations LSI solves the problétm tve polysemy and the synonymy that
is present in the written text.

LS| approach was successfully applied in many mekting tasks such as the information
retrieval (Deerwester et al.,, 1990), the text sumwation (Yihong & Xin, 2001) or the
classification (Hava et al., 2012). The main adagas of LS| are the language independence,
the easy implementation and the possible interfioetaf the latent space.

3.1.2.2 Non-negative matrix factorization

The Non-negative Matrix Factorization (NMF) (Xu &k, 2003) belongs to the methods
which reveal a latent space that is suitable fdo@ment representation. Similarly to the LSI,
the NMF represents documents in a new system oémbions that are extracted from the
document-term matrix of training documents. Whil8l loffers a new system of orthogonal
axes, this is not the case for NMF.

NFM is a feature extraction method which is welited for the clustering. The vectors in the
basis system of NFM correspond to cluster topidseréfore the cluster membership of a
document may be determined directly from the neduced representation by examining the
largest component of the document.

The new coordinates of any document are alwaysnegative. They are derived as an
additive combination of the underlining semantiatéiees. Hence the representation of a
particular document makes a sense from an intutterspective.

Let D be the document-term matrix of the sM&N. We wish to create neW dimensions
from the underlining document collection. The NFMethod attempts to determine two
matricesU andV that minimize the objective function

J=4p-uv[". (10)

The norm of the matrix is the sum of all squarezhednts of the matrix (Frobenius norr).
andV are non-negative matrices of the sibsKk andNxK respectively. The columns &f
provideK basis vectors that corresponckitidden topics.

By minimizing the objective functiodd we attempt to approximate the matiix by the
productUV'. Hence a document vectdwhich is a row oD is approximated asV' where

u is the corresponding row @f. Therefore the document vectdrcan be rewritten as the
approximate non-negative linear combination ofkheolumns ofV'. The rows oV (or the
columns of V') correspond toK basis vectors derived using NMF form the original
representation of the document collection.

If the value ofK is relatively small compared to the dimensionatitythe original collection,
the rows ofV discover the latent structure of the data. Funtioee, the non-negativity of
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matricesU andV ensures that the documents are expressed asriheegative combination
of the hidden topics which enables the straightéodainterpretation of the results.

Let us solve the optimization problem for the objex functionJ. Frobenius norm of any
matrix Q can be expressed as

|Q* =tr(QQ"). (11)

Then the objective functiohican be rewritten as

3=1te(D-uvT\p-uv') )=3tr(oD")-trpuvT)+ 1tr(LVIVUT)  (12)

We have to solve the optimization problem with éspect to all entries; andv; of the
matricesU andV. In addition, sincd&J andV are the non-negative matrices, we receive the
constraints

>0,i=1.
0,i=1...N,j=1...K (13)

This constrained non-linear optimization problenm &g solve using Lagrange multipliers.
Let a andp are the matrices of Lagrange multiplies of the esalimensionality a8) andV.
Then Lagrange expressions for the non-negativihstaints equals to

M K

D> ayu; =tr(aUT)
i=1 j=1
N K . ) (14)
22 By =tr(BVT)
i=1 j=1
Then we can express Lagrangian optimization as
L=J+tr@U")+tr@V"). (15)

To solve the problem we have to express partialvakves of L with the respect to the
matricesU andV and equal them to zeros.

a—L:—DV+UVTV+0L:O

ouU (16)

oL by +VU'U+B=0

ov

The solution of these equations leads to the iteratpdating rules fod andV
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' (VUTU),

The objective functiod continuously improves when updatibgandV using these rules and
converges to the optimum.

NMF can also be used to express terms in the nésntlspace. As the columns uf
determine the new dimensions for documents, thanmo$ of U can be viewed as new
dimensions for terms. Hence NMF is also usefulliercondensation of training data because
it enables to substitute the origildldocuments by the nelt ones.

It has been shown that NMF is equivalent to theplgrstructure based document clustering
technique named Spectral Clustering (Ding et &052. An analogous and more universal
technique called Concept Factorization (Xu & Go2@0Q3) can be also applied for an input
matrix with negative entries.

3.1.2.3 Probabilistic latent semantic indexing

Despite the remarkable success of Latent Sematexing (LSI) the method has the deficit in
its unsatisfactory statistical foundations. Thifideovercomes Probabilistic Latent Semantic
Indexing (pLSI) (Hofmann, 1999) because it introelsia simple generative model of the data
that takes the advantage of the likelihood prirecipf the parameter estimation. pLSI is a
statistical model with latent variables that isoalsalled the Aspect Model. pLSI model
assumes that documents and tokens are conditionakgpendent given unobserved topics.
The approach offers to estimate a joint distributxd the triplets [document, topic, token] and
thus enables to assign the topic probabilitiesfmmh document or to assign the most probable
topic to a token in a particular document. The nemiif latent topicK must be selected
before the estimation of the model and is usuatipiBcantly smaller than the size of the
vocabularyN.

Let us have a collectioD of M documents ¢, d,...,ds}. The documents include the words
from the vocabularyw={w;,w,,...,wg}. The word order in a document is not taken irtie t
account (the bag-of-words approach), but the caiwence of words is driven by an
unobserved topic variablé={z,z,...z}. The model can be viewed as the generative one
following this three-step process:

» Select a documeitwith the probabilityp(d).
» Pick a latent topiz with the probabilityp(z|d).
» Generate a word with the probabilityp(w|2).

From the resultant tripletd[z,wW only the pair {l,w] is observed while the latent topkcis
unknown. The process can be also described by IcBas@sian network from Figure 4.
Using the chain rule for the decomposition of tbat] probability according to Bayesian
network, we get the probability of the tripletZ,w in the form

p(d,z,w) = p(z|d) p(w|2) p(d) - (18)
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Figure 4: The causal schema of the probabilistietd semantic indexing.

Note that Bayes formula appliedj(zld) enables to rewrite the joint probability as
p(d,zw) = p(d|2) p(w| 2) o2). (19)

0\2 /@ @ observed

hidden

Figure 5: The rewritten schema of the probabiligtitent semantic indexing.

The formula (19) describes Bayesian network froguFe 5, hence both presented networks
for the causality models are equivalent when esingahe joint probability. To derive the
formula describing the Aspect Model one has to @wer the possible choices pfwhich
could generate the observed pattsj.

pd,w) = p(d|2) pw| 2 p(2) =p(d) ) p(w| 2 p(z| d) (20)

The Aspect Model is based on two assumptions. |firshe observed pairsdjw] are
generated independently that corresponds with #gpab-words approach. Secondly, the
conditional independence assumption is made thaditoned on the latent clagswordsw

are generated independently of the specific doctisheHence the word distributionxwi|d)

are obtained by the combination of the aspp@tgz). The documents are then characterized
by the specific mixture of the aspects with theghésp(z|d).

To estimate the model we have to maximize theikgjthood function

=22 n(dwlogp(d,w), (21)

dOb wiv

wheren(d,w) denotes the number of times a waradccurs in a document Due to the latent

nature of the model the expectation-maximizatiogoathm (EM) (Dempster et al., 1977)
must be used to estimate the desired probabilitiethe E-step the probability of the topac

behind the wordv in documentl is estimated as

p2)pd|z)p(w|z)
>, KZ)p(d|Z)p(w|Z) (22)

Z02

pzld,w) =

The factors from the E-step are estimated in theté&f- using the estimated probability and
observed counts as
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> n(d,w) p(z|d,w)

PV = 5 S () plz )
S () pezl .
pwla=szMdemﬂd“m- (23)
S n( ) pz .
o R g

The alternation of the E-step and the M-step defameonvergent procedure that approaches a
local maximum of the log-likelihood function. Thamong the estimated probabilities of the
generating topi@(zld,w) we can substitute each wondin the documentl by its the most
probable generative topc Due to the fact that the number of topics is aerably smaller
than the size of vocabulal; this substitution leads to an important dimenaiiby reduction.

The Aspect Model can be also rewritten in a matotation. Let the conditional probabilities
p(d|lz2) andp(w|2) create matrice® andQ of sizesMxK andNxK respectively. Similarly let
the probabilitiesp(z) create the diagonal square matixof the sizeKxK. Then the joint
probability of the document and the woradv

p(d,w) =>_pd|2) pw|2) H2) (24)

from the Aspect Model (19) can be written as thérix@roduct
D =PAQT, (25)

where the matrixD is the MxN matrix of the join probabilitiegp(d,w). From the above
formulas the correspondence between LSI and pLShpparent. The left and right
eigenvectors oD from (5) correspond to the conditional probatektp(djz) andp(w[z) and
the singular values correspond to the probabilfi{es

Despite this similarity, there is also a fundamkniierence between pLSI and LSI in the
objective function utilized to determine the optinsalution. In LSI it is Frobenius norm,
which corresponds to an implicit additive Gaussiaise assumption on counts. In contrast,
pLSI relies on the likelihood function of the mualbimial sampling that aims to maximize the
predictive power of the model. It offers the import advantages in the interpretation of
results; the matrices include well-defined prolitib8 and the factors have the clear
probabilistic meaning in terms of mixture compongistributions.

On the contrary, the main disadvantage of pLShéslack of generalization. pLSI introduces
a dummy indexd of documents in the training set to the model. STthus the multinomial
random variable wittM possible values and the model learns the topi¢uragp(zd) only
for those documents on which it is trained. Hent&lpcannot be a universal generative
document model because there is no straightforweryl how to assign the probabilities to
previously unseen documents.
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A further problem that pLSI introduces also stenasnfthe use of the distribution indexed by
training documents. The number of parameters toestémated grows linearly with the
number of training documents. The parameters fak-mpic pLSI model are twdK-
multinomial distributions of siz& andN. It results inKM+KN parameters. The linear growth
in parameters suggests that the model is proneeditting and the problem should be solved
for example by the subsequent smoothing.

3.1.2.4 Latent Dirichlet allocation

Latent Dirichlet Allocation (LDA) (Blei et al., 2@®) overcomes the problems with the lack of
generalization of pLSI by treating the topic mixdweights as &-parameter hidden random
variable. It does not introduce a large set ofvitllial parameters which are explicitly linked
to the training documents. LDA is a well-definechgeative model and generalizes easily to
new documents. For the vocabulary of the $iza K-topic LDA model needs onliK+KN
parameters.

LDA is another method that exploits the bag-of-veoebsumption; the order of words in a
document is not important. Moreover, LDA also asssrthat documents are exchangeable;
the order of the documents in a collection is urontgnt. De Finetti representation theorem
(de Finetti, 1974) establishes that any collectotdrexchangeable random variables has a
mixture distribution representation. Hence LDA aduces the mixture model that captures
the exchangeability of both words and documentse Thentioned assumption of
exchangeability is not equivalent to the assumptihan the random variables are independent
and identically distributed. Rather the exchandégbtan be interpreted as a conditional
independence, where the conditioning is with tispeet to an underlying latent parameter of
a probability distribution. Thus, while the exchaability is clearly the major simplifying
assumption that leads to computationally efficierdthods, it does not necessarily lead to
approaches that are restricted to simple frequenayts or linear combinations. The model
can capture a significant intra-document statis8taicture via the mixing of distributions.

Let us have a collection of M documents ¢, oy, ...,ds}. The documents include words from
the vocabularyw={w;,w,,...,w}. LDA is the generative probabilistic model of thellection

D that generalizes well for unseen documents. Thechidea is that the documents are
represented as random mixtures over latent togrefz,z,...4}, where each topic is
characterized by the distribution over words. Thetrir B of the sizeKxN is the matrix of
word probabilities; each row is the word distriloutifor the different topic. The non-negative
K-dimensional vectoa includes the proportions of topics in the wholéesion.

The following generative process describes the lmdand LDA:
* For each document in the collection cho®sBir (a).
» For each word in the selected document:
0 Choose a topiz~Mult(0).
o Choose a wort~Mult(zB).

collection | document token
a— 06—z —M
: . observed
6 : hidden

Figure 6: The causal schema of Latent Dirichleb&#tion model.
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The vectorz is a one-ofK binary vector; the produ@B is the row from the matriB with
word probabilities conditioned by the topicThe parameterk, a, B are treated as the fixed
guantitiesK is the dimensionality of Dirichlet distribution @dmust be set in advanaeand
B are the hidden collection parameters to be estidnat

TheK-dimensional Dirichlet random variabbeis the hidden property of each document. It is
the probability vector that can take values from ¢k—1)-simplex and it has the probability
density on this simplex

K

F(za.) K
PO |a) =K—1|'J of, (26)

[]r@

wherel(x) is the Gamma function (the factorial generalif@dnon-integers). This Dirichlet
distribution is the distribution on the simplex thia the conjugate to the multinomial
distribution.

Note that the generative process of LDA does netatp with the number of documents and
with the document lengths. These random values lmrmodeled separately using any
arbitrary distributions; the choices do not inflaerthe generative process.

Given the collection parametessand B one can derive the joint distribution of the topic
mixture 0, the set of topicg, and the set of words on the document level as

P@®.z,w0.B) = p@|ae)[] Pz; 8)p(w, Z;.B), (27)

wherelL is the length of a particular documepts the rank of a word in the document. The
probability p(8la) is from (26),p(z;[0) is simply&; wherei is the index of the topic behirj[’i
word (Z;=z), andp(wg|z;,B) is fj. Integrating ove® and summing oveZ we obtain the
marginal distribution of the document

p(w |a,B) :j p@© |a)u Z F(Z(j) |0) p(W(j) |Z(j)1B)d9' (28)

=L 7tz

Finally multiplying the marginal probabilities oingle documents, we obtain the probability
of the whole collection

Ly
p(D |a,B) = !_L j p(o, |‘l)|_! Z P(Zigyj) 194) P(Wiayjy | Zayj) - B)dO4 (29)
OD gy i=

Zay(jHUZ

The idea of the generative process can be visuhiiseng the causal network from Figure 6.
The figure makes clear that there are three landise LDA representation. The parameters
and B are the collection level parameters, assumed tsdoepled once in the process of
generating all documents. The vectdsare document-level variables sampled once per
document. Finally, the variableg); andwq)j are word-level variables and they are sampled
once for each word in each document. In this 3Hlewedel the topics are sampled repeatedly
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within each document, hence each document is aedcwith multiple topics. Models that
are similar to that shown on Figure 6 are referasdhierarchical models (Gelman et al.,
2009), or more precisely as conditionally indepernideerarchical models (Kass & Steffey,
1989).

The main inferential goal that we need to resolverder to use LDA is that of computing the
posterior distribution of the hidden probabiliti®@sand the generating topiasfor a given
document.

p(0,z,w|a,B)

p®.z]|a,B) = o(W [&.B) (30)

The denominator in the terms of the model paramdgdes form

l—‘(Za!) K K N
p(w|a,B) =—"=2— m 6” lj[ Z (6.8,)° j (31)
I—jr(a)@ a=1 i=1

dap is the 1/0 function, it equals one if and onlyvf=ws. Unfortunately, the above formula

(31) is intractable due to the coupling betw@eandB which is the obstacle in the estimation
from (30). Although the posterior distribution istractable for the exact inference, a wide
variety of approximate inference algorithms cancbasidered for LDA, including Laplace

approximation, the variational approximation, andrkbv chain Monte Carlo. Even though
LDA model cannot be estimated exactly due to itmarkable robustness for document
modeling, there are several available implementatiof variational methods in C, Java, or
Matlab.

LDA may not be used for the modeling of documemtly @as described in the previous text; it
has various potential extensions. For example, ldaA be applied to the continuous data or
other non-multinomial data. As in the case of otnetture models, the multinomial emission
probabilitiesp(w|z) can be substituted by any more realistic distrdns. For example, in the
continuous variant of LDA Gaussian observablesuse&d in the place of the multinomials.
Another simple extension of LDA comes from allowimgxtures of Dirichlet distributions in
the place of the single Dirichlet of LDA. This oféea richer structure in the latent topic space
and in particular allows a form of the documenstduing.

3.1.3 Principal language dependent dimensionality reduction methods

There are many language dependent approaches dha¢ dlifferent features from a text.
They successfully exploit the known vocabulary, tih@phology or the syntax of a particular
language. Their accuracy is generally greater ttenaccuracy of language independent
algorithms, but they rely on often huge and spedifguistic resources in the form of
vocabularies, rule sets or libraries. Hence aidhe computing power is often needed and an
adjustment to new languages is not trivial.

The language dependent algorithms that convertagr texts vary from fundamental
algorithms such as the stemming or the part-of-dpésgging to highly specialized ones such
as the sentiment recognition. They offer differfatures to structurally represent documents
but the features are mostly too specific for aipaldr natural language which disables to
switch a solution into the different language. lst briefly review only the basic known
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approaches that effectively lower the dimensiopadita text and they are available for many
languages.

3.1.3.1 Stemming

The stemming is the process for reducing wordshéir tstem, base or root form. Tkeem
need not be identical to the morphological roothaf word; it is usually sufficient that related
words map to the same stem, even if this stem tish@ovalid root. The main benefit of the
stemming for the dimensionality reduction is tha tifferent words of similar meanings are
assigned by the same generating stem.

The stemming is not available for any natural laaggu For example, Chinese does not allow
the stemming. On the contrary, the rule-based nuggly of Indo-European languages

enables to construct efficient rule-based stemmierthis language group the root of a word

is surrounded by prefixes and suffixes. In the psses of stemming we often focus only on
the suffixes. The suffixes can be categorized ihtee main groups:

A-suffix (attached) has a form of different word.ovils with A-suffixes are the compound
words.

I-suffix (inflectional) creates an inflectional forof a word. It meets the morphological rules
of a language, but exceptions may exist. Someflx®sfalso alter the root.

D-suffix (derivational) changes the meaning of ardver even its part-of-speech. Even
though some morphological rules are available ter D-suffixes, vocabularies are necessary
to recognize D-suffixes sufficiently.

The stemming algorithms can be divided into sevea#gories as well. They differ in their
precision, efficiency or performance. Even thoulga stemming is the language dependent
procedure, the stemmers are usually reasonableaf@scompact. We can distinguish four
groups of the stemming algorithms:

Brute forcealgorithms do not rely on linguistic rules. A taleluding the pairs of word-stem
is the core component of the brute force algorithiiey search the table for each input word
to find the correct stem. It is rather labor inieago develop the lookup table that covers the
most of the vocabulary of a particular language.ti@ncontrary, the pair list easily covers all
the exceptions.

Suffix stripping algorithms exploit a relatively athlist of linguistic rules to strip the suffixes

from input words. Their development is rather siepbut the developer must have the
sufficient knowledge of the morphology of a partaounatural language. The suffix stripping
algorithms hardly recognize the exceptional stetiesir efficiency differs among languages
depending on the perplexity of the language.

Stochastic algorithms exploit the probability the@nd statistics. A statistical model is the
main component of the stochastic stemmers. The medaljusted on the training examples
that include correct pairs word-stem. The sta@trnodel is usually in the form of inferred
association rules between stems and words. Thdes ane used to recognize the most
probable stems of new words.

Hybrid algorithms combine the above mentioned apgines. They can use the lookup tables
together with the expert or inferred rules. Forrmpgke, in the first instance a small table

including the exceptions is searched and then tie set is applied to strip out regular

suffixes.

The first stemmer was published in the late 1960vi0s, 1968). Probably the most popular
stemmer was written by Martin Porter and firsthbfished in the 1980s (Porter, 1980). Many
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implementations of the Porter stemmer are freejilable, some of them with enhancements.
Martin Porter extended his work in the 2000s whenréleased Snowball (Porter, 2000), a
framework for writing stemming algorithms. Stemmdms several languages are now
available in Snowball; it became a standard platfér the development of new stemmers.

3.1.3.2 Lemmatization

The lemma or the citation form is the grammaticaihf that is used to represent a word
concerning its meaning. For example, the infinifiwan is used as the lemma for wordforms
of verbs. The lemmatization is then a process @itlapping the different inflected forms of a
word to the lemma, so they can be analyzed asgéesiem.

The lemmatization can substitute the stemming. difference is that the stemmer operates
on a single word without the knowledge of its cahteTherefore stemmers cannot
discriminate between words that have different nmegndepending on their parts-of-speech.
However, the stemmers are typically easier to inuglet and they run faster comparing to the
lemmatizers.

On the contrary to stems, lemmas are part-of-spspelgific. The same wordform can be
mapped to different lemmas depending on its padpafech that can be recognized only from
the context. Hence the lemmatization is usuallyfgered together with the part-of-speech
tagging considering the features from the neighbodhof the word. The combination of the
lemma with the part-of-speech is often called theeme of a word.

Similarly to the stemmers, the lemmatizers canue-based or dictionary-based. The rule-
based algorithms exploit the property of the wargether with the features extracted from its
context to determine the correct lemma. The dietigrbased approaches rely on the
dictionary of citation forms. The both approaches eombined in the hybrid lemmatizers.
They search for the lemma in two steps. In thet ftep the set of possible lemmas is
determined from the dictionary of citation form$ielsecond optional step is executed if more
than one lemma can be assigned to the wordformtauks ambiguity. The most probable
lemma is selected based on the word context aret &tfown features.

3.1.4 Dimensionality reduction appendix

The above description of dimensionality reductioatmods used in text mining comprises
widely used approaches. These approaches are wibvelified or adjusted to better fulfill
goals of a text mining task or to fit to a partemutlocument processing pipeline. For example,
the feature selection methods are usually modtieselect variable sets with small inter-set
correlation to avoid aspects of multi-collinearity regression models. It results in common
heuristic procedures of variable subset selectiochsas forward or stepwise selection
equipped by text mining criteria for feature ingarsor exclusion.

The reduction methods are often combined in thegecessing pipelines as well. A resultant
multi-step dimensionality reduction offers a bettentrol over the process and enables a finer
adjustment of optional parameters.

The main purpose of the thesis is to propose amnative feature extraction and reduction
approach that exploits an order in which standaedures appear in a text. The natural order
of linguistic entities in a text is often neglectedtext mining applicatiorfs but the order is
critical for a human reader to understand ideaa dbcument. An omission of a word order
can lead to serious mistakes in natural languageegsing tasks such as machine translation,

® In some advanced representations that exploitutage dependent linguistic resousces the contexténg is
restricted to an extraction of multi-word terms.
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guestion answering or text summarization. Hendg worth exploring how the contiguity of
linguistic entities may help to improve a perforroanof standard text mining models.
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4 Proposed context document representation

Any document is a sequence of vocabulary terms.fildgriency of terms within a document
Is an important statistics for the document repregt@n, but we have to take into account the
term adjacency as well. Hence the document caedprded as a container of ordered groups
of the terms of the fixed length. The groups aferred as n-grams wherestands for the
fixed length of the group. This perspective comesmf the standard n-gram language
modgling where the occurrence of a term in the deyxends on the presence fl( previous
terms.

The usage of n-grams as the basic building blo€kexts further significantly magnifies the

dimensionality problem that arises from the sizenafural vocabularies. Natural languages
consist of tens of thousands of words, considerihg word n-grams the resultant

dimensionality would be of a much higher magnitu@n the other hand, representative
vectors of a reasonable dimensionality are desrfdslthe further document processing. Such
vectors should comprise as much as possible infiomdhat enables to distinct among

different documents or to merge the similar ones.

The giant dimensionality difference between theangrepresentation and the representation
suitable for predictive models requires a multpstémensionality reduction. The proposed
document representation utilizes three reductigpsst

1. The transformation of terms to latent topics. Titeduction step does not take into
account the order or the distance among the wards text, but reveals the latent
topics hidden behind the text exploiting the cotooences of terms in documents of a
training collection.

2. The construction of document context networks @f thpics. The context networks
include the information about the topics” neighloardt the topics that occur closely
in the text are strongly connected in the network.

3. The centrality vectors extraction. The vector ofportances of the topics in the
context network is derived as the final represémtadf a document. The centralities
of the topics that reflect their positions in thentext network are used to quantify the
topics” involvements together with their closeniesthe text.

The detail description of this three-step processhe derivation of the reasonable vector
representation of documents follows. Let us hawetthining collectiorD={d;,dy,...,dv} of

M documents that is available to train the topic eldbm the first step. Then all three steps
can be performed to obtain the proposed representat any document regardless of the fact
if it belongs or not to the training collecti@n

| I i P i J

Figure 7: The representations of a text documetihénproposed processing pipeline.

4.1 Transformation of terms to latent topics

In the first step, the size of the vocabulary canrédduced by several methods that take into
account the common appearance of the terms in ¢leengents belonging to the training

"In real documents the length of the context thltiénces the appearance of particular terms ipratiably
fixed. The variable context length is difficult itetroduce to the presented approach but the lamgagh context
length may smooth these irregularities.
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collection. They are often referred as the topidetimg methods. The popular topic modeling
methods are described in chapter 3.1.2. We projmosse Latent Dirichlet Allocation (LDA)
to substitute terms in a text by the topics infirg step. LDA exploits a flexible generative
model of the training document collection. The ded model can be simply applied to new
documents. LDA describes the collection as the whuling Dirichlet distribution and also
offers a description of each document by fitting multinomial distribution of the topics.
Above all, it enables to substitute each term @oeument by the topic which is exploited in
the proposed representation. LDA is described taildan chapter 3.1.2.4.

To utilize LDA effectively several simple preprosesy procedures can be helpful. They
include the term filtering and stemming. The terttefing deletes useless and unknown terms
from the text. The useless terms include prepasti@onjunctions, particles etc. They are
available in special lists called stop-word lisEsrten though stop-word list usage is the
language dependent procedure, it does not reqaseresources. There are several hundreds
of simple stop-words in each natural language, &¢ne filtering is reasonably fast. The stop-
word filtering reduces the noise in the text thart be generated by the meaningless terms.

To recognize the same meaning of two or more dfferwordforms, we recommend to

preprocess the text by stemming. The stemming resweword suffixes and optionally also

prefixes that form the wordforms. It is not necegda strip the words to the grammatical

root; the main purpose of stemming is to unifyfaims of the same word. This procedure
further reduces the input vocabulary that entersRé. The stemming is also the language
dependent procedure that does not require hugeinaso The common stemmers are rule
based ones; the stemmers usually include sevenaréds of grammatical rules that trim the
words to the common forms.

The lemmatization is an alternative to the stemmilfige lemmatization enables to substitute
a wordform by a basic grammatical form called theina. For example, all forms of nouns

are substituted by the first case of their singtdam. The lemmatization is tightly associated

with a particular language and requires more coatmral resources. It is also rather

difficult to acquire lemmatizers for uncommon laages. Hence the stemming is preferred to
the lemmatization in the proposed process.

Similarly to the stop-word filtering non-linguistentities should be filtered out from the text.
The non-linguistic entities include numbers or UREsen though the non-linguistic entities
appear often in texts, their actual forms are opient; there are many but different non-
linguistic entities in the documents. Hence thiiefing procedure is covered by more general
exclusion of non-dictionary terms. LDA that followan substitute the known terfisy latent
topics, the unknown terms are always omitted. Toeabulary of known terms is built in
advance usually using the training set of documenke infrequent terms are generally
excluded from the dictionary because their co-aerae with other terms does not enable to
estimate parameters of joint term distributionsal®y. The usual vocabulary that enters to
LDA consists of thousands or tens of thousandsiofs.

After the input vocabulary is set, the LDA modehdae trained for the given number of
hidden topics. The number of the topics is fixed &l documents and has to be set in
advance. The appropriate number of the topicsateafurther used instead of the terms varies
from units to hundreds. The number of the topicplies the dimensionality of the final
document representation because the topics fornvehees of the context networks. The
length of final document vectors is the same agihen number of the topics.

8 More precisely the stemmed terms in the proposedess.
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The LDA model is adjusted on the training set ofwuoents to estimate parameters of prior
Dirichlet distribution which influences the indiwdl distributions of the topics in the
documents. The individual topic distribution can then derived for any document either
from the training collection or for new ones. Usithg conditional probabilities of the terms
given the topics, the terms are substituted bytdipéecs. These conditional probabilities are
also estimated in advance using the training seh@fdocuments. The input for the second
step then consists of preprocessed documents wheraseless terms are omitted and the
other terms are substituted by the nominal topics.

Formally the first step reduces the size of thetiahary for the consequent steps. The
dictionary V={wy,w5,...,wn} now consists ofN topic entries. Each documedtcan be now
regarded as a sequence of vocabulary itdavg:wWws)...Wy); the terms are substituted by
the topics The bracketed indexes express the rain#tee topics in the documedt L stands
for the document length and it is the number ofrdmgnized terms that were replaced by the
topics.

The first step also provides the basic documentesgmtation where the counts of the
vocabulary topics form the document vectBr(vy,vs,...,vy). This representation does not
comprise the context of the document; a permutatiotihe terms within the document does
not influence its basic representation by the vedtdt is the bag-of-words representafion

4.2 Construction of context networks

In the second step, the individual context netwigrbuilt for each document. The network
structure, that can be regarded as oriented gragphweighted edges, reflects the adjacency
of topics in the document. The topics constitutgizes of the context networks; the set of
vertices is the same for all documents. The comekworks of two documents differ only in

the strengths of edges that reflect the relationsray the topics in the text. The topics that
often appear nearby in the text are connected stopagly than the topics that appear further.

To assess the adjacency of the topics, a contextlow has to be defined. The context
window covers a sequence of the topics of the fieadjthK. The context window includes
an uninterrupted subsequence of a text. For egub to a document one can investigate its
left or its right context window depending on tlaetfwhether the topic is the last or the first
topic of the context window. Sliding the contextndow through a text we can explore the
neighborhood of each topic. The joint topics cotthfsom each position of the context
window in a text are aggregated to form the weighthe context network.

The distance of the topics within the context wiwvde unimportant; all topics are regarded as
the neighbors of the last or the first topic. Tleimts of the neighbor pairs summed over all
the context windows within a document then serveéhasweights in the context networks.

The order of the topics within the pair implies theection of the weighted connection in the
context network.

To be able to construct the comparable context ewnéor starting or terminal topics, we
suggest to add a reasonable number of dummy giaotifinal terms before or after the text
respectively’. All the dummy terms are explicitly substituted thye same additional dummy

° The more precise name would be the bag-of-topisgesentation.
9 The pairs of the most right or left topic with amiher topic in the window are only regarded.
M For the lengtiK of the context window,K{-1) dummy terms are inserted before or after the te
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topic*2. This dummy topic makes a special vertex of thetext network with solely outgoing
or ingoing connections.

Optionally the text can be divided into sentefitesd each sentence can be wrapped by the
dummy topics separately. In such approach the raigheighborhoods that exceed the
sentence borders are excluded; only the term paatsappear inside sentences contribute to
the connection weights of the context network.

The weights in the context network which represemtdocument can be comprised to a
square matrixc. The number of rows and columns equals to thengiwember of the topics
N. The context network is the directed network, eetiee matrixG is not symmetric, but it
includes non-negative integers only. Rows represbkat vertices where the connections
origin, columns stand for the terminal vertices.eTéet of the vertice¥={w;,W,,... Wy}
together with the weight matrixs form the context networlG={V,G} for a particular
document. The matrix document representation itsglfnot appropriate as the final
representation that enables the further fluent dmsu processing, but it is important for the
derivation of the centralities in the third step.

4.3 Extraction of centrality vectors

The centrality is a measure that reflects a pasitd a vertex among other vertices in a
network. If we compute the centralities of the tspin the context network, we get a vector of
the same dimensionality as the number of the eeaiopicsN. The number of the topics is
set in advance before LDA is applied to the tetxenables to control the dimensionality of
the proposed representation. Considering the robastof data mining models together with
the richness of natural languages we recommenongomise the number of the topics to
the magnitude of tens.

A centrality scorec(w;) of a vertexw; is always derived regarding its incoming and ourtgo
connections; some centralities take into the canraiibn also other ties in the network. Hence
the centrality score reflects the intensity of thpic as well as its typical position among the
other topics. Depending on the selected centrali@asure we can emphasize the document
content (intensity) or the context within the tépbsition among others). The centralities
ci=c(w;) of the verticesw; from the context networks form the new proposed document
vector representatiot] (G)=(Cy,Cy,...,Cn).

In the further experiments we conducted tests iae rcommon centralities. The formal
derivation of all tested centralities is describeddetail in chapter 4.5. All of the selected
centralities take into account the strengths of tike and their directions; the only non-
directional tested centrality is Degree. To computg non-directional measure the matdx

of ties should be symmetrized by averaging or sumgnaf the conjugate weights that are
equivalents to the discarding the arrows in thevogt diagram. Degree depends on the
connections of the particular vertex only henceaim be computed as the row sum plus the
column sum of the matri$6. The directional centralities that consider otilg tonnections of
the vertex they are computed for include InDegneg @QutDegree. They are derived as the
sole row sum or column sum respectively. Hence Began be decomposed as InDegree
plus OutDegree. The other considered directionaltrabties take into account a wider
neighborhood of the vertex they are computed fbeyTinclude Eigenvector, Authority, Hub,
PageRank, Closeness and Betweenness. Closene&etavekenness centralities differ from
the other centralities because they rely on thgthenof paths through the context netw@k

2 The dummy topic covers the dummy starting or fieain only. The dummy topic is assigned directlig ibot
the output from LDA.
13 The sentences can be recognized early in the deipnocessing after the tokenization.

30



Hence to compute them one has to transform the higitp the distances to form the
complement context network where the weights afestduted by the distances. Higher
weights imply smaller distances and vice versa. @mstances for such centralities are
computed as the inverse of the weights in the pep@pproach.

The magnitudes of the before mentioned centraldresinfluenced not only by the relations
among topics but also by the length of the documesriger documents imply higher weights
in their context networks because the topics appeae frequently in the texf. The sizing of
the weights influences the centralities as wellgi2e, InDegree and OutDegree grow with
the increasing length of the document. On the dilaed, higher weights imply shorter paths,
hence Closeness and Betweeness decrease withctkadimg length of the document. Other
centralities namely Eigenvector, Authority, Hub aRdgeRank rely on eigenvectors and
eigenvalues of the matrices derived from the cdmetwork, hence the scale of the network
weights may or may not influence its magnitude depgy on the actual software
implementation.

The standardized versions of the centralities candfined together with the unstandardized
ones. They are adjusted to the size of the nettmbe comparable among networks with the
different number of the vertices. The number of ibdices in the proposed context network
is fixed, hence the centralities standardized fer $ize of the context network are not very
useful. On the other hand, the adjustment of tmérakties to the total sum of weights in the
weighted directed network would help to compare doeuments of the different lengths
because the weight sum is proportional to the decunength. Unfortunately, this adjustment
is not straightforward, so we propose to use thetandardized centralities and to modify the
way how the document vectors are compared. Foptbeessing of the documents regarding
their content and context controlling for the do@mnlength we propose to compare only
angles among the centrality vectors. To do so tbeushent vectors that consist of the
unstandardized centralities can be standardizednity length or appropriate proximity
measure should be selected for the comparisonsgtherunstandardized vectdrs.

4.4 Examples of obtaining representations
Example 1 The construction of the context network

Let us have a vocabulaly = {a,b}. A documentd = aabababdiis a product of a 3-gram
generative model. We will try to estimate the pagters of the generative model and to
complete the context network representing the decum

Firstly, we derive all possible 3-grams that stémdcells of the transition matriX. We also
need to identify the set of all 2-grams that repn¢sows of a transition matrix. The length of
the vocabulary| is equal to two, hence there arfe32grams {aaa, aab, aba, abb, baa, bab,
bba, bbb} and 22-grams {aa, ab, ba, bb} in our generative modlae matrice®Q andP of
joint and conditional probabilities have 8 cellsclea4 rows and 2 columns) and these
matrices are unknown. We can estimate them frontrtresition matriXT of the same size.
The matrixT includes counts of transitions among 2-grams hadrocabulary terms.

% The total sum of weights equals to the produthefdocument length times the size of the contéxtow.

15 The cosine similarity is the standard choice wbemparing the documents in text mining; it can ppliad to
the centrality vectors as well.

% The letters substitute topics extracted by LDAhi@ examples.
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Even though the actual length of the docuntkig 9 terms, we exclude the first two terms
from the consequent computation of transitions,ckewe claim that the length of the
document is ¥. It is also the sum of the counts in the maffixThe maximum likelihood
estimates of joint and conditional probabilities #ren

0 % 0 1
o=|% Olp|t O
Yo 7 % 7
0 0 00

They are very rough estimates of the probabiliéied there are a lot of zeros and ones in the
matrix P. Hence some method of probability smoothing shdagdtaken into account to
estimate practically useful probabilities. Fortielgt we do not require the estimation of the
matricesP and Q to derive the context network hence we need nbtesthe smoothing
problem.

Now we construct the context netwdrkof the documendl. To do so we have to count the
numbers of different terms in the context windowseach term. We use the left context
window of two adjacent terms to comply with the gextive 3-gram model. It means we are
going to count the frequencies of terms in the sgbence of two preceding terms for each
term in the documerd™®. The counts form the square context network magriaf the size

2x2.
4 4
G=
3

8

4 4 2

a b

Figure 8: The visualization of the context netwivdin the example 1.

The sum of all counts i is equal to the length of the context windo=@) times the
length of the documenL€7). Using the matrix algebra the network magixan be obtained
as a product of the transition matfiixand a fixed matrid representing our context window
of the length two.

" A more precise way to cope with the problem oftgtansitions is to extend our vocabulary by a dumerm

s and put the reasonable number of tesmas the beginning of the document. The approactoisshown in the
example because it extends further the number sbiple n-grams and does not influence the proposed
algorithm. However, in practical applications esplg when coping with short texts the start tersh®uld be
considered.

'8 The nearly same context network would be obtawsidg the right context window. The resultant cahte
networks would differ only in two starting or enditerms respectively.
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G=HT
2110
H=
0112
Rows of the matriXd represent the vocabulary terms and columns standllf possible 2-
grams. Integer values M are then counts of the terms of the column 2-grams

The resultant context netwoi® has only two vertices and four oriented weightedes
including self-loops. The vertices represent theabmlary terms, the edge weights are the
sums of the transitions among the terms withircafitext windows in the document. Due to
the small number of the vertices in the contextwoek it is not appropriate to derive a
centrality representation of our documdnh this example. The next example is slightly more
realistic and it ends with the selected centrakfyresentations of a document.

Example 2 The derivation of the basic centralities from tdomtext network.

Let us have a vocabulaky= {a,b,c,d}. A documentl = bbacbadbacbaaadcba is a product of
a 3-gram generative model. The size of the vocapiNaequals 4, the number of 2-graivs
equals 16 and the lengthof the documend is 16 (omitting the starting terms again). The lef
context window of the sizk=2 will be used.

The matrixT of counts of transitions among the 2-grams andvti@bulary terms is of the
Size 16x4.

1 00011000300O01O00
TT:O 021000O0O0O0OO0OO0ODO0OO0OT11IO0
0001200O0O0O0O0O0O0O0OO0OO
10001000O0OO0OO0OO0OO0OO0OOOO

1 000100O01O00O00O0
121101
001011
0 001O00

I

1
R O O Bk
O N O
N )
= O O
P O R
A =)
N O O

And the context networte=HT of the size 4x4 is then

3333
7021
3300
1210

The basic centralities of the terms in the contettivorkG can be calculated as the product of
the weight matrixG and a matrix of a desired form. The InDegree antD®@gree centralities
can be computed by the multiplication®fby a vector of ones from the left or from the tigh
respectively. These products represent column wrgoms ofG. The Degree centrality is
then the sum of InDegree and OutDegree. Hence weasily conclude these centralities as
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c=1"G=(14 8 6 4)
c,=G1=(12 10 6 4)
cl =cl, +ci, =(26 18 12 8)

Note that the sum of all InDegrees as well as Qyrigkss is equal to 32, which is the product
of the document length and the context window sTzee presented centralities are the linear
combinations of the transition counts from the malf. Other more complex centralities
generally cannot be calculated as a simple matrodyct. Some centralities require
eigenvalue and eigenvector computations while thers depend on distances in the context
network. The next example illustrates such certiealin a larger detail.

Figure 9: The visualization of the context netwisdin the example 2. The sizes of the nodes are
proportional to InDegree, the distance from thetees inversely proportional to Degree.

Example 3 The derivation of some advanced centralities ftbencontext network.

Let us have the same vocabul&gnd the documentas in the previous example. It has been
already shown how the context netw@ks derived from the documedt Now let us present
the centrality vectors that cannot be derived sear function of the matrif.

Firstly we can compute the importance of the naddgke whole context network. Regarding

the fact that the importance of a node is influenbg the importances of its neighbors, we
need to derive eigenvalues and eigenvectors. Tgenkzector centrality for a node is just an
item of the eigenvector of the mati& Hence the proposed centrality representatiomef t

documentd is the eigenvector of its context netwdek The eigenvector that is assigned to
the largest eigenvalue is used because it is gtgedrthat its items are non-negative real
values. For our documedtthe Eigenvector centrality representation is

T =(063 061 041 025.

If any eigenvector is multiplied by a constantjsitstill regarded as the same eigenvector.
Eigenvectors are usually provided as vectors withunity length therefore no adjustment to
the document length is necessary.

The more common centralities that express the itapoe of the node based on importances
of its neighbors are Authority and Hub. Authoritgpgnds on the incoming ties and Hubs of
the neighbors while Hub depends on the outgoirgydied Authorities of the neighbors. That
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is why these centralities are usually provided thge Authorities of the nodes of our context
network G are the items of an eigenvector of the ma@bG and Hubs are the items of an
eigenvector of the matriGG'. The matricesG'G and GG' are symmetric, hence they
eigenvalues and eigenvector are real. Furthermtey share the same eigenvalues; the
eigenvectors are generally different. The eigeruscthat come with the largest eigenvalue
are usually used as Authorities and Hubs. For cacuchentd the Authority and Hub
centrality representations are

c,=(084 033 035 025
¢, =(056 072 037 020)

Similarly to Eigenvectors, Authorities and Hubs are usuallyigeal in the normalized form,
hence any length adjustment is not necessary.

PageRank is another centrality that expresses the importance of aasedeon its ties and
the importance of neighbors. Apart from the fact that PageRank can batedmag a solution
of a matrix equation, it can be also obtained as a result of aagiomuprocess. If we simulate
many random walks with breaks through the network, PageRankadeais the probability

that the random walk goes through the node. Hence the PageRandlitoes are often

provided as probabilities that sum to one. For our docurdetite PageRank centrality
representation is

cr.=(039 027 020 014).
If the vector of PageRanks is adjusted to the unity lengthreeeive
c.=(074 050 037 027).

The other centralities that are investigated in this work are basd@tances or path lengths
among the nodes in a network. To compute the representatitms @dcumentl using these
centralities, the context netwof® has to be modified. Instead of weights that reflect how
closely the vocabulary terms appear in the document we havedduoé the distances of the
vocabulary terms. The inverse of the weight can be used as thecdisHence our matri@
transformed to distances has the form

g=|7 0 2 1)
% % 0 0
1 % 1 0

The zero entries in the matrix do not mean zero distances; théy tinap the nodes are not
connected. The Betweenness centrality for a node expresses the numbeshoftiést paths
among the others nodes in the network that include this nb@eB&tweenness representation
of the documend is

c=(4 2 0 0.

Four shortest paths between pairs of terms from {b,c,d} go thrthglerm a, two shortest
paths between pairs of terms from {a,c,d} go through the term I le¢cBetweenness vector
adjusted to unity length is

cL=(089 045 000 000).
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The Closeness centrality express how close is a node to all otdes mo a network.
Closeness is the inverse of Farness. Farness is the sum of distaaflesther nodes. The
small Closeness means that a node is not far away from othes.ndtde Closeness
representation of the documehis

L =(300 274 225 142),
and the adjusted version has the form
c. =(062 056 046 029).

It is hard to select the best universal representation of the @mtanamong the proposed
document vectors; the appropriateness may be influenced by a dateg ask, by a

modeling algorithm, by linguistic entities extracted from a texpy a domain of a document
collection. Such investigation of the proposed document represestatelevance is

presented in the experimental part of the thesis.

4.5 Context network centralities

The described representation exploits selected common centralitiesallyigiroposed in
Social Network Analysis theory (SNA). This chapter formally intiweki these centralities
and offers formulas to compute them.

The context networks={V,G} consists of a set dfl nodes or vertice¥={wi,w»,...,w\} and a
set of directed edges or ties between pairs of the nodes. The Ggighassigned to the edge
from the nodev; to the noda,. If the edge between nodesandw; is missing, its weighG;

is set to zero. The weights are arranged in a m@&riXhe matrixG is the square of the size
NxN, but not the symmetric one because the netvdris directed. Rows 06 represent
nodes where the edges originate, columns stand for the nodestihedsges terminate.

The context network is derived for each document as an intermediati& skepprocess of
extracting the proposed document representation. It can be viewed aszatiosabf the
random matrix that is derived from other random matrix of transit@mong possible n-
grams (see chapter 5.2). The vertices from th¥ see topics that were extracted from a text;
the tokens in the text are substituted by the topics before thextoretwork is built. The
weightsG;; are proportional to the frequency of co-occurrence of tagi@ndw; within the
context window of the fixed lengtK.

The context networlG offers statistics of its vertices; that are derived from the weight
matrix G. These statistics are called centraliflémcause they serve as a description of the
position of the vertexw; among the other vertices. The proposed context networks for
different documents consist of the same set of the veNiclkat they differ in the weights of
the tiesG that are specific for particular documents. Therefore the vertex centralitieshi®rm
vector of the fixed length which serves as the proposed represenfaticiocument.

The node centralities can be aggregated together to form a gloiy@rty of the whole
network. Usually the centrality variability within the netwoskexamined to characterize the
networkstructuré®. Such variability indexes could be also used as scalar representations
documents. Unfortunately, the reduction of information that arises the contraction of the
context network into a single score is so enormous thatHiargepresentation of documents
does not enable to process them accurately enough.

19 Some authors distinguish centrality measures agstige measures.
2 For example the standard deviation of a centralithin the network can be used. More often theaislity
indexes compare the node centralities with thesktrgentrality in the network.
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Depending on the actual centrality statistics, the proposed vecteseepation specifically
comprises the adjacency of the topics within a document. Latevisw the centrality
measures that are tested in the experimental part of this work. They foom the general
Social Networks Analysis theory (SNA). The presented centralitiescr@ only ones that
can be used; SNA offers many others, but they are commonlyius#ter applications of
social networks. Even though the centralities are often adjustkd fize of a netwofkto be
comparable among the networks of the different sizes, the propgmedentations do not use
the adjusted versions because the number of the nodes is fixed fdocalnents in a
processed collection. In following paragraphs only the centraktgions that apply for
directed weighted networks are presented. For example, weightedréeOegimply referred
as InDegree.

4.5.1 InDegree

For a nodew; the sum of weights assigned to adjacent connections thanh&emin the node

w; is called InDegree of the nodeg. A vertex with zero InDegree is called a source, as it is
the origin of each of its incident edges. InDegree is often interprded form of the
popularity of the node. The InDegree centrality can be computed as the column suma in th
weight matrixG.

Co (Wj ) = Z G, (32)

i=1

The sum of InDegrees of all vertices equals the sum of all enfribe eveight matrixG. In
the matrix notation the whole InDegree centrality vector that sawése proposed document
representation is computed as

ch(G)=1G. (33)

InDegree ranges from zero for the source nodes and has no uppeiolirtiie weighted
networks.

4.5.2 OutDegree

For a nodaw; the sum of weights assigned to adjacent connections thataiggn the node
w; is called OutDegree of the nodge A vertex with zero OutDegree is called a sink, as it is
the end of each of its incident edges. OutDegree is sometinked tad branching factor of a
node. OutDegree is often interpreted as a form of gregariousnes® afotlew;. The
OutDegree centrality can be computed as the row sum in the weagit @.

Con(W) = 2.6 (34)

The sum of OutDegrees of all vertices equals the sum of all eofrib® weight matriG.
The same is true for InDegrees, hence the sum of OutDegrees is eqiha $om of
InDegrees. In the matrix notation the whole OutDegree cemtnadictor that serves as the
proposed document representation is computed as

21 Number of nodes in the network.
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ConlG) =G1. (35)

OutDegree ranges from zero for the sink nodes and has no upptefolinthe weighted
networks. If it holdscop(wi)=cip(w;) for every nodew;, the network is called the balanced
network.

4.5.3 Degree

Conceptually the simplest centrality is Degree, which is defiagdhe sum of weights
assigned to all incoming and outgoing connections incideoh @pnodew;. A vertex with
zero Degree is an isolated vertex; there are no connections to othieasolated vertex. The
degree can be interpreted in terms of the immediate risk of a node forngattia
information that is flowing through the network. The Degree cetyrean be computed as
the sum of InDegree and OutDegree.

CD(Wk):C|D(\M<)+C0D(Wk):;G|k +221ij (36)

The sum of Degrees of all vertices equals twice the sum of all eafrike weight matribG
and also equals the sum of InDegrees plus the sum of OutDelgréles.matrix notation the
whole Degree centrality vector that serves as the proposed docuepgasentation is
computed as

o (6)=('e) +61=(cT+ah. @7

This formula also tells us that Degree is computed as the roeolomn sum of the
symmetrized weight matrix. Degree ranges from zero for the isolated anddsas no upper
limit for the weighted networks.

4.5.4 Authority and Hub

Authority and Hub scores were introduced in the link analysisridihgn that rates web pages
(Kleinberg, 1999). They were precursors to PageRank. The Aytaod Hub centralities are

usually computed together and they are referred as®IRSnode with the high Hub score
points to important Authorities and a node with the highhAtity score links by important

Hubs. This scheme therefore assigns two scores to each nodetwoakn

The intuition behind the algorithm arising from the scoringvebpages is the existence of a
mutually reinforcing relationship between two different types ofepadrirstly Authorities,
which are commonly cited regarding certain topics, thus theyrdoemative and tend to
exhibit a large InDegree; and secondly Hubs, which cite many refatebrities, thus they
are useful resources for finding Authorities and tend to exhilitge |OutDegree.

The Authority and Hub centralities generalize the InDegree andé&gute centralities
because they take into account broader neighborhood of a rfoeleaile defined in terms of
one another in a mutual recursion. The Authority score of awodecomputed as the sum of
the scaled Hub scores of nodes that poinktcA Hub score of a node; is the sum of the
scaled Authority scores of the nodes thigpoints to.

22 Hyperlink Induced Topic Search
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The Hub and Authority scores can be calculated with a two-step iee@gerithm that can
be transformed to the computation of eigenvectors of Hub and Aythoatrices or even
viewed as the Singular Value Decomposition (SVD) of the weight x@triThe first step of
the iterative algorithm is the Authority update: The Authorstgore of the nodev; is
proportional to the weighted sum of the Hub scores of each nodpdiné$ tow;. Hence the
node is given the high Authority score by being stronghkdd to the nodes that are
recognized as important Hubs.

/]ACA(Wj ) = ZG” Ch (W|) (38)

The second step of the iterative algorithm is the Hub update: Thesébre of the nods; is
proportional to the weighted sum of the Authority scores of eadew; points to. Hence the
node is given the high Hub score by strongly linkinghe hodes that are recognized as
important Authorities.

AnCy (Wl) = ZGijCA(Wj) (39)
=1

These two steps (38)and (39) are repeated. The scaling fdgtamed 1y ensure the
convergence of the process. The equations (38) and (39) can be expneHsednatrix

notation as
2,64(G)=G"c,(G)
446u(G)=Gc,(G) (40)

Combining these two equations together we receive the final matriatiequfor the
Authority scores and rather similar equation for the Hub scores.

G'Gc,(G)=Ac,(G) (41)
GG'c, (G) =Ac, (G) (42)

The equations (41) and (42) imply that the searching for thieohity and Hub scores results
in deriving of eigenvectors of the matricé8G and GG'. The matrixG'G is called the
Authority matrix andGG' is called the Hub matrix. The constahis the same in both
equations (41) and (42) and is related to scaling factors fromaé453 1ady. It indicates that
the Authority and Hub matrices share the same eigenvalues whileetbenvectors are
generally different.

The problem can be also considered as SVD of the weight nGatfthe form

G =C,)"C],. (43)
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The matrixCy consists of the right eigenvectors of the Hub ma®&" while the matrixCa
consists of the right eigenvectors of the Authority maBNG. The matrixa is the diagonal
matrix of common eigenvalugs

SVD of G also enables to decompose the weight matrix as the weightedfssepavable
matrice$” that are formed by Kronecker product of the eigenvectors of Hub arfebrityt
matrices.

N
G= Z/]i%CHi O C;i (44)

i=1

Among the solutions of (41) and (42) the eigenvectors thatrguleed by the largest common
eigenvalue are used as the Hub and Authority scores. Hence tloesvetthe Hub and
Authority scores provide the strongest separable matrix from theng@sition ofG given in
the formula (44).

4.5.5 PageRank

PageRank was developed at Stanford University as a part of the resegchtpead focused

on the development of a new search engine (Page et al., 19@@R&hk is similar to the
Eigenvector centrality concept. PageRank is used by Google tavebpages in their search
results. PageRank can be regarded as a link analysis algorithm diggits asne numerical

score to each element of a hyperlinked set of webpages with thespusponeasuring the
relative importance of the webpage within the set. The algorithym lmeaapplied to any

directed social network.

PageRank of the node; is defined recursively and it depends on the number and on the
magnitude of PageRank centralities of all nodes that link.td the nodew; is connected by
many nodes with high PageRank, it receives a high PageRanklaRagedRank of the node

w; is the probability that represents the likelihood that a rahdsaiected connection on the
walk through the network refers tg. In the network of webpages PageRank of 0.5 means
there is a 50% chance that a person clicking on a random ilinkewdirected to the document
with the 0.5 PageRank.

To compute PageRanks of the nodes in the netw&rkhe weight matrix has to be
transformed to a stochastic matrix where the elements of each rowpstori. Let us define
a matrix H that is derived from the weight matri@ by dividing each element by the
appropriate row sufil

H =diag(G1)'G (45)

The functiondiag() returns a diagonal matrix from the vector in its argument. Neatethie
stochastic matriH is obtained by the multiplication @& by the diagonal matrix of inverse
OutDegrees. The matrii is the transition probability matrix in Markov process in etihwe
search for a stationary distribution of probabilities of vigitthe nodes o6; the PageRank
centrality of a nodey; is the probability of arriving at; after a large number of transitions.

% The square root of the common eigenvalue is caledsingular value.

24 A matrix is separable if it can be written as ateo (Kronecker) product of two vectors.

% Assuming that all weights are non-negative and rihe sums are positive. The zero row sum will be
addressed and adjusted later in the text.
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CPR(G)T H = CPR(G)T (46)

The equation shows that PageRank is a variant of the left-handed/&stmncentrality for a
modified weight matrix. It is ensured by Perron—Frobenius thetinatthe largest eigenvalue
of a stochastic matrix equals one; hence the eigenvalue or the daatmigis not present in
the equation (46).

The formula (46) is only the simplified version of PageRank coatjgut. The calculation of
PageRank is commonly adjusted for random transitions that afieialy added to the
network. Therefore in the random walk through the network we can ftonp the current
node to any node with the constant probabilityp)/IN°, whereN is the number of nodes and
b is a selected constant between zero and’ofiée idea behind is that when browsing the
Internet a user can either follow the hyperlinks on pages write a completely new address
to his browser. Such adjustment also solves the problenisksf that are the nodes without
any outgoing connection. In Markov theory the sinks are abgpdiates; it is impossible to
leave the absorbing state. Such sinks would attract all PakgeRanthemselves from non-
sink nodes if the network was not enriched by the artificial randansitions.

The artificial transitions are added to all nodes in the netwodkdégss of the fact the node is
the sink or not. The probability of jumping to a randongiested node in the network instead
of using the original transitions is usually set to 0.2% er0.85. Hence we have to solve the
following matrix equation to compute the vector of PageRa&pks5) which represents the
stationary probabilities of visiting the nodes on a randonk trebugh the network.

(1-b)- 1" +bCee(6) H = Cor() @7)

The PageRank vector that serves as the proposed document represisriation

Con(G) = (D)2 17(1 -bH)*, us)

1
N

wherel is the identity matrix. The PageRank veatggG) can be also derived as the vector
of stationary probabilities of visiting network nodes in Markwrocess similarly as in the
formula (46) but using a modified transition probabilitiescd&G) include probabilities, it
sums up to one. Using the matrix notation it holds

Cr(G) 1=1. (49)

Multiplying the first summand in (47) by (49) we can defiree tadjusted transition
probabilities matrix as

— 1
H=(1- b)ﬁlf +bH . (50)

|t assures that the adjusted Outdegree is alwasisiye.
?"p is the probability of preferring the original tsitions over the artificially added ones.
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It is also the stochastic matrix representing the process wishtkd. This property is ensured
by the first summand in (50) whefil" represents the square matrix of ones. Hence the
PageRank document representation can be derived as the left-hand eigerivbetonatrix

H assigned to the eigenvalue that equals one.

Cor(G) H =Co(G) (51)

4.5.6 Eigenvector

Eigenvector centrality, regarded as a ranking measure, is a remarkalohetbidd (Seeley,
1949; Leontief, 1941). The Eigenvector centrality is the measute broader influence of a
node in a network. It assigns relative scores to all node®indtwork based on the concept
that the connections to high-scoring nodes contribute morestedbre of the node than the
connections to low-scoring nodes. It is a natural extensioneofinbegree or OutDegree
centralities. For example the InDegree centrality awards weight centpalitys for every
link a node receives. But not all vertices are equivalent: some areret@vant than others;
endorsements from important nodes count more. The Eigenvector ¢gntrakes a node
important if it is linked to other important nodes. The Eigaator centrality differs from the
InDegree and OutDegree centralities: a node with strong ingminmutgoing connections
does not necessarily have the high Eigenvector centrality becaugght be that all linkers
have the low Eigenvector centrality. Moreover, a node with thle Bigenvector centrality is
not necessarily strongly linked because the node might have fambaottant linkers.

The Eigenvector centrality score of a vertexcan be defined as a solution of the following
equation. The constantserves as the proportional factor that ensures that the equation has a
finite solution.

Ace (Wj): ;Gich (W|) (52)

With a small rearrangement the equation can be rewritten in the matakonoas the
eigenvalue and eigenvector equation.

cL(G)G = Act(G) (53)

The centrality vectoce that serves as the proposed document representation is the left-hand
eigenvector of the weight matri® associated with the eigenvalue The solution is not
unique; the matridXG provides generally more eigenvalues and eigenvectors dependitsy on i
rank. It is wise to chooseas the largest absolute eigenvalue of ma&iandcg is then the
eigenvector associated with this eigenvalue. By virtue of PerrdmeRios theorem, this
choice guarantees that the associated eigenvector consists of riiake pastries. This
theorem assumes that the matixs irreducible. For the context netwd®it means tha is
strongly connected. A network is said to be strongly connectedelfy vertex is reachable
from every other vertéX.

Note that the process how the context netwsiik derived does not guarantee that the weight
matrix G is irreducible. The matri% tends to be irreducible especially when the docurdent

2 A special case of the irreducible matrix is a fmatrhere all entries are positive.
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is short and the number of topikss large. In the later described experiments the unreachable
nodes receive zero Eigenvector centrality similarly as for InDegreet®eQree.

The idea of the Eigenvector centrality formulated in (52) implieddftdranded eigenvector
as a solution of (53). In such approach the Eigenvector céntralia generalization of
InDegree. The Eigenvector centrality may be also a generalizafiaddutDegree. If the
centrality score of the node; is proportional to centrality scores of nodes connected by
outgoing ties fronw;, it leads to the following equation for centralit@gw;).

Ace(w) =2GUCE(WJ-) (54)

The equation can be again rewritten in the matrix notation as téeveige and eigenvector
equation. The centrality vectag is then the right-hand eigenvector of the weight magix
associated with the eigenvaluie

GG(G)=Ac(G) (55)

The right-handed and left-handed eigenvectors are not generally tleefeamsymmetric
matrices. The right-handed eigenvectoGotan be derived as the left-handed eigenvector of
G' and vice versa. The right-handed eigenvectors are used more commordjs@most
implementations of the Eigenvector centrality offer right-handed E&ar only. Hence in
the experiments only the right-handed Eigenvector representationasezkp

4.5.7 Closeness

The Closeness centrality of a node was developed to reflect hogvisltise node to other
nodes (Sabidussi, 1966). It expresses how effectively the nodateeact with other nodes.
Such interaction is influenced by the number of mediators ankdebgroximities between the
directly connected mediators. Closeness of the node is a funétitsndistance to all other
nodes in the netwofR The closeness centrality is computed as the inverse of thefstine
distances between the node and all other nodes.

oo 1
Zd(W.,W;) (56)

j=1

ce(w

The Closeness centrality can never be zero; it is always non-reeggtie upper bound is not
constrained in the weighted network. The higher values of Closenpfsthat the node is
tightly connected with the others. The inverse of Closenesdled Farness; it is just the sum
of the distances to all other nodes.

Note that Closeness cannot be computed for isolated nodesrdfis the isolated node in the
context network, zero Closeness centrality is assigned to iisdlaed node can occur in the
context network when the topic that is represented by the isolatklis completely missing
in a text.

% The distance means the length of the shortestthatitonnects the vertices.
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4.5.8 Betweenness

The notion of the Betweenness centrality can be found in socigerg@gman, 1977). The

Betweenness concept of centrality of a node concerns how the nddascon mediates the

paths between pairs of other nodes that are not directly conn€bte8etweenness centrality
measures the extent to which the node lies on the shorte$tipatieen pairs of other nodes.
Generally Betweenness is an indicator of the control over themation exchange within a

network. The more often the node is located on the shortesdt pattveen numerous node
pairs, the higher is its potential to control the network inteyasti

To compute the Betweenness centrality the funcjém) has to be introduced. This function
returns the number of the shortest paths between mpdeslw; that the nodev is intersects.
Summings;(wy) across all pairs of nodes not including the nedewe receive the number of
the shortest paths that are controlled by the mgdfe

)= > s (w) (57)

i=l j=i+l

Betweenness is zero when the nedefalls on no shortest path for all the pairs among the
other nodes. It reaches the maximum valNel)(N-2) in directed networks wittN nodes
when the nodew falls on every shortest path for all node pairs, assuming tbatrily one
shortest path exists between each pair.

% The shortest path is sometimes referred as geopati.
31 Alternatively the Betweenness centrality can biindd relatively as the proportion of the shortesths where
the nodew; is present.
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5 Theoretical evaluation

5.1 Goals of theoretical evaluation

Variability of document vectors within a collection is essentiabifisument discrimination in
standard text mining tasks. Diversity of document vectors io#e@d by mining models to
recognize similar and dissimilar documents for retrieval, classificattoclustering. If the

document diversity is inhibited by extracting unappropriated featdhes mining models

cannot discriminate documents well enough and their qualitgwerl than it could be. A
context in which words or some higher linguistic entities appealocuments can be an
important source of the document diversity that may be explojtéldedtext mining models if
it is propagated to document vectors. The goals of this evatuati properties of the
proposed document representations presented in following chapters are:

* Find or approximate the probability distribution of the prgebdocument
representations.

* Quantify the reduction of variability when context networks atesstuted by
centrality vectors.

» Compare the above variability reduction with a standard docurepresentation that
does not comprise any contextual information.

The presented evaluation does not include an assessment of thieutiontrof the proposed
representation to the quality of text mining models because theleer significant factors
that influence the model quality in a processing pipeline inctudindeling algorithm and its
parameters. Hence comparisons of a performance of the proposed represevithtian
performance of a standard representation in selected text mining tasks are teé&
experimental part of the thesis.

5.2 Properties of proposed document representations

Let us have the vocabula¥={wi,ws,...,.w\} of the size Y|=N. The vocabulary terms; can

be words or higher entities presented in t8x#& documend is a sequence of the vocabulary
terms in the form ofvwews)... of the lengthLy. The bracketed indexes denote the order of
terms in the sequence. The non-vocabulary terms are omitted from tiemseq

The neighborhood of terms in a document cannot be ignored becausédh in which terms
appear in the sequence offers additional information about the éotwand it enables to
distinguish the document with higher accuracy then the salets®f term¥. Hence let us
assume that each document in a collection is a container of grbtggme of the length af
that are referred as n-grams. These n-grams are products of a genpratess. Each
document can be described by a set of n-gram probabilities thattuiessthe hidden
property of the document. While the n-gram probabilities are unobserwvad can observe
counts of n-grams within the document that are generated regamlinieir hidden
probabilities. The counts are the realization of the multinomialaanvariable. The n-gram
probabilities can be estimated from these counts.

%2 They can be hidden or observed.

33 We assume that the documents in a collection emamatically correct. Instead of estimation of bttty
of a document or even its linguistic correctnesgctilis the main goal of language models we wangrapose
an informative representation of documents forrth&r processing.
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The n-gram probabilities would serve as the perfect representatitre afocument. Apart
from the fact that n-gram probabilities are not directly observalds, suffer from another
imperfection: There ar&l" possible n-grams regarding to the vocabularyNd&rms in our

model, so the dimensionality of such a representation is unacgeptghl Hence we firstly

organize the n-gram probabilities and counts into a well arrangedkraattithen we propose
the reduction of its size.

Similarly to traditional language modeling the n-gram proliigslcompose a matri®Q of the
sizeN™PxN. The rows oRQ represent all potential subsequences of terms of the length of (
1). The columns represent the vocabulary terms. Each d@lirméludes the probability of the
whole n-gram; the column term is the last term of the n-granch Su layout of the
probabilities enables to switch easily from the unconditionahéoconditional probabilities.
The conditional probabilities are used in popular generative laegnagzam models that
exploit Markov chains.

In generative Markov process each term is generated regarding its pgetsdns. More
precisely, the probability of the next term is conditioned bpi&vious terms. In the standard
n-gram language modeh-(l) preceding terms influence the probability of the current term.
The conditional probabilities form the matifthat can be easily derived from the maft@x
Similarly as forQ, the rows ofP stand for preceding (n-1)-grams and the columns represent
the final vocabulary terms of n-grams. The sizd>a$ the same as the size @f(N(”'l)XN).

The itemp; of P is the probability of the generation of the tewnfollowing thei™ term
subsequenéé Obviously the row sums & equal to one. Each document in the collection is
generated using its matr@} or P that is unknown. Howevef) or P can be estimated from an
observed transition matrik. It is the matrix of the same size Rsind includes frequencies of
n-grams or transitions in the document. The maximum-likelihootimates of the
unconditioned probabilities take the form

Yo (58)

The conditional probabilities can be derived from the unconditiones as

0 = d;

i — N '
> q, (59)
=

The reverse derivation (unconditior@lfrom conditionalP) is impossible. The reason is that
the marginal row probabilities are lost when moving fiQrto P. Hence the matriQ is more
informative and it will serve as the best but hidden representafieach document. The best
observable representation of a document is then its miatrix

% The alternative and equivalent approach is tméhice a square matrix of the sizeN™“xN™? including the
conditional probabilities. The columns would regmsthe same subsequences of terms as the roveseepr
andP would be matrix of transition probabilities amofrmg1)-grams. Obviously the most of these probadedit
would equal zero, positive probabilities would agpenly for (n-1)-grams with common ends and starts
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5.2.1 Representation distributions

The matrixT can be also considered as a realization of generative Markov proces®iased
the matrixP. T is the matrix of random non-negative integers. The sum of ad o€l is
equal to the document lengti®. The distribution of the cells of is multinomial with the
parameters andQ®.

T ~Mu(L,Q)

p(T;L,Q) = |'J |_'|qu (60)

|'J|'l“

If the matrix T comes from the multinomial distribution with the parameteendQ, then
each cell; of T comes from the binomial distribution with the parameteasdday;.

t, ~ Bi(L,q)

L
p(tij Lo ) = (t-- jqitiij (1_ G )H” (61)

The counts of n-grantg are not independent because they constitute the multinomelman
matrix and they have to fulfill the condition

Zzt =L. (62)

i=1 j=1

The properties of the random variablgsan be then summarized as
tij - Bi(Liqij)
E(tij) = Lqij
Var(tij) = I—q"' @- qij) ' (63)
cov; ty) =-Lgq.i zkUj #I

To derive a simplified representation of a document, the mathas to be transformed. We
start with linear transformations. The linear transformations can beessqu by the
multiplication of T by an appropriate matrix from the left or/and from the right. Reggrdi
general linear combination of binomial random variables, the resudiatitbution is too
difficult to derive®”. Hence it is worth approximating the binomial distributiobg
distributions that can be easily combined. The binomial digtdb oft; can be approximated

% Regarding the start of the document ohlyn-1) transitions can be observed. If the length @fwment is
significantly larger tham, this difference can be neglected. Alternativelyl] artificial terms can be added
before the start of the document and the vocabuwlaryld be extended with such artificial term aslwel

% The categories of this random categorical varialéenot arranged into a vector but into the mattiawever

it does not influence its multinomial distribution.

3" The sum of independent binomial random variabkes Poisson binomial distribution. But we deal vitie
dependent random variables.
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either by Poisson or by the normal distribution. Concerniegcthvariances among n-gram
counts, the better choice is the normal distribution because théx nfathas then the
multivariate normal distribution that is better tractable for transftions than the
multinomial Poisson distribution.

To correctly express the covariance matrix of the multivariate normalbdistm of T, the
matrix T of frequencies and the mati@x of probabilities should be rewritten to vectors using
the operation called vectorization. The vectorization of a matrix caneet matrix into a
column vector that is obtained by stacking the columns of tiggnal matrix on the top of
one another. For example, the vectorization of NheéN matrix T, denoted by ved), is a
MNx1 column VeCtort(]_,tzl,...,t\/|1,t12,t22,...,t\/|2,t13,...,t\/|N)T.

Regarding the original covariances (63) among the binomial randoablest;;, the matrixT
can be approximated by multivariate normal distribution of the form

vec() ~ N(u,X)
n=Lvec@Q)

x = L (diag(vedQ)) - vedQ)vedQ)') . (ea)
f(vedT))= v expl- 1 (vedT) - ) = (vedT)- p)

(2m)* defx)
where functiordiag() forms a diagonal matrix from the given vector.

The covariance matriX of the sizaMNxMN cannot be rewritten as Kronecker product of two
matrices of sized1xM and NxN respectively, hence the matrix cannot be regarded as a
realization of the random matrix with the matrix normal distritmif. Even thoughr is the
matrix, it is necessary to vectorize it to express correctly itshision.

Because we want to obtain a new representation of a document bifisatiph of its matrix

T, let us investigate the properties of some basic transformatibng. d=irstly, the
transformation ofl to the proposed context netwdBcan be realized by the multiplication
by the appropriate matrix from the left. Then the extraction of dumse selected centrality
vectors from the context netwo€k can be performed by the multiplication of the network by
a matrix from the right or from the left.

If T comes from the approximated multivariate normal distributiodingsar transformation
also comes from the multivariate normal distribution with thesfiamed vector of means
and the transformed covariance matrix. To express the transformed pararnetgrkowing
formula for the vectorized matrix product should be taken into thsideration.

vedLTR)=(R" OL )vedT) (65)

% The matrix normal distribution is a generalizatiohthe multivariate normal distribution to matr=lued
random variable. A matriX of the sizemxn comes from matrix normal distributiolIN (M ,U,Vv ) if and only

if vec(X)~ N (VeC(M ), uQ V). The symbol] stands for Kronecker product. The matixof the sizemxn

is the matrix of means and there are two covariana&icesU andV in the matrix normal distribution of the
sizesmxm and nxn respectively. They separately express the covegi@among rows oK and columns oK
respectively.

% Namely Degree, InDegree and OutDegree can bensltaas a linear combination of the co-occurrence
frequencies. Other considered centralities requarelinear transformations of the matfix
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The symbol® is Kronecker product of matric®s If the multiplication is executed from the
right or from the left only, then the matrix or the matrixR from the above formula are the
identity matrices. For the linear transformation of any random vetioids

E(t) =p,vaft) == = E(At) = Ap,vafAt) = AZAT | (66)

Then exploiting (65) the transformed distribution of the protld@&® has the form

vecLTR ) ~ N((RT oL (RTOL)ER™ O L)T). (67)

Using the parameters of the transformed distribution from the formujaa(@4formula (65),
the distribution can be rewritten as

vec(LTR )

- N(L vec(LOR ), L((RT 0L )diag(vedQ))R™ OL) - vedLQR )vedLQR )' )) (68)

Note that comparing with the original distributionToin (64) the first term of the covariance
matrix lost the form of a diagonal matrix after the transformation whéesecond term of the
covariance matrix and the mean vector are transformed similarly as thenramatox T. Let
us illustrate the above mentioned linear transformatiofsknf several examples.

5.3 Examples of representation distributions
Example 1 The transformation of the n-gram representation to the (n-1)-grassespation.

The matrixT include the counts of transitions from (n-1)-grams to vocabuéargs. Then if

we sum all the transitions from the same (n-1)-grams, we reeit®-grams counts. We
have to compute row sums ©f The row-sum operation can be realized by the multiplication
by a column vector of ones of the sidel from the right. The left matrix remains the identity
matrix | of the sizeMxM*'. The transformed (n-1)-gram representation has the following
multivariate normal distribution.

vec(T1) ~ N (L ved(Q1), L((lT 0 1)diag(vecQ))A™ 01 - vec(Q1)vec(Q1)' )) (69)

The first term of the transformed covariance matrix can be simplified tisenformula (65)
and the vectorizations €1 andT1 can be omitted.

71~ N(LQ1, L{diagQ1)-Q1(Q1)') (70)

Regarding to the mean and to the covariance of the transformed matdanwenclude that
the (n-1)-gram representation has the multivariate normal disboibdtiat approximates a
multinomial distribution with the parametdrsandQ.1.

“0If A is amxn matrix andB is apxq matrix, then Kronecker produ&®B is thempxnq block matrix of
products of all pairs of values frofnandB.

“1 The (n-1)-gram representation can be also derasethe final state of stationary Markov procesritied by
transition matrix P extended to transitions froriLjrgrams to (n-1)-grams.
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T1 - Mu(L,Q1) (71)

Example 2 The transformation of the n-gram representation to the term (1-gram)
representation.

The matrixT includes the counts of transitions from (n-1)-grams to vocabteanys. Then if
we sum all the transitions to the same terms, we receive the terts.cdlenhave to compute
column sums off. The column-sum operation can be realized by the multiplicatyosm row
vector of ones of the size Wfrom the left. The right matrix remains the identity matrisf
the sizeNxN. The transformed 1-gram representation has the following multivarcateal
distribution

vee( T) ~ N(Lvedt Q) L {1 017 )diag(ved@))i 0 17) - vect Q)vec Q) )) (72)

The first term of the transformed covariance matrix can be simplified tisenformula (65)
and the vectorizations af Q and1'T can be substituted by transpositions.

71~ N(LQ 1, L{diag(Q™1)-Q"1(Q"1) ) (73)

Regarding the mean and the covariance of the transformed representatoamn eenclude
that the term representation has the multivariate normal distmbdtiat approximates a
multinomial distribution with the parametdrsandQ"1.

T'1 - MUL,Q"Y) (74)

Note that the term representation is not influenced by the terer @by the context.
Representations that take into the account the context will be latepaced with this
representation.

Example 3 The transformation of the n-gram representation to the contextorketw
representation.

Let us consider the context af-1) foregoing terms. While the matrik includes the counts
of transitions from (n-1)-grams to vocabulary terms, the conetxtork G should include the
counts of transitions from the vocabulary terms to the vocabwdanst The starting term in a
transition must be included in the foregoing (n-1)-gram, the gcasstion of the starting term
in the foregoing (n-1)-gram does not matter. Hence the transformationtfi@rtransition
matrix T of the sizeMxN to the context networks of the sizeNxN can be realized by the
multiplication of T by a fixed matrixH of the sizeNxM from the left. The columns df
represent (n-1)-grams while the rows stand for vocabulary terms. #Egeirvalues itH are
counts of terms in (n-1)-grams. The matHx can be decomposed into the sum fl}
Kronecker products oh¢l) factors. One of the factors is the identity makrof the sizeNxN
and the other factors are transposed vectors of ones of thexslz&or example, if the size
of the vocabularyM|=N=3, the matrixd can be decomposed as

H=1"0101+101g1"+101"01". (75)
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Using the formula (68) the transformed context network representa#isrthe following
multivariate normal distribution

vec(G) = vec(HT)

~N (L vec(HQ), L((I 0 H )diag(vec(Q))(l D H)" - vec(HQ )vec(HQ )’ )) (76)

While the mean vector is transformed the same way as the transdior i the first term
of the covariance matrix cannot be reasonably modified. Hence we can coti@dtidbe
context network distribution is not similar to the multinahor other common distribution. It
has to be approximated by the multivariate normal distributiibim the parameters from the
above formula.

Example 4 The transformation of the n-gram representation to the InDegree tgntral
representation.

The InDegree centrality representation of a document is derived astar wf InDegree
centralities of the vertices from the context netw@rkr he vertices o6 represent vocabulary
terms. The InDegree centrality of a vertex equals the sum of wafltss incoming edges.
Hence each InDegree can be computed as the column sum in the meitgix G. The
InDegree representation can be derived from the context network liplivation of the
weight matrixG by the row vector of ones from the left. From the previous examgplenow
that the matrixG is derived from the transition matrik by multiplication by the rectangle
rqatrix H from the left. Altogether, we have to investigate the propertidseofatrix product
1'HT.

Any column sum of the matrikl equals the length of the contektwhich is set tor{-1).
Hence the product’H equals the constant vector filled by valuedl). We can simplify the
InDegree representation as

THT=(n-21'T. (77)

The productl'T forms the term representation from example 2; the InDegree representati
is the same as the term representation only multiplied by tistagdrfi-1). Similarly as in the
second example we can conclude

wedi7iT)= (11771~ - 1L0"1 (11 Lol 1)-071(03] ) rs)

Regarding the transformed mean and the transformed covariance, we chudedhat it is
not the multivariate normal distribution that directly approxmsatthe multinomial
distribution, but it is the approximation of the multinamdistribution with the parameteks
andQ'1 multiplied by factor G-1)*.

TTH'L
n-1

- MulL.Q") (79)

Example 5 The transformation of the n-gram representation to the OutDegree d¢gntrali
representation.

“21t doesnot holt that X ~ Mu(L,p) = kX ~ Mu(kL,p) .
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The OutDegree centrality representation of a document is derived exgaa uf OutDegree
centralities of the vertices in the context netw@kThe OutDegree centrality of a vertex
equals the sum of weights of its outgoing edges. Hence QreBean be computed as the
row sum inG. The OutDegree representation can be derived by the multiplicatitime
weight matrixG by a column vector of ones from the right. Together with the algoivG
from T we have to investigate the properties of the matrix pradiidt

Using the formula (68) the OutDegree representation has the iiogjawultivariate normal
distribution

vec(HT1) ~ N{L veo(HQ1 ), L{(1" 0 H )diag(vec(@))1” 0 H - vedHQ1 )vec(HQ1) 0)

Unfortunately, the first term of the covariance cannot be reasonablyfiedodWe can
conclude that the distribution of the OutDegree representationotissimilar to the
multinomial or other common distribution. It has to be regardedmultivariate normal
distribution with the parameters from the above formula.

Example 6 The transformation of the n-gram representation to the Degreealdgn
representation.

The Degree centrality representation of a document is derived as tlor wédDegree
centralities of the vertices in the context netwGkThe Degree centrality of a vertex equals
the sum of weights of all its ingoing and outgoing edgesgrBe can be computed as
InDegree plus OutDegree, hence we can put together the resoitthiEqrevious examples.
In this sum InDegree from (77) has to be transposed to thennofector or OutDegree to the
row vector:

(1T HT )T +HT1 = ((HT J +HT )1 (81)

Note from the above formula that Degree is computed as the row fstira symmetrized
(undirected) context netwotk To investigate the properties of the Degree representation, we
need to rewrite the above formula using vectorization of the tramsitiatrix T. Using
formula (65) we can conclude

ved((HT) +HT )= (1"H 01 )vedT™)+ (1" O H)vedT). (82)

Hence we have to investigate the properties of the sum of two nordistitypouted random
vectors HT)"1 andHT1. Note that ve&) and vec{ ') are the different vectors, but they are
not independent. The distribution of v&g(s described in (64) and similarly the distribution
of vec(T') is

vec(T")~ N (L vec(Q"), L(diag(vec(QT )) - vec(QT )vec(QT )T )) (83)

The sum of two normal distributions has also the normal bigtan with the sum of original
means. However, the variance matrix is not equal to the sumghalrivariance matrices

*3 The row sums of a symmetrized matrix equal therool sums.
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because we sum dependent vectors. Generally, for two random eaoY of the same
size it holds

var(X +Y) =var(X) +var(Y)+cov(X,Y) + cov(Y , X). (84)

Using this formula we can derive the final parameters of the distibuwf the Degree
representation, but it results in rather complicated and uninfornfativeila for the variance
matrix. The resultant normal distribution is not similar e multinomial or other common
distribution.

It is obvious from the previous examples that the approximatibrthe multinomial
distribution of the transition§ by the normal distribution enables to investigate the ptigse

of some selected representations obtained as a linear transformatitve ofatrix T.
Regarding the centrality representations, it was shown that tegtae representation is
similar to 1-gram representation and comes from the multinomialibdison with the
parameterd and Q'1 multiplied by the length of the contekt The distribution of the
OutDegree and Degree representations can be approximated by the distriialtions as
well, but the dependence among transition count§ chuses that the resultant covariance
matrices are not similar to the multinomial distributions aneirtfiorms can be rather
complicated.

More promising centrality representations include the ones whereetitrality of a vertex in
the context network does not depend on its own connectioys lautl on properties of its
neighbor vertices as well. Unfortunately, such centralities cannotelieed as a linear
transformation of the random matrik, but their computation often implies an iterative
process. They exploit the eigenvectors derivation or the invaetigat paths in the context
network. Hence the exact distributions for such centralities canpotddyived; the
distributions can be approximated by simulations.

5.4 Relationship with original representation

Now let us investigate how the proposed representations nmaintareduce the original
variability of random transition matriX. Remember that we assume that the observed
documents are products of the n-gram generative model where the lentjid afntext,
which influences the appearance of a term, is constant. Each docunemt islly described

by its matrix of n-gram probabilitieQ. The proposed representations reduce the number of
entries of Q and transform it into a vector. Hence we should investigaerdhationship
between the proposed vector representationanBven though the n-gram probabilities are
organized in the matrifQ, they should be regarded as the random vector that results fom th
vectorization ofQ. Therefore we will investigate the relation between the pair of random
vectors: the proposed representation and the vectorizati@n of

In the following paragraphs two approaches to the expressitire aommon variability are
exploited. Firstly, the variability of nominal random variablesneasured by the entropy and
the relation between two representations is measured by their mdaraiation. Secondly,
the original multinomial vectors are approximated by normal vect@is and the variability
is expressed using covariance matrices. The relation between two repi@sentathen
measured by the variability reduction when comparing conditiondl @amconditional
distributions.
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5.4.1 Mutual information approach

The variability of a discrete random variatdeéhat can take values from the s&tXo,... Xc}
with probabilities {pki1),p(x2),...,p(Xc)} can be expressed by the notion of entropy as

H() =3 ol in{plx) @)

The entropy is non-negative, its upper-bound depends onutimder of possible entries as
In(C). Using the natural logarithm it is measured in #fafSo compare two distributions using
the entropy approach, we can compare their entropy or we can use Kuliehkk-distance.

It measures how a random variallevith probabilities {gki),q(x2),...,q(c)} divergates from

a baseline random variabl¢ from the previous paragraph. Kullback-Liebler distance is
measured in the same units as the entropy is.

D0 = D{p o) =3 )| %) 8

Since Kullback-Liebler distance introduces the baseline distoibutt is not the symmetric
measure and therefore it does not meet all the properties to be a taatdfislt is safer to
use the term Kullback-Liebler divergence.

Using Kullback-Liebler divergence would be straightforward for theestigation how much
the proposed document representation divergates from the origgratmsepresentatidf
But the Kullback-Liebler divergence is defined for two distribn$ with the same outcomes;
the distributions can differ in probabilities of their outcomel/oHence we cannot measure
D(vec@)|lc) wherec is a centrality representation of a document. The similar probleesaris
when comparing the pure entropy since its upper-bound iddi¢ite number of outcomes,
hence the valudd(vec(@)) andH(c) are not comparable.

To overcome the problem with the different outcomes of two nondiisaélibutions that we
need to compare, the mutual information approach could be helpflmOtual information
measures the reduction of the entropy of one variable when theofahesecond variable is
known.

+H(Y)-H(X,Y)
—H(XY)=H(Y)-H(Y|X) (87)

To be able to determine the mutual information from this formuia,h@s to define joint and
conditional entropies &5

4 Other common units include bits for the logarithase 2 and dits for the logarithm base 10.

“> Kulback-Liebler distance is non-negative and esjaato for identical distributions.

“ Similarly to Kullback-Liebler we can introduce tbeoss-entropy. The cross-entropy equals Kullbaiebler
divergence plus the entropy of the baseline distigin.

*" Note thatH(X,X) = H(X) = I(X,X).
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HOGY) =33 plx.y, Jin(plx. v,)

i=1 j=1
Cy Cy ’ (88)

HX V) ==-33 plx.y, Jin(plx 1 y;))

i=1j=1

Note that the joint and conditional entropies aedired for two nominal variables with
possibly different outcomes. The same holds forrthgual information. Unlike Kullback-
Liebler divergence the mutual information is thengsyetric measure and it does not rely on a
baseline distribution. The units of the mutual mfi@ation are the same as for the entropy. The
relations among the entropies and the mutual indtion defined by formulas (87) can be
illustrated using the following picture.

HOON L /,‘ 1(X,Y)

NS

Figure 10: The Venn diagram clarifies the relatibigsbetween the entropies and the mutual
information.

The formula that enables to compute the mutualrim&iion from the original distributions
can be derived from formulas (87) and (88) as

Cx C&

1(X.Y) :2; olx.y, )ln(p(p(T);:(/;—))J- (89)

Finally, the relation between the mutual informatiand Kullback-Liebler divergence is
visible from the previous formula.

1(X,¥) =D (p(x y)II p(x)p(y)) (90)

Note that it is the divergence of the joint disttibn of two variables under the hypothesis
they are independent from their real joint disttibn. These two joint distributions have the
same outcomes therefore Kullback-Liebler divergas@pplicable.

To investigate the relation between the origingbresentation of a document and the
proposed representation, let us try to derive théual information between vectorized forms
of the matrice§ andLTR whereL andR are again some appropriate matrices that enable to
express selected proposed representdflofibe distribution ofT is described in formulas
(60), (61), (62) and (63), hence we are able toesgits entropy.

“8 Namely Degree, InDegree and OutDegree can be naotaas a linear combination of co-occurrence
frequencies. Other considered centralities requirelinear transformations of the matfix

55



T ~Mu(L,Q)

M M N

L v L .
HM=- >, o ] g, (1)
3 ;

-ZN:tij:Ll_Jl_ltii! =L |_J|_ltij! i=1 =
=1j=1 | = j: _ -

It has been already stated that the general disioib of the vectorized form of TR is
neither multinomial nor any common one. Therefoee ave not able to directly express the
entropiesH(LTR), H(T|LTR) or H(T, LTR) that are necessary for the computation of the
mutual informationl(T,LTR) using the formula (87). Even the formula (89nat useful to
computel(T,LTR) by the same reasons.

To be able to express the mutual informatigii ,LTR), we again approximate the
multinomial distribution ofT by the multivariate normal distribution from therfula (64).
The distribution ofLTR is then the multivariate normal described in tbheriulas (67) and
(68).

As we have approximated the nominal distributiopgi® continuous ones, we have to adapt
the definitions of the mutual information and therepies to continuous distributions. More
specifically, we have to express the mutual infdromaand the entropy for multivariate
normal distributions and investigate how the lingansformation achieved by the rectangular
(singular) matrices andR influence these measures.

The discrete (Shannon) entropy from the formulg @8 be substituted by the differential
entropy of a continuous random variablewith the probability density functiof(x) of the
form

0

H(X) == [ f(x)in(f(x)lx. (92)

—00

Kullback-Liebler divergence of a continuous randeariableY from a continuous random
variableX has the form

D(X ||Y)= j f(x)ln(%jdx. (93)

—00

Note that in this case of two continuous randomades we cannot tackle the problem with
the number of outcomes that was mentioned in tee oatwo discrete random variables. The
conditional differential entropy is again basedtl@ joint and conditional distributions and is
defined as

HOCIY) == [ £ y)in(fx]y)axly. (o)

—00—00

Using the general formula (87) we can conclude thatmutual information between two
continuous random variablésandy is
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1(X,Y)= 11 f(x, y)ln(%]dxdy- (95)

In the context of Kullback-Leibler divergence thetomal information between two continuous
random variables is again the divergence of the joint distribution from the hypothetic
joint distribution of independent random variables.

1(X,Y) =D(f(x y)II T(x)f(y)) (96)

If we consider an n-dimensional random continuoastar X with the probability density
functionf(x) instead of the one-dimensional random variahligs differential entropy is

H(X) = =]  f()in(f (x))x. (97)

Analogically, Kullback-Liebler divergence of two dimensional random vectob$é and Y
with probability density functiongx) andg(y) is then

D(XIY)=], f(x)ln(%}dx. (98)

While Kullback-Liebler divergence can be computeor ftwo vectors of the same
dimensionality only, the conditional differentiahteopy is defined for random vectors that
may differ in their dimensionalities. The conditarifferential entropy of the n-dimensional
random continuous vectof and the m-dimensional random continuous vexts

HXY) ==[ [ f00y)in(f(x]y))dxdy . (99)

Their mutual information using the formula (87}hen

1(X,Y) jj xyln( )()

)jd dy . (100)

This mutual information again corresponds to Kutlodeibler divergence of the true joint
distribution from the hypothetic joint distributiari two independent random vectors.

(X, Y)=D(f (x,y)Il f(x)f(v)) (101)

Note that the differential entropy does not shdr¢ha properties of Shannon entropy. The
differential entropy can be negative since the phbality density function can be greater than
one. There is not also an upper limit for the défdial entropy since the number of possible
outcomes of a continuous random variable is unbednd

The relation between the differential and Shannainogies is noticeable if the continuous
random variabl& is approximated by its discretized fodf.
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X2 =x = insx <(i+1)A

H () == Bl in( ()= -2 (5 Jin(s ) (102

The symbolA stands for the length of an equidistant intervamdnich X is considered to be
approximately constant with the probabilifk)A. If A is small enough, Shannon entropy
differs from the discrete entropy by the fadtgi).

H(X2)+In(a) -~ H(X) (103)

The similar relation holds for the conditional eqty. Note ifA comes to zero, the number of
the outcomes oX" increases and the entropi¢X") increases as well while the faclafA)
decreases to minus infinity. Using the definitidmuwtual information from the formula (87)
we can state that

(X2 =H(X?)=H(X? 1Y) = H(X)=In(2) - H(X [Y) +In(2) = 1(X.Y) " (104

Now let us investigate how the linear transformadianfluence the entropies and the mutual
information. If a continuous random varial{ehas the probability density functid(x) then
the random variabl¥=aX has the probability density functig(y) of the form

aly) :ﬁ f(gj - (105)

Using the formulas (92) and (94) and the transfoionaof the probability density function
from the previous formula we get

H(aX) = H(X) +log(al)
H(ax |Y)=H(X|Y)+ IogQaj)' (106)

And exploiting the formula (87) we can concludetthainear transformation of a random
continuous variable does not influence its mutaédimation with other random continuous
variable.

I(aX,¥) = H(aX) - H(ax |Y) = H(X)+log(a]) - H (X |¥)-log(al) = 1 (X,Y) " (107)

The above formula implies the mutual informatiotvween a random variable and its linear
transformation as

I(ax,X)=1(X,X)=H(X). (108)

Now let us consider random vectors that will befuiséor investigation of relationships
among the proposed document representations. Bnéncious random vectoX has the
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probability density functiorfi(x), then the random vectdi=AX, whereA is a regular matrix,
has the probability density functigfty) of the fornf®

oly) =[deda) £ (ay). (109)

Using the formulas (97)and (99) and the transfoionabf the vector probability density
function from the previous formula, we get the daling entropies for the linearly
transformed random vectdr by the regular matriA.

H(AX)=H(X)+log(de(A))

H(AX |Y)=H(X|Y)+log(de(A)) (110)

And exploiting the formula (87) that holds also f@ctor random variables, we can conclude
that the regular linear transformation of the randmntinuous vector does not influence its
mutual information with some other random continsigactor.

I(AX,Y)=H(AX)-H(AX |Y)
= H (X)+log(det(A)))- H (X |Y)-log(det(A))=1(X,Y)’ (111)

As the special case we can derive the mutual irdtion between the random vecrand
its regular linear transformation as

L(AX,X)=1(X,X)=H(X). (112)

The provided formulas for the mutual informatiortvibeen continuous random variables and
vectors are applicable regardless to their distidios. Let us provide the main formulas for
the mutual information for variables with the notnwdistributions that are the proper

approximations of our proposed document representat

If a random variableX comes from the normal distribution with the meaand the variance
o, 2 its differential entropy can be derived using fibienula (92).

X ~N(w,0?)

H(X):%In(Zn—:UZ) (113)

Skipping the rather complicated formulas for Kuttkd.iebler divergence and the conditional
entropy of two normal random variables, their mutagormation using (95) is

1(X,Y)= —%In(l—corr(X,Y)z). (114)

The correlatiorcorr(X,Y) follows the standard definition of normalized aaance.

“9If we consider a general invertible transformationction the determinant is then substituted byobi@n of
the inverse of the transformation function. Oumiafa covers only the linear transformation as fhexci&l case.
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co(X,Y)

w/vaﬂ X 5vaRYi (115)

cor(X,Y)=

Note that formula (114) provides the relation betwéwo standard measures of the relation
between two normal variabf®s The known correlation can be easily transformedhie
mutual information while the known mutual informati does imply only the magnitude of
the correlation but not the sign. Using the forrsula07) and (114) it can be verified that the
linear transformation does not influence the maglatof the correlation. On the other hand,
the formula (114) is not suitable for the invedtiga of the special casgaXX) because
|corr(aX;X)|=1, but this case is covered by general form{dlé8) and (113).

If X is a random vector that comes from the vector abuistribution* with the mean vector
n and the covariance matn, its differential entropy can be derived using fibvenula (97).

X ~N(ux)
H(X)= %In((zne)“ det(}:)) (116)

Comparing this formula with (113) we can observattithe variance from the one-
dimensional case is now replaced by the determinfiite variance matrit. The mutual
information of two normal random vectors using ¢femeral formula (87) is then

1(X,Y) 1( defvar(X, Y)) J

= 72" detvarx))defvar(¥))

(117)

The termvar(X,Y) in this formula represents the symmetric blockiarece-covariance matrix
that can be obtained as the variance matrix ofaiiné distribution ofX andY >,

var(x.v) :( var(X) cov(X,Y)J

co(Y,X) varY) (118)

The determinant of the block matnsar(X,Y) can be modified using the following general
formula that holds for invertible diagonal blocks.

de(é EJ = de(A)de(D - CAB)= de(D)defa -BD™C) (119)

¥ The provided relation between the correlation @mel mutual information holds for normal distributed
variables only; for random variables with othertidimtions the formula provides the lower boundtoéir
mutual information.

*1 The form of the probability density function oftlector normal distribution is stated for the veized form
of the random matrix in the formula (64).

*2The determinant of any variance matrix cannot egative because the covariance matrix is positami-s
definite.

3t is a distribution of the random vector thatinstructed by merging the vectotsandY into one column
vector.
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Exploiting the relation among conditional and unditional variance and covariance matrices

var(X | Y) = var(X)-coX,Y)varY )" coY, X) (120)

we can conclude that the mutual information betweennormal vectors equafs

(X.Y)= _gln(det(var(x |Y))j |

2 defvar(x))

(121)

The ratio of the determinants in the logarithm lisag's from the interval <0;1> and can be
explained as the relative proportion of the vatigbiof the random vectoX that is not
explained by the vectof. Comparing the formulas (114) and (121) we carckale that one
minus this ratio of the determinants is the gerzatibn of the coefficient R-squar€dor
random normal vectors. This property will be tak&o account later in the text.

We have already shown that a linear transformatiorandom variables does not influence
their mutual information (remember formulas (10@)l 4108)). The same statement holds for
the linear transformation of random vectors (rememformulas (111) and (112)) if the
transformation matriA is regular. In the proposed document represemtatm transform the
vectorized form of the random transition matffiXremember formula (65)) that is assumed to
be normally distributed using the non-regular ma®i' @L°®. The reason for non-regular
transformation is that we try to propose an appabprdocument representation in a low-
dimensional space that is suitable for further pssing of documents by predictive models.
Therefore we have to investigate how non-regulangformations influence the mutual
information. We should pay special interest to ftbemula for the mutual information
I((RT®L)vedT),vec()) that measures the relation between the origamal the proposed
low-dimensional representation.

Let us start from the formula (117) that enablesdmpute the mutual information between
two normally distributed random vectors. Generallyg need to derive the formula for the
mutual informatiorn (AX,X) that holds foA irregular. For any transformation matricksand

B the variance and covariance matrices of transfdrmeetors can be expressed as

var(AX )= Avar(X)AT

cov(AX,BY )= A cov(X,Y)B" (122)
The variance matrix of joint distribution oAX,X) from the formula (117) is then
Avar(X)A" AvarX)
AX,X)= :
vai ) { va(X)AT  var(X) (123)

And exploiting the formula (119) for the determihaha block matrix, we can conclude

** This formula for mutual information can be alseided directly from formulas (87) and (116).

* The coefficient of determination (R-squared) beméwo one-dimensional random variables equali¢o t
squared correlation of these variables. R-squaaedbe interpreted as the percentage of the vatjabil one
random variable explained by the second randonabri

% Some representations even use non-linear tranafwms.
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defvar(AX, X)) = defvar(X))detA var(X)AT - Avar(X)varf(X) var(X)AT)=0  (124)

It implies using the formula (117) that the mutuaformation I(AX,X) cannot be exactly
determined for the irregular transformation masiX.

H(AX,X) = o (125)

The same conclusion can be drawn using the conditizariances from the formulas (121)
and (120) that imply

det(var(AX |X))=0. (126)

Now we have come to the conclusion that the munfakmation is not a useful theoretical
measure of the quality of the proposed documentsegmtation at least in the cases when the
transformation of the vectorized form of the tréiosi matrix vedT) is irregular. In other
words, we cannot determin@R'®L )vedT),vec(T)) for any document representation where
the producR'®L yields to an irregular matrix.

H(R™ O L )vec(T).vec(T)) -~ o (127)

Unfortunately, the irregular transformations pldye tkey role in the proposed approach
because a significant reduction of dimensionaltgesired. The impossibility to compare the
theoretical mutual information of the different posed document representation prompts to
use the different approach. Even though the mutdatmation is the standard measure in the
field of document processing, another approach rhestmployed to evaluate the reduction
of information that vyields from the proposed tramsfations from the transition
representation of documents to low-dimensionalégtars.

We have already shown that it is suitable to apipnate the exact multinomial distribution of
the transition matrixI by the multivariate normal distribution from fortau64), hence we
can pay attention to investigation of the correlatiike comparisons of the proposed
document representations.

5.4.2 Comparison of covariance matrices

The main issue of this approach is to select amogypjate measure of the association between
the original transition matriXir of a document and its transformed forR'®L )vedT).
Similarly to one-dimensional continuous distribuisp where the correlation and the
covariance are commonly used, we try to proposeiaveistigate the similar measures for
multivariate continuous distributions. This apprhoawill be applied to the multinomial
normal distributions that approximate the unknowstridbutions of the proposed document
representations.

Let us start with one-dimensional approach to comorate the common measures used for
the evaluation of relationships among continuousdoa variables. The variability of a
random variabl&X will be measured by its variangar(X).

" Note that the formula (111) holds for the regtitansformation matriA.

62



vai()= [ (x- () (= E(x7)- E(x) 129)

The symbolE(X) stands for the expected valueXgff(X) is the probability density function.
The variancevar(X) is always non-negative. The variance is not whoemded, it is
measured in the square units of random varidSfe The conditional variancear(X|Y) is
defined analogically using the conditional expectedues EX|Y) and E¥?Y) and the
conditional probability density functidi(x]y).

The relation between two random continuous vargaileand Y with the joint probability
density functiorf(x,y) will be measured by their covarianoauX,Y).

colX,Y) :ﬁx E(X))y - E(¥)) f(x, ylbely = E(XY)-E(X)E(Y) (120

The covarianceoVX,Y) is not lower or upper-bounded, its magnituderigpprtional to the
common variability that is shared betweémandY. It is measured in the units ¥ftimes the
units of Y. The covarianceoX,Y) can be standardized to the scale between mineiaod
one introducing the well-known correlatiarorr(X,Y). The relation betweenoVX,Y) and
corr(X,Y) has been already stated in the formula (115)aviad the direction of the relation
betweenX andY, we will use the square of correlation. Its valtesto the interval between
zero and one and can be interpreted as the propatithe variability ofX explained byy or
vice versa.

R2(X,Y)=cor(X,YY (130)

Indeed, it is well-known R-squared (coefficientd#termination) known also from the linear
regression that is generally defined using variarase

var(X |Y)

R*(X,Y) :1_W' (131)

The conditional variance in the nominator can lptaed by the unconditional variance using
the following relation between the variances.

co(X,YY

var(X |Y)= val(X)—Tr(Y) (132)

To investigate R-squared between a continuous randwiable and its linear transformation,

we have to establish the transformations of vagarend covariances. The formulas for the
variance and the covariance of linearly transformgtiom variables can be easily derived
from the basic formulas (128) and (129).

8 Some authors use the dimensionless coefficienagétion that is defined as the ratio of the squanot of the
variance and the expected value.
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var(aX)=a?var(X)

coaX,by)=abco\X,Y) (133)

Using these formulas we can conclude that any ditasformation of random variables
does not influence their R-squared. This conclussoalso obvious from the relation of R-
squared and the correlation stated in the formlBay.

_vafaX]Y) _q- a’vai(X |Y)

R(XY)=1-" o) = Zvalx)

=R(X,Y) (134)

R-squared for the random variabfeand its linear transformatioaX is then the same as
R*(X,X) that equals one.

_a?vaX|X)

Ri(ax,X)=1 2 var(X)

=1 (135)

However, we need to investigate R-squared for taedom normally distributed random
vectors. Unfortunately, R-squared is not definedrémdom vectors, hence some generalized
version of R-squared should be introduced. It reenbalready stated when investigating the
properties of the mutual information that the detieant of the variance matrix is the
multivariate generalization of the covariance. Heme can define the measuieX,Y) for
random vectorX andY that share the same properties as R-square.

_defvar(X]Y))

AX,Y)=1 EE) (136)

AX,Y) is symmetric, its values fall into the intervagttveen zero and one and can be
interpreted as the proportion of the common valitglshared by random vectods andY.
This coefficient is also known as Wilks' lambda and used for example in the discriminant
analysis. The definition of Wilks' lambda can beocalrewritten using the unconditional
variance matrices and exploiting the formulas (1drgj (120).

de(var(X,Y))
de(var(X))de{var(Y)) (137)

AX,Y)=1-

The termvar(X,Y) is again the block variance matrix of the joiahdom variable X,Y)
where the vectorX andY are concatenated into one vector as shown in (XO&nparing
this formula with (130) and (131), the left-handesof the above formula can be regarded as
a multidimensional analogy of the squared corretatioefficient.

To investigatel(X,Y) between a continuous random vector and its litaasformation, we
have to establish the transformations of variana&ioes and their determinants. Similarly to
the formula (122) that hold for the varianear(AX) the conditional variance matrix for the
linearly transformed random vectdris

vafAX|Y)=AvafX|Y)AT. (138)
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The formulas (122)and (138) hold for any matixvith appropriate dimensions. To evaluate
the determinants the following general formulasuthide taken into account.

de{X™)=defx)

de1(X‘1) =defx)* (139)
defAX ) =defA)de(X)

In the above formulas it is assumed that btAndX are the square matrices, in detj the
matrix X is even invertible. Hence using any square ma&rixe can conclude that the linear
transformation performed by this square matrix dugsnfluence Wilks' lambda.

_ defvarAX |Y)) _, defA var(X | Y)AT)

S defvaraAx)) ~ def{Avar(X)AT) (140)
_,_ defA) defvar(X|Y)) _ 140
. detf{A )’ def{var(x)) A(X.Y)

Unfortunately, in the proposed document represiemsitthe original transition matriX is
transformed differently. Its vectorized fowedT) is projected into a low-dimensional space,
hence it cannot be assumed that the transformasomealized by a square matrix.
Additionally, we need to evaluate the relation kestw the original vector representation and
its transformation. Regardless of the shape otrdmesformation matriXA using the formulas
(120)and (138) it holds

vaAX |X) = Avar(X | X)AT = A{var(X) -co\(X,X)var(X) *couX, X))AT =0 (141)

Therefore evaluatingl(AX,Y) using formula (136) we can conclude that any dmne
transformation realized by the matixyields to the same value of one.

=1 142)

AMAX,X)=1

This conclusion can be generalized also for sontelinear transformations. If the terAX
is replaced by a vector functid(X), the conditional variance matrizar(f(X)[X) also equals
zero matrix similarly to the formula (141).

Regarding the formula (142) for the case of ourudeent representation, we are not able to
evaluate how the proposed transformation of thestt@n matrixT stated in (65) reduces its
variability.

A(RTOL )vedT),vedT))=1 (143)

The same results would be obtained if the lineajegtion ofvedT) represented byR' ®L)
was replaced by the more general but unambiguooggiion of veqT). Hence we can
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conclude that Wilks' lambda cannot provide the rimfation how much variability is lost
when any of the proposed document representatiosslected.

However, the variability of the transition matifixenables to distinguish between documents
within a collection, hence it is desired to pregeitg variability as much as possible in any
document representation. On the other hand, weegrtivat neither the mutual information
nor Wilks' lambda are the suitable measures touetal how much information or the
variability of the original document representationluded in the matriX is lost whenT is
projected into a low-dimensional vector. If thetdimution of vedT) is approximated by the
multivariate normal distribution, the mutual infaatron diverges while Wilks' lambda always
equals one. The multivariate normal approximatgoneacessary because the transformation of
the original multinomial distribution of the matrixis not tractable.

5.5 Conclusions summary

The main purpose of the theoretical evaluation wdpprties of the proposed document
representations was to quantify the extent to wkiehinformation about a within document
context is propagated to a document vector. Tallfthis goal the distribution of the n-gram

transition matrix that is a carrier of the conteftunformation was substituted by the
multivariate normal distribution to simplify conseent transformations. Then the
distributions of the proposed representations thgfinate in transformations of the context
network were estimated. Only some of the testedexdmetwork centralities offer document
vectors with known distributions or distributionfi@re the variability can be estimated.

Then the reduction of variability for the proposedpresentations with the known
distributions was investigated in two approachesthe first one, the concept of mutual
information between the context network and thévddrdocument vector was utilized. In the
second approach, where variabilities of multivariadistributions are expressed by
determinants of their covariance matrices, a porabthe original variability of the context
network explained by the variability of the derivégcument vector is quantified.

Summarizing all the results collected in this cleapit was shown that neither the mutual
information approach nor the approach where coneeanatrices are compared do not offer
a satisfactory comparison of document represemigtid/e are not able to precisely evaluate
the proportion of the information that is lost byyaof the proposed document representations.
Hence our attention should be switched to experiateesults. Let us investigate how the
document variability within a document collectio preserved when transition matrices of
the documents are transformed to any of the prapokav-dimensional vector
representations. Additionally, it is worth explaginow the different representations influence
the evaluation measures of standard text minirkstasich as the classification of documents
or the clustering.
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6 Experiments

The theoretical assessment of the benefits of tbpgsed representations is not generally
tractable (see the conclusions of chapter 5), hemeehave to focus on comprehensive
experiments. Instead of theoretical proves statistiests are performed to explore the
appropriateness of the proposed representatiorch E&goeriment is repeated several times
using a different random seed which influencesstrapling.

The experiments are performed with artificially geated documents and also with real
document collections. The generated texts enablaskess better the reduction of the
contextual diversity of documents instead of theoak evaluation from chapter 5 because
they are generated to follow the assumptions abontextual ties within the documents that
are borrowed from standard n-gram language mo@eigthe other hand, the real downloaded
documents offer more realistic assessment of thfenneance of the proposed representations
in complex text mining tasks.

6.1 Goals of experimental evaluation

The purpose of the experiments is not only to asdesreduction of document diversity using
different representations because the theoretivaluation does not offer satisfactory

estimates. The experiments also enable to tegtdtiermance of document representations in
complex text mining tasks with examining effectsvafious combinations of parameters of
the proposed representations such as the lengtte afontext window or the vocabulary size.

We can observe how these parameters influenceethection of the diversity of documents

within a collection and the performance of text mghmodels. The goals of experiments

presented in the following chapters are:

» Assess the contextual document diversity redudtiaharises from using the
proposed representations and compare it with terslty reduction that arises from
using some standard representation.

» Test the usefulness of the proposed representatiageral text mining tasks such as
the information retrieval, the document classifimator the clustering. Compare the
performance of the proposed representation witlpérrmance of a standard
representation that does not comprise any conteixtioamation.

» Perform the tests of usefulness of the proposeseptations for various parameter
settings and document collection types to obtaatiral recommendations for using
appropriate adjustments in different situations.

There are many combinations of the setting of djlistable parameters in our experiments,
hence it is not possible to investigate the efftdcall these combinations. When examining
the effect of one particular parameter, the otherameters are fixed to some designated
standard values, thus reported parameter effeetsadid for the standard values of the other
parameters only. On the other hand, each experiigsecarried out several times using a
different random seed to support presented cormigdiy statistical testing.

6.2 Methodology

The experiments may be divided into two parts ddpgnon a source of documents. Firstly,
the artificial documents are used. The artificiatdment is a sequence of generated topics; it
is not necessary to generate a sequence of tokevsrds because they would be transformed
back to the sequence topic before further procgssiine artificial sequences meet the
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assumptions about the n-gram contextual ties wahitocument; they are generated based on
the known transition matrices. Secondly, the ctibes of downloaded documents created by
human writers are used as primary input data. Adtessary preprocessing steps are
performed with these real documents to receiveulisefquences of topics. Moreover, the
sentence borders identified in the original docuts@mne propagated to the topic sequences to
enable to ignore the adjacency of topics from défifie sentences or paragraphs.

All investigated document representations are tlenved from the topic sequences; the
topics put together form a dictionary. Other lirgjig entities than topics could be used as
well to derive the proposed representations, bnefaively small size of the topic dictionary
lowers the resource requirements for the presesxpdriments.

The standard document representation used for iexpetal comparisons is the bag-of-topic
representation that does not comprise any contektfcamation; it is based solely on topic
frequencies within a document. The proposed antddebcument representations are derived
as centralities of context networks which are carcséd from the topic sequences applying a
given context window. The bag-of-topic representatand the proposed representations are
of the same dimensionality, hence they enable éonéxe and compare the effect of encoding
contextual information into document vectors.

The first experiments concern the investigatiothef preservation of the document diversity.
They should substitute the theoretic evaluatiormfrohapter 5. The preservation of the
document diversity is investigated using the SSTRE®asure. It describes how proximities
between document pairs within a collection areugitgd when documents are projected from
n-grams to any desired representation. These ewpets are performed on both generated
and downloaded documents.

The initial test of practical exploitation of theordextual information embedded in the
proposed document vectors is performed as the néomg of the documents with randomly

permuted topics among other artificial documeng there generated from the given n-gram
distributions. This test is designed as a supedvibmary classification; the permuted

documents are labeled. The classification is thvatuated by the F-measure.

Before wider testing the usefulness of the propasgdesentation in common text mining
tasks, a specific binary classification of real iments was examined in a special task where
the contextual ties are apparently important: tbal gvas to recognize machine translated
documents among other documents written by hum#roess The test is again designed as a
supervised binary classification; the translatedutieents are labeled and the benefit of the
contextual representation is assessed by the Fumeas

The appropriateness of the proposed representatanghe information retrieval task is
investigated on generated documents. The docuntesitshould be retrieved are generated
based on the same n-gram distribution as a querile vdocuments that should not be
retrieved are generated from different n-gram itistions. The F-measure is used again to
evaluate the information retrieval task.

The most common text mining task is the classiicatThe real downloaded documents are
labeled, hence the nominal classification is evaldian them. The nominal classification is
evaluated using the F-measure; the micro-averagingsed to combine F-measures of all
target categories.

Last experiments concern the clustering. They awvadected on both generated and
downloaded documents. Artificial documents withiacle presumed cluster are generated
from the same n-gram distribution; the distribusidretween clusters differ. The normalized
mutual information serves as a measure for thersigael evaluation of clustering of the
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generated documents. The clustering of the doweldacbllections is evaluated by the
normalized mutual information as well because tbeudhent labels are exploited in the
evaluation process.

The effects of several adjustable parameter settamg investigated in all experiments with
both real and downloaded documents. The parametensnon for all tasks include the topic
vocabulary size and the length of the left contesbdow. In addition, the generated
documents enable to investigate the effects of lé#mgth documents or the number of
documents in a collection.

The experiments are conducted for each tested datunepresentation separately. Each
experiment is repeated several times using a diffterandom seed. It enables to eliminate
random variations and to submit conclusions asltesaf the statistical testing. A new
collection is generated for each repetition of éxgeriment with the simulated documents
while the random seed is used to fixing the panitig to test and training sets in supervised
experiments with the downloaded collections.

6.3 Experimental setup

6.3.1 Processing of downloaded documents

The downloaded documents come from three diffecefiections of press releases (chapter
6.3.1.1). Each collection offers the document categ that can be exploited in any
supervised evaluation. The collections differ innm@arameters including the language, the
number of documents, the average document lengtireonumber of document categories to
cover the possible diversity of real collection®ir evaluation process.

The documents were processed by the proposed rmepéeéscribed in chapter 6.3.1.2. The
pipeline outcome included not only the proposeduduent vectors, but also the documents
where the original tokens were substituted by ®metected by LDA together with their
transitions matrices between the topic (n-1)-gramds the topics. It enabled to estimate topic
n-gram probabilities for each docum&ntThe estimated n-gram probabilities serve as the
original and most informative document represeotain the following comparisons because
they are assumed to form the distribution for thehserved generative document process.

6.3.1.1 Downloaded collections

Three default collections of downloaded documergsewused in the delivered experiments.
An additional special collection was derived frohe tCzech collection for the task of the
recognition of machine translated documents. Eauleation is language homogenous; it
includes documents of the same language. We detidex$t several collections of different
languages to investigate how the language influetioe results. These collections differ also
in many other parameters than the language to dbeewide range of possible properties of
other potential collections.

The documents in each collection are labeled; #iels can be used for any supervised
learning and evaluation. The labels in three défaallections represent categories under
which the documents were published on a news sefherfourth special collection is labeled
by an indicator of the machine translation.

%9 The maximal likelihood estimates are applied.
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average

ID language documents tokens length source URL

Cz1 Czech 24 095 10994 678 456 Novinky.cz www.nRyicz
EN1 English 13 285 8106 108 610 BBC www.bbc.co.uk
GE1 German 2501 985 410 394 Wiener Zeitung wwwialieeitung.at
CZz2 Czech 3097 1229 492 397 Novinky.cz WWW.Nhoyiok

Table 2: The properties of four experimental cdil@ts of downloaded documents.

Before the processing of texts the document catiestwere transformed to the plain text

format and tokenized. The tokens were filtered Isyop-word list in each collection. Then the

tokens that included numbers were discarded. Tken®were then stemmed using language
dependent stemmers. The last filter is based ondbabulary. The vocabulary was extracted
for each collection from the train documents after partitioning. Only the stemmed tokens

that appear in at least two training documents werieded.

collection stop-word list size vocabulary sizé®
Ccz1 1174 87 583 — 88 412
EN1 185 21 498 — 21 598
GE1 231 13880 —-14 477
Ccz2 631 19 398 — 20 039

Table 3: The sizes of vocabularies that were extichérom the downloaded collections.

6.3.1.1.1 Extraction of collection CZ1

The first experimental collection consists of neasgr articles written in the Czech language.
They were downloaded from the news portal novinkyin October 2013. The documents

were downloaded by WinHTTrack Website Copier crawl@enly the press releases that

belong to specified categories were downloadedrgiages were discarded. Categories were
available as a part of URL. The original documentohomy includes 16 categories on the

first level; some first level categories includeettsecond level categories. For the

classification and clustering experiments the sddewel categories were omitted.

For further processing the HTML pages were tramséat to flat text files. Pictures and other
undesirable objects were filtered out and HTML codere parsed using Python script. Only
the text from the selected tags was retrievedIter fout adverts and other unimportant text.
The HTML ampersand references were decoded toriggnal characters and the encoding
was changed to cp-1250 before saving as the f&g. firhe text files are identified by their

original numeric identifiers given by novinky.cz.h& collection includes 24 thousand

documents with 10 million tokens.

® The size of vocabulary varies due repeating thelevexperiment five times with different randomdgeThe
collection is partitioned to training and test setshe each run. The vocabulary is extracted ustiegtraining
documents only.
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ID | category CZ category EN documents
1 auto car 453
2 bydleni habitation 1486
3 cestovani travel 2034
4 domaci domestic news 3104
5 ekonomika economy 1237
6 finance finance 320
7 Internet a PC Internet and PC 625
8 kariéra career 220
9 koktejl cocktail 1162
10 Krimi crime 2131
11 kultura culture 2041
12 | filmovy festival film festival 208
13 vanoce Christmas 111
14 wda, Skoly science, education 309
15 zahranini foreign news 3298
16 Zena woman 5356
total 24095

Table 4: The categories of the collection CZ1

6.3.1.1.2 Extraction of collection EN1

The second collection contains English newspap@ies from BBC. They were downloaded
from bbc.co.uk in October 2013 using WinHT Track \&fi&d Copier crawler. Webpages other
than the newspaper articles were discarded. Thelesrtwere categorized using their file
names. The original document taxonomy includes dt@gories on the first level. Domestic
news and world news could be further divided intbcategories up to the third level. For the
classification and clustering experiments onlyfitet level categories were considered.

The pictures and other undesirable objects weterdidl out and the HTML code was
transformed to a flat text using Python script. YOthe text from the selected tags was
retrieved to filter out the unimportant text ane ttmpersand references were decoded before
saving as the flat files. The text files are idkati by their original numeric identifiers given
by bbc.co.uk. The collection includes 13 thousamcudhents with 8 million tokens.

ID category documents
1 business 1415
2 education 163
3 entertainment, arts 319
4 health 424
5 in pictures 47
6 magazine 853
7 | science, environment 576
8 technology 501
9 UK 3540
10 world 5447
total 13285

Table 5: The categories of the collection EN1

6.3.1.1.3 Extraction of collection GE1

The third collection is the collection of Germanuspaper articles from Austrian newspaper
Wiener Zeitung. They were downloaded from wieneurgg.at in October 2013 similarly as

the previous collections. The original documentotaeomy includes 8 categories on the first
level; other levels were ignored in the classifmaiand clustering experiments.
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Similarly to the previous collection, Python scnpas used to retrieve only the relevant text
of news articles. The resultant text files are tdea by their original numeric identifiers
given by wienerzeitung.at. The German collectiorthe smallest one with two and half

thousand documents and 1 million tokens.

ID | category GE | category EN| documents
1 Europa Europe 340
2 Kultur culture 1029
3 Osterreich Austria 103
4 Sport sport 324
5 Wabhlen elections 146
6 Welt world 237
7 Wien Vienna 328
8 Wirtschaft economy 71
total 2578"

Table 6: The categories of the collection GE1

6.3.1.1.4 Extraction of collection CZ2

The additional Czech experimental collection isubbset of the collection CZ1 (chapter
6.3.1.1.1). It consists of selected documents frdme category of domestic news.
Approximately 12% of documents were automaticatbnslated using Microsoft translator
API service’®. The documents were translated from Czech to Emgind then back from
English to Czech. Hence all documents in the ctilacare in Czech, but some of them are
products of the translation engine. The translaecuments are labeled by an indicator; the
indicator serves as a target attribute for furtherelopment of classifiers.

The text files in the collection are identified Hyeir original numeric identifiers given by
novinky.cz. The collection in total includes 3 tlsand documents with over one million
tokens divided into two categories.

ID category documents
1 | machine translategd 384
2 original 2713

total 3097

Table 7: The categories of the collection CZ2
6.3.1.2 Downloaded document processing pipeline

6.3.1.2.1 Learning pipeline description

A learning pipeline includes the process that dgy®lnecessary objects for a subsequent
processing pipeline. While the learning pipelinglexks the training set of documents, the
purpose of the processing pipeline is to deriveappropriate vector representation of new
document®’. The learning pipeline does not provide a reprsiem of input documents; the
main outputs of the learning pipeline include tlweabulary and the model that substitutes
vocabulary items by topics.

1 Some documents from collection GE1 are assignemitiple categories hence the total is larger ttan
number of documents in the collection.

%2 The same translator is also available as Bing beowanslator

% Training and testing documents are eligible fer phocessing pipeline as well.
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Figure 11: The learning pipeline.

exclusion

The input to the learning pipeline consists of Beotion of crawled text documents stored as
local file?*. If the format of stored documents is differerinfr the raw text file, they are
transformed to the raw text format using the selkancoding. In the case of HTML page
only the content of relevant tags is K&pThe optional document category assignment is not
important at the beginning of the process becalseptimary goal of both pipelines is to

represent documents regarding their content andcthext only without any further
assumptions.

An index database is created for each collectiorsitoplify and speed up the further
processing. The index database is an ordered asgibbhpindexed list of lowercased tokens
together with data about their locations within siments. The token location data consist of
the identification of the document, the sentenakthe position within the sentence where the
token occurs. The other properties of tokens sscétems can be added to the index database
during the process. The index database includdstbaining and testing documents, hence it
is exploited by the procedures from both learning processing pipelines.

position

ID ID within vocabulary
index ID doc token sentence | sentence stem item topic
5099 | CZ1 102154 cely 24 2 cely true g
5100 | CZ1 102154 komplex 24 3 komplek true D
5101 | CZ1_102154 budov 24 4 bud true g
5102 | CZ1 102154 ipehlych 24 6 pilehlych true 9
5103 | CZ1 102154 zahrad 24 7 zahrad true 9
5104 | CZ1 102154 ziskala 24 8 zisk true J]
5105 | CZ1 102154 armada 24 9 armaq true 7

Table 8: The sample from the index table enhangetid vocabulary flag and the topic assignment.

The index database is built in the beginning of pigeline where documents are tokenized
and simplified by filtering of stop-words. The tokeation comprises breaking documents
strings into tokens and sentences (segmentatitiajpatively some higher text units such as
paragraphs or chapters are recognized in the dougnfeentence boundaries are stored in the
index database together with tokens or words. Ttegihg of stop-words is a simple language
dependent step where frequent but meaningless vareddiltered out from all documents.
The stop-words lists are usually publicly availafde common languages and they typically
include hundreds of words such as determiners,ogigpns or conjunctions. The non-word
tokens that stand for numbers, e-mail addressefkis are removed as well to retain only the
tokens that represent meaningful words. These imgHktic entities are recognized using the
regular expressions.

% Documents need not be stored locally; any otlrage can be used as well.
% |t applies also to documents in other formats iheitide the metadata and/or some irrelevant text.
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The last optional step which can influence the xndatabase in the proposed pipeline is the
stemming. The stems are results of trimming ofipesfand suffixes of words. The stemming
procedure is language dependent, but does notreeg@vanced machine learning approaches.
Usually a set of rules is applied to each individward separately to receive its stem. The
rules can have the form of regular expressions. firfed stem may not be the same as the
linguistic root of the word. However, it does naivie the great negative impact on the further
processing. The stemmers are available for manyaldanguages and they usually comprise
hundreds of rules. The stemming significantly rextuthe number of wordforms that occur in
documents. Especially the collections of infleciblanguages such as Czech exhibit a huge
number of wordforms and the stemming simply enabdesignificantly reduce their initial
dimensionality. Even though the stemming is languagependent procedure, the
implementation of rules is relatively easy. Thevsteng reduces the size of vocabulary at the
beginning of the process and brings the considenadaluction of processing requirements for
further steps.

The next step is the selection of vocabulary tok@&hss step can be bypassed if any external
vocabulary is available. The internal vocabularyeidracted from the training documents
only; this step is performed in the learning pipeliand is not present in the processing
pipeline. The only stems that occur at least in training documents are incorporated into
the vocabularff. The table of selected vocabulary stems also dedidf frequencies of
stems derived from the training set of documentsfudher accelerate the possible
computation of thef-idf representation for processed documents. The idd&abase is then
enhanced by the vocabulary filter because onlywteabulary entries are taken into account
in the further processing.

ID token | token | df | df idf
61013 Sed 31 49 6.300
61014 S 8 8 | 7.655
61015 sedd] 58 108 5.674
61016 Sedad| 42 49 5.997
61017 seda | 155| 280| 4.691

Table 9: A sample from vocabulary table of stemtokdns.

The non-vocabulary tokens are omitted from thehintprocessing. The training documents
consisting from the vocabulary stemmed tokens ae processed by latent Dirichlet
allocation procedure (LDA) (see chapter 3.1.2.4ton the model for the topics assignment.
LDA performs a huge dimensionality reduction whishnecessary if we need to form n-
grams that further significantly increase the numéieprocessed features. The number of
extracted topics is set in advafteérhe goal of LDA in the learning pipeline is toveéop a
topic model that will fluently substitute stems topics in the processing pipeline. Hence the
training documents are exploited to tune all esakegtobal parameters of the model. LDA
model and the vocabulary table constitute the matputs from the learning pipeline that are
necessary to form the processing pipeline.

6.3.1.2.2 Processing pipeline description

The purpose of the processing pipeline is to assigmoposed vector representation to new
incoming documenté The new incoming documents can be processed éndeptly one by
one; the relations among documents do not influgieeutput of the processing pipeline. In

® This parameter is subject to change.
® It is modified and investigated within the expegimal setup.
% Testing and training documents can be vectorizagel.
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the experiments the processing pipeline is appitethe test set of documents to further
evaluate the appropriateness of the proposed dodueggresentations.

centrality
vectors

words
exclusion

topic
probabilities

Figure 12: The processing pipeline.

The processing pipeline exploits the objects suctha vocabulary or LDA model for topics

assignment that have been developed over the rigaiset of documents in the learning
pipeline. The initial preprocessing steps, namelikenization, stop-word exclusion and

stemming are the same in both pipelffiesThen the external vocabulary or the internal
vocabulary built over the training documents in liggrning pipeline is used to filter out non-

vocabulary stems. It is necessary to keep the wibagbstems only in documents because
LDA model cannot assign the topics to the unknotems.

The LDA substitution is the next step, the LDA mbiteat has been derived over the training
documents in the learning pipeline is exploitedctie@ocument is regarded by the LDA
model as the specific bag-of-topics. The vectortagic probabilities is stored for each
document as well because it serves further as @&hbesrk representation for various
comparisons. However, the assignment of topicgedms is our main output from the LDA
model. The stems are substituted by the topicgherfurther processing and the assigned
topics are added to the index database.

While all previous steps do not take into accoumt arder of tokens, stems or topics, the
building of a context network strongly relies ore tladjacency of the topics within a
document. For the topic on the particular positioa document a set of its adjacent topics is
retrieved. It includes the topics that fall inte @ontext window. The context window consists
of token positions in a document that are withia #elected vicinity from the investigated
position in the document. The length of the conteixidow is set in advané®and it reflects
the fixed distance between the positions in theudwnt on which the co-occurrence of
tokens is supposed to be nonrandom. The ordermatgavithin a particular context window
does not matter; all topics in the window are regdras neighbors of the topic on the position
to which the context window is assigned.

The context window can be of three types: lefthriar symmetri€". The left context window
includes the selected number of positions left fritw@ investigated position. The right and
symmetric context windows are defined analogicdtly: the further counting of topics pdfrs
the selection of the context window type has thgligible effect, especially in the texts they
are far longer than the length of the context wimdo

% See the learning pipeline description in the gresichapter.

0|t is another parameter that is modified and itigaged through the experiments.

"t Two-sided asymmetric context windows are not takémaccount.

"2 The topic pair consists of the topic on the inigeged position and one topic from its context vand
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The token positions that were not assigned by & tslpould be taken into account as well.
They contain non-vocabulary stefhsHence a special topic coded by*ik assigned to such
stems. This assignment is not performed by LDA. dtheer special topics are introduced to
reflect starts and ends of text units. The text isna part of the document where the context is
important. We take into account the context witthie sentences in the proposed document
representation, hence the context windows includg the positions that belong to the same
sentenc®. The sentences within the document are recogrédeshdy in the tokenization
step; the affiliation of token positions to sentemgds stored in the index database. On the
other hand, the start or the end of a sentencenflaence the adjacency of the border tokens,
hence it is worth including the information abowntence borders into the proposed
representation. To do so two artificial positiome added to each sentence. The dummy start
position is inserted before each sentence and themy end position is inserted after each
sentence as well. These two positions are assignsgecial topics coded as -3 for starts and
-2 for ends. All special topics {-3,-2,-1} are thpresent in the further representations.

tokenized sentence Jen| nal blatnicicl objevime| malé | ndznaky| kiivek
token rank 1] 2 3 4 5 6 7 8
stop-word Y |Y N N N N N Y
stem blatnicich| objevim | malé | naznak | kiivek
vocabulary stem N Y Y Y Y
topic -3 -1 3 3 1 3 -2
topic rank 1 2 3 4 5 6 7

Table 10: The example of the settings of the taftext window of the length = 3. The original Czech
sentence "Jen na blatnicih objevime malé naznakgh" is tokenized; the non-word tokens are
discarded together with stop-words. The remaindighs are stemmed. The topic is assigned to each
vocabulary stem by the LDA model. Non-vocabulagynstare assigned by the topic coded -1. Special
topics coded -2 and -3 are added to the bordertfmrs to reflect the start and the end of the
sentence. All assigned topics are ranked to setdnéext windows properly. The context window can
be established for each ranked position. The lgghy background color highlights the left context
window of the original word "kvek".

The identification of the context window for eaclsfion in the document enables to
construct a context network for the document. Toetext network of the document is the
network with oriented edges. Additionally, a nurneron-negative weight is assigned to each
edge of the context network. Vertices of the contetwork are fixed, they represent the
extracted topicS. The edge weights represent the counts of tofis pathin the document.
The topic pairs are counted for each possible ebniendow within the document and
summed together. The process can be also desathdlde sliding by the context window
through the document and continuously countingtoipéc pairs’. Each topic pair consists of
the topic on the investigated position and onectdgim its context windoW. The order of
topics within the pair is important because it deiees the direction of the edge in the
context network. All topic pairs from the contexindow on the particular position within the
document include the same topic on the secondiposithen the left context window is used

3 The positions of stop-words are discarded in #girming of the pipeline. On the contrary to nomatoulary
stems the stop-words have no impact on further mect processing.

" The regular topics that are assigned to stemaéwysed implementation of LDA use numerical codasisg

from zero.

> The left context windows at the beginning of tlemtence are shorter. The same holds for the righitest

windows at the end of the sentence.

® The special topics {-3,-2,-1} are included as well

" More precisely the context widow slides continupumly within the sentences and it jumps overshatence
borders.

8 The order of topics within particular context wivdis not taken into account.
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and similarly, all topic pairs include the sameitagn the first position when the right context
window is applied.

377002 T 2870221 2
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Figure 13: The construction of the context netwiookn the sequence of topics. The document consists
of three sentences; the tokens were already sutesdiby the topics and the sentence borders were
marked by the special topics. The topic sequenceggd twice in the picture to see the construrctio
of topics pairs using the left context window @& kbngth of three. Each arrow represents a topiic.pa
The counts of all topic pairs form the weight matf the context network. The arrow thickness @ th
context network diagram is proportional to the weigrhe missing connections with zero weight are
dashed.

The sum of all weights in the context network isgmrtional to the length of the documént
and to the length of the context window. The duttion of weights within the context
network reflects the patterns of topics presentethé document. Hence the context of the
document together with the document content isrdestt by the relations among the nodes
in the context network. Such relations are deteechiby the edge weights. The strengths of
incoming or outgoing connections of a node reftbet presence of the topic in the text and
the distribution of weights within the network mdts the adjacencies of topics that are
influenced by the context. Unfortunately, the whottext network is not the appropriate
document representation that can be used as an fopumining models because it is
described by the multidimensional weight matrix.eThining models expect document
vectors as their inputs. However, the main propsrtif the context network can be captured
by centrality statistics.

The centrality statistics of each node is derivemnf the weight matrix and the statistics is
somehow proportional to the importance of the ndde importance can be evaluated using
different criteria, hence we can select from thelevrange of centralities. The centralities
further experimentally investigated include DegrdeDegree, OutDegree, Eigenvalue,
Authority, Hub, PageRank, Closeness and Betweenigessthe chapter 4.5). Closeness and

" The magnitude of the sum is also influenced by stracture of sentences within the document. Shorte
sentences imply the smaller weight sum becausdesnmaimber of context windows is present in theuoent.
The sum of weights is also influenced by the presef stop-words, punctuation and non-word tokerth s
numbers or e-mails. These tokens are discardedebtife document is indexed.
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Betweenness centralities rely on the distances gnttom nodes rather than on the weights,
hence the weights are inverted before ClosenessBatdeenness are computed. Other
centralities exploit directly the weight matrix.

The centralities of all nodes of the context netwv@orm the final document vector. The
dimensionality of the proposed document vectoixied and is determined by the number of
extracted topics which is the parameter of LDA niti&ome centralities may depend on the
total sum of the weights that is proportional te ttocument length. Therefore the centrality
vectors are normalized to have the length of omesémne experimental comparisons where
the document length should not be taken into adfbun

6.3.2 Generation of and processing of simulated documents

Each simulated document is a sequence of vocabitems. The size of vocabulary of a
natural language is usually large comprising tenthousands of words, but in the proposed
representations we use topics instead of Waréence it is not necessary to generate original
documents that include words in the simulations;divectly generate documents where the
words are already substituted by topics. The sizth@ vocabulary of topics is reasonably

lower, it is usually of the order of units or tens.

- - -
probabilities
n-gram centrality
grar representations
ocabulal vocabulary

representation

" n-grams,
(n-1)-grams

topic
representation

Figure 14: The generation and procesing of the $itea documents.

The simulated documents are sequences of topics. tdpic sequences are generated
regarding the n-gram probabilities. n-gram is arskequence oh topics. Each document is
fully described by its n-gram probabilities. Theolpabilities of n-grams are arranged in a
matrix where rows represent (n-1)-grams and colunepsesent topics. Such arrangement
easily enables to obtain conditional probabilitefsthe topics knowing a foregoing (n-1)-
gram. These conditional probabilities enable toegete the next topic of the sequence
knowing lasin-1 topics.

Each document is generated given the topic vocajgutae n-gram probabilities and the
document length. After the first n-gram is genatatach subsequent topic is added regarding
the conditional probabilities of the topics. Th@gess is repeated until the number of topics
in the sequence equals the given document length.

Note that n-gram probabilities are known for eaichutated document, hence they could be
exploited for comparisons. Although we assume thatn-gram probabilities fully describe
real documents, they are unobservable and can lgeestimated from the observed n-gram

8 Three special topic {-3,-2,-1} slightly increaseetdimensionality.

81 For example Bayesian classifiers do not rely andbsine similarity that naturally normalizes teedths of
vectors.

8| DA is used with real documents to transform wordlgopics. It is an initial dimensionality redumi that
does not rely on the order of words within a docoimé@ subsequent dimensionality reduction is ineldidn a
derivation of centralities of context networks.
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frequencies in the document processing. Hence -dp@m probabilities estimat&tfrom the
n-gram frequencies are used in the performed tests.

After the sequence of topics is generated to gsired length, it is further processed the same
way as the downloaded documents after their sterassabstituted by topics (see the

processing pipeline from chapter 6.3.1.2.2). Thiy smplification is the absence of special

topics in the generated sequences. They do natdadpecial topics {-3,-2,-1} because any

generated sequence is not divided into sentencparagraphs and all topics in a generated
sequence are vocabulary topics.

6.4 Evaluation of experiments

6.4.1 Document diversity

A dimensionality reduction that transforms the ray n-gram document vectdfsinto a
different target representation affects distancesray documents. The distances among the
documents are important for the predictive mode& perform standard text mining tasks
such as the clustering, the classification or tleudhent retrieval. The relevance of the
projection from the original space to the targetcsp relates to the notion of distance
preservation. The distance preservation is ofteroptimization criterion used by general
dimensionality reduction methods (Lee & Verleys2@07). Any statistics that measures the
distance destruction or preservation can be usdbeaBtness function or for the purpose of
evaluation of a projection. The simple exampleuwdtsa criterion was proposed in (Paukkeri
et al., 2011). The nearest neighbor of each dattowés calculated in the original feature
space. After the evaluated dimensionality reduct®operformed, the nearest neighbors are
searched again. The ratio of the preserved neighdemves as the evaluation measure of the
distance preservation.

The well-known example of exploiting of a distardmstruction criterion in searching for an

optimized non-linear low-dimensional projection tise multidimensional scaling method

(MDS). The multidimensional scaling is an explorgt@approach that enables to visualize
multidimensional data (Cox & Cox, 2000) (Borg & @ren, 2005). The primary outcome of

MDS is a spatial configuration, in which the obgedcre represented as points in a low-
dimensional space arranged in the way that thetadces correspond to the similarities of the
original objects: similar objects are representgdtie points that are close to each other,
dissimilar objects by the points that are far ap@ie common criterion of the distance

destruction used in MDS as the fitness functionl egfrve as the evaluation statistics of the
proposed document representation. Such a simpleaegative criterion enables us to express
the changes in the vicinity of document vectors mkenstructing the proposed document
representations.

Let the original distanc&SbetweenM objects are given by a symmetric distance ma&rif

the sizeMxM, whose diagonal elements equal zero. The projguieds to a low-dimensional
space form another symmetric distance ma®igf the sizeMxM. We need to express the
discrepancy between the matridgsandS. The classical metric approach (Torgerson, 1952)
has fallen from favor and more modern formulatiohghe metric MDS have introduced two
popular discrepancy measures between original amgeqied distances. The STRESS
criterion (Kruskal, 1964), proposed for the nonneeMDS, is based on the squared errors

8 Maximal likelihood estimates are applied.

8 In accordance with statistical language model wetiebe that n-gram probabilities fully describe kac
document.

% In the MDS theory more general dissimilarities evesidered.
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between all entries dR and S. The newer and more popular SSTRESS criteriontHer
nonmetric MDS (Takane et al., 1977) is based onstingared errors between the squared
original and the squared projected distances.

Generally, the objective of MDS is to find a prdjen that minimizes the following
discrepancy criterion.

> 3w (07 (57 - min (144)

i=l j<i

This general formula enables to take into accohatitmportance of particular distances by
introduction of the weightwi,-%, permits negative similarities and enables toctdletween
STRESS K = 1/2) and SSTRESX (= 1). For the evaluation of the proposed document
representations in the experimental part of theighehe non-weighted SSTRESS measure is
used anR andS are distance matrices with non-negative entriendd the general fithess
function (144) simplifies to just SSTRESS evaluatsbatistics.

2

SSTRESS iZ(rii ‘-5, 2) : (145)

i=1 j<i

The SSRESS measure is non-negative and is not-bppaded. Its magnitude depends on
the number of entries of the distance matriresndS and on the scale of distances as well.
Hence the correct comparison of different propodedument representation requires the
following settings:

» Set the single distance measure for all comparisons
* Normalize the sizes of document vectors to be erctimparable scale.

» Select the baseline document representation tohadligroposed representations will
be evaluated.

» Compare only the proposed representations of time simensionality.

All these requirements are fulfilled in the expegmts. The popular cosine similarity is used
as the distance measure. The high-dimensional xionetwork document representation is
used as the reference representation that formdiskences irR and all proposed centrality
vectors that form matricésshare the same dimensionality.

The cosine similarity serves as the document disfabecause it is independent on the scale
of document vectors, it includes the normalizatajrthe vectors. It is a common measure
used in the document retrieval and other text nginiasks. Only an angle between the
document vector pair influences the distance, helocement lengths do not affect the cosine
similarity.

% The weights are also used to accommodate missitzginl MDS.

8 The cosine similarity does not comply with the alsdistance definition. It is rather similarity nseme. For
example, the cosine similarity of two same documelttes not equal zero. But it is the common meafsure
document comparisons.
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The above formula for the cosine similarity comgat@o document vectord; andd; of N
dimensions. If the document vectors include onlyn-negative components, the cosine
similarity takes values between zero and one.

r(d,.d,)=

6.4.2 Document classification and retrieval

The classification of documents to the categohes are known in advance is a very common
text mining task, hence the evaluation of classfiss well developed and unified. The
document search known as the information retriggah special case of the document
classification task from the evaluation point ofwi We assume that the system of document
categories is established and testing documentslaeled by their categories. The
information retrieval is then a binomial classitica regarding a given query. Each document
either satisfies or dissatisfies the query.

Minor complications can be caused by multiple lab&hen each document can belong to
more than one category and a classifier can assggdocument to several categories as well
(Tsoumakas & Katakis, 2007). It does not appeah@&presented simulations, but multiple
labels can be found in one downloaded experimeatétction. The idea of evaluation of an
ambiguous classification is to split a complex sifar into several simple binomial
classifiers. Each binomial classifier is evaluatsparately and the results are then put
together. Two frequently used folding methods amewkn as micro-averaging and macro-
averaging. In the macro-averaging approach, thenroéavaluation statistics of all binomial
classifiers is presented as the final evaluatiatisics. In the micro-averaging approach, the
counts of correct and incorrect predictions ob@tlomial classifiers are summed together and
the evaluation statistics is computed from thesassurhe micro-averaging is preferable in
the case of unbalanced categories because it hatcoanprises category frequencies. These
two approaches can be also regarded as a genBoalizd the evaluation of a binomial
classifier to the evaluation of a multinomial cifiss, the multiple labels are then only the
special case of multinomial classification.

Each simulated document in the presented expergmngrt member of just one category; the
number of categories is the parameter of the emmmerial setup. The simulations of the
information retrieval and the recognition of pereditdocuments imply just two categories
classification; other simulations are multi-categalr The experimental collections of
downloaded documents have the fixed number of oategy the number of categories is the
experimental parameter in the simulations. Eachuchant belongs to just one category, only
the German collection of real documents include®isé documents with multiple labels. The
problem in the German collection is overcome by dielication of such documents; each
copy has just one different label. The duplicai®mperformed after a document is assigned to
a training or test set, hence all copies of theesdotument belong to the same set. Then the
multinomial classifier which predicts just one aaigy for each document is developed and
evaluated. Such duplication is equivalent to theraaaveraging.
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The evaluation of a classifier always starts witle tonstruction of the misclassification
matrix®, Let us have a set of categories{ay,ay,...,aa}. Each testing document is labeled
by the categorx from A and also the document is assigned to the catggvom A by the
evaluated classifier. Altogether the paky] is known for each testing document. The
misclassification matrix is then a square crossalb includes counts of th&,y] pairs of the
test documents.

The misclassification matrix of the binomial cldisiis the fourfold table of frequencf&s
However, the misclassification matrix of the mudtinial classifier can be also transformed to
a set of fourfold tablé8. One fourfold table is constructed for each catggbence the
evaluation is performed over the sefAftables. For the categoayeach classification result
represented by the pai,y] can be assigned to one of the following four <eltue negative
(TN), false positive (FP), false negative (FN)etpositive (TP). Positive or negative refers to
the assignment to the particular category donehbyctassifier. The incorrect classifications
are referred as false, the correct classificatians referred as true. Formally, while
constructing the fourfold table for the categoryeach document is assigned to one of four
cells using the following schema.

TN:xzal x=y
FP:xzalx#y
FN:x=alx#y (147)
TP:x=alx=y

prediction

y£a | y=a

target [ x#a| TN | FP

category | x=a | FN | TP

Table 11: The fourfold evaluation frequency talolethe category r. x represents the document label
and y stands for the assigned category.

Over each fourfold evaluation table a large nundfezvaluation statistics can be constructed.
The basic and commonly used statistics are thegmwead® and the recalR.

TP

P=———
FP+TP
P (148)

FN+TP

From the information retrieval point of view, theepisiori*is the fraction of the retrieved

documents that are relevant, while the ré¢al the fraction of the relevant documents that
are retrieved. The precision and the recall aramdgpendent; a binary classifier that exhibits
the high precision often suffers by the low reeaitl vice versa. Hence it is worth combining

8 The misclassification matrix is sometimes referasdhe confusion matrix or the coincidence matrix.

8 For example the evaluation of the informationiestl directly offers such fourfold table.

% Due this fact the evaluation methods that werginaily developed for the information retrieval atite
binomial classification are applied with minor mfichtions to the nominal classification documents.

L The precision is sometimes referred as the pesjtiedictive value.

%2 The recall is also known as the sensitivity.
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these two evaluation measures. The single meakatecombines both is their harmonic
mean, the traditional F-measure.

£ 2PR
“P+R (149)

The precision and the recall are evenly weightethe harmonic mean, hence the mean is
also referred as;Fmeasure. Fmeasure is a special case of the more gengnalefasuref3
stands for the non-negative real ratio of weigtithe precision and the recall in the weighted

harmonic mean.
= _!,82 +1!PR

B - ,BZP"' R (150)

Only F-measure is used in the evaluation of the presesitedlations and experiments.
However, the experiments often take the advantdgauwtinomial classifiers, hence it is
necessary to combine the evaluation results ofiquéat binomial classifiers into a main
fourfold table where the cells of particular fouddables are summed up.

6.4.3 Clustering of documents

A huge effort has been spent to improve algoritfionghe document clustering (Aggarwal &
Zhai, 2012). However, the evaluation of the clustgroutcomes has not been fully
standardized, yet. Indeed, the construction ofityuadeasures for unsupervised techniques is
not straightforward and it is still an emerging ard-ortunately, the evaluation of the
clustering of experimentally simulated documentabdes to exploit the information about a
distribution of n-grams from which each documens\ganerated. More precisely, documents
generated from the same distribution of n-gramseapeected to belong to the same cluster.
The experimental setup also simplifies our evatmtithe number of n-gram distributions
from which a collection is generated is alwaystedie the same as the number of clusters in
the consequent k-means algorithm. Therefore th&uatian is similar to the situation when
the documents are labeled with the target cateddrg.labeling information is not taken into
account during the development of the clusteringl@hdout it is exploited for the evaluation
purposes.

The general objective function in the clusteringlaation formalizes the goal of attaining the
high within-cluster similarity of documents togethwaith the low between-cluster similarity.
In the situations when the category labels are kntve document similarity is measured by
similarity of their labels rather than by similgriof their input vectors in the evaluation phase.
The idea behind the evaluation statistics is torege how the cluster assignment implies the
label purity of clusters. The useful evaluationtistecs include the purity, the normalized
mutual information, the rand index or F-measti(¥inh et al., 2010).

To compute the purity, each cluster is assignetheocategory which is the most frequent in
the cluster. The accuracy of this assignment ia theasured by counting the proportion of
correctly assigned documents.

% Sometimes referred as the balanced F-score.
% The F-measure is constructed the same way askneln F-measure used for evaluation of information
retrieval but the fourfold misclassification matisxconstructed differently as shown later in &vet.t
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8]

PRZ%ZmOC{bj) (151)
j=1

The functionmod(y;) stands for the count of modal labels in the eust |B| is the number of
clusters M is the number of documents in the collection. phety PR takes values between
zero and on&.

The normalized mutual information (NMI) is computasithe mutual information (MI) of two
categorical variables: the category label and @gsgaed cluster. The upper-limit of Ml is
influenced by the number of categories, hence kenaense to normalize it to a standard
scal€®. The mutual informatiori(A,B) between categorie={ay,ay,...,aa} and clusters
B={by,by,...,bjg}} is computed as

I(AB)= ii da 0, )'{%J : (152)

i=1 j=1

The probabilities in the above formula are maximiikelihood estimates derived as joint
resp. marginal relative frequencies of categonmebs@usters.

MI measures the amount of the information by whathr knowledge about the categories
increases when we are told what the clusters ateviae versa. The minimum of Ml is zero if
the clustering is random with respect to the catgedabels. In that case, knowing that a
document is in a particular cluster does not giseany new information about its label. The
maximum of Ml is reached for the clustering thatfeetly recreates the category lajélghe
maximum of Ml is equal to the average of entroméshe investigated variables. Hence the
normalization of our MI by dividing by the averagatropy fixes the problem since the
entropy of the clustering tends to increase with lumber of clustets The entropies of
categories and clusters are

H(4)=-3; Hla)n(Ha)
o : (153)

(6)=-3: o ()

The normalization of the mutual information fronb®) can be then written as

M1 = A B)
H{AJ+H(B) (154)

2

% If the number of clusters is not fixed, the pusitifi not enable to compare solutions with the eliént number
of clusters correctly. Small clusters tend to eithitie higher purity.

% The non-normalized mutual information exhibits Ssme problem as the purity. It does not penakzgel
cardinalities and thus does not formalize the thas other things being equal, fewer clustershateer.

" The maximum of Ml is also reached, if such clusierare further subdivided into the smaller ones.

% The maximum entropy of the categorical variablghyB| categories equals |if(]).
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NMI is then always a number between 0 and 1. BexalMlI is normalized, it can be used to
compare the experiments with the different numbérdusters.

An alternative approach to the evaluation of clistgis to view it as a series of decisions,
one for each of thtM(M-1)/2 pairs of documents in the collection. We wentassign two
documents to the same cluster if they share thee dabel. A true positive (TP) decision
assigns two documents from the same category tesdhee cluster; a true negative (TN)
decision assigns two documents from different aaieg to different clusters. There are also
two types of errors we can commit. A false posit{#°) decision assigns two documents
from different categories to the same cluster arfidlse negative (FN) decision assigns two
documents from the same category to different etgstPutting all together we receive the
standard fourfold misclassification matrix withabtount

M (M -1)

TN+FP+FN +TP:T. (155)

Let f; stands for the frequency of documents that betong category;, i=1,2,...|A|, and
were assigned to the clustgrj=1,2,...|B|. The marginal frequencies of documents are then
marked asfi. (categories)fi; (clusters) andf. (total). The basic relations among the
document frequencies and the document pair fredgeerfiom the fourfold misclassification
matrix are then

f
TN+FP+FN +TP=( 2j

P/ f
FN+TP= Z( 2j

i=1

ot : (156)

FP+TPZZ( 2')
P Q fi,

w53 2)

i=1 j=1

The other cell frequencies as well as the mardmegjuencies in the misclassification matrix
result from these equations:

1 P
TN+FP=23 f(f. ~f.)

i=1

TN+FN 215‘, f+j(f++ - f+i)
2 j=1

_Iy (f, - 1,)
szliifij(fﬂ' _fii)
233
TN :%ii fiJ' (f++ - fi+ - f+i + fij)

I
LN
I
MY
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Knowing the frequencies in the misclassificatiorntmieof the document pairs, we can use the
standard evaluation measures known from the infoomaretrieval or the document
clustering tasks.

The rand index (RI) of the clustering is an analtgthe absolute accuracy:

_ TN+TP
TN+FP+FN+TP (158)

F-measure of the clustering is than the harmonianma the precision and the recall that
implies the standard formula

F= 2PR
P+R
_ TP

FP+TP '

R:l

FN+TP

(159)

Note that even though F-measure for the clustasmpmputed using the same formula as F-
measure for the document classification or F-meafarrthe information retrieval, these three
F-measures are derived using the different numbeotal counts. The total count of the
information retrieval F-measure equals the numlidesting documents. The total count of
the nominal classification F-measure equals thebmunof testing documents multiplied by
the number of categories. And finally, the lastkatount of the clustering F-measure equals
the number of all possible testing document p&lesice although any F-measure takes values
between zero and one, we should always distinchgrtitese measures; the results among the
different text mining tasks should not be mutualiynpared.

6.5 Experimental assessment of benefits of context encoding

6.5.1 Experimental setup for estimation of information reduction

To explore how an original diversity of documents affected by the proposed
representations, the distances among documents teavu@e computed. The document
distances in the original n-gram feature spaceanmgared with the distances in the proposed
feature space. The original distances among doctsmshould be preserved as much as
possible using the proposed representations. Thealiitance preservation can be hardly
reached because the dimensionality of the proptesgdre spaces is significantly lower than
the original dimensionality of the n-gram represéioh. SSTRESS measure (145) is used as
an evaluation score that describes the preservatioasine distances (146).

To compare the diversity &fl documentdV*(M-1)/2, distances have to be computed for the
collection; the number of possible distances grquadratically with the size of the document
collection. Therefore generated collections of oeable sizes were examined; the maximal
collection size of 100 generated documents impHd$0 cosine similarities for each
representation.
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Figure 15: The estimation of the the reductionhaf tliversity of the simulated documents.

The collection sizes together with other parametéithe experimental setup concerning the
generated collections are depicted in the followadge. Each combination of the parameters
was evaluated ten times; a different random seesl wged for each run to generate the
collection documents. The repeated evaluations wseé to estimate the significance of the
difference between SSTRESS scores between theggd@md a standard representations.

parameter values
topic vocabulary size 2,3,5,10
length of left context window 1,2,4
number of documents 10, 20, 50, 100
document length 10, 50, 100, 1000
number of repetitions 10
total number of collections 1920

(n-1)-gram bag-of-topics Authority,

Betweenness, Closeness, Degree
Eigenvector, Hub, InDegree,
OutDegree, PageRank

baseline representation n-gram

total number of experiments 21120

Table 12: The tested values of simulation paransatethe task of exploration of diversity reduction

using generated collections. Bag-of-topics and Yagrhm representations serve as benchmarks for

comparisons with the centrality representations.

tested representations

The n-gram representation is considered as annafigepresentation to compute SSTRESS
for each tested representation; it is the vectothef estimated n-gram probabilities for a
document’. The bag-of-topics representation served as taedatd representation for the
comparisons; it is a vector of the estimated tgmisbabilities for a documetf. Hence
SSTRESS of the bag-of-topics representation is emetgpowith SSTRESS of the proposed
representations to evaluate the appropriatene$e gfroposed representations.

% The dimensionality of the n-gram representatiosigsificantly higher than the dimensionality of gfoposed
representations.
1 The bag-of-topics representation is of the sameedsionality as all proposed representations.
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Figure 16: The computation of SSTRESS scores thaised to compare the loss of diversity.

The experimental setup for experiments with dowedzhcollections is similar to the setup of
experiments with artificially generated documeritse change of the diversity of documents
is explored in an unsupervised way using SSTRES&une and cosine distances.

The comparison of the diversity in the whole dovaded collections is too resource
consuming because the number of distances amongramts increases quadratically with
the size of the collection. Therefore the randoma of 100 documents from the test'%et
was used for the comparisons in each experimeutatirat implies the processing of 4450
cosine similarities for each representation.

The parameters of the experimental setup for doaddd collections are depicted in the
following table. Each combination of the parametes evaluated five times; a different
random seed was used for each run to select thereht sample of documents from each
collectiort® The repeated evaluations were used to estimatsighificance of the difference

between SSTRESS scores of the proposed and tlaastaiepresentations.

parameter values
collection GE1, EN1, CZ1
topic vocabulary size 5, 10, 20, 50, 100
length of left context window 1,2,4,9

bag-of-topics Authority, Betweenness),
tested representations Closeness, Degree, Eigenvector, Hub,
InDegree, OutDegree, PageRank

baseline representations n-gram, bag-of-topics
number of repetitions 5
total number of experiments 5760

Table 13: The values of evaluation parameters éntéisk of exploration of diversity reduction using
the downloaded collections. The bag-of-topics repneation serves as the benchmark for
comparisons with the centrality representations.

Again the n-gram representation is considered athyinal generative representafiiof
real documents to compute SSTRESS for each tespedsentation; it is a vector of estimated

191 The train set of documents that includes approtépa@0% of the documents is used to select thalvalary
tokens and to learn LDA.

192 The random seed also influences the partitionfrgapllection.

1931t does not make sense to evaluate the projefriiom bag-of-topics to bag-of-topics.

88



n-gram probabilities in a document. The bag-ofdepiepresentation served as the standard
representation for the comparisons; SSTRESS dbdlgeof-topics representation is compared
with SSTRESS of the proposed representations tuaeathe overall appropriateness of the
proposed representations.

6.5.2 Preservation of document diversity in generated collections

The maintenance of the document diversity is regbds the percentage improvement of
SSTRESS (145). The original document diversityxigressed by the proximities among the
documents in the space of n-grams. SSTRESS medsomethe proposed vectorizations of
the context network affect the document proximiti€snaller SSTRESS means the better
preservation of the proximities in the proposedraspntation. The base value for the
presented percentages is SSTRESS of the bag-af-tepresentation. Positive percentages
correspond to the SSTRESS decrease and vice versa.

The selection of the centrality that is used asmpldication of the context network is critical.
The centrality determines how the content inforora&énd the context information are mixed
into the final document vectors. The original doeumindiversity is primarily caused by the
contextual adjacency of topics. The centrality nieashat encodes the context topic relation
well implies better SSTRESS. The most promisingtredities include Authority, Hub and
Eigenvector. These centralities are based on complations within the wider neighborhood
of the topic in the context network. On the othandh, the centralities that are proportional
mainly to the topic frequencies, which means thedtytencode primarily the document
content, do not usually perform better than thecherark bag-of-topic representation. They
include Degree, OutDegree and Indegree. Namely dné®eimplies the same SSTRESS as
the benchmark representatiBtbecause it is equal to the topic frequency tirhesléngth of
the context window®.

Centralities

Represen- | Mean of SSTRESS Sign
tation difference (%) Sig. | scheme L 257 % %
Authority 2.5 <0.01 +++ g %
Betweenness 84.6 <0.01 +++ % 0.01 —_— —_— =
Closeness -14.9 <0.01 ﬁ
Degree 0.1 <0.01 8-257
Eigenvector 15 <0.01 +++ é’ i
Hub 2.4 <001 | +++ £
InDegree 0.0 1.00 o 75 %
OutDegree -0.1 0.21 o r : : e
PageRank 6.7 <0.01 — Authority Deglree Eigenvector Hlb InDegree OutDIegreePageRam\

Representation

Figure 17: The SSTRESS change by the representation
Closeness and Betweenness are excluded from tph pecause of the magnitude of their SSTRESS
difference
vocabulary size = 5, n-gram length = 3, number ofuiments = 100, document length = 100

The centralities that rely on the path lengths &hde used very carefully. While Closeness
was nearly always significantly worse than the bemark, Betweenness often performed best

1% The bag-of topic representation was used as thgnal representation as well but the results ave n
presented here because they may confuse the reuehag-of topic representation is used as thedata
representation instead in the comparisons of SSERES8e Figure 16.

1951t holds for the left context window. If the riglhbntext window is used then OutDegree implies shme
SSTRESS as the bag-of-topic representation.

1% The minor differences can be caused by handliegtarts of documents.
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among all other centralities. The improvement ofvgenness is often incomparable better,
but its success strongly depends on the experimsetap. Betweenness is very unsuitable
when the vocabulary size is small and when theesaintindow is short.

Mean of
Represen | Vocabulary | n-gram SSTRESS Sign Vocabulary size, n-gram length
-tation size length difference (%) Sig. | scheme Bstweenness
2 2 -524.6 <0.01 === 200 Length
2 3 -82.8 <0.01 | - . — e ———— gms
2 5 64.1 <0.01 | +++ E o = = 8
3 2 937 <001 | - s "
0 -200
3 3 44.5 <0.01 +++ g
Between- 3 5 96.6 <0.01 | +++ %};-400—
ness 5 2 58.4 <0.01 +H £ é
5 3 84.6 <001 | +++ 5600 -
5 5 87.6 <0.01 +++ i
10 2 82.9 <0.01 | +++ R I T T
2 3 5 10
10 3 84.8 <0.01 +++ Vocabulary size
10 5 89.9 <0.01 +++

Figure 18: The SSTRESS change by the vocabulaasit the n-gram length in the Betweenness
representation
number of documents = 100, document length = 100

PageRank centrality also relies on the possiblespdtrough the context network. Similarly to
Closeness, its observed performance was nearlyyalwarse than the benchmark. The
dependence of SSTRESS improvement on the setumetass is very similar for PageRank
and Closeness. They exhibit better results for éongocuments and for larger context
windows, but they are never better than the bendhma

Length of documents

PageRank

Represen- | Document | Mean of SSTRESS Sign 0
tation length difference (%) Sig. | scheme Gy — 7
o
10 -18.27 <0.01 - 5 3-107] —
50 -9.55 <001 | - 3¢ 157
PageRank 7 .20
100 -6.74 <0.01 - g s
g -2
1000 -3.72 <0.01 - 30 : : | i
10 50 100 1000

Document length

Figure 19: The SSTRESS change by the documenh lentlte PageRank representation
vocabulary size = 5, n-gram length = 3, number ofuments = 100

Length of n-grams

Closeness

o
Represen- | n-gram Mean of SSTRESS Sign @ —
tation length difference (%) Sig. | scheme g o207
2 -57.06 <001 | - 25 4ol
Closeness 3 -14.87 <0.01 - é% @
S 60
5 -7.08 <0.01 --- Y
-80-1
T T T
2 3 5

n-gram length

Figure 20: The SSTRESS change by the n-gram Iémgjtle Closeness representation
vocabulary size = 5, number of documents = 100udwnt length = 100

Even though Betweenness can significantly outperfoall other centralities, the
recommended centrality for preservation of the g of documents would be Authority.
The usefulness of Betweenness is too variable;necessary to test carefully its performance
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for particular data and setup. On the contrary,harity does not improve SSTRESS so
significantly, but it is the safe centrality becauds performance was better than the
benchmark for all experimental setups. The mosimmimg results for Authority were

obtained for shorter documents and using the sfoortiext window.

Vocabulary size, n-gram length

Represen- | Vocabulary | n-gram Mean of SSTRESS Sign Authority
tation size length difference (%) Sig. | scheme 25 Length
2 2 145 <001 | +++ T grams
2 3 6.2 <001 | ++r 20 B & g
2 5 26 <0.01 | +++ : L + us
3 2 203 <0.01 | +++ £ 15
3 3 45 <0.01 | +++ 8
=10
) 3 5 0.2 <0.01 | ++ B
Authority o
5 2 19.9 <0.01 +++ -4 i
5 3 25 <001 | +++ g 9 + =
- - =
5 5 0.1 0.03 + o —_ _
10 2 19.6 <0.01 +++
10 3 3.5 <0.01 +++ 5+
T T T T
10 5 1.2 <0.01 +++ 5 3 5 10

Vocabulary size

Figure 21: The SSTRESS change by the vocabulaasit the n-gram length in the Authority

representation

number of documents = 100, document length = 100

Number of documents, Document length

Authority

Represen- | Number of | Document | Mean of SSTRESS Sign
tation documents length difference (%) Sig. | scheme 30 dlairl“%:gr?t(s
10 10 10.8 <0.01 ++ Em
50
10 50 3.1 <0.01 ++ M100
M 1000
10 100 1.9 <0.01 +++
10 1000 0.6 <0.01 +++ 2]
20 10 13.7 <0.01 | +++ g B
20 50 2.8 <0.01 | +++ £
20 100 1.8 <0.01 | +++ 8
[i4
. 20 1000 0.9 <0.01 +++ %
Authority @
50 10 10.5 <0.01 +++ 5’10‘
50 50 2.9 <0.01 | +++ 8 ’ I
50 100 23 <0.01 | +++ *
50 1000 0.8 <0.01 | +++ ! ﬁ 'I'.I.
100 10 10.9 <0.01 +++ o = - -
100 50 3.6 <0.01 +++
100 100 2.5 <0.01 +++
100 1000 1.1 <0.01 | +++ : :

T T
10 20 50

Number of documents

100

Figure 22: The SSTRESS change by the number ofrdmts and the document length in the
Authority representation
vocabulary size = 5, n-gram length = 3

6.5.3 Preservation of document diversity in downloaded collections

The preservation of the document diversity wittia downloaded collection is again reported
by the percentage improvement of SSTRESS (145).dblcement diversity is characterized
by the proximities among the documents. SSTRES$unes how the proposed vectorization
of the context networks affects the document prat@s1 Smaller SSTRESS means the better
preservation. The base value for the presenteceptges is SSTRESS of the bag-of-topic
representation. Positive percentages correspotietS§ STRESS decrease and vice versa.
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The centrality significantly influences the pressron of the diversity. Seven out of nine

proposed representations significantly perform dvethan the benchmark bag-of-topic

representation; they encode the contextual topétioms well. Only PageRank and Closeness
centralities worsen SSTRESS. Especially Closensssundesirable one; its SSTERSS
difference is negative in all experimental setupbe centralities that are based on the
complex contextual relations, namely Authority, Harid Eigenvector, perform slightly better

than the centralities that are proportional to dldgacent topic frequencies, namely Degree,
OutDegree and Indegree.

Mean of
Represen- | Collec- SSTRESS Sign
tation tion | difference (%) | Sig. | scheme
Ccz1 42.321 0.03 +
Authority | EN1 44.295 0.03 + S0t Centrality
O
GE1 34.927 0.03 + @
w60 —
Bet Cz1 54.723 0.03 + x :
etween- 7% -
EN1 68986  |003]| + 5 a5 40 —=
ness © =2 |
GE1 73.916 003| + g5 0
cz1 -429.887 | 0.03 5 07
Closeness | EN1 -222.450 0.03 - =201 :
GE1 -138.639 | 0.03| - 50
cz1 40.534 003| + 2 oo el
"4
Degree EN1 42.767 0.03 + § _ %ﬁ a0+
GE1 33.493 0.03 + 23 ok
cz1 42.849 003| + 3 &5 207
Eigen- - - S o ==
EN1 44.418 0.03 + a
vector
GE1 36.566 0.03 + -20 -
Ccz1 43.098 0.03 + 80 s
Hub EN1 44987 | 0.03| + @ 60
GE1 36.402 0.03 + w3 40 :
- 0ng 40 e —— i
cz1 38.433 003| + 8 ge | —— —a— ——
InDegree | EN1 41.111 0.03 + g" '0_ v
GE1 30.785 003| + @ o
cz1 39.050 003| + -207— | | i T
Authority Degree Hub OutDegree
OutDegree | EN1 41.683 0.03 + Betweenness ~ Eigenvector  InDegree PageRank
GE1 31.923 0.03| + Representation
cz1 -10.859 0.03
PageRank | EN1 5.283 0.03 +
GE1 -11.234 0.03

Figure 23: The SSTRESS change by the representation
Closeness is excluded from the graph because ohdigmitude of its SSTRESS difference
vocabulary size = 5, n-gram length = 3

The centralities that exploit the path lengths witthe context network exhibit a large
variability of SSTRESS improvement depending ondkperimental setup. While Closeness
is always significantly worse than the benchmarktwenness often performed best among
all other centralities. The improvement of Betwess® is often much better than the
improvement of other centralities, but its deploytneust be carefully revised considering
other parameters like the vocabulary size, thedizee collection and the language.
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Mean of
Represen- | Collec- | Vocabulary SSTRESS Sign
tation tion size difference (%) | Sig. | scheme
Vocabulary size
5 547 003 + Betweenness
10 51.9 0.03 + g 100
cz1 20 41.2 003 | + 5 £271°7
50 29.4 0.03 + 2200
100 7.4 0.03| + ‘:’fgg:
5 69.0 0.03 + 5. E’émo— ;
10 67.6 003 | + 23 3% .
Between- | gny 20 61.7 003 | + % ool
ness
50 43.5 0.03 + 8 100 e
100 17.8 003 | + o E2-100
© §§ 300 = 4
5 73.9 0.03 + £ |
10 67.7 0.03 + #-500 T T i T T
5 10 20 50 100
GE1 20 19.4 003 | + Vocabulary size
50 -244.6 0.03
100 -399.5 0.03 -

Figure 24: The SSTRESS change by the vocabulayrsihe Betweenness representation
n-gram length = 3

PageRank centrality exhibits the similar behaviCéoseness; its observed performance was
mostly worse than the benchmark. PageRank is gqgonopriate option, especially when the
vocabulary size is large.

Mean of
Represen- | Collec- | Vocabulary SSTRESS Sign
tation tion size difference (%) | Sig. | scheme
5 -10.9 0.03 Vocabulary size
. . PageRank
10 -23.4 0.03 g 2009
cz1 20 -50.4 0.03 N £E 2007 -
© 58 -s00
50 -161.0 0.03 &g
100 -300.8 0.03 L
5 5.3 0.03 5. §§ 2004 i ey
10 -6.0 0.06 o £ 5% 600
PageRank | EN1 20 -30.1 0.03 2 _1 000
50 -133.5 0.03 g 2007
100 -396.9 0.03 o B2 200
[CI=1- TN —
5 -11.2 0.03 &g 6007
10 ~43.0 0.03 - e : 10 20 50 12)0
GE1 20 _123.4 0.03 - Vocabulary size
50 -498.9 0.03
100 -799.8 0.03 -

Figure 25: The SSTRESS change by the vocabularyrsihe PageRank representation
n-gram length = 3

The vocabulary size influences SSTRESS of all ssr&tions. Larger vocabulary sizes
worsen SSTRESS with the exception of Closenessdépendence between SSTRESS and
the vocabulary size is not monotonic for ClosenEss.other centralities the steepness of the
decrease of SSTRESS difference by the vocabulagyisilanguage dependent. The largest
decrease was observed for the German data; thdwacg size of the order of tens implies
even worse performance than the bag-of-words reptason on the German collection.

93



Mean of
Represen- | Collec- | Vocabulary SSTRESS Sign
tation tion size difference (%) | Sig. | scheme
5 42.8 0.03 +
10 34.8 0.03 +
cz1 20 23.8 0.03 + 5
50 -4.9 0.03
100 -35.6 0.03
5 44.4 0.03 + <
. 10 44.6 003 | + i
Efc‘izr EN1 20 39.8 003 | +
50 17.6 0.03 +
100 -20.4 0.03 o
5 36.6 003 | + ¢
10 22.0 0.03 +
GE1 20 -17.3 0.03
50 -198.9 0.03
100 -314.6 0.03 -

Vocabulary size

Eigenvector

100

o
-1007]
-200-]
-300-]
-400—

Percentage

100

(=}
|

difference  SSTRESS difference

-100—

Percentage

& -200
£ -300
&
& 400~
2 100
28 o S i SR .
gg -100 :
£8-2007  — =
£-300 —_—
©-400- T T T T T
5 10 20 50 100

Vocabulary size

Figure 26: The SSTRESS change by the vocabulayrsihe Eigenvector representation

n-gram length = 3

Mean of
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Figure 27: The SSTRESS change by the vocabulayrsihe Closeness representation

n-gram length = 3

The length of the context window influences SSTREBSSvell. The larger context implies the
worse SSTRESS with the exception of PageRank aage@éss. Closeness performs always
badly, but its performance improves for larger eahtwindows. The dependence between
SSTRESS of PageRank and the length of the contiextow is language dependent.
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Mean of
Represen- | Collec- | n-gram SSTRESS Sign Length of n-grams
tation tion length difference (%) | Sig. | scheme Eigenvector
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Figure 28: The SSTRESS change by the n-gram lémgjtle Eigenvector representation
vocabulary size =5

Mean of
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Figure 29: The SSTRESS change by the n-gram Iémtjtle Closeness representation
vocabulary size =5

The general improvement of STRESS varies depenalintpe collection. The most of seven
successful representations performed best on thkskrdata and worst on the German data.
Only Betweenness, which is the trickiest represemtaexhibits the best average results on
the German collection and it is the worst on thedBzcollection. Such language dependency
probably reflects contextual grammar rules that different in the tested languages. The
relations among SSTRESS and values of the expetainearameters are language dependent
as well. The strongest relation among SSTRESS apdrienental parameters was observed
on the German collection; especially the decredsheoperformance by the vocabulary size
is much steeper than for other collections.

6.5.4 Experimental setup for recognition of permuted documents

The goal of this simple binary classification tésko recognize documents that do not follow
any n-gram distribution. The recognition of the gexting n-gram distribution is possible only
if any contextual information about a topic ordepresent in document vectors. Therefore the
classification experiments should prove that theppsed representations contain such
contextual information in a way that it can be @xeld by classifiers. These experiments are
conducted on generated documents only becausdulyegomply with the assumption about
the n-gram generative process.

Initially, collection documents are generated failog the known n-gram distribution. Then
topics are randomly permuted in a half of documehis permuted documents are labeled by
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an indicator. The permutation does not influenceudaent topic frequencies, hence the
baseline bag-of-topic representation remains urggdnA consequent Bayes classifier is
built to recognize the permuted documents basdtepresented input document vectors.

generate generate
transition document randomly randomly
probabilities collection using select and label permute words
for each cluster document one half of in selected
within transition documents documents
document probabilities

partition
collectionto
training and
test sets

compute develop Bayes perform compute
word classifier on Bayes F-measure on

representation training set classification test set oA

F-measures

compute develop Bayes perform compute
centrality classifiers on Bayes F-measures on
representations training set classifications test sets

Figure 30: The evaluation of the classificatiorntioé permuted documents on the simulated
collections.

The classification could be generally performeddbyer classifiers as well. However, the
purpose of the experiment is not to recommend #®& hlgorithm, but to prove that the
proposed representations carry the contextualnmdtion that can be exploited by classifiers.
The Bayesian classifiers are then evaluated usimgighted F-measure that is defined as the
harmonic mean of precision and recall (149).

Bayesian classifiers were learned over a trainieigof documents in each collection and
evaluated over a test set. The parameters of tperiaxental setup are depicted in the
following table. Each combination of the parameters evaluated on ten collections; a
different random seed was used for each run torgeneollection documents and to split it
into training and test sets in the ratio 50:50. Téeated evaluations were used to estimate
the statistical significance of the differenceswestn F-measures using the proposed and the
standard representations.

parameter values
topic vocabulary size 2,3,5,10
length of left context window 1,2,4
number of documents 1000
document length 10, 50, 100, 1000
number of generating clustefs 3,5,10
number of repetitions 10
total number of collections 1440

n-gram, (n-1)-grambag-of-topics
Authority, Betweenness, Closeness),
Degree, Eigenvector, Hub, InDegree
OutDegree, PageRank
total number of experiments 17 280
Table 14: The tested values of simulation paransetethe classification of the permuted documents.
Bag-of-topics, n-gram and (n-1)-gram representagisarve as benchmarks for comparisons with the
centrality representations.

tested representations

The bag-of-topics representation was selected estdmdard representation for consequent
comparisons. The differences between F-measuretassifiers using the proposed and the
standard representations are examined to evalbateability of the proposed centrality
representations to encode the useful contextuatndtion for the classification.
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6.5.5 C(Classification of permuted documents

The quality of the distinction of permuted docunseand original documents that were
generated following given n-gram distributions isaleated by the unweighted F-measure
(149) that combines the precision and the recaltheg harmonic mean. The F-measure
achieved for the proposed representations is cadptr the F-measure achieved for the
benchmark bag-of-topic representation and thefetfice is reported. Positive values imply
that the proposed representation performs betwmn the benchmark and vice versa. The
benchmark bag-of-topic representation is not adigécby the order of topics within a

document, hence classifiers built over the benckraee not able to recognize the permuted
documents at all. Therefore we make comparison§ w&itrandom prediction in these

experiments.

The simulations confirmed our presumption that teatrality selection is critical for the
distinction of permuted documents. The performanmaethe centralities that rely on path
lengths within a context network (here Betweenrass Closeness) are significantly better
than the performance of the benchmark representaietweenness seems to be clearly the
best choice, but it will be evident from the nexialyses that results for Betweenness vary
depending on experimental parameters, hence d@stg@ should be considered carefully.

On the other hand, the centralities that are basegoure sums of weights of incoming and/or
outcoming edges of a particular node within a canteetwork (degrees) are not able to
outperform the benchmark. It means that they do oftér any information useful for
recognizing the permuted documents. However, sestlts are expected because if a text is
not divided into smaller contextual units such astences these centralities are proportional
to the topic counts in our simulations. These casiohs evidently may not be affected by
changing of experimental parameters.

Other presented centralities rely on wider contaixties within context networks. Except
PageRank they influence the results of the clasgibn. However, their contribution is not as
great as the contribution of Betweenness or ClasneTheir performances depend on
specific data and experimental parameters; forulief@lues of the experimental parameters
nearly any improvement is observed except Author@gnerally, Authority is the most

promising centrality from this group working wetirfmost combinations of the experimental
parameters.

Mean F-measure F sign
Representation difference Fsig.| scheme 0.5 - Centrales

Authority 0.056 <0.01 ++ 3 04
Betweenness 0.312 <0.01 +++ Ll %

Closeness 0.272 <0.001  +++ o' 0.2+

Degree -0.001 0.21] 0 2o 1_%’ :
Eigenvector 0.033 0.09 o & 0.0 _é%
Hub 0.039 0.05 0 o

InDegree 0.000 1.00 o Authlonb/ | Closéness |E|gen|vector| InDelgree | PagéRank
OutDegree 0.002 0.17 ) Betweenness  Degree Hub OutDegree
PageRank -0.005 0.21 o represeniaten

Figure 31: F-measure change by representationctmrality selection is a critacal issue
vocabulary size = 5, n-gram length = 3, documengtéd = 1000, clusters = 3

The distinction of permuted documents from theiogtones is affected by the length of the
documents. It is more difficult to detect some eafial patterns in short documents,
especially the patterns resulting from longer gaetieg n-grams. This effect was manifested
on simulated collections as the dependence of #éniahility of classifiers on the document
length. The results are more reliable for longecuwoents; short documents imply more
heterogeneous results.
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Length of documents

Mean OutDegree
Represen- Document F-measure F sign 2 0,107 o
tation length difference Fsig. | scheme é 0,054
10 0.009 0.21 o o
. 2 0,001 —_—
OutDegree 50 0.001 0.46 o @ = =
100 -0.004 0.13 o 0,05+ L
1000 -0.001 0.42 ) <l> [ |

I
10 50 100 1000

Document length

Figure 32: F-measure change by document lengthutD@gree representation
vocabulary size = 5, n-gram length = 3, cluster§ =

In real data we should not always assume thataduihents in a collection come from the
same n-gram distribution. Therefore we tested hHoevriumber of n-gram distributions used
to generate a simulated collection affects the iyuaf the classification of permuted
document®’.The observed results confirm that the higher nundfegenerative n-grams
implies a worse classification performance. It nisy caused by two effects: the limited
capacity of the proposed representations to enottey different contextual patterns and the
restricted capability of tested classifiers to safmore complicated regions that are formed
in the input space due to more complicated inptiepas. The magnitude of the decrease of
the predictive power with the number of generathsgram distributions differs for the
various representations. For example, Closenas®iie sensitive to the number of generative
distributions than Betweenness.

Number of clusters

Betweenness

Number Mean .05

Represen- of F-measure F sign 5044
tation clusters difference Fsig. | scheme é‘ é T

3 0.312 <0.01 ++ £037

Betweenness 5 0.295 <0.01 ++ 20
10 0.241 <001 | +++ uo N -+

I I I
3 5 10

Number of clusters

Figure 33: F-measure change by number of clusteBdatweenness representation
vocabulary size = 5, n-gram length = 3, documengté = 1000

The length of contextual patterns influences tlassification performance as well. The longer
n-grams are used for the document generation the mhfficult the classification is. The
effect was observed for all the representationsickeve can conclude that the proposed
approach is suitable for capturing of shorter cxtoi@ ties. The degradation of classification
performance is well observable for Betweeness semtation where the long n-grams may
completely destroy its advantages. On the othedhahort n-grams imply performance
improvements even for the representations that wetreo promising on Figure 31.

071f a generated document is selected for the petiont his original n-gram distribution may influenits
topic frequencies only.
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Length of n-grams

Betweenness

Mean » 0.757 °
Represen- n-gram F-measure F sign § 0,507 ==
tation length difference F sig. scheme %I 0,257 é o
2 0.438 <0.01 4+ 2 0,007
Betweenness| 3 0.295 <0.01 4 £ 0,254
5 -0.160 0.11 o *_0.50 ==
; : 5

n-gram length

Figure 34: F-measure change by n-gram length imBeinness representation
vocabulary size = 5, document length = 1000, clisste5

The usefulness of the proposed representationsidsma the vocabulary size as well, but the
trend is not often monotonic and is influenced hjues of other experimental parameters. In
our test range of vocabulary sizes different effexftthe vocabulary sizes were observed, but
generally, we can conclude for the promising regmeations that they perform best for
moderate sizes of the vocabulary, the best resudts usually obtained for the vocabularies
of the sizes 3 or 5 topics.

Vocabulary size

Betweenness

Mean
Represen | Vocabulary | F-measure F sign 3 047 é
-tation size difference F sig. scheme % . 00%(2; T % ==
2 -0.260 0.02 EI ' o0
Between- 3 0.177 <0.01 ++ g -0:1— :
ness 5 0.295 <0.01 +H+ N _0'6_ —
10 0.171 <0.01 it 08 | | | |
2 3 5 10

Vocabulary size

Figure 35: F-measure change by vocabulary sizedtwiBenness representation
n-gram length = 3, document length = 1000, clustets

The above mentioned interaction between the voeapusize and other experimental
parameters is well observable for the length oframwgs. The improvement of the
classification for higher vocabulary sizes is deg for longer contextual ties. The
interaction effect even increases for higher votalyusizes, hence an observed marginal
effect of the vocabulary size may not be monotonic.

Mean
Represen- | Vocabulary | n-gram F-measure Sign
tation size length difference F sig. | scheme Vocabulary size, n-gram length
2 2 -0.110 0.15 o] Batwesnnsss
2 3 -0.260 0.02 - R regram
2 5 0092 [015 | o 3 00 —_ lengih
3 2 0.241 <0.01 | +++ & 03 ; é?' Ea
3 3 0.177 <0.01 | ++ Yo
Betweenness 3 5 -0.092 0.34 0 g 03

5 2 0.438 <0.01 +++ o
5 3 0.295 <001 | +++ 0
5 5 -0.160 0.11 0 ; : : 0
10 2 0.397 <0.01 +++ Vocabulary size
10 3 0.171 <0.01 +++
10 5 -0.109 0.03 -

Figure 36: F-measure change by vocabulary sizeragtdam length in Betweenness representation
number of document length = 1000, clusters =5
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6.6 Performance of contextual representation in text mining tasks

6.6.1 Experimental setup for recognition of translated documents

The recognition of translated documents is a birdagsification problem. The objective of
this experiment is to evaluate the proposed reptasens in a task where the context may be
more important than in the case of recognitionshain document subjects.

The goal is to distinguish the documents that awcelycts of a machine translator from the
documents written by human authors in a superwsayg Both document classes are of the
same language, but we assume that machine transstaonot still satisfactorily developed to
fully comply with morphology and syntax of the tatdanguage, hence their outcomes may
be recognized on the base of the contextual infoomathat is present in translated
documents.

The experiments were conducted on a specificallgifienl subset of the Czech downloaded

collection. The original labels were discarded #relselected documents were translated into
English and then back into the Czech language.dboements were labeled by an indicator

of the translation to develop a classifier.

The setup of recognition experiments is similathi® setup of other classification experiments
(see chapter 6.6.5), only the target is binary.d8@an classifiers were developed and they
were evaluated using unweighted F-measure (14%®.pEnameters of the experimental setup
are depicted in the following table. Each combwratof the parameters was evaluated 25
times to distinguish better fine contributions dfetproposed representations. Different
random seeds were used for each run to split thection into training and test sets in the
ratio 70:30, significances of the difference betw&emeasures using the proposed and the
standard bag-of-topics representations are pretsastexperimental results.

parameter values
collection Cz2
topic vocabulary size 5, 10, 20, 50, 100
length of left context window 1,2,4,9

bag-of-topics Authority, Betweenness,

tested representations Closeness, Degree, Eigenvector, Hup,

InDegree, OutDegree, PageRank
number of repetitions 25

total number of experiments 50060

Table 15: The values of evaluation parameters éttanslated document recognition task. The bag-

of-topics representation serves as the benchmargdimparisons with the centrality representations.

6.6.2 Recognition of machine translated documents

Similarly to the general classification experimenite unweighted F-measure (149) is used as
the evaluation metric. The gained F-measure is emetpto the F-measure for the benchmark
bag-of-topic representation and their differencesraported. The positive differences imply
that the proposed representation is better fobthary classification than the benchmark and
vice versa.

The experimental results confirm that the embeddaotextual information in document
vectors can improve the recognition of machinediaed documents. Even though the
dependence of the achieved F-measure on the d¢gnigakimilar to the previous general
classification, problem boxes are slightly shiftgglresulting into positive performance of the
most representations. Betweenness and Closenessagaaty worsen the performance. The

1% The length of context window does not apply toliag-of topic representation.
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results for Betweeness are again rather heterogend&getweennes may not be a wrong
selection in some situations, but its suitability fspecific data and other representation
parameters should be considered carefully. Thedstather save option is Authority, other
representations except PageRank may be used as well

Centralities
Mean F-measure Sign 027 ' '
Representation difference Sig. scheme 0 H o
Authority 0.023 <0.01 +t gooooo—% % %%é % %
Betweenness -0.183 <0.01 - 8 )
Closeness -0.126 <0.01 - N
Degree 0.013 0.04 + 3 027
Eigenvector 0.016 0.02 + £
Hub 0.015 0.02 + “ 0
InDegree 0.014 <0.01 ++ '
OutDegree 0.015 0.03 + I T | i i
PageRank -0.007 0.21 o Authority \ Closeness ‘ Eigenvector | InDegree PageRank

Betweenness  Degree Hub OutDegree
Representation

Figure 37: F-measure change by representation
vocabulary size = 5, n-gram length = 3

Unlike in the general classification problem, thgram length influences the discrimination
of machine-translated documents. Its effect isalbservable for all tested representations, but
generally we can conclude that shorter and middiEdscontext windows perform better.

Length of n-grams

Eigenvector
0,157
Mean é !
n-gram F-measure Sign 3 0107 d : i
Representation | length difference Sig. scheme 2 0.05- é
2 0.02 <0.01 e s
Eigenvector 3 0.02 0.02 20,0000 %
& 5 0.00 0.09 2 g
10 0.01 0.19 o w -0,057] e
-0,10- °

i | |
3 5 10

n-gram length

N —

Figure 38: F-measure change by n-gram length ireBigector representation
vocabulary size =5

The effect of the vocabulary size on the discriiorais rather small and again varies for
different representations. The only apparent caiciu is that very short vocabularies
perform better. Therefore we can conclude thatnlest of the proposed representations can
be recommended for small dictionaries and shodetext windows.
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Vocabulary size
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Figure 39: F-measure change by vocabulary sizenibelgree representation
n-gram length = 3

6.6.3 Information retrieval experimental setup

The goal of the information retrieval task is téeséthe documents from a collection that are
similar to a given query. The query is considerecia additional document. The similarities
between each document in the collection and theycqare computed and the given number of
documents with the highest similarity scores isieged.

compute
word

representation
generate generate query

transition document
compute

centrality
representations

probability for

searched generate
documents searched
documents
compute search
generate other word documents
documents representation similar to query
using individual
LELNI] compute search
probabilities centrality documents

compute
F-measure

compare

F-measures
compute

F-measures

representations similar to query

Figure 40: The evaluation of the information retré on the simulated documents.

The information retrieval task was examined on emlbns of generated documents. The
generated collections in the experiments consid00f documents each; for each collection a
query was generated as the special additional decurithe given number of documents in
the collection was generated using the same n-draimbution as the query; other documents
were generated using different n-gram distributidree number of the retrieved documents is
always the same as the number of the documentstiagtisame n-gram distribution; these
documents are considered as the documents to textipretrieved.

The similarity between each collection document t@query was measured by the cosine
similarity (146). The cosine similarity served dsetscore to sort the documents; the
documents with the highest scores were retrievee. dorrectness of the retrieval process is
evaluated using the unweighted F-measure (149)ishdefined as the harmonic mean of
precision and recall.

The numbers of retrieved documents together witleroparameters of the experimental setup
are depicted in the following table. Each combwratof the parameters was evaluated ten
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times; a different random seed was used for eathorgenerate the collection documents and
the query. The repeated evaluations were useditoae the significances of the differences
between F-measures using the proposed and theastlargpresentations.

parameter values
topic vocabulary size 2,3,5,10
length of left context window 1,2,4
number of documents 100
document length 10, 50, 100, 1000
number of retrieved documents 5, 10, 50
number of repetitions 10
total number of collections 1440

n-gram, (n-1)-grambag-of-topics
Authority, Betweenness, Closeness|,
Degree, Eigenvector, Hub, InDegree
OutDegree, PageRank

total number of experiments 17 280
Table 16: The tested values of simulation paransatethe information retrieval task. Bag-of-topics,

n-gram and (n-1)-gram representations serve as leracks for comparisons with the centrality
representations.

tested representations

The bag-of-topics representation served as thalatdrrepresentation for the comparisons.
Differences between F-measures of the informatietnieval using the proposed and the
standard representations are analyzed to evallegteappropriateness of the proposed
centrality representations for the informationieatal.

6.6.4 Information retrieval

The unweighted F-measure (149) that equally conshiine precision and the recall is used to
estimate the usefulness of the proposed repregerddor the selection of the documents that
are similar to the query. The obtained F-measureoimpared to the F-measure for the
benchmark bag-of-topic representation and onlyrtdéference is reported. The positive

values imply that the proposed representationtiebthan the benchmark and vice versa.

The simulations confirm that the selection of tlenteality is unimportant. The centrality

performances are not significantly different frorhet performance of the benchmark
representation. It implies that the way how the tegtual information about the topic

adjacency is projected to the vector representatimes not influence the retrieval process.
Hence we can conclude that only the document comemportant for search engines and
the contextual ties can be neglected.

Mean F-measure Sign
Representation difference Sig. | scheme Representation effect
>
Authority -0.01 0.50 o 02 T
Betweenness 0.00 0.50 o % 0.1 T [ T o
Closeness 0.00 0.62 o £ 0.0000 i l
Degree 0.00 0.75 o Z2 .01 ! J . . H
Eigenvector -0.01 0.50 o £ o é
Hub -0.00 0.68 o 0
. T T T T T
InDegree 0.00 1.00 o Authority | Closeness | Eigenvector | InDegree | PageRank
OutDegree 0.02 0.31 o Betweenness  Degree Hub OutDegree
Representation
PageRank 0.01 0.50 o

Figure 41: The F-measure change by the represemtathe centrality selection is not significant for
the standard parameter values
vocabulary size = 5, n-gram length = 3, retrievemtdments = 10, document length = 100

The above statement about the context unimporthalts for different vocabulary sizes, n-
gram lengths, document lengths and also for theigoorof retrieved documents. The
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dependencies on experimental parameters were @uosdir Betweenness only; other
representations perform similarly as the benchnveiken the values of the parameters are
changed. Betweenness is preferable for small vdaabs, hence it is suitable when the
documents need to be represented by short vecitws. usefulness of Betweenness is
magnified when the small vocabulary is combinedwitshort context window.

Represen- | Vocabulary | n-gram | Mean F-measure Sign
tation size length difference Sig. | scheme
2 2 0.58 <0.01 +++
2 3 0.73 <0.01 +++ Vocabulary size, n-gram length
2 5 0.86 <0.01| +++ ; Betweemess -
3 2 0.25 <0.01| ++ - %&!éié Eid
3 3 0.37 0.01 + g @
Between- 3 5 0.81 <0.01| +++ g0 %ﬁ us
ness 5 2 -0.34 <001 - Eos g
5 3 0.00 0.50 o A ] i ] :
5 5 0.13 0.17 o 2 3 5 10
10 2 -0.15 0.01 vocshulny size
10 3 0.00 0.57 o
10 5 -0.02 0.37 o

Figure 42: The F-measure change by the vocabulaey and the n-gram length in the Betweenness
representation
retrieved documents = 10, document length = 100

6.6.5 Classification experimental setup

The performance of the proposed representatioroeaiso tested in the classification task on
downloaded collections because the labels areablaifor them™. The labels were obtained
as the names of categories under which the préssses were published. The categories are
not of a hierarchical structure. In the Germanemibn the same document can be published
under several categories (see the categories pterh@.3.1.1.3); for the evaluation purposes
such documents were duplicated with the differabel$™. In other collections the categories
are disjunctive; each document is labeled by just@ategory.

compute standardize develop Bayes perform compute
word document classifier on EIES F-measure on

partition - o -
representation vectors training set classification test set

collectionto compare

training and s F-measures
S compute standardize develop Bayes perform compute

centrality document classifiers on Bayes F-measures on
representations vectors training set classifications test sets

Figure 43: The evaluation of the classificationtbe downloaded documents.

The classification can be performed using the éfie supervised algorithriis that can
influence the evaluation resuft¥. However, the purpose of the evaluation of the
classification is not to suggest the best algorjthat to access the suitability of the proposed
document representations. Hence the same algorittae used in all classification
experiments to be able to compare the results. Bayelassifier was selected as the standard
classification method. The classifiers are thenuatad using unweighted F-measure that is
defined as the harmonic mean of precision and Ir€é9).

19 The classification was not performed with the dated documents because they were not assigned to
categories by an independent reader.

10 This evaluation approach is known as the micraamieg.

M1 0Or even by their ensembles.

Y2 The comprehensive analysis of document classificaapproaches can be found in (Sebastiani & Delle
Ricerche, 2002).
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Bayesian models were learned over a training setlaguments in each collection and
evaluated over a test set. The parameters of tperiexental setup are depicted in the
following table. Each combination of the parameters evaluated five times; a different
random seed was used for each run to split theaah into training and test sets in the ratio
70:30. The repeated evaluations were used to dstithe significance of the differences
between F-measures using the proposed and theastlargbresentations.

parameter values
collection GE1, EN1, CZ1
topic vocabulary size 5, 10, 20, 50, 100
length of left context window 1,2,4,9

bag-of-topics Authority, Betweenness,,
tested representations Closeness, Degree, Eigenvector, Hup,
InDegree, OutDegree, PageRank
number of repetitions 5
total number of experiments 2715
Table 17: The values of evaluation parameters éndbcument classification task. The bag-of-topics
representation serves as the benchmark for compasgisvith the centrality representations.

The bag-of-topics representation served as thalatdrrepresentation for the comparisons.
Differences between F-measures of classifiers udimg proposed and the standard
representations are analyzed to evaluate the apgiepess of the proposed centrality
representations for the classification.

6.6.6 Classification in downloaded collections

The classification task was explored over three rdoaded collections of real documents.
The experiments exploit the document categories dha known in advance because the
documents were downloaded from the different sastaf news servers.

The unweighted F-measure (149) is used as theifadaisn evaluation statistics. The
obtained F-measure is compared to the F-measurether benchmark bag-of-topic
representation and only their differences are teporThe positive values imply that the
proposed representation is better than the benéhamak vice versa.

The experiments confirm that the presence of tigesxtual information in document vectors
does not improve the quality of classifiers. Segahof nine centrality representations do not
significantly worsen or improve the classifier mgrhance; their F-measure is similar to the
benchmark bag-of-topics representation. Betweenradgsys significantly worsens the
classifier performance. Closeness also deteriofd®gasure, but the effect is not as striking
as for Betweenness. Hence the experiments ledtetsame statement as in the case of the
information retrieval on the simulated documentdydhe document content is important for
the classification and the contextual ties candggeatted.

3 The length of context window does not apply toliag-of topic representation.
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Mean F-
Represen- | Collec- measure Sign
tation tion difference Sig. | scheme
Cz1 -0.01 0.15 o
Authority EN1 -0.00 0.15 o
GE1 -0.01 0.31 )
Between- Cz1 -0.05 0.03
ness EN1 -0.07 0.03
GE1 -0.05 0.03
Cz1 -0.01 0.06 )
Closeness | EN1 -0.03 0.03
GE1 -0.04 0.03
Cz1 0.00 0.21 )
Degree EN1 0.00 0.03 +
GE1 0.00 0.50 )
Cz1 -0.00 0.40 )
Eigen-
vector EN1 0.00 0.50 )
GE1 -0.01 0.40 )
Cz1 -0.00 0.40 )
Hub EN1 -0.00 0.31 )
GE1 -0.01 0.31 )
Cz1 0.00 0.06 )
InDegree EN1 0.00 0.50 )
GE1 0.00 0.43 )
Cz1 0.00 0.50 )
OutDegree | EN1 0.00 0.21 o
GE1 -0.00 0.40 )
CZ1 0.01 0.03 +
PageRank | EN1 -0.00 0.40 o
GE1 -0.01 0.15 )

The above statement about the context unimporthaotds for different n-gram lengths; the
size of the context window does not influence thasgifier performance for all tested
representations as well. The relation between Fsareaand the vocabulary size is present for
Betweenness and Closenes only. Betweenness perfoestsfor larger vocabularies (the
larger number of topics); it approaches to F-measfibag-of-words representations for very
large vocabularies. On the contrary, the large bolzies negatively influence the
performance of Closeness in the classification. @ther centralities change their F-measure
very little when the size of vocabulary is incredisa rather shallow minimum can be
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Figure 44: The F-measure change by the represeamntati

vocabulary size =5, n-gram length = 3

sometimes observed in the interval between 20 artdgics.
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Figure 45: The F-measure change by the vocabulaeyis the Closeness representation

n-gram length = 3
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Figure 46: The F-measure change by the vocabulaeyis the Betweenness representation

n-gram length = 3

The above statements hold for all three collectidms the variability of results is again the
largest for the German collection.
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Figure 47: The F-measure change by the n-gram leilgthe PageRank representation
vocabulary size =5

6.6.7 Clustering experimental setup

The similarity of documents is also exploited ie thocument clusterindf. Hence it is worth
examining how the proposed document representatperform in the clustering task.
However, the clustering can be performed by differalgorithms that can influence the
results. For evaluation purposes the popular k-s@dgorithm was selected. It is a common
method in the document clustering due to its siaipliand efficiency*®. Clustering
experiments are conducted on both generated andldagied collections.

The clustering is naturally an unsupervised prqcess for simulated documents we can
control the hidden n-gram distributions that aredutor the document generation. Hence the
desired spread out of documents in the input smace be set. In the experiments the
documents generated over the same distributiongrims are considered to belong to the
same cluster. This experimental design enableyvdatuate reasonably the clustering results
comparing the structure of clusters found by thmdans method with the structure of
document groups of the same n-gram generativeildistbn. The standard evaluation
measures used for the supervised evaluation afrikapervised clustering include the purity,
the normalized mutual information (MNI), the ramdiéx (RI) and F-measure. The formulas
are given in chapter 6.4.3. The outcomes of ouukition experiments are reported using
MNI.

compute
Normalized
Mutual
Information

compute standardize perform
generate word document k-means
generate representation vectors clustering

transition
documents

probabilities P hl
for each cluster [l TOF each cluster compute standardize perform compute NMI

centrality document k-means for each
representations vectors clusterings representation

compare NMls

Figure 48: The evaluation of the clustrering on gieulated documents.

Generally, the number of retrieved clusters andritmaber of actual document groups can
differ, but in the performed experiments the numiferequired clusters is always the same as

14 The clustering techniques are also used in texingias an alternative approach to the dimensignali
reduction. They help to discover interesting wdtdsters that characterize word senses or semasmepts.

115 Other clustering methods used on the field of teiting include the hierarchical agglomerative tisg,
the self-organizing maps or the graph partitionspgctral clustering. The comprehensive analysitheftext
clustering approaches can be found in (Aggarwah&iz2012).
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the number of groups of the documents with the sargeam generative distribution. The
sizes of groups of generated documents are eithifaron or random. The random group sizes
are generated from the uniform distribution andmalized to the number of documents in the
collection.

The collection size, the number of clusters aneéiofarameters of the experimental setup for
collections of generated documents are depictetarfollowing table. Each combination of
those parameters was evaluated ten times; a diffeaddom seed was used for each run to
generate collection documents. The repeated evahsatwere used to estimate the
significances of the differences between MNI scooésthe proposed and the standard
representations.

parameter values
topic vocabulary size 2,3,5,10
length of left context window 1,2, 4
number of documents 10, 20, 50, 100
document length 10, 50, 100, 1000
number of clusters 3,5,10
size of clusters uniform, random
number of repetitions 10
total number of collections 11 520
n-gram, (n-1)-grambag-of-topics
tested representations Authority,.Betweenness, Closeness|
Degree, Eigenvector, Hub, InDegree,
OutDegree, PageRank
total number of experiments 138 240

Table 18: The tested values of simulation paransdatethe clustering task. Bag-of-topics, n-gram and
(n-1)-gram representations serve as the benchnfarksomparisons with the centrality
representations.

The bag-of-topics representation served as thedatdndocument representation for the
comparisons. The differences between MNI of clustemodels using the proposed and the
standard representations are analyzed to evallegeappropriateness of the proposed
centrality representations for the clustering ofwoents.

The setup of clustering experiments with downloadatections is similar to the setup of the
experiments with artificially generated documeasly one common k-means algorithm was
selected for evaluation purposes to compare theforpeaince of the proposed
representatiorts®.

Even though the k-means clustering is an unsupet\psocess, it can be evaluated using the
known document labels that were collected for tbhemmloaded collections for the previous
classification experiments. The documents from @sman collection that are marked by
multiple labels are duplicated; each copy receit@swn unique labél’. The known labels
enable to evaluate reasonably the clustering mesolinparing the structure of clusters found
by the k-means method with the structure of catedabels. Again the outcomes of the
clustering experiments with the downloaded coltawtiare reported using MNI.

The number of retrieved clusters can be changealgfir the experiments; the number of
clusters should not affect the evaluation mettfcHowever, in the performed experiments
the number of required clusters is always the sasnthe number of document categories in
each downloaded collection. Hence the number oftefs is the fixed parameter of each

18 The comprehensive analysis of document clustexppyoaches can be found in (Aggarwal & Zhai, 2012).
171t is the same micro-averaging approach usedialtee classification.
18t is not true for the purity; other cited measuage adjusted by the number of clusters.
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downloaded collection; it is not changed by the ezikpental design. The number of
categories for each downloaded collection togeittidr their size distributions can be found
in chapter 6.3.1.1.

The k-means models were learned over the traingtgo$ downloaded documents and

evaluated over the test set. The variant paramefettse experimental setup are depicted in
the following table. Each combination of the partarewas evaluated five times; a different
random seed was used for each run to split eacimldaded collection into training and test

sets in the ratio 70:30. The repeated evaluaticgre wsed to estimate the significance of the
differences between MNI scores of the proposedtia@dtandard representations.

parameter values
collection GE1, EN1, CZ1
topic vocabulary size 5, 10, 20, 50, 100
length of left context window 1,2,4,9

bag-of-topics Authority, Betweenness),
tested representations Closeness, Degree, Eigenvector, Hub,
InDegree, OutDegree, PageRank
number of repetitions 5
total number of experiments 2775
Table 19: The values of evaluation parameters éndlustering task. The bag-of-topics representation
serves as the benchmark for comparisons with the-algy representations.

6.6.8 Clustering in generated collections

While the evaluation of the clustering is generalifficult, in our simulations where the
cluster assignment is known in advance the evalnais done in a supervised manner.
Among several standard evaluation measures theatiaed mutual information (MNI) (154)
was selected for the reports. MNI ranges between aed one, higher values indicate better
agreement between the found clusters and the adtisdérs. Similarly to other experiments,
MNI obtained for the proposed representation is gamad to MNI for the benchmark bag-of-
topic representation. The percentage differenc®iNt is reported, the base value for the
percentages is MNI of the bag-of-topic represeotafi he positive percentages correspond to
the increase of MNI and vice versa.

The selection of the centrality is not very impattéor the clustering; most of them do not

perform significantly better or worse than the benark representation. The save centrality is
again Authority that either improves NMI or doest nthange it depending on the

experimental parameters. Betweenness and Closeheskl be used carefully; they can both
worsen and improve the results. Their performaxegend on the setup of the experiment.

Mean NMI Slgn Centralities
Representation difference (%) Sig. scheme
Authority 21.2 0.04 + 3 607 - o —"
Betweenness -19.7 0.01 - % 30— T T iy T -
Closeness -4.3 0.11 o S e —
Degree 5.0 0.46 o ) 1 = 1 & =1 T =
Eigenvector 8.3 0.31 ) 5'30— ’ 1
Hub 2.9 0.42 o & 60 1
InDegree 1> 038 ° Auhorty | Closeness | Eigenvector | InDe | PageRant
OutDegree 4.9 0.38 ° B/etweenness DegreeIgenvec OrHub " egre?)utDegreeage o
PageRank 1.7 0.50 o representation

Figure 49: The NMI change by the representation
vocabulary size = 5, n-gram length = 3, documents08, document length = 100, clusters = 5

119 The length of context window does not apply tolig-of-topic representation.
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The dependence of other proposed representatiansthiose for Betweenness and Closeness
on the experimental parameters was not observed; M| difference is not influenced by
the number of clusters, the cluster size distrdoytihe length of documents, the size of the
collection and the length of the context window.
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Figure 50: The NMI change by the document lengtiéBetweenness representation
vocabulary size = 5, n-gram length = 3, documentk09, clusters = 5

Represen-
tation

Vocabulary
size

Mean NMI
difference (%)

Sig.

Sign
scheme

Between-
ness

2

-100

<0.01

3

-31.3

<0.01

5

-19.7

0.01

10

34

0.05

Percentage NMI difference

Vocabulary size

Betweenness

- o
o 0 O
°

@

:
H

=
o

Vocabulary size

Figure 51: The NMI change by the vocabulary sizthanBetweenness representation
n-gram length = 3, documents = 100, document lergt®0, clusters =5

On the contrary to the information retrieval, wen cstate that the contextual ties within
documents may not be always neglected; they camowepthe clustering. However, the
context is not as important as we can expect floenmeasurement of the preservation of the
document diversity; its influence on the clusteriagsmall and can be observed for several
combinations of the experimental parameters onlgréddver, the improper parameter setup
can significantly worsen the results.

6.6.9 Clustering in downloaded collections

While the clustering in downloaded collections le tunsupervised task, its evaluation is
supervised. The known document categories are cauipaith the identified clusters. The

normalized mutual information (MNI) (154) is repedt as the evaluation measure. MNI
ranges between zero and one, higher values indiedter agreement between the identified
clusters and the document categories. MNI obtaiftedthe proposed representation is
compared to MNI for the benchmark bag-of-topic esentation. Their percentage differences
are reported; the base value for the percentaddsliof the bag-of-topic representation. The
positive percentages correspond to the increabiNdfand vice versa.

Eight out of nine proposed representations do rbib& much better or worse performance
in the clustering task; their NMI is about the saaee for the benchmark bag-of-topics
representation. Closeness is nearly always worae tine bag-of-topics representation with
minor exceptions for the German collection.

The size of the context window (the n-gram lengtloes not influence the clustering
performance for all tested representations. It icovsf the hypothesis that the contextual
dependences present in the text should not be ieeghldo enhance the quality of the
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clustering. The vocabulary size influences theteliisg performance only slightly. The actual
relation depends on the representation and ondlhection. If there is any relation between
the vocabulary size and NMI, it is best observalléhe German collection.
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Figure 52: The NMI change by the representation
vocabulary size =5, n-gram length = 3
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Figure 53: The NMI change by the vocabulary sizthanHub representation
n-gram length = 3

The relation between the vocabulary size and NMlearly visible for Closeness. However,
this particular relation is not monotonic; NMI tak&s minimum value for about twenty
topics.
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Figure 54: The NMI change by the vocabulary sizthanCloseness representation
n-gram length = 3

Based on the experimental results, we can stateitths usually not worth including the

contextual ties that occur within documents inte final document vectors if they are
prepared for the clustering. Moreover, the impragedection of the contextual representation
can significantly worsen the results.
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7 Summary and conclusions

The new approach to the document representationpwgsosed in the thesis. It enables to
enhance document vectors by the contextual infoomagtrieved from text. The analysis of

the comprimation of the context into the propossgresentations was introduced. The main
effort was made to experimentally evaluate beneditsthis contextual enhancement for

common text mining tasks. The experiments confirrtiead the common text mining tasks

such as document clustering are not sensitiveaatmtextual arrangement of a text. Hence
we recommend simplifying of the process of the awtion of useful features from a text by

focusing on the document content only.

7.1 Process recapitulation

The main goal of this thesis was to investigate dlternative approaches to structured
representations of documents and theoretically adl \as practically evaluate the

appropriateness of the proposed representation®xXomining tasks. The main idea behind
the work is to find a way how to transfer usefuhixtual information from unstructured

texts to the numeric document vectors. Following firocess of the general knowledge
discovery®®, any input data are modified, merged with othaerrses and reduced to form a
two-dimensional modeling matrix of subjects of aonterest in rows with their features in

columns. Such a matrix serves as an input for taehine learning algorithms that discover
useful patterns in data that support decision-ngakim the text mining field the subjects are
clearly identifiable; they are text documents. Hoere the features that describe the
documents are not exactly known in advance; thengiss step in any text mining task is to

select or construct the appropriate descriptivaufea'®!. The extracted features should
support tasks such as the information retrieva, dbcument classification or the document
clustering.

The data preparation phase of any text mining ptojavolves the transformation of

unstructured texts of variant lengths to some sired vectors of the fixed length. Such
transformations necessarily reduce the informattia is included in the text. If an important
pattern is lost through this process, the subsequanhine learning algorithm cannot exploit
it. Hence it is worth paying attention to the salmt of the appropriate document
representation rather than to applying sophistttatedels that try to find something that was
filtered out from the input dat&.

In the unstructured texts the information is encbihea rather complicated way. The natural
languages are very rich and each text can be igatstl on different levels of the linguistic
hierarchy®’. The common languages like English or Czech enabémalyze a document as a
stream of characters, as a sequence of word-fornas a particularly random structure that
describes the ordered system of hidden topics. Meky¢he richness of the written language
is not only based on its hierarchical structureghebnguistic level usually operates with a
broad number of distinct categories. For example,morphology level usually offers tens of
thousands of wordforms. Additionally, the wordsather entities from different linguistic
levels do not appear randomly in a text, their apgece depends on a context. The context is
usually modeled by language models where the pcesefithe particular entity is conditioned

120 The process is formally described by CRISP-DM rodthogy.

121 The document features can be combined with theurfes that come from other originally structuredada
sources in complex data mining solutions.

122 GIGO (Garbage In Garbage Out) effect

123 The linguistic recognizes different language Is\ide lexicology, morphology, syntax and semantic.
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by its preceding entities. The language modelifgrefdocument representations where the
features are ordered groups of some linguistictiesticalled n-grams. Unfortunately, such
approach further significantly increases the dinmraity of possible representations; the
number of potential n-grams is much higher thanalheady high number of the entities from
which the n-grams are forméd. If any n-gram representation is used, the n-grams
frequencies are very low even in a large corpor@stmocabulary n-grams are not present in
a particular document that implies the extremelyarsp representation. Hence the
dimensionality reduction must be employed to reedive vectors of the reasonable length
that can differentiate the documents enough whetyeyg data mining models.

Due to the importance of the context it is wortyirtg to maintain the information about the
linguistic entity order in a reduced representatidence there are two may be conflicting
requirements for the process of dimensionality céida: to maintain the document content
represented by the presence of the extracted emniiti the document and to maintain the
document context represented by the adjacencyesttbntities in the document. The second
requirement is often omitted and the documentsraepgesented by frequencies of some
selected or extracted entities only; their ordemas taken into accoutft. However, the loss
of the context information may cause the deteronain the discrimination of documents; the
predictive text mining models may perform badly dnese some essential information is not
present in the input document vectors.

The relations among linguistic entities within acdment can be captured by a graph. The
entities form graph vertices while their relatioase depicted by edges between pairs of
vertices. The weight assigned to the particulareadgproportional to the co-occurrence of its
vertices in the document within the defined viginilence each document can be represented
by its contextual graph in the form of a socialwmk. Such a context network further
enables to derive measures that describe the piegpef the network and can be arranged to
the vector form.

The centralities of nodes in the document's contetivork were selected to represent the
document. They encode both the context and theenbof the document and the centralities
of all vertices together form the centrality veabdithe document. The centrality vector is the
final proposed representation of the documeng the product of the specific dimensionality
reduction approach. Many centrality measures has@nlproposed in the field of Social
Network Analysis (SNA). They describe the importard a node regarding its connections
to other nodes and/or they can take into accouatitfportance of the adjacent nodes.
Another group of centralities exploits possiblehsabetween the network nodes and their
distances. In the thesis nine centralities werecsedl for testing. They reflect the prestige of
the nodes and can be divided into three groups:

» centralities that preferably describe the documeattent (Degree, InDegree,
OutDegree),

» statuses of the nodes that are based on documetgxtgatterns (Eigenvector,
Authority, Hub, PageRank),

» centralities that rely on the proximities of thedes that alternatively describe the
document content (Closeness, Betweenness).

The proposed representations of documents canrbiced with other common approaches
to the dimensionality reduction. The centrality toes can be further simplified by the

124 For example if a vocabulary of lemmas consistsifof thousand words, the number of possible 3-ggam
equals 1.25*1#.
125 For example the common bag-of-words representation
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selection of their important components or they lbamprojected to a low-dimensional space
to form new derived attributes. On the other haaty dimensional reduction can also be
performed before the context networks are extraftech documents. The new extracted
attributes will form the network vertices for whitte centralities are computed.

The context network approach itself is languagepahdent; it exploits the selected features
extracted from a text and their relations. Howetee, features that constitute the vocabulary
are often linguistic entities or their derivativdsgat can be extracted using some specific
language dependent resources. In the thesis thetiatt is paid to the higher level features
that are derived without special vocabularies. Bigady Latent Dirichlet Allocation (LDA)

is exploited to produce a relatively small set ateht topics hidden behind the words of a
document. The words are substituted by the topédsre context networks are built. Hence
the final dimensionality depends on the numberxtfagted topics. This parameter must be
set in advance. The only language dependent s insthe presented experiments is the
stemming. The stemming was included to speed upstistitution by LDA. It is not a
resource consuming procedure; the stemming is lysugimple ruled-based algorithm.

The whole process of the extraction of the propakemiment representation can be adjusted
by three parameters: the number of extracted tppheslength of context window and the
centrality measure. The number of topics extratted DA implies the dimensionality of
final vectors. The topic extraction especially rees the document content. The context
window length parameter fixes the maximal distaiceéhe text on which the interaction
among the topics is taken into account. This patamefluences especially the reduction of
the document context. And finally, the selectedtiaity measure affects how the evidences
about the context and about the content are comimie document vectors.

7.2 Theory recapitulation and findings

In the theoretical part of the thesis the reductbmformation that is caused by the proposed
transformation of documents to vectors is evalualdw goal is to explore how the above
mentioned parameters influence the information ta@med in the document vectors.

Regarding the common n-gram language model, theindeot can be represented by the
matrix of transitions between (n-1)-gralffs Hence each document can be regarded as a
product of the random process that is describethéyransition probabilities. The document
transition probabilities are unobservable, but tleeyn be estimated from the observed
transition frequencies. The probabilities respetyithe observed frequencies are regarded as
the full description of a document. The variabildf the transitions causes the diversity of
observed documents. The diversity of the documisnésploited by predictive models in all
text mining tasks. Therefore the theory is focusadhe investigation how the variability of
transitions among the (n-1)-grams is affected by fmoposed vector representation of
documents.

The transitions among the (n-1)-grams are detemninethe probabilities of n-grams. We
assume that the observed n-gram frequencies wahdocument come from a multinomial
distribution. Hence the frequencies of the obseinvadsitions among the (n-1)-grams come
from the same multinomial distribution, but theynfpoa transition matrix. Some elements of
the transition matrix are of zero probabift{, Regarding these zero probabilities of the
impossible transitions, the process can be cormideas Markov chain. For further
transformations it is worth considering only thetrxaof transitions among (n-1)-grams and

126 They can be transformed to transitions betweeh){grams and 1-grams without any loss of infornmatio
127 Two (n-1)-grams have to share first and last teths to enable the transition between them.
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unigrams. The transitions form a random matrix alale. However, the random matrix is

treated as a random vector because it was buift th® random vector of n-gram frequencies.
Additionally, its multinomial distribution is worthpproximating by the normal distribution to

be able to estimate the distribution of the progad@®cument vectors.

The context network is described by the frequenofesnigram pairs that occur within the
context window. These frequencies also form a ramdwatrix variable. The context network
matrix can be derived from the original (n-1)-gramansition matrix by multiplying a special
matrix whose form depends on the length of theexdnivindow and the length of n-gram.
Some of the selected network centralities can Is® axpressed using linear matrix
operations. These linear transformations enablestomate the distributions of proposed
representations.

To be able to compare the distribution of the (fgtPms transitions with the distribution of
the proposed vector representation, we try to edéntheir dependence and the amount of
information that is lost during the transformatidnem transitions to vectors. The random
variables that are investigated are the vectorabées, hence the usual correlation-like
approach cannot be uséd For example, if we want to estimate R-squared sueathat
should tell us the proportion of original variabjlthat is still present in the proposed vectors,
we have to generalize the notion of covariance @artial covariance to apply it to random
vectors. It results in comparisons of determinaritsariance and partial variance matrices.
More precisely, the generalization of R-squareecaNWVilks' lambda is proportional to the
ratio of these determinants.

The alternative approach how to evaluate the ldskeoinformation during the derivation of
the proposed representation is to estimate theahintiormation between the original and the
proposed representation. The mutual informatiomeeh two normal vectors again depends
on the ratio of determinants of covariance andigacbvariance matrices, more precisely, it
is proportional to the logarithm of this ratio. Hewver, it is proved in the thesis that the
determinant of the partial covariance matrix okelny dependent vectors equals zero. The
consequence of this finding is that the mutual nmfation diverges and the generalized R-
square measure is always one. In the case of nearly dependent vectors the measures can
be theoretically used. However, the relation betwdge original representation and the
centralities that cannot be declared using a matnktiplication is so complicated that the
estimation of their distributions is not tractable.

Therefore the main conclusion of the presentedrthisoto focus on experiments because we
cannot reliably theoretically estimate how the dsity of documents is maintained in the
proposed representations.

7.3 Simulations

The usefulness of the proposed representation sedoan the assumption that linguistic
entities which occur in a text do not appear indeleatly, but they influence each other
within a context window of the constant length. Hwer, this assumption may not be always
met. The usage of the fixed context window is naikie linguistic entities such as words that
interact may occur anywhere in the document. Orother hand, closer words interact more
often than the words which are far away, hencerglstriction of the contextual influence to

the fixed length window may be justified.

128 A vector random normal variable is described lweetor of means and a square covariance matriganspf
just two parameters in the case of a scalar ranttmmal variable.
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The main purpose of the investigation of the pnesigsn of the document diversity on
simulated documents is to estimate how the contéatmation is changed in the proposed
representation if the documents fully meet our evhtassumption. It is rather simple to
generate the documents where the presence of artiinguistics entity depends on the
presence of the fixed number of the previous estiti

The simulated documents are also further used amae the performance of the proposed
representations in standard text mining tasksctassification, the information retrieval and
the clustering. The preservation of the contexbrimiation in the document vectors does not
guarantee that such vectors improve the resultsese tasks. Furthermore, the pertinence of
the proposed representations may depend on speaitcment properties and on the
parameters that influence the proposed documenongedBoth the document types and the
representational parameters can be adjusted insithalation experiments. Hence many
simulation runs for various setups were executedexamine how different parameters
influence the performance of the proposed repratiens. Namely the tested document
properties include the collection size and the duent length. The other general tested
parameters include the vocabulary size, the contexdow length and the centrality measure.
Additionally, in the clustering experiments the riaan of clusters and the distribution of the
cluster sizes were changed through the simulatomvaluate their effects. The effect of the
number of generative n-gram distributions was exawhiin the classification simulations.
And in the information retrieval experiments thenher of relevant documents was varied.

Each combination of the experimental parameters evaduated ten times with different
simulated documents to be able to test statisfichbir effects. The SSTERSS measure was
used to estimate generally how the diversity ofutheents is maintained in the proposed
representation. The standard F-measure served assaasment metric in the classification of
the documents with permuted topics. The evaluatiotne clustering exploits the simulation
origin of documents in which we know to which ckrseach document belongs. Similarly, in
the information retrieval simulations the documetitat should be retrieved are labeled.
Hence the normalized mutual information and F-messarve as the evaluation measures for
the clustering and the information retrieval respety. The results for the proposed
representations are always compared with results the standard bag-of-topic®
representation that serves as the benchmark andlitfeeences between the evaluation
measures are statistically tested to prove or tdirde the usefulness of the proposed
document vectors.

It was shown that the experimental parameterseanfte the results in the evaluation of the
context preservation using SSTRESS measure. Theatignselection is the most important
option. The simple centralities like Degree do piaserve the document diversity better than
the benchmark representation, but the advancedatiies like Authority that exploit
complex relations in context networks are useftile Tisage of centralities like Betweenness,
that depend on the lengths of paths through a xbnetwork, must be considered carefully
regarding other parameters. Their performance eathd® best and also the worst depending
on the other properties of documents like the volaly and the context size. These
parameters influence the performance of other akltnts as well. It is rather difficult to
generalize the observed relations; they are cénytddpendent.

The presence of the contextual information in theppsed document vectors is exploitable
by classifiers if the goal is to recognize the dueats that follow different contextual
patterns. It was shown that the proposed represmmsaenable to distinct between the

129 The bag-of-topic representation does not relytendrder of topics in text; hence the usefulnessootext
information for text mining tasks can be investaght
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documents that follow given n-gram distributionsd géhe documents in which words were
randomly permuted. The representations that relgemrralities like Betweenness that depend
on path lengths through a context network are lgigaeferred in this task. However, their
performance is the most variable one hence theageismust be carefully considered
regarding other parameters. On the other hand siroghtralities like Degree, that depend
only on plain counts of edges in a context netwald, not improve performances of the
classifiers. In the experiments, it was also shaWwat if documents include extensive
contextual patterns, these patterns are simplifiedthe proposed representations. The
simplification was observed as a reduced performariclassifiers that recognize documents
generated using complicated contextual rules. Aaltily the number of underlining n-gram
distributions, the length of n-grams or the vocabykize influence the rate of compression of
the contextual information into the proposed doaoinvectors which can be further exploited
for the classification of permuted documents. Moezp the effects of these experimental
parameters are not independent. For example, arlaxacabulary enables to encode richer
contextual information because the vocabulary dipplies the dimensionality of the
document vectors, but longer n-grams are difficuncode to a fixed number of dimensions,
hence we observe a complex dependence among w&ficktion accuracy, the dictionary
size and the n-gram length. The way how the experial parameters interact differs for
different centralities.

The expediency of the proposed representationsienirtformation retrieval task was not
proved on the simulated documents. The performahed tested centralities is comparable
to the performance of the benchmark representalitameover, the experimental parameters
do not significantly influence the results. The yonéxception is the Betweenness
representation. It performs significantly bettearththe benchmark for small vocabularies,
hence it should be the preferable representatigharcases where the documents need to be
represented by short vectors.

The expediency of the proposed representationthéoclustering task was not proved on the
simulated documents as well. The difference betwhihl for the proposed and the
benchmark representations are not usually sigmficdhe only promising centrality is
Authority which performs better than the benchmddt some combinations of the
experimental parameters. The centralities like Betmess and Closeness, that rely on the
path distances within the context network, areradgla¢ tricky ones. They can perform very
well and also very badly depending on the properté documents and the experimental
parameters. They are especially useful for cobbagtithat contain short documents, but they
should not be selected when the short context windaccombined with the small vocabulary
size.

7.4 Experiments with real documents

The contextual dependencies are very important written text; they enable the reader to
fully understand the described facts. On the ohi@erd, we proved in the experiments with
simulated documents that the context informationneg so important for the general
document discrimination in text mining tasks, tlwmtext information is exploitable only in
specific tasks. The main findings on the colleciaf real documents are consistent with the
conclusions from the simulations.

Three main collectiort¥’that were used in the experiments differ in maayameters: the
language, the collection size, the average lenftbdoocuments and the number of known

130 The fourth collection CZ2 was obtained as a subb#te main collection CZ1 and specifically moelfifor
the recognition of machine translated documents.
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categories to which the documents are assignedleVime properties of the downloaded
collections are fixed, the parameters that inflgetie tested representation were changed in
the experiments to investigate their importancemblg the effects of the vocabulary size, the
context window length and the centrality measureevevaluated. The vocabulary size refers
to the number of extracted topics that substitaéevtords in documents.

Similarly to the experiments with simulated documserthe preservation of the document
diversity within a collection was examined firstiyecondly, the performance of the proposed
representations in standard text mining tasks wasuated. They include the classification

and the clustering. In both tasks the known docurassignment to categories was exploited
in the evaluation. In the last experiment the psmub contextual representations were
exploited for the recognition of machine transladeduments.

Each combination of the free experimental pararseters evaluated five timE8in the first
three experiments and 25 times in the last experim€&he different random seeds for
partitioning of documents to train and test setsewesed in the experiment repetitions to be
able to perform statistical te5t& The SSTERSS measure was used again to estimate th
preservation of the diversity of documents in theppsed representations. The normalized
mutual information and F-measure served as theuatrah measures for the clustering and
the classification®® respectively. The results for the proposed remtesiens are again
compared with the results for the benchmark batppie representation; the differences are
statistically tested to show how useful the propaspresentations are.

It was proved that the most proposed representataye able to capture the document
diversity significantly better than the benchmar&pnresentation. Only Closeness and
PageRank perform generally worse. On the other ,h&atweenness is often the best
centrality, but its performance is rather variabliegpending on the specific data and the
experimental setup. This observation is consisteith the simulation experiments; the
performance of the centralities that exploit pa&tigths in a context network can be very good
and also very bad depending on the collection ptseand the experimental parameters.
The usefulness of all centralities depends espgal the length of the context that is taken
into account when context networks are construciée. differences of SSTRESS between
the proposed and the benchmark representation&rge for shorter context windows and
these differences diminish when the context windpaws. The vocabulary size influences
the diversity preservation as well, larger vocabutaze worsens SSTRESS. The performance
differences were also observed among the collestidhe proposed representations usually
performed best on the English collection and thesweoesults were often observed on the
German collection. The German collection is alse thost sensitive to the parameter
adjustments. It may be the consequence of langspgeific grammars. Syntax rules in
English are stricter than in German or Czech. Adddlly, the German collection consists of
shorter documents and is the smallest main cadlecthence the contextual patterns are
harder to detect.

The usefulness of the proposed representatiorhéogéneral document classification was not
proved on three main collections. The performanéethe most tested centralities is
comparable to the performance of the benchmarleseptation. Closeness and Betweenness
perform even worse than the benchmark. The lenfgtireocontext window does not influence
the classifier performance, but the weak effecthaf vocabulary size was detected. This
vocabulary size effect is centrality dependent. Tifeerences among the collections were

131 The smaller number of runs was selected becaasexfreriments were computationally intensive.
132 The exact tests were used for such small numbemst
133 Including the recognition of machine translatedwoents.
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observed as well. Again the most sensitive colbecto the parameter adjustments was the
German collection.

The conclusions from the clustering experimentsvarg similar to the conclusions from the
classification. The usefulness of the proposedessgrtations for the clustering task was not
proved on the main collections. The differencesvben NMI for the proposed and the
benchmark representations are not usually sigmficanly Closeness is nearly always worse
than the benchmark. The length of the context windimes not influence the clustering
performance for all tested representations ancetfeet of the vocabulary size is not usually
so large. This relation is better observable on &&man collection only, the larger
vocabulary implies the worse performance, but tlageeseveral exceptions from this rule; the
dependence may not be monotonic for some cengisliti

The usefulness of the proposed document representaas proved in a specific text mininig
task of the recognition of machine translated domoisi Machine translators still produce
texts that sometimes follow incorrect contextuatgras, hence our approach may produce
better results than a context-free representatizaieed it was experimentally proved that
many of the proposed representations can improige dhassification. The representations
based on centralities that rely on path lengtha gsontext network should not be taken into
account®*for the translated document recognition, but otiested centralities offer slightly
better results than the benchmark bag-of-topic esgmtation. The most promising
representation is Authority. The proposed centralihsed representations are preferable
especially for shorter context windows and smallecabularies, hence they are adequate in
situations when a low-dimensional contextual repméstion of documents is desirable.

7.5 Overall conclusions and recommendations

The contextual relations among linguistic entitsesh as observable words or hidden topics
may be quite complicated, but the context is vamportant for the perception and

understanding natural languages. If we need to dmd¢be contextual dependences which
occur within a text into numeric vectors that arecessary for the bulk processing of
documents, a simplified contextual model has totddeen into account. The number of

possible relations between linguistic entities gsawapidly with the vocabulary size, hence
any context encoding schema must also include amsionality reduction method.

It is rather difficult to exactly estimate the effeof the proposed context-driven dimensional
reduction when the centralities of context netwogksierate the document vectors because
they often yield to non-trivial matrix transformatis. Therefore many experiments were
conducted. The experiments should prove or rejectiypotheses:

* The proposed representations encode and presesveotiiextual relations together
with the information about the document content.

* The proposed representations are useful for theepsing of documents in text
mining tasks.

The first hypothesis was proved; the proposed veatan serve as the carriers of context
inter-document relations among linguistic entitisch as hidden topics. The proposed
representations particularly maintain the contexdinersity of documents. The reduction of
context information that is caused by the projectid complex network structures to vectors
differs for different experimental parameters. @epresentations are especially useful in the
situations where the low dimensional document wsctre required which is the common

134 Their results are also rather variable.
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situation when the documents should be processeatdhtay mining models. More precisely,
the maintenance of the contextual relations by gheposed representations is the most
evident for a small number of topics and a shont&xtual window.

Some proposed encoding schemas are capable tavardbe context well, some are more
content sensitive. A very important parameter ésdélected centrality of the context network.
The centralities that exploit the lengths of patimough the context network are the most
promising carriers of the contextual informatiomeTtested centrality Betweenness is capable
to preserve 50-70% of the contextual diversity oéal document collection if the context is
considered only within the identified sentences.

The second hypothesis about the usefulness of nbhedeng of the context relations for
common text mining predictive modeling was not gaHlg proved; the contextual
information encoded into the proposed documentesaptation is exploited by data mining
models only in the special tasks when the docurcentent is unimportant. We showed that
the proposed representations can be successfidly fias the recognition of grammatically
incorrect documents where the order of words oictogvas randomly mixed. Again the
centralities that depend on the path lengths tHraihg context network like Betweenness
perform best and short context windows are preferab

On the other hand, the performance of predictiveleleoin common text mining tasks (the
information retrieval, the document classificatiamd the document clustering) is not
significantly affected by adding any contextualoimhation into input document vectors
regardless to the fact that the proposed represamtamaintain the contextual documents
diversity well. In these tasks the models explog@f@rably content dependent attributes rather
than contextual patterns. Hence the proposed repasons are useful in the specific context
dependent tasks only where documents share theartent and they are distinguishable by
their context only.

Therefore we can conclude that the encoded cordemit generally the most important part
of the document representation in the text minirgjdf Therefore text miners should
preferably focus on the selection of the featuhed properly describe the document content
and they can usually neglect the ordering of lisgaientities within documents. It makes the
common text mining tasks different from NLP tasksg( machine translation) where the
usage of contextual information is critical. Dueth@se findings the input data for the text
mining tasks can be prepared faster; one cannopramise between the accuracy of models
and the speed of extraction of any context reldésdures. The main effort in the data
preparation phase of the common text mining prejesthen unstructured texts are
transformed to structured vectors should be pattie¢axtraction of the reasonable number of
content features that describe each document d®ke ywith a few task specific exceptions a
vector representation that serves as an input fwsnamon text mining task can ignore the
order in which the features appear in documents.
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Appendix A: Variable notation overview

V={w,w, ...,w.}

Vocabulary, a set of terms of the lengfh=N

=

d= WiyWiy W) - - Wi, Document, a sequence of vocabulary terms of thgthery
D={d,d,,...,d,} Collection, a set ol documents
d’ = (Vi V, . Vy) Document vector, a structured representation irvéitabulary space
D= (dI; ;;,,,;dL) Document-ternMxN matrix, document vectors are in rows
=Wy W) - - - Wiy n-gram, a subsequencerofocabulary terms
E :{ es} n-gram vocabulary, a set of all possiblgrams of equal length that can be
EACI constructed using the vocabulary terr&=$=N"
f = Wiy We) -+ - Wina) (n-1)}gram, a subsequence of{) vocabulary terms
= _{ ff f } (n-1)}gram vocabulary, a set of all possihtel() grams of equal length that ca
“Uln f2ie- TR be constructed using the vocabulary terfjssR=N""?
Vector of conditional probabilities of transitiofrem (n-1)-gramf, to vocabulary
T _ N
pr (prl’prZ,"'iprN) terms, pm = p(fr — Wn)’z prj :1
j=1
RxN matrix of conditional probabilities of transitiofrem (h-1)-grams to
vocabulary terms, probability vectors are in rows,
—(AT-nT- AT
P_(pl'pZ"“’pR)

N
P = p(fr - \Nn)’z prj =1
j=

R N
RxN matrix of probabilities oh-grams(},, = p( frWn) Z,quj =1
i=1 j=1

RxN matrix of counts of transitions from-(L)-grams to vocabulary terms in g

R N
T document,ZZtij =L
i=1 j=1
NxN square matrix of co-occurrence frequencies of valzay terms in a context
G

N N
window of the lengttK in a documentzzgij =LK
i1 =1

Weighted context network of a document, verti¢eepresent vocabulary terms
and weight$s are equal to co-occurrence frequencies of thesténra context
window

Weighted context network of a document, verti¢eepresent vocabulary terms

and weightsG are equal to inversed co-occurrence frequenciéiseaerms in a
context window

¢ (G) = (&, Cyr--- Cy)

Vector of network centralities, the following cealities are taken into account
Authority, Betweenness, Closeness, Degree, Eigéonddub, InDegree,
OutDegree, PageRang

Table 20: The list of the variables used in fornsula
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Appendix B: Publications of author

author's | thesis | impacted

publication share | related | journal
Hava, O., Skrbek, M., Kordik, P., 2010. Fast sujsexv feature extraction
from structured representation of text data. Rnoceedings of the "7 100% es no
EUROSIM Congress on Modelling and Simulatid®010. Vydavatelstv 0 y
CVUT.
Hava, O., Skrbek, M., Kordik, P., 2012. Superviseab-step featurg
extraction for structured representation of textad&imulation Modellingl 100% yes yes
Practice and Theory2012. ELSEVIER.
Hava, O., Skrbek, M., Kordik, P., 2012. DocumentadSification with
Supervised Latent Feature SelectionPhoceedings of the"2 International| 100% yes no
Conference on Web Intelligence, Mining and Semgriti@g12. ACM.
Hava, O., Skrbek, M., Kordik, P., 2012. Contextiaa&nt semantic networks
used for document classification. Proceedings of the "4 International 100% es no
Conference on Knowledge Discovery and Informatiogtrival 2012. ? y
SciTePress.
Hava, O., Skrbek, M., Kordik, P., 2013. Vector Regemtation of Context
Networks of Latent Topics. IfProceedings of the World Congress on100% yes no
Engineering 20132013. IAENG.
Alcnauer, J., Hava, O., 2012. New emerging dataingirapproaches in
marketing and education. IRroceedings of the™International Scientifiq 50% no no
Conference Management 202012. Bookman.
Hava O., 2007:Data mining v praxi:On-line ohodnoceni rizika podvodu 100% no no
v nezivotnim pojigéni, IT Systems 3/2007 0
Hava O., 2007: Marketingové dataminingové Ulohyelekomunikacich)T 100% no no
Systems 6/2007
Hava O., 2007: On-line optimalizace marketingovyampani,IT Systems 100% no no
10/2007
Hava O., 2007: Data mining okolo n&spfessional Computing 10/2007 100% no no
Hava O., 2007: Poznejte sva d&apfessional Computing 11/2007 100% no no
Brom O., Hava O., 2007: iprava dat na modelovaniProfessional 500 no no
Computing 12/2007 °
Hava O., 2007: Role modelv data miningovém projektuProfessional 100% no no
Computing 13/2007 0
Hava O., 2007: Vyhodnoceni data miningovétieSeni, Professional 100% o o
Computing 14/2007 0
Héava O 2008: Integrace data miningovych mbddbd firemnich proces 100% no no
Professional Computing 1/2008
Hava O., 2008: RFM skérovarni, Systems Special 2008 100% no no

Table 21: The list of author's publications.
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