


Czech Technical University in Prague

Faculty of Electrical Engineering 

Department of Computer Graphics and Interaction 

 Web application for 3D models

database management
Bachelor Thesis

Nikita Silin

Bc. programme: Software Technologies and Management 

Branch of study: Web and Multimedia

Supervisor: Ing. Jaroslav Sloup

Prague, May 2015



Prohlašení

„Prohlašuji, že jsem předloženou práci vypracoval samotně a že jsem uvedl veškeré použité

informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při připravě 

vysokoškolských závěrečných prací.”

V Praze dne podpis

Declaration 

“I hereby declare I have written this bachelor thesis independently and quoted all the sources of 

information used in accordance with methodological instructions on ethical principles for writing an

academic thesis.”

In Prague signature



Abstract

The purpose of this thesis is to design and implement a web application for managing a 

database of 3D geometry. Following the methodology defined in this paper, architecture is created 

for the desired system using a set of models. Additionally, application is split into several layers. 

Obtained models and layers are then used to implement the system. Revealed problems are 

described along with their solutions. The technology set includes: PHP, C++ and WebGL. 

Documentation and user guide are then constructed for the system maintenance.

Abstrakt

Táto bakalářská práce se zabývá návrhem a implementací webové aplikace pro správu 

databází 3D modelů. Architektura systému která je definována jako sada modelů, vytvořena 

pomoci metodologie, popsane v této prací. Aplikace je rozdělena do několika vrstev. Výsledné 

modely a vrstvy jsou pak použité k implementací systému. Práce popisuje problémy které vzníkají 

během vývoje spolu s jejích řešením. Projekt využívá moderní softwarové technologie, ke kterým 

patří PHP, C++ a WebGL. Součástí práci je uživatelský manual a dokumentace pro správu systému.



Illustration Index
Illustration 1: Use Case Model Diagram.....................................................................................17

Illustration 2: Components Model.............................................................................................26

Illustration 3: Unified Geometry Data Structure.........................................................................39

Illustration 4: Mapped Models..................................................................................................44



Index of Tables
Table 1: Market Analysis Result................................................................................................16

Table 2: Asset Management Component Operations..................................................................27

Table 3: Files Management Component Operations....................................................................28

Table 4: User Management Component Operations....................................................................29

Table 5: Asset Preview Component Operations..........................................................................31

Table 6: Asset Load Component Operations..............................................................................32

Table 7: Back-end Project Structure..........................................................................................43

Table 8: Front-end Project Structure.........................................................................................43

Table 9: System Performance Test............................................................................................50



Table of Contents
1 Introduction...........................................................................................................................1

2 Problem Description...............................................................................................................3

3 Methodology..........................................................................................................................4

3.1 Architecture Design Stage................................................................................................4

3.2 System implementation Stage..........................................................................................5

4 Architecture Design................................................................................................................7

4.1 Requirements elicitation...................................................................................................7

4.2 Market analysis...............................................................................................................8

4.3 Use Case and Access Control Definition...........................................................................11

4.4 Models and business domain..........................................................................................14

4.5 Back-end Architecture Design.........................................................................................16

4.6 Front-end Architecture Design........................................................................................22

5 System Implementation........................................................................................................25

5.1 Physical and Runtime Environment Evaluation.................................................................25

5.2 Technologies Selection...................................................................................................26

5.3 Project structure............................................................................................................33

5.4 Models definition and mapping.......................................................................................34

5.5 Components implementation..........................................................................................35

6 Conclusion...........................................................................................................................40

6.1 Performance.................................................................................................................40

6.2 Suggestions..................................................................................................................41

7 Bibliography.........................................................................................................................42

Attachment A: Full list of system requirements..........................................................................43



1 Introduction

As the popularity of 3D modeling tools grows, more and more people are getting involved 

into 3D design. Produced 3D models can be used in many industries and for many purposes: 

medical and physical simulations, movies with computer graphics, 3D cartoons, computer games 

and many others. It becomes important to analyze different 3D models, as well as manage them 

efficiently. Analysis is based on the validity of the given model combined with a subjective 

judgments of the final user. Validity analysis can be automated in many cases, but it also depends 

heavily on how the model is used.

The main objective of this project is to design and implement a system for managing 

geometry in a digital form. A lot of requirements were set for the system. User should be able to 

load his geometry into the system. Authorized users may then approve this geometry and, 

optionally, rate it. Other users then should be able to preview this geometry and download it, if 

they want to. System should also expose validation abilities, such as reporting any errors about the

given geometry. The full set of requirements is listed later in this paper.

Digital 3D geometry may be represented in many formats, created by different authorities 

in the 3D modeling industry. Different formats may include additional data, such as animations, 

bones structures and scene properties. The key requirement for the desired system is an ability to 

convert different 3D geometry formats into a versatile minimalistic data structure, containing only 

essential data from the original geometry format. As a result, such data structure serves as a layer

of abstraction for the other operations running in the system, such as validation and previewing. 

Additional assets may be required to evaluate the geometry: textures and materials. 

Textures are used to visually cover the geometry and give it realistic feel and look. They can be 

represented as any digital picture format, such as PNG or TGA. The glue between texture and 

geometry is often called material. Materials are data structures, which hold information about 

textures and colors used for the current piece of geometry. With a large set of possible texture and

material formats, system should be able to use those for geometry validation and visualization. 

1



Meta information is another key requirement for the system. Such information may be 

useful for the end-user to effectively search and update geometry when needed. Geometry 

formats usually do not hold meta information. System should fill this gap and provide users with 

an ability to include additional information, such as description, original author, category, rating 

and others.

2



2 Problem Description

As an internal system for “CG Programming” subject a database was instantiated to allow 

students to upload their 3D models and let professors evaluate uploaded content. Implemented as 

a server with FTP / WebDAV access, database allows students to connect and upload or download 

ZIP archives. Such archives contain 3D geometry, as well as related textures and materials. Even 

though each asset is required to contain a preview image, it is hard to evaluate model at first 

glance. To check the validity of the model, moderator has to load it using Assimp Library1. This 

library is utilized inside of internal framework, which students use to create 3D scenes as a task 

within the mentioned subject. Hence, it is important to ensure, that any uploaded content is valid 

with respect to the mentioned library.

Since database is rapidly updated (students upload new models by the end of each 

semester), maintaining such database manually is quite inefficient and consumes a lot of human 

resources, because every uploaded asset requires manual validation. It is important to control 

completeness, correctness and uniqueness of the content, as well as its proper categorizing. As a 

result, it was suggested to design and implement a system to automate most of the described 

procedures and original conformed specification was constructed to describe key requirements.

 

1 More information about Assimp Library can be found at http://assimp.sourceforge.net/

3



3 Methodology

There are many approaches to the development process. Most of the time, development 

steps are defined within the selected methodology. Software development methodology is a 

separation of development process into several steps for better project planning and management.

Each step describes a certain set of actions to be performed [1]. Popular methodologies include 

such titles as spiral development, agile development, rapid development and many others. 

Methodology is chosen or created based on many factors: application complexity, requirements, 

subjective experience and many others. This project uses very simple methodology, which is 

represented as 2 stages: architecture design and system implementation.

3.1 Architecture Design Stage

During this stage the system is described using abstract terms. The Unified Modeling 

Language (UML) is a modeling language used in software engineering. It is created to standardize 

the way of visualizing system design [2]. UML is used partially to describe certain pieces of the 

current system without any implementation details. Specification of this language defines several 

important model types, which are used to describe the desired system: Business Domain model, 

Components model, Requirements model and Use Case model. Each model represents current 

system from different perspective. For example, Use Case model defines system operations and 

Business Domain model defines entities which system operates on. 

The following algorithm was chosen to design application architecture:

1. Requirements Elicitation

2. Market Analysis

3. Use-case definition

4. Access control definition

5. Entities design

6. Architecture layers design

7. Architecture components design

4



Requirements elicitation step is taken to define responsibilities of the system. 

Market analysis is then performed to find and evaluate existing systems with a similar functionality 

to decide, if a custom system development is reasonable. Requirements are then used to construct

a set of use cases to be implemented within the system. Finally access control definition is created,

which describes operation access rights for different user roles. At this point solid base for the 

system architecture development is formed. Requirements and use cases are analyzed to create 

entities and naturally derive operations. Operations are then grouped using components. 

Additional step is taken to define architecture layers to categorize the components.

Once architecture is designed, it is evaluated once again with respect to given 

requirements and use cases to find any problematic spots, which deviate from the original 

conformed specification. The result is then used to implement the system.

3.2 System implementation Stage

Software development methodologies usually break the entire development process into 

several stages, with their own iterations and steps. Stages sometime mix the design and 

implementation steps, but in this project those 2 processes are completely independent. The 

following algorithm is chosen for the system implementation:

1. Evaluate the target physical environment based on requirements

2. Evaluate the target runtime environment based on requirements

3. Filter available technologies based on requirements

4. Select the programming language, tools, formats and conventions

5. Define the project structure.

6. Define models and map those to classes

7. Map components to classes

8. Implement operations

9. Perform system test

The implementation begins with choosing the appropriate programming language, correct 

compiler or interpreter, useful libraries containing desired functionality, data persistent servers and 

so on. For simplicity, in this section, all of those are called “technologies” or “tools”. It is taken for 

5



granted that at the beginning of implementation phase, all the technologies are available. The 

physical environment is then evaluated to filter out those technologies which are not available. The

runtime environment is evaluated as well, with the same purpose. We then filter out those tools, 

that are restricted by the conformed specification or non-functional requirements. 

Final set of technologies is then chosen, based on specific set of requirements defined by 

the programmer or the team leader. Additional technologies are chosen for the development 

purposes (IDE, VCS, Package Managers…), internal/external system formats and conventions are  

selected to be used within the system. The 5th step is taken to define the project structure. It is a 

very important step, as it has a direct influence on programmer’s productivity. After all the 

preparation steps are complete, model data structures are implemented. Programmer then maps 

components to classes and implements operations. The final step is extensive system testing.

6



4 Architecture Design
This section describes the results of each step of the architecture design algorithm, defined

in the previous section, as well as statements, explaining why certain step is important. A lot of 

design aspects are expressed using diagrams to simplify reader's perception. 

4.1 Requirements elicitation 
Requirements elicitation is an important step, especially at the early stage of the 

development. Correctly gathered requirements provide a solid base for the project management 

and help to keep the development process in the right direction. In the beginning, requirements 

are usually gathered from the design document or conformed specification. It is important to note 

that requirements are unstable and change heavily during the entire development process, as 

stage or iteration results are consulted with stakeholders. It is also helpful to assign priority for 

each requirement, but in this case priorities are omitted. Initial requirements for the current 

project were gathered from the original conformed specification. Functional requirements are 

grouped logically and represent the source, from which entities and operations are derived.

Non-functional requirements include such interesting items as:

• system is a PHP application with a web interface

• system should not use persistence technologies which require standalone server

• allowed server-side technologies are: PHP, C++, XML 

• validation of the asset ensures that 3D geometry can be imported using Assimp Library

See attachment I for the full list of requirements and their implementation states.

7



4.2 Market analysis

With a set of requirements constructed, several system with the corresponding 

functionality were evaluated. No standalone systems were found with matching capabilities. That is

why the closest segment was also analyzed: 3D model markets. Such systems provide functionality

very similar to the given requirements. The following use cases and properties were used to 

compare systems:

• Standalone version

• Distribution type

• Streamlined asset uploading functionality

• Automatic validation functionality

• Rating functionality 

• Preview functionality

• Approve / Decline procedure

Turbosquid

Being one of the most popular 3D model stores, Turbosquid is a web-based trading 

platform. Designers may upload their models, set up the optional price, add description, tags, etc. 

Uploaded content is validated manually. Users may then choose models from the catalog. 

Turbosquid exposes CheckMate™ Certification standard, which defines certain quality level for a 

given 3D asset. This is a commercial system and the source code is not public.

CGTrader

Another popular service for 3D models management. Like Turbosquid, this service is a 3D 

model marketplace for computer graphics and 3D printing with a web interface. The work flow is 

very similar to Turbosquid, however author was unable to spot any predefined standard for 

uploaded content. This is a commercial system and the source code is not public.

8



Unity Asset Store

Unity Asset Store serves mainly to deliver addons, plug-ins, scripts and content for the 

Unity3D game engine. Developers and designer may upload their content to the asset store and 

set up the optional price, category, tags and description. Loaded content is then manually 

validated with the respect to mentioned game engine. Other users may rate the content after they

buy it. This is a commercial system and the source code is not public.

3DExport

3DExport is another web resource for 3d geometry trading. The workflow is quite usual for 

any marketplace. Additionally this market exposes textures as a separated product. All the assets 

are properly structured. Rating system is available, as well as different meta information for each 

asset. This is a commercial system and the source code is not public.

FTP Based File Database

A simple server exposes remote access for the group of users and allows them to upload 

and download content without any validation or control. The system moderator or other 

responsible person is supposed to control loaded assets. This is how current solution for the 

described problem is implemented. As it was mentioned earlier, such system is simple but 

inefficient and lacks most of the required features. This is a setup, which does not require any 

special software and can be deployed within any popular operating system.

9



Market Analysis Result

The final comparison table follows:

Title Standalone

Version

Distribution

type

Allows asset

uploading

Automatic

validation

Allows

Rating

Online

Preview

Approve/Decline

Procedure

Turbosquid No Commercial Yes No Yes No Yes

CGTrader No Commercial Yes No Yes No Yes

Unity Asset Store No Commercial Yes No Yes No Yes

3DExport No Commercial Yes No Yes No Yes

File Database Yes Free Yes No No No No

Table 1: Market Analysis Result

In the context of the current project, the main drawbacks of all mentioned systems are:

• market concept

• no preview

• no standalone version for local deployment (with exception of File Database)

• a lot of functionality which is not required

10



4.3 Use Case and Access Control Definition

Given the set of requirements, an appropriate use case diagram was constructed. This 

diagram describes what are the system entry-points and operations from the user perspective. 

Each use case corresponds to a requirement or a group of requirements. 

11
Illustration 1: Use Case Model Diagram



Specifically, this diagram reveals 3 important kinds of information: actors, system 

operations and unconditional access control. Actors represent different types of users. System 

operations, expressed as use cases, define the abstract system interface. As each use case is 

defined in the scope of a certain user role, basic access control rules can be easily derived. 

However, each access rule may have certain conditions. Those are described later in this paper. To 

make diagram succinct and easy to read, certain operations have been grouped and represented 

with a single use case. For example, “CRUD Asset” use case incorporates the following operations 

defined for the asset: Create, Read, Update, Delete.

Actors

System distinguishes between 4 user roles which are part of vertical hierarchy: Guest, User,

Moderator and Administrator. Starting from the Guest, each new role is given access to additional 

functionality.

Guest

Guest is considered as unauthorized user of the system. Without any login information, 

such user may only browse certain information within the system and has no rights to change any 

content. The only available option for the Guest is Registration within the system.

User

User is a regular authorized user which has account information registered in the system. 

Such user is granted with rights to upload and change his own content. 

Moderator

Moderator incorporates all of the guest and user rights but such user also has an ability to 

change the accept or decline any content which is pended for review.

Administrator

Administrator has all the rights available in the system. Such user has an ability to manage 

categories and users.

12



Use Cases

Use Cases define system operations from a user perspective. Those are usually derived 

naturally from the requirements definition. Requirements list contains several groups, such as:

• Asset Management

• Categories Management

• Files Management

• User Management

• Comments Management

As each use case represents certain requirement, it is implicitly related to the 

corresponding group.

Conditional Operation Access Control

The following rules describe access control conditions which cannot not be derived directly 

using use case model:

1. User may only log out if he is logged in.

2. Guest may only register or log in if he is not logged in.

3. User may only access, comment, manage files, preview, search, validate, convert and 

download assets which are created by this user or are approved.

4. User may only modify and remove assets, created by this user

5. Moderator may access, comment, manage files, preview, search, validate, convert and 

download any asset.

13



4.4 Models and business domain

Defining business domain is crucial for planning the development process. Not only domain

serves as a blueprint for application models, it also helps to understand how application works. 

Business domain consists of entities. Each entity represents some data structure, which application

operates on. Such data structures usually appear naturally based on requirements and hold 

logically connected data. A good example could be User Entity: data structure which hold user 

specific information: user name, email, password and so on. Entities serve as blueprints for 

models. The difference between models and entities is that entity describes the idea (some 

abstract concept), but model uses this idea and describes specific implementation details, like 

primary and foreign keys for the database and utility data-structures.

Model may differ from the corresponding entity as sometimes is needed to tweak or strip 

the model to avoid major problems during the implementation phase. Moreover, models may 

contain additional behavior. Indeed, models may hold business logic, but in this project author is 

trying to avoid this as it couples models with the current application [3].  Several important entities

were defined for this system as follows.

Asset Entity

Asset entity represents a package which user loads into the system. Such package has 

some primitive data such as title, description, rating, author and so on. Asset item is connected to 

a specific category, asset files and asset comments. The following important data items are 

associated with this entity:

• Title

• Description

• Tags

• Rating 

• State (Pending, Accepted, Declined)

• Original author

This entity also contains additional information such as the date of last modification, the 

date of upload, uploader user name and so on.

14



Asset File

Asset File entity serves to bind arbitrary data to an asset. Arbitrary data means some 

content, which is usually represented as file. Mentioned entity holds file content, as well as many 

other important data items: user name of the uploader, name of the file, path to the file and so on.

This entity is connected with a parent asset. Main data fields defined for this entity are:

• Name

• Path

• Contents

Asset Category and Asset Comment

Asset Category entity is introduced due to the original requirement about categories 

management. As a result, categories are granted their own entity, which holds category title and 

optional description. Asset Comment is another minimalistic entity to hold messages bound to a 

specific author and asset.

User

User entity is quite light-weight. However, it is one of the most important entities, as it 

defines general information about the person registered in the system: email, user name, 

password. This entity is also used heavily for access control.

15



4.5 Back-end Architecture Design

Architecture Layers

Given a set of requirements, use cases and entities, initial high-level design was created.

The application is separated into several layers:

• Data access layer

• Service layer

• Controller layer

• View layer

First 3 layers are grouped into back-end part of the application

Data Access Layer

Entity instance, which exists withing the system, should be accessed using Data Access 

Layer. To represent this layer, repository pattern was chosen as a battle-tested, recommended 

data-access solution. Repository is usually located between the domain and data access layers and

exposes a collection-like interface to access model instances using criteria queries [4].

Service Layer

This layer serves to define an application's boundary using service components. Such 

components establish a set of available operations and defines the application's response in each 

operation [5]. Services are used in this project to hold operations logic. It is important to note, 

that some services are used for very specific purposes. For example “Files Management Service” 

holds the logic to save and load files, but under the hood it uses “Filesystem” service to abstract 

the file system.

Event Aggregator

Event Aggregator serves as a glue between Controllers and Service. This pattern combines 

events from different objects into a single or multiple channels to simplify registration for clients 

[6]. Such architecture decision was made with intent to simplify the implementation of minor side-

effect operations. An example of such operation could be logging. This operation is may be 

performed when a certain system operation is performed. System just signals corresponding event

and related components, like Logger Component, act accordingly.

16



Controllers Layer

Controllers are part of MVC pattern, which serves to split user interface integration into 3 

distinct roles [7]: Model, View and Controller. Controller is responsible for handling signals from the

view and dispatching those. In this application controller serves as a bridge between View and 

Services. it uses input data which comes from the view to invoke system operation. Some 

operations, like reading a model, are lightweight and do not require any model changes. In this 

case controller may directly refer to desired component and retrieve some information. But most of

the time controller uses input data to compose, so called, command. Command is a data object 

which holds input for a particular system operation. After composing command, controller uses 

Event Aggregator to publish it. Different parts of the system may react to this command, since 

command is just an event. Command may also hold result, a property which is populated by one 

of the components. Controller may use result and send it back to the user.

View Layer

Views are also part of MVC. Representing user interface, they serve to accept signals 

generated by user and sending those to the appropriate controller. As a result, View is considered 

to be a front-end.  Several front-ends may be implemented to communicate with the system. In 

fact, any application may use HTTP to communicate with the back-end and, so, represent another 

implementation of the View layer. Any third-party front-end program is beyond the scope of this 

project. However web-interface was designed due to the corresponding non-functional 

requirement. This web-based front-end is described later in this paper.

Components Model

Previous section reveals major application layers, but it does not define how the application

is structured from components perspective. Component can be defined as a modular part of a 

system, that encapsulates its content and whose implementation is replaceable. A component 

defines its behavior by exposing provided and required interfaces [8]. Interfaces then define data-

contracts for different operations. During the development stage each component is turned into a 

module or a set of modules. Each module is a cohesive unit designed to solve a specific task.

In object-oriented programming, module is just a class. Such layout helps to control cohesion and 

coupling, which is crucial for application maintainability, flexibility and extensibility.

17



The components diagram was created to define major components and their interfaces for 

the current project. In this project components often correspond to a specific use case group. For 

example, “Asset Management” Component exposes interface for different asset operations. This 

component incorporates other components such as Geometry Converter. Notice also that usually 

interfaces and components are separated. However, in the context each component defines 

interface implicitly.

Component operations are derived from requirements and use cases. Such operations are 

combined under single interface to define responsibilities for the given component.  Some 

components are strictly bound to a particular architecture layer, while others stand aside and 

expose handy functionality. As an example, Files Management component exposes interface to 

control physical files in abstracted manner. This functionality may be used by service layer to 

invoke file operations. Similarly, “Mesh Converter” component exposes specific operation to turn 

arbitrary 3D data into a versatile data format.

18

Illustration 2: Components Model



As it was mentioned in the previous section, the project is developed so, that many views 

could be used for the single back-end. That is why View component is not strictly defined. 

However, web-interface solution was designed to serve as a basic view implementation. It’s 

architecture is described on the corresponding diagram later in this paper. 

Asset Management Component

This component exposes operations defined for the asset entity.

Operation Description Input Output

Create Creates new asset Asset data Instance of asset

Read

Retrieves asset

information using

data access layer

Asset key Instance of asset

Update
Updates the

existing asset

Asset data to be

modified
Instance of asset

Delete
Removes asset

from the system
Asset key Instance of asset

Validate Validates asset Asset + Context List of validation messages

Table 2: Asset Management Component Operations

Asset validation logic is partially delegated to Validation Component. This operation also 

requires context to be available. The context of the asset is defined as files associated with this 

asset.

Asset Categories and Asset Comments Management Components

Those components provide solutions for categories and comments management and 

exposes primitive CRUD operations for each entity, very similar to those, defined for the Asset 

Management component.

19



Files Management Component

Operations defined for the asset file entity are combined under this component. 

Operation Description Input Output

Save
Physically save file

content using path

File Object with defined path

and content
Instance of file

Fetch
Retrieves file content

using path

File Object with a defined

path
Instance of file

Table 3: Files Management Component Operations

Geometry Converter Component

This component exposes a single operation – Convert. This operation transforms geometry 

asset file into a versatile data structure which can be later used to perform validation and analysis.

Entity Access Component

This component incorporates data access layer operations defined for different entities. 

Any CRUD operation is delegated to this component at some point.

Entity Transform Component

This component serves to transform different entities into different formats based on the 

given environment. Currently there are 2 operations available: Map and Transform. Map operation 

serves to convert external data into environment-compatible format, so that application can use 

the result as a native object. Transform operation does the opposite thing: given a native object, it

maps it to a data format compatible with external services. Those operations are described later, in

the implementation section.

20



Users Management Component 

This component defines operations related to users and access rights:

Operation Description Input Output

Log in Signs user in User credentials -

Log out Signs user out - -

Register Signs user up New user data User entity

Table 4: User Management Component Operations

Additionally this component is used to expose currently logged in user object, on which any

access control operation may rely. CRUD operations for the user entity are also part of this 

component.

Dispatcher Component

This component defines back-end access points. Being a web application, system is 

designed to receive request, perform certain operation and send the appropriate response. Hence, 

some component is responsible for mapping request to an operation. In web applications such 

component is usually represented with a router and a set of controllers.    

Validation Component

This component is responsible for entity validation operations. By default, system performs 

minimal validation using “Validate” operation. However additional operations may be exposed to 

validate certain pieces of data.

Dependency injection

Dependency Injection Principle and DI Container were chosen as a component 

dependencies resolving solution. Acting as a glue for the entire application on components level, 

dependency injection container holds different solutions for different interfaces and exposes those 

for any interested instances. As an example, “Asset Files Management” component requires Files 

Management interface, and DI Container is the one, responsible for finding the appropriate 

component which will serve as a solution. As a result, the entire application is configurable, 

because every component is reusable and can be exchanged at any point.

21



4.6 Front-end Architecture Design

Web-interface is developed to fulfill the requirements and is designed as a separated web 

application. Having it’s own layers and components this application follows the SPA idea. SPA 

stands for “single-page application”. Such application usually fits on a single web page and delivers

fluid user experience, very similar to desktop applications [9]. In this application, most front-end 

operations are delegated to the back-end service described in the previous sections. However, 

preview functionality is only available in the scope of front-end application, making it essential part

of the current project. 

Several approaches to front-end architecture development exist. Most of them are based 

on architectural patterns such as MVC or MVVM. MVVM stands for “Model-View-ViewModel”, a 

pattern which defines separation of the GUI and business logic development using Model,  

ViewModel, View and Binder. MVVM uses Binder to automate the synchronization of data and it’s 

view representation. As a difference from MVC, MVVM pattern uses ViewModel device instead of 

Controller.  ViewModel may be considered as a view oriented controller. It is quite useful when the 

application does not require complex service layer; Since most of operations are delegated to the 

back-end, we only need light-weight components to expose view logic, mapping functionality and 

back-end connection. Hence, this pattern allows to keep the application lightweight. 

Architecture layers

With a clear back-end separation and responsive bindings, MVVM becomes an obvious 

choice for the current application. Architecture layers are then derived naturally from the pattern

specification.

View Layer

This layer should only serve to represent data and operation controls. No business logic 

should be defined within this layer. However light-weight validation logic is acceptable. In this 

application, View layer is usually represented with data representation templates. This is where the

binding concept comes in. As front-end receives some model instance from the back-end, it binds 

it to a specific template, allowing this view to represent concrete data.

22



ViewModel Layer

To bind some data to a view, an appropriate ViewModel is used. ViewModel layer serves 

two purposes: data container and signal handler. When user activates certain controls on the view,

signal is sent to the currently bound ViewModel. At this point ViewModel may update the data, 

execute request to the back-end or even transfer control to another ViewModel. 

Back-end Access Layer

View Model layer manages the front-end application flow. However architecture still needs 

a component to abstract the back-end communication. Back-end Access layer holds such 

components and is responsible for making requests to the back-end application. 

Components Model

Most of the front-end components are copies of their back-end counterparts. Exposing the 

same operations, however, they are part of another application, hence, implemented differently: all

of them delegate operations to the back-end part of the system. Those will not be described here. 

However there are several components which belong specifically to the front-end.

Asset Preview Component

This components serves to fulfill the corresponding requirement. Main goal of this 

component is to expose operations for previewing different parts of the asset. Currently it consists 

of minor components to preview images and 3d geometry. The following operations are defined for

this component:

Operation Description Input Output

Open 3D Geometry Shows 3D geometry preview window Geometry file id and

asset id

-

Open Image Shows image preview window Image file id -

Table 5: Asset Preview Component Operations

23



Asset Load Component

To effectively preview any asset resource, web-interface should be able to load it.

Asset Load component serves to provide this functionality. It is important to note that it is hardly 

possible to support all the formats and files ever created by the IT industry. That is why system 

only supports certain formats of 3D geometry, materials and textures. Exposed operations are:

Operation Description Input Output

Load 3D Geometry Loads 3D geometry from server converted

to unified geometry data structure

Geometry file -

Load Image Loads image from server and converts it to

be used by geometry preview component

Image file id -

Table 6: Asset Load Component Operations

Router Component

Even though the application is constructed as a single page, it is designed to present many 

types of data and expose a lot of controls. Page composition is usually defined by the ViewModels 

which are currently bound to their views. To efficiently bind, unbind, show and hide different 

pieces of data, application needs a dedicated component for this purpose. Router component is 

designed to expose certain parts of the system based on a given route. Such an approach makes 

front-end routing very similar to the back-end dispatcher component. However front-end does not 

have controller, so only Router is defined.

Notification Component

As it was mentioned, front-end application is designed to provide native look and feel of 

desktop applications. Hence, it is important to define a separated component exposing operations 

for user notification. 

24



5 System Implementation

At this point abstract architecture for the system is designed using UML models. This 

section is dedicated to the implementation process and problem solving. As it was mentioned 

earlier, several predefined steps will be taken to achieve working instance of the system.

5.1 Physical and Runtime Environment Evaluation

During this stage conformed specification along with the other non-functional requirements

will be used to identify target environment. This information is used later to define the set of 

selected technologies and libraries.

Hardware

Conformed specification does not define any hardware restrictions. Neither does any of 

non-functional requirements. This means that minimal hardware requirements should be derived 

according to the target operating system and set of selected technologies and software 

components. 

Operating system 

According to the non-functional requirements, the system will run inside Unix-like 

environment. A lot of operating systems are considered to be Unix-like. The most popular systems 

are Mac OSX and Linux. As a result, platform-dependent components should be compiled for each 

platform independently, which is important, since this has a direct effect on how those components

will be implemented. On a side note, development process is performed on Windows 8.1 operating

system.

25



Front-end Runtime

World Wide Web technologies are designed to be platform independent. Indeed, a lot of 

systems have different browsers, but in the end they all represent the same content defined by the

loaded web site. Non-functional requirements state, that the desired system will be accessed using

Web-Interface. However, conformed specification does not define any browser requirements. This 

means that the minimal target browser should support the set of selected front-end technologies 

and frameworks.

Technology Restrictions

As conformed specification states, system is not allowed to use any database technology 

requiring standalone server. Also, allowed server-side languages are predefined: PHP and C++. 

This is a very wise choice, since PHP is a platform independent language which can be applied to 

solve most of the problems. C++ then serves as a complement and fulfills any platform-dependent

gaps.

5.2 Technologies Selection

In this section technologies are selected to serve as components for the system. It is 

important to note that any use-case or component defined during the architecture design state 

could be implemented manually. However a lot of corresponding problems are beyond the scope of

this project. That is why third-party open-source technologies will be used to replace 

corresponding components of the system and speed up the development. 

Back-end Server Suggestions

In this context, server is an application which is capable of serving low-level HTTP requests.

The most simple server is a program which accepts HTTP request and sends a  valid HTTP 

response back to the remote machine. However, this project requires a server capable of 

processing PHP files. There are several popular servers which support this functionality:

• Apache HTTP Server

• nginx

• lighthttpd

26



Apache HTTP Server

Created back in 1996, this server remains the most popular web-server software. “In 2009,

Apache was estimated to serve 54.2% of all active website and 53.3% of the top servers across all

domains” [11]. It offers battle-tested technologies, flexible settings and hundreds of extensions. 

Apache is usually used with Unix-like systems.

nginx

Nginx is an open source reverse proxy server. It supports such technologies as HTTP(S), 

SMTP, POP3 and others. According to a web server survey taken in 2015 [12], nginx is the second 

most popular web-server solution.

lighthttpd

Lighthttpd is another popular web-server which is optimized for speed-critical tasks and 

low-resources environments. It is important to note that it runs natively on Unix-like operating 

systems. One of the key features of this web-server is support for “WebDNA” in-memory database 

technology. Such database does not require any additional server and could be used for the 

current project. However, in-memory persistence is unreliable. Moreover, such an implementation 

decision would lead to a strong coupling between web-server and the system, which is 

unacceptable.

Any of the described servers could be used to deploy this system. However, web-server is 

not part of the system and the final decision should be made by the system administrator or any 

other responsible person during the deployment stage.

27



Back-end Frameworks and Libraries

It is a common practice to integrate ready-to-use third party frameworks which solve 

boilerplate tasks for the current application type. In the scope of this project, web-framework 

needs to be selected. Such framework should expose implementation for components defined 

during the architecture design. Those include: Dependency Injection Container, Controller base, 

Model Base, Data Access layer, Router and more.

Almost any modern PHP framework implements common components. Hence, the decision 

was made with respect to performance and usability. According to the benchmark performed by 

Lukasz Kujawa in 2013 [10], Phalcon PHP Framework is the leader in terms of performance. 

Distributed as a PHP extension, this framework offers supreme performance, as well as modular 

structure, which can be adjusted based on current architecture design. Along with all the 

requested features, Phalcon also exposes several other components useful for the current 

application such as Event Manager.

At this point it is clear, that application will be mainly using 2 data formats: native PHP 

objects for the back-end and JSON data for the front-end. As it was defined during the architecture

design stage, system should have Entity Transform component. Phalcon does not have any native 

tools to automate the conversion process. However other libraries may be used to fulfill this gap as

almost any third-party component can be easily integrated into Phalcon environment.

Fractal2 library was chosen to serve as a converter of PHP objects into JSON format. This 

library streamlines the process by introducing so called “transformers”. Each transformer is tightly 

bound to a specific entity and defines how this entity should be transformed. Specifically it defines 

how each data field of the given object is transformed into a value, compatible with JSON format.

Another library, called JsonMapper3, was selected to convert JSON data back to PHP 

objects. This library fully automates this process using naming convention: each JSON field has a 

name, which can be used to find the appropriate field of a blank PHP object and assign JSON value

to it.

2 More information about Fractal library can be found at http://fractal.thephpleague.com
3 Source code for JsonMapper can be found: [13]

28



The missing piece is the File Management Component. This one is represented as file 

system object which is implemented inside of Gaufrette4 Library. The responsibility of this library is 

to create a layer of abstraction for physical file operations. Gaufrette exposes single interface for 

the file system object and several implementation for different data storage types: local, Dropbox, 

Amazon Cloud and more. This application only operates in the scope of the local file system.

Database solution

As conform specification states, dedicated server database solutions are restricted. That is 

why application needs a server-less database technology. The only sensible solution is the 

implementation of data access adapter compatible with SQLite. It is an embedded ACID-compliant 

relational database management system. It implements most of the SQL specification and uses 

weakly typed SQL syntax. Hence, it does not guarantee domain integrity [14]. Lack of domain 

integrity control is a serious drawback for a complex application with a sophisticated model 

structure. However, this application only exposes 5 entities. It is important to note that Phalcon 

Framework exposes SQLite adapter for ORM component.

Geometry Unification

The desired system contains several requirements, which involve geometry manipulation. 

The most important of those are validation and visualization. As a result, system infrastructure 

needs a component to import different geometry formats and convert them into a unified data 

structure. As conformed specification states, uploaded geometry should be compatible with 

Assimp, a geometry import library written in C++. 

4 More information about Gaufrette library be found at https://github.com/KnpLabs/Gaufrette

29



To solve geometry import problem, a corresponding software component was implemented 

using C++ and Assimp library. As a base, existing open-source code was taken from Lighthouse 

3D demos and tools5. Originally this tool uses Assimp library to import 3D model from file and then

streams out certain JSON to another file. The following modifications were made to the original 

code:

• Spaces and new lines are removed from the output.

• Texture is exported as file name without any path. If path exists, texture is complemented 

with texture reference. Such reference contains path to the file combined with the file 

name. The path is escaped to be valid against JSON specification.

• Application streams JSON or error messages directly to the system standard output.

• Bounding box calculation procedure was removed

Unified Geometry Data Structure

The following diagram describes unified geometry data structure. As it is shown, “model” 

object holds an array of meshes. Each mesh is represented with faces, positions, texture 

coordinates. Mesh may also expose material. Material is defined with colors and optional textures.

5 Original source code can be found: [15]

30

Illustration 3: Unified Geometry Data Structure



Front-end Frameworks and Libraries

As is was defined during front-end architecture design process, web application relies on 

MVVM pattern. A lot of client web frameworks use MVVM and expose all predefined layers and 

components. As a personal preference, author has chosen DurandalJS6 framework. Being a very 

flexible library, it supports such patterns as MVVM, MVC or MVP. It also encourages SPA design and

provides commonly used components, such as routers, communication modules, events, messages

and so on. However, the MVVM core of DurandalJS is represented with another library called 

KnockoutJS7. This library serves as a Binder for MVVM setup and exposes observable variables, as 

well as HTML data binding mechanism. 

The initial geometry preview functionality was implemented manually using WebGL and it's 

low-level API. However, such implementation was inefficient, slow and hard to maintain and 

change. The next version of preview functionality was using primitive object-oriented abstraction 

for WebGL API. Such implementation proved to be maintainable enough. However, key features 

were missing, such as texture import. Final version of geometry preview uses professional open-

source object-oriented WebGL API abstraction called ThreeJS8. This library supports texture 

loaders, as an abstraction layer, to convert certain image formats to thee internal ThreeJS texture 

format.  

To encourage modern, minimalistic and responsive design, application uses Twitter 

Bootstrap9 framework. This framework exposes organized cascading style sheets to support 

advanced HTML layout and styling.

 

6 More information about DurandalJS can be found at http://durandaljs.com
7 More information about KnockoutJS can be found at http://knockoutjs.com
8 More information about ThreeJS can be found at http://threejs.org
9 More information about Twitter Bootstrap can be found at http://getbootstrap.com

31



Tools

While developing any application it is important to use reliable and efficient tools.

Right tools streamline and accelerate the process dramatically. This project uses a set of tools for 

boilerplate steps automation, code navigation, components deployment and etc.

Integrated Development Environment 

Integrated Development Environment is usually selected based on subjective experience of 

the developer. This tool usually provides the developer with an enhanced code editor and “Intelli-

sence” support, which exposes whole set of features to help the developer navigate through the 

code. This project is created with Intellij Idea IDE created by JetBrains. Microsoft Visual Studio was

used to implement C++ components.

Version Control System

Another important tool for any project is Version Control System. This one serves as a 

database of all the changes ever made to this project. Not only it ensures code safety, but also 

helps to spot changes, which caused a particular problem. This project was created using Git10.

Being a distributed system, git supports several repositories with a single remote central 

repository.

Package Managers

A package manager is a software tool that automates installing and maintaining of software

packages. With respect to software engineering, package manager usually serves to control 

different third party components used within the developed system. In this project 2 package 

managers. Bower11 package manager is responsible for installing and configuring front-end 

JavaScript and CSS components. Composer12 package manager, implemented as PHP script, takes 

care of third party PHP libraries and frameworks.

10 More information about Git can be found at http://git-scm.com/
11 More information about Bower can be found at http://bower.io/
12 More information about Composer can be found at https://getcomposer.org/

32

http://bower.io/


Formats

As it was already mentioned, application is using 2 data formats: native PHP object and 

JSON. JSON (JavaScript Object Notation) is an open standard format. It defines data structure 

which consists of human-readable data objects expressed using key-value pairs. It is used usually 

to transmit data between back-end and web application.  

5.3 Project structure

Project structure is a crucial property of the development process. It defines where certain 

files, packages and components. Hence, it is recommended to keep project structure logically 

ordered. This dramatically helps any person involved into the development.

For the current system the following project structure was created:

Folder Content

/app holds back-end application scripts, libraries, etc.

/db holds database files used by SQLite

/filesdb holds uploaded content

/public holds the front-end application and entry point for the back-end api

/tmp holds any temporary files

/vendor holds third-party back-end libraries managed with “Composer”

Table 7: Back-end Project Structure

Folder Content

/app holds front-end scripts (back-end connectors, viewmodels and views)

/cache holds cached files

/css holds styles

/fonts holds fonts

/img holds images

/js holds js files not managed with “Bower”

/lib holds any js libraries managed with “Bower”

Table 8: Front-end Project Structure

33



5.4 Models definition and mapping

According to the selected methodology, the next step is mapping entities to models and 

then implementing those as corresponding model classes. As it was mentioned earlier, models will 

be implemented using Model Base exposed by Phalcon Framework. Created classes are 

automatically compatible with the Phalcon Data Access Layer and can be persisted using SQLite 

PDO Adapter.

Entities mapping

Mapping is defined using the following diagram. Entities names and data fields are taken as

a base. We then add additional system fields to support references between different models. We 

also define type for each data field of the entity. We finally define multiplicity for each reference. 

The result items look very similar to the original entities. However, important implementation 

details are defined.

34

Illustration 4: Mapped Models



Models Implementation

Using models, we create classes and fill those with relevant content. We first define the 

class and derive it from the Phalcon Model Base. Then we add protected members for the sake of 

encapsulation. Each member represents data field defined within the current model. The next step

is exposing public getters and setters. We then define and implement “column mapping” method. 

This method returns PHP array, which maps each member to an appropriate database column. 

Notice, that model may expose additional members and functions. Notice also that Phalcon Model 

Base supports life-cycle events. This means that developer may define a method called 

“beforeSave” which is invoked right before model is persisted.

5.5 Components implementation

Components implementation is the most important step, and the most sophisticated one. 

As a result, it is quite hard to describe every single implementation detail. More information about 

how each component is implemented can be found in the documentation. This section will 

highlight the most important details.

Transformers

Each transformer is represented as class, derived from AbstractTransformer class defined in

the Fractal library. Transformer usually exposes one single method “transform”. This method 

receives and an entity instance and returns a map. This map describes the result JSON: key of the 

map corresponds to the key in the result JSON. The value is then converted to a number or a 

string and output to JSON under corresponding name.

Repositories

Each repository is an abstraction over Phalcon Model which contains boilerplate methods to

get entity by id or any other criteria. Repositories may be used inside services or directly in the 

controller, if the operation does not require any model modification. Search operation may serve as

an example.

35



Commands

According to the architecture design, command class is defined for each operation. Such 

class contains input data for the corresponding operation, as well as any other data or methods. 

For example, “Validate Asset” operation is granted with it’s own command. This command 

references the asset to be validated, along with “addMessage” method, which allows any validator 

to add any error messages in case of validation failure.

Phalcon Events Manager may be used to publish such command every time. The handlers 

are registered using naming convention. Consider the following class “CreateAssetCommand”. This 

class, obviously, hold input data for the new asset. Once the command is published, the following 

methods are invoked on all the listeners:

• ValidateCreateAssetCommand

• ExecuteCreateAssetCommand

The first method is invoked on all the interested instances to analyze the input data and 

throw exception if data is invalid. If any exception was thrown, the next method is not invoked. If 

data is valid, however, any service may process the command and do something useful. Besides 

creating the asset itself, another service may notify relevant moderators or log the event for the 

system.

36



Controllers

Phalcon exposes both Router component and Controller base. The routing mechanism uses

annotation to map each HTTP request to a specific discussion and will not be discussed in this 

paper. However, it is important to highlight how controllers are structured. Since application is 

trying to follow REST idea, each entity has a corresponding controller. When the request comes 

every controller is trying to follow the following plan:

1. If current operation does not require any model changes (READ operation)

1. Control access rights

2. Use data access layer to retrieve the model instance

3. Map instance to JSON using the corresponding transformer

4. Respond with some data

2. Else

1. Map request body to the corresponding command using JsonMapper library.

2. Assign any additional variable needed for the command.

3. Publish the command.

4. Optionally, map the result using appropriate transformer.

5. Respond with some data

In the second case, access control is delegated to the command handlers. In case of an 

error, controller falls back and responds with an appropriate error message and a corresponding 

HTTP code. Since every controller is trying to follow this plan, it becomes a minimalistic cohesive 

unit with a very precise functionality.

37



Services

Services are the heart of the system. Each service is bound to solve a specific use-case or 

expose internal operations to be used within other services. Use case services are represented as 

classes and named conventionally, according to the entity:

• AssetsService

• AssetFilesService

• CategoriesService

• CommentsService

• UsersService

Each use case service also represents some management component defined during the 

architecture design. Hence, it exposes all the operations defined within the component. Application

has several other services implemented. Some of them represented very specific application 

operations.

Geometry Converter Implementation

Original “Convert” operation belongs to the asset management component. However, it is 

important to keep high cohesion within a single service. That is why current functionality is 

delegated to another service called “MeshConverterService”. Conversion process is defined as 

follows.

Mesh converter service receives input, containing reference to geometry asset file with a 

defined path. Service then uses system shell and invokes platform-dependent software component

with a path to the geometry file specified. Mentioned utility then streams out either JSON data or 

an error, which appeared during the conversion process. Finally, mesh conversion service collects 

the result and exposes it as a corresponding command result. Relevant platform-dependent 

software component was described in one of the previous sections.

38



Asset Download Implementation

This operation is defined within assets service. Once asset download is requested, all the 

files for the current asset are fetched from the database. For each file, then, content is fetched 

using file management service. Zip class is then used to compose zip file data using file names and

content. The result is exposed as a corresponding command result.

Asset Validation Rules

Standard asset validation focuses mainly on geometry files. Converting every geometry to 

unified format, validation procedure controls the following facts:

• Geometry file cannot be converted (produces fatal error)

• Mesh contains vertex index out of bounds (produces error message)

• Texture reference contains path (produces information message)

• Mesh contains no material (produces warning message)

• Material references texture, but no texture with the same name is attached to the asset 

(produces error)

• Mesh has no texture coordinates but references a texture (produces error)

• Not every vertex has a texture coordinate (produces warning)

39



6 Conclusion

The desired system is implemented and corresponds to the conformed specification. As a 

final test, twenty five 3D models from the existing database were loaded into the implemented 

system. System shows acceptable performance and user experience. See Attachment I for full list 

of implemented requirements.

6.1 Performance

System performance was measured with respect to the most complex operation: asset 

validation. 2 assets were chosen as test cases. Test was performed using modern desktop PC with 

Intel® Core(TM) i5-3470 CPU running at 3.20GHz and 8,00 GB RAM. Browser used for the test: 

Google Chrome Version 42.0.2311.152 m. Test cases and corresponding results are the following:

Test Case Geometry Formats Vertices Polygons Validation Time

1 4 18466 * 4 16885 * 4 10 000.000ms

2 1 544 * 1 1599 * 1 301.709 ms

Table 9: System Performance Test

40



6.2 Suggestions

The following section describes author's suggestions for further development.

Unit and Integration Tests

To guarantee that system will run well in production environment, a set of unit and 

integration tests should be implemented along with UI tests. Additionally, stress testing is required 

to confirm, that system may handle reasonable amount of connections at once. 

Asset File Types

System may be extended to handle other multimedia assets, such as sounds. Such 

extension will require several changes to Asset File entity, as well as validation implementation. 

Front-end may then use JavaScript API to play sound.   

Validation Extensions

Geometry may be validated in a lot of different ways. Hence, custom validation 

components could be implemented to support any kind of validation, which can be performed 

using unified geometry data structure. 

Unified Texture Format

Additional platform-dependent software component can be implemented to convert a 

variety of texture formats into a unified texture data structure. This structure then may be used for

Front-end to avoid custom loader implementation for each texture format.

41



7 Bibliography

[1] “Selecting a development approach”, Centers for Medicare & Medicaid Services (CMS) Office of Information Service 
(2008), United States Department of Health and Human Services (HHS), Accessed April 15, 2015, [online: 
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-
Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf]

[2] “Unified Modeling Language User Guide, The” (2 ed.). Addison-Wesley. 2005. p. 496. ISBN 0321267974. 

[3] “Domain Model”, M. Fowler, [online: http://martinfowler.com/eaaCatalog/domainModel.html]

[4] “Repository”, M. Fowler, [online: http://martinfowler.com/eaaCatalog/repository.html]

[5] “Service Layer”, M. Fowler, [online: http://martinfowler.com/eaaCatalog/serviceLayer.html]

[6] “Event Aggregator”, M. Fowler, [online:http://martinfowler.com/eaaDev/EventAggregator.html]

[7] “MVC”, M. Fowler, [online: http://martinfowler.com/eaaCatalog/modelViewController.html]

[8] OMG (2008). OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2 p.146. 

[9] “Single-page Application”, [online: https://en.wikipedia.org/wiki/Single-page_application]

[10] “Performance bechmark of popular PHP frameworks”, Lukasz Kujawa, [online: 
http://systemsarchitect.net/performance-benchmark-of-popular-php-frameworks/]

[11] “June 2013 Web Server Survey”, [online: http://news.netcraft.com/archives/2013/06/06/june-2013-web-server-
survey-3.html]

[12] “April 2015 Web Server Survey”, [online: http://news.netcraft.com/archives/2015/04/20/april-2015-web-server-
survey.html]

[13] “JsonMapper”, netreasearch, [online: https://github.com/netresearch/jsonmapper/blob/master/src/JsonMapper.php]

[14] Owens, Michael (2006). "Chapter 4: SQL". In Gilmore, Jason; Thomas, Keir. The Definitive Guide to SQLite. D. 
Richard Hipp (foreword), Preston Hagar (technical reviewer). Apress. p. 133. ISBN 978-1-59059-673-9. Retrieved 30 
December 2014. 

[15] “Assimp2JSON”, LightHouse3D, [online: https://github.com/lighthouse3d/Demos-and-
Tools/tree/master/Assimp2JSON]

42

http://news.netcraft.com/archives/2013/06/06/june-2013-web-server-survey-3.html
http://news.netcraft.com/archives/2013/06/06/june-2013-web-server-survey-3.html
http://news.netcraft.com/archives/2015/04/20/april-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/04/20/april-2015-web-server-survey.html
http://systemsarchitect.net/performance-benchmark-of-popular-php-frameworks/
http://martinfowler.com/eaaDev/EventAggregator.html
https://github.com/lighthouse3d/Demos-and-Tools/tree/master/Assimp2JSON
https://github.com/lighthouse3d/Demos-and-Tools/tree/master/Assimp2JSON
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59059-673-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Apress
https://en.wikipedia.org/wiki/D._Richard_Hipp
https://en.wikipedia.org/wiki/D._Richard_Hipp
https://books.google.com/books?id=VsZ5bUh0XAkC&pg=PA133
https://en.wikipedia.org/wiki/Keir_Thomas
https://github.com/netresearch/jsonmapper/blob/master/src/JsonMapper.php
https://en.wikipedia.org/wiki/Single-page_application
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://martinfowler.com/eaaCatalog/modelViewController.html
http://martinfowler.com/eaaCatalog/serviceLayer.html
http://martinfowler.com/eaaCatalog/repository.html
https://en.wikipedia.org/wiki/Special:BookSources/0321267974
https://en.wikipedia.org/wiki/International_Standard_Book_Number
http://www.informit.com/store/unified-modeling-language-user-guide-9780321267979
http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf


Attachment A: Full list of system requirements

This list is used to control the requirements statuses. The requirement is considered to be implemented only if both 

back-end and front-end parts expose all the operation related to this requirement.

Functional Requirements:

Asset Management:

System should allow to create new asset [IMPLEMENTED]

System should allow to remove existing asset [IMPLEMENTED]

System should allow to access existing asset [IMPLEMENTED]

System should allow to modify existing asset [IMPLEMENTED]

System should allow to search assets by title, author, category and tags [IMPLEMENTED]

System should allow to preview web-compatible pictures within the asset [IMPLEMENTED]

System should allow to preview valid geometry within the asset [IMPLEMENTED]

System should allow to download the existing asset [IMPLEMENTED]

System should be able to control the completeness of existing asset [IMPLEMENTED]

System should be able to generate a file containing asset meta information [IMPLEMENTED]

System should store the asset in a separated folder [IMPLEMENTED]

System should allow to pend, approve or decline existing asset [IMPLEMENTED]

Asset Files Management:

System should allow to attach file to existing asset [IMPLEMENTED]

System should allow to change file attached to existing asset [IMPLEMENTED]

System should allow to detach file from existing asset [IMPLEMENTED]

System should allow to access file attached to existing asset [IMPLEMENTED]

Users Management:

System should allow to register user [IMPLEMENTED]

System should allow to remove user [NOT IMPLEMENTED]

System should allow to modify user data [IMPLEMENTED PARTIALLY]

System should allow to access user data [IMPLEMENTED]

Categories Management:

System should allow to add asset category [IMPLEMENTED]

System should allow to access asset category [IMPLEMENTED]

System should allow to modify asset category [IMPLEMENTED]

System should allow to remove asset category [IMPLEMENTED]

43



Comments Management:

System should allow to attach comment to existing asset [IMPLEMENTED]

System should allow to remove comment from existing asset [NOT IMPLEMENTED]

System should allow user to modify comment attached to existing asset [NOT IMPLEMENTED]

System should allow user to access comment attached to existing asset  [IMPLEMENTED]

Geometry Conversion:

System should be able to convert any geometry supported by Assimp Library to a data structure.[IMPLEMENTED]

User Interface

System should expose online model viewer based on WebGL technology. Such viewer should be able to visualize the 

given 3D mesh, rotate it and change shading/lightning models. [IMPLEMENTED]

Non-functional requirements:

System should expose web interface for all the operations.

System should be implemented using PHP, C++, XML and web technologies.

System should not use any database technology, which requires standalone server.

44


