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Abstrakt / Abstract
Plazmové nestability jsou v součas-

nosti intenzivně zkoumány, protože
představují procesy, které například
stojí v pozadí pozorovaných astrofy-
zikálních dějů jako je ohřev sluneční
chromosféry nebo geneze specifických
elektromagnetických vln. Vzhledem
k silně nelineárnímu chování plazmo-
vých nestabilit, jsou tyto dnes zkou-
mány hlavně za použití numerických
metod. Numerické metody umožňují
nalezení přibližného řešení i u takových
dějů, které jsou popsány analyticky
neřešitelnými rovnicemi. Při současném
rozvoji výpočetní techniky se jedná
o velmi efektivní nástroj, který má ve-
dle experimentů a teoretických výpočtů
své nezastupitelné místo.

Za pomoci numerických metod zkou-
máme oba dva typy nestabilit: makro-
a mikronestability. Práce poskytuje
základní přehled o teorii plazmatu
(pohyb částic, kinetická teroie, magne-
tohydrodynamika), jeho nestabilitách
a numerických simulacích následovaný
souborem publikovných prací ze dvou
tématů. První dva články jsou zaměřené
na analýzu numerického řešení zobec-
něné disperzní relace pro Bunemanovu
nestabilitu, která je typickým příkla-
dem makronestability. Zbylé tři články
pokrývají výzkum na téma numeric-
kých simulací stability slabě srážkového
plazmatu, kde v případě nestabilit jde
o mikronestability vznikající z poruch
v rychlostním rozdělení částic.

V prvním tématu byla nalezena
a analyzována závislost koeficientu ná-
růstu nestability na všech parametrech
disperzní relace. V druhém tématu byla
nalezena závislost stability na typu
iontově-neutrálních srážek.

Klíčová slova: plazmové nestability,
PIC, numerické simulace, disperzní re-
lace.

The subject of this Ph.D. thesis
covers plasma instabilites that are
nowadays intensively studied, because
they represent processes which are
for instance behind of observed as-
trophysical phenomena such as solar
chromosphere heating or generation
of particular electromagnetic waves.
Due to the highly nonlinear behaviour
of plasma instabilities the studies are
carried out using numerical methods.
Numerical methods allow to find an
approximate solution even in cases of
processes described by equations which
are not analytically solvable. With
actual growth of computational power
they represent very useful tool and they
have regular place between theory and
experimental physics.

We numerically study both macro-
and microinstabilities. This work de-
scribes the basic theoretical background
of plasmas (particle motion, kinetic the-
ory, and magnetohydrodynamics), their
instabilities and numerical simulations.
This part is followed by a collection of
papers on the two topics. The first two
papers deal with analysis of a numerical
solution of the generalized dispersion re-
lation for Buneman instability which is
typical macroinstability. The remaining
three papers focus on Particle-In-Cell
simulations of the stability of weakly
collisional plasma where instabilities
are on microscopic scale originating
from the distortions in velocity phase
space.

The dependence of plasma instability
growth rate on all plasma parameters
in the relation is found and analysed in
the first topic. The stability dependence
on the type of ion-neutral collisions is
found in the second part.

Keywords: plasma instabilities, PIC,
numerical simulations, dispersion rela-
tion.
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Chapter 1
Introduction

1.1 Aims and structure of this Ph.D. thesis
This Ph.D. thesis focuses on numerical studies of plasma instabilities. It deals with
linear analysis of a plasma jet interaction with plasma background and Particle-In-Cell
simulations of instabilities in weakly collisional plasmas. It is written in the format of
collection of papers in accordance with the FEE CTU internal regulation of 1 November
2014 governing the dissertation defences (”Směrnice děkana pro obhajoby disertačních
prací na FEL“). The main aim of the thesis is to gain a better understanding of stud-
ied phenomena, namely analyzing the dispersion relation for jet-background plasma
interaction and finding stability properties of weakly collisional plasmas.

The structure of this thesis is as follows. The first part of the thesis is the intro-
duction. The second part, Chapter 2, focuses on theoretical description of plasmas,
especially three approaches of a general description and an introduction to instabilities.
The basics of numerical simulations and particularly PIC simulations are covered in
Chapter 3. Chapter 4 consists of a commented collection of scientific papers on two
main subjects of my doctoral research and finally the conclusions constitute Chapter 5
of the dissertation. The lists of publications, grants, and used symbols complement
the dissertation at the end in appendices.

1.2 What is plasma and where to find it.
Plasma, sometimes called the fourth state of matter, is a state of matter in which
atoms are ionized thus it contains free charge carriers (ions and electrons) [1–2]. The
origin of ionization can be different, i. e. heating, electromagnetic radiation. The term
plasma was firstly used by Irwing Langmuir (1881-1957) who also made the first exact
definition. According to this definition plasma must fulfill three conditions [1]:

1. It must contain free charge carriers.
2. It must be quasineutral.
3. It must show collective behaviour as a response on electric and magnetic fields.

We can easily imagine plasma as hot gas. If the gas is heated above an ionization
temperature, electrons detach from atoms and free charge carriers (positively charged
ions and negative electrons) are created. The summation of all charges is equal to zero
so the system is still electrically neutral on the macroscopic scale. If this system is
subjected to an external electric and/or magnetic field, it shows a collective reaction to
the field/s. If the three conditions are fulfilled then the neutral gas becomes a plasma.

In nature we can find plasma throughout the whole Universe, but on the Earth there
are only few natural occurrences of plasma [1–3]. Typical examples are Earth’s iono-
sphere or lightning discharges. More usual is to use plasmas in laboratories and in appli-
cations like fusion experiments, discharge lamps and various technologies (e. g. plasma
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
welding). In space there is a wide variety of plasmas: from very low dense plasma
in the intergalactic medium, through hot and dense plasma in stars, to ultra-dense
quantum plasma in white dwarfs. Particle density is one of the parameters with which
we can categorize plasmas. The second one is the temperature and the third is mag-
netic field [1, 3]. The typical range of plasmas for zero magnetic field and different
temperatures and densities is depicted in Fig. 1.1

Figure 1.1. Typical range of plasmas for different particle densities and electron temper-
atures. Magnetic field is considered to be zero. Source: [1]
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Chapter 2
Theoretical description

2.1 Single particle motion
The simplest method of how to study plasma behaviour is to address the problem
of single particle motion. Unlike in neutral gases, electric and magnetic fields affect
plasma particle motion which must be included in the Lagrangian and consequently in
the Hamiltonian functions of the problem. Nonrelativistic Lagrangian and Hamiltonian
functions are [1]:

L = 1
2mv2 −Qφ+QA · v, (2.1)

H = (p−QA)2

2m +Qφ, (2.2)

where A is vector potential and φ is scalar potential. The well-known Lorentz equation

dv
dt = q

m
(E + v× B)

can be easily derived from this Lagrangian function. By solving the Hamilton equations
we can investigate particle motion in particular problems.

2.1.1 Particle motion in a static magnetic field
As a first example we look on particle motion in a static magnetic field. Let us introduce
a Cartesian system where a static magnetic field is oriented only in the ẑ-axis and initial
particle velocity is only in the ŷ-axis. Then the Hamilton equations lead to the solution
for particle trajectory [1–3]:

r(t) = (RL −RL cosΩct, RL sin Ωct, 0) , (2.3)

where
RL = mv⊥

QB
; Ωc = QB

m

are Larmor radius (or gyroradius) and cyclotron frequency (or gyrofrequency), respec-
tively.

A visualization of the particle trajectory in the system described above is depicted
on the left panel of Fig. 2.1. In such cases where the initial particle velocity has also
a component parallel to the magnetic field, the resulting trajectory is helical, which is
shown on right panel of Fig. 2.1.

Magnetic fields cause only centripetal acceleration of the particle, thus only the
direction of velocity changes, while magnitude remains at the initial value.

3



2. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Visualization of charged particle motion in a static magnetic field. Source: [1]

2.1.2 Particle motion in E × B fields
Let us add a static electric field oriented only in the ŷ-axis of the system described in
the previous case and set the initial velocity to zero. Then our test particle will be
exposed to both the electric and magnetic fields which are perpendicular to each other.
Solving the Hamilton equation for this system we find the solution for the particle
trajectory [1]:

r(t) = (RD −RD cosΩct, RD sin Ωct− vDt, 0) , (2.4)
where

RD = mvD

QB
; Ωc = QB

m
; vD = E

B

are drift radius, cyclotron frequency, and drift velocity, respectively.
An electric field will accelerate a particle and curve its trajectory until the particle

becomes decelerated and this process repeats. The trajectory described in Eq. (2.4)
is called a cycloid. In case of nonzero initial velocity of the test particle, the trajec-
tory would be more general, the so-called trochoid. Depiction of these two types of
trajectories is shown in Fig. 2.2.

Figure 2.2. Visualization of charged particle motion in E × B fields. Left trajectory is
cycloidal, middle and right trajectories are trochoidal. Source: [1]

2.1.3 Particle motion in a constant electric field
Particle motion in a static electric field (without magnetic field) has one serious prob-
lem. An electric field gives tangential acceleration to the particle which means that
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Single particle motion

Figure 2.3. Illustration of example solution of particle motion in electric field. Source: [1]

using classical Lagrangian and Hamiltonian functions given in Eqs. (2.1),(2.2) is not
possible and we must use relativistic variants [1]:

Lr = −m0c
2
√

1− v2/c2 −Qφ+QA · v, (2.5)

Hr = c
√
m2

0c
2 + (p−QA)2 +Qφ. (2.6)

Let us assume a system where electric field is oriented in the x̂-direction as shown
in Fig. 2.3 and initial particle velocity is in the ŷ-direction. Solution of the Hamilton
equations using the relativistic Hamiltonian function leads to the trajectory [1]:

r(t) =
(
π0c

QE

[√
1 + (QEt/π0)2 − 1

]
,
p0c

QE
arg sinh [QEt/π0] , 0

)
. (2.7)

Hence,
x(y) = π0c

QE

[
cosh

(
QE

p0c
y

)
− 1
]
, (2.8)

where,
p0 = m0v0√

1− v2
0/c

2
; π0 =

√
m2

0c
2 + p2

0.

This trajectory differs from the one which would be obtained from classical Hamil-
tonian function because the particle velocity cannot exceed the speed of light. While
the relativistic solution is x ≈ cosh(y/y0) − 1 the classical theory solution would be
x ≈ (y/y0)2/2.

2.1.4 Adiabatic case
As an adiabatic case we consider a situation where magnetic and other fields are chang-
ing very slowly in comparison with the time of one gyroperiod [1–3]. In these cases we
can average the gyromotion and then follow only the motion of the gyrocenter. The
equation of the gyrocenter motion is

mR̈ = Fext +QṘ× B− µ∇B, (2.9)

where R is the position vector of the gyrocenter, dots represent time derivatives and

µ = mv2
⊥

2B
is the first adiabatic invariant. This equation leads to the drift equation which describes
all kinds of drifts in plasmas [1–3].

5



2. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Statistical approach

In the previous part the basics of single particle motion was introduced. As shown in
Fig. 1.1 there are typically 106 up to 1024 particles per cubic meter in most types of
plasmas. Thus it is impossible to calculate trajectories and velocities for each particle
separately. The solution of this issue lies in the use of statistics.

Let us have a function f = f(t, r, v) which is the probability density of particle
appearance in phase space. This probability density can change with particle collisions

d
dtfα(t, r, vα) =

∑

β

Cαβ ,

which can be rewritten as:

∂

∂t
fα(t, r, vα) + (vα · ∇) fα(t, r, vα) +

(
Fα
mα
· ∇v

)
fα(t, r, vα) =

∑

β

Cαβ . (2.10)

This is the Boltzmann equation and it is used as an initial equation for analytical
studies of plasma behaviour on the microscopic scale [1–3]. The left hand side of the
equation is the total time derivative of the probability density function. On the right
hand side there is summation over all collisional processes. The term on the right hand
side is the so-called “collision integral” and because of the difficulty (and sometimes
impossibility) of its exact calculation, a lot of simplifications were established. The
three most widely used approximations are:
1. Vlasov approach where the collisional term is

C = 0,

because plasma can be assumed as colisionless, or sum of all collisions has negligable
effect [1–2].

2. Bhatnagar-Gross-Krook (BGK) approach under which the collision term becomes

C = −να(fα − f0α),

where ν is a collisional frequency known from experiments and f0α is local equilib-
rium probability density function [1–2].

3. Fokker-Planck (F-P) approach under which we can write the collisional term as

C = − 1
∆t∇v · (f 〈∆v〉) + 1

2∆t (∇v ⊗∇v) : (f 〈∆v⊗∆v〉) ,

where

〈∆v〉 =
∫

∆vPd3(∆v), and 〈∆v⊗∆v〉 =
∫

∆v⊗∆vPd3(∆v),

are friction term and diffusion term, respectively. These terms represent average
changes in velocity due to collisions [1, 4] and P is given by collision type.
The usage of these collisional approximations depends on the studied system. For

instance, to study basic phenomena such as Landau damping [5], the Vlasov approach
is sufficient[1–2, 6–8], while the BGK equation is used for studying basic transport
effects and the F-P equation can lead to more complicated solutions like a runaway
particles[1, 9] In general, a statistical approach is important for calculations where
we need information about velocity phase space (i. e. real dependence of collisional
cross-section on velocity, relaxing times, microinstabilites etc.).

6
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2.3 Fluid approach
For some particular problems we do not need to know the full information about phase
space and in such cases we can make a shift from statistics to continuum. This can
be done by calculating the moments of Boltzmann equation (2.10). Let us consider
a function of velocity with which we multiply each term in Eq. (2.10) and then we
integrate over velocity phase space [1–2]. This step we write as:

∫
ψα
∂fα
∂t

d3vα +
∫
ψα (vα · ∇) fαd3vα +

∫
ψα

(
Fα
mα
· ∇v

)
fαd3vα =

=
∫
ψα
∑

β

Cαβd3vα,
(2.11)

where ψα denotes function of velocity. Hence,

∂

∂t
〈nαψα〉v +∇ · 〈nαψαvα〉v −

Qα

mα

〈
nα(E + vα × B) · ∂ψα

∂vα

〉

v
=

=
∫
ψα
∑

β

Cαβd3vα.
(2.12)

This is the moment equation and by substituting different powers of velocity to
this equation we can calculate the moments of the Boltzman equation. Substituting
a scalar summation invariant (such as 1, mα, Q) leads to the zeroth moment which
is the well known continuity equation. Substituting ψα = mαvα leads to the second
moment which is the momentum equation. These two fluid equations are the basis
for Magnetohydrodynamis (MHD). Adding Maxwell equations and expression for fluid
pressure we obtain the minimal full set of resistive MHD equations which is a non-
relativistic one-fluid model without high frequency effects [1–2]. The minimal full set
contains: (i) continuity equation, (ii) momentum equation, (iii) equation for magnetic
field which is derived from Maxwell equations, and (iv) equation for pressure.

(i) Continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0, (2.13)

where ρ stands for fluid density and u denotes fluid velocity.
(ii) Momentum equation:

∂

∂t
(ρu) +∇ ·

(
TP + TM

)
= 0, (2.14)

where
TP = p1 + ρu⊗ u− V and TM = H · B

2 1−H⊗ B

denote tensor of dynamic pressure and viscosity and tensor of magnetic pressure, re-
spectively.

(iii) Equation for magnetic field:

∂B
∂t

= 1
σµ
∇2B +∇× (u× B). (2.15)

(iv) Finally the system must be closed by the appropriate equation for pressure -
generally we can write

p = p(ρ). (2.16)

7



2. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The set of equations (i-iii) is in conservative form and can be easily transformed to

the form with total time derivative, which follows in the same order as the equations
listed above. To create the initial set of equations for a particular problem we can
combine equations in both forms together.

dρ
dt + ρ∇ · u = 0, (2.17)

ρ
du
dt = −∇p−∇pM + 1

µ
(B · ∇)B + η∇2u + (ζ + η/3)∇(∇ · u), (2.18)

dB
dt = 1

σµ
∇2B + (B · ∇)u− B (∇ · u) . (2.19)

These two sets of equations are the minimal variant of compressible resistive magne-
tohydrodynamics. There are other variants such as relativistic MHD, two (and more)
fluids models, ideal incompressible MHD and so on [2]. The magnetohydrodynamics
is a very useful description of plasmas in such cases, where we can neglect particle dis-
tribution in velocity phase space. It is widely used in such fields of plasma research as
astrophysical plasmas (e. g. shocks [10–11], jets [12], and ionospheric instabilities [13])
or laboratory plasmas (e. g. tokamaks [14].

2.4 Instabilities
An instability is defined as a phenomenon during which the amplitude of small initial
perturbation grows instead of being damped. In an unstable system there must be
a source of free energy as well as positive feedback in the system.

From a mathematical point of view, with perturbation analysis we can study
whether an initial perturbation causes undamped oscillations, or whether oscillations
are damped or are growing [1]. We need to find the dispersion relation F (ω, k) = 0
and then we can find when and/or where the solution is complex. The imaginary part
of k or ω determines if the oscillations become damped or growing (depending on the
sign of imaginary part). Throughout this chapter we will work with the solution for
angular frequency of a plane wave ω = ωR(k) + iγ(k), where γ is the imaginary part
of the complex solution. If the γ has positive value it is called growth rate, while if
it has negative value, it is called damping rate. For an unstable solution, the initial
perturbation grows exponentially.

We can divide plasma instabilities into two main categories. (i) Macroinstabilities are
dominant on large scales, have long wavelengths and are caused by space configuration.
(ii) Microinstabilities are usually dominant on small scales, have large wavenumbers
and are driven by distortions in velocity phase space [6–7]. In principle, while kinetic
and magnetohydrodynamics theories are both suitable for studying macroinstabilities,
for microinstabilities only the kinetic theory is applicable.

Scalar and vector potentials are quantities of which an initial perturbation can lead
to the generation of oscillations, longitudinal electric waves, or electromagnetic waves.
This creates another two categories of plasma instabilities. (i) Electrostatic, where
only perturbation of scalar potential plays an important role and there are no pertur-
bations of magnetic fields. In this regime only longitudinal electric waves are present.
(ii) Electromagnetic, where we cannot neglect magnetic field perturbations and we
must be careful with using the Poisson equation, because for high frequency electro-
magnetic instabilities this equation is not applicable and one should use the d’Alembert
equation for potentials [6–7].

8
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a) b)
Figure 2.4. Roots of dispersion relation for Buneman instability. Blue dots represent real

roots, while red dots stand for imaginary roots. Source: Author

Plasma instabilities are intensively studied both analytically (e.g. [15–17]) and nu-
merically (e.g. [18–20]). General knowledge about plasma instabilities can be obtained
from [6–8]. In next part we show typical examples of both electrostatic macro- and
micro- instabilities.

2.4.1 Examples
One of the most commonly studied macroinstabilities is the Buneman instability [21]
sometimes called the two-stream instability. This instability originates when two
plasma beams have different velocities and flow through each other. For its deriva-
tion, the boundaries, magnetic field, and plasma temperature are neglected. For the
case with two identical opposite beams the dispersion relation is

∑

α

ω2
pα

(ω − k · uα)2 = 1, (2.20)

where we denote plasma frequency as ω2
pα = n0αQ

2
α/mαε0. The dispersion rela-

tion (2.20) is a biquadratic equation which is analytically solvable. The dimensionless
solution for two identical opposite beams is

ω̃2 = 1 + k̃2 ±
√

1 + 4k̃2, (2.21)

where ω̃ = ω/ωp, and k̃ = u0k/ωp are dimensionless quantities. Then the solution
is in the form ω̃ = ω̃(k̃) where ω̃ = ω̃R + iγ̃. The numerical solution of this relation
is depicted in Fig. 2.4 a), where blue dots represent real roots and red dots are for
imaginary roots. From the analytical solution it is known that instbaility growth γ̃
reaches its maximum at k̃ =

√
3/2 and has value γ̃ = 1/2. The difference between

analytical solution and numerical solution is caused by discretization of the k̃ axis.
Sometimes the Buneman instability is described as an instability caused by electron
jet flowing through an ion stationary background [2]. One solution of such a situation
is depicted in Fig. 2.4 b). For simplicity, the artificial very small mass ratio between
ions and electrons was used (mi/me = 4). It is clearly shown, that maximal value of
instability growth reaches its maximum at bigger k̃ and has bigger value.
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2. Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As an example of microinstability we consider a gentle beam (or bump in tail insta-

bility). This instability can occur when a plasma beam interacts with a one component
background plasma. The velocity distributions of background and beam are depicted in
Fig. 2.5. The second peak in the velocity phase space means that fast particles will add
energy to Langmuir waves - this phenomenon is called inversed Landau damping [8].

Figure 2.5. Velocity distributions of the beam and background leading to the bump in
tail instability. Source: [8]

The condition needed to excite these unstable waves is

vb =
√

3vthe. (2.22)

In cases where this threshold is not reached, the fast particles cannot give energy to
the wave. The maximal value of the instability growth rate is:

γmax =
√

π

2q
nb

n0

(
vb

vthb

)2
ωL, (2.23)

where ωL is frequency of Langmuir waves, vthb is thermal beam velocity, vb. The
position of these velocities in the distribution function is shown in Fig. 2.5.

These were two typical examples of plasma instabilities. Plasma instabilities can
cause a lot of side effects such as turbulences, heating, magnetic reconnections, etc.
These effects might be favourable or unwanted in many plasma applications. For
instance in wakefield accelerators the Landau damping [5] accelerates charged par-
ticles which we can imagine as a particle “surfing” on a wave. Plasma instabilities
are also a subject of studies on the Solar chromosphere heating [22]. Many studies
were done on controlling and avoiding instabilities in fusion devices like tokamaks or
Z -pinches [23–24].

10



Chapter 3
Numerical simulations

With the rapid growth of computational power in the last decades, numerical simula-
tions have become more important in all fields of physics and nowadays are as important
as theory and experiments. Numerical simulations allow us to study highly nonlinear
phenomena such as instabilities, turbulences, and other nonlinear phenomena.

3.1 Essentials of numerical simulations
Since computers cannot solve derivatives analytically, the basic principle of numerical
simulations is to convert differential equations (both ordinary and partial differential
equations) to difference equations by discretization. Then the discretized physical
problem can be solved by a computer with an accuracy given by the method of dis-
cretization and size of discrete steps. The way how to discretize an equation is given by
the numerical method (sometimes called numerical scheme). Basic numerical schemes
are difference schemes which we can divide into two main groups: (i) explicit, and
(ii) implicit schemes. The difference between them is in the expression for the right
hand side of the discretized equation and while the explicit schemes are easier to solve,
the implicit schemes are more accurate. All schemes have three main parameters:. stability - which determines the ability of a numerical scheme to damp numerical

errors,. convergence - which tells us that the scheme will reach an analytical solution, and.order - which reflects how well the analytical solution is approximated.

Details on the theory of numerical methods can be obtained from [25]. In principle
for physical numerical simulations we cannot use nonconvergent numerical method as
well as an unstable method or a method with low order. In the following subsec-
tions numerical schemes for ordinary differential and partial differential equations are
introduced.

3.1.1 Numerical solution of ordinary differential equations
The simplest method to solve ordinary differential equations numerically is forward
Euler method. It is a convergent explicit method but its stability depends on the
approximated physical problem. For instance using this method for calculating trajec-
tory of plasma particles in a constant magnetic field will result in a linearly increasing
gyroradius [1]. Let us show the principle of this method on the 1D nonrelativistic
momentum equation.

The equation of motion m(d2x/dt2) = F (t, x, v) can be split into two differential
equations of first order

dx
dt = v(t), (3.1)

dv
dt = F (t, x, v)

m
. (3.2)
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3. Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
After discretization of these equations we get

xn+1 ≈ xn + vn∆t, (3.3)

vn+1 ≈ vn + F (tn, xn, vn)∆t, (3.4)

where ∆t denotes timestep and index n stands for discrete times. A numerical solution
of plasma particle motion in a constant magnetic field is depicted in Fig. 3.1 (a). The
figure illustrates how the error of calculation increases in each timestep.

a) b)
Figure 3.1. Comparison between forward Euler and Boris-Buneman algorithm used for
solving the motion of a charged particle in stationary magnetic field. The result from
forward Euler algorith is depicted in the left panel (a) and result from Boris-Buneman
is depicted in the right panel (b). The difference in stability is clearly visible. Source:

Author

Due to this issue, the forward Euler method is not good choice for plasma simu-
lations. It is better to use a different, more accurate method. One of the methods
developed mainly for plasma simulations is Boris-Buneman algorithm [1, 26] which is
second order numerical scheme. This method is based on following principle. In the
first step of the algorithm, the first half of acceleration due to the electric field is cal-
culated. The second step is the calculation of rotation due to a magnetic field and
the last step is the calculation of the second half of the acceleration. Let us show this
scheme for the Lorentz equation. The initial set of equations is similar to the set used
above

dx
dt = v, (3.5)

dv
dt = Q

m
(E + v× B). (3.6)

Then the consequent steps for calculation are

Ẽ = Q∆t
2m E and B̃ = Q∆t

2m B, (3.7)

ṽ = vn + Ẽ, (3.8)

˜̃v = ṽ + 2

(
ṽ + ṽ× B̃

)
× B̃

1 + B̃2
, (3.9)

12
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vn+1 = ˜̃v + Ẽ, (3.10)

xn+1 = xn + vn+1∆t. (3.11)

In comparison with forward Euler method, the Boris-Buneman algorithm provides
a stable solution. Fig. 3.1 shows the trajecotry for electron motion in a constant mag-
netic field after three gyroperiods. While in the solution of forward Euler (Fig 3.1 (a))
we see increasing Larmor radius in each step of the calculation, the trajectory calcu-
lated by the Boris-Buneman algorithm is stable and circular, in acordance with the
analytical solution.

There are other methods which can be used in plasma physics simulations, for ex-
ample Leap-Frog, Runge-Kutta 4th order etc., and more information about them can
be obtained from additional literature (i. e. [1, 25–27]).

3.1.2 Numerical solution of partial differential equations

Figure 3.2. Illustration of space time discretization. Different types of numerical schemes
are depicted. The left panel shows the explicit scheme while the middle and right panels

show the implicit schemes. Source: [1]

In the case of partial differential equations, the situation is more complicated due to
the need for discretization of both space and time, which is illustrated in Fig. 3.2. In
this part we use index n to denote discrete times and index j to denote discrete step
coordinates (for understandability we assume only 1D examples). The most convenient
and simplest methods are finite difference methods (others are finite volume method
and finite element method, which are not subject of this text). One of the simplest
finite difference algorithm is the Du Fort-Frankel scheme [1]. Let us assume 1D diffusion
equation

∂ξ

∂t
= η

∂2ξ

x2 , (3.12)

which can be discretized to obtain the implicit scheme

ξn+1
j − ξn−1

j

2∆t = η
ξnj−1 −

(
ξnj + ξn+1

j

)
+ ξnj+1

(∆x)2 , (3.13)

which is totally stable and leads to the solution

ξn+1
j =

(
1−K
1 +K

)
ξn−1
j +

(
K

1 +K

)
ξnj−1 +

(
K

1 +K

)
ξnj+1; K = 2η∆t

(∆x)2 . (3.14)

In plasma simulations we need to solve the Poisson equation for potentials, which is
not as simple as the diffusion equation, thus different numerical methods are used. The
most often used methods are multigrid method [28] and DFFT (Discrete Fast Fourier
Transform) method [1, 26–27]. Numerical methods for both ordinary and partial dif-
ferential equations are needed for plasma simulations.
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3.2 Particle In Cell simulations

Particle In Cell (PIC) simulations represent a hybrid algorithm based on calculations
of particle trajectories, while the fields are treated as continuum variables calculated
at grid points only. The simulations are based on two main principles, (i) particles do
not interact with each other directly but via grid points, (ii) each simulated particle
represents a cloud of real particles. This method decreases computational cost from
N2 to N logN where N is number of simulated particles.

3.2.1 Principle of the algorithm
The PIC simulation algorithm consists of these steps:

1. Initialization: Particle generation according to statistical distribution, normalization
of selected quantities, initial field calculations, etc.

2. Particle weighting: In this step the charge and current density from each particle
is distributed to all surrounding gridpoints. The simplest type is binary weighting
which assigns the whole charge/current density to the nearest gridpoint. However,
it is only a rough approximation. The most usual weighting is linear weighting,
of which the principle is illustrated in Fig. 3.3 (left panel). The amount of charge
density distributed to each gridpoint is given by the surface of the opposite rectan-
gle. In the case of 3D simulations it is given by the volume of the opposite prism.
Quadratic, cubic, and other higher order weightings are more accurate, but they
increase computational cost.

3. Poisson solver: The Poisson equation for potentials is solved for each gridpoint. The
most usual methods for Poisson solver are finite difference, multigrid and DFFT
methods [1, 26–28].

4. Field integrator: Electric and magnetic fields in each gridpoints are calculated from
potentials. In this step an arbitrary stable convergent numerical method can be
used. Usually, a finite difference method is used.

5. Fields weighting: Fields from gridpoints are redistributed to the position of each
particle. The weighting of the fields should be of the same order as the weighting of
particles [1]. Linear weighting is illustrated in Fig. 3.3 (right panel).

6. Particle integrator: Calculates movement of each particle according to Lorentz equa-
tion (3.6). The most widely used integrators are Leap-Frog, Boris-Buneman, Runge
Kutta 4th order, etc. [1, 26–27].

7. Return to point 2 until the final time is reached.

For successful numerical experiments, one should add diagnostic procedures to the
appropriate place in the cycle which means saving selected datasets to output files. The
basic data that are saved are information about x–v phase space of simulated particles,
values of potentials on gridpoints and distribution of particle density. These diagnostic
routines can slow down the simulation, thus a compromise between the amount of di-
agnostic data and computational speed must be evaluated for each simulated problem.

Since the electrostatic collisions between simulated particles are provided through
the potential distributed on a grid (so-called mean field approximation), we cannot sim-
ulate fully collisionless plasmas [1, 26]. For such simulations the Vlasov codes (i. e. [29])
are more appropriate. On the other hand, collisions provided by grid are only elec-
trostatic and are affected by weighting, thus do not perfectly reflect the behaviour of
real collisions. If we need realistic collisions or to simulate different types of collisions,
a Monte Carlo collisional algorithm ([30–31]) must be implemented in the PIC code.
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Figure 3.3. Illustration of the 1st order particle and fields weighting. Source: [1]

3.2.2 Stability and accuracy of algorithm
As it was shown, a PIC algorithm is a complex of different solvers (for both ordinary and
partial differential equations) and thus assesing the numerical stability and accuracy
of the whole simulation is much more complicated than in the case of separate usage
of each solver. As in the separate solvers, the stability is given by size of spatial and
temporal steps. It was derived ([26] and references therein) that for space discretization
the resolution of Debye length is the most crucial parameter. Thus the condition for
stability is λD/∆x > 1. Similarly, the timestep must be smaller than the period
of plasma waves. Since in magnetized plasmas the smallest scales are not given by
plasma frequency and Debye length, the effect of resolution of electron gyroradius [32]
and gyroperiod [33] was also studied. The result is that resolution of these scales is
not crucial for simulation stability.

Another important parameter for the result’s accuracy is the number of particle per
cell. The numerical noise in the potential as the function of number of particles per cell
scales with 1/

√
N . The high noise level due to this issue causes artificial fluctuations

of the electric field which can cause self-heating and thermalisation of plasma particles.
The numerical thermalisation due to the finite number of particles is the subject of
recent studies such as [34–35].

Despite these issues, PIC codes are very useful for the numerical study of plasmas.
There have been plenty of studies carried out using PIC method, for instance studies of
ionospheric and space plasmas (i. e. [36–38]) or laboratory plasmas (i. e. [39–40]) and
many others. PIC simulations are nowadays one of the most widely used numerical
tools in plasma physics.
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Chapter 4
Collection of Papers

Overview of research
Research described in the papers in this dissertation covers two main subjects. Firstly,
in the beginning of my PhD study I worked on a numerical solution of the dispersion
relation for a two-stream instability generalized for an arbitrary magnetic field and
thermal plasma. This dispersion relation was previously derived at our university [41].
My first task was to implement an algorithm for the numerical solution of a polyno-
mial equation of 8th order [42]. The method developed by Hubbard et al. [43] was
implemented in Wolfram Mathematica and used to find the solution. Then this al-
gorithm was applied to calculate the solution of the dispersion relation corresponding
to a one stream interaction with stationary background, which is quite often situation
in astrophysical plasmas. A solution was found for different magnitudes of the input
parameters such as plasma frequency, sound speed and cyclotron frequency (Paper
I [44]). The first part of my dissertation research on dispersion relation for two-stream
instabilities was concluded with solution analysis and parametric study of dependence
of maximal value of instability growth rate (Paper II [45]).

The second part of my doctoral research was focused on numerical simulations of
weakly collisional plasmas in E × B fields. This part was done in collaboration with
Dr. Miloch from the University of Oslo (UiO) where I spent 142 days in total divided
into three stays. For simulations we used parallelized electrostatic PIC code with col-
lisions of plasma particles with neutral particles developed at the UiO. The code was
running on the Norwegian cluster ABEL. We used two types of ion-neutral collisions
(elastic and charge exchange), and the collisionless case as the reference. To analyze
the results of simulations I implemented several diagnostics procedures in Wolfram
Mathematica such as routines for the plotting temporal evolution of potential density,
potential fluctuations, particle temperatures and so on. Beside these routines we also
used previously established diagnostic procedures. Preliminary results of our simu-
lations were presented at the 31st URSI-GASS conference (Paper III [46]) and 15th
LAWPP conference (Paper IV [47]). Beside physical instabilities numerical instabilities
were also identified in the preliminary results. Thus the next step was eliminating the
numerical instabilities from our simulations resulting in a study of stability of weakly
collisional plasmas (Paper V [48]). The numerical instabilities will be the subject of
future research.
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4.1 Paper I
Title: Instability Growth Rate Dependence on Input Parameters During the Beam-
Target Plasma Interaction
Journal: Acta Polytechnica

This paper was submitted to the 25th Symposium on Plasma Physics and Tech-
nology (2012) and covers a numerical solution of the generalized Buneman dispersion
relation [41] for a problem of a plasma jet interaction with a stationary background.
The main part of the paper is focused on the evolution of instability growth rate with
change of several input parameters (cyclotron frequencies and sound speeds). This
paper was published in a topical issue of the journal Acta Polytechnica (indexed in
Scopus).
Author’s contribution:.Scientific contribution: 100 %..Text contribution: 100 %.
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INSTABILITY GROWTH RATE DEPENDENCE ON INPUT
PARAMETERS DURING THE BEAM–TARGET PLASMA

INTERACTION

Miroslav Horký∗

Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
∗ corresponding author: horkymi1@fel.cvut.cz

Abstract. The two-stream instability without magnetic field is described by the well-known Buneman
dispersion relation. For more complicated situations we need to use the Generalized Buneman Dispersion
Relation derived by Kulhánek, Břeň, and Bohata in 2011, which is a polynomial equation of 8th order.
The maximal value of the imaginary part of the individual dispersion branches ωn(k) is very interesting
from the physical point of view. It represents the instability growth rate which is responsible for the
turbulence mode onset and subsequent reconnection on the ion radius scale accompanied by strong
plasma thermalization. The paper presented here is focused on the instability growth rate dependence
on various input parameters, such as magnitude of a magnetic field and sound velocity. The results are
presented in well-arranged plots and can be used for a survey of the plasma parameters close to which
the strong energy transfer and thermalization between the beam and the target occurs.

Keywords: Buneman instability, numerical simulations, plasma, dispersion relation.

1. Introduction
Two-stream instabilities are the most common insta-
bilities in plasmas which originate on the microscopic
scale and which can develop to macroscopic phenom-
ena like a thermal radiaton from strong thermalization
or non-thermal radiaton from reconnections. If we con-
sider that both streams have parallel direction of their
velocities, we talk about Buneman instability [1] and
if we consider intersecting directions of velocities and
anisotropy of temperatures, we talk about Weibel in-
stability [8]. The dispersion relation for two-stream
instability without magnetic field in cold plasma is de-
scribed by the relation

2∑

α=1

ωpα

(ω − k · u0α)2 = 1, (1)

where ω is the wave frequency, ωpα is the plasma fre-
quency of the first and second stream respectively, k is
the wave vector, and u0α is the vector of the velocity
for the first and the second stream respectively.

The most simple situation, in which we can use this
relation, is the interaction of two identical streams
moving in opposite directions. Equation 1 has simple
one dimensional form [4]

ω2
p

(ω − ku0)2 +
ω2

p
(ω + ku0)2 = 1. (2)

The two-stream instabilities are usually used for
the study of the origin of the observed macroscopic
phenomena (e.g. particle acceleration in relativistic
plasma shocks [6]). This paper is focused on the gen-
eral study of the plasma jet interaction on the mi-
croscopic scale (not only on the study of one partic-

ular phenomenon origin) and for this case the gen-
eral dispersion relation is needed. Two generaliza-
tions of the two-stream instability dispersion relation
were done in last years, first was done by Kulhánek,
Břeň and Bohata [5] in 2011 and second was done
by Pokhotelov and Balikhin [7] in 2012. In this paper
we do all the calculations from [5], because the gener-
alization is more rigorous and precise. The authors
called it Generalized Buneman Dispersion Relation
(GBDR) and it is described by equation

2∏

α=1

{
Ω4
α −Ω2

α

[
iF

(0)
α · k
mα

+ c2
sαk

2 + ω2
pα + ω2

cα

]

−Ωαωcα
mα

(
F(0)
α × k

)
· eB

+ ω2
cα(k · eB)

[
iF

(0)
α · eB
mα

+
(
c2

sαk
2 + ω2

pα
) k · eB

k2

]}

−
2∏

α=1

ω2
pα
k2

[
Ω2
αk

2 − ω2
cα (eB · k)2

]
= 0,

(3)

where
Ωα = ω − k · u(0)

α , (4)

ωcα is the cyclotron frequency, F(0)
α is the Lorentz

magnetic force, eB is the unit vector in the direc-
tion of magnetic field and csα is the sound velocity.
For B = 0 and cold plasma limit csα = 0, the general-
ized relation becomes the Eq. 1.
For its analysis it is useful to convert this relation

to a non-dimensional form to ensure the scale invari-
ance of the results. The system of coordinates used
in the solution is in Fig. 1.
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The directions of the vectors uα, B and k are pre-
sented in Fig. 1 in the case of our coordinates system.
The wavevector can have any direction, the magnetic
field is only in the (x–z) plane and the velocity vec-
tors of the streams are only along the x-axis. These
vectors have coordinates

uα = (uα, 0, 0),
B = (B sin θB, 0, B cos θB),
k = (k cosϕ sin θk, k sinϕ sin θk, k cos θk).

1.1. The non-dimensional form
Non-dimensional variables are defined by relations [2]

cs1 ≡
cs1
u1
, cs2 ≡

cs2
u1
,

ωc1 ≡
ωc1
ωp2

, ωc2 ≡
ωc2
ωp2

,

ωp1 ≡
ωp1
ωp2

, ωp2 ≡
ωp2
ωp2

= 1,

u2 ≡
u2
u1
, u1 ≡

u1
u1

= 1,

k ≡ ku1
ωp2

, ω ≡ ω

ωp2
,

where index 1 denotes a jet and index 2 denotes a back-
ground. Under these definitions, we can convert Eq. 3
into a non-dimensional form [2] which will be

[
Ω

4
1 + iΩ2

1ωc1k(G1)−Ω2
1

(
c2

s1k
2 + ω2

p1

)
−Ω2

1ω
2
c1

− Ω1ω
2
c1k(G3) +

(
ω2

c1k
2
c2

s1 + ω2
c1ω

2
p1

)
(G2)2

]

·
[
Ω

4
2 + iΩ2

2ωc2ku2(G1)−Ω2
2

(
c2

s2k
2 + 1

)
−Ω2

2ω
2
c2

− Ω2ω
2
c2ku2(G3) +

(
ω2

c2k
2
c2

s2 + ω2
c2

)
(G2)2

]

−
[
ω2

p1

(
Ω

2
1 − ω2

c1(G2)2
)]
·
[
Ω

2
2 − ω2

c2(G2)2
]

= 0,
(5)

where we denoted

G1 = (cos θB sinϕ sin θk),
G2 = (cosϕ sin θk sin θB + cos θk cos θB),
G3 = (cos2 θB cosϕ sin θk − cos θB cos θk sin θB),
Ω1 = ω − k cosϕ sin θk,

Ω2 = ω − ku2 cosϕ sin θk.

The main goal is to find the solution for the ω de-
pendence on k. Equation 5 is a polynomial equation
of 8th order.

2. Numerical Solution
A classical Newton’s algorithm for finding the roots
of polynomial equations has one big disadvantage.
It does not specify the initial points (points where an
algorithm starts the iterations) so it does not guar-
antee the finding of all the roots. In 2001 Hubbard,

Figure 1. System of coordinates used in the sim-
ulations.

Schleicher and Sutherland published the article “How
to Find All Roots of Complex Polynomials With New-
ton’s Method”, where they demonstrated how to de-
termine the initial points to find all the roots of poly-
nomial equation [3].

2.1. Principle of the algorithm
fundamentals

Basic principles are described in [4]. For each k we
have a polynomial equation of a type

c0 + c1ω + c2ω
2 + c3ω

3 + c4ω
4 + c5ω

5 + c6ω
6

+c7ω
7 + c8ω

8 = 0.
(6)

At first we must rescale the polynom, so we have
to find

Amax = 1 + max
k

{∣∣∣∣
ck
cN

∣∣∣∣
}
. (7)

From now we will work with the polynomial

Q(z) ≡
N∑

k=0
ckz

k, (8)

where
z ≡ ω

Amax
, ck ≡ ckAkmax. (9)

The second step is to determine the initial points
where the algorithm will start the iterations. The net
of initial points is determined by radii and angles
in the complex plane:

rl ≡
(

1 +
√

2
)(N − 1

N

)(2l−1)/4L
, (10)

l = 1, . . . , L, (11)
L ≡ d0.26632 lnNe , (12)
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ξm ≡
2πm
M

, (13)

m = 0, . . . ,M − 1, (14)
M ≡ d8.32547N lnNe . (15)

Then the net of initial points is

zlm = rl exp(iξm), (16)
l = 1, . . . , L, (17)
m = 0, . . . ,M − 1. (18)

The initial net of points has definitely LM numbers.
From these numbers the algorithm starts the iterations.
A number of iterations O is defined by accuracy ε by
the definition

O ≡
⌈

ln(1 +
√

2)− ln ε
lnN − ln(N − 1)

⌉
. (19)

The bracket dxe means the ceiling function (first inte-
ger number which is higher or equal to x). Solutions
which do not accomplish |Q(zo) < ε| are not the roots
of the polynomial.
After finding all the roots in the rescaled polynomial
we have to do the backscaling

ωo = Amaxzo. (20)

2.2. Example of the solution

The first numerical solution was made in [5] for the sit-
uation of two identical opposite plasma beams in
a magnetic field. This example of dispersion branches
is for more complicated situation – one plasma beam
penetrates into the plasma background and magnetic
field has both perpendicular and parallel components.
The parameters of this simulation are in Tab. 1 and
graphical result is in Fig. 2.
The result is depicted in well arranged plot where

blue dots represent real branches and red dots imag-
inary branches of the solution. Also maximal value
of the imaginary branch which is so called Plasma
Instability Growth Rate (PIGR) is depicted with sign
“Max”.

Parameter Value
ωc1 = ωc2 0.5
cs1 = cs2 0.1

u2 0
ωp1 1
θk π/2
ϕ 0
θB π/4

Table 1. Parameters used in example of the solution.

Figure 2. Example of solution of the GBDR with
marked maximal value of imaginary part.

3. PIGR dependence on various
input parameters

3.1. Dependence on cyclotron
frequencies

At first the PIGR dependence on both jet and the back-
ground cyclotron frequencies was found.

3.1.1. Results for ωc1
The parameters used in the simulations are presented
in Tab. 2 and the results are depicted in Fig. 3. It is
obvious that the PIGR grows linearly from the value
ωc1 = 0.6.

Parameter Value
ωc1 〈0.5, 3〉
ωc2 0.5

cs1 = cs2 0.1
u2 0
ωp1 1
θk π/2
ϕ 0
θB π/4

Table 2. Parameters used in the simulations with
various parameter ωc1.

Figure 3. The PIGR dependence on ωc1.

176



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Paper I

vol. 53 no. 2/2013 Instability Growth Rate Dependence

3.1.2. Results for ωc2

The parameters used in the simulations are presented
in Tab. 3 and the results are shown in Fig. 4.
From these results we can see the local minimum

of PIGR which origins due to the bifurcation of the so-
lution. The bifurcation is depicted in three dimen-
sional plot where the first axis is k, second is ω and
third is ωc2 (see the Fig. 5).

Parameter Value
ωc1 0.5
ωc2 〈0.5, 3〉

cs1 = cs2 0.1
u2 0
ωp1 1
θk π/2
ϕ 0
θB π/4

Table 3. Parameters used in the simulations with
various parameter ωc2.

Figure 4. The PIGR dependence on ωc2.

Figure 5. Imaginary part of the solution in three
dimensions with an observable bifurcation.

3.2. Dependence on sound velocities
Subsequently the PIGR dependence on both jet and
the background sound velocities was found.

3.2.1. Results for cs1
The parameters used in the simulations are presented
in Tab. 4 and the results are depicted in Fig. 6.

Parameter Value
ωc1 0.5
ωc2 0.5
cs1 〈0.1, 2〉
cs2 0.1
u2 0
ωp1 1
θk π/2
ϕ 0
θB π/4

Table 4. Parameters used in the simulations with
various parameter cs1.

Figure 6. The PIGR dependence on cs1.

It is obvious that after value cs1 = 1, there is no
imaginary branch of the solution, so there are not any
instabilities.

3.2.2. Results for cs2
The parameters used in the simulations are presented
in Tab. 5 and the results are depicted in Fig. 7.
Figure 7 presents a similiar bifurcation point like

in Fig. 4.

Parameter Value
ωc1 0.5
ωc2 0.5
cs1 0.1
cs2 〈0.1, 1.5〉
u2 0
ωp1 1
θk π/2
ϕ 0
θB π/4

Table 5. Parameters used in the simulations with
various parameter cs2.
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Figure 7. The PIGR dependence on cs2.

3.3. Results overview
We found the PIGR dependence on four parameters
ωc1, ωc2, cs1, and cs2. The main dissimilarity be-
tween the dependencies on the cyclotron frequencies
is caused by zero velocity of the background. Since
the jet has non-zero velocity with a component per-
pendicular to the magnetic field, the jet particles react
to the change of the magnetic field more strongly than
the background particles. The dissimilarity between
the dependencies on the sound velocities has the same
origin. Beause of the non-zero velocity of the jet,
the jet could be subsonic and therefore it could be
in the state with no instabilities.

4. Conclusions and future work
First of all, the GBDR was converted into a non-
dimensional form which ensures the scale invariance
of the problem, which means that the results can be
used both for the laboratory and astrophysical plas-
mas. Afterwards the dispersion relation had been
solved for the angular frequency via the algorithm
suggested by Hubbard, Schleicher, and Sutherland.
In every solution branch there were separated real
and imaginary parts and subsequently found plasma
instability growth rate numerically. Finally, the PIGR
dependence on four input parameters ωc1, ωc2, cs1
and cs2 was found. All these numerical calculations

were done on microscopic scale and in the linear ap-
proximation. These results can be used for lookup
of the plasma parameters close to which the strong
energy transfer and thermalization between the beam
and the target occurs which will be the first part of the
future work. Another part will be Particle In Cell sim-
ulations of plasma turbulences origin in the vicinity
of PIGR maximum.
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Abstract The two-stream instability is common, responsible for manyobserved phe-
nomena in nature, especially the interaction of jets of various origins with the back-
ground plasma (e.g. extragalactic jet interacting with thecosmic background). The
dispersion relation that does not consider magnetic fields is described by the well-
known Buneman relation. In 2011, Bohata, Břeň and Kulhánek derived the relation
for the two-stream instability without the cold limit, withthe general orientation of a
magnetic field, and arbitrary stream directions. The maximum value of the imaginary
part of the individual dispersion branchesωn(k) is of interest from a physical point
of view. It represents the instability growth rate which is responsible for the onset of
turbulence mode and subsequent reconnection on the scale ofthe ion radius accom-
panied by a strong plasma thermalization. The paper presented here is focused on the
non-relativistic instability growth rate and its dependence on various input parameters,
such as magnitude and direction of magnetic field, sound velocity, plasma frequency
of the jet and direction of the wave vector during the jet – intergalactic medium in-
teraction. The results are presented in plots and can be usedfor determination of the
plasma parameter values close to which the strong energy transfer and thermalization
between the jet and the background plasma occur.

Key words: plasmas — methods: numerical — instabilities — turbulence —waves
— MHD

1 INTRODUCTION

The most common plasma instabilities are the two-stream instabilities, which can occur during a
plasma jet interaction with the plasma background. Such situations are observed in astrophysical
processes, e.g. interaction of galactic jets with the intergalactic medium (e.g. Silk et al. 2012, and
references therein) or interaction of star jets with the interstellar medium (Murphy et al. 2008). Oscar
Buneman derived the basic dispersion relation describing such instabilities in the late 1950s for cold
unmagnetized plasmas (Buneman 1959). The magnetohydrodynamic instabilities in an ideal plasma
are discussed in Bonanno & Urpin (2011). Magnetic fields are crucial for the phenomena taking
place in jets (Urpin 2006). In 2011, Bohata et al. published apaper containing the derivation of the
non-relativistic dispersion relation for magnetized plasmas without the cold limit restriction (Bohata
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et al. 2012). It is called the Generalized Buneman Dispersion Relation (GBDR) and is described by
the equation

2∏

α=1

{
Ω4

α −Ω2
α

[
i
F (0)

α · k
mα

+ c2sαk
2 + ω2

pα + ω2
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]
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[
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) k · eB
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]}
−

2∏

α=1

ω2
pα

k2

[
Ω2

αk
2 − ω2

cα (eB · k)2
]
= 0,

(1)
whereΩα = ω − k · u(0)

α is the Doppler shifted frequency,ωcα is the cyclotron frequency,ωpα is
the plasma frequency,F (0)

α is the Lorentz force,eB is the unit vector in the direction of the magnetic
field andcsα is the sound velocity. Indexα denotes the corresponding media (jet or background).

In the previous work of Bohata et al. (2012), the numerical solution for the case of two identical
plasma beams with the same velocities, but opposite directions, was found for various input parame-
ters. The situation of the plasma jet interaction with the plasma background was studied as well and
the numerical solution for this problem was found by Horký (2012, 2013).

The maximum of the imaginary part of the solution is denoted as the Plasma Instability Growth
Rate (PIGR). This paper is focused on finding the plasma parameters for which this maximum oc-
curs (the non-relativistic case and the plasma jet interaction with the plasma background are as-
sumed). The calculations are performed on a microscopic level using the linear approximation. For
the plasma parameters leading to the maximum of the imaginary part of the dispersion relation, the
instability arises and amplitudes of all variables grow exponentially. In such a situation, the linear
approximation is no longer valid, and other methods for modeling of the physical phenomena must
be introduced. One of the possibilities is the Particle in Cell (PIC) simulation (e.g. Stockem et al.
2008). The results of these calculations can therefore be applied to: 1) The search for the instability
regimes in which strong thermalization, turbulence, micro-reconnections on ion radius, non-thermal
radiation, shock onset and other interesting phenomena canoccur. The subsequent PIC simulations
of the plasma behavior leading to significant phenomena seemto be the most reasonable next step
for research in this regime. 2) The tests for the acceptance of the PIC codes (the PIC code must
lead to an onset of instability for the parameters calculated by the method proposed in the next para-
graph). Section 2 gives a short description of the algorithmused for calculation of complex roots of
the GBDR relation. Section 3 discusses PIGR value dependences on various input parameters and
geometrical situations.

2 METHOD

The following indices were designated in our analysis: “j” for parameters of the jet and “b” for pa-
rameters of the background. It is beneficial to transform thevariables and the whole GBDR relation
to a dimensionless form. After this step the relation is simply scalable and the equations are covari-
ant in this transformation, which implies that the results can be used for both space and laboratory
plasmas, such as thermalization in astrophysical jets or infusion experiments. The relations for the
dimensionless form were chosen with regard to the zero background velocity as in Horký (2012,
2013):

csj ≡
csj
uj

, csb ≡ csb
uj

, ωcj ≡
ωcj

ωpb
, ωcb ≡ ωcb

ωpb
, ωpj ≡

ωpj

ωpb
,

ωpb ≡ ωpb

ωpb
= 1 , ub ≡ ub

uj
, uj ≡

uj

uj
= 1 , k ≡ kuj

ωpb
, ω ≡ ω

ωpb
,

(2)

Ωj = ω − k cosϕ sin θk , Ωb = ω − ku2 cosϕ sin θk .
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Fig. 1 The system of coordinates used in calculations.

The reference system was set according to Figure 1, in which the directions of the respective
vectorsuα, B andk are drawn. The wave vector can point in any direction, the magnetic field
vector lies in the (x-z) plane and the jet is directed along thex-axis. The vector coordinates are

uα = (uα, 0, 0) ,

B = (B sin θB, 0, B cos θB) , (3)

k = (k cosϕ sin θk, k sinϕ sin θk, k cos θk) .

After simple manipulation, the dimensionless form of the dispersion relation becomes (Horký 2012,
2013)

[
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]
= 0 ,

where the geometrical terms are denoted as

G1 = (cos θB sinϕ sin θk) ,

G2 = (cosϕ sin θk sin θB + cos θk cos θB) , (5)

G3 = (cos2 θB cosϕ sin θk − cos θB cos θk sin θB) .

This dimensionless relation is a polynomial equation with complex roots of the8th order. The
algorithm developed by Hubbard, Shleicher and Sutherland (Hubbard et al. 2001) was used to
find the solution. The algorithm was implemented in the Wolfram commercial software package
Mathematica 8.0.1. Unlike the Newton-Raphson method, thisalgorithm can select seed values that
later converge to solutions. The results are arranged into plots in which the real branches of the so-
lution have a different style than the imaginary branches, and the maximum imaginary value that
determines the PIGR value is highlighted. An example of the program’s output is shown in Figure 2.
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Fig. 2 Real (solid) and imaginary (dashed) branches of the GBDR dispersion relation and PIGR
value (denoted as Max) forωcj = ωcb = 0.5, csj = csb = 0.1, ωpj = 1, θk = π/2, ϕ = 0 and
θB = π/4. These values were used as initial values for the calculations, see Table 1 for details.

In the next step, the dependence of the PIGR value on various parameters of the dimensionless
GBDR (such as cyclotron frequencies of the jet and the background, the sound velocities of the jet
and the background, the plasma frequency of the jet and the directions of the magnetic field and of
the wave vector) is found.

3 RESULTS

The PIGR value was calculated during the program cycle running from the minimum to the maxi-
mum value of the tracked parameter while other parameters were fixed at their initial values. Intervals
of these parameters are shown in Table 1. It was not necessaryto change the jet velocity, because its
dimensionless value was fixed at 1.

Table 1 Parameters used for the numerical solution. The disper-
sion relation for the initial values is depicted in Fig. 1.

Parameter Initial value Minimum value Maximum value

ωcj , ωcb 0.5 0.1 3.0
csj , csb 0.1 0.1 1.5
ωpj 1 1 5
θk π/2 0 π/2
ϕ 0 0 π/2
θB π/4 0 π/2

3.1 The Dependence of the PIGR Value on the Cyclotron Frequencies

The cyclotron frequency of the jet and the cyclotron frequency of the background were increased
from the minimum value of0.1 to the final value of3.0 with a step size of0.1. The cyclotron
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Fig. 3 The dependence of the PIGR value on the jet cyclotron frequency.

Fig. 4 The dependence of the PIGR value on the background cyclotronfrequency.

frequency is proportional to the magnetic field intensity influencing the charged particles. The de-
pendence of the PIGR value on the cyclotron frequency of the jet is depicted in Figure 3, where
the almost linear increase of this relation forωcj > 0.6 is noticeable. The change of the slope at
this point (ωcj = 0.6) corresponds to the location of the minimum for the two different imaginary
branches of the dispersion relation. The dependence of the PIGR value on the cyclotron frequency
of the background is more complicated than the case of jet cyclotron frequency. In Figure 4, the
decrease of lower frequency values is visible. The curve reaches a minimum and then it rises to
an asymptote. The minimum is numerically determined to beωcb = 1.313 and the corresponding
PIGR value is equal to0.39795. This effect is caused by the fact that the solution has two imaginary
branches in this area and while the value ofωcb is increasing, the first branch is descending and the
second is rising. At the minimum both branches have equal PIGR values.

3.2 The Dependence of PIGR Value on the Sound Velocities

Sound velocity is proportional to(Tα/mα)
1/2, whereTα is the plasma temperature, andmα is the

mass of the jet or of the background particles (electrons or ions). The indexα labels the correspond-
ing media (jet or background). Modification of the original Buneman dispersion relation by addition
of the sound velocities of both media is a result of the calculation with non-zero pressure gradi-
ent, i.e. without the cold limit. The dimensionless parametercs involves the plasma jet velocity, see
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Fig. 5 The dependence of the PIGR value on the sound velocities.

Fig. 6 The dependence of the imaginary branches oncsb.

Equation (2), andcsj > 1 indicates a subsonic jet whilecsj < 1 denotes a supersonic one. Both the
sound velocity of the jet and the sound velocity of the background were increased from the initial
value0.1 to the final value1.5 with a step size of0.1. The dependence of the PIGR value on the
sound velocities of both jet and background is depicted in Figure 5. The jet dependence (unfilled
circles) shows a decreasing trend and the PIGR value is zero,while csj ≥ 1. This implies that for a
subsonic jet (in dimensionless form the sound velocity equals 1) the GBDR relation has no imagi-
nary branch and therefore the PIGR value is zero and no instabilities occur. The dependence of the
PIGR value on the sound velocity of the background (filled circles) is more complicated. An inter-
esting peak is located at the valuecsb

.
= 0.9. We made a three-dimensional plot of the imaginary
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Fig. 7 The dependence of the PIGR value onωpj.

Fig. 8 The dependence of the PIGR value on the magnetic field direction (filled circles) and on the
wave vector direction (unfilled circles).

branches of the GBDR solution to uncover the origin of this local maximum. The result can be seen
in Figure 6. The first axis corresponds tocsb, the second tok, and the vertical axis to the value of
the imaginary branch of the PIGR coefficient. This clearly shows that the peak originates from the
ridge present in the solution of the dispersion relation.

3.3 The Dependence of the PIGR Value on the Plasma Frequency of the Jet

All dimensionless frequencies in the system are related to the background plasma frequency, see
Equation (2). This means that the dimensionless plasma frequency of the backgroundωpb is al-
ways equal to 1, see Equation (2). The dimensionless plasma frequency of the jetωpj is in fact the
ratio of the jet to the background plasma frequencies. This parameter is therefore proportional to
(nej/neb)

1/2. During the numerical calculation it was increased from theinitial value1 to the final
value5 with a step size of0.5. It is a rather big step, but as can be seen in Figure 7, the dependence
is very simple and does not have any discontinuities or localmaxima or minima.
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3.4 The Dependencies of the Directional PIGR Value

The dependence of the PIGR value on the magnetic field direction is simply predictable from the
Lorentz equation of motion. A longitudinal magnetic field will evoke less disturbances than a per-
pendicular one. As can be seen in Figure 8, the PIGR value has amaximum atθB = 0 (perpendicular
direction) and decreases for increasingθB. The dependence of PIGR value on the direction of the
wave vector is also predictable due to the dot product betweenk anduα in the GBDR relation, so if
the angle between the wave vector and the velocity equals90◦, the PIGR value should be zero.

In Figure 8, the dependence shows a decreasing trend and it iszero at the angle90◦. Because of
the cylindrical symmetry, both anglesϕk andθB were only varied from0◦ to 90◦ with a step size of
10◦.

4 CONCLUSIONS

Plasma jets from black holes and other types of astronomicalobjects are driven by magnetic fields,
and classical Buneman instability analysis (without magnetic fields) is inapplicable. All calculations
must be performed using the GBDR with nonzero pressure gradient and nonzero magnetic fields. The
PIGR as the maximum of the imaginary parts of the GBDR relation was numerically calculated in
this paper. The PIGR value is responsible for a strong thermalization during the jet-background inter-
action and these calculations can be useful for understanding the underlying processes. Furthermore,
the known PIGR value can be used as a simple test of PIC numerical methods frequently used for
plasma jet simulations. It is an interesting but still an open question as to whether the PIGR value
could be analytically directly calculated from the dimensionless GBDR relation. The dispersion re-
lation is not anisotropic in velocity space. This possibility can cause other phenomena, e.g. particle
acceleration, shock origin, etc. (Nishikawa et al. 2005; Mizuno et al. 2009, and references therein),
which will be the topic of detailed PIC simulations.
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Abstract.
With numerical particle-in-cell simulations, we study kinetic plasma instabilities induced

by collisions between plasma particles and neutral background in magnetized drifting plasmas.
We consider the role of charge exchange as well as elastic collisions in the evolution of the
system. Charge exchange collisions can give rise to velocity distributions in the form of loss-
cone or ring shaped distributions that can become linearly unstable. Elastic collisions also
lead to the instability, but in this case the principal mechanism may be attributed to the
generalized two-stream instability. We investigate the growth rates and saturation levels for
instabilities associated with these collisional processes, and find higher saturation levels and
stronger fluctuations for the case with charge exchange collisions. Characteristics of the studied
system are similar to the E- and F-regions of the Earth’s ionosphere. Our results are relevant
for explaining some of the low frequency oscillations observed in the lower parts of the Earth’s
ionosphere, and are also relevant for some laboratory experiments.

1. Introduction
In the lower parts of the Earth’s ionosphere, the plasma collisional processes can dominate the
plasma dynamics. In those regions, the collision rates between the charged particles and neutrals
can surpass the rates of collisions between charged particles [1]. In general, the frequency of
collisions with neutrals strongly depends on the altitude, and this process is mostly relevant for
the ionospheric E-region, which extends above ca. 100 km. In the lower E-region, the ions can
become effectively unmagnetized, which can give rise to the two-stream like instabilities [1, 2].
In the upper E-region and lower F-region, all charged particles are magnetized, and the plasma
is weakly collisional, and is in general drifting due to external electric and magnetic fields in
the E×B direction. In those regions, the collisions may significantly modify the ion velocity
distribution functions. Similar conditions can be found in dedicated laboratory experiments
[3, 4].

Distorted ion velocity distribution functions can lead to different kinetic microinstabilities.
For example, charge-exchange collisions can give rise to loss-cone or ring shaped velocity
distribution functions that can become linearly unstable. These distributions will generally not
be cylindrically symmetric [5, 6]. Elastic collisions can, on the other hand, distort the E×B

15th Latin American Workshop on Plasma Physics (LAWPP2014) IOP Publishing
Journal of Physics: Conference Series 591 (2015) 012034 doi:10.1088/1742-6596/591/1/012034
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drift of the ions, and in a limiting case, give rise to a generalized two-stream instability [7]. Since
the instability origin is often due to distorted velocity distribution functions, one should use a
kinetic approach or first-principle particle simulations to address this problem.

Different ion-neutral collision types can thus lead to distinct instability regimes. In this
paper, we focus on two limiting cases, where we consider charge exchange or alternatively elastic
scattering for ions in two-component plasmas. We address the problem with a self-consistent
particle-in-cell code that accounts for collisions. By simulating weakly collisional plasmas, we
investigate nonlinear plasma dynamics with the emphasis on the question on how the collision
type affects instability characteristics such as the instability growth, level of the electrostatic
potential fluctuations, and the potential distribution.

2. Numerical Model
Our analysis is carried out with a three-dimensional, electrostatic particle-in-cell (PIC) code.
We simulate the dynamics of electrons and ions in self-consistent fields in a periodic system,
and account also for external electric and magnetic fields, as well as collisions with a neutral
background gas. The code is based on our previous PIC codes, with details on its numerical
implementation given in earlier works [5, 8]. Collisions between plasma particles and neutral
background are implemented with the null-collision method, which allows for arbitrary, energy
dependent collision cross-sections. In the present work, however, we choose to use a constant
collision frequency ν in order to focus on the basic physical mechanisms associated with a given
collision type. We account for charge exchange collisions or alternatively elastic collisions for
ions. In both cases the electrons experience elastic collisions.

The simulated system is a box of size of 0.5 m in each direction, and spatial grid resolution
of 0.7 cm. Initially, the system is spatially homogeneous. The plasma density is n = 1012 m−3,
with the electron temperature Te = 8.6 eV, and the electron to ion temperature ratio Te/Ti = 4.
The external magnetic and electric fields are B0 = 0.005 T and E0 = 550 Vm−1. The E×B/B2

drift vd is supersonic, with vd = 2
√
Te/M , where M is the ion mass. The ion collision frequency

is νin = 3.52 · 105 s−1, which is lower than the ion gyrofrequency Ωci, νin = Ωci/5, while the
electron collision frequency is given by νen = νin

√
M/m, where m is the electron mass. For

computational reasons, we use the reduced mass ratio M/m = 500, while keeping the electron
mass realistic, and the mass of cold neutral species mn = M . This reduced mass ratio speeds up
the simulations, while it still gives credible results [9]. We typically run large-scale simulations
for times up to t = 95000∆t, which corresponds to 19 ion gyroperiods with a timestep ∆t being
a fraction of the electron gyroperiod.

The simulated plasma parameters can be related to scaled conditions in the upper parts of
the ionospheric E-region, where the plasma is only weakly collisional [1, 2, 5]. However, while the
respective ratios of the parameters are within the relevant range, the one-to-one correspondence
is not maintained; rather the scaled system is simulated. Thus, while we expect that the main
phenomena will be present in the simulations, some of the ionospheric processes might be not
well represented.

3. Results and Discussion
In the simulated system, the charge exchange collisions lead to an asymmetric ring distribution
function for ion velocities, which after one ion gyroperiod, when the full ring shape velocity
is formed, becomes unstable and triggers the instability [5]. This instability mechanism is
equivalent to the loss-cone instability discussed in the context of fusion research [2, 10]. The
instability grows during a few ion gyroperiods until the ring in the distribution function is
filled-in in the velocity phase-space. It is characterized by an enhanced level of fluctuations in
the electrostatic potential distribution, and the growth of harmonics in the wave spectra. A
partially filled ion velocity distribution at a later stage is shown in Figure 1(a). In Figure 2 we
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Figure 1. Ion velocity distribution function for the charge exchange (a) and elastic (b) collisions
at t = 4 · 2π/Ωi.

show the absolute value of potential fluctuations as a function of time for different collision types
averaged over a chosen subset of grid points in the simulated system. The average amplitude
of potential fluctuations in the case of charge exchange collisions increases by a factor of three
during the simulation, and is characterized by strong fluctuations in the saturated stage with
amplitudes up to seven times the initial value. For elastic scattering the growth rate is similar
as in the charge-exchange case, while the saturation level is lower, being characterized by much
smaller fluctuations. We observe that the elastic scattering modifies the ion-velocity distribution
function by strongly broadening the distribution, see Figure 1(b). Thus, the mechanism for the
instability will be different than in the case of charge exchange collisions, where the typical
loss-cone instability due to non-Maxwellian distribution can be expected [6]. Moreover, in this
nonlinear regime there may also be a competition between several other instabilities, thus the
instability due to collisions might act to only modulate other instabilities present in the system
[1, 11].

The potential structures in the saturated stage of instability are strongly aligned with the
B-field. The long wavelengths along B can be crucial for the dynamics of the system [1, 12].
However, to study waves at small wavelengths, it suffices to consider only the plane perpendicular
to the B-field direction. In Figure 3, the potential distribution in the plane perpendicular
to the direction of magnetic field is shown for charge exchange collisions, together with the
corresponding potential distribution at the beginning of the simulations and at the onset and
saturated stage of instability. Initially, the potential distribution is normal, with the maximum
values of ±5 V, and there are no coherent structures observed, see Figure 3(a). Coherent
structures start forming during the onset of the instability, and in the saturated stage large,
coherent structures propagating in the E×B direction are observed (i.e., in the negative ẑ
direction, see Figures 3b-c). The angle of propagation of these structures with respect to
the E×B direction can be related to the supersonic drift regime. As the amplitudes of
the fluctuations increase, the potential distribution becomes more shallow, but can still be
approximated by a normal distribution.
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Figure 2. The amplitude of the potential fluctuations ‖Φ‖ averaged over a part of the simulation
box as a function of time for elastic (dashed line), and for charge exchange (full line) ion-neutral
collisions. Time is normalized to the ion gyroperiod.

! !V" ! !V" ! !V"

Figure 3. The potential distribution in the plane perpendicular to the direction of the
magnetic field in the middle of the box together with the corresponding distribution of potential
fluctuations in the whole system. The E × B-drift is in the negative ẑ-direction. The results
shown are for charge exchange collisions in the beginning of the simulations (a), at the onset
of instability (b), and for the developed stage of the instability (c). Note that the range of the
F (Φ)-axis in (c) is reduced.
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4. Conclusions
With numerical PIC simulations, we have studied the kinetic plasma instabilities in the
E×B/B2-drifting weakly collisional plasma, with the parameter regime that can be relevant for
ionospheric conditions. Two limiting cases have been considered: charge exchange and elastic
collisions. For the case with charge exchange collisions, a significant saturation level for the
amplitudes in the potential fluctuations is reached after a few ion gyroperiods. Elastic collisions
give rise to much smaller potential fluctuations and a lower saturation level. While the ion
velocity distributions are different for these two collision types, the instability growth rate is the
same for both cases. It is expected that in this nonlinear regime there is a competition between
several instabilities, and thus further detailed analytical and numerical studies are required to
identify different competing and dominant processes in the evolution of this system.
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Abstract 

 
 We study the stability of weakly collisional, magnetized plasmas in the presence of the  

€ 

 
E ×
 
B  fields with self-

consistent particle-in-cell simulations. Collisional interactions with a neutral background can lead to distorted, unstable 
velocity distributions. In the case of charge-exchange collisions, we observe the formation of a ring-shape velocity 
distribution for ions. For elastic ion-neutral collisions the ion velocity distribution is distorted and broadened. In both 
cases, after one gyroperiod, we observe a significant increase in the fluctuations in potential, which can be related to the 
instability growth. In the saturated frequency-wavenumber spectrum, nonlinear three-wave interaction is observed.  
 

1. Introduction 
 

 In the presence of external electric and magnetic fields, the plasma will drift with the  

€ 

 
E ×
 
B /B2  velocity. In the 

collisionless case, electrons and ions will drift with the same velocity in the same direction. Thus, there will be no net 
current through the plasma. However, the situation can change significantly, when one or both of the species experience 
collisions with neutrals. If one of the species becomes unmagnetized due to collisions, a net current will be present. 
Above a certain threshold, this can lead to instabilities and an exponential growth of fluctuations in potential and 
electric fields [1]. In the ionosphere, enhanced fluctuation levels can have implications for the scintillations of for 
instance Global Navigation Satellite System signals, such as GPS signals. Thus their understanding is also important for 
the assessment of space weather effects [2]. A typical example of an unstable plasma configuration for ionospheric 
plasmas is the well known Farley-Buneman instability, for which the ions are effectively unmagnetized [3]. In the 
present work, we focus on a different regime, in which the ions are magnetized, but the collisions are frequent enough 
to induce significant changes in the ion velocity distributions.   
 
 It is known that in the ionospheric E region, a collisional regime exists where 

€ 

ωce >> ν en , while 

€ 

Ωci ≤ν in , in 
terms of electron and ion cyclotron frequencies 

€ 

ωce,Ωci, and collision frequencies 

€ 

ν en,ν in  between charged particles and 
neutrals. This regime is relevant for the Farley-Buneman instability, which has been studied extensively in the past [4]. 
At higher altitudes, however, the regime may exist where 

€ 

Ωci ≥ν in , while electrons are still collisionless. Under these 
conditions, it has been shown that a ring-shaped velocity distribution may form for ions with charge-exchange collisions 
[5]. Such distribution will generally be unstable, but other instabilities may also be excited [1,6], before the fully shaped 
ring velocity distribution is even established. Thus, the nonlinear situation will be a competition between several 
instabilities, which are characterized by different ranges in frequencies and wave numbers. Studies of such a regime 
may be important for comprehensive knowledge of ionospheric processes at different altitudes. Of particular interest is 
the role of different collision types for the dynamics of the system. While charge-exchange collisions could give rise to 
unstable ring-shaped velocity distributions, the relative importance of charge exchange and elastic ion collisions is not 
clear. 
 
 Weakly collisional plasmas in the  

€ 

 
E ×
 
B  fields can form highly nonlinear systems, and thus analytical studies can 

be difficult [6]. A natural choice for studies of such systems will be by using first principle numerical simulations that 
account for nonlinear plasma dynamics. In this study, we employ the particle-in-cell (PIC) numerical code to carry out 
self-consistent simulations and address the problem of the role of collisions for the plasma stability in weakly collisional 
plasmas. 
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2. Numerical simulation 
 
 Our analysis is carried out with a three-dimensional, electrostatic PIC code. The dynamics of electrons and ions 
is simulated in self-consistent electrostatic fields in a periodic system. We account for external electric and magnetic 
fields, and collisions with a neutral background gas. This new code is based on our previous PIC codes, with details of 
numerical implementation given in earlier works [7,8]. The underlying principles of the code are standard, with the grid 
being used for field calculations to reduce the numerical complexity of simulations of a large number of plasma 
particles, and the leap-frog method and Boris algorithm used for advancing particle trajectories [9]. Collisions between 
plasma particles and neutral background are implemented with the null-collision method [10]. This method is an 
efficient algorithm for plasma-neutral collisions, and it allows for arbitrary collision cross-sections σ. In particular we 
can simulate real, energy dependent collision cross-sections. However, to have a control over the dynamics of the 
system and to allow for systematic studies, in the present work we choose to use a constant collision frequency ν. In our 
simulations, we allow for charge exchange collisions for ions, and elastic collisions for electrons and for ions.  
 
 We use the box size of 0.5 m in each direction, with the spatial grid resolution of 0.7 cm. The plasma density in 
the simulation is n = 1012 m−3, with the initial electron temperature Te = 8.6 eV, and the electron to ion temperature ratio 
Te/Ti = 4. External magnetic and electric fields are B0 = 0.005 T and E0 = 550 Vm−1, respectively.  For these parameters, 
the  

€ 

 
E ×
 
B /B2  drift will be supersonic, i.e., vd = 2

€ 

Te /M , where M is the ion mass. The ion collision frequency is          
νin = 3.52·105 s−1. This frequency is lower than the ion gyrofrequency, νin = Ωci/5, while the electron collision frequency 
is given by νen = νin

€ 

M /m , where m is the electron mass. To speed-up the simulations we simulate the reduced mass 
ratio M/m = 500, while keeping the electron mass realistic. We set mass of neutral species mn = M, and assume neutrals 
to be cold, Tn = 0. The plasma parameters can be related to the scaled conditions in the upper parts of E-region of 
ionosphere. However, while the respective ratios of the parameters are within the relevant range, the one-to-one 
correspondence is not maintained. Thus, while we expect that the main phenomena will be present in the simulations, 
some of ionospheric processes might be not well represented. 
 
 With a timestep of ∆t ≈ 0.1·2π/Ωce we can resolve also the electron gyromotion. With these parameters, we can 
also resolve the smallest scales in the system, i.e., the Debye length and electron gyroperiod, which is necessary for the 
stability and reliability of the simulations [9]. We typically run the code for about t = 95000∆t which corresponds to 19 
ion gyroperiods, and simulate 107 plasma particles using the Message-Passing-Interface (MPI) for the parallel 
computing environment. 

3. Results  
  
 During the course of the simulation we observe the effects of collisions on the ion velocity distribution function. 
The initially Maxwellian distribution (see Figure 1a) rotates in the uy-uz velocity phase space for velocity components 
perpendicular to the magnetic field direction, where   

€ 

 
B = B0 ˆ x . For the charge exchange collisions, the gyrorotating bi-

Maxwellian cone becomes narrower in time, as the colliding ions move to the origin in the velocity phase space. Thus, 
ions that have collided, give rise to the ring shape of the velocity distribution function. After one ion gyroperiod the full 
ring distribution is formed. We observe that after several ion gyroperiods the ring distribution fills in, indicating the 
saturation of the instability. The resulting distribution is characterized by a peak close to the origin, which is due to 
charge exchange collisions, see Figure 1(b). On the other hand, ion-neutral elastic collisions lead to diffusion in the 
velocity phase-space and give rise to a broad distribution function, which center is shifted by the drift velocity, as 
shown in Figure 1(c). 

 
Figure 1. Ion velocity distributions for the velocity components perpendicular to the magnetic field direction at the 
beginning of simulations (a), and after four ion gyroperiods for charge exchange collisions (b) and elastic collisions (c). 
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Figure 2: Electrostatic potential distribution in the plane perpendicular to the magnetic field direction for charge-
exchange collisions, at time t=1.2·2π/Ωci in the growing phase of the instability (a), and for the saturated stage at 
t=3·2π/Ωci (b). 
 
 
 The evolution in the ion velocity distribution function is accompanied by the growth of the amplitude of the 
potential and electric field fluctuations. The fluctuation level growth occurs after the first ion gyroperiod, and saturates 
after several gyroperiods. The growth is by approximately one order of magnitude. There is little difference between the 
growth rate for the elastic and charge exchange collisions. However the saturation level is higher for the charge 
exchange collisions. In this case, the fluctuation level remains high at the saturation stage, suggesting strong nonlinear 
interactions between different wave modes generated in the system. For elastic collisions, the saturation is lower by a 
factor of two for the considered parameters. The evolution of the potential distribution in the plane perpendicular to the 
magnetic field is illustrated in Figure 2 for the case with charge exchange collisions, where one can observe a 
development of coherent structures during the growth phase (Figure 2a), and propagation of such structures in the  

€ 

 
E ×
 
B  

direction the at the saturated stage (Figure 2b). 
 
 With the frequency-wavenumber spectral analysis of the electrostatic potential fluctuations, we observe that the 
number of harmonics increases during the growing phase of the instability. Because of the assumed vanishing neutral 
temperature and distorted velocity distributions, we have a rapid initial growth of wave amplitudes, with amplitudes 
increasing by a factor 2 within approximately one ion gyroperiod after the onset of instability. The dominant component 
of the fluctuations propagates at an angle to the   

€ 

 
E ×
 
B  direction and ω/kz ≈ E/B , while kx ≈ 0. We find the dominant 

wave-numbers in the saturated spectrum to be |k| ≈ Ωci /Cs within a factor 2. At the saturated stage, the growth of modes 
at low frequencies is observed, and their relations indicate nonlinear three-wave interactions. For charge-exchange 
collisions we also observe the presence of half-harmonics of the ion cyclotron frequency. Furthermore, in the spectra we 
identify possible resonances between the wave and electrons corresponding to their thermal velocities. 
 
 

4. Conclusions  
 
 With numerical simulations we have studied the relative role of charge exchange and elastic ion collisions with 
neutrals on the evolution of the weakly collisional plasma in the  

€ 

 
E ×
 
B  fields. We have observed significant distortions 

of the ion velocity distributions that highly depend on the type of collisions. Such distorted distributions may be 
kinetically unstable. Indeed, we observe diffusion in the velocity phase space in the case of the charge exchange 
collisions. The simulations considered cold neutral background, but in reality, neutrals will be thermalized in the charge 
exchange events, and the ring-shaped distributions for ions will be slightly more diffuse already in the initial phase. For 
both cases, there is a growth of amplitude of the field fluctuations, and larger coherent structures propagating in the
  

€ 

 
E ×
 
B  direction are observed. In the frequency-wavenumber spectra we observe a number of harmonics during the 

growth phase, including modes at half-harmonics of the cyclotrone frequency. Note, that narrow frequency-band 
oscillations near half of the cyclotron frequency of hydrogen have at times been observed in the lower parts of the 
ionospheric F-region [11]. In the saturated phase, we see the growth of three main modes, reflecting the nonlinear three-
wave interaction [12]. Since we expect that in this nonlinear regime there is a competition between several instabilities, 
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further detailed studies are required to indentify different competing and dominant processes in the evolution of this 
system. 
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Research described in this paper follows research in tho two previous conference pa-
pers. It summarises all the results such as time evolution of ion velocity phase space,
potential fluctuations, potential density, and wave spectra for two different collisional
regimes and compares them with the reference collisionless case. While for the colli-
sionless case and the case with ion-neutral elastic collisions we found the system stable,
for ion-neutral charge exchange collisions we observed an instability growth rate and
the creation of coherent structures in potential density corresponding to electrostatic
waves. The paper was published in the journal Physics of Plasmas (IF 2.249) in Febru-
ary 2015.
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Plasma stability in weakly collisional plasmas in the presence of E� B fields is studied with

numerical simulations. Different types of ion-neutral collisions are considered in a fully magnetized

regime. We study the influence of ion-neutral collisions and the role of collision types on the stability

of plasma. It is found that the stability of plasma depends on the type of ion-neutral collisions, with

the plasma being unstable for charge exchange collisions, and stable for the elastic scattering. The

analysis focuses on the temporal evolution of the velocity phase space, RMS values of the potential

fluctuations, and coherent structures in potential densities. For the unstable case, we observe growth

and propagation of electrostatic waves. Simulations are performed with a three-dimensional electro-

static particle in cell code. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906887]

I. INTRODUCTION

In nature, an initial perturbation of a physical system is

usually damped and the system reaches new equilibrium

state. Otherwise, under specific conditions the amplitude of

initial perturbation can grow because of a positive feedback

in the system. This phenomenon is called instability. In plas-

mas, instabilities are mostly connected with perturbations in

potentials which give rise to electrostatic and/or electromag-

netic waves. Instabilities are ubiquitous in both naturally

occurring plasmas, such as space and ionospheric plasmas,1

and in laboratory plasma experiments, where they may be a

subject of a specific study or an unwanted contribution.2

For theoretical description of plasma instabilities, one

should use the magnetohydrodynamics (MHD) or kinetic

approaches. MHD is applicable for macroscopic problems

where instabilities can grow due to configuration in space.

These macroinstabilities grow predominantly at large wave-

lengths. While macroinstabilities can also be addressed with

the kinetic theory, the main importance of the kinetic

approach is in describing instabilities at a microscopic level.

These so-called microinstabilities can rise due to distortions

in the velocity phase-space and grow at small wavelengths.3

Microinstabilites in collisionless plasmas were well

studied in the past and a good overview can be found in sev-

eral textbooks.1–3 A typical example of microinstability in a

collisionless magnetized plasma is the component/compo-

nent instability, like electron/ion cyclotron instability,3

where the instability growth depends on the relative drift

speed between plasma species. There are different criteria

for the plasma stability.2 An example is the Penrose criterion

that is used at kinetic scales for electrostatic wave modes in

plasmas with multi-peaked velocity distribution functions:Ð1
�1 Fðv0Þ � FðvÞ=ðv� v0Þ2dv < 0, where v0 is a value of

the minimum between two peaks in the velocity distribution

function F(v).4 A crucial parameter for the stability of

collisionless, magnetized plasmas is the relative drift

between plasma species. Under realistic conditions, because

of different inertia of plasma species, the difference in drift

speed can occur even in case of the E� B drift.3

In case of collisional plasmas, the problem is more com-

plex, in particular, in E� B fields. Collisions between

charged particles and neutrals can provide damping as well

as growth of an initial fluctuation. Collisions can effectively

demagnetize plasma particles, if the collision frequency is

much larger then the relevant gyrofrequency. In E� B

fields, this may lead to the well-known Farley-Buneman

instability that can occur in lower parts of the E-region iono-

sphere, where there is a relative flow between electrons and

unmagnetized ions, due to high collision frequency.5,6 Ott

and Farley7 studied microinstabilites in weakly collisional

plasmas (�in/Xi� 1) which can result in the Post-Rosenbluth

instability8,9 or electrostatic flutelike ion cyclotron mode.10

In recent years, Perron et al.11 studied the effects of tempera-

ture anisotropy on the dispersion relation in the ionospheric

F-region and found that temperature anisotropy lowers the

instability threshold. Miloch et al.12 studied stability of the

ring shaped velocity distribution functions induced by charge

exchange collisions and the dynamics of unstable waves.

Ring shaped velocity distribution functions can be found in

magnetized plasmas at low collisional frequency for ions,

thus when ions are still magnetized.7,13,14

Nowadays, both micro- and macroinstabilities in E� B

fields are mostly studied numerically. Due to the importance

of collisions, it is advisable to use particle simulations, or

hybrid (particle-fluid) simulations. There have been a num-

ber of numerical studies in 2-D and 3-D, but most of them

focused on the highly collisional regime, and many consid-

ered, just as in theoretical works, the relative drift speeds

between plasma species.15–17

In the view of previous works, the question arises if

there is any unstable regime for perfectly magnetized and

weakly collisional plasmas in E� B fields. In such systems,

it is necessary to distinguish between different collisionala)Electronic mail: miroslav.horky@fel.cvut.cz
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mechanisms, where elastic and inelastic collisions can each

have different effects on the velocity phase-space of the

plasma in question. For ionized atoms, there are in practice

two main types of collisions that need to be considered first

due to their large collision cross-sections: charge exchange

and elastic collisions.18 Thus, it is a question what is the

effect of those different collision types on the plasma stabil-

ity, and which collision type could provide favorable condi-

tions for the instability growth?

In this study, we focus on the role of the collision type

on the stability of the plasma in E� B fields in a weakly col-

lisional regime, i.e., when both species remain magnetized.

We address this question by 3D electrostatic Particle-In-Cell

(PIC) numerical simulations. We have simulated weakly col-

lisional plasma in E� B fields, and consider elastic colli-

sions or charge exchange collisions for ions, i.e., collision

types with largest collision cross-sections, and elastic colli-

sions for electrons. The results are analyzed in terms of ve-

locity distribution functions, amplitudes of potential

fluctuations, and electrostatic wave spectra. We show that

the type of ion-neutral collisions plays a substantial role in

the plasma stability.

II. NUMERICAL SIMULATIONS

For our studies, we use the self-consistent PIC numerical

simulations. We employ a three-dimensional, electrostatic

code with periodic boundary conditions, in which the dy-

namics of electrons and ions are simulated in self-consistent

fields. In addition, we apply external static magnetic and

electric fields, and also account for collisions of plasma par-

ticles with a neutral background gas. The code is based on

our previous PIC codes, with the details of numerical imple-

mentation given in previous works,19–21 and with the present

version we can simulate fully periodic systems in all direc-

tions for both particles and fields.12

We use the Cartesian coordinate system, and set the

external magnetic field B in the x̂-direction and external elec-

tric field E in the ŷ-direction, thus having the vd ¼ E �B=B2

drift in the negative ẑ-direction. The plasma particle trajecto-

ries are advanced with the leap-frog method combined with

the Boris algorithm.20 During each time-step, a given number

of randomly chosen plasma particles collide with neutral

atoms. These collisions are implemented with the null-

collision method,18,22 which is an efficient algorithm allow-

ing for arbitrary collision cross-sections r that can also be

energy dependent. However, to have better control over the

dynamics of the system and to allow for systematic studies,

in the present work we choose to use a constant collision fre-

quency �.

We consider the charge exchange collisions for ions,

and elastic collisions for electrons and for ions. The neutrals

have the same mass as ions. For simplicity and clarity of pre-

sentation, we assume the neutrals to be cold, with vanishing

temperature Tn� 0. However, we have performed control

simulations, in which neutrals have finite, realistic tempera-

tures to assure that the main physical processes in the cold

neutral limit remain unchanged.

In our simulations, we use the box size of L¼ 0.5 m in

each direction, with the spatial grid resolution of Dx¼ 3.9 mm.

With a time-step of Dt � 0:04sLe, where sLe ¼ 2p=Xe is the

electron gyroperiod and Xe is the electron gyrofrequency, we

can resolve well the electron gyromotion, and thus the smallest

timescales in the system. The grid spacing is chosen to resolve

the electron gyroradius rLe, which is the smallest characteristic

scale in the system (for the chosen parameters rLe < kDe,

where kDe is the electron Debye length). To speed-up the simu-

lations, we use the reduced mass ratio mi=me ¼ 500, which is

still large enough to well separate the ion and electron time-

scales. The plasma density is n ¼ 4:3 �1013 m�3, the initial

electron temperature Te ¼ 74:1 eV, and the electron to ion

temperature ratio Te=Ti ¼ 4. For these parameters, the E� B

drift is subsonic, i.e., vd ¼ 0:58
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
. The relatively high

electron temperature as well as the size of the simulation box is

the result of compromise between the accuracy and numerical

stability of simulations. The summary of simulation parameters

is given in Table I. While the parameters are chosen predomi-

nantly according to numerical stability and performance, their

characteristic ratios (e.g., temperature, frequencies, and veloc-

ities) can be related to realistic values, such as those in the

lower regions of the ionospheric F-layer or laboratory plasma.

The simulations are run until almost 4 ion gyroperiods.

We find this time long enough to reach the new equilibrium

in the system. This has been confirmed by longer test simula-

tions for smaller systems with reduced number of particles.

In this study, we simulate 4� 107 particles per plasma spe-

cie, and use the Message-Passing-Interface (MPI) for the

parallel computing environment. The finite number of par-

ticles in the simulations leads to increased fluctuation level

which scales with 1=
ffiffiffiffi
N
p

, where N is the average number of

particles per simulation cell. We have verified our results by

varying the number of particles per cell, and found that the

further increase of N will not affect the evolution of the sys-

tem. Note that due to a finite number of the simulated par-

ticles, even in the collisionless case, we are not in the Vlasov

limit, and thus there will be effective collisions between

charged particles due to fluctuations in the electrostatic

potential. This feature is typical for all PIC simulations.

The ion collision frequency is �i ¼ 3:52� 105 s�1. This

frequency is lower than the ion gyrofrequency, �i ¼ Xci=5.

TABLE I. Parameters used in simulations.

Parameter Value Units

Grid 128� 128� 128 —

Box size, L 0:5� 0:5� 0:5 m

Dt 2:5� 10�10 s

B0 0:005x̂ T

E0 550ŷ V m�1

ni,ne 4:3� 1013 m�3

Ni,Ne 4� 107 —

�i 3:52� 105 s�1

�i/Xi 1/5 —

vd/cs 0.57 —

Te/Ti 4 —

mi/me 500 —
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In this regime, the ion gyromotion is resolved and both spe-

cies remain to be magnetized.12 Thus, it is expected that dif-

ferent collision types will lead to different evolution of the

velocity distributions.

To study the effects of collision types on the evolution

of the simulated system, we consider three limiting cases:

(E.S.) ion-neutral and electron-neutral collisions are elastic;

(C.E.) ion-neutral collisions are charge-exchange and

electron-neutral collisions are elastic; and (N.C.) no colli-

sions are considered as a control case.

III. RESULTS

In this section, we present the results from numerical stud-

ies on the influence of collision types on the plasma stability in

E� B fields. We consider three limiting cases: (i) no collisions

between charged particles and neutrals (N.C.), (ii) charge

exchange collisions for ions and elastic collisions for electrons

(C.E.), and (iii) elastic collisions for both species (E.S.).

Effects of different ion-neutral collisions are clearly

visible in the evolution of ion velocity distribution functions.

Examples of ion velocity distribution functions for vz and vy

components obtained in our simulations are shown in Fig. 1

for different time instances: half of the ion gyroperiod

(t � 0:5sLi, left panels) and approximately three ion gyroper-

iods (t � 2:8sLi, right panels). In all cases, the initial bi-

Maxwellian distributions for the vz and vy components are

gyrorotating in the vz–vy plane that is perpendicular to the

external magnetic field. The center of gyrorotation is thus at

vz/vd¼�1, vy¼ 0. This rotation is due to the low collisional

regime for which ions remain magnetized. Thus, in Fig. 1,

the peak of the distribution function in the vz component is at

vz/vd¼�1 after half of the gyroperiod.

For the N.C. case (with no charged particle-neutral colli-

sions, Figs. 1(a) and 1(b)), the distributions in all directions

remain Maxwellian-like during the whole simulation. There

are only small disturbances caused by weak electrostatic

scattering between particles due to potential fluctuations

originating from a finite number of simulation particles.

The charge exchange collisions, in the C.E. case, give

rise to distinct evolution of the velocity distribution function,

see Figs. 1(c) and 1(d). Due to the charge exchange, the gyro-

rotating bi-Maxwellian cone becomes narrower in time, while

the new, cold ions originating from collisions with neutrals

start at the origin in the vz–vy plane. Thus, the new ions follow

the gyroorbit giving rise to a ring shape velocity distribution

function, which is formed after one gyroperiod. After several

gyroperiods the ring distribution fills in due to instability, and

is centered to drift velocity with a peak close to origin. This

peak is due to on-going charge exchange collisions. While in

this study we consider cold neutrals, we observed similar evo-

lution for finite neutral temperatures in control simulations.

Effects of ion-neutral elastic collisions, i.e., the E.S.

case, are already visible after one gyroperiod, see Figs. 1(e)

and 1(f), and are manifested by a skewness of the distribu-

tion for the vy component. At a later stage, t� 2.8sLi the elas-

tic collisions eventually lead to the spread of distribution and

centering it to the value of the drift velocity in the vz direc-

tion. The resulting distribution function is again Maxwellian-

like but with a significant skewness in the vy component.

However, it is a single peak distribution which can be well

approximated by a Maxwellian.

As seen in Fig. 1, different types of collisions give rise to

distinct velocity distribution functions for ions, which sug-

gests different dynamical properties of plasma in each of the

cases. Thus, we can expect the instability growth for the C.E.

case, while other cases are expected to be more stable. Since

electrostatic instabilities are characterized by the growth of

electrostatic waves, it can be instructive to look at the

RMS values of the fluctuations in the electrostatic potential U
for different collision types. We obtain RMS value as

URMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i¼1 U2

i

q
, where the sum is over a representa-

tive subset of the simulation grid. The time evolution of

the potential fluctuations for three different cases is shown in

Fig. 2. The significant growth of RMS values is present only

for the C.E. case. This growth starts after the first gyroperiod.

Note that a logarithmic scale is used for the vertical axis, so

that the growth is exponential as it is expected for plasma

instabilities. The growth is estimated to be 2:5=sLi ½V=s�,
which corresponds to the growth rate c=xpi ¼ 0:096. The

growth rate c generally depends on wide variety of parame-

ters, and the estimated value corresponds to usual values for

electrostatic instabilities.2,3

For the E.S. case, one can observe an initial damping of

fluctuations up to time corresponding to 1.5 ion gyroperiods

and a subsequent increase back to the initial level of fluctua-

tions. Therefore, we further investigated ion velocity

FIG. 1. Velocity distribution functions in the vy–vz velocity components for

different types of ion collisions. (a) and (b) for the case with no collisions

(N.C.); (c) and (d) for the charge exchange collisions (C.E.), and (e) and (f)

for the elastic collisions (E.S.). Results in the left panels (a), (c), (e) are for

t� 0.5sLi and in the right panels (b), (d), (f) for t� 2.8sLi. Velocity axes are

normalized to drift velocity.
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distributions between one and three ion gyroperiods. The ve-

locity distribution in the vy direction becomes skewed while

URMS decreases. After t� 3sLi, the distribution returns to the

initial (unskewed) state when the RMS of potential fluctua-

tions increases again.

In the collisionless case (N.C.), the initial oscillations of

the fluctuation level are damped in time. In spite of no RMS

growth above the initial values in the N.C. and E.S., one can

still expect that stable or weakly damped waves are present

in plasmas in these both cases. Note that all three considered

cases have similar evolution until the end of the first ion

gyroperiod, and that after the third gyroperiod they reach

new equilibrium-like states. We confirm the stability of these

new states by longer simulations with reduced number of

particles and resolution.

The two vertical lines in Fig. 2 indicate time instances

for which the further analysis is done. We choose these

time instances since the first one corresponds to the growth

phase in the C.E. case, and the second one relates to time

when the new equilibrium is being reached. Since the elec-

trostatic waves form well organized structures in potential,

it can be instructive to study the potential density in the

plane perpendicular to magnetic field which is also a plane

for which we can expect the development of waves in the

E� B drift.

Fig. 3 shows electrostatic potential distribution in the

y–z plane at x¼ 1=2Lx at two different time instances, so that

it gives idea on spatio-temporal evolution of the potential.

Left panels correspond to time t1� 1.7sLi (indicated by the

first vertical line in Fig. 2) and right panels correspond to

time t2� 2.9sLi (marked by the second vertical line in Fig.

2). Note that while in Fig. 2 we presented RMS values of the

potential fluctuations, now in Fig. 3 the color bar values cor-

respond to the normalized potential amplitudes.

FIG. 2. Time evolution of potential fluctuations for three different ion colli-

sional regimes: collisionless plasma (N.C.), charge exchange (C.E.), and elas-

tic scattering (E.S.). Vertical lines indicate times for potential densities

shown in Fig. 3 and also time interval for calculating spectra shown in Fig. 4.

FIG. 3. Potential densities at different

time instances for different ion colli-

sion types: (a) and (b) N.C., (c) and (d)

C.E., (e) and (f) E.S. left panels corre-

spond to time t1� 1.7sLi, and panels

correspond to time t2� 2.9sLi.
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For the N.C. case, we do not observe any significant de-

velopment of coherent structures throughout the simulation

(see Figs. 3(a) and 3(b)), and also the scale corresponds to

only relatively small fluctuations. However, for the C.E. case

there is a clear growth of wavefronts propagating in both, y
and z directions. The wavefront formation is visible already

at an earlier time corresponding to the growth phase (see

Fig. 3(c)), where areas with low and high potential start to

form coherent structures. These structures are at the same

angle with respect to the E� B-direction, as the angle they

have at a later time corresponding to the saturation. We esti-

mate the angle as a � p=2, so that the waves propagate at

the same velocity in both z and y directions. The distance

between wavefronts perfectly fits to the wavelength calcu-

lated from the wave spectra. At saturation, there is a noticea-

ble increase in amplitudes, which is also expected from the

time evolution of RMS fluctuations.

In the E.S. case, the propagating structures have smaller

dimensions and shorter wavelength than in the C.E. case. The

propagation angle is also different, and we estimate it to be

a � p=3 measured from y-direction, so that in the drift direc-

tion the wave propagates faster than in the direction of electric

field. Even if the structures are less pronounced and less

organized, we can still identify their time evolution. The wave

amplitudes, just as RMS values, are lower than in the N.C.

and C.E. cases.

Finally, to study the wave dynamics we analyze the x–k
spectra of electrostatic waves in the system. The spectra are

calculated with the Fourier transform in space and in time in

all three directions and time interval which corresponds to

the growth phase in C.E. case, allowing to study the wave

dynamics during this particular time period.

In Fig. 4, we present wave spectra for all three cases in

directions perpendicular to magnetic field (ŷ; ẑ). We observe

FIG. 4. Examples of spectra taken from the time period t 2 ð1:7� 2:9ÞsLi taken in the directions perpendicular to the magnetic field. Panels (a) and (d) show

spectra for the N.C. case, (b) and (e) for the C.E. case, and panels (c) and (f) to the E.S. case. Upper row shows spectra in the ŷ-direction, while lower rows

shows spectra in the ẑ-direction. Dotted-dashed line corresponds to the electron thermal velocity, dashed line is for the ion thermal velocity, and dotted line

represents drift velocity (shown in spectra from the drift direction).
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little dynamical activity and basically no propagating waves

in the x̂-direction (parallel to the magnetic field). The spectra

correspond to time interval of 1.2 gyroperiods taken between

approximately 1.7 and 2.9sLi (depicted in Fig. 2 by vertical

lines). The x and k axes are normalized to Xi and Xi/vd,

respectively. We also plot lines corresponding to electron

thermal velocity (dotted-dashed), ion thermal velocity

(dashed), and E� B drift velocity (dotted). Figs. 4(a) and

4(d), correspond to the N.C. case, Figs. 4(b) and 4(e) to the

C.E. case and Figs. 4(c) and 4(f) to the E.S. case. All the

spectra have the same scaling and can be directly compared.

Note that the color scale is nonlinear.

While in general we observe different wave behaviours

in each direction, some aspects of wave evolution are the

same for all runs. In the ŷ-direction (parallel to the electric

field, upper row in Fig. 4), the spectrum is symmetric around

x axis (we therefore show only a half of the spectrum), and

in the ẑ-axis (E� B drift direction) there is asymmetry due

to the drift (there is little activity on the not-shown part of

the spectrum). In the latter direction, we observe harmonics

of modes with phase velocity equal to drift velocity in all the

cases. These harmonic modes propagate in general with the

E� B=B2 drift velocity in the �ẑ drift direction.

For the collisionless N.C. case, there is only propagation

of waves in directions perpendicular to magnetic field. There

is also a weak signature of oscillations at ion plasma fre-

quency, xpi � 9:4Xi. In other cases, there are also present

waves with several harmonics. In the C.E. case, we can see

that harmonics can be related as x3 ¼ x2 þ x1 and

k3 ¼ k2 þ k1. Our estimate from the spectrum is

x3 � 4Xci; x2 � 3Xci; x1 � 1Xci

and

k3 � 4Xci=vd; k2 � 2:5Xci=vd; k1 � 1:5Xci=vd;

which indicates the possibility of the nonlinear three wave

interaction23,24 in the growing phase. Moreover, in this case

the harmonics propagate in the �ẑ direction slightly faster

than the E� B=B2 drift velocity. In this case, the amplitudes

of wave modes are significantly larger than in the E.S. case,

which we relate to the growth of amplitude of potential

fluctuations.

IV. DISCUSSION

Results from our self-consistent numerical simulations

show that there is a strong dependence of dynamic parame-

ters (such as electrostatic potential fluctuations or wave spec-

tra) on the type of ion-neutral collisions. Initially, in all our

simulations the plasma is Maxwellian, but ion-neutral colli-

sions lead to distortions in the ion velocity distributions,

which are significant already after one ion gyroperiod. Thus,

the plasma stability should be studied in the context of the

actual form of the ion velocity distribution function.

We observed the growth of electrostatic wave amplitude

only in the C.E. case, where the growth starts after the first

ion gyroperiod, during which the initially bi-Maxwellian dis-

tribution function gyrorotates in the vz–vy phase space. This

leads to the formation of a ring-shaped velocity distribution

function, which thickness in general can depend on the tem-

perature of neutrals.13 During following gyroperiods, the

central region of the ring becomes filled in due to quasilinear

diffusion.12,14 The ring-shaped distribution is unstable12 and

is the most probable trigger of the observed instability.

While this is the dominant mechanism, another processes,

such as electrostatic approximation of lower-hybrid drift

waves, which can be excited by ring shape velocity distribu-

tion function,25 can also be considered.

For N.C. and E.S. cases, the initial bi-Maxwellian cone

rotates just as in the C.E. case, but the evolution of distribu-

tion is totally different. Since for the N.C. case we simulate

almost Vlasov plasma (only weak electrostatic scattering is

present due to potential fluctuations), there is only very light

distortion, and the distribution rotates almost unchanged. For

the E.S. case, elastic collisions between ions and neutrals

lead to distribution that is centered to the drift velocity and at

later time of the simulations becomes wider and skewed.

However, it still has the Maxwellian-like shape which pro-

vides the stabilizing mechanism.7

The stability of plasma is reflected in the time evolution

of the RMS of potential fluctuations. From Fig. 2, it is clear

that amplitude grows only in the C.E. case, while in two

other cases it is damped. This is in accordance with presump-

tion that Maxwellian-like distributions are stable even if they

rotate or are displaced.7 In the C.E. case, the instability starts

after the first ion gyroperiod when the ring shape distribution

is formed.12 We estimate here the growth rate as c/xpi

¼ 0.096. This order of magnitude of the growth rate is usual

for component-component electrostatic instabilities in

unmagnetized plasmas.3 It looks like that this can also apply

to the magnetized regime. In addition, the growth rate

depends on the strength of the external electric field, which

is substantial in our simulations (to speed up the evolution of

the system). The increase of the growth rate with increasing

electric field was also demonstrated by Miloch et al.12

Even though there have been some attempts to use the

Penrose criterion to magnetized plasma,26 this criterion has

been derived for unmagnetized plasma.4 Thus, it is hardly

applicable for our simulations. However, it can partially

explain the growth of electrostatic modes related to double

peaked distribution, such as the ring shape, in magnetized

plasma. For the N.C. case, the plasma is stable and only

some initial oscillations in the potential are present, which

are damped in time. At earlier stages, the frequency and

“modulation like” shape of oscillations indicate possible

interaction between the cyclotron and plasma oscillations.

For the E.S. case, it is clear that damping of oscillations in

the beginning of simulation is stronger than in the N.C. case

which can be related to collisional processes.27

In the E.S. case, the damping of the amplitude of fluctu-

ations is up to the end of second ion gyroperiod and then the

amplitude returns to the initial level. This transition regime

might be caused by elastic collisions with gyrorotating ions.

Initially, the distribution is clearly Maxwellian, so the

decrease of fluctuations seems to be a transient to new equi-

librium. Due to collisions, the transient distribution is not

clearly Maxwellian and the presence of a distortion may

022109-6 M. Hork�y and W. J. Miloch Phys. Plasmas 22, 022109 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

185.47.220.152 On: Wed, 04 Feb 2015 23:03:32



4. Collection of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cause a growth. At later times, the distribution does not

rotate in velocity phase space and it is centered to the drift

velocity to become again Maxwellian-like which stabilizes

the system.

Potential densities correspond to the amplitudes of

potential fluctuations, as it is shown in Fig. 3. For the C.E.

case, it is obvious development of wavefronts with wave-

lengths corresponding to that obtained from spectra. The

wavefronts propagate in both directions in the plane perpen-

dicular to magnetic field with roughly the same speed

and are inclined by a ¼ p=4 to both the electric field and the

E� B direction. In case of symmetric ring distribution in the

vy–vz plane, one would expect a more isotropic propagation

in the y-z plane. However, in the presence of charge-

exchange collisions, the ring distribution is asymmetric, with

a peak close to the origin and more particles in the vy> 0

part of the distribution. We attribute the inclination and tilt

of the wavefronts to the shape of the ion velocity distribution

as well as the strength of the external electric field. We have

verified that with increasing electric field the angle a (with

respect to the ŷ-axis) decreases. Furthermore, with the

increase of the collision frequency the peak close to the ori-

gin in the distribution function starts to dominate, and the

distribution becomes effectively symmetric centered around

the origin, which leads to the destruction of the wave pattern

due to more isotropic propagation.

In two other cases, the situation is different. While for

the N.C. case the potential density is random, for the E.S.

case there is a visible formation of structures propagating

again in the plane perpendicular to magnetic field, but the

amplitude of fluctuations remains in the scale of an initial

amplitude. However, in this case the wavefronts are not fully

developed and the velocity distribution returns to the

Maxwellian-like after the transient period. The final propaga-

tion has some tilt, but is much more isotropic.

The wave spectra match perfectly the other results: the

angles of propagation and distance between wavefronts in

Fig. 3 correspond to wavenumbers and wavelength, respec-

tively. A very little activity along magnetic fieldlines (in our

simulations x̂-direction) can be expected in a fully magne-

tized drifting plasma. In all collisional cases, we observe

waves in the two directions perpendicular to magnetic field.

From the spectra it is also clear that only in the C.E. case the

amplitudes are significantly higher, and that for the E.S. case

the amplitude is more damped than for the N.C. case. What

is interesting in the C.E. case is the presence of several

modes around the drift velocity in the E� B direction, but

only one clear mode in the ŷ-direction, i.e., the E-direction.

The modes might be higher harmonics (or half-harmonics)

or the result of three wave interaction.23,24 We also note that

during the time evolution of the modes around drift velocity,

the one mode corresponding to ion plasma oscillations

became damped.

From all the results, we conclude that in C.E. we see,

most probably electrostatic ion acoustic modes in the plane

perpendicular to magnetic field that become unstable due to

the ion velocity distribution function. Here, the propagation

of the waves is slightly faster than the drift velocity, see

again Fig. 4(e), but slower than the speed of sound. We have

verified that the propagation gets closer to the sound speed

with increasing collision frequency, i.e., when the peak in

the distribution function becomes dominant so that the

resulting electron-ion distributions remind the ion-beam that

can trigger the ion-acoustic instability.1 The free energy

source in our system is the electric field, and its magnitude is

a crucial parameter for the system stability in the C.E.

case.12 There were several analytical studies of the ring

shape distributions,13,14 but focused only on particular iono-

spheric plasma conditions. Thus, such a more general analyt-

ical study is required to compare the analytical theory with

our numerical results.

Due to the low collisional regime, these results may be

important for ionospheric research related to regions

between the E and F-layers, as well as for laboratory experi-

ments with partially ionized strongly magnetized plasmas

(i.e., gas discharges in strong magnetic field). We expect that

with changing system parameters, the results will also be

slightly affected. We have already mentioned effect of elec-

tric field, while another aspect is that collisions can effec-

tively demagnetize plasma particles, so by increasing

collision frequency for ions up to the limit �i � Xi we would

shift our system to the Farley-Buneman limit.5,6

Finally, one should consider the limitations of our study.

We have simulated only three extreme cases (N.C., E.S., and

C.E.), and there are many types of collisions in real physical

systems, and the probability of these collision events is given

by relevant collisional cross-sections. For example, in iono-

sphere the charge exchange and elastic collisions have the

biggest collisional cross-sections, meaning that they will

both dominate and compete in a real system. Another con-

straint is the finite size of simulated box, which puts limits

on the length of waves that can be resolved in the simulation.

The long wavelengths that are not accommodated in the

present box could affect the dynamics of instability and its

characteristics. Furthermore, the PIC simulations are burden

with a finite noise due to a finite number of particles. The

particles interact electrostatically via grid points and this

interaction provides electrostatic scattering, which can be

regarded as effective collisions between charged particles.

Thus, we were not able to set a completely collisionless re-

gime in the cases with zero collision frequency �¼ 0.

Since our simulations have been performed for the low

collisional conditions, our results cannot be directly related

to and compared with the results of past numerical simula-

tions which are focused on the ionospheric highly collisional

regime.15–17 However, due to the exponential decrease of

neutral particle density in the ionosphere, one can find low

collisional conditions in the upper part of the ionospheric E-

region or in F-region. Similar conditions can also be set in

experimental devices (e.g., discharges at low pressure).

Thus, the parameter regime considered in this study may

also play an important role in the dynamics of the iono-

spheric plasmas. Note that we used increased amplitudes of

some parameters, but we still keep characteristic ratios like

vd/cs or Xa/�a (where a denotes plasma species) close to real-

istic ones. For completeness, the transition between different

regimes should also be addressed.
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V. CONCLUSIONS

We have studied the role of ion-neutral collision types

on the plasma stability in the E� B fields, and focused on

the electrostatic potential fluctuations, and wave dynamics of

plasma for weakly collisional regimes. We considered only

the weakly collisional regime and fully magnetized plasmas,

and found that the ion-neutral collision type is an important

parameter for plasma stability. While for elastic scattering or

no collisions between ions and neutrals, the plasma is stable

for charge exchange collisions even the fully magnetized

plasma becomes unstable. We find that the calculated insta-

bility growth corresponds well to the growth rates of electro-

static instabilities. The formation and growth of coherent

structures in potential density is observed in the plane per-

pendicular to the external magnetic field. We conclude that

triggering of this instability is caused by a specific distortion

of the ion velocity distribution function due to charge

exchange collisions. Under such conditions, in the plane per-

pendicular to the external magnetic field a ring-shaped or

loss cone ion velocity distribution function is established,

which can trigger ion acoustic-like waves. Under elastic col-

lisions and in the collisionless case, the distortions of veloc-

ity distribution functions are weak and we do not observed

any significant growth but still we detected stable waves and

their harmonics. Since there is no theoretical research on

weakly collisional regime in fully magnetized plasmas, per-

forming of at least linear analysis is needed. Thus, precise

derivation of dispersion relation from the kinetic theory, lin-

ear, and nonlinear study of simulated regimes are topics of

our future research.
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Chapter 5
Conclusions and future work

During my doctoral studies I have worked on two major topics. The first one was
the analysis of the generalized Buneman dispersion relation for the problem of plasma
jet interaction with a stationary plasma background. Such situations are usual in
astrophysical plasmas. I found how the instability growth rate changes with change of
input parameters like the plasma frequency of the jet, cyclotron frequency of jet and
background, sound speed of jet and background and the spatial orientation of magnetic
field and wave vector. Knowledge of these dependencies allows finding conditions with
maximal growth rate. This research will continue in the future by performing MHD
simulations of highly unstable situations. The algorithm that I developed also allows
study of different situations (i. e. two opposite streams, two streams with the same
direction but different velocities etc.), which means applicability to a wide variety of
real physical problems.

The second part of my doctoral training was a project carried out in collaboration
with the Department of Physics at the University of Oslo. This project was focused
on electrostatic Particle-In-Cell simulations of magnetized weakly collisional plasmas.
Parameters used in simulations can be related to the ionospheric F-layer parameters,
because typical ratios like a Ωα/να remained close to the natural ones. Using the
numerical simulations we studied the dependence of plasma stability on the type of
ion-neutral collisions. Different types of collisions give rise to different evolution of ion
velocity phase space. The ion-neutral charge exchange collisions lead to formation of
a ring shape velocity distribution which can cause microinstabilities. In contrast, elas-
tic ion-neutral collisions have a stabilizing effect. In real plasmas, these two collision
types have the largest collisional cross-sections and it can be expected that both of
them are present. Thus in real plasmas we can expect competition between instability
growth originating from charge exchange collisions and a stabilizing effect due to elastic
collisions. This project creates a basis for future work focusing on two subjects: (i) nu-
merical instabilities that probably arose from not resolving electron Larmor radius
(these numerical instabilities were observed during our simulations and were avoided
by using the finer numerical grid), and (ii) analytical solution of the simulated system.
Although the analytical solution is nontrivial due to the character of collisions and
parameter range, it will allow for a better understanding the problem.
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Appendix B
Used symbols

A Vector potential.
B Magnetic field vector.
B Magnitude of magnetic field vector.
cs Sound speed.
E Electric field vector.
E Magnitude of electric field vector.

F (ω, k) Dispersion relation.
f Probability density function.

H Hamiltonian.
k Wave vector.

L Lagrangian.
n Particle density.
p Momentum vector.
p0 Magnitude of relativistic momentum.
p Dynamic pressure.

pM Magnetic pressure.
Q Electric charge.
R Position vector of gyrocenter.
RL Larmor radius.

r Position vector.
T General tensor quantity.
u Fluid velocity.
v Particle velocity.

vd Drift velocity.
vd Magnitude of drift velocity.
vth Thermal velocity.
1 Unit tensor.
α Index denoting plasma species.
γ Instability growth rate.
ε0 Vacuum permitivity.
λD Debye length.
µ First adiabatic invariant and plasma permeability.
µ0 Vacuum permeability.
ν Collision frequency.
ρ Fluid density.
σ Conductivity.
φ Scalar potential.

Ωc Cyclotron frequency.
ω Wave frequency.
ωp Plasma frequency.
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