
i
i

“thesis” — 2015/6/8 — 12:22 — page i — #1 i
i

i
i

i
i

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

On Concern-separation of Data Presentations in User Interfaces

Doctoral Thesis

by

Tomáš Černý

A dissertation thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

PhD programme: Electrical Engineering and Information Technology

Branch of Study: Information Science and Computer Engineering

Prague June 2015

i
i

“thesis” — 2015/6/8 — 12:22 — page ii — #2 i
i

i
i

i
i

ii

Thesis Supervisor:

Doc. Ing. Jan Janoušek, Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thakurova 9
160 00 Prague 6
Czech Republic

Thesis Co-Supervisor:

Prof. Michael “Jeff” Donahoo
Department of Computer Science
School of Engineering & Computer Science
Baylor University, Texas
One Bear Place, P.O. Box 97356
Waco, TX. 76798-7356
United States of America

Copyright c� 2015 by Tomáš Černý

i
i

“thesis” — 2015/6/8 — 12:22 — page iii — #3 i
i

i
i

i
i

Abstract

The User Interface (UI) of software systems plays an essential role in usability. Users
place ever-expanding expectations for a good UI, e.g., dynamic responsiveness to partial
input. Unfortunately, development frameworks typically treat UI development as a
completely independent unit, ignoring the global application perspective. This results
in information from the data definitions to be restated in the UI description (i.e., vertical
repetition). Specification of expected type, client-side validation, and even input widget
selection represent restated information that must be maintained over the evolution of
the application, often with little language support as UI descriptions usually lack type
safety. In addition, this UI description often tangles a multitude of concerns such as
layout, data binding, input validation, etc., which makes it hard to reuse a particular
concern. This tangling results in a particular concern definition being distributed to
multiple UI fragments, thus changing a given concern requires significant effort. Making
matters worse, systems are now expected to personalize for individual users (e.g., expert
vs. novice), contexts (e.g., country-specific postal information), and even physical
presentations (e.g., desktop vs. mobile). UI development solutions often fail to provide
the flexibility to easily handle variations of the UI for such personalization. Current
solutions with tangled concerns result in multiple, substantially-similar UI fragments
that repeat information on input type, constraints, etc. and differ only in details (i.e.,
horizontal repetition). Clearly, in such a situation modification of a particular UI
concern becomes tedious. The high-level of replication and restatement makes it error-
prone and fragile towards application changes. The negative impact of the repetition
and concern tangling goes beyond higher development and maintenance costs. UI
descriptions bloated with repetition require more server-side processing and bandwidth
to deliver to clients, negatively impacting UI responsiveness and server scalability. Even
worse, such tangled information disables caching capabilities and reuse at the client-
side.

This thesis considers existing UI software design approaches from the perspective of
UI development, maintenance, responsiveness, delivery, integration with existing en-
terprise frameworks, ability to support personalized presentations reflecting user and
system context, etc. We show that conventional approaches only partially or ineffec-
tively address the above concerns for data presentations. To deal with these sorts of
problems, we introduce a novel approach that addresses separation of cross-cutting con-
cerns. We investigate approaches from Model-Driven Development (MDD) and leverage
existing approaches to decrease information restatement at the code and delivery level.
Our approach reduces the frictions related to UI development and maintenance efforts,
while providing easy integration of extended UI capabilities such as context-awareness.
The maintained separation of concerns applied to the remote client UI delivery extends
the benefits to improved UI responsiveness, resource reuse, and reduction of repeti-
tions as well as performance improvements in server-side UI description processing.

iii

i
i

“thesis” — 2015/6/8 — 12:22 — page iv — #4 i
i

i
i

i
i

iv

We demonstrate the efficacy of our approach through various case studies. Finally,
we present an evaluation of our approach based on its production-level use in a large
enterprise system deployed for the ACM International Collegiate Programming Con-
test (ACM-ICPC), used by tens of thousands of participants from more than 2,534
universities in more than 101 countries.

Keywords:

User interface, Metaprogramming, Aspect-Oriented Programming, Maintenance, Model-
Driven Development, Model Transformations, Separation of Concerns

i
i

“thesis” — 2015/6/8 — 12:22 — page v — #5 i
i

i
i

i
i

v

i
i

“thesis” — 2015/6/8 — 12:22 — page vi — #6 i
i

i
i

i
i

vi

As collaborator of Tomáš Černý and a co-author of his papers, I agree with Tomáš
Černý’s authorship of the research results as stated in this dissertation thesis.

. .
Michael Donahoo Eunjee Song

. .
Miroslav Macík Jan Janoušek

i
i

“thesis” — 2015/6/8 — 12:22 — page vii — #7 i
i

i
i

i
i

vii

i
i

“thesis” — 2015/6/8 — 12:22 — page viii — #8 i
i

i
i

i
i

viii

Acknowledgements

My sincerest thanks and appreciation to those who have made my life richer from a wide
range of perspectives. This work would never exist, unless I had studied abroad at the
Baylor University in Waco, Texas. At the same time, to become a student at Baylor, I
had to have solid technological background, which I received from the Czech Technical
University in Prague. Many people put their trust in me and this acknowledgement
is just a small piece of my gratitude. I would first like to recognize Boba Mannova,
Michael Jeff Donahoo and William Bill Poucher for making my studies and life rich,
as well as for finding me all the possible opportunities in order to reach my fullest
potential.

This thesis would never be written without great support, advices, mentoring and
energizing from Michael Jeff Donahoo, who supervised me through my masters and
doctoral studies and found time for consultations, brought new ideas and pushed me
towards the right direction. I would also like to extend my deepest appreciation to my
adviser Jan Janousek, who is perhaps the most energetic and positive person I ever
met.

My gratitude further extends to all my research colleagues, co-authors and mentors.
Namely I would like to recognize Eunjee Song, Miroslav Macik, Pavel Slavik, Karel
Cemus, Lubos Matl.

i
i

“thesis” — 2015/6/8 — 12:22 — page ix — #9 i
i

i
i

i
i

ix

i
i

“thesis” — 2015/6/8 — 12:22 — page x — #10 i
i

i
i

i
i

x

Dedication

To my lovely wife and wonderful daughter, my colleagues and friends.

i
i

“thesis” — 2015/6/8 — 12:22 — page xi — #11 i
i

i
i

i
i

Contents

Chapter 1 Introduction 1

1.1 Problems Specification . 9

1.2 Contributions of the Thesis . 14

1.3 Organization of the Thesis . 17

Chapter 2 Basic Notions 19

2.1 Basic Notions . 21

2.2 Enterprise Application Design . 24

2.2.1 Object-Oriented Programming/Design (OOP/D) 26

2.2.2 Three-layered Architecture . 28

2.2.3 Model-View-Controller Design Patterns 32

2.2.4 Component-Based Design (CBD) 32

2.3 General Design Approaches . 35

2.3.1 Model-driven Approaches . 35

2.3.2 Automatic/Generative Programming 36

2.3.3 Domain Specific Languages (DSL) 38

2.3.4 Metaprogramming (MP) . 39

2.3.5 Aspect-Oriented Programming (AOP) 40

2.3.6 Summary . 42

Chapter 3 Related Works 43

3.1 UI Design Approaches . 43

3.1.1 Manual Design for Data Presentation in UI 44

3.1.2 UI Widget Builders . 45

3.1.3 UI Model-based Approaches . 46

3.1.4 Generative Programming & Domain Specific Languages for UI . 47

3.1.5 Meta-programming UI . 48

3.1.6 Aspect-based UI . 49

3.1.7 Classification Discussion . 49

3.1.8 Summary of UI Design Approaches 50

3.2 Context-aware UIs . 51

xi

i
i

“thesis” — 2015/6/8 — 12:22 — page xii — #12 i
i

i
i

i
i

xii CONTENTS

3.3 Content Delivery in Web-based Applications 53

Chapter 4 Research Roadmap 55

4.1 Summary and Analysis of the Related Works 55

4.2 Accomplished Research and Roadmap 56

Chapter 5 Extension to UML Models to Support UI Derivation 63

5.1 Problem Description . 64

5.2 Solution . 66

5.2.1 UML Profiles . 66

5.2.2 Model-Driven Fragment Generation Example 69

5.2.3 Form Field Access Control . 71

5.2.4 Performance Evaluation . 74

5.2.5 Development and Maintenance Evaluation 75

5.3 Summary . 76

Chapter 6 Rich Entity Aspect/Audit Design (READ) 79

6.1 Motivation . 80

6.2 Problem Description and Analysis . 81

6.3 READ : Rich Entity Aspect/Audit Design Framework 85

6.3.1 Introduction to READ Conceptual Model 86

6.3.2 READ Lifecycle . 87

6.3.3 READ Lifecycle Integration . 88

6.3.4 Design with READ . 93

6.4 Evaluation . 94

6.4.1 Development and Maintenance Impact 95

6.4.2 Case Study : Production Experience 99

6.5 Summary . 101

Chapter 7 Integration with other Context-aware UI approaches 103

7.1 Motivation . 104

7.2 Problem Description . 105

7.3 READ Integration . 106

7.4 Evaluation . 106

i
i

“thesis” — 2015/6/8 — 12:22 — page xiii — #13 i
i

i
i

i
i

CONTENTS xiii

7.5 Summary . 109

Chapter 8 Distributed, AOP-based UI Design 111

8.1 Motivation . 112

8.2 Extending the READ Approach . 113

8.3 Experiments . 118

8.3.1 Page Loads with Web Browser 119

8.3.2 Page Loads with Traces Involving CDN 122

8.3.3 Server Impact Evaluation . 122

8.3.4 Comparison with GWT . 123

8.3.5 Threats to Validity . 124

8.3.6 Summary . 125

8.4 Native Platform-specific UI Clients . 126

8.5 Conclusion . 127

Chapter 9 Future Work and Synergy 129

Chapter 10 Conclusion 131

A Bibliography 135

B Refereed publications 143

C Unrefereed publications 147

D Citations 149

Appendix A List of abbreviations 151

Appendix B Český abstrakt 153

i
i

“thesis” — 2015/6/8 — 12:22 — page xiv — #14 i
i

i
i

i
i

xiv CONTENTS

i
i

“thesis” — 2015/6/8 — 12:22 — page xv — #15 i
i

i
i

i
i

List of Figures

1.1 Conventional-manually made web form 2

1.2 Automated data-driven web form . 2

1.3 Possible visualization of conventional UI design with cross-cutting con-
cerns in source code . 7

1.4 Possible visualization of improved UI design centralizing cross-cutting
concerns in source code . 7

1.5 Possible visualization of aimed UI design addressing cross-cutting con-
cern reuse in source code . 7

2.1 Example object-oriented design metamodel 27

2.2 Example PersonInfo Entity . 29

2.3 Subset of AWT Component hierarchy 32

2.4 Sample JSF fragment [1] . 33

2.5 Sample AWT fragment . 33

2.6 Component tree for Fig. 2.4 [1] . 33

2.7 Component tree for Fig. 2.5 . 33

2.8 Rendering of a JSF Tree to the HTML response [1] 34

2.9 Model-driven architecture transformation 35

2.10 Sketch of generative programming concept 37

2.11 Observing and object of unknown type through reflection and introspection 39

2.12 Compilation of a program that involves aspect weaving 41

2.13 Demonstration of cross-cutting concerns tangled in OOP and their un-
tangling in with AOP . 41

5.1 A UML class model example . 64

5.2 Generated Person form (model in Fig. 5.1) 64

5.3 Expected Person form (full access with validation) 65

5.4 Expected Person form (restricted access) 65

5.5 Expected Person form layout for a specific context 65

5.6 Example UML profiles supporting ORM, UIV, Presentation and Access
rules . 66

xv

i
i

“thesis” — 2015/6/8 — 12:22 — page xvi — #16 i
i

i
i

i
i

xvi LIST OF FIGURES

5.7 Example of rich design model . 68

5.8 Generated car view form . 71

5.9 Generated person table . 71

5.10 Example for case study . 76

6.1 UI form decomposition . 82

6.2 (a) Concern / (b) Implementation space 82

6.3 READ lifecycle . 88

6.4 Evaluated application domain model . 95

6.5 Sample simple UI Form . 95

6.6 Sample form for confused student . 97

6.7 Sample form for child . 97

6.8 Sample form for elderly . 97

7.1 UIP platform overview [A.3] . 105

7.2 UIP and READ integrated platform overview [A.3] 107

7.3 UI generated for: a – iPad tablet (left) and b – desktop PC (right) [A.3] 108

7.4 UI generated for iPhone: a – default context (left), b – for user with
lower vision (middle), c – generated using templates (right) [A.3] 108

8.1 Conventional approach binding and restatements (left), Code-inspection-
based approach life cycle (right). 114

8.2 AOP-based extension to the code-based inspection assembly 115

8.3 Services provided by the AOP-based UI design (left) / the distributed,
AOP-based UI design (right) . 117

8.4 Evaluated UI subsystem designed with JSF approach 120

8.5 Evaluated UI subsystem designed with the distributed, AOP-based UI
approach . 120

8.6 Server impact evaluation - CPU load (no cache) 123

8.7 Server impact evaluation - CPU load (cache) 123

8.8 Sample of deployment diagram considering three heterogeneous clients . 126

8.9 Android-based UI . 127

8.10 Android-based UI . 127

8.11 Java Swing-based UI . 127

i
i

“thesis” — 2015/6/8 — 12:22 — page 1 — #17 i
i

i
i

i
i

1
Introduction

No matter how beautiful, no matter how cool your

interface, it would be better if there were less of it.

-Alan Cooper
Father of Visual Basic

Software engineers always aim to design systems that not only function well and attract
users but also require low development and maintenance efforts and easy integration. A
User Interface (UI) plays the role of the ambassador of an application, as it is the portion
of the system experienced by users. In order to do this, the UI provides mechanisms to
control events, submit/retrieve data to/from the system as well as influencing how to
display information. Given this, the UI is one of the most critical parts of an application;
therefore, the UI graphical design aims to make user interaction simple and efficient for
all tasks.

In the area of UIs, we often see complex and sophisticated features that greatly attract
users, but at the same time negatively impact development efforts. This work deals with
the UI design from the software engineering perspective and considers “how it works,”

1

i
i

“thesis” — 2015/6/8 — 12:22 — page 2 — #18 i
i

i
i

i
i

2 CHAPTER 1. INTRODUCTION

To visually design a data form is one side of the coin

Username: * bob.foo

Password: * ••••••

••••••

Confirmed:

Degree:

First name: * Bob

Last name: * Foofull

Email: * bob@foo.com

Age:

First Java program: 05/25/1963

Organization name: *

Address line 1: *

Address line 2:

City: *

Country: *

State: *

Zip code: *

VAT:

Doctor

31

Select...

Figure 1.1: Conventional-manually made web form

Username: * bob.foo

Password: * ••••••

••••••

Confirmed:

Degree:

First name: * Bob

Last name: * Foofull

Email: * bob@foo.com

Age:

First Java program: 05/25/1963

Organization name: *

Address line 1: *

Address line 2:

City: *

Country: *

State: *

Zip code: *

VAT:

Doctor

31

Select...

Figure 1.2: Automated data-driven web form

which components are involved and what is the interaction of particular components,
what is the complexity regarding comprehension, development, maintenance1, reuse,
module responsibilities, performance, extensibility, efficacy regards capturing various
system aspects, concerns or goals, as well as other design considerations.

For a demonstration consider the following motivational examples. A rather simple
UI fragment, such as these shown in Figs. 1.1 and 1.2, might require considerable
development and maintenance efforts. The source code behind these forms might be
quite complex and hard to read due to various goals, amount of information or usability
strategies considered all at the same time by developer. Clearly, both of the forms from
Figs. 1.1 and 1.2 are visually the same, although their design, i.e., the structure of their
source code, may significantly differ.

Consider the design used in contemporary UI frameworks, such as Swing from Java
Standard Edition (Java SE), JavaServer Faces (JSF) [2] from Java Enterprise Edi-
tion (Java EE), etc. Such conventional design (see Chapter 2) involves basic building
blocks in the form of pre-defined components to represent information, knowledge and

1Most of these terms are defined in Section 2.1

i
i

“thesis” — 2015/6/8 — 12:22 — page 3 — #19 i
i

i
i

i
i

3

data stored in the system. Usually, it expects the developer to describe all the infor-
mation involved in a particular UI page all together. This makes it easy to build the
whole picture. On the other hand, there is no explicit boundary among different infor-
mation purpose-sets. The information usually tangle together, which makes it difficult
to maintain [A.4].

The pre-defined components connect to a component tree that represents a particular
UI fragment; a design pattern, called composite [3], is often used to represent such
a structure. For instance, the UI fragments in Figs. 1.1 and 1.2 may be represented
as a component tree, which contains a form component connected with three panel
components that consist of different data-presenting components, called widgets. The
tree can be expressed and described using a General-Purpose Languages (GPL), such
as Java, or it may involve Domain Specific Languages (DSL) description such as the
one used by JSF. Although it is easy to describe a particular UI through a tree, the
problem is that this format of description is limited to a particular situation.

When considering multiple system concerns2 that impact the UI presented to the user,
it might be necessary to capture certain concerns in a way that they tangle across
multiple components or through other concerns. This decreases the ease of comprehen-
sion, reuse of components and increases the development and maintenance efforts. The
situation becomes worse when some concerns vary over time or at runtime based on ap-
plication/user context. A component that tangles together multiple concerns becomes
specialized; its volume may expand with repetitions as the result of tangling and its
reuse is limited. Thus a situation with varying concerns usually results in duplication
of the original component and slight modification. Unfortunately, this results with two
or more components that must be maintained.

Consider a conventional design applied to Fig. 1.1 in the dimension of information ar-
rangement that involves the presentation concern, as well as security, input validation,
data-binding and layout. Each UI component that considers this information must
capture them in the source code to make it self-descriptive. This results in source code

2How to interpret system concerns? The literature [4] suggests that information set that affects
source code is known as concern. Dijkstra [5] recognized the importance of separation of concerns as
an effective technique to organize thoughts. Tangled concerns in design or in source code worsen the
readability, because an individual concern spreads throughout the code and cross-cuts other concerns.
Thus localization of a single concern in the code becomes non-trivial. In Fig. 1.3 notice the concerns
tangled together. Obviously a design that tangles various concerns together becomes complex, hard to
read or maintain, and it often increases the volume of code because of low reusability of given concerns.
Further demonstrations of tangling concerns will be given in this work. Another illustration of tangling
is provided by Fig. 2.13.

i
i

“thesis” — 2015/6/8 — 12:22 — page 4 — #20 i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION

Less coding efforts and loose coupling is the key

Listing 1.1: Illustration of a JSF code behind the conventional
design of form from Fig. 1.1↵ �
<p:panel >
<table><tr><td>

<util:inputUsername label="#{txt[’user.username ’]}"
value="#{reg.user.username}"
required="true" size="30" maxlength="50"
title="#{txt[’txt.user.username ’]}"
edit="#{reg.edit}" id="username" />

</td></tr><tr><td>
<util:inputPass word label="#{txt[’user.password ’]}"

value="#{reg.user.password}" required="true"
title="#{txt[’txt.user.password ’]}"
maxlength="255" rendered="#{empty reg.user.id}"
edit="#{reg.edit}" id="password" />

</td></tr><tr><td>
<util:checkBox label="#{txt[’user.confirmed ’]}"

id="confirmed" rendered="#{ security.admin}"
edit="#{reg.edit}" value="#{reg.user.confirmed}"
title="#{txt[’txt.user.confirmed ’]}" />

</td></tr></table >
</p:panel >
<p:panel >
<table><tr><td>

<util:selectMenu label="#{txt[’personInfo.title ’]}"
edit="#{reg.edit}" collection="#{enums.title}"
value="#{reg.user.personInfo.title}" type="enum"
title="#{txt[’txt.personInfo.title ’]}"
id="title" />

</td></tr><tr><td>
<util:inputText label="#{txt[’personInfo.firstName ’]}"

value="#{reg.user.personInfo.firstName}"
edit="#{reg.edit}" required="true" size="30"
title="#{txt[’txt.personInfo.firstName ’]}"
maxlength="255" id="firstName" />

</td></tr><tr><td>
<util:inputText label="#{txt[’personInfo.lastName ’]}"

value="#{reg.user.personInfo.lastName}"
edit="#{reg.edit}" required="true" size="30"
title="#{txt[’txt.personInfo.lastName ’]}"
maxlength="255" id="lastName" />

</td></tr><tr><td>
<util:inputText label="#{txt[’personInfo.email ’]}"

value="#{reg.user.personInfo.email}"
required="true" size="30" email="true"
title="#{txt[’txt.personInfo.email ’]}"
edit="#{reg.edit}" maxlength="255" id="email" />

</td></tr><tr><td>
<util:inputNum ber label="#{txt[’personInfo.age ’]}"

value="#{reg.user.personInfo.age}" size="10"
required="false" edit="#{reg.edit}" maxlength="50"
title="#{txt[’txt.personInfo.age ’]}" id="age" />

</td></tr><tr><td>
<util:inputDate edit="#{reg.edit}"

label="#{txt[’personInfo.born ’]}"
value="#{reg.user.personInfo.born}"
title="#{txt[’txt.personInfo.firstJavaProgram ’]}"
required="false" id="firstJavaProgram" />

</td></tr></table >
</p:panel >
<p:panel >
<table><tr><td>
<util:inputText

label="#{txt[’branch.organizationName ’]}"
value="#{reg.user.branch.organizationName}"
edit="#{reg.edit}" required="true" size="30"
title="#{txt[’txt.branch.organizationName ’]}"
maxlength="255" id="branchName" />

</td></tr><tr><td>
<util:inputText label="#{txt[’branch.addressLine1 ’]}"

value="#{reg.user.branch.addressLine1}"
edit="#{reg.edit}" size="30" maxlength="255"
title="#{txt[’txt.branch.addressLine1 ’]}"
id="addressLine1" />

</td></tr><tr><td>
<util:inputText label="#{txt[’branch.addressLine2 ’]}"

value="#{reg.user.branch.addressLine2}"
edit="#{reg.edit}" size="30" maxlength="255"
title="#{txt[’txt.branch.addressLine2 ’]}"
id="addressLine2" />

</td></tr><tr><td>
<util:inputText label="#{txt[’branch.city ’]}"

value="#{reg.user.branch.city}" edit="#{reg.edit}"
title="#{txt[’txt.branch.city ’]}" id="city"
required="true" size="30" maxlength="255" />

...⌦

Listing 1.2: Illustration of the JSF code behind
the aimed approach from Fig. 1.2⌥ ⌅
<p:panel >
<af:ui edit="#{reg.edit}"

instan ce="#{reg.user}" />
</p:panel >
<p:panel >
<af:ui edit="#{reg.edit}"
instan ce="#{reg.user.personInfo}"/>

</p:panel >
<p:panel >
<af:ui edit="#{reg.edit}"

instan ce="#{reg.user.org}"/>
</p:panel >⌃ ⇧

Listing 1.3: Illustration of a reusable field pre-
sentation template in the target language for
the aimed approach from Fig. 1.2⌥ ⌅

<util:inputText
label="#{txt[’$fieldPath ’]}"
value="#{ $value}"
edit="#{reg.edit}" size="$size"

required="$required" email="$email"
maxlength="$maxlength"

title="#{txt[’txt.$fieldPath ’]}"
id="$field" />⌃ ⇧

Listing 1.4: Illustration of a reusable layout
template in the aimed approach from Fig. 1.2⌥ ⌅
<table>
<af:iteration -part maxOccurs="100">
<tr>
<td>$af:next$ </td>
<td>$af:next$ </td>

</tr>
</af:iteration -part >

</table>⌃ ⇧
Listing 1.5: Illustration of generic field-to-
template mapping rules in the aimed approach
from Fig. 1.2⌥ ⌅
<mapping >

<type>String </type>
<default tag="inputTextTag.xhtml"

maxlength="255" size="30"
required="false" />

<var name="username"
tag="inputUsernameTag.xhtml" />

<condition
expression="${email == true}"
tag="emailTag.xhtml" />

<condition
expression="${not empty maxlength

and maxlength > 255}"
tag="inputTextAreaTag.xhtml" />

</mapping >⌃ ⇧
Listing 1.6: Sample Java Entity class specifying
data for Listing 1.1 and Listing 1.2⌥ ⌅

public class User { ..

@Not Null @Length(max =50)
public String getUsername () { .. }

@Column(nullable=false) @UiPassword
public String getPassword () { .. }

@UiRestrict("s:hasRole(’ADMIN ’)")
public boole an getConfirmed () { .. }

..⌃ ⇧

i
i

“thesis” — 2015/6/8 — 12:22 — page 5 — #21 i
i

i
i

i
i

5

that tangles together concerns for a particular data presentation. To locate and isolate
a particular concern in the code becomes hard due to tangling, but also a particu-
lar concern definition is distributed and restated across multiple locations because of
its limited reuse. Next, the part of code belonging to a particular concern cannot be
directly determined. Listing 1.1 presents sample source code for Fig. 1.1 in JSF technol-
ogy with various concerns shown in different colors. The purpose is not to understand
the content of the code, rather to illustrate the problem. To visually demonstrate the
issue, consider the abstraction in Fig. 1.3. In order to capture multiple concerns at the
same time for a particular UI page, conventional design cross-cuts and tangles concerns
together, as well as a particular concern cannot be easily isolated from others. Isola-
tion of a particular concern would improve the cohesion of the description; instead, the
concern is distributed across other concerns. Consider what happens when the same
system data needs to be represented in the UI using different widget types, layouts,
input validations for given users, varying security rules, etc.? Most likely it would be
necessary to copy the component code and design another component with slightly
modified target concerns. The tangled concerns directly limit their reuse.

Next, consider the co-existing data definition in Listing 1.6. This data definition may
determine how the UI description in Listing 1.1 should be structured, which components
it should use, and what settings and values apply. In case when data definition changes,
e.g., the username field length restriction extends to 255 characters and a text pattern
enforcing an email value applies, the UI description in Listing 1.1 must conform to
the changes. This directly involves a change of the maxlength value. The developer
decides to replace the entire component for a given field based on the email restriction.
When we consider that data definition changes, but the change propagation to the UI
description delays or gets lost, weak type safety of the UI description does not indicate
any error; consequently, the inconsistency may occur at runtime in production. Let us
summarize the example highlighting individual problems using markers3. Listing 1.1
entangles multiple concerns together; this results (i1) with low cohesive4 source code
of the UI description. We see that the description in Listing 1.1 mixes all different
kind of ideas together. The consequence is that finding the correct location/concern
to apply a particular change requires high concentration, while being distracted by
other concerns. Moreover, the description in Listing 1.1 is highly coupled4 to the data
definition at Listing 1.6. We can see that the type of the data field and its constraints

3Markers (i1), (i2),. . . are used for problem references in later text
4Cohesion & Coupling [6] are measures used to compare quality of source code. See Section 2.1.

i
i

“thesis” — 2015/6/8 — 12:22 — page 6 — #22 i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

influence the selection (i2) of a particular UI component that is, in fact, repeated over
and over again by the developer for different fields. The coupling is also apparent
through the information restatements (i3), such as the maximum length restriction of
the field applies at both the data definitions and the UI description in Listing 1.1 and
Listing 1.6. The way Listing 1.6 designs the data presentation is through entangled
concerns (i4), which leads to repetition. For instance, consider the repeating text for
inputText components, or the table row separators, etc. Even worse, when we aim to
provide the same form in different layout or using different presentation components,
we most likely end up with two very similar descriptions, entangling multiple same and
unchanged concerns with only single concern changed. The result leaves us to maintain
two highly similar descriptions that look like Listing 1.1. Any time the data definition
changes, both descriptions must update. The inability to address varying concerns
may lead, in the worse case, to exponential growth [7, A.8] of the UI descriptions. The
number of combinations in the concern space influences the number of the descriptions;
this would result in an overwhelming amount of code. Next, assume we aim to change
a particular UI concern (i5) in the entire system. When you consider the outcome from
the above text, the difficulty demonstrated in Fig. 1.3, or think of multiple situations
described by components following the description in Listing 1.1, you notice that a
particular concern may be captured multiple times, at many different physical locations,
tangled with other concerns. Thus it may be replicated, and the change may result with
a complex, long lasting update. When you add possible weak type safety, the process
may become very error-prone. As an example, consider replacing all text components
in the presentation with a new version from another library. The change may be as
simple as the change of an attribute name. In order to execute the component change,
we need to find all occurrences of the old component and modify the attribute name.
This shows the concern distribution across the system.

A better arrangement of information would positively impact development, mainte-
nance, reuse, comprehension, flexibility, variations, etc. For instance, compare Figs. 1.3
and 1.4. Fig. 1.3 shows tangled concerns that are distributed in a particular UI de-
scription; this may reflect the situation in Listing 1.1. Fig. 1.4 gives an abstraction
representing an arrangement that separates individual information sets, concerns, and
centralizes concern description. In order to provide a UI design that is in the abstrac-
tion similar to Fig. 1.4, it should avoid tangling concerns together. Naturally, multiple
concerns play a role in the UI design, mostly when considering data presentations. The
organization given in Fig. 1.4 brings better readability in the code, but does it support

i
i

“thesis” — 2015/6/8 — 12:22 — page 7 — #23 i
i

i
i

i
i

7

To develop and maintain it is the other side of the coin

Figure 1.3: Possible visualization
of conventional UI design with
cross-cutting concerns in source
code

Figure 1.4: Possible visualiza-
tion of improved UI design cen-
tralizing cross-cutting concerns in
source code

Data structure
 & Context

D
at

a-
bi

nd
in

g

P
re

se
nt

at
io

n
S

ec
ur

ity

La
yo

ut

In
pu

t-
va

lid
at

io
n

Figure 1.5: Possible visualiza-
tion of aimed UI design address-
ing cross-cutting concern reuse in
source code

concern reuse? If we leave all the concerns together in a particular UI description, it
makes the description specialized to a given combination of concerns. Concerns are still
captured repeatedly with each UI presentation description.

In order to support concern reuse, we should consider indirection [6]. Having a separate
description for concerns, as suggests Fig. 1.5, provides the benefit of their reuse across
different UI presentations. Although we feel that concern separation is a good step
towards a design that supports better reuse, we need to raise the question about how
to compose a UI presentation for particular data. With no doubt, we loose the single,
self-descriptive UI description that connects all the pieces and decisions together, and
we need to find another mechanism to connect them.

In the previous text, you may notice that the self-descriptive UI descriptions restate
existing information. This information usually comes from application data and its
structure, although in later text we will see that application context is similarly impor-
tant. If we consider the data structure and context to be the conductor that directs
the composition of UI concerns for its UI presentation, then we reduce restatements.
Fig. 1.5 shows the situation described so far. Both data structure and context influence
the selection of particular concerns that are used to derive the UI presentation. The
consequence is that presentation of another application data type reuses the already
defined concerns. This also means that growing the amount of application data does
not directly impact the volume of UI description, which was the case with conventional
approaches. Although we sense how the design is structured and the information is

i
i

“thesis” — 2015/6/8 — 12:22 — page 8 — #24 i
i

i
i

i
i

8 CHAPTER 1. INTRODUCTION

captured, this thesis also describes the process that composes all these parts together
to derive various UI presentations.

One possible result of such a concern separation approach is depicted in Listing 1.2.
This example represents the form shown in Fig. 1.2. It shows three components that
process data definition given by the instance attribute. The result is equivalent to the
target form in Fig. 1.1 that in the conventional approach requires much more effort
(Listing 1.1). Each component only binds to a particular data instance for which it
produces the desired UI fragment (form, table, etc.). Internally it weaves together con-
sidered, separately defined concerns (Listings 1.3-1.5). Listing 1.3 shows a presentation
template that represents a text field. Notice that there is no binding to particular data
information; instead information is populated from the data instance passed to the
component in Listing 1.2. Listing 1.4 represents a layout whose content is populated
by the resolved field presentation from Listing 1.3. The resolution that determines a
presentation template (Listing 1.3) to which binds a given data field (Listing 1.6) is
achieved through generic field-to-template mapping rules in Listing 1.5. These rules
reference and query field information to find the appropriate presentation template.
There is no coupling to particular data field, which makes rules reusable across dif-
ferent data. All the mentioned concerns from Listings 1.3-1.5 are reusable throughout
the application as well as they can be ported to different systems; thus they are not
necessarily the subjects of development efforts.

To highlight a few of the advantages that are later explained in the thesis, consider
points (i1) - (i5) from the text above. The previewed approach separates considered
concerns to distinct locations. Their centralized definitions are easy to comprehend,
have high cohesion (i1), which makes it easy to apply changes in a single location;
furthermore one change (i5) can easily influence all its occurrences in UI presentations
across different data and situations. The UI component selection (i2) is determined by
generic field-to-template mapping rules; thus the developer does not need to repeatedly
make the selection. Information restatement (i3) is reduced, since particular data in-
stance can determine the data structure that is used, together with application context,
to determine the UI presentation. The data structure information propagates to the
presentation through an automated process. Listing 1.3 shows an example where is a
particular template aware of information that may be captured together with a partic-
ular data field; the resolution process propagates the information from data structure
given by data instance to the result following the template. The information in the

i
i

“thesis” — 2015/6/8 — 12:22 — page 9 — #25 i
i

i
i

i
i

1.1. PROBLEMS SPECIFICATION 9

template relates to the data structure metamodel. Next, the previewed approach tar-
gets separation of concerns (i4). A novel concern can be integrated to any part in
Listings 1.2-1.5. A situation when presentation template changes based on context can
be handled by extended field-to-template mapping rules resolved at runtime. A wide
layout can be selected through a novel layout definition (e.g., specified as attribute of
the component in Listing 1.2). A conditional rendering of a particular field based on
security rules and context can be pushed down to the data structure as its extension
information or through field-to-template mapping rules, or even through the presen-
tation or layout templates. The code presented in Listings 1.2-1.5 is actual code that
applies a library integrating the design approach brought by this thesis.

1.1 Problems Specification

The previous section provides the sense of the problem with which this thesis aims to
deal. At the same time, there are multiple other issues to address as well, and this sec-
tion provides their brief specification. The detailed explanation brings the consequent
chapters. For the broader understanding of the context and notions, refer to Chapter 2.

Problem 1. Information restatement. Enterprise Applications (EAs) and infor-
mation systems provide mechanisms to manage, store, and retrieve data typically stored
in a relational database [6, 8]. Application data definitions are used in object-relational
mapping, and the definition usually extends with additional information that conducts
the mapping [9]. It is important that data being stored to the system follow integrity
constraints and are valid [10] towards their definition specification. The UI part of such
systems reflects data specification, constraints, security, and other concerns.

In the conventional UI design, the presentation components provide mechanisms to
specify input validation and constraints, which restrict user input. From the UI per-
spective, there does not seem to be anything wrong with that, but from the system
global perspective, the constraints are specified and captured twice: once when speci-
fying data definitions for the storage and retrieval and again in the UI when specifying
the presentation components. Such duplicated specification must correlate to avoid
inconsistency errors, although this extends the development and maintenance efforts.

Problem 2. Repeated decisions. A similar issue occurs when binding system data
to particular components (widgets) of the UI. Usually, each data field must explicitly
bind to a particular component. The UI description language associates particular fields
with particular components; however the field and its constraints determine the selec-

i
i

“thesis” — 2015/6/8 — 12:22 — page 10 — #26 i
i

i
i

i
i

10 CHAPTER 1. INTRODUCTION

tion of which component to use and its validation. For example, a person’s username is
a text field, and the UI description specifies a component that considers text input for
the field; obviously there is restatement in the UI description, since it explicitly specifies
a particular component based on information from the data definition5 . The developer
should not be responsible for picking the component for a particular data field because
it must be maintained. Since the UI description usually uses language with weak type
safety, it is tedious, error-prone, and presents a challenge to avoid inconsistencies [A.2].
Once the data restriction changes for the username to become an email, different UI
component might be required, although the UI change requires manual modification of
the UI description.

Problem 3. Issues with tangled code. Next, we want to describe a UI data pre-
sentation, but in order to do that in the conventional approach, we must tangle various
concerns together. It should be possible to effectively decompose cross-cutting concerns
that appear in the UI. The issue is demonstrated in the motivation example, for in-
stance in Figs. 1.3-1.5. Conventional design does not posses a mechanism that would
effectively deal with cross-cutting concerns [4] and their separation. The inefficiency is
apparent in both GPLs and DSLs. As described in [4] and [12], even the object-oriented
mechanisms and techniques posses such ability. The result of the inefficient separation
of concerns is the tangled-code (concerns), low reuse, low cohesion, complex readability,
increased volume of source code, increased development and maintenance efforts, etc.
In the worse case, the amount of duplication grows exponentially with the considered
concern space and individual concern variations.

Problem 4. Centralization of information. Another problem related to the
separation of concerns is to find an appropriate location in the system to centralize
information. There exists a large community behind the MDD [A.2], which suggests
designing a model that is the source of information. Such a model is then transformed
to code that defines various components that consider the information. This way the
model can be transformed into the component for information storage and retrieval,
as well as to the UI. At the same time, there exists a large community and industrial
standards that suggests capturing information in the source code. To avoid reinventing
the wheel [3], the best practice should be considered irrespective of the particular
approach.

5This can be seen similar to functional dependency in normalization of database management
systems schemas [11]

i
i

“thesis” — 2015/6/8 — 12:22 — page 11 — #27 i
i

i
i

i
i

1.1. PROBLEMS SPECIFICATION 11

The MDD benefits should be considered from the perspective of the UI design. The nice
benefit brought by MDD is the well-defined location for information and the direction
towards platform-independent description of the UI. On the other hand, the model
must be extended to consider industry standards [A.2]. MDD is capable to address
cross-cutting concerns, although there is no generic and broadly accepted mechanism
for this [A.4]. At the same time, system evolution management is impractical [A.3],
and when considering context-sensitive UIs, the model-based transformation must be
aware of the runtime-context, and thus either operate at runtime or prepare all possible
states at the compile time, which could occupy disk space for hypothetical and never
reached UI states [A.4]. As stated in Problem 3, there might exist exponential growth
of the states, related to the combinations in the concern space, which only extends the
difficulty in generating all possible states at compile time.

Problem 5. Benefits of MDD in code-based approaches. MDD brings sig-
nificant advantages regarding centralization of information, reduction of restated in-
formation, etc. Although MDD approaches are very common for scientific research
[A.2, A.3], the industrial community usually uses code-based application development
[2, 6, A.4]. The difficulty with MDD is that developer usually uses it to build appli-
cation skeletons, but later modification are applied to code instead of the model [A.2],
which consequently disables the later MDD use, since all code-level changes would be
erased. The idea of partial MDD use, for instance for UI, is common in the Human-
Computer Interaction (HCI) discipline [A.3], although when the UI presents data that
come from a code-based subsystem, the model suffers from Problem 1. In this work,
we aim to still use the advantages of MDD for code-based approaches. The information
that is in the MDD captured by model could be represented by code. The model can
be derived from code, which avoids the Problem 1.

Problem 6. Deriving UI with process supporting the separation of con-
cerns. As emphasized earlier, neither the GPL nor DSL solutions are sufficient since
they do not effectively address cross-cutting concerns. Thus concern-separating tech-
niques, such as Aspect-Oriented Programming (AOP) [4] and Generative Program-
ming (GP) [12] can be considered. Both are examined in more detail in Chapter 2. For
instance, AOP suggests capturing different concerns separately, which increases the
information cohesion and reuse. Although the contemporary use of AOP [13] targets
method invocation, the initial published work [4] provides a wider perspective. At the
same time, the terminology and mechanisms to address cross-cutting concerns are well

i
i

“thesis” — 2015/6/8 — 12:22 — page 12 — #28 i
i

i
i

i
i

12 CHAPTER 1. INTRODUCTION

described and accepted. It is possible to base an approach on AOP-mechanisms, even
for the UI design.

This work explores the benefits of applying AOP in the area of UI design. AOP suggests
that there exist components that are being extended with the separately defined con-
cerns and that such components should indicate the location of the join point between
the component and extra concern. When considering the AOP-mechanisms in the area
of UI design, concern integration is not considered upon method invocation, but as an
extension to the transformation process. Perhaps the general idea of MDD and AOP
can coexist when finding the process to present data information in the UI. Thus the
model, no matter whether designed through a dedicated graphical model, DSL or GPL,
can be the subject of an information inspection that can be based on well-defined join
points. Such inspection derives the structure of the UI presentation. Once we resolve
the data and information need for the UI derivation, then it is up to the transformation
process to reuse the inspected information, weave together UI concerns, and derive the
UI presentation for given data. Presuming this is possible, then the questions become
1) what is the impact on development and maintenance efforts, 2) what are the design
limits and benefits, and 3) does it help with performance, UI variability, etc.

Problem 7. High costs and efforts related to design of Context-aware User
Interface (CaUI). What do we do when the UI needs to change with the context,
or when it is sensitive to particular user, location, time, etc.? In the motivation sec-
tion, we show that concern tangling in conventional approaches is the main inhibitor of
concern reuse, and thus varying concerns may result with multiple copies of UI descrip-
tions for particular data. With context-awareness the concern space grows, and thus
the development and maintenance efforts, and consequently the costs, grow as well.
Although there exists a large volume of research in this area, the software engineering
perspective is rather limited [A.3]. For instance, existing research mostly focuses on us-
ability, efficient features, distribution of the UI to multiple devices, but the development
or maintenance efforts are left behind, as is the UI performance and responsiveness.
There are user studies regarding usability and user satisfaction, but the code volume
comparisons with existing conventional approaches are not addressed. Although some
results of graphical design features might be stunning, a production deployment might
be impractical due to increased costs related to the development or maintenance efforts
[A.4].

i
i

“thesis” — 2015/6/8 — 12:22 — page 13 — #29 i
i

i
i

i
i

1.1. PROBLEMS SPECIFICATION 13

In order to apply context-aware UIs in practice, the costs should not increase signifi-
cantly. If we solve Problems 4 and 6, the concern definition becomes defined once and
easily reused. Thus the growth in concern space does not impact the development and
maintenance efforts as critically as with conventional approach. To prevent the tight
dependency between data definitions and UI description, the Problem 6 description sug-
gests deriving information from existing code, which is the code defining application
data. If it is possible to reuse existing information captured in code for data definitions
for the UI derivation and the transformation process can easily integrate new concerns,
then the growth in the amount of application data or UI concerns does not directly
impact the volume of UI description for data presentations.

Context-aware UIs for future systems [A.3] must consider runtime application context,
and in conjunction with Problems 3 and 6, the compile time derivation seems impracti-
cal, thus the derivation process must take place at runtime, although for practical use,
it cannot impact UI rendering performance and responsiveness.

Problem 8. UI delivery to remote clients, performance and responsive-
ness. When we look at existing solutions for UI remote client delivery, specifically
to web-based applications, remote clients request the UIs from a distant server. Web-
based servers provide clients Hypertext Markup Language (HTML) content together
with other, usually static, resources. When we look to the HTML content, it reveals
that UI description is tangled together. Information tangling, as mentioned earlier, dis-
ables reuse of individual information concerns. If the server sends to the client the form
at Fig. 1.1, and then aims to change the layout since user re-sized web-browser window,
the entire tangled block of information must be retrieved again from the server, even
though only a single concern changed. Even that many concerns are unchanged, they
cannot be cached at the client-side because the tangling disables it.

Even though solution to Problems 6 and 7 would separate concerns, the separation is
not maintained for the UI delivery, because the integration process takes place at the
server-side, and thus the output is what the server sends to the clients, a tangled UI
description in the HTML format.

If we separate various concerns and maintain the separation for the server-client de-
livery, the client can become responsible for the concern weaving, having full control
over what has changed and what needs to be requested from the server. This pushes
the UI rendering responsibility to the client, but consequently it supports extended
caching options with concern reuse. The separated concern delivery reduces the vol-

i
i

“thesis” — 2015/6/8 — 12:22 — page 14 — #30 i
i

i
i

i
i

14 CHAPTER 1. INTRODUCTION

ume of transmitted information, and furthermore, it reduces server involvement in the
UI presentation and thus reduces required server-side resources to process a particular
client.

Problem 9. Platform-specific UIs. Even though web-based applications are very
common, the user experience is usually better using a native application [14]. Consider
for instance a mobile application and web application that both present a selection
component. The native component extends to the entire display, which makes it easy
for the user to tap on the screen. Although the benefits are undeniable, the efforts and
costs related to application support for various platforms are unbearable. When we
put next to each other a data presentation rendered on different platforms, we must
note that the structure, constraints, input validation, security, data values, etc. are the
same, only the presentation and layout changes. Thus using the concern-separating UI
delivery solution to Problem 8, while separating out the platform-independent concerns,
opens the server-side application for reuse across clients that base on various platforms,
while reducing both the development and maintenance efforts as well as involved costs.

1.2 Contributions of the Thesis

This thesis brings contribution to multiple areas of research as well as shows the prac-
tical use in production-level environment that allows for easy transition to the industry
[15]. It addresses problems specified in Section 1.1. In the following text is given the
summary of the thesis contribution, although details are given in Chapters 4 through
9. All the presented content was published in various international conferences as re-
search papers, SCI-E journals or as extended versions of conference research papers.
The content of Chapters 5-8 correspond to the content of published journal papers
[A.1, A.2, A.3, A.4]. The refereed publications are listed in Bibliography B.

In order to reduce data information restatement (Problem 1) and restated decisions
(Problem 2), this work considers two possibilities. First, the MDD approach is ap-
plied using the Unified Modeling Language (UML) Class model [A.2] transformation.
Although the UML Class model does not provide all the information needed to de-
rive data UI presentation, there exists an extension mechanism through UML profiles.
Existing code-based industrial standards are considered and provided through UML
profiles with stereotypes for presentation, user input validation, and security. This
extension allows deriving the UI from data elements described through UML Class
models. The model becomes the source of information (Problem 4). The information

i
i

“thesis” — 2015/6/8 — 12:22 — page 15 — #31 i
i

i
i

i
i

1.2. CONTRIBUTIONS OF THE THESIS 15

advances to the UI as well as to the data storage components through MDD trans-
formations. The benefit brought by MDD is the abstraction, formalization, and easy
transition among various platforms (partial solution to Problem 9).

Next, the code-based perspective is evaluated [A.15]. It is possible to capture UI-
specific information together with the data definition at the code level. In fact multiple
industrial standards [9, 10, 16] provide similar information extensions to the domain
model [A.2]. Having information captured at the code level allows us to derive data-
based UI components directly from the existing code (Problem 5). The derived UIs
components are equivalent to these that can be received from the UML Class model
through MDD. The advantage of the code-based approach is that there is no need for
any external model. Such an external model used solely for UI derivation greatly
increases development and maintenance efforts in case the rest of the system uses
mainstream EA development [3, 6, 8, 16]. The code-based approach is more familiar to
developers aware of conventional development standards used for EA development [A.4],
thus there is no significant push to learn a novel approach. It is fairly easy to extend
existing frameworks or even reuse already existing information that already applies to
other system concerns. Since developers tend to apply changes to code [A.2], the above
MDD approach would have to apply reverse engineering [A.13] in order to apply such
changes to the model and preserve them upon the next model-to-code transformation.

As briefly mentioned in Section 1.1, neither GPL nor DSL effectively address cross-
cutting concerns, which leads to code tangling. MDD can consider multiple models
[A.17], although a general integration mechanism is missing [17]. Thus AOP concepts
are considered since they effectively address the separation of concerns. UI data pre-
sentations consist of multiple cross-cutting concerns that are usually tangled together
[A.17]; this is apparent in their source code. To address this, an AOP-based, UI design
approach is proposed [A.4] (Problem 3). It considers the domain model to be the sub-
ject of an inspection and an AOP-based transformation that processes the result of the
inspection and determines a particular UI presentation, while integrating UI concerns
(Problem 6). Since it operates at runtime, it considers runtime context and adapts to
context-aware UIs (Problem 7). Practical benefits of the approach are provided based
on an empirical study conducted [A.4] at a production-level application. Among the
advantages are the separation of UI concerns, reduction of restated information, high
concern cohesion, operability at runtime, context-awareness, reduction of development
and maintenance efforts, reduced code volume, single focal point of information, full

i
i

“thesis” — 2015/6/8 — 12:22 — page 16 — #32 i
i

i
i

i
i

16 CHAPTER 1. INTRODUCTION

control over the resulting presentation and the target UI language description, etc. At
the same time, the approach is limited to data presentations, thus it is expected as
an extension to third party UI frameworks that provide the target UI language, com-
ponents, navigation, event handling, etc. The approach computational performance is
evaluated [A.4], and shows similar results when compared with JSF (Problem 7). The
approach is deployed in the production-level application for the ACM-ICPC6 contest
management.

The AOP-based, UI design fits well to the context-sensitive environment. Not only can
it handle application runtime context, it can integrate third-party, context-aware UI
approaches [A.3, A.21]. Since the approach applies inspection to application domain
models, considers their context, and involves the AOP-based transformation, it can
produce input to third-party approaches. This brings a synergy and simplification. For
instance, a third-party, context-aware UI approach normally must restate information
from the domain model that is designed in a mainstream framework. Restatement
brings the disadvantage of tedious and error-prone work [A.2]. Instead, input to the
third-party approach is derived through the AOP-based UI approach (Problems 1 and
2). From the other perspective, this extends the capabilities on both sides. For instance
in [A.3] such synergy brings the capability to stream the UI in a platform-independent
format (Problem 9), which allows composition of the UI on various clients using native
platform components to improve usability. Additionally, advanced features are pro-
vided, such as automated layout allocation of fields, based on usability metrics. Future
changes to the domain model (in the mainstream design) are immediately reflected in
the third-party approach, which avoids inconsistencies and errors and reduces manual
efforts.

Although the above text mentions performance of the AOP-based UI design, it can be
considered in much deeper detail. In web-based systems, the UI is delivered from a
server to remote clients. The UI page load time is influenced by network conditions,
although the load time can be further influenced by other factors, such as the trans-
mitted content size and client-side caching. Conventional UI designs deliver clients the
UI description in a tangled format. Thus field presentations, layout, data presenting
component structure, presented data values, etc. tangle together in the HTML. Al-
though the AOP-based UI design separates concerns at the server-side, it weaves them
together before they leave the server, thus there is no difference in the transmission

6The ACM International Collegiate Programming Contest (ICPC) is a multitier, team-based, pro-
gramming competition. http://icpc.baylor.edu; 2015

i
i

“thesis” — 2015/6/8 — 12:22 — page 17 — #33 i
i

i
i

i
i

1.3. ORGANIZATION OF THE THESIS 17

when compared to conventional approaches. Since these concerns tangle together at
the client, the concern reuse as well as the client-side concern caching is limited. This
leads to situations that are quite inefficient with respect to transmission and thus UI
responsiveness. For instance, when a single concern changes in the UI, the entire UI
must reload from the server-side. Since the AOP-based UI design already separates
concerns at the server-side, it can be extended [A.6, A.1, A.12] in a way that it pro-
vides UI concerns separately to a particular client, and the concern weaving becomes
distributed between the client and server-side (Problem 8). Consequently, clients can
reuse particular concerns and request only these concerns that have changed. In addi-
tion, the client can request various concerns concurrently in parallel. We present a case
study that applies the distributed, AOP-based UI design and compares it with the con-
ventional approach regarding the page load time. The study demonstrates reduced load
times for the presented approach. At the same time, the information volume processed
by the server-side reduces for each request, which reduces required resources.

Dividing the distributed UI concern delivery particles to platform-independent and
platform-specific allows us to reuse the platform-independent information about UI
across different client applications that base on different platforms [A.7]. This brings
the advantage of reduced efforts related to maintenance and development of such appli-
cations. Furthermore, the application becomes flexible to server-side changes to data
definitions that are immediately reflected by all clients (Problem 9). The limitation is
that the approach deals with data presentations, thus controller, navigation and page
flow are left for conventional development approach.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 provides basic notions and background
materials utilized in this work. Chapter 3 introduces related research and provides
literature overview. The summary or related work and the roadmap to the research
in the subsequent chapters are given in Chapter 4. A model-driven approach is pre-
sented in Chapter 5, together with definition of UML profiles that extend the UML
Class diagram to capture information necessary for diagram transformations to the UI.
Chapter 6 presents an alternative approach based on code-inspection. It is discussed
and presented together with AOP-based transformation process. In this chapter, an
evaluation is provided; it shows a proof-of-concept, production experience as well as
samples of integration with other projects. In Chapter 7, the integration with a third-

i
i

“thesis” — 2015/6/8 — 12:22 — page 18 — #34 i
i

i
i

i
i

18 CHAPTER 1. INTRODUCTION

party framework is discussed in the area of context-aware UIs. The synergy provides
advantages brought by both approaches. Chapter 8 discusses UI transmission to re-
mote clients as well as caching. Future works are presented in Chapter 9 before the
conclusion of the thesis in Chapter 10.

i
i

“thesis” — 2015/6/8 — 12:22 — page 19 — #35 i
i

i
i

i
i

2
Basic Notions

Most people make the mistake of thinking design is what it looks

like. People think it’s this veneer - that the designers are handed this

box and told, ’Make it look good!’ That’s not what we think design is.

It’s not just what it looks like and feels like. Design is how it works.

-Steve Jobs
Co-founder, Apple Inc.

UIs play an important role in interaction between software systems and users. Users
often judge the quality of the entire system based on the quality of the UI, and thus it
may significantly impact market success. For this reason, there is a significant aim to
provide sophisticated UIs to satisfy high user expectations; however, UI design typically
involves significant complexity for development and maintenance. The complexity has
many sources, such as large volume of UI source code, but also the logical location of
the UI in the system. UI is built on the top of other software components, which makes
its code vulnerable to changes in the underlying code blocks and components.

19

i
i

“thesis” — 2015/6/8 — 12:22 — page 20 — #36 i
i

i
i

i
i

20 CHAPTER 2. BASIC NOTIONS

As an example, consider a data UI presentation, i.e., a data form through which users
submit data to the system. Such a form must reflect underlying system data and their
constraints. This is, although, only “the tip of the iceberg” of concerns that should
be considered. Proper presentation widgets must be selected as well as an appropriate
layout, and it must consider input validation, business rules, systems access rights,
etc. Often developers design such forms in a manner that mixes and tangles various
concerns together. The motivating example in Chapter 1 shows a problem commonly
known as a cross-cutting concern [4, 12]. This term [18] describes parts of a software
system that logically belong to one single module but cannot be modularized due to
limited abstractions of the underlying programming language. Cross-cutting concerns
are responsible for code tangling, fragment complexity (readability), and decreased
cohesion [6]. Often, such code fragments exhibit high coupling [6] to considered system
aspects; thus at anytime a system aspect changes, it possibly impacts the fragment and
forces its changes. The situation becomes worse when we build a software module (in
our case UI) in a framework that uses a DSL with limited type safety. This means
that when a single system aspect changes in the underlying code, there are limited
mechanisms that would indicate the inconsistency with its references in the DSL, unless
we deploy the system and test it.

From another perspective, UI code is hard to maintain because it exhibits information
restated from other system components/modules [19]. For a good example, consider
the Java EE architecture [20] that suggests capturing persistent data with Java objects,
called entities, and describing UIs through component-based JSF technology [2]. JSF
uses Extensible Markup Language (XML) UI descriptions and provides a templating
framework. Naturally, when we deal with two different languages, such as Object-
Oriented (OO) Java and XML UI descriptions (JSF), we face multiple complications.
For instance, JSF code fragments have to restate information already defined by entities
(data properties, constraints, validation) [A.15]. Next, XML has weak type safety;
thus a typographical mistake can cause inconsistency, which might be discovered too
late after system deployment and result in system error. The impacts of information
restatement are increased development and maintenance efforts [A.4]. [A.11] suggests
that such approach makes the development unnecessary tedious and error-prone.

From both above examples, we see that conventional UI design exhibits multiple de-
velopment and maintenance deficiencies, which may become a burden for developers,
especially when we consider that statistically [21] on average 48% of the application

i
i

“thesis” — 2015/6/8 — 12:22 — page 21 — #37 i
i

i
i

i
i

2.1. BASIC NOTIONS 21

code is devoted to the UI. The average time spent on UI development is 45% during
the design phase, 50% during the implementation phase, and 37% during the mainte-
nance phase [21]. Similar numbers are observed in a study made with the ACM-ICPC
registration system [A.4] where 44% of the code is devoted to the UI-part; furthermore
15% of the code is devoted to forms. Such statistical information provides us with in-
sight on how significant the UI is from the development and maintenance perspective.
Improvements and simplification to the UI may have significant impact to the entire
project; thus exploring a novel approach to reduce development and maintenance efforts
is well justified. At the same time, it is important to consider contemporary industrial
standards for enterprise system development [22] and to provide easy transition into
existing systems and processes, while avoiding reinvention of the wheel.

2.1 Basic Notions

This section describes basic notions used throughout the thesis.

Notion 1. Coupling: Coupling [6] is a measure of how strongly one element connects
to, has knowledge of, or relies on other elements. An element with low (or weak) cou-
pling is not dependent on too many other elements; “too many” is context-dependent.
These elements include classes, subsystems, systems, and so on.

Notion 2. Cohesion: Cohesion [6] (functional cohesion) is a measure of how strongly
related and focused the responsibilities of an element are. An element with highly-
related responsibilities, and which does not do a tremendous amount of work, has high
cohesion. These elements include classes, subsystems, and so on.

Notion 3. Maintainability: Maintainability [6, 23] is a measure of how easy it is to
maintain a software system. Preserving low coupling positively impacts maintenance.
It reduces the probability that a maintenance change in a single component needs to be
propagated to other components. Preserving high cohesion, gives a higher probability
that a maintenance change in the system requirements only affects a small number of
components.

Notion 4. Development efforts: Fowler et al. [8] suggests that lots of people write
computer software, and we call all of it software development. Effort is understood
as the amount of exertion expended for a specified purpose, in this case software de-
velopment. Development efforts usually grow with the complexity of considered tasks,
situations, requirements, etc. but are also influenced by the software architecture [23].

i
i

“thesis” — 2015/6/8 — 12:22 — page 22 — #38 i
i

i
i

i
i

22 CHAPTER 2. BASIC NOTIONS

On the other hand, reduction is brought by the use of design patterns [3, 8]. Bass et al.
[23] also suggest its close relation business quality called cost and benefit, when stating
that “The development effort will naturally have a budget that must not be exceeded.”

Notion 5. Maintenance efforts: Maintenance is an aspect of maintainability [23].
It can be understood as the phase of a software development process [6, 23], when the
system is extended with error-fixes, performance improvements, functionality, changes
in requirements, etc. Effort is understood as the amount of exertion expended for soft-
ware maintenance. Note that even authors such as Dijkstra were concerned with main-
tenance. For instance [24] suggests partitioning and structuring software to as oppose
to producing correct results; consequently [23] suggests that an elegant software design
increases the ease of development and maintenance. The creation and maintenance of
large systems presents a substantial software development challenge in designing for the
performance, modifiability (accommodation of changes in requirements), scalability of
functions needed to extend these systems to provide more functionality, fidelity, au-
tomation, etc. The aim of OO or AOP, introduced later in this chapter, is to simplify
software development and maintenance [13].

Notion 6. Responsiveness of UI applications: Responsiveness is related to sys-
tem performance; it is the system ability to complete a given task within a particular
time. Responsiveness of UI applications [13] can be understood as the time needed to
accomplish a particular operation provided by the UI. For web-based systems, many
factors influence responsiveness, including system design, amount of transmitted infor-
mation, network conditions (latency, bandwidth, etc.), current system load, hardware
performance, etc.

Notion 7. Readability: Readability [8] is a measure of how easily [13] a human
reader can understand the purpose, control or data flow, and operation of source code.
Low coupling simplifies readability, since comprehension of the interaction among com-
ponents requires studying fewer components. High cohesion improves readability since
all related information is aggregated at the same location. Readability is important
since developers spend most of the time reading and comprehending the code. Unread-
able code is hard to maintain, leads to errors, poor reuse, and often leads to duplication.

Notion 8. Reusability: Reusability [3] is a measure of how easy it is to reuse a
component in a different system or for a requirement variation. Preserving low coupling
positively impacts reuse. Generic components tend to be reusable since they are less
dependent on other system components, on the contrary specific components tend to

i
i

“thesis” — 2015/6/8 — 12:22 — page 23 — #39 i
i

i
i

i
i

2.1. BASIC NOTIONS 23

be hard to reuse. Reusability improves readability. Preserving high cohesion of a
component gives complete and well-defined functionality with easy reuse.

Notion 9. Extensibility: Extensibility [3] is a measure of how easy is to extend
system with new functionality, or to allow incorporation of relevant, new technologies
as they are developed [23]. Preserving low coupling positively impacts introduction
and integration of a new component. Preserving high cohesion simplifies development
and design of new components, since we do not need to be concerned with aspects not
related to a given functionality.

Notion 10. Usability: Usability [23] considers how easy it is for a human user
to interact with software system. It studies user satisfaction, experience, usefulness,
clarity and the ease to achieve a given task. Usability is often associated with UIs
where it measures how effective it is in a given domain to prevent errors and guide
user to achieve a particular goal, etc. In the context of UI, context-awareness and good
responsiveness improves usability [23].

Notion 11. Concern: A concern [4] is a set of information that influences the source
code of a particular program or a component. A concern could be a performance per-
spective of a program, its ability to present data, to secure them, to verify consistency,
and so on.

Notion 12. Separation of concerns: Separation of concerns [4, 5, 13] is an approach
for modularization that brings a reduction of design complexity. When we have multiple
concerns that tangle in the same section of source code, we call it highly-coupled or
tangled. We usually aim to separate concerns to support readability and maintenance,
but sometimes such separation is not possible in conventional programming languages
(see cross-cutting concerns).

Notion 13. Cross-cutting concerns: Concerns that cannot be easily separated
and tangle together in a given source code section are called cross-cutting concerns
[4, 13]. These concerns cannot be cleanly separated from each other, which causes
code duplication, hard reuse and has the effect of a “spaghetti code” with difficult
maintenance. Existing programming paradigms that address cross-cutting concerns
include AOP [4] and GP [12]. Object-Oriented Design (OOD) has limited constructs to
effectively address cross-cutting concerns [4]. Similarly MDD can address cross-cutting
concerns, but a generic integration mechanism is missing [A.3, A.4].

i
i

“thesis” — 2015/6/8 — 12:22 — page 24 — #40 i
i

i
i

i
i

24 CHAPTER 2. BASIC NOTIONS

Notion 14. Metamodel: A metamodel [6] is a model that is used to specify and
define other models. It usually defines elements from which to form a model and their
constraints. It may define a language for expressing a model. It gives an explanation
and definition of relationships among various components of the applied model.

Notion 15. Aspect: AOP considers units such as GPL components and aspects
[4, 13]. An aspect is a feature of a program that can be linked to the other parts
of the program, although it does not need to be the program’s primary functionality.
An aspect can be multidimensional and can bring both functional and non-functional
properties to other concerns in the program. In AOP an aspect consists of a pointcut
(see join point) and advice that defines the extension to the core program. As suggested
by [13], aspect is a new unit of modularization in the AOP methodology that provides
separation of cross-cutting concerns.

Notion 16. Join point: A join point [4, 13] is a point in the control flow of a
program. It specifies a location or a point of execution in a program where an aspect
(its advice) can be executed. A set of join points is called a pointcut. When a program
execution reaches a join point defined in a pointcut, advice can be executed.

Notion 17. Object: The Object-Oriented Programming (OOP) introduces the
concept of an object [23] that consists of fields and methods. An object has properties
defined through fields and also defines behavior through methods and interaction with
other objects. Objects usually hide data designed through its fields and other objects
that want to access the data must interact with given objects through its methods. An
object is similar to an Abstract Data Type (ADT) [25] with the addition of inheritance
and polymorphism.

2.2 Enterprise Application Design

The term EA is often mentioned in literature [2, 6, 8], although consider that various
authors may mean different things by this term. This work uses the meaning suggested
by Martin Fowler [8]. Fowler provides a detailed description of EA. In his book [8], he
suggests starting with examples, such as systems dealing with payroll, patient records,
shipping tracking, cost analysis, credit scoring, insurance, supply chain, accounting,
customer service, and foreign exchange trading.

An EA usually involves persistent data, which needs to be persisted over multiple runs
of the program or even forever. Since there is usually a lot of data, they need to be

i
i

“thesis” — 2015/6/8 — 12:22 — page 25 — #41 i
i

i
i

i
i

2.2. ENTERPRISE APPLICATION DESIGN 25

organized, indexed and easily accessible. This involves persistent storage, databases,
or more abstractly a repository [25]. EAs provide access to data concurrently to many
users and must handle transactions and data integrity. Since the ’90s these systems
tend to be web-based and work over Internet, utilizing client-server architecture [25].

Fowler also mentions that since there is so much data, many UI screens exist to handle
it. At the same time, users come with different levels of technical expertise and, for
some users, low technical expertise. This means that the data has to be presented in
lots of different ways for different purposes. EA usually supports batch processing over
the data and focuses on interaction with users.

EAs are rarely isolated and usually integrate other EAs, which requires them to be
based on common communication technology. EAs usually separate component re-
sponsibilities into distinct layers [6, 25]. So far we mentioned the presentation on the
top and persistence at the bottom. In the middle layer, EA handles business processes
over the data. Although we often read in literature the term business logic, Fowler
considers this to be often “illogic”. This layer is very individual for each organization.
It is very common that many strange conditions interact with each other, usually to
handle special cases. Management of such thousands of conditions is often a burden.

The Enterprise Application Architecture (EAA) can be summarized as follows: It uses
various architectural styles [25] such as client-server for interaction with users, reposi-
tory for persistence, and three-layered architecture style [25] to divide responsibilities
of the EA. The client-server interaction involves network communication that may
be based on Transmission-control protocol (TCP)/Internet Protocol (IP), but more
likely on the Hypertext Transfer Protocol (HTTP) involving HTML. The repository
involves databases or persistent storages such as relational databases, message queues,
distributed databases, etc. EAA has the high-level components divided into persis-
tence, business, and presentation layers. Practical examples of EAA are applications
built with Java EE or .NET frameworks.

In relation to EAA, it is important to mention that for the last two decades the most
dominant programming languages used to design software systems are OO languages, [3,
6]. OO languages fit into the category of GPLs [4, 12]. OOD applies to all three-layers
of EAA, although it is very common for the presentation layer to involve Component-
Based Design (CBD) [2] and DSLs [2, 26] to describe the UI. In case of web systems,
these components or DSL descriptions often translate to the HTML, which is the result
provided to clients.

i
i

“thesis” — 2015/6/8 — 12:22 — page 26 — #42 i
i

i
i

i
i

26 CHAPTER 2. BASIC NOTIONS

The basic rational for components in CBD is generalization, easy extension and sim-
plification of the client code. The concept is introduced by [3] through the composite
design pattern. DSLs, as oppose to GPL, focus on a specific domain, and thus may cap-
ture the domain concerns more effectively [27] than GPLs. On the other hand, we often
need to integrate information already described in GPL into DSL. Thus, we cannot
decouple the integration of DSL and GPL structures. One issue presented by [28, A.4]
suggests that DSL descriptions often need to restate information from GPL compo-
nents, in order to extend them. This introduces extra development and maintenance
efforts and may become a source for errors.

2.2.1 Object-Oriented Programming/Design (OOP/D)

Historically an object is an evolutionary step from an ADT [25]. In the OO style, we
define the concept of a class and its instances called objects. A class defines a set
of properties or fields and a behavior in the form of its methods. An object usually
encapsulates and hides its properties from other objects and lets its methods provide
the aimed behavior on the properties. Objects interact with each other over method
calls.

When designing class models, for instance to capture the application domain, it is
useful to divide properties into attributes and associations [29]. An attribute has a
common, basic data type; an association is a property, whose data type is defined by
the class model in the considered domain. For instance, consider a class that has a
String property; this property is an attribute. If a property has the data type Person
or Set of Persons, where Person is defined by the class model, then the property is an
association. Object interaction then often uses associations to reach other objects or
an indirection [6]. An object has knowledge about other domain objects, introduced
through method parameters, associations, variables and so on.

Any kind of object knowledge about other objects can be understood as coupling among
the objects. This is evident for example when an object changes its name; all coupled
objects must reflect the change (apparent in their source code). In OOD we aim to
keep the coupling low [6].

Next, the OOD brings the concept of inheritance and polymorphism among classes.
This means that a class can extend another class, shadow its methods and extend
the original behavior. In the other direction, a class can be generalized with a parent

i
i

“thesis” — 2015/6/8 — 12:22 — page 27 — #43 i
i

i
i

i
i

2.2. ENTERPRISE APPLICATION DESIGN 27

-isAbstract : Boolean
-name : String

Class

-name : String
Field

-name : String
Method

-name : String
Parameter

-name : String
Annotat ionmethods

fields

parameters

*

*

*

*

*

type

type

*

returnType

annotations

annotations

annotations

parent
Visual Paradigm for UML Community Edition [not for commercial use]

Figure 2.1: Example object-oriented design metamodel

class exposing the generalized idea/purpose, while child classes capture variations and
custom details.

When we deal with a programming task/problem, there are two basic approaches to
decompose it: through a class composition that uses associations or through the inheri-
tance [3, 8]. The composition and inheritance are orthogonal approaches, and they can
be combined together as well. As can be seen from the above or from OOD literature
[3, 6], it provides multiple mechanisms to deal with software problem decomposition.
Since no one wants to reinvent the wheel, OOD best practice solutions exist, known as
design patterns [3, 8].

Class constructs, semantics and constraints are defined by a metamodel. For instance
Fig. 2.1 shows an example class metamodel deduced from the Java programming lan-
guage. It shows the concept of classes with relation to fields, methods, method param-
eters, and annotations.

Each class, field, method or its parameter can be extended with a set of annotations.
An annotation extends the information captured relative to its location. In the past,
such an extension would be captured through XML descriptors, but later such ap-
proaches become known as XML-hell [2] because of difficult maintenance. Example use
of annotations are class extensions for input validation [10], persistence [9], security
[30], dependency injection [8, 30], etc.; broad examples are provided later in this work.

Before we move to the description of various layers, we look at a few basic parameters
that impact code maintenance and readability. We have already introduced coupling
[3, 6, 31]. Elements that introduce high coupling in their design are hard to read and
maintain. Thus in order to keep the design well-readable, reusable and maintainable,
the coupling among classes (or components) should remain loose.

i
i

“thesis” — 2015/6/8 — 12:22 — page 28 — #44 i
i

i
i

i
i

28 CHAPTER 2. BASIC NOTIONS

Another important parameter the keeps classes well readable is cohesion [6]. Cohesion
from its original meaning predicts that a class (or component) should direct its func-
tionality to a single goal rather than to many different goals. A class (or component)
with low cohesion has too many responsibilities, and tries to solve many unrelated
things. Such a class (or component) is hard to maintain, read/reuse, and comprehend
by developers/designers.

Classes that together design a cohesive and coupled solution to a sub-problem can be
referred as a component or subsystem. The overall system is often composed out of
multiple components that may introduce various levels of coupling. Often we hide
the component under a Facade design pattern [3] that only introduces to the outside
world the component’s public functionality and, at the same time, hides its internal
complexity.

In order to define a high-level system abstraction, the concept of layers was introduced.
A component, whether large or small, gives us a sense of a structure. In case we need to
logically separate/aggregate classes with different/similar aims, we can place them into
a package, which is a hierarchical logical structure that may contain other packages,
classes or artifacts.

2.2.2 Three-layered Architecture

Contemporary development frameworks usually apply a three-layered architecture [6,
8, A.4]. This section introduces the responsibilities of the layers. As a reference, we
use the Java EE [16] architecture.

The lowest layer of the architecture is responsible for persistence and typically uses OOP
[3, 6]. This layer must deal with mapping of objects to the relational database or other
storage. In the case of relational databases, the mapping is called Object-Relational
Mapping (ORM). In Java EE exists a standard for the ORM called Java Persistence
API (JPA) [9]. The JPA specification states its objective “to provide developers with
an object/relational mapping facility using a Java domain model to manage a relational
database.” This bottom, persistence layer consists of an object-oriented domain model
representation that reflects the entity-relationship database model1,2. A class of the
domain model usually consists of fields (attributes and associations) and getter/setter

1Alternative terms are stated in [29] where they refer to an object model representation that reflects
the relational data model representation.

2In the following text, I refer to the OO domain model representation as the domain model [8].
Some researchers also refer it as a data model.

i
i

“thesis” — 2015/6/8 — 12:22 — page 29 — #45 i
i

i
i

i
i

2.2. ENTERPRISE APPLICATION DESIGN 29

PersonInfo

name: String

email: String
state: String

country: Country
begunDegree: Date

notes: String

Figure 2.2: Example PersonInfo Entity

Listing 2.1: Example Java code fragment for Fig. 2.2 with JPA and
Bean Validation annotations✏ �
@Entity
@Table(name = "PersonInfo ")
public class PersonInfo {
private String name;
private String email;
private String state;
private Country country;
private Date begunDegree;
private String notes;

..
@Column(name="name",nullable=false ,length =100)
@NotEmpty @Length(max = 100)
public String getName () { return this.name; }
public void setName(String n) { this.name = n; }

@Column(name = "begunDegree", nullable = false)
@Temporal(TemporalType.DATE)
@NotEmpty @Past
public Date getBegunDegree () {

return this.begunDegree;
}
.. /* other getters/setters */� �

pairs to access fields. It can be seen that this layer captures the static structure of a
system, mostly in the form of the data that the system manages. In JPA terminology,
each class that is persistent is called an entity. A class becomes an entity when it is
annotated with an entity annotation [9]. Each entity field is persisted to a database,
unless explicitly signified that it should not be. An example is shown in Fig. 2.2 where
the example class, PersonInfo, is captured in the UML class diagram. This class can
be transformed to an entity in Java code as shown in Listing 2.1. Notice that this Java
class uses multiple annotations, these are explained in Chapter 5.

Each entity class may capture further constraints, such as the set of unique fields; an
individual field can be constrained as well. The JPA standard defines annotations to
conform data integrity (nullable, unique, read-only, etc.) as well as to apply persistence.
Thus in order to define persistent data, we define an entity class, and its fields represent
data properties or table columns. This approach becomes the best practice for many
other frameworks such as .NET, PHP, etc.

Furthermore, over time it was found useful in design to use field annotations for entities
beyond persistence. For instance, a Java standard called Beans Validation [10, 32]
suggests that a set of validators applies to entity class fields and enforces validity of data
properties received from upper layers of the system. This approach allows designers to

i
i

“thesis” — 2015/6/8 — 12:22 — page 30 — #46 i
i

i
i

i
i

30 CHAPTER 2. BASIC NOTIONS

non-forcibly extend field meaning and seamlessly integrate validation. Such addition of
validation is easy to understand, maintain, and locate. Listing 2.1 shows annotations for
both JPA and Bean Validation. Clearly, the persistence layer is pretty straightforward
with respect to development practices, when considering the above standards.

The business layer is, in comparison to the persistence layer, the least standardized
among different frameworks. The intent of this layer is to capture application business
rules and elaborate interaction among entities in the application workflow and business
processes [A.10, A.18, A.23]. It can be seen as the dynamic part of the application.
This layer is dependent on the persistence layer, in particular the domain model. Thus
local changes to entity classes may require changes in other entities and also in business
layer in relevant business rules.

The most notable issue with this layer is weak standardization of business rule manage-
ment, which leads to issues with maintenance, specifically integration or overlapping of
business rules that impact each other [8]. It can be observed that with OOD we can-
not effectively capture a all the business rules that should apply for multiple entities
[A.10, A.18, A.23]. [A.18] shows an example of a rule that triggers multiple entities
to be read-only upon a given date. A base OOD approach leads to multi-location re-
statement of the rule and its distribution over the business layer makes such a rule
hard to maintain. Such tangled code can be addressed via design that involves AOP
[A.10, A.18, A.23], which we mention later in Chapter 3.

In a large application, it could be reasonable to use rule/reasoning engine for rule
evaluation. An example of such an engine is framework Drools [33]. This framework
builds on a pattern matching rete-algorithm [34]. Drools uses DSL to describe business
rules and patterns that refer to entities and enforce system actions or complex inter-
object validations. The DSL is translated to Java code and applies throughout the
application.

Besides business rules, this layer applies security, transaction boundary, and in some
cases session state of services. Various services are provided to the above layer. As
a best practice, it provides Service Facades [3] that present service API to the above
subsystem, so that no internal complexity exposes to other parts of the system.

The presentation layer presents both lower layers to users. It considers that end users
use devices, such as personal computers, notebooks, tablets, cellphones, etc. Notably, it
presents coupling to lower layers. The layer often divides workflow or task-flow through

i
i

“thesis” — 2015/6/8 — 12:22 — page 31 — #47 i
i

i
i

i
i

2.2. ENTERPRISE APPLICATION DESIGN 31

various pages that present particular data in various forms [2]. It provides navigation
among pages and control over system actions enforcing the workflow.

It is a common practice to build pages from hierarchical composite components [2, 3]
that provide action listeners. These actions are being interpreted and controlled by
controllers [6]. A UI component that provides visualization is known as a widget.
Examples of widgets are buttons, combo-boxes, input fields, panels, etc. This thesis
focuses on data presentation, which in EAs [8] represents significant part of the UI.
Data presentation might be also referred as data visualization. Examples of these UI
fragments are forms, tables, data iterations, data reports, etc. Besides these parts,
the presentation layer of EAs also offers menus, navigations, buttons, action triggers,
window layout, controllers, etc.

From the considered scope, the main efforts are placed on components that request
and present data from/to user, forms. These components are very complex as they
integrate data references, field presentation, user input validation, security concerns,
form layout, business rules, context, etc. A particular user interaction with the system
may also influence the resulting data representation in the UI. For example, a user that
experiences difficulty in the interaction might be provided suggestions or hints on how
to fill in data values.

When we look at this architecture from a high-level perspective, we want to see the
interaction among the layers. The most common “happy path” life-cycle scenario is
when an authorized user submits a page containing a data form. The submission
is processed through a controller that converts data submitted through the HTTP
POST/GET via widgets to object fields at the server-side and makes a decision on
data/action validity; if the decision passes, then it initiates a service call to the business
layer. The business layer may apply security rules, business rules and perhaps make
sure the data fields are valid using complex validation rules. Then it persists the data
object based on the entity class/field annotations. All entity fields have appropriate
ORM annotations, which determine data persistence and constraints. Upon successful
return, the controller decides where to take the user next and most likely redirects
him to another page or presents him a success message. Failure usually results in an
exception. Based on the exception, an exception handler either leaves the user on the
same page indication the error or in a severe case redirects to a default page presenting
the error message.

i
i

“thesis” — 2015/6/8 — 12:22 — page 32 — #48 i
i

i
i

i
i

32 CHAPTER 2. BASIC NOTIONS

Component

Container

Panel

Dialog

Button

Checkbox

Choice

List

TextComponent

Window

Frame
TextArea TextField

Figure 2.3: Subset of AWT Component hierarchy

2.2.3 Model-View-Controller Design Patterns

Many contemporary frameworks that deal with UI advertise the use of the Model-view-
controller (MVC) pattern [3, 8], although they usually employ a variant of it. The aim
of the pattern is to separate presentation of information/data from its definition and
support reuse of the definition.

The idea behind MVC is to divide components into a model (in the context of 3-layer
architecture represents persistent and business layer), a controller that mediates actions
from the view, and a view that provides a presentation of a data from the model. In
the context of the 3-layer architecture, both the controller and view are part of the
presentation layer. When the user invokes an action in the view, the controller handles
the action and may pass it to the model. The model accepting the action that results
with data modification notifies all views about the change.

Fowler [8] points out that the pattern usually degrades to a passive version of MVC,
where no notification from model to view happens on its update. Although, the MVC
is common design pattern, many alternatives to it exist such as Model-View-Presenter,
Presentation-Abstraction-Control, Model View ViewModel, Hierarchical-MVC, etc. [6,
8]. The pattern involvement does not impact results of our work, and we mention it
mostly because of it usual involvement in the context of UI.

2.2.4 Component-Based Design (CBD)

The presentation layer in EAs involves both OOP practices and CBD, which is often
further simplified with the use of DSLs. Plain development of a UI in OOP would be
complex, low-level and impractical. Instead the UI is usually designed from existing
predefined components, also known as widgets. The aim of every contemporary devel-

i
i

“thesis” — 2015/6/8 — 12:22 — page 33 — #49 i
i

i
i

i
i

2.2. ENTERPRISE APPLICATION DESIGN 33

From:
To:

Status: Open Submitted
 Accepted Rejected

Figure 2.4: Sample JSF fragment [1]
Figure 2.5: Sample AWT fragmentroot:UIViewRoot

form:UIForm

from:UIInput to:UIInput choices:UISelectMany

open:SelectItem

submitted:SelectItem

accepted:SelectItem

rejected:SelectItem

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 2.6: Component tree for Fig. 2.4 [1]

:Frame

:Panel

:Panel :Panel

:TextArea one:Button
two:Button

:Choice

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 2.7: Component tree for Fig. 2.5

opment framework [1, 2, 3, 6, 8, 20, 29, 30, A.18] is to provide composition mechanisms
and mostly simplification for the development and maintenance. The aim of CBD is
to simplify the design through the use of generalized widgets that can be combined
together to form the entire UI page or window [2].

Nowadays CBD-based frameworks, such as Java Swing, Abstract Window Toolkit
(AWT), JSF, Wicket, Flex, .NET, etc., offer large collection of widgets, with vari-
ous aims of presentation or composition. Each component has a given presentation
purpose, although alternative components may exist with different appearance for user
satisfaction. Components usually provide action listeners to propagate invoked events
to page controllers [6, 8]. The advantage brought by CBD is that we can combine all
sorts of components together, in order to achieve the expected presentation result.

For demonstration purposes we use two frameworks: fat-client presentation framework,
AWT, and web-presentation framework, JSF [2]. Consider a subset of the component
hierarchy for AWT in Fig. 2.3; similar hierarchy exists also for JSF. Note the inheritance
is based on the composite design pattern [3], which allows component composition into
a component tree. The component tree then represents a particular UI page or window.

Next, consider a basic example of a JSF page in Fig. 2.4 and an AWT window in
Fig. 2.5. The component trees of these presentations are available in Fig. 2.6 for the
JSF page and in Fig. 2.7 for the AWT window. For fat-clients, it is common to use GPL

i
i

“thesis” — 2015/6/8 — 12:22 — page 34 — #50 i
i

i
i

i
i

34 CHAPTER 2. BASIC NOTIONS

<html>!
..!
 <body>!
 ..!
 <h:inputText../>!
 ..!
 <h:selectManyCheckbox..>!
 <f:selectItem../>!
 <f:selectItem../>!
 </h:selectManyCheckbox..>!
 ..!
 </body>!
</html>!

<html>!
..!
 <body>!
 ..!
 <input type=“text”../>!
 ..!
 <select..>!
 <option../>!
 <option../>!
 </select..>!
 ..!
 </body>!
</html>!

Response JSF Page

Static text

Static text

Generated

JSF Tree

Figure 2.8: Rendering of a JSF Tree to the HTML response [1]

for component composition and specification. The web-based technology usually uses
DSL descriptions for the composition and often allows its constructs to combine it with
HTML. Google Web Toolkit (GWT) provides another approach for web frameworks.
GWT, although a web framework, offers design similar to fat clients; it uses the GPL
description, which it compiles into a JavaScript (JS) representation.

While the DSL tends to be more effective, developers might dislike its possible lim-
ited type safety as well as restricted options for inheritance and decomposition. At
the same time, we cannot expect the GPL approach to provide full type safety. For
example, we can reference objects, methods and fields, but we cannot reference an-
notations. In Section 2.2.2, we mention that contemporary standards for enterprise
application development capture data constraints and restrictions through annotations
over its fields. This plays an important role in the UI, because the widget selection
is influenced by the constraint constellation, and the constraints must be restated in
settings of each component in order to preserve the consistency of data requested from
users and data persisted to the database. Consider for example an error in text length
specification where the persistence class field allows persisting 50 characters while text
length specification is omitted in a Text widget. The user assumes that he/she may
provide unlimited description that is later transparently shorten throughout the persis-
tence, and in the worse case, no error is reported to the user and important information
gets lost.

Specifically for DSL, web-based frameworks consider the translation mechanism similar
to one presented at Fig. 2.8 [2]. This figure presents a JSF code snippet at the right
side that is parsed to produce a component tree (in the middle). This component tree
is the subject of a transformation into the target format, HTML. The HTML is then
interpreted at the client-side by web browsers. Such a mechanism allows us to take
into consideration the target web-browser type and its capabilities and influence the
transformation.

i
i

“thesis” — 2015/6/8 — 12:22 — page 35 — #51 i
i

i
i

i
i

2.3. GENERAL DESIGN APPROACHES 35

PIM

Platform
Independent

Model

MDA
Transformation

Platform
Specific
Model

PSM
Java

C++

Ruby

DDL

XML

Source
code

Figure 2.9: Model-driven architecture transformation

2.3 General Design Approaches

Besides the contemporary 3-layered architecture and CBD manual development intro-
duced in Section 2.2, multiple alternative approaches exist. Namely, we look into Model-
Driven Development (MDD), Generative Programming (GP), Domain Specific Lan-
guages (DSL), Meta-Programming (MP) and Aspect-Oriented Programming (AOP).

2.3.1 Model-driven Approaches

The first considered alternative to conventional design utilizes a model-centric approach
called MDD. The model becomes the primary artifact of system development; applica-
tion source code is generated directly from this model. There exists a standardization
attempt that uses UML models called Model-Driven Architecture (MDA) [35]. The
main advantage of the MDA approach is platform/middleware independence. We can
capture the problem domain through platform-independent models, such as UML, and
transform them to platform-specific models that reflect a particular domain in given
platform. From these we can derive source code for the given platform. For example,
consider Fig. 2.9 that sketch the MDA phases. When we try to apply the MDA ap-
proach, we use the UML model semantic and syntactic descriptions and their metamod-
els. Metamodels were already mentioned in relation to object concepts in Section 2.2.1.
The UML metamodel defines properties and characteristics for every model language
element.

In order to extend UML diagram functionality, an extension mechanism called UML
profile exists [36, 37, 38, 39]. A UML profile is a package with stereotypes for specific
meta-classes and tagged values for meta-attributes. Stereotypes in UML reflect the
concept of code annotations, and tagged values reflect annotation attributes. The
majority of statically-typed OOP languages have some form of annotations for class
extensions that allow us to capture extra information or constraints in it.

i
i

“thesis” — 2015/6/8 — 12:22 — page 36 — #52 i
i

i
i

i
i

36 CHAPTER 2. BASIC NOTIONS

The MDA suggests that all information should be captured in the model, and the code
itself is solely generated from models. Unfortunately, there is a lack of production ex-
perience [A.2]; the majority of productions systems are code-based. It is obvious that
a model that captures the entire system becomes too complex and with no doubt may
include cross-cutting concerns on the model level [A.17]. Although we could use mul-
tiple models to capture various concerns and integrate them together, the appropriate
generic integration mechanism is missing [17]. Furthermore, MDD approaches do not
naturally fit to adaptive systems [40] because in such systems runtime information is
needed to influence model-to-code transformation and MDD runtime transformation
might be performance inefficient [41], which leads to compile-time derivation of large
amount of possible states [40]. It may statically generate all possible application states
and configurations for hypothetical/possible situations. In complex systems, this can
grow exponentially. In [40] authors observe that MDD suffers during adaptation and
evolution management, that minor changes to the system require complex redeploy.

With MDD we receive a system that fits to most of the situations, but for the edge cases,
we may need to apply slight modification, which often takes place in code rather than
in the model itself. Code re-generation from the higher abstraction model can become
impractical since the manually added information gets lost [A.2, A.17]. A reasonable
compromise can be seen in an approach where a certain subsystem is based on MDD and
the rest follows the mainstream code design. Unfortunately, such an approach presents
a burden when existing backend code contains information that are being restated in
the model, leading to introduction of inconsistencies. In addition, often no verification
mechanism exists that would inform us about inconsistencies. For example, consider a
UI designed with the MDD approach using information from business and persistence
layers. This approach will expect all information to be restated in the model; thus all
later changes in these layers cause inconsistency with the MDD UI.

2.3.2 Automatic/Generative Programming

Another idea called automatic programming goes back to 1940 [42] when punched cards
were used. Parnas, the main contributor of the concept, explains that the main idea is
that a programmer defines a specification of what he wants and a computer produces the
program in the language of the given machine. Thus automatic programming always
has been a euphemism for programming with a higher-level language. Parnas concludes
that research in automatic programming is simply research in the implementation of
higher-level programming languages. The primary input to automatic programming

i
i

“thesis” — 2015/6/8 — 12:22 — page 37 — #53 i
i

i
i

i
i

2.3. GENERAL DESIGN APPROACHES 37

Configuration
Knowledge Solution space

Java

XML

Java

XML

Java

•  Domain-specific concepts
•  Features

•  Programming, Textual,
Domain-specific,
Graphical languages

•  Wizards

Problem(space(

•  Components
•  Combinability
•  Minimum redundancy

•  Feature combinations
•  Dependencies
•  Settings
•  Construction rules
•  Optimization

•  Templates, Frames
•  Transformations
•  Metaprogramming
•  Staged computation
•  Reflection
•  Interpretation

Java

Figure 2.10: Sketch of generative programming concept

was supposed to be a problem “specification,” but this over the time degraded to de-
scription of an algorithm, for efficiency reasons. Thus writing the specification is really
writing a program. Parnas also raised a question on improvements, and believed that
improved languages can lead to a reduction in the amount of detail that a program-
mer must handle and thus improvements in reliability. This must mean that the input
specification is in non-algorithmic form. Although, even a mistake can be made in such
non-algorithmic specification, thus automatic programming will not help with flawed
specifications. Parnas indicated that the missing element in automatic programming is
verification. This, although, cannot be solved by mathematical models that we would
use for automatic programming.

The idea of automatic programming is not far from the alternative and later idea of GP
[7, 12, 43]. GP emphasizes specific domain methods and integration to OOP. GP can
be seen as programming that generates source code through generic code fragments
or templates to improve a designer’s productivity. Authors of GP [12, 43] define it
as a design approach to combine and generate specialized and highly optimized sys-
tems fulfilling specific requirements. A GP sketch is provided in Fig. 2.10. The goal
is to address the gap between program code and domain concepts, support reuse and
adaptation, simplify management of component variants, and increase efficiency. Fur-
thermore, it addresses principles such as separation of concerns [5] that suggest dealing
with one issue at time and avoid code that deals with multiple issues at the same time.
Next, it addresses parameterization, separation of the problem space from the solution
space, which splits the problem space and its domain specific abstractions and maps it
to the solution space with available implementation components, etc.

i
i

“thesis” — 2015/6/8 — 12:22 — page 38 — #54 i
i

i
i

i
i

38 CHAPTER 2. BASIC NOTIONS

Authors of [12, 43] relate GP to DSLs and AOP, which we address later. DSLs focus
on a specialized description of a given domain, which give designers concepts to work
with the domain, but with loss of language generality. AOP addresses problems through
decomposition to functional OOD units and aspects, and these weave together to obtain
system implementation. Weaving takes place at compile time or runtime. Weaving
often uses meta-programming, also described later. The aim of GP is wider than AOP;
it emphasizes the automatic configuration and genericity, but applies at the compile
time.

2.3.3 Domain Specific Languages (DSL)

The involvement of DSL for application design is remarkable and more details should
be given. When we focus at a particular domain, we often find a language efficient
for the domain specification and description [7, 27]. These DSLs are often taken as a
counterexample to General-Purpose programming Languages (GPLs). Historically it is
also known as application-specific, special-purpose, specialized, task-specific or appli-
cation languages [27]. The use of a particular DSL is often limited to a given domain,
while providing suitable constructs. The expected benefits are increased productivity
and reduced maintenance. It may open the application specification to domain experts,
who have no explicit programming skills. Such a language often builds on the top of
XML. We may find their use in many domains, such as presentation description, with
examples such as JSF or HTML, business rules [33], modeling, etc. In fact these lan-
guages may capture models introduced in Section 2.3.1. Unlike GPL, DSLs do not need
to be executable.

In [27], authors suggest that DSL brings possibilities for analysis, verification, opti-
mization, parallelization, and transformation in terms of their constructs that would
be much harder or infeasible in GPL. They also emphasize that it is common to provide
a visual model to represent the DSL, while the textual description makes program and
specification composition easier for large systems. When aiming to design a new DSL,
either it is possible to build on existing languages or it is necessary to determine new
DSLs relationship to the applied GPL, define constructs their composition mechanisms
and their semantics. To execute the specification given by DSL, it needs to be com-
piled, interpreted [3], and the output can be generated or the result can be embedded
(in such cases it is better build on the top of GPL - host language). When DSL embeds
its result, the developer must face issues with error reporting and with performance.
Furthermore, we must beware that when we aim to apply DSL together with underlying

i
i

“thesis” — 2015/6/8 — 12:22 — page 39 — #55 i
i

i
i

i
i

2.3. GENERAL DESIGN APPROACHES 39

Object'of'
Unknown'
Type'

Reflec3on'

Type'
introspec3on'

Examine and modify the
structure and behavior

Examine the type
or properties

Figure 2.11: Observing and object of unknown type through reflection and introspection

system, there is limited type safety, and thus changes to the underlying system does
not directly propagate to the DSL specification. Information are often restated [28],
and DSL does not address cross-cutting concerns, although it is commonly used with
AOP to describe aspects [18].

2.3.4 Metaprogramming (MP)

So far the approaches did not address information reuse from existing structures, al-
though reuse would be very beneficial for maintenance. Assume that we use the design
approach from Section 2.2 and we want to reuse information captured in low layers.
MP gives a program or a language an ability to examine or modify both its structure
and behavior at runtime. Many contemporary, statically-typed programming languages
have the ability to describe them, called Reflection [44], based on an architectural design
pattern [45]. It is further capable to observe object properties, methods, annotations,
etc. (see Fig. 2.1).

For object examination, there is only a subset of the reflection ability needed, called
introspection. Introspection is capable of examination of object properties at runtime.
Fig. 2.11 gives a basic overview. This mechanism allows the program to dynamically
adapt to different situations. Among the disadvantages, we can emphasize that perfor-
mance becomes an issue for this type of approach. Another issue is code readability as
we loose type safety or harder maintenance of reflective programs. MP is a great instru-
ment for code inspection and information extraction. This approach is commonly used
by contemporary frameworks, for instance for ORM. The way it deals with performance
bottlenecks is that it uses a cache or code generation upon application deployment [46].

i
i

“thesis” — 2015/6/8 — 12:22 — page 40 — #56 i
i

i
i

i
i

40 CHAPTER 2. BASIC NOTIONS

2.3.5 Aspect-Oriented Programming (AOP)

Features we discovered as missing or complex for OOD, MDD, GP, etc., are addressed by
the AOP approach [4, 13, 18]. It suggests to capture different concerns in independent
code fragments called aspects and considers their compile time or runtime weaving. The
runtime weaving may depend or be influenced by the runtime context. The integration
mechanism is well described and generic. A given problem is decomposed to functional
OOD components and aspects, and these are joined together through aspect weaver.
The integration of aspects into in the OOD components considers dedicated locations
in the OOD components called join points.

For a demonstration, consider Fig. 2.12 that on the left side shows the usual compilation
of the OOP code and the alternative with the AOP on the right side. Notice that the
left side OOP code has larger volume and interleaves various colors, consider that these
colors are various concerns that this case captures tangled together. The developer is
responsible to maintain the entire tangled code fragment. On the other hand the AOP
aims to strip out the concerns from the OOP code into aspects that are separately
defined in GPL or DSL. Such separation supports their reuse across different OOP
components. Consequently the volume of the OOP code decreases and becomes easy
to read, highly cohesive. The aspect weaver is instructed by OOP code join points
how to integrate aspects, defining other concerns, into the OOP component. A join
point can be for example an annotation or a method name. The result of weaving, as
shows Fig. 2.12 on the right side, can be an OOP component that is further compiled
by regular compiler. The advantage for the developer is the concern separation, code
reduction, readability and the same compiled result as when is all concern tangling
done manually.

Join points are crucial elements of the AOP as they indicate concern integration. They
are recognized by the aspect weaver either dynamically upon code invocation or at the
compile time (as demonstrated by Fig. 2.12). Based on a given context, an aspect may
or may not integrate to a given location at the OOD unit. The product of aspect weaver
can have the same execution properties as tangled code but with the advantage that all
the concerns can be defined separately to support good readability and maintenance.

To provide a more specific example of the AOP consider Fig. 2.13. It shows 3 methods
on the left side. Each method tangles concerns such as main method logic, security,
synchronization and logging. When considering the left side image we see tangled
concerns in the method source code when using OOP. Such method is hard to read

i
i

“thesis” — 2015/6/8 — 12:22 — page 41 — #57 i
i

i
i

i
i

2.3. GENERAL DESIGN APPROACHES 41

OOP OOP + AOP

*"
o

*"
o

 Compiler"

Compiler" Weaver"

Executable
Executable

Figure 2.12: Compilation of a program that involves
aspect weaving

OOP OOP + AOP

Source code of
methods

Source
code of
methods

Aspects

Security Method logic Synchronization Logging

Figure 2.13: Demonstration of cross-cutting concerns
tangled in OOP and their untangling in with AOP

and its cohesion is low. The right side of Fig. 2.13 uses AOP and shows the separation
of concerns as well as use of the OOP for method logic and AOP. The example well
demonstrates the advantages but it omits the fact that sometimes the OOP component
requires a slight extension with join points, such as additional method annotations.

In the primary AOP research [4] authors demonstrate that AOP design has the ability
to significantly reduce the application total Lines Of Code (LOC) and development
efforts. In their example, they reduce a complex, optimized application that tangles
code with 35’213 LOC into an AOP-based application with the same features and
optimization with fewer then 1’039 LOC.

Contemporary AOP frameworks can be described with a conceptual model. Such a
model has three main components [18]:

Join Point Model: defines available join points for adaptation
Pointcut Language: defines the query language to select a subset of join points from the

join point model
Adaptation Mechanism: allows to add or modify functionality at selected join points

These components well describe existing frameworks such as AspectJ or Hyper/J in
which we often modify or add functionality upon method call or code execution. We
can recognize static and dynamic join points. A static join point can be characterized
as a location in the program’s source code [18] and thus characterizes application static
structure. Each static join point can be reached multiple times upon program execu-
tion, and the dynamic join point then represents a single hit to this join point during
the program execution [18]. The difference becomes more obvious when we consider a
changing application runtime context that plays a role in the adaptation. Whether an
aspect adaptation should take place or not is decided based on evaluation of an expres-

i
i

“thesis” — 2015/6/8 — 12:22 — page 42 — #58 i
i

i
i

i
i

42 CHAPTER 2. BASIC NOTIONS

Table 2.1: Comparison of design approaches
Ability/Approach OOD MDD GP & DSL AOP MP
Compile time convenient yes yes yes yes yes
Runtime time convenient yes slow no yes yes
Separation of concerns no no2 yes yes no
Reduces restated decisions no yes yes yes no
Reduces restated information* no no no no yes
Model or Code inspection no yes no no yes
Evolution management good bad good good bad1

Adaptable towards changes* no no yes yes yes
Transformation based no yes yes yes no
Synergy with OOD - no yes yes yes
Platform independence no yes no3 no no
⇤when considering existing code structures/application backend
1 the MP code itself, but enables good management to the rest of the system
2 it can address them, but a generic integration mechanism is missing
3 DSL can express a model for MDD

sion in the pointcut language that may involve the structure and also the application
context. Example adaptation mechanisms are advices in AspectJ or composition rules
in Hyper/J.

To receive the static structure of a program, often the weaving involves metaprogram-
ming mentioned in Section 2.3.4. The difference with GP [43] is the scope. GP scope is
larger than AOP and involves DSL, model, etc., although AOP can use DSL for aspect
description as well. AOP is more general and has generalized integration constructs.
GP emphasizes compile time automatic configuration; however, we must also see a wide
intersection in addressing cross-cutting concerns, adaptation and configurability.

2.3.6 Summary

Let us summarize mentioned approaches in Table 2.1. We compare the selected abilities
such as whether it applies to runtime, addresses separation of concerns, reduces restated
decisions or information from existing structures, applies inspection, handles evolution
management, adapts easily towards changes or existing structures, and is compatible
with OOD. It can be seen that none of the approaches addresses all considered crite-
ria. In our consideration, we mostly aim for a runtime solution, addressing restated
decisions and information, easily applying existing information with proper evolution
management, while addressing cross-cutting concerns, and at the same time synergy to
OOD to enable easy integration to current mainstream design of information systems
and EAs. As oppose to other approaches MDD brings the possible benefit of platform
independence.

i
i

“thesis” — 2015/6/8 — 12:22 — page 43 — #59 i
i

i
i

i
i

3
Related Works

Don’t reinvent the wheel, just realign it.

-Anthony J. D’Angelo

The area of UI development is broad, and thus it includes many related works based on
the approaches introduced in Section 2.3. This chapter is divided into three sections.
The first section introduces and classifies UI design approaches. The second section
introduces Context-aware User Interface (CaUI) in the area of HCI. The third section
describes approaches that deal with content delivery that may improve UI performance
and responsiveness for web-based applications.

3.1 UI Design Approaches

This section describes existing UI design approaches and provides their classification.
First, the manual approach is introduced. Next, widget builders are discussed followed
by model-based UIs, DSLs and GP for UI, and MP approaches to UI. All approaches
are also compared based on selected criteria in the summary.

43

i
i

“thesis” — 2015/6/8 — 12:22 — page 44 — #60 i
i

i
i

i
i

44 CHAPTER 3. RELATED WORKS

3.1.1 Manual Design for Data Presentation in UI

A nice introduction to EA development is provided by Fowler et. al. [8] and mentioned
in Section 2.2. Fowler suggests that EA usually involves a large volume of persistent
data, “illogic" business rules, and UI screens to handle the data workflow.

In case UI fragments for data representation are designed manually, the developer must
inspect application data, their fields and constraints by hand and select appropriate
components/widgets for data property representation based on a given selection criteria.
Each component has additional settings influencing its representation or behavior and
reaction on user input.

When data are represented as objects, appropriate components are selected for their
fields. An individual component setting representing the field also relates to field con-
straints. The restatement in the UI representation is caused by the incompatibility of
the data object with the UI language, possibly DSL. This might seem to be a minor
issue at first; in fact, it is a significant problem. Consider what happens when the
system evolves and data change, a common scenario with application development; all
UI components referencing the data must change as well. When we use a type-safe
language, we might receive immediate feedback from the compiler, although some com-
ponent properties are text or numeric rather than verifiable references. For example,
consider that a static reference to a field annotation or its parameter is not available in
GPL; such information is then restated in the UI component. The situation becomes
worse when the UI framework uses a DSL to describe the UI, for example JSF. Such
an inconsistency between the data object and the UI part might be discovered after
production deploy.

Information restatement brings negative consequences. When the restatement requires
manual efforts, the process becomes error-prone and tedious and the maintenance be-
comes difficult. Next, there is an increase in coupling among application elements, and
there might not be a mechanism to prevent inconsistency for languages with weak type
safety or to verify the integrity.

Further details concerning to conventional UI development are provided in [A.4, A.17].
The main problem arises from tangled concerns in the UI fragment source code. As
mentioned in Chapter 1, to design an appropriate presentation we must provide data-
binding and consider user input validation that plays a role in the component selection
and component setting. What if there exist different validation rules for the general

i
i

“thesis” — 2015/6/8 — 12:22 — page 45 — #61 i
i

i
i

i
i

3.1. UI DESIGN APPROACHES 45

public and an administrator in our application or when validation rules change with
the time scope? It must be considered that different users might have different rights
and perhaps can see different data fields. Furthermore, what if we want to provide
a user-friendly UI such that we offer a wide layout for users with wide screens and a
standard layout otherwise? We have explored in Chapter 1 that these concerns are
cross-cutting, and we do not have effective mechanisms in OOP [18] that would allow
us to capture and consider these concerns separately, which greatly decreases fragment
reuse, since the component tree considers all these at once. As an example, consider
multiple layout variations for the same form. It is apparent that we would need to copy
the entire component code fragment and replace parts representing layout.

A skeptical assumption is that Extensible Stylesheet Language (XSL) transformation
can solve the problem with layout, but the CBD framework mechanism may prevent
it. For example in JSF, the component tree renders to HTML (Fig. 2.8); thus any
Extensible Stylesheet Language Transformations (XSLT) process would have to be done
internally, i.e., an internal pre-component tree would have to be composed, transformed
through the XSL to the component tree and then rendered to HTML. Instead, we need
to consider that the layout is a single concern and other concerns may be changing as
well. Later in Chapter 6 more details are provided along with a solution to address
separation of UI concerns.

To summarize, there exist two core problems with conventional development of UI frag-
ments representing data. First, we must restate information from the data elements
in the UI elements. This presents a considerable problem for UI inconsistency; for
languages with weak type safety, this becomes a burden. Second, UI fragments rep-
resenting data combine multiple concerns at once, which prevent it from reuse and
flexibility to adjust the UI to various conditions or situations. As a result, we must
copy the original code fragment apply changes to it and keep up with multiple similar
code fragments varying in details.

3.1.2 UI Widget Builders

Specifying UI through code descriptions may be hard and complex, especially for de-
velopers new to this kind of UI framework. Very often a simplification is provided in
the form of UI widget builders [47, 48]. Such builders are tied to the component devel-
opment framework and provide an easy visual editor with drag-and-drop functionality,
composing the component tree, while seeing the visual representation of the UI that is

i
i

“thesis” — 2015/6/8 — 12:22 — page 46 — #62 i
i

i
i

i
i

46 CHAPTER 3. RELATED WORKS

being designed. Very often we may find these editors to be an extension of Integrated
Development Environment (IDE) such as Eclipse, NetBeans, IDEA, etc.

When dealing with data representation, we can select components to represent data
fields, drop them to a given layout, and even select component constraints and set data
binding. The main focus of these builders is a one-way approach from the visual editor
to code, although, basic code constructs can be also recognized in the visual editor [48].
The reverse approach is limited to base constructs that lack custom, parameterized
constructs or dynamic UI code based on runtime calculations. More sophisticated
builders are capable of initial component generation based on given data reference
[48, 49, 50]. We consider such generation rather basic or simplistic as the designer has
to explicitly specify which fields to visualize, etc.

Widget builders certainly help with the initial design. The produced UI source code is
often rather complex and its volume is large. Manual changes to the code and refac-
toring [6, 8] that uses more advanced, generalized or parameterized code constructs are
not interpreted by the builder in the reverse direction. The maintenance of the UIs then
becomes as complex as with manual design, or even more complex since the resulting UI
code from the builder is extensive and lacks advance constructs. The builder-generated
UIs couple together all concerns that we considered in previous sections; thus a single
page integrates all the layout, field presentation, and constraints. In case we want to
support conditional rendering, these builders do not help us, and we must touch the
source code, which may disable future builder use. Even builders, upon code-changes,
do not help with restated information, and thus data modification that implies changes
to the UI must be propagated by hand. They neither help with system evolution nor
support adaptive features for the UIs. Since these widget builders do build the UI
representation as a component tree, they cannot handle cross-cutting concerns well.
Furthermore, the generation is processed before or at compile time.

3.1.3 UI Model-based Approaches

The model-centric approaches are also used for UIs. For example, [51] provides a
survey on model-driven tools for HCI and emphasize the impact on reduced efforts for
design of interactive systems. They classify tools on how they capture metamodels and
models, whether they use graphical or also a textual representation, and what they use
for constraint definition (most of the time Object-Constraint Language (OCL) [52]).
Authors of [53] suggest that the gap between HCI and System Engineering could be

i
i

“thesis” — 2015/6/8 — 12:22 — page 47 — #63 i
i

i
i

i
i

3.1. UI DESIGN APPROACHES 47

addressed with MDA. They raise the argument that part of the scientific community
suggests that relating design models to the user interface might be considered a mix
of presentation and persistence logic; however, their observation is that HCI concerns
cannot easily be described independently from other concerns. A skeptical view on
MDD in the UI area suggests [54] that despite considerable research, model-based UI
tools have not become common, in part because building models is an abstract process
and better results are often achievable by a human designer in less time.

In Section 2.2.2, we introduce standards used by application frameworks such as JPA
[9] for ORM or Beans Validation for User Input Validation (UIV) [10]. It seems that
in MDD we would need to re-invent these. We could consider suggestions given in [22]:
when we want to design an approach that would be applied for contemporary systems,
we cannot expect industry to make very large changes to processes and methods. Re-
search is expected to build on the work of others, using existing standards. Fortunately,
is possible to extend the UML models by profiles [35] for situation like this. An Model-
Driven (MD)-JPA UML Profile for class diagrams is provided by [55], which enables us
to capture persistence aspects on the model level. Furthermore, in our work [A.2], we
design UML profiles for validation, security, and presentation.

In [56], authors aim to design CaUI through MDD, but for such UI we need runtime
information and UI generation at runtime [40], which may impact performance [41].
Static generation can lead to many states, and their variation can grow exponentially.
Furthermore addressing cross-cutting concerns [40] may become an issue since generic,
multi-model integration mechanism is missing [17]. [57] notices that MDD often uses
specific or hard-coded transformation rules, which degrades its reuse; instead generic
and configurable rules should exist [57, A.17], to support reuse among systems.

3.1.4 Generative Programming & Domain Specific Languages for UI

Pioneering work applying generative programming to UI [7] demonstrates the use of
abstract specifications for UI generation. The authors suggest that such application
consists of three parts: a DSL for UI description, configuration generator that auto-
mates the product assembly by taking the DSL specification and assembling the imple-
mentation components from it, and an extensible collection of elementary components
available for the assembly. Such an approach then allows producing a large number of
system variants based on specific requirements. The authors then suggest splitting the
analysis of features and their simplified capturing in a DSL, which reduces the required

i
i

“thesis” — 2015/6/8 — 12:22 — page 48 — #64 i
i

i
i

i
i

48 CHAPTER 3. RELATED WORKS

knowledge from the implementation language. They notice that it is highly possible to
make mistakes, such as typing errors, while writing the specification. The main benefit
of the GP demonstrated by a case study at [7] is the possibility to combine two hundred
features in UI, which gives the variability of 5 ⇥ 1017 prototypes. On the other hand,
it is questionable whether all such prototypes will ever be used and whether having
statically allocated all these prototypes is reasonable. However, GP does not help with
information restatement and lacks the ability to consider runtime information.

The DSL area itself is very broad and commonly used in the industry, e.g., consider
JSF, JavaServer Pages (JSP), Wicket and many other DSLs for Java EE (and other
languages). Although many researchers aim to simplify the UI description even more
[58], the main drawbacks of these approaches stems from the duplication of source
information, additional maintenance efforts when source information changes, limited
constructs to capture cross-cutting concerns separately, or lacking support for variable
UIs and often weak type safety.

3.1.5 Meta-programming UI

Multiple research proposals such as [19, 28, 59, 60, A.15] utilize automated UI genera-
tion by applying code-inspection or rather MP. These approaches inspect information
captured by lower layers, then build an ad-hoc structural model, and transform it to
the UI. This simplifies both development and maintenance since it reduces restated
information. The difficulty is that such an approach cannot generate the UI unless pro-
vided additional information, typically supplied by additional markup within the source
information [A.2]. Experience from industrial standards such as Java EE [9, 10, 16]
show that the domain model already captures additional markup for persistence and
validation constraints. The same approach can be applied also for presentation [A.2]
and security. Naturally, such an approach can generate basic UIs, but more complex
UIs or even adaptive UIs can become difficult.

At the same time MP does not address an UI transformation or a proper context struc-
ture. Furthermore, it does not deal with output variations, cross-cutting concerns, or
context-awareness, although, it can adapt the UI to changes in the underlying struc-
tures. Naturally, MP seems to well address information reuse from existing structures
and can be used as a part of more complex solution [A.4, A.17].

i
i

“thesis” — 2015/6/8 — 12:22 — page 49 — #65 i
i

i
i

i
i

3.1. UI DESIGN APPROACHES 49

3.1.6 Aspect-based UI

In [40, 61] the authors point out cross-cutting concerns that play a role in UI and
attempt to apply aspect-oriented techniques together with model-based approach to
support multiple degrees of variability that depends on user context. Although, only
limited amount of information is exposed on the applied approach. Generally, the
research of AOP applicability to the area of UI is rather sparse. This thesis and our
previous research [A.1, A.4, A.17, A.21] explore more details and aims to formalize the
AOP-based UI approach. More details are to be found in the upcoming chapters.

3.1.7 Classification Discussion

Kennard et. al. [60] suggests that UI design approaches could be divided into
three groups: interactive graphical specification tools, model-based generation tools,
or language-based tools. Interactive graphical specification tools are described in Sec-
tion 3.1.2, and allow developers to sketch UIs on the screen while in the background
they generate corresponding source code. Model-based generation tools use a model
describing the UI, which is then transformed to an appropriate UI presentation (see
Section 3.1.3, Section 3.1.4 and current related research in Section 3.1.6). The language-
based tools suggest deriving UIs from the language and domain objects, as shown in
Section 3.1.5 as well as Section 3.1.6.

In our research [A.17], we consider another point of view for UI design classification. We
consider an approach that we call restate-to-extend and inspection-based approach. The
restate-to-extend approach requires that the same information in a system be captured
twice at different locations, to preserve its integrity. This rises from the technological
inability to effectively reference information. The information duplicity is applied to
a particular concern in the UI, such as presentation, validation, etc. Development us-
ing this approach typically involves interactive graphical tools, model-based generation
tools [62, 40], external models for UI representation [14], but also DSL tools [58]. The
main drawback of these approaches stems from the duplication of source information
and additional maintenance efforts when source information changes. Inspection-based
approaches use existing information accessible by code-inspection or MP. The main
effort is placed on the information source that must capture sufficient information to
derive a specific concern. Design using this approach typically involves language-based
tools. The disadvantage of this approach is that source information does not necessar-
ily capture all needed concerns. However, both restate-to-extend and inspection-based

i
i

“thesis” — 2015/6/8 — 12:22 — page 50 — #66 i
i

i
i

i
i

50 CHAPTER 3. RELATED WORKS

Table 3.1: Comparison of UI design approaches
Criteria/Existing UI Approaches Manual Widget

builders
MDD GP DSL@ MP AOP

Address cross-cutting concerns no no weak yes no no yes
Reduces restated co-exist. information no no no no no yes no⇤
Fast initial design no yes yes no1 yes yes no12
Full output customization yes no no yes no no yes
Reduced system maintenance efforts no no no yes yes yes yes
Reduced code volume no no yes yes yes yes yes
Compatible with third-party yes no no yes no yes yes
Customizable UI transformation - no yes yes no no yes
Generic/reusable UI transformation rules - no no no no no no
Runtime transformation - no slow no yes slow yes
@
(assuming high-level DSL not low-level)

2
(non existing weaver - values below this row are assumed)

1
(unless a compiler/weaver exists)

⇤
(apart from MP)

approaches need to deal with information transformation to the UI. As suggested in
[57] and [A.17], a generic approach should be used. Furthermore, neither of the above
approaches directly address cross-cutting concerns, although related research on this
topic exists for both model-based [40, A.21] and GP approaches [7].

3.1.8 Summary of UI Design Approaches

In the above section, we introduced contemporary UI design approaches. We looked
at the component-based development of UI involving manual coding, widget builders,
MDD, GP, DSL, MP, and AOP. We evaluate the existing work in Table 3.1, although
a small variation may exist among existing work in given approach. As evaluation cri-
teria, we consider whether cross-cutting concerns are addressed, reduction of restated
information from co-existsing structures, fast initial design, ease of customization of the
output, reduction of maintenance/code volume, compatibility with third-party frame-
works, customizable/generic transformation rules, and (most important) runtime con-
sideration. The columns of Table 3.1 represent existing work in given approaches, and
rows are evaluation criteria. The AOP research is sparse; thus we estimate the result.
We can see that neither manual development nor builders address many of our criteria.
MDD and DSL address multiple of our criteria. More promising approaches although
seem to be GP and MP. Theoretically AOP may have the most promising attributes
for UI design, although weaver does not exist (not considering the one from our work
introduced later). Also a given weaver implementation can strongly impact the eval-
uation. The ideal design may combine multiple strong parts from various approaches,
such as MDD transformation, DSL description for UI, GP integration of the DSL, MP
for code-inspection, or AOP for runtime integration of cross-cutting concerns.

i
i

“thesis” — 2015/6/8 — 12:22 — page 51 — #67 i
i

i
i

i
i

3.2. CONTEXT-AWARE UIS 51

3.2 Context-aware UIs

A basic overview of adaptability and adaptivity is provided by [63]. Both terms refer to
knowledge-based self-adaptation. Adaptability can be deduced before the interactive
session begins. On the other hand, adaptivity relates to an interactive session. CaUI
may address both these features. The idea of such UIs is studied in multiple domains.

For example, we can see its application to [64] electronic cooking assistants in kitchens to
adjust layout, in a hospital navigation case [14], and in a house control unit example [61].
Most of the existing work focuses solely on presentation, adaptability and adaptivity
features. Typically they apply model-based approaches and thus restate information
from application backend. None of the related approaches provides a study or an
evaluation regarding runtime performance or production experience. In fact they rarely
consider maintenance efforts.

Multiple CaUI design methods require the target environment and possible variations
of the user interface at the design time [62, 65], but future, more advanced, adaptive
systems need to consider runtime information as well as suggested by [66]. CaUIs
may receive benefits from application of aspect-oriented techniques. The existing work
[40, 61] extends a model-based approach to deal with multiple degrees of variability
that depends on user needs and context.

From the architectural point of view, most of the related works in this area use model-
based approach. Specifically they divide the model into an abstract and concrete part
for the UI [A.21]. Sometimes there exists an interaction module [61]. Furthermore,
there might exist inconsistencies among these parts. Bi-directional mappings between
the abstract and concrete UI are suggested [67] to avoid such inconsistencies. To fur-
ther avoid information restatement among models, [57] suggest using model-to-model
transformations. In addition they suggest to avoid excessively detailed adaptation rules
since they prevent reuse; instead a set of generic mapping rules should be used.

In [56] the authors suggest a task-based approach and use Concur Task Tree (CCT) [68]
to describe tasks. Such an approach allows authors to distribute UI to multiple diverse
devices. In [69] the authors divide the context into user, platform, and environment
and then apply an ontology-based framework.

CaUIs may also deal with automatic field position optimization for concrete UIs [A.21,
70]. This can be seen as an optimal distribution of widgets on the screen to support
usability, although such optimization requires addition criteria per field detailing its

i
i

“thesis” — 2015/6/8 — 12:22 — page 52 — #68 i
i

i
i

i
i

52 CHAPTER 3. RELATED WORKS

Table 3.2: Comparison of related work

Features [64][14][61][66][62, 65][40][19, 60][A.2, A.15][7]
Model-based - - + + + + - + -
Runtime approach + + + + - + + + -
CaUI + + + + + + - - +
Reduces code - - + - + + + + +
Avoids restate-to-extend + - - - - - + + -
Addresses cross-cutting concerns - - + - - + - - +
Ad-hoc model construction (code-inspection) - - - - - - + + -
Uses enterprise technology standards - - - - - - + + -

importance for given context, which increases maintenance and development efforts.
Note that the optimization itself also degrades the application performance (in range
of seconds) [A.21].

Related research addresses presentation, but also an interaction flow and navigation,
although this is beyond the scope of the research presented in this thesis. For our
approach, we consider that the interaction mechanism is managed by a host framework.
For example JSF uses a DSL page flow, or a broad variety of navigation and interaction
options are provided by specialized frameworks such as jBPM and Drools Flow [33] that
comply with our approach and can be seen as the production-level alternative to the
CCT.

The summary of considered related work regarding the CaUI design is provided in
Table 3.2. The Table 3.2 evaluates [7, 14, 19, 40, 60, 61, 62, 64, 65, 66, A.2, A.15]
from various feature perspectives. The first row shows whether the considered research
bases on models. Next, whether it applies runtime UI generation. The below row
shows whether it intends to address CaUI. The following row indicates whether the
used approach aims to address code reduction. The next rows shows whether it avoids
restating information. The perspective of separation of cross-cutting concerns is given
next. The previous last row shows, whether the approach applies code inspection. The
last row indicates whether it complies with existing developments standards such as
Beans Validation [10], JPA [9], etc. It can be noted that none of the approaches has
the ability to provide all the features that in consequence reduce development and
maintenance efforts and give the flexibility to address CaUI.

i
i

“thesis” — 2015/6/8 — 12:22 — page 53 — #69 i
i

i
i

i
i

3.3. CONTENT DELIVERY IN WEB-BASED APPLICATIONS 53

3.3 Content Delivery in Web-based Applications

The standard client-server communication for EAs and web applications bases on the
HTTP protocol. It provides core mechanisms to improve the transmission. First,
the underlying TCP-based protocol supports connection persistence, so that multiple
resources can be loaded from a single server using the same connection, to avoid con-
nection reopening. Multiple parallel connections usually exist from a client to a single
server. HTTP supports content compression to reduce the transmission content size.
Furthermore, it supports resource caching at the client-side with time-based invalida-
tion. The caching usually applies to static resources such as CSS, images, and JS.
HTML5 brings an option to cache JS calculated results and results of web-services
through a local caching mechanism called Local Storage. [A.19] shows that an average
contemporary web system consists of about 90% static, cacheable resources. To further
reduce the transmission, UI developers may apply resource content obfuscation and
resource merging [A.20]. To mitigate the impact of client distance, servers may apply
geo-distributed caching of static resources called Content-delivery Networkss (CDNs),
such as Akamai [71].

The majority of existing UI approaches provide UI descriptions is a way that various UI
concerns tangle together, which impacts the transmitted volume, limits reuse, caching
and abilities of the client-side [A.1]. Alternative delivery options are considered by
GWT [72] and AngularJS framework [73].

GWT brings an advanced idea in the way it works with actual data values. Instead
of delivering data value tangled with the UI description, it streams them separately
to the client in JavaScript Object Notation (JSON) format. The client-side integrates
the received data to the UI. A similar idea is adopted in AngularJS framework [73],
which separates data values from the delivered UI description and uses templates that
integrate the provided data values at the client-side.

We look at the GWT in more detail. It suggests describing the UI using type-safe
Java language (GPL). Such description compiles and generates all UI states to the
JS UI description, although this may affect the transmitted UI volume. Consider
the use of the MDD philosophy, and its benefits and limitations. The positive effect
can be seen in the offline functionality, but the overall transmission volume might be
extensive considering CaUIs [40]. The MDD nature of GWT brings the possibility to
address incompatibilities among web browsers, and consider multiple transformations

i
i

“thesis” — 2015/6/8 — 12:22 — page 54 — #70 i
i

i
i

i
i

54 CHAPTER 3. RELATED WORKS

generating different variants of JS descriptions. GWT as mentioned above considers
separate delivery of data values, but also considers that part of the generated JS UI
description is static and cacheable and part is dynamic. From the above is apparent
that GWT application usually send the client UI description with all the states, which
fits to applications such as interactive consoles, email clients, etc. But the use for EAs
or information systems might not be the best fit [A.1].

Alternative option explored later in this thesis [A.1] considers separated delivery of
UI concerns. This allows transmitting only the actual state needed by the client and
this fits better to EAs. When dealing with exponential growth of UI states, GWT
compiles them to a particular descriptions, the proposed alternative targets separation
of concerns at the delivery level, which allows to provide concerns individually, and
thus avoid the negative impact on the extended transmission volume.

Approaches addressing HTTP optimization exist. For instance Structured Hypertext
Transfer Protocol (STTP) [74] extends HTTP to include new messages to control the
resource transmission for a particular web page. A similar approach, HTTP-MPLEX
[75], employs a header compression and response-encoding scheme for HTTP. Similar
to STTP, it multiplexes multiple responses to a single, sustained stream of data to
speed response times and improves application layer use of TCP. While experiments
show performance improvements with these protocols, they do not consider resource
distribution through CDNs, caching, or web-page variations.

An alternative to a CDN involves the use of a Cooperative-Web cache (CWC) [A.19,
A.9]. The CWC involves a Peer-To-Peer (P2P) overlay network where clients interact
together to redistribute cached resources among each other. Considering a situation
with distant server and two clients relatively close to each other, this may bring benefits.
Unlike CDNs, CWC supports natural scalability, resistance to flash crowds and free-of-
charge P2P services; however, it must deal with content invalidation in the overlay and
mechanisms to detect and disable malicious clients from sharing corrupted data. Since
no centralized authority for content validation exists, distributed approaches must be
used. Our preliminary results has shown that such an approach improves page loads,
since it is possible to detect the closest client via anycast. Considerable reduction of
resource allocation and Central processing unit (CPU) use can be seen at the server-side
with this approach.

i
i

“thesis” — 2015/6/8 — 12:22 — page 55 — #71 i
i

i
i

i
i

4
Research Roadmap

Programs must be written for people to read,

and only incidentally for machines to execute.

- Hal Abelson
Structure and Interpretation of Computer Programs

The aim of this chapter is to analyze the related work and expose problems that are
not solved. It also provides a roadmap to accomplished research and introduction to
the next chapters.

4.1 Summary and Analysis of the Related Works

Chapters 2 and 3 provides a broad overview of the related work in the area of general
design approaches plus UI design approaches as well as an overview of context-aware
design from the software engineering perspective or the UI transmission to clients. The
general design approaches compared in Section 2.3.6 at Table 2.1 show that none of
given approaches provide all the considered abilities. It is possible to combine these
ideas. For instance, consider that the idea brought by MDD with model and transfor-

55

i
i

“thesis” — 2015/6/8 — 12:22 — page 56 — #72 i
i

i
i

i
i

56 CHAPTER 4. RESEARCH ROADMAP

mation could apply to the code-based approach as well. The model could be extracted
from code through MP at compile time and then transformed. The transformation
could involve templates described through DSL. Although the transformation usually
follows specific transformation rules, they could be relaxed to become more generic. For
instance, consider that each rule resolves a certain conditional clauses that determines
whether it applies or not. Similarly, the template resolution can directly inject content
from the model or indirectly resolve certain conditional clause that decides whether or
not to extend the template with certain information. When we move to AOP, it can
provide the mechanism and terminology for this indirection. The clause can be a point-
cut, the decision an advice, and the clause term can be a join point received from the
model. The same join point can also operate as the information extending a template.
Notice in the summary in Section 3.1.8 at Table 3.1 that existing UI design approaches
provide only a subset of possible the quality criteria; there is room for improvements.

The context-aware UI approaches in Section 3.2 give us a sense of what kind of concerns
can be considered. The context-aware UI research deals not only with data presentation,
but also with page-flow or task-flow, which is within scope of this thesis. A large amount
of related work focuses on MDD, but most utilizes the restate-to-extend approach with
only rare emphasis on the separation of concerns, although this should be essential.
Additionally, the related work suggests that it is important to consider runtime context;
thus a future approach should operate at runtime to adjust the output to the runtime
to reflect context changes.

UI responsiveness and the performance related to page load time is an important quality
that must be considered regarding the UI design. For instance, if a UI page loads in 7
seconds, the end user may decide to look for an alternative, more responsive application,
willing to accept less functionality or features. Section 3.3 considers UI performance of
web-based applications. It introduced existing approaches that usually deliver tangled
concerns in the UI description in the server-client communication. Tangled descrip-
tion is usually compressed to reduce the transmission efforts, but when only single UI
concern changes, the entire tangled description must reload.

4.2 Accomplished Research and Roadmap

This section provides a survey of conducted research that applies to the scope of this
thesis. The research aims to present system data in UI in varying context. The UI
data presentation is usually given by forms, tables, reports, etc. The initial emphasize

i
i

“thesis” — 2015/6/8 — 12:22 — page 57 — #73 i
i

i
i

i
i

4.2. ACCOMPLISHED RESEARCH AND ROADMAP 57

of the work is on the reduction of development and maintenance efforts, although as
shown later, addressing these efforts through the separation of concerns brings further
benefits to reduce repetitions, to provide CaUI features or an alternative UI delivery
to remote clients, while improving client-caching options and UI responsiveness.

The first problem this thesis addresses is the UI design complexity related to data
presentations. UI descriptions of data presentations are usually highly coupled to data
definitions and have low cohesion. This leads to difficult readability and extended main-
tenance. Manually-designed UI data presentations are self-descriptive, but suffer from
human errors introduced because of large information restatement [28]. Furthermore,
often UI presentation of particular data differs for various users and contexts because
of access rights, screen size, etc. This may result in multiple UI variants that have
physical description and only differ in details, but all are sensitive to changes in data
definitions. In order to address the issue with information restatement, we look in this
early stage of the research, [A.2, A.11, A.13] to the advantages brought by the MDD
approaches. In particular we consider involvement of UML class model as the source
of information for UI data presentations.

Since the UML class model does not contain enough information to derive satisfactory
UIs, an extension to the model through UML profiles is suggested [A.2]. A UML profile
allows capturing addition information at the model level. Research [A.2, A.11, A.13]
suggests defining reusable UML profiles for capturing presentation, validation, security
and persistence in the UML class model. The advantage brought by the extension is the
ability to describe the above information at the model-level and enable its derivation
for the UI description-code transformations.

[A.2, A.11] and Chapter 5 demonstrate advantages brought by an MDD approach. The
source of information is the model, and thus UI derivation from the model reduces
information restatement. It is also possible to derive variations of UI descriptions.
Another advantage is that all changes to the model apply in the UI upon consequent
model-to-code transformation. The consequence brought by this is that UI description
for data presentations may enforce security, avoid consistency errors, and reduce devel-
opment and maintenance efforts. It is fairly easy to apply data constraints to the UI
description for the client-side input validation, etc. Such a model is not specific to a
particular platform, and thus it is possible to apply it to Java, C#, PHP, etc. The UI
generation is done at compile time. Regarding the problems introduced in Section 1.1,

i
i

“thesis” — 2015/6/8 — 12:22 — page 58 — #74 i
i

i
i

i
i

58 CHAPTER 4. RESEARCH ROADMAP

this approach addresses Problems 1 and 2, partially addresses Problem 4 and brings a
base ground to Problem 9.

The disadvantage is that the derivation of the UI needs to use a model, which might
require defining a new model for existing applications or for applications that use a
code-based approach for data management. In such a case the model restates the
information already captured in the application and thus does not solve Problem 1.
The MDD approach could suffer from Problem 3, which is mostly evident when the
UI data presentation produces multiple variants of the UIs for the same data. In case
there are concerns that are dependent and their combination produce an exponential
growth of data descriptions, it might require a large number of generated applications
states that might be hypothetical. Thus there exists a space to address Problems 3
and 7. The MDD could possibly address cross-cutting concerns, although there is no
well-accepted mechanism to do that, which leaves space for Problem 6. At the same
time MDD approach does not address Problem 8. Most importantly a large community
of code-based developers and architects might be skeptical of MDD maintainability in
production [A.3, A.4] and might solely base their development on code. Alternatively,
they use a MDD approach to build application skeletons, but later changes are applied
to code rather than to model, which disables later model-to-code transformations, since
all code changes would be erased. Thus we need to find a way to use the MDD benefits
at the code-base level (Problem 5).

Although we start with MDD that addresses several problems from Section 1.1, we
believe that model can be expressed in code. Next, we apply MDD ideas into GPL. The
aim of Chapter 6 is to enable the above MDD advantages in code-based applications,
while avoiding maintenance of an external model. If we are able to capture in the code
the equivalent information as we did in MDD in the model, then similar mechanism
can be used to derive UI descriptions that represent data. This is also described in
[A.8, A.14, A.15, A.16] that suggests using metaprogramming for the derivation, which
addresses the Problem 5.

At the same time, we want to address other, thus far unaddressed problems from
Section 1.1. From the above text, we note that the compile-time approaches suffer from
multiple issues introduced in Problems 3 and 4. Thus the UI derivation at runtime is
researched considering the application context. The runtime derivation brings many
advantages, but also may impact performance. For example, it allows deriving the
UI and considering contextual information in the derivation process to influence the

i
i

“thesis” — 2015/6/8 — 12:22 — page 59 — #75 i
i

i
i

i
i

4.2. ACCOMPLISHED RESEARCH AND ROADMAP 59

result. On the other hand, with this we start to face the issue of cross-cutting concerns
(Problem 6) and tangled code (Problem 3).

Thus the critical problem to solve is the separation of concerns. What are our options?
We can design a custom, non-standard solution at the MDD level, or consider the use of
GP or AOP described in Chapter 3. When considering research in GP, we may find out
that the amount of work is limited in comparison with AOP. Furthermore, the scope
of GP is rather large, and at the same time, existing work mostly targets compile-time
process of transformation. Thus we consider the AOP in the next research [A.4, A.17]
of Chapter 6.

The MDD transformation process usually involves transformation rules and templates
specifying the target language. When deriving the model from code, its consequent
transformation process could stay the same, although we aim to support concern sep-
aration and consider runtime application context, which leads to a runtime process.
Besides the application context the process must be aware of data structure informa-
tion. The transformation rules must extend likewise, and this is the location that we
extend with AOP mechanisms [A.4, A.17]. The data structure information and the
application context act as join points, the transformation rules query them through
pointcuts providing an appropriate template as the advice. This step makes the trans-
formation rules generic and reusable across different data and changing context. Novel
concern can define new join points that may occur in the pointcut, and this easily
integrate to the rules. Although the expressiveness of such AOP-based rules that are
resolved at runtime is wide, we might need to not only change the resolution of trans-
formation rules but also the resolution of template content. Thus the templates are
extended correspondingly. Each template uses the target UI description markup/lan-
guage as it would do in MDD, but in addition to this, it also considers conditional
extensions of other concerns. Thus templates also use the pointcut mechanism in-
troduced for the transformation rules. In case a pointcut activates, then the advice
embeds to the template an additional concern, an additional description extension or
information referencing the join points (contextual information, data field constraint,
validation, property, processed field name, data type, etc.). Templates also apply for
the layout integration. Its processing and resolution can use similar AOP mechanisms.

The result of the AOP-based extension [A.4, A.17] supports separation of concerns,
easy concerns integration (Problem 3), reduces tangling (Problem 6), brings concern
specification centralization (Problem 4), concern reuse, as well as the above mentioned

i
i

“thesis” — 2015/6/8 — 12:22 — page 60 — #76 i
i

i
i

i
i

60 CHAPTER 4. RESEARCH ROADMAP

MDD-based benefits that altogether reduce development and maintenance efforts. The
runtime processing opens the approach for support of CaUI (Problem 7), although
a wide range of advantages is provided also for applications with context-insensitive
UIs. On the other hand, the performance related to the runtime processing might
deteriorate. [A.4] evaluates the performance impact of this approach on enterprise web
system by sharing experiences from a case study. Although many design advantages
are brought as well as considerable code and efforts reduction, the performance impact
is minimal in the domain of Java EE. Details on this research and approach that we call
Rich Entity Aspect/Audit Design (READ) are provided in Chapter 6 and additional
explanation can also be found in Chapter 8.

When we consider the research area of CaUI from Chapter 3, we may find out that
there exist a large number of CaUI approaches and even libraries that provide remark-
able, advanced and sometimes even stunning features. Unfortunately, when we try to
apply them together with code-based application backends or legacy systems, they are
prone to restatements. Could READ ideas address the issues related to restatement,
development and maintenance of such approaches? Chapter 7 discovers what we need
to do in order do adapt such a restatement-prone libraries to code-based application
backends, while avoiding information restatements.

Existing User Interface Protocol (UIP) third-party CaUI approach [A.3, A.21] streams
CaUI descriptions to clients on various platforms. Each client constructs the UI using
native platform components to support usability. Among its features are automated UI
layout adjustment of data elements for various users and context, based on given us-
ability metrics, multi-platform/native component support, simplicity to integrate UIP
into existing systems, etc. The UIP itself requires developer to have a deep knowledge
of a new DSL to describe a particular UI. The DSL has weak type safety, which is a
source for errors. Since it tends to restatements, the approach extends maintenance
efforts and has to deal with consistency errors.

Integration with READ may reduce the restatements when using existing application
backends. Since READ centralizes concerns, it is fairly easy to specify the expected
transformation output, which follows the expected UIP DSL to feed the library with
a UIP description reusing the existing application information. This reduces the de-
velopment and maintenance efforts, and makes it easy for the UIP to transit to other
code-based systems. Later changes to data definitions in code-based systems directly
promote to UI, since READ constructs new UIP description. A provided case-study

i
i

“thesis” — 2015/6/8 — 12:22 — page 61 — #77 i
i

i
i

i
i

4.2. ACCOMPLISHED RESEARCH AND ROADMAP 61

[A.3, A.21] shows the simplicity of READ integration with third-party libraries, which
provides developers with the READ advantages.

The Problem 8 is so far unaddressed. Even though we use concern-separating approach,
the separation drops when it goes to rendering. Consider web-based applications that
use the concern separation for UI description. When a client requests a UI page, the
server-side resolves the UI from separate concerns, tangles them together and produces
a tangled client-readable description that is delivered to the client. The server must
spend efforts to weave the data presentation concerns together. The volume of the
client-readable description grows as it may contain repetitions, although compression
can reduce it. It is apparent that the delivery process does not maintain the concern
separation. The client-side then works with the tangled description that disallows to
reuse a particular concern, as it is not separable from the tangled description. This
reduces options for client-side caching; thus a small change involving a single UI concern
requires re-transmission of the entangled description.

Is it possible to apply similar ideas of concern separation to UI delivery? The an-
swers brings Chapter 8. [A.1, A.6, A.12] shows that such separation is possible, which
brings multiple positive impacts. The concern delivery becomes distributed, and the
client becomes responsible for the UI assembly, which gives the client-side higher re-
sponsibility and extended capabilities, such as making decision on concern reuse and
caching; furthermore the server-side efforts for the UI assembly reduces. The content
provided by the server-side reduces; furthermore extended client-side caching options
push towards even greater reduction that results with improved UI page load times and
responsiveness.

Chapter 8 describes an extension to the AOP-based UI design approach [A.1, A.6,
A.12] that allows providing various UI concerns separately to clients, which partially
delegates the data presenting UI component assembly to clients. Clients can request
various concerns simultaneously from the server-side, which further impact the page
load times. Chapter 8 provides a case study showing the impact on page load, caching,
and the server-side. This addresses Problem 8. Furthermore, the distribution of UI
concerns provided in a machine-readable way opens the possibility to reuse provided
information by native clients and integrate native platform components to present given
data [A.7, A.22], which addresses Problem 9.

Ongoing, preliminary research [A.10, A.23] focuses on system business rule inspection
and its transformation to the UI. This extends the approach that derives data-driven UIs

i
i

“thesis” — 2015/6/8 — 12:22 — page 62 — #78 i
i

i
i

i
i

62 CHAPTER 4. RESEARCH ROADMAP

with more contextual information and allows us to consider interaction with business
flow. This direction of research of business rule inspection and transformation is left
for future work, and mentioned with other directions of research in Chapter 9 on future
work.

i
i

“thesis” — 2015/6/8 — 12:22 — page 63 — #79 i
i

i
i

i
i

5
Extension to UML Models to Support UI

Derivation

A journey of a thousand miles must begin with a single step.

-LAO-TZU
Tao Te Ching

This section presents the research that applies MDD to derive UI data presentations.
This section bases on research published by [A.2, A.11, A.13]. First, a basic derivation
from UML class diagram is sketched. Such derivation can produce basic UI fragments.
In order to improve the derivable results, an extension to the UML class diagram is
suggested to capture input validation, presentation, and security concerns. Such an
extension allows designers to derive advanced UI fragments, such as rich forms, tables,
and their variations. This chapter explores the benefits provided by MDD, such as
reductions or restated information and repeated decisions. The advantage is also that
such approach brings concepts that are platform-independent. Outcome of thus chapter
is considered in subsequent chapters.

63

i
i

“thesis” — 2015/6/8 — 12:22 — page 64 — #80 i
i

i
i

i
i

64 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

Person

- id: Long
- born: Date
- email: Stirng
- web: Stirng
- graduated: Date
- name: Stirng
- notes: String
- salary: Integer

Car

- id: Long
- brand: String
- color: Integer

*owns

1

Figure 5.1: A UML class model example

Figure 5.2: Generated Person form (model in Fig. 5.1)

5.1 Problem Description

Despite many advantages of MDD, model-based user interface development tools (e.g.,
[51, 53]) have not been widely used in practice [54]. In many cases, developers create UIs
manually. They are usually very familiar with the current implementation. This way
of UI development can work for small-scale applications initially, but is not desirable
even for a small system development when the system should evolve. The problem with
manual UI creation becomes worse when the code fragments have been generated using
a model-driven tool. For example, manually added code makes maintenance difficult
because MDD aims to have all changes in generated fragments propagated from future
changes in design. Therefore, there has been a need to integrate the required UI
code fragment information within design models. Many UML tools that are currently
available, however, do not support the properties necessary for the UI code fragment
generation in the underlying models.

For example, consider UML design model shown in Fig. 5.1 from which we want to
derive a view form for a Java EE web application. Each field should be validated
when it is collected through the form. A view form like one given in Fig. 5.2 can
be generated for the Person class using the information currently given in Fig. 5.1.
However, such a form has limited capability in detecting the meaning of fields and in
User Input Validation (UIV), because the given design model does not provide any form
generation rules with validation details other than field types. Another problems in the
form can be summarized as follows. We might want to have fields in a different order,
restrict that the provided birth date be in the past, an input to the email address field
could be invalid, an http link can be malformed, there can be a negative value given to

i
i

“thesis” — 2015/6/8 — 12:22 — page 65 — #81 i
i

i
i

i
i

5.1. PROBLEM DESCRIPTION 65

Figure 5.3: Expected Person form (full access with validation)

Figure 5.4: Expected Person form (re-
stricted access)

Figure 5.5: Expected Person form layout for a specific context

the salary field, etc. In addition, the current form includes the field id that should be
assigned by the system, not by the user. Consequently this is not the view form that
was expected. Therefore, we often generate an initial code for the form and then add
additional constraints and validation rules to each field in the form and reorder the
fields. Fig. 5.3 shows a form, even including required UIVs, that can be generated by
this additional modification.

Another important requirement that is common in many applications these days is
that it should be able to support multiple users who may have different access rights
or user roles in the system [76]. This may also impact the forms that are provided by
the system. A user with full access rights may see the form in Fig. 5.3 for a person
selection, but a user with restricted rights would be allowed to see just a subset of this
form, such as the one in Fig. 5.4. Having both forms supported within the system may
require either the duplication of the same form for different users or embedding extra
access control checking conditions to each field in the form. The latter approach with
embedded conditions may work for the forms that basically share the same layout (like
Fig. 5.4). However, it will not help when we need various form layouts to support more
user context-specific needs (as shown in Fig. 5.5).

i
i

“thesis” — 2015/6/8 — 12:22 — page 66 — #82 i
i

i
i

i
i

66 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

«profile»
Presentation

+ Html
+ Ignore
+ InputLength
+ JSPattern
+ Link
+ Password
+ TableColumn
+ TextArea
+ Type
+ UiOrder

«profile»
Security

+ UiRoles

«profile»
Validator

+ AssertFalse
+ AssertTrue
+ CreditCardNumber
+ Digits
+ EAN
+ Email
+ Future
+ Length
+ Max
+ Min
+ NotEmpty
+ NotNull
+ Operation
+ Past
+ Pattern
+ Patterns
+ Range
+ Size

«profile»
Persistence

+ Column
+ Embedded
+ Entity
+ Enumerated
+ Id
+ Lob
+ OrderBy
+ Persistent
+ Temporal
+ TemporalType
+ Transient
+ Version

Figure 5.6: Example UML profiles supporting ORM, UIV, Presentation and Access rules

One of main problems in this kind of form generation process is that further changes
made later on the design model cannot be automatically applied to the form that was
originally generated. Therefore, one needs to modify all related view forms and their
underlying entities, including the database. If we decide to change restrictions for user
rights, we must again manually modify the original forms, which is an error-prone and
tedious work. In the next sections, we show an approach that makes it possible to
generate complex UI fragments and provide a tool that is capable of such generation.
The main focus is put to fragments representing data. In addition to form and table
generation, we consider UIV and the impact of access control [76] applied on fields.

5.2 Solution

Section 2.2 introduces approaches used in industry to support ORM or UIV for OOP
using class and field annotations [9, 10]. An approach to persistence modeling [77]
promotes JPA by an UML profile to UML models. This then allows us to use the
model for MDD, which is the same way we can promote other concerns to models.

5.2.1 UML Profiles

To extend UML class models to capture ORM, UIV, UI presentation and access rights,
four UML profiles are defined [A.2, A.11, A.13]. From the ORM metamodel defined

i
i

“thesis” — 2015/6/8 — 12:22 — page 67 — #83 i
i

i
i

i
i

5.2. SOLUTION 67

Table 5.1: Subset of UML profile stereotype details

Stereotype (Annotation) Description Appl. type
MD-ORM profile
Column(..) DB table column with props. Any
Entity Enable JPA for POJO class Class
Enumerated Persist ordinal value or string Enum
Temporal Date, Time, TimeStamp Date

..
MD-Validation profile
Length, Min, Max Value length in the range String
Email Match email String
Pattern Value matches the reg-exp String
Future, Past Future/Past date Date
NotNull,NotEmpty Not null (empty) attrib. value Any

..
MD-Presentation profile
Link Web link expected String
TextArea Long text expected String
Html Html expected String
Password Secret text expected String
Type Type of widget to use Any
UiOrder Order in view form Any
TableColumn Use field for table generation Any
Ignore Do not use field for generation Any
InputLength Input widget length Any
JSPattern JavaScript regular expr String

..
MD-AccessRules
UiRoles Restrict access to roles Any

by JPA standard [16], all rules can be transformed to UML stereotypes and tagged
values to define the MD-Persistence profile [77]. An existing meta-data model for
JavaBean validation (JSR 303) [16] is applied to define the MD-Validation profile. A
MD-Presentation profile then addresses the missing elements to fully determine the form
content and follows the metamodel defined in [A.14]. Furthermore MD-Security profile
restricts access to given fields. Table 5.1 provides a subset of stereotypes from those
profiles as well as their description and applicability to domain types. Fig. 5.6 shows
an overview of profile implementations. These profiles describe the system structure
fully from all four aspects and allow us to fully determine view form content.

In Section 5.1, we have shown that a form may be used in various mutations for users
with different access privileges and context. To support such access control, we apply
the Role-Based Access Control (RBAC) security model [76]. For the form generation,
all required permission checks are applied to each form field. A field is rendered when
the user has a role granting access to the given field. In our approach, we allow a user
to have multiple roles in a given session. The user is provided with a form containing
a particular field, if he has at least one role that allows access to the field. To deal
with different fields rendered in the form for different users, we may apply multiple

i
i

“thesis” — 2015/6/8 — 12:22 — page 68 — #84 i
i

i
i

i
i

68 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

«Entity.»
Person

«Id»
- id: Long
«Version»
- version: Long
«NotEmpty, Column(..), Length(max=100), TableColumn, UiOrder(1)»
- name: String
«NotEmpty, Column(..), Temporal, Past, UiOrder(5)»
- born: Date
«NotEmpty, Email, Column(..), Length(max=100), TableColumn, UiOrder(2)»
- email: String
«Link, Column(..), Length(max=100), UiOrder(4)»
- link: String
«NotEmpty, Column(..), Range(min=1000, max=100000), UiOrder(3)»
- salary: Integer
«Past, Temporal, Column(..), UiOrder(6)»
- graduated: Date
«Column(..), Length(max=512), TextArea, UiOrder(7)»
- notes: String

«Entity.»
Car

«Id»
- id: Long
«Version»
- version: Long
«NotEmpty, Column(..), Length(max=100), UiOrder(1)»
- brand: String
«Column(..), UiOrder(2)»
- color: Integer

+person
1

owns

+car

0..*

Figure 5.7: Example of rich design model

approaches. One possible approach is to design forms where each field can be selectively
rendered based on supplied conditions that involve additional presentation logic. To
avoid this addition in the presentation layer, we suggest that the design model captures
these field access restrictions. This is supported through the MD-Security profile with
a stereotype UiRoles with a tagged value specifying roles that has access to the field.
Until now it was possible to generate one form that suited all the requirements, but for
the field access control with logic kept in the model, we must either generate multiple
forms for different contexts of their use or generate them at runtime as the user rights
are evaluated. These strategies are discussed and evaluated later. Layout concerns
can be thought as a decoration for defined templates that directs the transformation of
entity fields to UI fragments. A specific layout can be selected based on given context
or rules given by designer.

i
i

“thesis” — 2015/6/8 — 12:22 — page 69 — #85 i
i

i
i

i
i

5.2. SOLUTION 69

In order to verify models, UML profiles specify a set of constraints using OCL [77].
This language defines invariants that can be applied to stereotypes and verified in an
integrated development environment that supports an OCL interpreter. Listing 5.1
shows selected OCL constraints.

context Length inv:
self.max >= self.min and self.min >= 0 and self.type.name = ’String’
and self.max = self.property.Column.length

context Size inv:
self.max >= self.min and self.min >= 0
and self.type.oclIsKindOf(CollectionType)

context NotNull inv:
self.property.Column.nullable = false

context Password inv:
self.type.name = ’String’

Listing 5.1: Selected OCL constraints UML profiles

5.2.2 Model-Driven Fragment Generation Example

With UML profiles, complex UI fragments can be generated. The class model from
our example in Fig. 5.1 can be extended using the defined profiles. Fig. 5.7 shows
the extended design model. The Person entity generated from the model contains all
information as annotations, which matches the manual development approach. The
Person entity in Listing 5.2 is equivalent to the one from Fig. 5.1 with the addition of
the profile stereotypes.

@Entity @Table(name = "Person")
public class Person implements Serializable {

private String name;
private Date born;
..
@Column(name="name",nullable=false,length=100)
@NotEmpty @Length(max = 100) @UiOrder(1) @FormTableColumn
public String getName() { return this.name; }

@Column(name = "born", nullable = false)
@Temporal(TemporalType.DATE) @NotEmpty @Past @UiOrder(5)
public Date getBorn() { return this.born; }
.. /* get/set */

Listing 5.2: Person entity fragment

i
i

“thesis” — 2015/6/8 — 12:22 — page 70 — #86 i
i

i
i

i
i

70 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

We implement a tool that generates UI fragments for provided entities. It inspects
entity attributes and their properties, and based on that, it selects an appropriate UI
widget. It propagates all constraints and validation settings to the widget so that UIV
can be applied. The designer can define mapping between the widget and entity field
properties and also design his own library of widgets to allow full customization. A
generated form example for Person entity integrating UIV and constraint restrictions
is shown in Listing 5.3.
<h:form id="formPerson">
<util:inputText label="Name"

value="#{bean.name}"
required="true"

size="30"
minlength="0"
maxlength="100"

title="#{text[t.person.name]}"
rendered="#{empty nameRender ? ’true’ : nameRender}"

id="#{prefix}name"/>
<!-- other elements 2, 3, 4 -->

<util:inputDate label="Born"
value="#{bean.born}"

required="true"
title="#{text[t.person.born]}"

rendered="#{empty bornRender ? ’true’ : bornRender}"
id="#{prefix}born"/>

<!-- other elements 5, 6 -->
</h:form>

Listing 5.3: Person view form code

Our tool is based on the attribute inspection and supplies all the underlined texts. The
design model in Fig. 5.7 captures all the information required to generate the targeted
form in Fig. 5.3. The Car form in Fig. 5.8 is generated in the same way, providing an
example of a more complex attribute Person.

UI fragments such as tables or reports can be generated as well. Tables are in fact
not much different from forms in terms of their source code, even though they capture
multiple elements. On the other hand, we often want to provide a table with fewer
entity fields than what a form provides. In order to mark entity fields used for table
generation, MD-Presentation profile uses the TableColumn stereotype. The generated
person table code in Listing 5.4 is rendered as the table in Fig. 5.9.

i
i

“thesis” — 2015/6/8 — 12:22 — page 71 — #87 i
i

i
i

i
i

5.2. SOLUTION 71

Figure 5.8: Generated car view form

Figure 5.9: Generated person table

<h:form id="formPerson">
<rich:dataTable id="tablePerson"

var="element" value="#{collection}">
<rich:column id="name" label="Name" sortBy="#{element.name}">

#{element.name}
</rich:column>
<rich:column id="email" label="Email" sortBy="#{element.email}">

#{element.email}
</rich:column>

</rich:dataTable>
</h:form>

Listing 5.4: Person table code

5.2.3 Form Field Access Control

As multiple users can use one entity and user access rights influence its view form,
there may exist multiple forms for the same entity. The following strategies to deal
with access control are considered:

One static form per entity with selective field disabling. This applies additional logic in
the presentation layer that decides whether the user can see a given field.

Multiple static forms per entity. Forms are generated for each form-role combination. An
appropriate form is selected based on the user roles supplied in the runtime.

Runtime form generation. A form is generated upon a request, and user roles are taken
into consideration

i
i

“thesis” — 2015/6/8 — 12:22 — page 72 — #88 i
i

i
i

i
i

72 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

The first One Static Form Per Entity strategy uses only one form that contains all the
fields and selectively disables fields restricted for a given role(s) and context. In this
case, all the logic determining which fields to use is added to the presentation layer.
On the other hand, the usage is simple and can be utilized by systems with a smaller
variety in restricted fields per user roles. This strategy can handle role hierarchy and
the use of multiple roles per user. The disadvantage of this strategy is that all decisions
are repeated per form request, which may impact the performance. Second of all,
the maintenance of the security is more difficult than in the alternative options. An
example code snippet is available in Listing 5.5.

<ui:decorate template="/WEB-INF/form/person.xhtml">
<ui:param name="bean" value="#{person}" />
<ui:param name="salaryRender" value="#{fb:hasRole("manager")}" />
<ui:param name="notesRender" value="#{fb:hasRole("manager")}" />

</ui:decorate>

Listing 5.5: Presentation layer logic in a form (Seam)

The second Multiple Static Forms Per Entity strategy is related to the UML profiles,
which allows us to push the security decisions down to the class model. The MD-
Security profile allows specifying UiRoles, which are the roles with access to the field.
Multiple forms are generated per entity for specified roles. This results in multiple
forms in the system for the same entity with different fields available. These forms are
then available in a folder specific for each role(s). The proper entity form is selected
from a location influenced by active user roles at the request time. For a system where
a user has multiple roles and only a single role can be activated in given context, the
physical form fragment location is determined by this role (see Listing 5.7). In this
case, the system contains roles⇥ entity forms. The difficulty comes when we consider
a system with multiple roles activated at the same time. In this case we apply role
union. For the multiple role activation scheme, up to 2roles variations of forms per an
entity exists.

This second strategy at first pushes the security decisions to the domain model (see
Listing 5.6). Second, it generates all the forms before they are used. Third, it provides
a form for the combination of an entity and system roles. This, on one hand, speeds
up the form load as no field related access decisions are made at runtime. On the other
hand, this may result in too many forms per entity. An example code snippet for the
entity is available in Listing 5.6 with the use in view shown in Listing 5.7.

i
i

“thesis” — 2015/6/8 — 12:22 — page 73 — #89 i
i

i
i

i
i

5.2. SOLUTION 73

@Entity
@Table(name = "Person")
public class Person implements Serializable {

...
@UiOrder(7) @UiRoles({"manager"})
public String getNotes(){ return this.notes; }

Listing 5.6: Person entity field access control

<ui:decorate template="/WEB-INF/form/#{fb:getRoles()}/person.xhtml">
<ui:param name="bean" value="#{person}" />

</ui:decorate>

Listing 5.7: Person static form selection (Seam)

A similar approach is applied to Java EE where an annotation @Restrict controls the
access to a class, class method, or an attribute. In this case, the restriction is more
complex; we may apply restriction based on user role or a context, such as equality of
an active class fields, context variables, etc.

The third On-demand Form Generation in Run-time strategy is not to pre-generate
forms, but create them on demand at runtime. No physical location for such a form
exists. Instead, the entity class is inspected, and the form is generated every time it is
requested. The advantage over the previous two cases is that we do not need any disk
space available for multiple role-forms and the forms do not need to be located and
fetched. On the other hand, inspecting an entity and generating a form require us to
open multiple files from a UI widget library in order to generate the form. File accesses
could be reduced in this case if all widgets are held in memory. In this strategy, we
see that the performance bottleneck is the per-demand form generation and a shared
cache application is appropriate. In fact if we use a cache, then this strategy does not
differ from the previous static forms but provides all above mentioned advantages. The
advantage is that only form-role combinations used by the system are taking space in
memory. An example coding is in Listing 5.6 with the use in view in Listing 5.8.

<ui:decorate template="#{fb:genForm(’Person.class’)}">
<ui:param name="bean" value="#{person}" />

</ui:decorate>

Listing 5.8: Person run-time form generation (Seam)

i
i

“thesis” — 2015/6/8 — 12:22 — page 74 — #90 i
i

i
i

i
i

74 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

Table 5.2: RBAC Performance evaluation – plain page

Role
Approach

P
ag

e
si

ze

R
es

ou
rc

es

(a)One static form (b)Mult. static forms (c) On-demand (d) On-demand
(cache)

[ms] [ms] [ms] [ms] [B] [-]

Admin 296 277 313 283 1157 1
User 245 181 196 172 1037 1
Guest 244 94 100 95 947 1

5.2.4 Performance Evaluation

In order to evaluate performance of form field access control strategies, we build a small
application in the Seam Application framework Java EE [20]. We design an entity Test

with 10 String fields and apply 3 user roles: Administrator with access to 10 fields,
User with access to 5 fields, and a Guest with access to 1 field.

The Test form is embedded in a web page that is accessible under a selected role. We
evaluate the page load times. In our first experiment we use a plain web page with
the form that uses presentation logic (a) to restrict field access. Next we apply forms
statically-generated (b) for all system roles and their combinations. Afterwards we
employ forms generated on-demand (c). Lastly we use optimization for the on-demand
generation with caching (d).

For the measurement, we use the Firefox 3.5.9 web browser with disabled cache using a
web debugging proxy. Each measurement consists of 10 samples. Measurement results
are presented in Table 5.2. In Table 5.2, the columns (a) - (d) represent strategies
discussed earlier. The result shows that (a) is sufficient for applications where the full
forms are applied and a small variability for field restrictions applies. As the restricted
field count grows, other approaches seem to outperform (a). One surprising result
can be that (c) is slightly slower compared to (b), although it provides the poorest
performance for the full form. Optimization to (c) which we denote as (d) should
provide asymptotically similar results to (b).

The above evaluation tests a plain web page with a form; this might provide results
that do not reflect a real scenario where a web page contains multiple components
and resources, which impact the page size and overall load time. In order to provide
broader evaluation, we apply our approach to a custom web page deduced from ACM-
ICPC registration site, where we use a web page that contains additional components
and measure how our form field restriction approach influences the load time. In this

i
i

“thesis” — 2015/6/8 — 12:22 — page 75 — #91 i
i

i
i

i
i

5.2. SOLUTION 75

Table 5.3: RBAC Performance eval. – enterprise env.

Role
Approach

P
ag

e
si

ze

R
es

ou
rc

es

(a)One static form (b)Mult. static forms (c) On-demand (d) On-demand
(cache)

[ms] [ms] [ms] [ms] [kB] [-]

Admin 1578 1447 1540 1491 296.0 17
User 1544 1346 1425 1421 295.8 17
Guest 1384 1335 1341 1347 295.7 17

measurement, we again apply the Test entity. Table 5.3 provides the measurement,
where the page size notably increased requesting 17 resources (file) from the server.
The second measurement amortizes the overall load time because of the additional
components of the page. The comparison results in this measurement show that (a)

needs the longest time to load the page, where (b) provides the best timing, (c) and (d)

provide performance very close to (b).

From both measurements, we receive impressive results for the dynamic form generation
with (c) and (d). The performance for the form generation could be improved by keeping
all the form widget templates in memory.

5.2.5 Development and Maintenance Evaluation

To draw the impact of such approach in [A.2], we build a small Java EE application with
a domain model that consists of 5 classes in Fig. 5.10. In the study, we consider physical
LOC while stripping white spaces and comments, and then we apply Constructive Cost
Model (COCOMO) II method to evaluate costs placed on maintenance scenarios [78].
The study compares manually-developed application and one with the model-based
approach. The manual application has less code for the domain model, but the UI part
becomes bloated, and our approach reduces the UI code by up to 24%. The manual
application has 1023/3853 lines of Java/DSL, while the MDD one reduces to 1092/2918
lines.

The maintenance of UI forms/tables becomes easy with our approach; new data field for
administrator role would normally require 10 lines in Java and 33 lines in DSL, so the
reduction gives only 12 lines in Java. A novel data class with basic UI for management
would need 141/659 Java/DSL lines while MDD reduction only needs 143/327. A field
constraint change reduces from 1/5 to 1/0 Java/DSL lines and field name change goes
from 1/17 to 1/0 lines.

i
i

“thesis” — 2015/6/8 — 12:22 — page 76 — #92 i
i

i
i

i
i

76 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

Car

id: Long
brand: String
color: Integer

Person

id: Long
born: Date
email: Stirng
web: Stirng
graduated: Date
name: Stirng
notes: String
salary: Integer

House

id: Long
rooms: int
addessLine1: String
addessLine2: String
city: String
postalCode: String
country: String

Garage

id: Long
capacity: int
addessLine1: String
addessLine2: String
city: String
postalCode: String
country: String

Employment

id: Long
name: String
addessLine1: String
addessLine2: String
city: String
postalCode: String
country: String

*

works

0..1

0..*
parks

0..*1
ownsGarage

0..*

0..1

provides
0..*

0..*livesIn 1

*
owns

1

Figure 5.10: Example for case study

Table 5.4: Cost estimation of considered applications and scenarios

Scenario MDD approach Common approach
Application development $2’144 $2’861
New class field for admin $5 $25
Field constraint change $1 $3
Field name change $1 $10
New class (Employment) $240 $357

When we apply COCOMO II to the statistics and consider an expert team with good
knowledge with high tool usage and person-month cost $1500, we derive costs of par-
ticular maintenance scenarios as shown in Table 5.4. Thus with our approach, we can
gain for both development and maintenance.

5.3 Summary

This chapter has shown a possible model extension that allows designers to generate UI
forms/tables directly from models. Basic UML class diagram is a good starting point
for UI generation, but it is clear that with no extra information, the model can only
produce a one-time UI skeleton. The main impact of this section is model extensions;
the same extension can be applied to OOP domain model or any alternative model,
because these extensions are needed for input validation, data integrity, presentation
and security.

i
i

“thesis” — 2015/6/8 — 12:22 — page 77 — #93 i
i

i
i

i
i

5.3. SUMMARY 77

This approach brought discussion on reduced maintenance efforts and elimination of
the manual UI form development through the use of MDD. The limitations can be
seen with integration of alternative presentation elements, support for adaptive UIs, or
addressing cross-cutting concerns. Although, this chapter shows that model extensions
can be reused for the UI and thus reduce restated information from model in the
UI, it did not consider transformation details, genericity of transformation rules or
applicability of third party widgets, etc. On the other hand, the provided study makes
evident that the aim for runtime generation and its performance expectations. The
outcome of this chapter is an initial and partial step towards a more versatile solution
that involves AOP, but the data class extension profiles will play a significant role in it
for all the code-inspection, transformation rules and also for the widget templates used
by the transformation.

i
i

“thesis” — 2015/6/8 — 12:22 — page 78 — #94 i
i

i
i

i
i

78 CHAPTER 5. EXT. TO UML MODELS TO SUPPORT UI DERIVATION

i
i

“thesis” — 2015/6/8 — 12:22 — page 79 — #95 i
i

i
i

i
i

6
Rich Entity Aspect/Audit Design (READ)

Simplicity as a result of a creative process is

“the ultimate sophistication”.

-Leonardo da Vinci

This chapter provides details on an evolution in our approach. It considers advan-
tages brought by MDD approach introduced in Chapter 5 and extends them with the
ability to capture model in code. Next, it considers separation of concerns and ap-
plies advantages brought by AOP. The AOP-based development in conjunction with
a metaprogramming approach, model-based transformations, and ideas of generative
programming brings considerable advantages to development of UI data presentations.
It not only reduces the development and maintenance efforts, but it open existing
systems with support for context-aware UIs. We believe that for the same amount
of investments this approach can help to build systems with much wider options and
abilities.

79

i
i

“thesis” — 2015/6/8 — 12:22 — page 80 — #96 i
i

i
i

i
i

80 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

This chapter presents work published at [A.4, A.8, A.14, A.15, A.16, A.17]. The chapter
shows integration of MDD advantages to code-based applications and thus avoiding
the necessity of design and information restatements related to external models. The
runtime process considers application context in its reasoning for UI derivations which
fits to the area of CaUIs, even though the conventional basic UI design benefits due
to increased reuse of concerns and thus reduced development and maintenance efforts.
The mechanisms suggested in this chapter are generic and thus particular concerns
can be reused across different projects. A case study demonstrating this approach is
provided. It involves a production-level enterprise application, with high demands on
performance.

6.1 Motivation

Despite broad research in the area of CaUIs [A.4], it is common practice in production
applications to design a single UI that serves all types of users and contexts [79]. The
primary reason for this one-size-fits-all approach to UI design relates to the costs of
development and maintenance for multiple UI versions. As demonstrated previously, a
large amount of time is devoted to UI development. Thus, providing multiple versions
of UIs for individual users is typically considered to be unrealistic.

With most existing programming techniques, it is difficult to support adaptive UI fea-
tures because such approaches capture field-specific information twice, once in the do-
main model and again as a reference in the presentation that is often specified through
a DSL [27] with weak type safety. In addition, current practices realize multiple UI
concerns [5] mixed together in a single component, which makes such a component
less cohesive and hard to reuse. As shown later, this results from the inability of con-
ventional approaches to capture different concerns separately [4]. The development of
less cohesive components results in multiple, highly similar components that only differ
in details. Having a multi-location field definition and multiple, similar components
for a slightly different presentation brings further difficulties throughout development.
For example, changing the underlying data definition requires all of its presentation
components to be updated, which is a non-trivial task. Considering that such a com-
ponent update process is manual, it is most likely to introduce more errors (particularly
with no type safety) or omit required component updates, which eventually results in
presentation inconsistencies.

i
i

“thesis” — 2015/6/8 — 12:22 — page 81 — #97 i
i

i
i

i
i

6.2. PROBLEM DESCRIPTION AND ANALYSIS 81

6.2 Problem Description and Analysis

One approach often taken to deal with system complexity is to break the system down
into units of behavior or function such as subsystems, modules, or objects, a process
called functional decomposition in OOD [4] or more generally in GPLs. Such a de-
composition concept is necessary because it helps one to put logically-related concerns
together, improves the readability and reusability, and eventually supports the ease
of maintenance [13]. In addition to functional decompositions, GP [43] and AOP [4]
propose another way of thinking about program structure. GP proposes the use of a
GPL language together with problem descriptions in the form of DSL [27]. The re-
sulting application code is generated at compile time from the DSL specifications that
extends the GPL code or produces its variations. In AOP the key unit of modularity
is an aspect. Aspects can integrate to GPL modules at runtime or compile time. An
aspect enables the modularization of concerns, such as transaction management, that
normally cross-cut multiple modules and objects [13].

As described in Section 3.1.1, in order to design a UI fragment representing data, we
must consider its fields and for each field select an appropriate presentation component.
The selection is based on field type and constraint inspection. Next, we need to bind the
data field to the component and provide additional UI settings from field’s constraints.
We may also set a conditional component rendering. Furthermore, we might need
to tangle the result with a layout. The result is represented in a component tree.
Having such UI data representation, we want to handle a situation where multiple
concerns change individually for given system conditions. For instance, we want to
handle situation where the layout changes based on the context, or the field presentation
differ for mobile and desktop clients, validation rules apply based on user access rights
and context, given fields render based on users access rights, etc. In such cases, we could
either use conditionals in the UI or, even worse, copy the UI fragment and modify a given
concern. We should assume that each of these concerns can have its own variability
dimension, but in conventional approaches, these are mixed together as mentioned in
Section 3.1.1.

In [A.17] we present a multidimensional concern space as shown in Fig. 6.1. This
demonstrates a form with coupling to five distinct concerns. Fig. 6.2 demonstrates
that each concern defines an individual dimension. The way we combine them in
conventional code collapses all these concerns to only single dimension, and thus we
loose the ability to deal with these concerns separately. Certainly, it is possible to

i
i

“thesis” — 2015/6/8 — 12:22 — page 82 — #98 i
i

i
i

i
i

82 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

Person

String : email
String : name
Country: country

Email
Name
Country

1. Data binding

Label
4. Security 5. Input validation 2. Field presentation 3.Layout

Label @

Figure 6.1: UI form decomposition

Security Data binding

La
yo

ut

Field presentation

Security Input
validation

Data binding Layout

Field presentation Input validation

Etc.

(a) concern space (b) implementation space

Figure 6.2: (a) Concern / (b) Implementation space

consider that multiple of these concerns vary separately in a given system based on
contextual conditions, and since they are captured together, we end up with n copies
of the original code fragment representing the data. The worse case scenario for n is
derived by Eq. 6.1. In such a case, even a trivial change of data field constraint impacts
a large number of UI fragments. Furthermore, the impact is hard to locate in the UI
when we consider that the UI is based on weak type safety environment.

n = |concern1|⇥ |concern2|⇥ |concern3| . . .⇥ |concern
m

| (6.1)

For more details, consider an example that aims to design the Person form given in
Fig. 6.1. The arrows highlight various concerns considered in the design. Arrow 1 shows
that form fields are bound to a particular data class - an entity, and its fields. This
binding means that, for example, when the field called name in Person splits into first

name and last name, its corresponding form field must split as well. Unfortunately,
there is no enforcement mechanism to guarantee that the corresponding entity and its
UI comply with each other unless a language with type safety is used.

An entity field UI presentation is denoted by Arrow 2; an appropriate UI widget with
its properties are chosen based on the type of a particular field and its constraints. Any
time a field constraint changes, an underlying widget or its properties should reflect the
change as well. However, there is no automated mechanism to do so; thus a manual
update is necessary for each field change.

Arrow 3 demonstrates that the form may allow one to select a particular presentation
layout. A layout is responsible for rearranging form fields in a given order, grouping

i
i

“thesis” — 2015/6/8 — 12:22 — page 83 — #99 i
i

i
i

i
i

6.2. PROBLEM DESCRIPTION AND ANALYSIS 83

<table>
<tr>
<td>Email:</td>
<td><h:input id="email" value="#{person.email}" required="true" maxlength="50"

render="#{security.hasAccess(’email’)}" validate="#{v.validate(’email’)}"/>
</td>

</tr><tr>
<td>Name:</td>
<td><h:input id="name" value="#{person.name}" maxlength="50" required="true"/>
</td>

</tr><tr>
<td>Country:</td>
<td><a:smenu id="country" value="#{person.country}" required="true"/>
</td>

</tr>
</table>⌃ ⇧

Listing 6.1: Sample source code for UI form reflecting Fig. 6.2 (b)

them together or presenting them within a given screen size. Designing a non-trivial
form layout often results in layout code entangled together with form fields. We provide
an example of tangling such concerns in Listing 6.1. When an application adjusts a form
layout at runtime based on a given condition, it is possible that multiple cloned variants
of the same form must physically exist. For example, consider a slight modification of
the layout in Listing 6.1 for a user with a wide screen. We would place the name to
top-left, country to top-right, and the email to bottom spanning both columns. In this
case, only the layout concern changes while other concerns are unchanged, but having
all the concerns at the same place limits the reuse, often resulting in two forms.

Next, Arrow 4 indicates that form fields should consider additional UI conditions such
as security or visibility. For example, some fields should be rendered as read-only or left
unrendered based on the given user authorization. In order to apply the conditionals,
we further extend the form fragment, leading to more complex readability and perhaps
duplication among fragments applying various layouts.

Finally, Arrow 5 shows that certain constraints from the bound entity fields should be
applied for input validation. For instance, web applications with client-side validation
must restate constraints in a scripting language, such as JavaScript.

Listing 6.1 shows a very simplified implementation of Fig. 6.1; this JSF code shows data
binding to the form through a data instance person (value attribute in widgets), field
presentations through UI components (h:input/a:smenu), table layout tangled through
the fields, security condition (render attribute), and validation (validate, maxlength,
required attributes, etc.). The maintenance of such fragments becomes difficult because
all five concerns are captured together. Although Listing 6.1 differentiates concerns
by colors, in reality it is non-obvious which code refers to a specific constraint such as

i
i

“thesis” — 2015/6/8 — 12:22 — page 84 — #100 i
i

i
i

i
i

84 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

security, presentation, or layout. The reuse of individual concerns in such UI fragments
is limited since it only allows slight variations of concerns in the code. CaUI design
only compounds the problem since it typically increases the number of concerns.

As shown in Fig. 6.2, the AOP approach [13] sees the problem in an n-dimensional
concern space that is expressed in the implementation space using a one-dimensional
language, a GPL language. The orthogonality of concerns in the concern space gets lost
(collapsed) when it is mapped to the one-dimensional implementation space. For our
case, we have a 5-dimensional concern space as shown in Fig. 6.2 (a). This concern space
is mapped into one-dimensional implementation space in Fig. 6.2 (b). This corresponds
to what we see in the one-dimensional implementation in Listing 6.1.

The example above presents only a basic use case; next, let us consider more advanced
expectations from an effective UI design. In order to design a CaUI effective from
the development perspective, we must consider multiple quality attributes. It should
allow designers to capture the expected functionality but also other non-functional at-
tributes. First, it provides multiple presentations, different layouts, easy to address
and integrate various concerns, adaptivity to application runtime context, third-party
integration (security), etc. Second, it should be easy to develop and maintain individ-
ual concerns with low coding effort, while preserving development approaches already
known to the developer in GPL or CBD. Third, a good design should reduce infor-
mation restatement/duplication across the application and, if possible, mitigate errors
caused by UI inconsistency. Fourth, while reducing restated information, a single focal
point of information should exist to reduce multi-location changes. Fifth, a good design
separates tangled concerns [5] into readable code fragments to support their reuse and
maintenance.

When we consider conventional approaches and look back to Fig. 6.1, we should note
that multiple other concerns may exist for CaUI, thus growing the concern space. For
example, consider concerns such as user’s location, data submission error-rate, age,
temporal information or layout adjusted to the user’s screen size, etc. With no doubt,
since the number of concerns in Fig. 6.2 (a) grows and the complexity represented by
Fig. 6.2 (b) becomes even greater, it is not reasonable to keep concerns tangled together.
Such tangling is directly responsible for increased development and maintenance efforts,
diminishing readability, limiting reuse, higher possibility creating errors, etc.

i
i

“thesis” — 2015/6/8 — 12:22 — page 85 — #101 i
i

i
i

i
i

6.3. READ : RICH ENTITY ASPECT/AUDIT DESIGN FRAMEWORK 85

6.3 READ : Rich Entity Aspect/Audit Design Framework

In order to design a CaUI with low development and maintenance efforts, we should
avoid definition of an additional model that restates information captured elsewhere
in the application. Instead we should consider a code-inspection approach (MP) and
synergy with knowledge about transformations (MDD & GP) as well as to address
separation of concerns (GP & AOP), all described in Chapter 3.

First, we specify information that we want to reuse. These are data structural infor-
mation and their constraints. All these can be found at the application domain model.
Assuming that the domain model design uses OOP and the language supports reflec-
tive mechanisms, we gain access to data structures. Besides this we need an access to
the application context at runtime. Thus when we need to display data in the UI, we
can recognize the given data through MP and use its structural model, which captures
information about the class, its fields, and field constraints.

Application context and structural model is then the subject of transformation to the
UI. In order to effectively handle both adaptivity and adaptability, the transformation
takes place at runtime and uses generic, easy-to-extend transformation rules. In order
to design such rules, a single rule instance cannot bind to an individual data or data
field but to something more general. In our approach, each rule instance consists of a
query part and a suggestion, in AOP terminology a pointcut and an advice. The query
part is an evaluable Boolean indicating whether the rule applies for a given context
(given data field in given context). If so, the rule’s advice is given; if not a next rule in
the list is considered. The query can question a data field structural model, application
context or both using logical and arithmetical operations. The advice provides the
integration DSL template that is used for the data field.

A collection of customizable DSL templates is associated with the transformation rules.
Such a template uses the target presentation language and integration rules in it to
integrate additional concerns. An integration rule again consists of a pointcut and
an advice. The pointcut uses the same query constructs to question the data field
structural model and context. An advice is different; it is a DSL content template
that can reference the structural model properties or context variables. All integration
rules are considered for given template; if a rule pointcut holds, then its advice content
embeds to the template or resolves given reference to the structural model (such as field
name, type, etc.). The result of the template interpretation is a code fragment in the
target DSL language representing given data field considering all concerns, but layout.

i
i

“thesis” — 2015/6/8 — 12:22 — page 86 — #102 i
i

i
i

i
i

86 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

Right after all data fields process through the transformation, then a proper layout
template integrates. The resulting output is a DSL fragment reflecting data, context
and integrates all considered concerns. The last part of our approach is runtime inte-
gration of the resulting DSL code to the application UI. This involves the DSL code
compilation to the component tree (in CBD) and UI embedding.

6.3.1 Introduction to READ Conceptual Model

As suggested in Section 2.3.5, we describe the AOP conceptual model with the three
main components: the join point model that defines available join points, the point-
cut language that defines the query language to select a subset of join points, and
adaptation mechanism that allows adding / modifying functionality at selected join
points. In comparison to AspectJ and Hyper/J, in our case, the adaptation mechanism
does not constraint any method or code execution but deals with transformation and
composition.

In READ, we identify two sources of join points: the 1) structural model and 2) appli-
cation runtime context (a subset exposed to the READ process). A structural model
provides entity and field names, data types, and field annotations with their parameters
[9, 10]. An application runtime context can consist of any kind of information, such as
user access rights, geo-location, local context for presentation, device screen size, etc.
We could even count user error-rate throughout the application interaction and, based
on that, show a tooltip or help upon page load. Both sources provide us join points
that can be considered in the transformation process for given data instance. More
specifically these join points allow us to support generic/reusable transformation rules.

AOP terminology as described in Section 2.3.5 deals with two types of join points [18],
static and dynamic. While the application context corresponds to the dynamic join
points, the structural model contains both types of join points. For instance, the field
name is static, while field access rights denoted by field annotation can be dynamic.

The pointcut language defines the query language to select a subset of join points.
READ uses an expression language known as Unified Expression Language (EL) [80].
EL consists of constructs for conditionals and arithmetical operations, understands
basic types, and can evaluate any expression referring to its context. In READ, the EL
context has access to the elements of the structural model (from the field perspective)
and to dynamic context variables that are populated by application designer. The
pointcut language can query all information in the EL context. It is also possible to

i
i

“thesis” — 2015/6/8 — 12:22 — page 87 — #103 i
i

i
i

i
i

6.3. READ : RICH ENTITY ASPECT/AUDIT DESIGN FRAMEWORK 87

define custom utilities or functions that integrate third party libraries and pass them to
the context and thus expose them as dynamic join points. The language uses both the
state-based and specification-based constructs [18]. Later, in the next section we show
how to access elements for the structural model and context from the EL.

The adaptation mechanism uses the above described join points, and based on their
association to a particular data field or global context it selects an appropriate UI
transformation rule instance that suggests an integration template. An integration
template applies the same join points for integration rules. In both cases, pointcuts
query the join points to get advices, either for the transformation or concerns integra-
tion. We give an example of both rules later. The integration template uses an aspect
language for concern integration but at the same time uses the target UI language.
The layout integration is the last part of the adaptation mechanism. It is similar to the
integration template in that it uses a DSL language from the target domain language
to describe the layout and an extra markup to locate specific or anonymous fields in
the template.

In order to add a new concern to the system, we either need to expose it to the READ
context, or to extend the data structure through new annotations. This way the novel
concern becomes accessible by EL, thus by both the transformation or integration rules.

6.3.2 READ Lifecycle

The READ lifecycle in Fig. 6.3 denotes the main stages (a-f). In the UI, we aim to
display a given data instance (a) in the target UI language. In order to do that, we use
a custom component that is associated with a specific component handler (b,c) and the
displayed data instance reference. The responsibility of such a handler is to provide the
content for the component. Thus this handler is the connection between the target UI
language and integration of our approach. The custom component takes as an input
the data instance and considers other context information. For instance, consider the
example in Listing 6.2, the context can be an indication that the aimed content is a
read-only or editable presentation, fields named “notes" and “password" are ignored,
etc.

First, the handler aims to get the data structure, the data structural model. Either,
this structural model is found in the cache from a previous use or the data instance goes
through an MP inspection (d) and the result is passed to the cache. A cloned instance
of the structural model, which is the result of the inspection (d1), is interpreted in

i
i

“thesis” — 2015/6/8 — 12:22 — page 88 — #104 i
i

i
i

i
i

88 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

READ
handler

READ
component

Page
renderer

Inspection

Structural-model

Context-aware
structural-model

Transformation

Transformation
rules

Integration
rules

DSL UI
code fragment

Fo
r

ea
ch

 fi
el

d

Layout
integration

DSL UI
Code fragment

Code runtime
integration

READ

..
..

..

..
..

..
..

..
..

..
..

.. ..
..

a b c

d

d
1

e f

e
11

e
12

e
21

Figure 6.3: READ lifecycle

a given context using the Annotation Driver Participant Pattern (ADPP). This may
result in modification of the structural model instance. Such a context-aware structural
model is then passed to the transformation phase (e) together with the context.

In the above sections, we mentioned three phases of transformation. Each data field
from the context-aware structural model of given data is the subject of transformation
and concern integration (e11 and e12). This results in a UI code representation in the
target UI language for each field. After all fields process then the layout is integrated
(e21) receiving the entire data UI representation as result in the target language. The
last stage interprets the resulting UI fragment and builds a component tree, which
integrates it to the UI (f).

6.3.3 READ Lifecycle Integration

Next, lets consider how is the READ UI integrated. Consider the process of designing
a web page where we want to display application data in the main panel. Normally,
such a main panel contains code similar to Listing 6.1 to describe the data. Instead a
custom component is used as shown in Listing 6.2. A component prefixed “af" takes
as an attribute a reference to a data instance accessible through a controller (in our
case called a bean and a local context). This component is associated with custom
handler that pushes the local context to be considered in the READ context and issues
the phases described earlier in Section 6.3.2 to receive the CaUI for the given data
instance.

i
i

“thesis” — 2015/6/8 — 12:22 — page 89 — #105 i
i

i
i

i
i

6.3. READ : RICH ENTITY ASPECT/AUDIT DESIGN FRAMEWORK 89

Table 6.1: Subset structural model elements accessible as join points

Extension Description Data type Context variable
Class-level attributes
- class name - entity, Entity
- full class name - fullClassName
Field-level attributes
- field name - field, Field
- field type - dataType
Field-level constraints
1. Persistence profile
Column DB table column props. Any notNull,required,

maxLength,unique..
joinColumn DB table column props. Any notNull,required, unique..
Temporal Date, Time, TimeStamp Date temporal

..
2. Validation profile
Length Value length in the range String minLength, maxLength
Min, Max Value in the range Number min, max
Email Match email String email
Pattern Matches the reg-exp String pattern
Future, Past Future/Past date Date past, future
NotNull Not null value Any required,notNull
NotEmpty Not empty value Any required,notEmpty

..
3. Presentation profile
UiLink Web link expected String link
UiText Long text expected String text, cols, rows
UiParam Any Param expected Any param (name, value)
UiHtml Html expected String html
UiPassword Secret text expected String password
UiType Type of widget to use Any type
UiOrder Order in view Any order
UiTableOrder Order in table Any tableOrder
UiIgnore Ignore field in UI Any ignore
UiPattern UI Script regular expr String uiPattern
UiProfiles To support grouping Any Profiles

..
4. Access control profile
Restrict Third parti restriction Any restrict
UiUserRoles Values specifies user role Any roles

..

The inspection phase is rather complex; thus more details are provided. It audits classes
of the domain model (entities). It specifically looks for class name, class restrictions,
its fields and field constraints. While aiming to build on existing industry standards,
it complies with the profiles for persistence [9] and input validation [10] introduced in
Chapter 5. Both of these standards are usually applied to existing systems already,
and the inspection considers them. As shown for the MDD approach [A.2] from Chap-
ter 5, this can be further extended for role-based access control, for presentation, etc.
Table 6.1 bases on Table 5.1 and shows the class structure and field elements and a
subset of selected extensions applicable to domain model class fields. The table de-

i
i

“thesis” — 2015/6/8 — 12:22 — page 90 — #106 i
i

i
i

i
i

90 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

<h:outputText value="Person Info Form" />
<af:ui instance="#{bean.instance.personInfo}"

layout="personInfo-wide-layout"
edit="true" ignore="password,notes" />

<h:commandButton action="#{bean.save}" value="save"/>⌃ ⇧
Listing 6.2: Example use of READ UI component

@Entity @Table(name = "personInfo")
public class PersonInfo {

...
@UiUserRoles({"Admin","Owner"})
@UiOrder(1) @Enumerated(EnumType.STRING)
public Title getTitle() { return title; }

@UiOrder(2) @NotEmpty @Email
@Length(max=100) @Column(nullable=false, length=100)
public String getEmail() { return email; }

@UiOrder(3) @NotEmpty @Pattern(regex="^[^\\s].*")
@Length(max=100) @Column(nullable=false, length=100)
public String getFirstName() { return firstName; }

@UiOrder(8) @UiProfiles({"US"})
@NotEmpty @Column(nullable = false)
public String getHomeState() { return state; }

}⌃ ⇧
Listing 6.3: Example entity with additional markup

scribes extension names, denotes their applicability and also highlights the name of a
variable under which it is accessible as a join point. The inspection phase considers all
such extensions and it is further possible to consider other custom extensions.

The result of the data inspection is a structural model, a three-level composite structure,
reflecting the class-level, field-level and constraints or extensions. The structural model
provides these properties to other READ stages through the variable name (the right
most column in Table 6.1). Furthermore, in this phase, it is possible to apply runtime
context to modify the structural model. For example, it is possible to locally modify
structural model fields based on a given condition such as ignore a field, change field
constraints or to expose a new variable/object in the context and make it available as
a join point.

The transformation phase consists of three parts as denoted in Fig. 6.3. The result of the
inspections phase, a context-aware structural-model of the data instance, is accessible
to the transformation through EL context using variables described in Table 6.1. The
application context and any third-party elements or properties specified together with
the READ component or in its handler are passed to the EL context. For example,
consider the entity described in Listing 6.3 (it uses annotations [9] and [10]) and context

i
i

“thesis” — 2015/6/8 — 12:22 — page 91 — #107 i
i

i
i

i
i

6.3. READ : RICH ENTITY ASPECT/AUDIT DESIGN FRAMEWORK 91

<mapping>
<type>String</type>
<default tag="textTemplate" size="20"

javaPattern="" minLength="0" maxLength="255" />
<var name="Person.username" tag="emailTemplate"/>
<cond expr="${email == true}" tag="emailTemplate"/>
<cond expr="${link == true}" tag="linkTemplate"/>
<cond expr="${maxLength>255}"tag="textAreaTemplate"/>

</mapping>⌃ ⇧
Listing 6.4: Example transformation rules

<x:inputText id="#{prefix}$field$"
label="#{text[‘$entity$.$field$‘]}"
edit="#{empty edit$Field$? edit : edit$Field$}"

value="#{instance.$field$}" size="$size$"
required="$required$" pattern="$pattern$"

minlength="$minLength$" maxlength="$maxLength$"
title="#{text[‘title.$entity$.$field$‘]}"

rendered="#{empty render$Field$
? ’true’ : render$Field$}"/>⌃ ⇧

Listing 6.5: Example template for inputText widget

specified in Listing 6.2. The structural model reflects information about the data, its
fields and field properties, while the settings in Listing 6.2 modify the model instance,
and in our case fields password and notes are ignored. It exposes the aim to edit the
data to the context, as well as specific layout to use for this particular UI page.

The first stage of the transformation phase applies transformation rules to the model
fields. An example of a subset of such rules captured in a DSL is shown in Listing 6.4.
Consider the first name field from Listing 6.3. Based on the type, we use the String
group of the rules, and since none of the rule pointcuts (expr attribute) apply, we use
a default advice a textTemplate. For email, we pick emailTemplate since the second
pointcut applies. The pointcut could use any variable available in EL context (consider
context variables in Table 6.1 from the structural model, or any variable exposed to
the component handler). For example, we could ask whether a field of type String is
short and required and whether it is Monday and user is from Prague. Such pointcut
would look like this:

maxLength<100 and required and timeUtil.getDayName() eq ’Monday’
and locationUtil.city.toLowerCase() eq ’prague’

Each field from the structural model of the given data instance gets advice from the
transformation rules. The advice is a DSL template that describes a basic presentation
in the target UI language, with integration rules to integrate various concerns, such as
binding, help, validation, etc. An example template is shown in Listing 6.5. Note that

i
i

“thesis” — 2015/6/8 — 12:22 — page 92 — #108 i
i

i
i

i
i

92 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

(a) $not empty minlength ; myVar = minlength $
minlength="$myVar$"
$$

//-------
(b) $not empty minlength

? "minlength=\"".concat(minlength).concat("\"")
: "" $

//-------
(c) minlength="$minlength$"⌃ ⇧

Listing 6.6: Pointcut strategies for templates: (a)-full/ (b)-brief/ (c)-shorten version of integration rules

<table class="classLayout">
<tr><td colspan="2">$af:email$</td></tr>
<tr><td colspan="2">$af:title$ $af:firstName$ $af:lastName$</td></tr>

<af:iteration-part maxOccurs="100">
<tr><td>$af:next$</td><td>$af:next$</td></tr>

</af:iteration-part>
<af:cover-notes>
<tr><td colspan="2" class="foot">$af:notes$</td></tr>

</af:cover-notes>
</table>⌃ ⇧

Listing 6.7: Example layout template

this template consists of many references to the structural model through the context
variables. These references are part of the integration rules. In order to understand
the mechanism, we show three variants of integration rules in Listing 6.6. It shows (a)-
full/ (b)-brief/ (c)-shorten version of integration rules. It integrates join points from a
given field. The full version separates the pointcut and advice part; when the pointcut
evaluates to true, then the body applies, the EL environment is denoted by the $ mark.
Brief version provides the same result but needs less code. The shorten version fits to
common cases and needs the least code.

The last phase is layout integration. Layout is given by the READ component or
deduced dynamically using the handler. This process can express anonymous fields and
iterate over repeating layout pattern to populate information. Consider Listing 6.7 that
shows an HTML table decorating data fields. The layout has a repeating code pattern of
two columns for anonymous fields with up to 100 iterations, and can possibly reference
explicit fields that spans over two columns, etc. If fewer fields exist than specified,
only the given amount applies. To hide the target DSL, which may only be applicable
with a given field, a conditional (cover) fragment can be denoted. The specific fields
take precedence in the layout resolution. The result is a CaUI code fragment that the
READ handler compiles and integrates to the UI.

i
i

“thesis” — 2015/6/8 — 12:22 — page 93 — #109 i
i

i
i

i
i

6.3. READ : RICH ENTITY ASPECT/AUDIT DESIGN FRAMEWORK 93

6.3.4 Design with READ

Next, we discuss software design with the use of READ. Assuming that we build on the
top of an enterprise architecture using 3-layers, the system has a persistence layer that
captures its domain model by classes and applies ORM. For example, Java EE defines
standards [9] for the ORM, which extends the class model with additional markup.
Similarly validation [10] can be added. Generalization of such extensions and further
enhancements are suggested by [A.2].

READ inspection uses all of this information for the structural domain model compo-
sition and for join points. Besides this model, READ can also integrate business rules
defined in the above layer. Preliminary work in [A.10, A.23] shows that business rules
can be inspected and their definitions reused. This can be integrated into the READ
context.

Considering common development approaches, we only expect domain model entity
extension. We refer to such extended entities as rich entities. In the presentation
layer, common components can be used together with READ components. READ
components take as parameters an entity instance and addition presentation directives
and build the presentation for given instance. Such a component can produce a form,
table or a report.

With READ, the developer does not design a form or a table directly per each page use.
Instead, the developer specifies transformation rules that generalize mapping among
entity fields and presentation widgets. Transformation rules are generic and can be
reused among projects. The developer then designs integration templates that are used
by the READ weaver (component). These templates are also generic and can be reused.
While developing such templates is time-consuming, we must consider that all these
templates are reused by the entire application, thus the initial work amortizes over
the size of the software application. Furthermore, developers can design specialized or
generic layout templates.

Where can we see the main benefits? First of all, the system presentation reflects
the actual state of the software system. All data definitions, runtime contexts, and
states are considered in the weaving process, thus the data presentation reflects or
adapts to it at runtime. Second, with READ, the size of concern space does not
increase the complexity of the system, and described concerns can be reused. Change
of an individual concern is easy to locate and modify. Third, READ reduces errors

i
i

“thesis” — 2015/6/8 — 12:22 — page 94 — #110 i
i

i
i

i
i

94 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

because the entity becomes a single focal point of information, thus we do not need
to restate information multiple times in the UI. Fourth, READ reduces development
and maintenance efforts since a new entity presentation does not require any coding.
In case a new presentation is needed for a given field, it is possible to define new
transformation rule or design a new template. Fifth, READ naturally supports adaptive
UI design because it evaluates conditions at runtime and separates concerns. Sixth,
READ is open for integration with third party frameworks through the context or
domain model extensions. READ templates can integrate any DSL. A more concrete
example to this is when we use Java EE and JSF for presentation; it is possible to make
templates for various component providers (such as PrimeFaces, RichFaces, Tomahawk,
etc.). Seventh, READ does not bind the developer to a single-use approach; alternative
approaches can be applied at the same time.

READ can integrate any new concerns in its context and can evaluate them at runtime.
Our current approach is evaluated on component-based UIs, although it is not limited
to them. The limiting factor can be the runtime integration of READ output to the
UI. In some frameworks, this could be complicated, as it requires access to low-level UI
compiler libraries. READ does not limit the expressiveness of the UI since designer can
adjust the presentation in composition templates. READ can be used with partially
rendered pages and Asynchronous JavaScript and XML (AJAX) rendered views.

6.4 Evaluation

This section provides an evaluation of READ approach. First, we consider a UI that
provides a single presentation and compare the manual approach with READ. Next,
we consider UI extensions to support adaptive features such as adjustments to access
rights, users location, age, capabilities, or screen size. In this evaluation, we compare the
development costs for both approaches. We also consider a few maintenance scenarios.
In the second part of the evaluation, we consider runtime performance. Third, we
evaluate an existing production system that uses READ and provide our evaluation
statistics. In the evaluation, we consider an existing EA for the worldwide programming
competitions, the ACM-ICPC registration system1

1available at http://icpc.baylor.edu (2015)

i
i

“thesis” — 2015/6/8 — 12:22 — page 95 — #111 i
i

i
i

i
i

6.4. EVALUATION 95

Person

 String :password
 String :username

PersonInfo

 String :firstName
 String :lastName
 ..(other 16 attributes)..

ContactInfo

 String :voice
 String :im
 String :imService

ExtendedContactInfo

 String :fax
 String :phone
 ..(other 3 attributes)..

 Degree

 Date:beganDegree
 String :field
 . .(other 3 attributes)..

PassportInfo

 String :name
 String :nationality
 ..(other 4 attributes)..

Address

 String :street
 String :city
 ..(other 4 attributes)..

1
1

1

1

1 1

1 1 1
1

1
1

Figure 6.4: Evaluated application domain model

«

Age student
Mood
Screen size * small
Country Czech Republic
Country code US
City

Region

Postal code

Date pattern M/d/yy

IP

DetectUpdate

Config

Email

Name

State

Country
Begun studies (M/d/yy)

Notes

Menu: Person List New Person signed in as: admin Logout

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 6.5: Sample simple UI Form

6.4.1 Development and Maintenance Impact

In this section, we consider a subsystem of an existing ACM-ICPC system used for
registration of users and user account management with the domain model illustrated
in Fig. 6.4. For brevity, the class attributes are abbreviated, and the class model
does not list all attributes. The application follows mainstream development with 3-
layer Java EE. The lowest layer consists of an object-oriented domain model with 7
entities with persistence and validation constraints markup [9, 10]. The business layer
contains services with business logic, Create-Read-Update-Delete (CRUD), and search
functionality. The presentation layer contains UI implementation using JSF technology.

First, we consider this application with a single UI. The UI part of the application
contains search with result listing and a detail and modification page. The presenta-
tion covers the entire domain model in Fig. 6.4. Illustration of a simple page fragment,
a form, is shown in Fig. 6.5. Form submission of data is validated through enforced
business constraints upon submission. The application provides a single data presen-
tation in one layout. In total there are 7 data classes and 46 fields presented in the UI.
Excluding development configuration and external libraries, the application consist of
1342 physical LOC of Java, including persistence and business logic, 2221 LOC of XML
presentation, and 373 LOC of XML of application configuration. The type-unsafe XML
presentation exhibits 564 occurrences of restated information from the domain model
and its constraints [9, 10]. Next, we implement the same application using READ.
The data instance source code is extended with additional presentation marks [A.2]

i
i

“thesis” — 2015/6/8 — 12:22 — page 96 — #112 i
i

i
i

i
i

96 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

Table 6.2: Efforts comparison for simple UI

Evaluated concern Approach
Manual READ READ reusing generic elements

Java LOC 1342 1530 1439
UI XML LOC 2221 1715 1534

Conf. XML LOC 373 442 373
Restated inf. 564 0 0

UI Conditionals 0 0 0

extending the field constraints (see example in Listing 6.3). The main difference is that
READ composes components presenting data. They combine information from data
instance inspection, transformation rules, and presentation/layout templates. None of
the stages involve a direct reference to a particular data field (layouts do not reference
specific fields), which considerably reduces occurrences of restated information in the
XML. This results in 1530 LOC of Java, including the additional domain model marks
and a UI handler and 1715 LOC of XML including templates and transformation rules.
This shows reasonable code reduction for the presentation part, but at the same time we
must consider the maintenance impact. In the manual approach, we are directly respon-
sible for restating information from domain model in the UI, whereas READ handles
this for us. With READ we avoid inconsistency and errors, while reducing development
time. Even greater code reduction effect can be achieved on larger projects. Note that
presentation templates and transformation rules can be reused among projects. In this
case, the READ application results in 1439 Java LOC and 1534 XML LOC and equal
configuration. The summary can be found in the Table 6.2. At the same time, it should
be noted for READ that if custom layouts apply, they most likely reference field names
and increase the restatements. Furthermore, in the results we did not consider as a
restatement the reference to the data instance that is passed to the READ components
in the UI code. The aspect weaver itself is not included in the evaluation because it is
a generic, reusable, and external library (reasoning is given in [4]).

One serious drawback of this application example is that it considers a superset of all
possible end users. Thus users with large screen are provided a narrow layout, elderly
might need to zoom the page, internationals might wonder why they need to fill in a
state, and non-student registrants need to provide student-specific information.

Next, we consider a more user-friendly presentation supporting context-awareness. It
provides end-users with a presentation related to their origin using IP geo-location, ad-
justing to their browsing device screen size, conforming user rights, and fitting user age
and capabilities. In total, there are 3 main layouts to conform the screen-size. Further-

i
i

“thesis” — 2015/6/8 — 12:22 — page 97 — #113 i
i

i
i

i
i

6.4. EVALUATION 97
«

Age student

Select

Mood confused

Select

Screen size * normal

Select required

Country Czech Republic

Fill in text mininum 0 letters maximum
255 letters

Country code CZ

Fill in text mininum 0 letters maximum
255 letters

City

Region

Postal code

Date pattern M/d/yy

IP 178.248.252.218

Fill in text mininum 0 letters maximum
255 letters

DetectUpdate

Config

Email

Fill in text mininum 0 letters maximum
255 letters it must be an email

Name

Fill in text mininum 0 letters maximum
255 letters

Country

Select

Begun studies (M/d/yy)

Fill in date must be future must be past

Menu: Person List New Person Login

Login

ReRender Save Cancel

aa

Powered by JFormBuilder

Figure 6.6: Sample form for confused student
»Config

Fill in your email

Fill in your name

Select country you are from

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 6.7: Sample form for child
»Config

Fill in your email

Fill in text mininum 0 letters
maximum 255 letters it
must be an email

Fill in your name

Fill in text mininum 0 letters
maximum 255 letters

Fill in state you are from

Fill in text mininum 0 letters
maximum 255 letters

Select country you are from

Select

Menu: Person List New Person Login

Login

ReRender Save Cancel
aa

Powered by JFormBuilder

Figure 6.8: Sample form for elderly

more, we provide 4 different presentations for children, elderly, adult, and experienced
users, all possibly combining a given layout (see UI examples in Figs. 6.6-6.8).

The application following the mainstream development applies field restrictions, such
as user rights or locations awareness, throughout conditionals added to the presentation
components. The problem with this approach is that markup languages have limitations
in separating layout from the presentation. Also presentation cannot be separated from
field binding and property settings. The mainstream approach results in 1658 LOC of
Java and 13072 LOC of XML presentation, which includes 240 UI conditionals and
6768 restated information from the domain model. Consider that with this approach,
developers follow the implementation in Fig. 6.2 (b).

The READ approach allows designers separation of presentation, layout, security, and
location-awareness through various stages within the framework. One of main differ-
ences in the READ approach is that each concern is implemented separately as demon-
strated in Fig. 6.2 (a). The READ weaver then combines these together. In our study,

i
i

“thesis” — 2015/6/8 — 12:22 — page 98 — #114 i
i

i
i

i
i

98 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

Table 6.3: Efforts comparison with context-aware UI

Evaluated concern Approach
Manual READ READ reusing generic elements

Java LOC 1658 1907 1754
UI XML LOC 13072 5036 4508

Conf. XML LOC 373 649 373
Restated inf. 6768 0 0

UI Conditionals 240 20 20

the application backend Java code includes 1907 LOC, the presentation XML reduces
to 5036 LOC, including the presentation and layout templates, and 649 LOC of config-
uration XML. Conditionals for location and user-right restrictions are captured in the
domain model, this reduces the original 240 conditionals to 20. Furthermore there are
no occurrences of restated information in the XML, although field names can be ex-
plicitly captured as attributes the UI component Listing 6.2 to ignoring specified fields.
The overall summary of the evaluation is provided in Table 6.3. Consider that in this
second example, individual concerns multiply and their combinations apply. Standard
approaches fail to effectively design reusable UI components. The reason is behind the
common approaches that fail to capture individual concerns separately, which worsen
the code readability, reuse, and maintenance. Untangling individual concerns through
the AOP approach addresses code readability, reuse, and maintenance more effectively.

Next, we evaluate basic maintenance scenarios. With manual development, the UI
is fragile because of its coupling to the domain model in the environment with weak
type safety. Changes to a data field, its name, or constraints causes inconsistency in
all UI fragments. Such a simple change may lead to 12 locations that need to reflect
the change. In type-safe code, this can be easily refactored, but in XML it must be
addressed by text search. With the READ approach, there are fewer UI references
to the data elements; thus it does not require many UI corrections. When we want
to globally change the presentation of a particular widget, in the manual approach all
widget occurrences must change; however, with READ such change takes place solely
in a template. Changes to user rights manually require the application of conditionals
in the UI or at controllers. Since multiple presentations exist for a single field, this
can impact a significant amount of UI code. In READ, such change takes place at the
domain model, in a single location. The addition of a new form layout may require
a new copy of the form with tangled layout in the common approach. In READ, the
layout is a separate fragment; thus only a new layout template is designed.

i
i

“thesis” — 2015/6/8 — 12:22 — page 99 — #115 i
i

i
i

i
i

6.4. EVALUATION 99

Table 6.4: Performance comparison

Avg. page load time Std. deviation
Manual approach 545ms 47
READ approach 539ms 41

For the performance evaluation, we consider a page with 5 forms with total of 21 fields.
The time needed for page load is evaluated, considering both the conventional design
and READ versions. The load times for a page containing the forms, averaged over
250, samples were 545ms (std. dev. 47) for the manual approach and 539ms (std. dev.
41) for the READ approach. Results are highlighted in Table 6.4. The measurement
shows that the page load time is similar for both approaches.

6.4.2 Case Study : Production Experience

In order to demonstrate a large scenario, we provide a study that applies the READ
framework in production use. The entire contest management system described in Sec-
tion 6.4 is used. The goal of this study is to show applicability of READ to production
environment, its impact on development and maintenance, statistics resulting from the
approach, and generalization of its impact.

A subset of this system is evaluated in Section 6.4.1, using a prototype applying various
adaptive features. In the production system, we only consider single presentation and
multiple screen layouts. The entire application is complex and builds on a large domain
model (70 data entities). UI development and maintenance makes up a significant
portion of the overall development effort. Recently, the application migrated to a new
version that includes changes of the presentation framework. Thus we changed all the
UI components in the entire application. Since both versions apply READ for the UI
forms, only a few changes were required to support new form components. For the entire
application, only 25 integration templates existed; these were reused for all forms in the
application. Changes to support new form widgets took place in these templates. There
were no changes needed for the other concerns (e.g., layout templates, or transformation
rules). This migration was done in a very short time, compare to what it would be in
the manual case. If the manual approach was used, each form would combine multiple
concerns, and thus the change would impact up to 21451 LOC of Extensible Hypertext
Markup Language (XHTML). Instead with READ, we could solely focus on a single
concern (presentation), which is a change in the UI templates, and this impacts only
288 LOC. While porting forms required little time and effort, the migration of the UI

i
i

“thesis” — 2015/6/8 — 12:22 — page 100 — #116 i
i

i
i

i
i

100 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

Table 6.5: Case study summary

Application

Java 77394 LOC
XML 2380 LOC
XHTML 41473 LOC
Generated UI equiv. to 21451 LOC (XHTML)

Estimate Savings on restated inf. in UI 15592

UI Data entities 63 (70 total in the application)
Data fields 473

Average

Entity 7.5 fields
Entity in UI 82.5 restated inf. per UI form
Entity in UI 113 LOC and layout
Field in UI 15 LOC

tables, which did not apply READ approach, took considerably longer time because it
entangled multiple concerns that were reused in many locations.

Our code measurement in the production system provides the following results. Out
of the 70 entities in the domain model, 63 of them are referenced in the UI as forms.
All of these forms are generated at runtime based on data inspection. These forms are
rendered in three different layout widths, according to the user’s screen size. In order
to apply the READ approach, we must define 28 transformation rules (only 101 LOC),
integration templates for UI components (288 LOC), and layout templates (367 LOC).
We also need to apply additional 545 annotations to the Java classes. The view part of
the application, including XHTML and XML, consists of 41473 LOC and 2380 LOC.
The entire Java code has 77394 LOC. The approach brings the reduction in UI forms
for 63 entities in three different layouts, which represents 21451 LOC of XHTML code.
This represents approximately 32% of the entire XHTML UI code for the application.

The following is the summary on these measurements. There are 63 entities, with total
473 fields, that are represented in the UI. Each field may have multiple constraints
defined by field annotations for object-relational mapping, validation, security, or pre-
sentation (see Listing 6.3). This represents 9-13 references per field in the UI component
(see Listing 6.5); the exact number depends on a particular widget type and the field.
We also measure the average number of fields in the UI form per a given entity. The
result shows that our system has a mean value of 7.5 fields per entity (median 6) with
a standard deviation of 4.85. When counting that a UI widget has approximately 11
references to the domain model, it results in 82.5 occurrences of restated information in
the XHTML per the average data entity in a single layout form. Consequently, READ
prevented an estimated 15592 occurrences of restated information in the application

i
i

“thesis” — 2015/6/8 — 12:22 — page 101 — #117 i
i

i
i

i
i

6.5. SUMMARY 101

UI. The measured statistics to render data entity in a UI form in a single layout results
in 113 LOC with standard deviation 63.77. This is caused by the deviation of class
fields. Thus, each time we use READ in the UI, we save around 113 LOC. On average
this represents 15 LOC for an individual field in UI for a single layout.

The measurements are summarized in Table 6.5; it shows that the use of READ frame-
work reduces the volume of UI code. A significant portion of the UI code is generated.
Doing this manually require us to handle significant coupling and many occurrences
of restated information; therefore, future evolution management would result in high
maintenance efforts. Table 6.5 gives our estimate for an average entity of its field count,
UI references, and LOC required for UI presentation with contemporary approach. The
project statistics shows that the UI part of the system is significant, which correlates
with the estimate given in [19]. Regarding the performance, there is no performance re-
duction exhibited, and the community has reported no performance issue. The READ
is applied in production for the ACM-ICPC contest management system at the time of
publishing this thesis.

6.5 Summary

In this chapter, we introduce the READ approach that aims to address two issues re-
lated to conventional UI development: information restatement and cross-cutting con-
cerns. The UI design is analyzed to derive involved concerns that should be addressed
separately in the design in order to improve reuse, development, and maintenances.
Information reuse is addressed through MP and data inspection, which avoids incon-
sistency among backend and frontend parts. A direct transformation of the inspection
result to the UI is avoided, as it would not provide flexibility to consider other con-
cerns. Instead, an indirection is considered. The data structural elements are identified
as join points as well as the elements from the application runtime context. Con-
sidering join points and their constellation in a given data field allows us to deduce
generic transformation rules that can be reused across various fields and domain ob-
jects. AOP-terminology works well in describing the transformation. Transformation
rules use pointcuts and advices to determine particular DSL templates for the next
stage. Such a DSL template, supports custom presentation definition in the target lan-
guage and give the ability to integrate other concerns applying integration rules that
follow the same concept as transformation rules. Based on pointcut, integration rules
determine whether or not to integrate a particular advice to the template. On the top

i
i

“thesis” — 2015/6/8 — 12:22 — page 102 — #118 i
i

i
i

i
i

102 CHAPTER 6. RICH ENTITY ASPECT/AUDIT DESIGN (READ)

sits the layout integration. The result of the run-time transformation is code fragment
in the target UI language representing given data and context in the UI. Finally, the
code fragment is interpreted and embedded to the component tree for a particular UI
page.

In our evaluation, we implement a tool for Java EE, capable of runtime transforma-
tion to JSF. The advantages, which can be also seen from the presented case study,
are: reduction of restated information, reduction of restated decision, reduction of code
volume, error-avoidance regarding inconsistencies, generic and reusable transformation
rules, addressing of cross-cutting concerns, support for third party and extensions, run-
time context integration, synergy with OOD and adaptable towards changes. When
reusing templates and transformation rules, it produces output quickly with low efforts,
while allowing full output customization. It further reduces development and mainte-
nance efforts and supports single focal point perspective. As shown in comparison with
JSF, the performance does not need to struggle, although it strongly depends on a
given target language. The limitation can be seen for the last stage, which is the inter-
pretation of the resulting target language fragment, integration to the component tree
and embedding to the rest of the page. This is very specific to given view framework,
and advanced framework knowledge might be required for achieving it.

i
i

“thesis” — 2015/6/8 — 12:22 — page 103 — #119 i
i

i
i

i
i

7
Integration with other Context-aware UI

approaches

Writing one-line programs is not usually what we mean by design.

Software has improved a lot over the years, and a lot of systems

that used to require careful design can now be built by reusing other

software. But there are a lot of systems that we can’t build that

way, and writing 100K lines of new code isn’t that much easier now

than it was 15 years ago. It will do a lot more, but costs the same.

-Ralph Johnson

In Chapter 3 we introduce existing Context-aware User Interface (CaUI) approaches.
These approaches provide great features to support usability although they are prone to
information restatements. In order to apply such an approach to existing applications
or to even new application that build on code-based approach for data management and
follows existing standards (such as Java EE), the approaches require to reference and
restate already captured information, which is error-prone and tedious. This chapter
shows READ integration to another CaUI approach to extend its capabilities with

103

i
i

“thesis” — 2015/6/8 — 12:22 — page 104 — #120 i
i

i
i

i
i

104 CHAPTER 7. INTEGRATION WITH OTHER CAUI APPROACHES

reduced restatements as well as the development and maintenance efforts [A.3, A.21].
This chapter considers User Interface Protocol (UIP) approach for CaUI that can stream
the UIs to various platforms, while using native platform components and features to
improve usability, it also adjusts field layout based on metrics, etc. The integration with
READ is demonstrated on a case study. The study demonstrates reduction of restated
information, reduced the development and maintenance efforts and also simplifications
for integrating UIP to EAs, (e.g. Java EE applications). This chapter bases on work
published at [A.3, A.21].

7.1 Motivation

In Chapter 6, we proposed the READ approach to reduce development and maintenance
efforts of UIs and even of CaUIs. Many alternative CaUI approaches exist that provide
extended features, such as automated element layout composition for given devices,
support for native platform elements and native platform features, etc. UIP [14] is an
example of such an approach.

The main goal of UIP is to deliver optimized UIs to different platforms. UIP introduces
one more level of indirection. It considers an abstract structural description and given
UI that is the same for all platforms. The optimization is based on the structural
description and a presentation context that influence the presentation and resulting
format of the provided UI. The UIP concept is based on the client-server architecture
[6, 8]. A set of thin UIP clients connects to a single UIP server. The UIP server
streams UI descriptions to various heterogeneous clients that interpret the UI on given
platform using native components. In contrast to web-based clients, UIP clients use
platform-specific presentation.

The server-side employs a main component for context sensitive UI generation called
the Concrete User Interface (CUI) generator, which produces concrete UIs. It takes
as the first input an Abstract User Interface (AUI) specification captured in DSL [27].
An AUI specification is a hierarchical composite structure [A.3] that describes UIs in
a platform-independent manner. This structure specifies what the UI should consist
of (input, output and action triggers), although there is no specification of the current
representation of individual elements and the layout. The second input into the UI
generation process is a context model. The context model is based on the concepts
of ability-based design [81] and is aware of the target platform. The context model
together with the AUI specification are composed together based on optimization met-

i
i

“thesis” — 2015/6/8 — 12:22 — page 105 — #121 i
i

i
i

i
i

7.2. PROBLEM DESCRIPTION 105

Code
inspection

Visual Editor

UiGE
CUI generator

AUI

AUI

Context Model Client 1

Client 2

Client n

CUI

CUI

CUI

JPA
Application

User 1

User 2

User 3

User 4

User n

UIP
Server

Figure 7.1: UIP platform overview [A.3]

rics (e.g., minimal user effort) and produce CUIs. These resulting and optimized CUI
descriptions, together with data, are streamed to various platform-specific UIP clients
mentioned above. A sketch of the approach from [A.3] is provided at Fig. 7.1. In
the opposite direction, clients submit events of user actions. There are a number of
UIP clients based on various platforms, such as desktop version for Personal Comput-
ers (PCs), tablet PCs, smartphones, smart TV emulator and web.

7.2 Problem Description

The above description shows that UIP provides reasonable features that are good to
have but certainly hard to develop. On the other hand, as described in Chapter 3,
UIP struggles with multiple disadvantages. Most likely when we want to integrate
UIP to an existing system, we need to restate all the data information in the AUI,
which is error-prone and tedious; since it uses a DSL, we have very limited type safety.
It struggles from evolution management, since changes in data representation are not
reflected in the AUI, and thus not in the UI. Next, the presentation context considered
in the CUI generation may consider contextual information, although distinct from the
application context of the existing system. Such application context may influence the
AUI description at runtime; thus a static design of the AUI may not be efficient and
sufficient. UIP suggests designing AUI by hand or through visual editor. Although the
editor helps to avoid errors in the DSL description itself, it does not help with restated
information.

i
i

“thesis” — 2015/6/8 — 12:22 — page 106 — #122 i
i

i
i

i
i

106 CHAPTER 7. INTEGRATION WITH OTHER CAUI APPROACHES

7.3 READ Integration

When considering an existing application backend, typically an EA, such as Java EE
with JPA [9], then multiple, already captured information would need to be restated
in the AUI. As demonstrated in Chapter 6, since it is possible to apply code-inspection
to the data structures, consider multiple, additional aspects, and transform all these
through READ aspect weaver via DSL composition templates to CaUI, then it is pos-
sible to automate the AUI descriptions generation as well. The integration templates
can use the AUI as the target language and derive the AUI description from the EA
backend. Furthermore, when this approach operates at runtime, the AUI description
can be influenced by given runtime conditions and thus affect the resulting UI.

Such READ-UIP integration avoids error introduced though manual AUI design, pre-
vents inconsistencies in the UI, and reduces the time needed for AUI integration. Next,
it does not bind the developer to base cases, since he or she can define custom com-
position rules or define custom composition templates. It may further enforce security,
a concept missing in UIP. It also supports evolution management since changes to the
application backend take an immediate effect in the UI.

[A.3] addresses the integration of UIP and READ, as can be seen from the sketch at
Fig. 7.21. The existing system is bound to the UIP approach through AUI descriptions
and through domain model mapping. The CUI generator then process the AUI and
context model and produces a CUI description that is transmitted to a custom UIP
client, together with data2. Next, note the use of optional UIP templates in Fig. 7.2.
Such a template is a complex mapping variant that provides the relationship between a
subset of an AUI and platform-specific structure. A UIP client can send events back to
the UIP server for processing. For example, consider a client-side event demanding data
modification, which is processed through the server-side event handlers that perform
the data changes.

7.4 Evaluation

The evaluation is made based on a data-oriented EA that involves a population census
form [A.3, A.21]. The goal of this evaluation is to show the capabilities of the integrated
approach to generate context-sensitive, platform-aware electronic equivalents of real

1AspectFaces library is the implementation of READ
2A more detailed description can be found at [A.3]

i
i

“thesis” — 2015/6/8 — 12:22 — page 107 — #123 i
i

i
i

i
i

7.4. EVALUATION 107

Data
mapping

JPA
Application

UIP Server

Aspect Faces

UIP Client

Renderer

Model
manager
+ binding

Event
manager

Event
handlers

data send EH

Model
manager

DB

CUI
generation

EHEHEH

CUI

send
event

Context

form
data model

UIP dataUIP data
models

data
model

Templates

UiGE CUI
Generator

UIP Visual
Editor AUI

CUI

AUI

Figure 7.2: UIP and READ integrated platform overview [A.3]

physical forms. One of forms for the population census in the Czech Republic in 2011
was used. A set of forms for three different platforms was generated from a single
AUI. The AUI was generated through READ code-inspection of the underlying JPA
application backend.

Fig. 7.3 shows visualization at different platforms. Fig. 7.3 a) shows a UI generated for
an iPad UIP client. In this case, an UIP template is used for the AUI mapping. It uses
a complex platform-specific structure - UITableView. Fig. 7.3 b) shows a visualization
of a UI generated for a desktop platform. The advantages brought by UIP are that
the font-size, element-size, element spacing, and layout are influenced by the context-
model. Using model-wide binding and server-side application logic, the UIP client
displays warnings next to elements with content that does not pass the validation
criteria. The most suitable mapping to actual CUI elements that visualize individual
AUI elements is determined using combinatoric optimization.

Fig. 7.4 shows different UI variants generated for an iPhone UIP client. Fig. 7.4 a)
shows a UI generated without UIP templates with the default context model. Fig. 7.4
b) depicts a UI that is generated for a user with slightly reduced vision and dexterity
problems. Note that the size of the labels and also of the interactive elements is bigger.
Fig. 7.4 c) shows an UI that uses the UIP template with native UITableView.

i
i

“thesis” — 2015/6/8 — 12:22 — page 108 — #124 i
i

i
i

i
i

108 CHAPTER 7. INTEGRATION WITH OTHER CAUI APPROACHES

Figure 7.3: UI generated for: a – iPad tablet (left) and b – desktop PC (right) [A.3]

Figure 7.4: UI generated for iPhone: a – default context (left), b – for user with lower vision (middle), c –
generated using templates (right) [A.3]

i
i

“thesis” — 2015/6/8 — 12:22 — page 109 — #125 i
i

i
i

i
i

7.5. SUMMARY 109

Similarly, [A.21] describes details of a user study that compares generated UIs with
manually-implemented, simple, web-based UIs. Three platforms are used during the
study - a desktop PC, a tablet PC, and a smartphone. The UIs were assessed sub-
jectively in terms of comfort, efficiency, and aesthetic quality on the Likert scale [82]
(1 to 5, where 1 is the best score). The Wilcoxon rank-sum test [83] is used to com-
pare the effect of each UI on comfort, efficiency, and aesthetic quality. The user study
showed that the generated UIs could provide a better subjective user experience for the
mentioned qualities. The biggest advantage over the web UI is on the iPhone. In this
case, the UI generated by the READ-UIP platform is based on easy-to-navigate iOS
Table View. By contrast, the web page required a lot of scrolling and zooming, which
worsened its usability. The study described in [A.21] is further evaluated from the
perspective of development and maintenance. A manually-developed system is com-
pared with a system built using READ-UIP integrated approach. The study revealed
that only 874 LOC are required by READ-UIP integrated approach, in contrast with
1819 LOC required by the manually-developed system. Furthermore, with the READ-
UIP integrated approach, the changes take place only in a single location, the domain
model. Next, consider that there is a reduction not only in the source code, but also
in the coupling among different subsystems. The time devoted to both development
and maintenance is reduced because the UI part adjusts to the information already
captured in the EA backend and no manual restating takes place.

7.5 Summary

The goal of this chapter is to show the synergy effect of READ with other context-
aware approaches. This approach may act as universal code to DSL transformer and
reduce efforts for developers in third-party integration or even to researchers to apply
their prototypes to large application to demonstrate large-scale scenarios while avoiding
extensive manual work and errors introduced from human-factor.

Furthermore, code reduction demonstrated in Chapter 6 does not relate solely to a given
platform. At the same time, UIP may struggle with addressing runtime application
context, security, location awareness, etc. These can be easily handled through READ
integration, while extending UIP capabilities.

For possible improvements, the entire READ transformation process could be dis-
tributed between the client and the server using web services. For example the code-
inspection and composition template selection could be made at the server-side. The

i
i

“thesis” — 2015/6/8 — 12:22 — page 110 — #126 i
i

i
i

i
i

110 CHAPTER 7. INTEGRATION WITH OTHER CAUI APPROACHES

composition template integration may also be partially done at the client-side. This
could considerably reduce the data transmitted between client and server, since all
templates and data structures could be sent once, for instance in a JavaScript or JSON
formats for web systems. They could be then cached and reused over the time. The
server would consequently provide only the changing information and its usage and
resources involved in the UI delivery would reduce. This extension is introduced in
Chapter 8.

i
i

“thesis” — 2015/6/8 — 12:22 — page 111 — #127 i
i

i
i

i
i

8
Distributed, AOP-based UI Design

Software design is always hard. Although most modern

development environments do lots to reduce complexity through

reusable libraries and toolkits (Eclipse, Apple, Microsoft), designing

a software solution to the business problem is still hard.

-Richard Helm

Previous chapters introduced advantages brought by separation of concerns regarding
the design of UIs. Although when it comes to UI rendering, the separation drops. This
has the effect apparent in web-based application where the server-side put efforts to
assemble the UI into a client-readable description in which it provides the UI to clients.
Such description although entangles concerns, which extends its volume and disables
individual concern caching and reuse at the client-side.

This chapter explores the possibility to apply the advantages of separation of concerns
introduced in previous chapters to the UI delivery. It provides a case study applying
such an approach to compare its advantages over the conventional form of delivery. The
result brings decreased server-side efforts in the UI data presentation assembly, reduced

111

i
i

“thesis” — 2015/6/8 — 12:22 — page 112 — #128 i
i

i
i

i
i

112 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

volume of processed UI description, extended options for concern caching and reuse,
improvements to responsiveness, as well as the ability of the client-side to request a
particular concern separately of other concerns. This approach pushes more responsi-
bility to the client-side and partially delegates the UI assembly to clients. At the same
time, the server-side resources are provided in machine-readable formats, which opens
the server-side for further reuse. This is demonstrated by simplified implementation of
native client-based applications that take advantages of native widgets, while reusing
services and the UI configuration given by the server-side. The content of this chapter
based on the research published at [A.1, A.6, A.7, A.12].

8.1 Motivation

Previous chapters introduced existing UI designs and development approaches and sug-
gested various improvements to address restated information and cross-cutting UI con-
cerns, which reduces development and maintenance efforts. Although these improve-
ments bring many advantages, they do not take into account the underlying architecture
from the perspective of communication with users and data transmission.

When considering UI delivery to remote clients, in most cases, the UI description uses
HTML streamed to clients over the Internet. Although often supplemented with im-
mutable resources such as images, Cascading Style Sheets (CSS), or JS, the description
itself is provided as a single piece of information. Such a single block of information
has limited caching options; the information volume provided in the block might be
extensive. When we consider conventional approaches, they tangle various concerns to-
gether. Although the AOP-based UI approach such as READ untangles the UI concern
descriptions, the concern weaving takes place at the server-side, and client receives a
tangled result, similar to that received from conventional approaches.

Such concern mix is also evident in the streamed HTML. For example, an HTML data
form mixes together field presentation, form layout, data binding, field validation, etc.
A client web browser interprets the received HTML to present the UI to the user. This
mix may consist of repetitive information [A.1, A.6, A.12] and even fragments that do
not change over the time, but each time the page reloads, the entire block of information
from the HTML must transmit again.

The question to address is whether it is possible to cache a particular concern from the
UI description at the client-side. With the above approach, it can be hardly achieved.
At the same time, consider that at the server-side we already maintain concern sep-

i
i

“thesis” — 2015/6/8 — 12:22 — page 113 — #129 i
i

i
i

i
i

8.2. EXTENDING THE READ APPROACH 113

aration when involving READ or a AOP-based UI design approach; thus in order to
provide similar concern separation to the client, the server-side concern weaving must
partially delegate to the client. Consider a distribution of the AOP-based UI design
approach between sever and client so that the server provides UI concerns to clients.
At the same time, the server uses its internal information to enforce UI configuration,
and the client becomes responsible for requesting UI concerns plus configuration and
for performing the UI assembly. UI concerns can be requested asynchronously in paral-
lel. Since the client requests given concerns separately, caching of individual concerns
becomes trivial.

This chapter extends READ design with concern distribution and client-side assembly.
The impact of the split concern streaming on the UI page load time, transmission size,
content caching, and server resource use is considered. An experiment is performed
to compare the proposed approach with the conventional, single-stream delivery with
respect to transmission content size, load time, caching and server load.

8.2 Extending the READ Approach

In order to describe the distributed concern delivery extension to the READ UI design,
we put into the contrast the conventional design UI approaches and iteratively extend
them. The conventional UI designs expect developers to derive presentations of data
elements considering a particular situation, context and data definitions that are further
fragmented to fields and constraints. Throughout the design developers repeat their
decisions to select UI components for given fields. The manually derived presentations
struggle with coupling to the data definitions and information restatement as suggested
in Fig. 8.1 (left side). The variability of context can cause the need to design multiple
presentations for given data definition, which may include repeated decisions. Together
this causes significant development and maintenance efforts as well as potential for
errors. Limited type safety only deteriorates the efforts. Novel data definitions require
to design one or even multiple new UI component.

Code-inspection-based approaches would follow the life cycle at Fig. 8.1 (right side).
It shows an extension to the left side of Fig. 8.1 with emphasize on stages A-D, which
reference below. Instead of making references to data instances, the UI component as-
sembly deriving data presentation performs data definition lookup and code-inspection
(Stage A) to derive the data structure. For each field it determines presentation (Stage
B), usually, through hard-coded rules. More flexible mechanisms would use templates

i
i

“thesis” — 2015/6/8 — 12:22 — page 114 — #130 i
i

i
i

i
i

114 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

UI Page

request/response

…

…

context based decisions

restatement of constraint restatement of data binding

regular component

data presentation

?

X

Y

Z

1 2
3 4

A
B
C

next stage
determine result

D ?
X

Assem
bly

structural model

field of structural model

? presentation/layout template

data definition

UI Page

Figure 8.1: Conventional approach binding and restatements (left), Code-inspection-based approach life cycle
(right). Assembly stages: A - code-inspection to passed data, B - selection of a field presentation, usually
determined by field type, or custom rule, C - field presentation content resolver in case we use template for
stage B, D - layout decoration.

(Stage C) allowing developers to adjust the output. Layout selected for particular pre-
sentation decorates field templates (Stage D), which produces the data presentation
that the assembly embeds to the page. This can happen at runtime, but it is possible
to have all presentations generated at compile time.

The AOP-based extension to the assembly in Fig. 8.2 affects the stages A-D. The exten-
sion can be seen in consideration of join points, pointcuts and advices (see the legend of
Fig. 8.2). Stage A determines the data definition structure and it also considers runtime
context to adjust it to a particular user and system conditions. This derives join point
model that follow the structure of data and fields. The join points reflect both the data
structure and the dynamic context. In practice, the structural model is cached, but the
context and join point representation is resolved each time it is used and each time a
presentation is requested. This allows UI adaptation to context-awareness.

Stage B aims to find an appropriate presentation for each field, driven by the data
structure of join point model. The context can influence the structure. Instead of
designating each field with a specific presentation template, we use join points to de-
termine the appropriate presentation to generalize the field selection. A set of aspects
is designed for this purpose. Each aspect advice determines an appropriate template
to be used; the pointcut is a query to field’s join points to the join point model. The
pointcuts use an expression language (such as Java Unified Expression Language) that
allows determining whether the pointcut applies; all this solely bases on field join points.
Since this mechanism does not bind to specific field name or class, it is reusable and
allows novel data definition to reuse it with no additional efforts. This is one of the key

i
i

“thesis” — 2015/6/8 — 12:22 — page 115 — #131 i
i

i
i

i
i

8.2. EXTENDING THE READ APPROACH 115

Y

?

?

? V

A …"…"
…" B

C …"
…"
…"

?

 label *

 validation

…" ?

D

X

…"

…"

X Y

Z join points

determine result

…"

structural model context

field

aspect
(pointcut/advice)resolve

zoom

+

…

… …" …"…" …"X

…

Figure 8.2: AOP-based extension to the code-based inspection assembly

features that allow reusing these aspects among any data class/field across the entire
system. The pointcuts are generic, although the expressiveness is not limited to join
points, any application context and be used as well, also field-specific selection can be
applied.

The selected presentation template is interpreted using similar mechanisms. Stage C
in Fig. 8.2 gives an abstract detail of the presentation template and repeats for all
presented fields. The template gives a basic presentation for a particular field. It uses
the target UI language and join points to integrate other presentation aspects and to
incorporate field information. Within the field context, we resolve the template content
and supply validation, conditionals, data binding, etc.

The layout integration in stage D uses template selected for particular situation and
presented data. It uses the target language extended with join points that either ref-
erences a specific field by name or an anonymous field. To avoid complex indirection
the aspect can be inlined. Besides the specific/anonymous field references, the anony-
mous fields may use iteration to simplify dealing with repetitive layout fragments. For
instance, a generic two-column layout description only captures two anonymous fields
wrapped in iteration tag that enforces all data fields to follow the pattern within the
tag. Furthermore, this mechanism can combine with specific field references that are
stripped from the iteration and position to a designated position.

The illustration in Fig. 8.3 (left side) shows the services provided to clients, when
considering the AOP-based UI design. Denoted by colors all stages a�- d� are considered.
The aspect weaver does the assembly of data presentation(s) and is used by UI renderer
that resolves page content embedding the derived data presentation(s). The rendered
content is sent to the client-side. Clients interpret the provided description.

i
i

“thesis” — 2015/6/8 — 12:22 — page 116 — #132 i
i

i
i

i
i

116 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

All the above approaches deliver the UI description as a single block of information.
Although AOP-based UI design addresses separation of UI concerns for components
reflecting data, the separation gets lost upon the UI delivery to clients. The provided
description consists of repetition and tangled UI presentation. This naturally extends
the volume of provided description, although the disadvantage is addressed by the
HTTP compression. On the other hand, the server is responsible to use its resources to
process and tangle all the concerns to derive data presentations. Thus it works with the
full volume. From the clients perspective there is no mechanism to apply caching for
the tangled concerns. To the contrary, consider concerns (such as these from Fig. 6.2a
in Chapter 6) streamed separately to clients. Such distribution might appear to be an
additional overhead, as we need to handle more requests. On the other hand, this may
eliminate repeating patterns in the transmitted content and enable concern caching.

In order to design the distributed, AOP-based UI, the concern weaving process should
be partially pushed to client-side. The application data definitions (or data transfer
objects [8]) together with the application context are part of the server-side where the
inspection takes place. This gives a join point model streamed to the client. Note that
certain model elements might not be relevant to presentation or to a particular user.
For instance, consider internal fields, primary key, version field, etc. The data defini-
tion constraints or the context solves this through the Annotation Driver Participant
Pattern [13]. Thus only model elements that are relevant to user UI presentation con-
forming user rights are provided to clients. The selection of a particular presentation
template for particular data field could be executed at the client-side; however, this
would increase the complexity of the client since it must be aware of transformation
rules and these may need to have access to internal join points or server-side information
to resolve the decision. Thus this responsibility remains at the server-side, providing
the result to the clients.

The right side of Fig. 8.3 depicts the responsibility assignments between server and
client sides through service calls. Each client requests a HTML page that references
client-weaver that calls for each data element a service that provides the filtered join
point model enriched with the pre-selected template key 1 (a,b). Presentation tem-
plates are provided 2 as JS library. Each template has a corresponding key that
matches the set of keys given by 1 . The join points of a given data field from 1
resolve the template matching the key. There is no enforcement for the client that
would prevent it from considering local context in the template selection in fact multi-

i
i

“thesis” — 2015/6/8 — 12:22 — page 117 — #133 i
i

i
i

i
i

8.2. EXTENDING THE READ APPROACH 117

S
er

ve
r-s

id
e

C
lie

nt
-

si
de

b
a

d

client-weaver
1 2 4 3

weaver
b a

?
?
?
?

V

advice
query to given element join points

client render weaving stage
service call

data values n
processing

c

{html}

…"…"
…"…"

?

?

? V

?
X

Y

Z

X Y

Z

weaver …"…"
…"…"

key

U
V
W
X

renderer

renderer

{html}
{json} {js} {js} {json}

c

Figure 8.3: Services provided by the AOP-based UI design (left) / the distributed, AOP-based UI design (right)

ple template collections may exist for local context. Layouts 3 , similar to presentation
templates, are provided to the client-side for integration with the data UI presentation.
Other concerns might be provided as separate services, integrated either at the server-
side through transformation rules or via client-side presentation templates. Each client
composes the UI data component based on received concerns that are influenced by
system context. The server also provides the actual data values to the client 4 . These
values are displayed in the assembled UI component. Weaver can determine the match-
ing data values from data element enforcing context and security. Data submissions
use usual HTTP mechanisms or a web service.

The life cycle for the web systems works as follows. The user navigates to a particular
page. This page consists of description elements from conventional UI design, which are
ordinarily interpreted. The difference is for components representing data. These are
replaced by custom tags and interpreted by a client-weaver (for example a JS call). The
tag indicates which data to display and what local settings apply for the UI component
assembly. The client-weaver requests necessary concerns from the server-side. The
provided responses consider user rights, security and application context. As depicted
in the right side of Fig. 8.3, the client-weaver generates the UI representation for a
data instance given as a parameter of the custom tag. It conforms to its structure,
application context and settings provided by the tag. The client-weaver may reuse
a particular concern from cache. For example, presentation templates do not change
throughout a long period of time; data structure might be immutable in a given context
and user session, etc.

i
i

“thesis” — 2015/6/8 — 12:22 — page 118 — #134 i
i

i
i

i
i

118 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

The extension to the AOP-based UI design is that concerns are provided to clients
separately. The concern assembly is divided between client and server sides. The
server-side does automated derivation of the join point model through inspection of data
definition and context. This automated derivation provides the model reflecting actual
application/user context. Information provided to the client-side avoids repetitions
or tangling. The templates as well as the client-weaver are expected to load once by
the client-side, the join point model may stay the same for context-unaware UI or
may change with particular session or even request. The weaver can derive the data
values using the same context and structure used for the join point model. Since the
join point model and data values determine the UI presentation, the client assembly
is not sensitive to particular data definition and thus the templates reuse over the
time. There is no limitation to web systems and it is possible to design native platform
weaver with templates reflecting the server provided template keys and the join point
model determines the data presentation in native format, which supports further reuse.
The abilities brought by the distributed, AOP-based UI are client-side concern reuse,
possible caching of UI concerns, reduction of repetitions in the delivery, lessen server
side involvement in UI rendering.

8.3 Experiments

This section provides experiments comparing the conventional approach with the dis-
tributed, AOP-based UI. The production-level EA ACM-ICPC contest management is
considered. In our experiments, the web page for person profile management is used
as it contains multiple forms presenting data. First, a subset of the page with 21 form
fields is evaluated; next a 42-form field version is considered. The application is built
on Java EE 6 (JDK 7) using JSF 2.1.18 and the PrimeFaces 3.4 library. The existing
page of the EA is used for the comparison with the distributed, AOP-based UI for
which we use AspectFaces library1 to design the server-side weaver. The same produc-
tion configuration is used with equivalent logical structure of UI elements for the data
presentation at the page, while considering the same static resources for both approach
evaluations. The 21 form field page versions are shown in Fig. 8.4 and Fig. 8.5.

In the measurement, the evaluated prototypes are deployed to a server at Baylor Uni-
versity in Texas with the parameters of 8 cores of 2.4 GHz, 16 GB RAM, and network
access 645/185 Mbits/s download/upload. The client is situated in Prague with 4 cores

1http://www.aspectfaces.com, 2015

i
i

“thesis” — 2015/6/8 — 12:22 — page 119 — #135 i
i

i
i

i
i

8.3. EXPERIMENTS 119

of 2.3 GHz, 16 GB RAM, and network access 10/6 Mbits/s download/upload. The
CDN is a virtual server in Nuremberg, Germany with 2 cores, 3.4 GHz and 3 GB
RAM with guaranteed 200 Mbits/s for download/upload. The round-trip time (RTT)
between client and server is 150 ms and client and CDN is 20 ms. 50 measurements
are made, and the average results with the standard deviation are provided in Tables
8.1-8.3.

To measure the load times, we use the standardized HTML5 Performance Timeline2

that provides performance metric data for the given page. Specifically for the dis-
tributed, AOP-based UI approach that assembles the UI at the client-side, we consider
the finish times of the UI composition. Thus for this reason we add a listener indi-
cating the finish of the assembly (rendered UI presentation). The iterations JS script
reloads particular page multiple times and stores the page statistics to Local Storage.
This approach gives us minimal skew since the Performance Timeline already applies
in existing web browsers.

The following measurements are made. First we measure the page size and load time
to download and render the entire page requested from the server at Baylor University
using the client in Prague. It involves requesting all page resources and page rendering
at the browser. The client-side browser cache impact is considered in the evaluation.
Second, to evaluate the network load, traces of resource loading are used. A simulator
that interprets these traces is implemented with a thread pool of 10 instances that
downloads resources reflecting the web-browser trace. Based on responses, the down-
load time is measured, considering neither resource decompression nor page rendering.
The simulator is used to evaluate the impact of the CDN at Nuremberg on the page
load. In the third measurement, the server-side is evaluated with a stress test. One
hundred simulators run simultaneously, following the trace for a particular page with
given approach, while measuring the server-side the CPU usage.

8.3.1 Page Loads with Web Browser

The first measurement with the shorter conventional page (Table 8.1, Row a) and dis-
abled web browser cache has a main document size of 74.4 KB, which compresses to
9.2 KB through gzip. In total the page calls 10 requests (including static resources),
the transmission has 218 KB. Table 8.1 shows the results for conventional approach for
Chrome37.0.2062.122/Firefox32.0.2/Opera24.0.1558.53 web browsers (including JS process-

2http://www.w3.org/TR/performance-timeline, 2015

i
i

“thesis” — 2015/6/8 — 12:22 — page 120 — #136 i
i

i
i

i
i

120 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

Title: * First name: * Johny

Last name: * Doe Badge name: * John Doe

Certificate name: * John Doe Gender: *

Shirt size: * Home city: * Guwahati ,State of Assam

Home state (if appl.): * Never mind Home country: *

Occupation (student..): Student Special needs: None

ACM ID: 111 When we publish your
name on the web, may
we include your email
address?: *

Disagree Agree No answer

Are you interested in
knowing more about
employment
opportunities at IBM? If
so, you will be emailed
details.: *

Disagree Agree No answer May we inform you by
email about this contest
and other academic
contests that might
interest you?: *

Disagree Agree No answer

Area of study: * Mathematics and Computing Degree pursued: * B.Tech.

Began degree: * 07/21/2011 Date of birth: * 09/09/1993

Expected graduation: * 05/01/2015

General info

Degree info

Dr.

Male

M

Anguilla

Figure 8.4: Evaluated UI subsystem designed with JSF approach

Title:* Dr. First name:* Johny

Last name:* Doe Badge name:* John Doe

Certificate name:* John Doe Gender:* Male

Shirt size:* M Home city:* Guwahati ,State of Assam

Home state (if appl.):* Never mind Home country:* Anguilla

Occupation (student..): Student Special needs: None

ACM ID: 111

When we publish your
name on the web, may
we include your email
address?:*

Disagree Agree No answer

Are you interested in
knowing more about
employment
opportunities at IBM? If
so, you will be emailed
details.:*

Disagree Agree No answer
May we inform you by
email about this contest
and other academic
contests that might
interest you?:*

Disagree Agree No answer

Area of study:* Mathematics and Computing Degree pursued:* B.Tech.

Began degree:* 2011-07-21 Date of birth:* 1993-09-09

Expected graduation:* 2015-05-01

General info

Degree info

Figure 8.5: Evaluated UI subsystem designed with the distributed, AOP-based UI approach

ing). The distributed, AOP-based UI design approach (Table 8.1, Row b) makes 15
requests. The main document size reduces to 3.3 KB (1.3 KB compressed), although it
additionally loads a JS assembly library (3.3 KB compressed), data (1 KB compressed),
and join point representation (4 KB compressed) from web-resource. The transmission
has 218 KB. Notice that additional resources load in parallel, simultaneously. The
processed size of UI is considerably smaller (Table 8.1, last column). Row (c) gives

i
i

“thesis” — 2015/6/8 — 12:22 — page 121 — #137 i
i

i
i

i
i

8.3. EXPERIMENTS 121

Table 8.1: Page load measurements with disabled cache
R

ow Requested page

C
ac

he Chrome�
[ms]

Firefox�

[ms]
Opera�

[ms] Requests Transmission
compressed

Processed UI
size

a Shorter conventional

N
o
-
c
a
c
h
e 1637199 1573420 1540200 10 218 KB 74.4 KB

b Shorter distr. AOP 1419114 1417187 140260 15 218 KB 29 KB
c % change 13% 10% 9% 33% 0% 61%
d Longer conventional

N
o
-
c
a
c
h
e 169187 1992367 1669195 10 220 KB 98.9 KB

e Longer distr. AOP 156092 177289 150090 23 223 KB 37.1 KB
f % change 8% 11% 10% 57% 1% 62%

the percentage improvement of load times ranging around 10%. The data presentation
description volume that is processed by both server and clients, reduces by 61%.

The longer, 42-field conventional page has a main document size of 98.9 KB (com-
pressed 11.1 KB), as shown in Table 8.1 d. The distributed, AOP-based UI design
approach in Table 8.1 e, requires 23 requests since since it requests information from 6
data instances. The main document size 5.3 KB (compressed 1.6 KB), the join point
representation 6.5 KB, and data 2.7 KB. Row f shows around 10% improvement in
page load time. The data presentation information volume improves by 62%. From the
results, we see improvement in the page load time. Although the UI description size
reduces, the compressed form is the same size as the conventional approach. Notice
that the number of requests grows, because data definitions and values are requested
per given data instance. To overcome request growth, similar to static resource opti-
mization strategies [A.20], this could be aggregated as evaluated in [A.1].

The Table 8.1 a-f shows improvement in the page load times and reduction in the
processed UI description volume. The compressed transmission is equivalent, although
both sides work with the original size. The number of requests in distributed, AOP-
based UI design approach grows, because multiple data elements are involved in the
requests.

The next measurement considers enabled web browser cache and repeats the above
measurements (first miss not counted). The load times, shown in Table 8.2 a-f , drop
significantly for both approaches. The conventional approach delivers the “tangled"
main document, which is 9.2/11.1 KB for the shorter/longer version (Table 8.2, Rows
a,d). The volume of data presentation description is the same as the uncached version.

The distributed, AOP-based UI design approach needs to transmit the main document
and fetch data values, which gives 2.4/4.2 KB in 3/7 requests (Table 8.2, Rows b,e).
There is a 15-20% improvement in page load time. The RTT is the dominant factor.
The UI data presentation volume improves by 93% and 62-74% in the transmission.

i
i

“thesis” — 2015/6/8 — 12:22 — page 122 — #138 i
i

i
i

i
i

122 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

Table 8.2: Page load measurements with cache enabled
R

ow Requested page

C
ac

he Chrome�
[ms]

Firefox�

[ms]
Opera�

[ms] Requests Transmission
compressed

Processed UI
size

a Shorter conventional

C
ac

he 57321 65949 51712 1 9.2 KB 74.4 KB
b Shorter distr. AOP 45629 55292 44628 3 2.4 KB 4.3 KB
c % change 20% 16% 14% 67% 74% 94%
d Longer conventional

C
ac

he 65721 858105 60749 1 11.1 KB 98.9 KB
e Longer distr. AOP 52639 59384 51948 7 4.2 KB 7.2 KB
f % change 20% 31% 15% 86% 62% 93%

Table 8.3: Simulation download evaluation

R
ow Page load� [ms]

Cache Shorter conv. Shorter distr.
AOP % change Longer conv. Longer

distr. AOP % change

a No-cache 135266 1182101 13% 1379135 1213ms92 12%
b Cache 31215 35315 12% 38131 40463 6%
c CDN 63128 51122 19% 77126 60017 22%

8.3.2 Page Loads with Traces Involving CDN

Next evaluation considers the simulator that interprets browser request traces. The ex-
periment is conducted to see the network impact, while considering neither the DOM
construction nor resource decompression. The resource load results are shown in Ta-
ble 8.3. At Row (a), the measurement does not consider cache and shows improvements
similar to web browsers. The caching trace experiment results at Row (b) shows better
results for the conventional approach. The third measurement considers CDN with
cacheable resources available at server in Nuremberg. Row (c) shows results demon-
strating the distributed, AOP-based UI load times reduced by approximately 20%.

Although Rows (a) and (c) show improvements comparable with web browser results,
(b) is worse. The explanation is the dominant RTT, which in the conventional approach
occurs once but in the distributed, AOP-based UI multiple times and multiple data ele-
ment requests are made. Notice this experiment only involves network communication.

8.3.3 Server Impact Evaluation

The server-side impact evaluation involves the simulator from the previous evaluation
and implements a stress test with 100 clients loading a particular page simultaneously.
We measure the server CPU load during repeated page loads given four pages uncached
and cached at the client-side. A Unix tool “sysstat” is used to get the CPU load every
second during the stress test. The results for particular pages in Fig. 8.6 and 8.7 show
that CPU load is lower and shorter for our proposed approach, due to lower data
transmission volume and delegated (offloaded) UI composition to client.

i
i

“thesis” — 2015/6/8 — 12:22 — page 123 — #139 i
i

i
i

i
i

8.3. EXPERIMENTS 123

300
400
500
600
700

CP
U

 lo
ad

 [%
]

Shorter conv.
Shorter AOP
Longer conv.
Longer AOP

0
100
200
300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

CP
U

 lo
ad

 [%
]

Time [ms]

Longer AOP

Figure 8.6: Server impact evaluation - CPU load (no cache)

300
400
500
600
700

CP
U

 lo
ad

 [%
]

Shorter conv.
Shorter AOP
Longer conv.
Longer AOP

0
100
200
300

1 3 5 7 9 11 13 15 17 19

CP
U

 lo
ad

 [%
]

Time [ms]

Figure 8.7: Server impact evaluation - CPU load (cache)

8.3.4 Comparison with GWT

GWT, introduced in our related work, targets improvements to UI caching. To compare
it with the distributed, AOP-based UI design approach, a 23-field page version of the
application prototype is implemented with GWT and distributed, AOP-based UI. GWT
does not use the same static resources and JS libraries thus the distributed, AOP-based
UI page prototype is modified, although there are still notable differences in both
prototypes regarding linked JS libraries. The distributed, AOP-based UI prototype
in previous measurements links generic JS libraries related to given JSF component
provider, here these libraries are removed. The GWT prototype does not link generic
JS libraries. There is a notable difference in the evaluation with disabled web browser
cache, relevant to different JS libraries, although once the web browser cache applies,
the libraries are cached and not requested; thus does not impact the evaluation.

The distributed, AOP-based UI prototype needs to transmit 41.8 KB to build the UI
at the client (161 KB uncompressed). The GWT version needs to transmit 102 KB
(379 KB uncompressed). The main document in GWT is partially converted into JS
with a cacheable fraction of 141KB (50 KB compressed) and a non-cacheable fraction
with 7.2 KB (3.4 KB compressed).

i
i

“thesis” — 2015/6/8 — 12:22 — page 124 — #140 i
i

i
i

i
i

124 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

Table 8.4: GWT comparison, transmission of UIs with 23 fields

No-cache Size (KB) Cached

Uncompressed Compressed Uncompressed Compressed
GWT 379 102 11.9 5.8
Distrib. AOP-based UI 161 41.8 3.9 2.1

The cache-enabled, page of the distributed, AOP-based UI prototype transmits content
of 2.1 KB, which is 3.9 KB uncompressed. The GWT. cache-enabled version needs to
download the HTML page, displayed data, and non-cacheable JS fragment, which in
total is 5.8 KB (11.9 KB uncompressed). The results are summarized in Table 8.4. The
GWT version still presents tangled code through mixed concerns, which extends its size.
The approach with separately streamed UI concerns can reduce the UI description and
improve caching beyond what is brought by GWT approach.

8.3.5 Threats to Validity

To mitigate the impact of network fluctuation to the measured results of page load
times we averaged 50 samples of the same scenario, where we re-run each measurement
right after each other. The measurement involves HTML5 Timeline that mitigates
skew results. To avoid false times related to client-side execution, for the distributed,
AOP-based UI approach we explicitly consider the finish times of client-side UI assem-
bly, even though this might give better timing to the conventional version. Next, we
provide criteria of evaluation perspective that are not sensitive to network changes and
fluctuation. Specifically we measure the total volume of transferred data, and the vol-
ume of UI assembled by server. In addition, we consider the impact of caching abilities
that are reflected by the transmitted volume.

Our application is one representative of a real-world application. The selected page re-
flects part of the application; we aimed to mitigate the specificity of the particular page
size by considering page content extension. At the same time, the representative does
reflect neither all aspects of the data presentations, nor all conventional approaches.
The constellation of client-server represents one particular scenario to provide real-
world results rather than a wide spectrum of constellations. We could use laboratory
environment for the study, although the goal was a demonstration on a real environ-
ment to provide practical impact. This case study serves as a demonstration of the
proposed approach impact on performance and transmitted volumes when compared

i
i

“thesis” — 2015/6/8 — 12:22 — page 125 — #141 i
i

i
i

i
i

8.3. EXPERIMENTS 125

to conventional concern-tangling applications. The study considered the ability of a
conventional web-browsers Chrome, Firefox and Opera.

8.3.6 Summary

Streaming various concerns separately from server to clients improves page load times
for UI fragments presenting data (considering complete UI rendering) and improves
caching options. In our evaluation, we streamed presentation, layout templates, data
structure with applied security, as well as the actual data values. The distributed,
AOP-based UI design approach extends caching options for concerns that are usually
tangled together in conventional approaches.

The study on a production system shows page load time reduction in the range of 10 %
and further to around 15 % when considering cache. The extended caching capabilities
shown in our experiments reduce the transmission to 62-74 % compare to the JSF
approach. The volume of information process by the server-side that corresponds to
the data UI presentation reduces by more that 90 % using the proposed approach.

With trace simulation that considers solely network transmission and does not consider
UI rendering and resource decompression, we see that requesting UI concerns separately
has limitations in the transmission. Uncached trace transmission is similar to browser
results and shows the distributed, AOP-based UI design approach to be faster, although
we show cache-enabled evaluation to be slower, since most UI concerns are loaded
after the main document transmission finishes in the distributed, AOP-based UI design
approach. With trace simulation, we also evaluate the use of a CDN, which shows that
the distributed, AOP-based UI design approach outperforms the conventional approach
and reduces page load to 20 %.

By stress testing the server side, we demonstrate considerable reduction to the CPU
load for the distributed, AOP-based UI design approach, which is demonstrated by
graphs in Fig. 8.6 and 8.7. This corresponds to the reduce volume of server processed
information.

The approach was also compared with GWT. The transmitted content volume with
cached resources reduced by 63%, although a broaden study should be considered
mostly regarding to the specific aspects involving multiple page states.

i
i

“thesis” — 2015/6/8 — 12:22 — page 126 — #142 i
i

i
i

i
i

126 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

Android client

Templates)))))))

Processor)

Android app

Server

Templates))))))) Processor)

Application

Join)point)model) Data)
))))))))

Web-based UI
))))))))

Web-services

Desktop client

Templates)))))))

Processor)

Java app

Web client

JavaScript)engine)

Web browser

<<TC
P

/IP
>>

<<TCP/IP>>

<<TC
P

/IP
>>

JSON JSON
HTTP

Figure 8.8: Sample of deployment diagram considering three heterogeneous clients

8.4 Native Platform-specific UI Clients

In addition to the above benefits, the distributed, AOP-based UI design approach
presents parts of the UI description in a platform-independent way that is easy to
process by other programs [A.7, A.22]. For example, it is easy to build mobile or
standalone clients using the same web-services that are used for the web-browser-based
clients. Consider Fig. 8.8 that shows the above situation.

Client applications provide a set of platform-specific templates matching the expected
UI widgets and implement the client-side weaver that interprets the join point model
and integrates data values. Next, it should consider native layouts.

In addition to the distributed, AOP-based web UI in Fig. 8.5, we implement an Android
mobile app in Fig. 8.9 and 8.10 and a standalone Java Swing version in Fig. 8.11, which
all use the same application server, business rules, data, services and context.

When server-side data change, all the client applications reflect the change, since the
data UI presentations adjusts to the updated join point model. Platform-specific clients
take the advantage of native widgets for the UI presentation to improve usability,
although, the application page-flow is left for custom implementation.

Compared to UIP [A.3] discussed in Chapter 7 the server-side does not need to change
with a novel supported client-side platform. Instead, the same information are provided
across various platforms.

i
i

“thesis” — 2015/6/8 — 12:22 — page 127 — #143 i
i

i
i

i
i

8.5. CONCLUSION 127

Figure 8.9: Android-based UI
Figure 8.10: Android-based UI

Figure 8.11: Java Swing-based UI

8.5 Conclusion

This chapter considers alternative UI delivery for data presentations that involves sepa-
ration of concerns. Conventional designs, as well as AOP-based UI design, mix various
concerns together in the UI delivery, which may produce extended volumes and limit
the client abilities regarding to concern reuse and caching.

Proposed distributed, AOP-based UI design may reduce the volume of transmitted
information, positively impact responsiveness, extend client-side caching options as well
as reuse of specific UI concerns. Reduced information volumes processed at the server-
side positively impact resource use, such as CPU. On the other hand, such approach
increases the amount of requests, although supporting concurrency. Provided case
study demonstrates the above mentioned advantages of the approach.

The approach provides information in a machine readable format, which opens the
application for further reuse across different platforms.

The results are promising, although limitations must be considered. The design ap-
proach fits well for data presentations; it builds on the top of other approaches that deal
with interaction, page-flow, etc. Next, a small amount of field components exist, such

i
i

“thesis” — 2015/6/8 — 12:22 — page 128 — #144 i
i

i
i

i
i

128 CHAPTER 8. DISTRIBUTED, AOP-BASED UI DESIGN

as suggestion boxes, and data manipulations, these must be defined, although it is easy
to consider existing library integration, HTML5 components or custom presentations
for fat-clients.

i
i

“thesis” — 2015/6/8 — 12:22 — page 129 — #145 i
i

i
i

i
i

9
Future Work and Synergy

Time abides long enough for those who make use of it.

-Leonardo da Vinci

The presented research spans through multiple disciplines and areas from Software
Engineering, Model-driven development, Networking and touches also HCI.

The extension to the accomplished research is given by [A.5, A.10, A.23]. It considers
generalization of READ and AOP-based mechanisms to the EA development, it also
presents the idea of capturing business constraints and rules in a DSL and weaving
them to the entire application to conform the constraints at all application levels. The
AOP provides efficient instruments to integrate various system concerns. In result such
extension can be applied to the UI generation as well.

Next potential area of its application is its use for application middleware composition
and for system integration. The predictiveness of UI element naming and identification
given by rules in the generation process open possibilities for UI testing automation.
With the ability to predict identification of components representing data, their binding
to particular data and mostly with the knowledge of the meaning of each particular

129

i
i

“thesis” — 2015/6/8 — 12:22 — page 130 — #146 i
i

i
i

i
i

130 CHAPTER 9. FUTURE WORK AND SYNERGY

UI field makes it suitable to automated large sets of UI tests. Development of such
test is usually complex and delicate to application changes, which requires consider-
able maintenance efforts. The test generation automation for UI testing would reflect
future changes to data and thus reduce maintenance efforts. Although these topics are
promising, they are left for future work.

Similar to what was achieved in conjunction with UIP [A.3, A.21], in a defended diploma
thesis in which we applied READ to other CaUI libraries XML User Interface Lan-
guage (XUL) and User Interface Markup Language (UIML) and compared the efforts
with JSF and UIP approaches. All the descriptions we generated by READ to reduce
development and maintenance efforts. The result of this thesis is subject of a research
publication.

The distributed, AOP-based UI design brings further potential for research mostly
from the perspective of platform-independence. The use of the distributed, AOP-
based UI design approach can consider, besides the client-side caching and CDNs, also
involvement of cooperative web caching [A.9, A.19, A.27] in P2P overlay networks. With
this approach it would be possible to further improve caching through distribution the
UI fragments that are reusable.

In submitted journal paper that is under review we elaborate the idea of delivery
strategy selection based on context. For instance, users with desktop have the ability
to render their view using the all-state GWT approach. Although, when client poses
restricted abilities, such as phone with discharged battery of smart watch, the GWT
would be an overkill. Using the the distributed, AOP-based UI approach could fit
better, although what is the impact on the battery use? Should it rather consider server-
side rendered UI where the client only interprets the UI. Selection of an appropriate
delivery/rendering strategy based on context is subject of next research. We believe that
AOP-based approach has the prerequisites to effectively deal with strategy selection,
while mitigating the development and maintenance efforts.

i
i

“thesis” — 2015/6/8 — 12:22 — page 131 — #147 i
i

i
i

i
i

10
Conclusion

A conclusion is the place where you get tired of thinking.

-Arthur Bloch

This work addresses multiple problems in the area of UI design for data presentations.
In order to reduce restatements and repeated decisions in the UI design the MDD
approach was considered to derive data presentations from UML class models. Al-
though, it is possible to derive UIs from UML class models, often the result is poor and
requires manual changes to generated descriptions, which disables future derivations
from the model, since manual changes would erase. Suggested solution is an extension
to UML class models that captures additional information through UML profiles and
stereotypes that allows deriving UIs that conform data constraints, input validation or
security. Such an extension provides the ability to describe data presentations at the
model-level, which reduces UI design efforts. This idea applied to models is platform-
independent. On the other hand there are limits to the approach. It operates at compile
time, and it does not provide generally accepted mechanism to address cross-cutting
concerns. The provided benefits are not directly applicable to code-based development.

131

i
i

“thesis” — 2015/6/8 — 12:22 — page 132 — #148 i
i

i
i

i
i

132 CHAPTER 10. CONCLUSION

Throughout the research of this thesis is discovered that a model similar to the ini-
tial MDD approach can be received by applying metaprogramming to code-based sys-
tems. To preserve the above benefits and apply them to code-base development our
approach must go beyond MDD. The GPL code can act as the source of information,
and the model can be derived through metaprogramming. Next, we consider operabil-
ity at runtime to avoid possible issues with exponential state growth apparent with the
compile-time approaches. To effectively address tangled code, cross-cutting concerns
must be addressed. Furthermore, to avoid reinventing the wheel, existing development
standards must be taken into account.

From the existing approaches that address concern-separation we selected AOP as it
has well accepted terminology and is applicable at runtime. The metaprogramming
provides mechanisms to receive information from the code, specifically from data struc-
tures and derive join point representation, that represent the model. It consists of data
structure, field information, their constraints and the result can be further extended
with the runtime context. The UI derivation process is then similar to MDD, but the
transformation rules and templates are extend with AOP mechanisms, pointcuts and
advices. This provides versatile and generic mechanism to integrate UI concerns as
well as third party mechanisms (e.g. security). The benefits brought by such transfor-
mation that at runtime derives the UI, while considering the context, is its ability to
provide personalized UI experience. Even applications with simplistic UIs receive ben-
efits, since concerns reuse throughout the time, across different data. Thus the amount
of application data no longer indicate efforts for UI development and maintenance. The
concern specification has increased cohesion, which reduces development and mainte-
nance efforts and prevent inconsistency error, since information are maintained at a
single place rather than distributed throughout the application.

Integration of a novel library with UI widgets to an existing application no longer re-
quires large, tedious and error-prone maintenance efforts, since only limited amount of
templates must update to reflect the changes in the entire system. Similar experience we
present a large productions-level application where only 25 updates would be necessary.
From another perspective the discipline of HCI provides large amount of approaches to
describe CaUIs, although they mainly consider the usability aspects and not the inte-
gration in to a complete application; thus the global perspective is missing. We showed
that with READ approach it is possible to integrate such third-party libraries, while
providing benefits of reduced development and maintenance efforts, etc. As a conse-

i
i

“thesis” — 2015/6/8 — 12:22 — page 133 — #149 i
i

i
i

i
i

133

quence, if an expert with advanced knowledge of a particular CaUI approach defines
a set of presentation templates for READ then it is fairly easy for other developers to
apply the approach to conventional application not even having a deep knowledge to
the particular DSL or approach because the required approach description is generated
by READ. This simplifies the transition of various CaUI approaches across different
systems.

The last part of presented research considered the UI delivery from the perspective
of separation of concerns. We identified that client-readable UI descriptions tangle
concerns together and that their separation may provide multiple benefits. It may
reduce server-side efforts related to UI processing and assembly, since the separated-
concern delivery partially delegates the UI assembly to the client-side. Next, the volume
of information provided by the server to clients reduces, and makes it possible for clients
to reuse concerns as well as to apply cache. This reduces the UI page load times and
improves UI responsiveness. Furthermore, it opens the server-side for further reuse since
concerns are provided in a machine-readable format. In a case study we presented not
only the UI page load time improvements but also show platform-specific client-based
application prototypes that reuse platform-independent information provided by the
server. This may, for instance, simplify the development and maintenance efforts of
mobile applications, that supplement web-system, while providing improved usability
to users.

The presented approaches were demonstrated on multiple case studies that considered
the impact on development and maintenance efforts, reduced dual decisions, infor-
mation restatements, code volume, as well as providing the performance evaluation.
The outcome of this work is not only theoretical, a library implementing READ is
provided and deployed in a production-level application for the ACM-ICPC contest
management. The application serves to users from more than 2,534 universities and
101 countries worldwide.

i
i

“thesis” — 2015/6/8 — 12:22 — page 134 — #150 i
i

i
i

i
i

134 CHAPTER 10. CONCLUSION

i
i

“thesis” — 2015/6/8 — 12:22 — page 135 — #151 i
i

i
i

i
i

ReferencesABibliography

[1] Hans Bergsten. JavaServer Faces. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2004.

[2] Ed Burns and Neil Griffin. JavaServer Faces 2.0, The Complete Reference.
McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2010.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[4] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier, Cristina Videira
Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-oriented programming. In
In ECOOP’97-Object-Oriented Programming, 11th European Conference, volume
1241, pages 220–242. Springer, June 1997.

[5] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October
1976.

[6] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2nd edition, 2001.

[7] Max Schlee and Jean Vanderdonckt. Generative programming of graphical user
interfaces. In Proceedings of the working conference on Advanced visual interfaces,
AVI ’04, pages 403–406, New York, NY, USA, 2004. ACM.

[8] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[9] Linda DeMichiel. JSR 317: JavaTM persistence API, version 2.0, November 2009.

[10] Emmanuel Bernard. JSR 303: Bean validation, November 2009.

135

i
i

“thesis” — 2015/6/8 — 12:22 — page 136 — #152 i
i

i
i

i
i

136 REFERENCES A. BIBLIOGRAPHY

[11] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems:
The Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA, 2 edition,
2008.

[12] Krzysztof Czarnecki and Ulrich W. Eisenecker. Components and generative pro-
gramming (invited paper). In Proceedings of the 7th European software engineering
conference held jointly with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, ESEC/FSE-7, pages 2–19, London, UK, UK,
1999. Springer-Verlag.

[13] Ramnivas Laddad. AspectJ in Action: Enterprise AOP with Spring Applications.
Manning Publications Co., Greenwich, CT, USA, 2nd edition, 2009.

[14] Miroslav Macik, Martin Klima, and Pavel Slavik. Ui generation for data visualisa-
tion in heterogenous environment. In Proceedings of the 7th international confer-
ence on Advances in visual computing - Volume Part II, ISVC’11, pages 647–658,
Berlin, Heidelberg, 2011. Springer-Verlag.

[15] Anthony Finkelstein and Jeff Kramer. Software engineering: a roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages
3–22, New York, NY, USA, 2000. ACM.

[16] Linda DeMichiel and Michael Keith. JSR 220: Enterprise javabeans version 3.0.
java persistence API, May 2006.

[17] Jean-Sébastien Sottet, Gaëlle Calvary, Joëlle Coutaz, and Jean-Marie Favre. A
model-driven engineering approach for the usability of plastic user interfaces. In
Engineering Interactive Systems, pages 140–157. Springer, 2008.

[18] Maximilian Stoerzer and Stefan Hanenberg. A classification of pointcut language
constructs. In Workshop on Software-engineering Properties of Languages and
Aspect Technologies (SPLAT) held in conjunction with AOSD, 2005.

[19] Richard Kennard and John Leaney. Towards a general purpose architecture for ui
generation. Journal of Systems and Software, 83(10):1896 – 1906, 2010.

[20] Dan Allen. Seam in Action. Manning Publications Co., Greenwich, CT, USA,
2008.

i
i

“thesis” — 2015/6/8 — 12:22 — page 137 — #153 i
i

i
i

i
i

137

[21] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’92, pages 195–202, New York, NY, USA, 1992. ACM.

[22] Anthony Finkelstein and Jeff Kramer. Software engineering: a roadmap. In Pro-
ceedings of the Conference on The Future of Software Engineering, ICSE ’00, pages
3–22, New York, NY, USA, 2000. ACM.

[23] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edition, 2003.

[24] Edsger W. Dijkstra. The structure of the “the”-multiprogramming
system. Commun. ACM, 11(5):341–346, May 1968.

[25] David Garlan and Mary Shaw. An introduction to software architecture. Advances
in software engineering and knowledge engineering, 1:1–40, 1993.

[26] J.-S. Lee and H.S. Chae. Domain-specific language approach to modelling ui archi-
tecture of mobile telephony systems. Software, IEE Proceedings -, 153(6):231–240,
2006.

[27] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, December 2005.

[28] Richard Kennard, Ernest Edmonds, and John Leaney. Separation anxiety: stresses
of developing a modern day separable user interface. In Proceedings of the 2nd
conference on Human System Interactions, HSI’09, pages 225–232, Piscataway,
NJ, USA, 2009. IEEE Press.

[29] Christian Bauer and Gavin King. Java Persistence with Hibernate. Manning
Publications Co., Greenwich, CT, USA, 2006.

[30] Debu Panda, Reza Rahman, and Derek Lane. EJB 3 in Action. Manning Publi-
cations Co., Greenwich, CT, USA, 2007.

[31] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, 1974.

[32] Hibernate validator, open-source validation library for hibernate framework, 2012.

[33] Michal Bali. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, 2009.

i
i

“thesis” — 2015/6/8 — 12:22 — page 138 — #154 i
i

i
i

i
i

138 REFERENCES A. BIBLIOGRAPHY

[34] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligences, 19(1):17–37, 1982.

[35] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[36] OMG, Unifiend Modeling Language (UML) version 2.1.2, Model Driven Architec-
ture (MDA), Object Constraint Language (OCL) version 2.0, 2010.
http://www.omg.org.

[37] Nathalie Moreno, José R. Romero, and Antonio Vallecillo. An overview of model-
driven web engineering and the mda. In Human-Computer Interaction Series,
pages 353–382. Springer London, 2008.

[38] Sven Kloppenburg Vasian Cepa. Representing explicit attributes in UML. In 7th
International Workshop on Aspect-Oriented Modeling, 2005.

[39] OMG, Unifiend Modeling Language (OMG UML), infrastructure (version 2.2),
February 28 2009.
http://www.omg.org/cgi-bin/doc?formal/09-02-04.

[40] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Sol-
berg. Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51,
October 2009.

[41] Jean-Sébastien Sottet, Gaëlle Calvary, and Jean-Marie Favre. Models at runtime
for sustaining user interface plasticity. In Models@ run. time workshop (in con-
junction with MoDELS/UML 2006 conference), 2006.

[42] David Lorge Parnas. Software aspects of strategic defense systems. Commun.
ACM, 28(12):1326–1335, December 1985.

[43] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 2000.

[44] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action series).
Manning Publications Co., Greenwich, CT, USA, 2004.

i
i

“thesis” — 2015/6/8 — 12:22 — page 139 — #155 i
i

i
i

i
i

139

[45] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented software architecture: a system of patterns. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[46] Shigeru Chiba. Javassist – a reflection-based programming wizard for Java. In Pro-
ceedings of the ACM OOPSLA’98 Workshop on Reflective Programming in C++
and Java, October 1998.

[47] Swing GUI Builder, November 2013.

[48] Windowbuilder, November 2013.

[49] RedView: Riena EMF dynamic views for business applications, 2010.
http://redview.wordpress.com.

[50] S Salah and Hyontai Sug. The effectiveness of rapid business application devel-
opment using oracle forms. In Advanced Information Management and Service
(ICIPM), 2011 7th International Conference on, pages 33–37. IEEE, 2011.

[51] Jorge-luis Perez-medina, Sophie Dupuy-chessa, and Agnes Front. A survey of
model driven engineering tools for user interface design. In In Proc. of 6th Int.
workshop on Task Models and Diagrams (TAMODIA’2007), pages 84–97, Berlin,
7-9 Nov. 2007. Springer.

[52] Jos Warmer and Anneke Kleppe. The object constraint language: precise modeling
with UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[53] Jacob W Jespersen and Jesper Linvald. Investigating user interface engineering in
the model driven architecture. In In Proceedings of the Interact 2003 Workshop
on Software Engineering and HCI. IFIP. Press, 2003.

[54] Jeffrey Nichols and Andrew Faulring. Automatic interface generation and future
user interface tools. In Tools ACM CHI 2005 Workshop on The Future of User
Interface Design Tools, 5000 Forbes Ave, Pittsburgh, PA 15213 USA, 2005.

[55] Alexandre Torres, Renata Galante, and Marcelo Soares Pimenta. Towards a uml
profile for model-driven object-relational mapping. In SBES ’09: Proceedings of the
2009 XXIII Brazilian Symposium on Software Engineering, pages 94–103, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

i
i

“thesis” — 2015/6/8 — 12:22 — page 140 — #156 i
i

i
i

i
i

140 REFERENCES A. BIBLIOGRAPHY

[56] Kris Luyten, Chris Vandervelpen, Jan Van den Bergh, and Karin Coninx. Context-
sensitive user interfaces for ambient intelligent environments: Design, development
and deployment.

[57] Víctor López-Jaquero, Francisco Montero, and Fernando Real. Designing user
interface adaptation rules with t: Xml. In Proceedings of the 14th international
conference on Intelligent user interfaces, IUI ’09, pages 383–388, New York, NY,
USA, 2009. ACM.

[58] Mart Karu. A textual domain specific language for user interface modelling. In
Tarek Sobh and Khaled Elleithy, editors, Emerging Trends in Computing, In-
formatics, Systems Sciences, and Engineering, volume 151 of Lecture Notes in
Electrical Engineering, pages 985–996. Springer New York, 2013.

[59] Richard Kennard and John Leaney. Is there convergence in the field of ui genera-
tion? J. Syst. Softw., 84(12):2079–2087, December 2011.

[60] Richard Kennard and Steele Robert. Application of software mining to automatic
user interface generation. In SoMeT’08, pages 244–254, 2008.

[61] Arnaud Blouin, Brice Morin, Olivier Beaudoux, Grégory Nain, Patrick Albers,
and Jean-Marc Jézéquel. Combining aspect-oriented modeling with property-
based reasoning to improve user interface adaptation. In Proceedings of the 3rd
ACM SIGCHI symposium on Engineering interactive computing systems, EICS
’11, pages 85–94, New York, NY, USA, 2011. ACM.

[62] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and
Víctor López-Jaquero. USIXML: A Language Supporting Multi-path Development
of User Interfaces Engineering Human Computer Interaction and Interactive Sys-
tems. In Rémi Bastide, Philippe Palanque, and Jörg Roth, editors, Engineering
Human Computer Interaction and Interactive Systems, volume 3425 of Lecture
Notes in Computer Science, chapter 12, pages 134–135. Springer Berlin / Heidel-
berg, Berlin, Heidelberg, 2005.

[63] C. Stephanidis, A. Paramythis, D. Akoumianakis, and M. Sfyrakis. Self-adapting
web-based systems: Towards universal accessibility. In Waern, editor, In 4th
ERCIM Workshop on "User Interfaces for All", 1998.

[64] Veit Schwartze, Sebastian Feuerstack, and Sahin Albayrak. Behavior-sensitive
user interfaces for smart environments. In Proceedings of the 2nd International

i
i

“thesis” — 2015/6/8 — 12:22 — page 141 — #157 i
i

i
i

i
i

141

Conference on Digital Human Modeling: Held as Part of HCI International 2009,
ICDHM ’09, pages 305–314, Berlin, Heidelberg, 2009. Springer-Verlag.

[65] Giulio Mori, Fabio Paterno, and Carmen Santoro. Design and development of
multidevice user interfaces through multiple logical descriptions. IEEE Trans.
Softw. Eng., 30(8):507–520, August 2004.

[66] Marco Blumendorf, Grzegorz Lehmann, and Sahin Albayrak. Bridging models and
systems at runtime to build adaptive user interfaces. In Proceedings of the 2nd
ACM SIGCHI symposium on Engineering interactive computing systems, EICS
’10, pages 9–18, New York, NY, USA, 2010. ACM.

[67] Tim Clerckx, Kris Luyten, and Karin Coninx. The mapping problem back and
forth: customizing dynamic models while preserving consistency. In Proceedings
of the 3rd annual conference on Task models and diagrams, pages 33–42. ACM,
2004.

[68] S. Berti, F. Correani, G. Mori, F. Paternò, and C. Santoro. Teresa: a
transformation-based environment for designing and developing multi-device in-
terfaces. In CHI’04 extended abstracts on Human factors in computing systems,
pages 793–794. ACM, 2004.

[69] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouil-
lon, and Jean Vanderdonckt. A unifying reference framework for multi-target user
interfaces. Interacting with Computers, 15(3):289–308, 2003.

[70] KZ Gajos, DS Weld, and JO Wobbrock. Automatically generating personalized
user interfaces with supple. Artificial Intelligence, 174(12-13):910–950, August
2010.

[71] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai network: A
platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.,
44(3):2–19, August 2010. http://dx.doi.org/10.1145/1842733.1842736.

[72] Robert Hanson and Adam Tacy. GWT in Action: Easy Ajax with the Google Web
Toolkit. Manning Publications Co., Greenwich, CT, USA, 2007.

[73] AngularJS documentation, April 2015.

[74] Bin Swen. Outline of initial design of the structured hypertext transfer protocol.
J. Comput. Sci. Technol., 18(3):287–298, 2003. http://dx.doi.org/10.1007/BF02948898.

i
i

“thesis” — 2015/6/8 — 12:22 — page 142 — #158 i
i

i
i

i
i

142 REFERENCES A. BIBLIOGRAPHY

[75] Robert L. R. Mattson and Somnath Ghosh. HTTP-MPLEX: An enhanced hyper-
text transfer protocol and its performance evaluation. J. Netw. Comput. Appl.,
32(4):925–939, 2009. http://dx.doi.org/10.1016/j.jnca.2008.10.001.

[76] David F. Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-Based
Access Control. Artech House, Inc., Norwood, MA, USA, 2003.

[77] Alexandre Torres, Renata Galante, and Marcelo Soares Pimenta. Towards a uml
profile for model-driven object-relational mapping. In Proceedings of the 2009
XXIII Brazilian Symposium on Software Engineering, SBES ’09, pages 94–103,
Washington, DC, USA, 2009. IEEE Computer Society.

[78] Barry W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Ray Madachy, and
Bert Steece. Software Cost Estimation with Cocomo II with Cdrom. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[79] Jung-Min Oh, Yong Sub Lee, and Nammee Moon. Towards cultural user inter-
face generator principles. In Proceedings of the 2011 Fifth FTRA International
Conference on Multimedia and Ubiquitous Engineering, MUE ’11, pages 143–148,
Washington, DC, USA, 2011. IEEE Computer Society.

[80] Java Unified Expression Language, Aug. 2013. http://juel.sourceforge.net.

[81] J.O. Wobbrock, S.K. Kane, K.Z. Gajos, S. Harada, and J. Froehlich. Ability-
based design: Concept, principles and examples. ACM Transactions on Accessible
Computing (TACCESS), 3(3):9, 2011.

[82] Jakob Nielsen. Usability engineering. Boston: AP Professional,| c1993, 1, 1993.

[83] Anthony M Graziano and Michael L Raulin. Research methods: A process of
inquiry. HarperCollins College Publishers, 1993.

i
i

“thesis” — 2015/6/8 — 12:22 — page 143 — #159 i
i

i
i

i
i

ReferencesBRefereed publications
Journals with Impact Factor:

[A.1] Tomas Cerny, Miroslav Macik, Jeff Donahoo and Jan Janousek. On Distributed
Concern Delivery in User Interface Design. Computer Science and Information
Systems (ComSIS) Journal, accepted for publication 2015. (WOS) [50/15/25/10]

[A.2] Tomas Cerny and Eunjee Song. Model-driven rich form generation.
INFORMATION-An International Interdisciplinary Journal, 15(7, SI):2695–
2714, JUL 2012. (WOS)

[A.3] Miroslav Macik, Tomas Cerny, and Pavel Slavik. Context-sensitive, cross-
platform user interface generation. Journal on Multimodal User Interfaces, pages
1–13. Springer Berlin Heidelberg, 2014. (WOS) [50/40/10]

Journals without Impact Factor:

[A.4] Tomas Cerny, Karel Cemus, Michael J. Donahoo, and Eunjee Song. Aspect-
driven, data-reflective and context-aware user interfaces design. Applied Com-
puting Review, 13(4):53–65, 2013. (ACM DL)

[A.5] Karel Cemus, Tomas Cerny and Michael J. Donahoo. Automated Business
Rules Transformation into a Persistence Layer. (To appear) Procedia Computer
Science Journal, Elsevier, 2015. (Scopus) [90/5/5]

Conference papers in Institute for Scientific Information (ISI):

[A.6] Tomas Cerny, Lubos Matl, Karel Cemus and Michael J.Donahoo. Evaluation
of Separated Concerns in Web-based Delivery of User Interfaces. Information
Science and Applications, LNEE, Springer, 2015. (WOS)

[A.7] Tomas Cerny and Michael J.Donahoo. Separating out Platform-independent
Particles of User Interfaces. Information Science and Applications, LNEE,
Springer, 2015. (WOS)

[A.8] Tomas Cerny, Vaclav Chalupa, Lukas Rychtecky, and Tomas Linhart. Machine-
driven code inspection to reduce restated information. In Lecture Notes in In-
formation Technology, 2012. (WOS)

143

i
i

“thesis” — 2015/6/8 — 12:22 — page 144 — #160 i
i

i
i

i
i

144 REFERENCES B. REFEREED PUBLICATIONS

[A.9] Tomas Cerny, Petr Praus, Slavka Jaromeska, Lubos Matl and Michael J. Dona-
hoo. Towards a Smart, Self-scaling Cooperative Web Cache. In SOFSEM 2012:
Theory and Practice of Computer Science, LNCS 8327, pages 443–455. Springer
International Publishing 2012, 2012. (WOS)

[A.10] Karel Cemus and Tomas Cerny. Aspect-driven design of information systems. In
SOFSEM 2014: Theory and Practice of Computer Science, LNCS 8327, volume
8327, pages 174–186. Springer International Publishing Switzerland 2014, 2014.
(WOS) [75/25]

Other conference papers:

[A.11] Tomas Cerny and Eunjee Song. A profile approach to using uml models for
rich form generation. In Information Science and Applications (ICISA), 2010
International Conference on, pages 1–8, 2010. (Scopus)

[A.12] Tomas Cerny Miroslav Macik, Michael J. Donahoo. and Jan Janousek. Efficient
Description and Cache Performance in Aspect-Oriented User Interface Design.
In Proceedings of the 2014 Federated Conference on Computer Science and In-
formation Systems, ACSIS, volume 2, pages 1667–1676. IEEE Computer Society
Press and Polish Information Processing Society, 2014. (Scopus)

[A.13] Tomas Cerny and Eunjee Song. Uml-based enhanced rich form generation. In
Proceedings of the 2011 Research in Applied Computation Symposium (RACS
2011), pages 192–199, November 2011. (Scopus)

[A.14] Tomas Cerny and Michael J. Donahoo. Formbuilder: A novel approach to deal
with view development and maintenance. In In SofSem 2011 Proceedings of
Student Research Forum, pages 16–34. OKAT, January 2011. (Google Scholar)

[A.15] Tomas Cerny, Vaclav Chalupa, and Michael J. Donahoo. Towards smart user
interface design. In Information Science and Applications (ICISA), 2012 Inter-
national Conference on, pages 1–6, may 2012. (Scopus)

[A.16] Tomas Cerny, Vaclav Chalupa, and Michael J. Donahoo. Impact of user interface
generation on maintenance. In Computer Science and Automation Engineering
(CSAE), volume 2, pages 621–625. IEEE, 2012. (Scopus)

[A.17] Tomas Cerny, Michael J. Donahoo, and Eunjee Song. Towards effective adaptive
user interfaces design. In Proceedings of the 2013 Research in Applied Compu-
tation Symposium (RACS 2013), October 2013. (Scopus)

i
i

“thesis” — 2015/6/8 — 12:22 — page 145 — #161 i
i

i
i

i
i

145

[A.18] Tomas Cerny and Michael J. Donahoo. How to reduce costs of business logic
maintenance. In Computer Science and Automation Engineering (CSAE), 2011
IEEE International Conference on, volume 1, pages 77–82, june 2011. (Scopus)

[A.19] Tomas Cerny, Petr Praus, Slavek Jaromeska, Lubos Matl and Michael J. Dona-
hoo. Cooperative web cache. In Systems, Signals and Image Processing (IWS-
SIP), 2011 18th International Conference on, pages 1–4, IEEE, 2011. (Scopus)

[A.20] Tomas Cerny and Micheal J. Donahoo. Performance Optimization for Enter-
prise Web Applications Through Remote Client Simulation. In Proc. of the 7th
EUROSIM Congress on Modelling and Simulation, Prague, CZ, volume 2, CTU,
Prague, 2010. (Google Scholar)

[A.21] Miroslav Macik, Tomas Cerny, Jindrich Basek, and Pavel Slavik. Platform-
aware rich-form generation for adaptive systems through code-inspection. In
Human Factors in Computing and Informatics, pages 768–784. Springer Berlin
Heidelberg, 2013. [55/25/10/10] (Scopus)

[A.22] Martin Tomasek and Tomas Cerny. Automated User Interface Derivation for
Remote Data in Standalone Apps. In Proceedings of the 19th International
Scientific Student Conferenece POSTER 2015, Prague, 14, May 2015, Czech
Technical University in Prague. (Google Scholar)

[A.23] Karel Cemus and Tomas Cerny. Towards effective business logic design. In Pro-
ceedings of the 17th International Scientific Student Conferenece POSTER 2013,
Prague, 16, May 2013. Czech Technical University in Prague. [95/5] (Google
Scholar)

() - Citation database/indexing : Web of Science | Scopus | ACM Digital lib. | Google Scholar
[] - Explicit authorship ratio by author : even by default

i
i

“thesis” — 2015/6/8 — 12:22 — page 146 — #162 i
i

i
i

i
i

146 REFERENCES B. REFEREED PUBLICATIONS

i
i

“thesis” — 2015/6/8 — 12:22 — page 147 — #163 i
i

i
i

i
i

ReferencesCUnrefereed publications
Journals without Impact Factor:

[A.24] Tomas Cerny and Bozena Mannova. Competitive and Collaborative Approach
Towards a More Effective Education in Computer Science. CONTEMPORARY
EDUCATIONAL TECHNOLOGY., 2(2):163–173, 2011. (Google Scholar)

Conference papers in Institute for Scientific Information (ISI):

[A.25] Petr Praus, Slavka Jaromerska and Tomas Cerny. SScAC: towards a framework
for small-scale software architectures comparison. SOFSEM 2011: Theory and
Practice of Computer Science., pages 482-493, Springer, 2011. (WOS)

Other conference papers:

[A.26] Tomas Cerny and Michael J. Donahoo. MetaMorPic: Self-contained photo
archival and presentation. Information Systems Development., 149–158, Springer
New York, 2011. (Scopus)

[A.27] Lubos Matl, Vladimir Kloucek, Viktor Bohdal, Jan Kubr and Tomas Cerny.
ELISA: Extensible Layer for Internet Services and Applications. Building Sus-
tainable Information Systems., 309–321, Springer, 2013. (Scopus)

[A.28] Tomas Cerny and Bozena Mannova. Debt Environment in Computer Science
Education. In he 3rd International Multi-Conference on Complexity, Informatics
and Cybernetics: IMCIC 2012., 1:396–401, 2011. (Google Scholar)

[A.29] Tomas Cerny and Bozena Mannova. Competitive and Collaborative Approach
Towards a More Effective Education in Computer Science. In: The 9th Annual
Hawaii International Conference on Education., pages 2886–2895, 2011. (Google
Scholar)

[A.30] Tomas Cerny and Michael J. Donahoo. A Tool for Evaluation and Optimization
of Web Application Performance. In Proceedings of 44th Spring International
Conference MOSIS’X., pages 49–54, 2010. (Google Scholar)

[A.31] Tomas Cerny and Michael J. Donahoo. Evaluation and Optimization of Web
Application Performance Under Varying Network Conditions. In Proceedings

147

i
i

“thesis” — 2015/6/8 — 12:22 — page 148 — #164 i
i

i
i

i
i

148 REFERENCES C. UNREFEREED PUBLICATIONS

of 44th Spring International Conference MOSIS’X., pages 41–48, 2010. (Google
Scholar)

[A.32] Lubos Matl and Tomas Cerny. ELISA: Extensible Layer for Internet Services and
Applications. Proceedings of the 17th International Scientific Student Conferenece
POSTER 2013. , 2013. (Google Scholar)

[A.33] Lubos Matl, Tomas Cerny and Michael J.Donahoo. Effective manycast mes-
saging for Kademlia network (To appear) In Proceedings of 30th ACM/SIGAPP
Symposium On Applied Computing, 2015, (Google Scholar)

i
i

“thesis” — 2015/6/8 — 12:22 — page 149 — #165 i
i

i
i

i
i

ReferencesDCitations

Refereed publications:

[A.34] Saad Masood Butt, Mazlina Abdul Majid, Suziyanti Marjudi, Shahid Masood
Butt, Azura Onn, Moaz Masood Butt. CASI METHOD FOR IMPROVING THE
USABILITY OF IDS. Sci.Int.(Lahore). SCIENCE INTERNATIONAL-(Lahore),
pages 275-286, 2015. [A.3]

[A.35] P. Biswas, PM Langdon, J Umadikar, S Kittusami and S Prashant. How inter-
face adaptation for physical impairment can help able bodied users in situational
impairment. Inclusive Designing. Springer International Publishing, pages 49-58,
2014. [A.21]

[A.36] Joaquın Canadas, José Palma, and Samuel Túnez. Model-Driven Rich User
Interface Generation from Ontologies for Data-Intensive Web Applications. In
Proceedings of 7th Workshop on Knowledge Engineering and Software Engineering
(KESE7)., 2011. [A.11]

[A.37] K. Santhi, G. Zayaraz and V. Vijayalakshmi. Resolving Aspect Dependencies for
Composition of Aspects. Arabian Journal for Science and Engineering. Springer
Berlin Heidelberg, pages 1-12, 2014. [A.10]

[A.38] Pradip Peter Dey, Bhaskar Raj Sinha, Gordon W. Romney, Mohammad Amin,
and Hassan Badkoobehi. Innovative User Interface Engineering. In International
conference on Innovative Engineering Technologies (ICIET’2014)., pages 1-11,
2014. [A.4]

[A.39] Milorad Filipovid, Sebastijan Kaplar, Renata Vaderna, Željko Ivkovid, Gordana
Milosavljevic and Igor Dejanovid. Aspect-Oriented Engines for Kroki Models
Execution. 5th International Conference on Information Society and Technology
(ICIST 2015)., pages 1-6, 2015. [A.12] [A.4]

Unrefereed publications:

[A.40] Gulley, O. David, and Aaron L. Jackson. Teaching a Class Dedicated to the Col-
lege Fed Challenge Competition. Eastern Economic Journal., Nature Publishing
Group, 2015. [A.24]

149

i
i

“thesis” — 2015/6/8 — 12:22 — page 150 — #166 i
i

i
i

i
i

150 REFERENCES D. CITATIONS

[A.41] Wicaksono, Soetam Rizky. Implementation of Collaborative Learning in Higher
Education Environment. Journal of Education and Learning., 7(4):219–222, 2013.
[A.24]

[A.42] Armas, Audrius and Šniras, Šarūnas. Interdependence-based model consistency
among competition, cooperation and collaboration. Žurnalas „Ugdymas. Kūno
kultūra. Sportas “leidžiamas nuo 1968 m.(ankstesnis pavadinimas–mokslo darbai
„Kūno kultūra “)., 2013. [A.24]

[A.43] Armas, Audrius. Tarpusavio priklausomybes prielaida pagrįsto konkuravimo,
kooperavimo ir bendradarbiavimo derinimo modelio taikymas sporte. Sportinį
darbingumą lemiantys veiksniai (V)., 2012. [A.24]

i
i

“thesis” — 2015/6/8 — 12:22 — page 151 — #167 i
i

i
i

i
i

AppendixAList of abbreviations

ADT Abstract Data Type 24
ADPP Annotation Driver Participant Pattern88
AJAX Asynchronous JavaScript and XML . . . 94
AOP Aspect-Oriented Programming.11
AUI Abstract User Interface 104
AWT Abstract Window Toolkit 33
CaUI Context-aware User Interface 12
CCT Concur Task Tree . 51
CBD Component-Based Design.25
CDN Content-delivery Network.53
CDN Content-delivery Networks 53
COCOMO Constructive Cost Model 75
CPU Central processing unit 54
CRUD Create-Read-Update-Delete 95
CSS Cascading Style Sheets 112
CUI Concrete User Interface.104
CWC Cooperative-Web cache 54
DSL Domain Specific Languages 3
EA Enterprise Application 9
EAA Enterprise Application Architecture. . .25
EL Expression Language 86
GP Generative Programming 11
GPL General-Purpose Languages3
GWT Google Web Toolkit 34
HCI Human-Computer Interaction.11
HTML Hypertext Markup Language 13
HTTP Hypertext Transfer Protocol 25
ACM-ICPC ACM International Collegiate

Programming Contest iv
IDE Integrated Development Environment .46
IP Internet Protocol . 25
Java SE Java Standard Edition 2
Java EE Java Enterprise Edition 2
JPA Java Persistence API 28

JS JavaScript . 34
JSF JavaServer Faces. .2
JSON JavaScript Object Notation 53
JSP JavaServer Pages . 48
LOC Lines Of Code . 41
MD Model-Driven. .47
MDA Model-Driven Architecture 35
MDD Model-Driven Development iii
MP Meta-Programming 35
MVC Model-view-controller32
OCL Object-Constraint Language 46
OO Object-Oriented . 20
OOD Object-Oriented Design.23
OOP Object-Oriented Programming 24
ORM Object-Relational Mapping 28
P2P Peer-To-Peer . 54
PC Personal Computer 105
RBAC Role-Based Access Control67
READ Rich Entity Aspect/Audit Design 60
STTP Structured Hypertext Transfer Protocol

54
TCP Transmission-control protocol 25
UI User Interface . iii
UIV User Input Validation 47
UIP User Interface Protocol 60
UML Unified Modeling Language 14
UIML User Interface Markup Language 130
XHTML Extensible Hypertext Markup

Language . 99
XML Extensible Markup Language 20
XSL Extensible Stylesheet Language 45
XSLT Extensible Stylesheet Language

Transformations . 45
XUL XML User Interface Language 130

151

i
i

“thesis” — 2015/6/8 — 12:22 — page 152 — #168 i
i

i
i

i
i

152 APPENDIX A. LIST OF ABBREVIATIONS

i
i

“thesis” — 2015/6/8 — 12:22 — page 153 — #169 i
i

i
i

i
i

AppendixBČeský abstrakt

Uživatelská rozhraní (anglicky UI) softwarových systémů hrají zásadní roli při jejich
použitelnosti. Uživatelé stále rozšiřují nároky a osobní očekávání pro to co je "do-
bré" UI, jako například, dynamické přizpůsobení se různým vstupům a podnětům od
uživatele. Bohužel, vývojové frameworky typicky adresují vývoj i návrh UI jako zcela
nezávislý útvar, ignorující globální perspektivu nad celou aplikací. Toto má za následek
replikaci informací pocházejících z definic aplikačních dat, které jsou znovu zachyceny v
popisu uživatelských rozhraní (tj. vertikální opakování). Specifikace očekávaného typu,
ověřování vstupů na straně klienta, a dokonce i výběr vstupního widgetu představují
opakující se zachycení informace, které musí být udržováno během evoluce dané ap-
likace. Toto je navíc často ztíženo nižší jazykovou podporou detekce možných chyb, a
to především díky častému použití jazyků pro popis UI s nízkou typovou bezpečností.
Kromě toho, vlastní popis UI vede ke křížení velkého množství aplikačních zájmů,
jako je rozložení prvků na obrazovce, svázání elementů UI a dat, validace vstupů,
bezpečnost, atd. Toto pak ve výsledků zachycuje jednotlivé zájmy prolínajíce jiné
zájmy a znemožňuje tak jejich znovupoužití v jiných komponentách UI či pro jiné kon-
textové situace téhož UI. Takovéto křížení zájmů v popisu UI znamená, že konkrétní
definice zájmu není definována na jednom místě, nýbrž je distribuována a opakuje se v
mnoha různých fragmentech UI. Změna takového zájmu potom vyžaduje značné úsilí.
Celá situace se dále zhorší pokud se od aplikací očekává, že se dokáží přizpůsobit pro
jednotlivé uživatele (např expertní uživatel, začínající, atd.), kontexty (např pro jed-
notlivé země původu, poštovní informace, apod.), a dokonce i fyzické prezentace (např.,
na desktopu vs. mobilním zažízení). Současná řešení vývoje a návrhu UI neposkytují
takovou flexibilitu popisu UI, aby bylo možné snadno manipulovat se zájmy a poskyt-
nout tak variace UI pro podporu personalizace. Stejně tak současná řešení míchající
různé zájmy mají za následek vznik mnoha podobných popisů UI, které opakují in-
formace o typech vstupů, omezení, apod., a liší se pouze v detailech (tj., horizontální
opakování). Je zřejmé, že v takovéto situaci je úprava daného zájmu UI velmi vyčer-
pávající a náročná. Vysoká úroveň replikace, znovuzachycení informací i rozhodnutí
zvyšuje náchylnost k chybám i nestabilitu vůčí změnám v aplikaci. Negativní dopad

153

i
i

“thesis” — 2015/6/8 — 12:22 — page 154 — #170 i
i

i
i

i
i

154 APPENDIX B. ČESKÝ ABSTRAKT

takovéhoto opakování a křížících se zájmů v popisu UI směřuje k vysokým nákladům na
vývoj a údržbu. Popisy UI obsahující opakující se informace vyžadují více zpracování
na straně serveru, stějně tak i větší šířku přenosového pásma pro doručení klientům,
což negativně ovlivňuje odezvu UI i škálovatelnost serveru. Informace popisující dané
UI, které obdrží klient, opět obsahují křížící se zájmy, což znemožní ukládat informace
o jednotlivých zájmech do vyrovnávací paměti a opětovně je použit na straně klienta.

Tato práce zkoumá existující přístupy návrhu UI z perspektivy vývoje, údržby,
rychlosti odezvy na akci uživatele, integrace se stávajícími podnikovými frameworky,
schopnost podporovat personifikaci odrážející kontext uživate i systému. Práce identi-
fikuje, že konvenční přístupy řeší výše uvedené problémy pro prezentace dat v UI jen
částečně nebo neefektivně a navrhuje nový přístup oddělující křížící se zájmy. Práce
dále zkoumá existující alternativní přístupy návrhu, jako je modelem-řízený vývoj, a
jejich mechanismy snížující replikace a opakující se informace v popisu UI z pohledu
samotného vývoje i přenosu dat klientům. Navržený přístup snižuje komplexitu týkající
se vývoje a údržby UI a poskytuje snadné rozšíření schopností UI i sledovaných zájmů,
a podporuje tak kontextovou-uvědomělost UI a personifikace. Vlastní oddělení zájmů
lze aplikovat na přenos popisu UI klientům, čímž dojde například ke zlepšení rychlosti
reakce na uživatelské akce, zvýšení znovupoužití informací či zájmů na klientské straně,
či zlepšení výkonu při zpracování UI na straně serveru. Práce demonstruje efektivitu
navrhovaného přístupu prostřednictvím případových studií. Mimo jiné, práce vyhod-
nocuje nasazení navrženého přístupu v produkčním prostředí podnikové aplikace ACM-
ICPC, kterou používají desítky tisíc účastníků z více než 2534 univerzit, ze 101 zemí
světa, pro registrace na soutěže v programování.

Klíčová slova:

Uživatelská rozhraní, Metaprogramování, Aspektově orientovaný vývoj, Modelem řízený
vývoj, Transformace modelu do zdrojového kódu, Údržba, Oddělení zájmů

