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Abstrakt / Abstract
Tento dokument obsahuje přehled

testovacích metod konečně-stavových
automatů. Testovací metoda kontro-
luje zda se nějaký automat shoduje s
daným automatem. Nová metoda je
představena a následně experimentálně
prokázána, že je korektní testovací
metodou. Dokument dále obsahuje kla-
sifikaci konečně-stavových automatů,
algoritmy konstruující separující sek-
vence a nový přístup kontrolování, zda
je metoda korektní testovací metodou.
Separující sekvence rozlišuje dva stavy
automatu, se kterými souvisí.

Klíčová slova: Konečně-stavový au-
tomat, Testovací metoda, Soubor testů,
Úplné pokrytí chyb, Kontrola pokrytí
chyb, Separující sekvence, Stav cha-
rakterizující množina, Charakterizující
množina

Překlad titulu: Konstrukce experi-
mentu potvrzující ekvivalenci konečně-
stavových automatů

This document is an overview of test-
ing methods of finite-state machines.
Testing methods verifies whether a ma-
chine coincides with given one. A new
method is proposed and it is demon-
strated to be correct testing method
of finite-state machines experimentally.
The document further comprises clas-
sification of finite-state machines, algo-
rithms for creating separating sequences
and a new approach to checking testing
methods to be correct. A separating
sequence relates to a pair of states.
Such two states are distinguished by the
separating sequence.

Keywords: Finite-state machine,
Testing method, Checking sequence,
Test suite, Complete fault coverage,
Fault coverage checking, Separating
sequence, State characterizing set,
Characterizing set

vi



Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2.1 Set theory . . . . . . . . . . . . . . . . . . . . . . . .2
2.2 Graph theory. . . . . . . . . . . . . . . . . . . . .2

2.2.1 Trees. . . . . . . . . . . . . . . . . . . . . . . .3
2.3 Alphabet and string . . . . . . . . . . . . .3

3 Finite-state machine . . . . . . . . . . . . . . .4
3.1 Determinism . . . . . . . . . . . . . . . . . . . . .5
3.2 Mealy and Moore model . . . . . . . . .6

3.2.1 Nondeterminism . . . . . . . . . . .7
3.3 Automaton . . . . . . . . . . . . . . . . . . . . . . .8
3.4 Comparison of FSMs . . . . . . . . . . . .8
3.5 Use in the Thesis . . . . . . . . . . . . . . 11
3.6 Input sequences . . . . . . . . . . . . . . . . 12
3.7 Denotation unification . . . . . . . . . 14

4 Test properties . . . . . . . . . . . . . . . . . . . 15
4.1 Fault model . . . . . . . . . . . . . . . . . . . . 15
4.2 Completeness. . . . . . . . . . . . . . . . . . . 16
4.3 Sufficient conditions . . . . . . . . . . . 17

5 Related Work . . . . . . . . . . . . . . . . . . . . . 19
6 Testing methods . . . . . . . . . . . . . . . . . 21
6.1 Resettable machines . . . . . . . . . . . 21

6.1.1 PDS-method . . . . . . . . . . . . . 22
6.1.2 ADS-method . . . . . . . . . . . . . 22
6.1.3 SVS-method. . . . . . . . . . . . . . 22
6.1.4 W-method . . . . . . . . . . . . . . . . 23
6.1.5 Wp-method . . . . . . . . . . . . . . 23
6.1.6 HSI-method . . . . . . . . . . . . . . 23
6.1.7 FF-method . . . . . . . . . . . . . . . 23
6.1.8 H-method . . . . . . . . . . . . . . . . 24
6.1.9 SC-method . . . . . . . . . . . . . . . 24

6.1.10 P-method. . . . . . . . . . . . . . . . . 24
6.1.11 SPY-method . . . . . . . . . . . . . 25

6.2 Machines without reset . . . . . . . . 26
6.2.1 HrADS-method . . . . . . . . . . 26
6.2.2 D-method . . . . . . . . . . . . . . . . 26
6.2.3 AD-method . . . . . . . . . . . . . . 27
6.2.4 DW-methods . . . . . . . . . . . . . 27
6.2.5 UIO-methods. . . . . . . . . . . . . 28
6.2.6 CSP-method . . . . . . . . . . . . . 28
6.2.7 C-method . . . . . . . . . . . . . . . . 29
6.2.8 K-method . . . . . . . . . . . . . . . . 29

7 Summary of Methods . . . . . . . . . . . . 30
8 M-method . . . . . . . . . . . . . . . . . . . . . . . . 32
8.1 Checking sequence . . . . . . . . . . . . . 32

8.1.1 Idea of proof . . . . . . . . . . . . . 34

8.1.2 Improvements . . . . . . . . . . . . 37
8.1.3 Example . . . . . . . . . . . . . . . . . . 38

8.2 Resettable FSMs . . . . . . . . . . . . . . . 39
9 Fault Coverage Checker . . . . . . . . . 40
9.1 Motivating example . . . . . . . . . . . . 41
9.2 Implementation . . . . . . . . . . . . . . . . 43
9.3 Hint of Reference Nodes . . . . . . . 48

10 Implementation. . . . . . . . . . . . . . . . . . . 50
10.1 Separating sequences . . . . . . . . . . 50

10.1.1 Shortest sequences . . . . . . . 51
10.1.2 Parallel approaches . . . . . . 52
10.1.3 All sequences . . . . . . . . . . . . . 56
10.1.4 Example . . . . . . . . . . . . . . . . . . 57

10.2 State characterization . . . . . . . . . 59
10.2.1 SCSet . . . . . . . . . . . . . . . . . . . . . 59
10.2.2 Reduction . . . . . . . . . . . . . . . . 59
10.2.3 HSI . . . . . . . . . . . . . . . . . . . . . . . 61

10.3 Other input sequences . . . . . . . . . 62
10.3.1 State cover . . . . . . . . . . . . . . . 62
10.3.2 Transition cover . . . . . . . . . . 63
10.3.3 Prefix set . . . . . . . . . . . . . . . . . 63

10.4 Testing Methods . . . . . . . . . . . . . . . 64
10.4.1 PDS-method . . . . . . . . . . . . . 64
10.4.2 ADS-method . . . . . . . . . . . . . 64
10.4.3 SVS-method. . . . . . . . . . . . . . 64
10.4.4 W-method . . . . . . . . . . . . . . . . 64
10.4.5 Wp-method . . . . . . . . . . . . . . 65
10.4.6 HSI-method . . . . . . . . . . . . . . 65
10.4.7 H-method . . . . . . . . . . . . . . . . 65
10.4.8 SPY-method . . . . . . . . . . . . . 67
10.4.9 C-method . . . . . . . . . . . . . . . . 68

10.4.10 M-method . . . . . . . . . . . . . . . . 71
11 Experiments . . . . . . . . . . . . . . . . . . . . . . 73
11.1 Separating sequences . . . . . . . . . . 73
11.2 Checking sequence . . . . . . . . . . . . . 75
11.3 Resettable machines . . . . . . . . . . . 80

12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . 84

A Abbreviations and Symbols . . . . . . 89
A.1 Abbreviations . . . . . . . . . . . . . . . . . . 89
A.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . 89

B Checking Sequence Example . . . . 90

vii



Tables / Figures
3.1. Size of FSMs’ Classes . . . . . . . . . . . .9
9.1. Procedure of the FCC . . . . . . . . . 42

10.1. Separating sequences . . . . . . . . . . . 59
10.2. SCSets . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3. Reduced SCSets . . . . . . . . . . . . . . . . 61
10.4. Family of HSIs . . . . . . . . . . . . . . . . . 62
11.1. Running time of Separating

sequences Design Methods . . . . . 73
11.2. GPU time of Separating

sequences Parallel Design
Methods . . . . . . . . . . . . . . . . . . . . . . . . 74

11.3. Comparison of the C-method
and the M-method in the
Length of Checking Sequence. . 79

11.4. Comparison of Testing Meth-
ods in the Length of Test
Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.1. Mealy machine . . . . . . . . . . . . . . . . . . .6
3.2. Moore machine . . . . . . . . . . . . . . . . . . .7
3.3. Relations of FSMs’ Classes . . . . . .9
3.4. FSMs’ Classes and Properties . 10
7.1. History of Testing Methods . . . . 30
8.1. M-method: Sketch of Check-

ing Sequence. . . . . . . . . . . . . . . . . . . . 35
8.2. M-method: Sketch of Opti-

mal Checking Sequence . . . . . . . . 35
8.3. M-method: Cyclic Depen-

dency . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4. M-method: Mealy Example . . . 38
9.1. FCC: Mealy Example . . . . . . . . . . 41
9.2. FCC: Testing Tree . . . . . . . . . . . . . 41
9.3. FCC: Instantiation and

Merging . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4. FCC: Offending Checking Se-

quence . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.1. SepSeq: Moore Example . . . . . . . 57
10.2. Shortest SepSeq: Sequential

approach . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3. Shortest SepSeq: Straight-

forward Parallel Approach . . . . . 57
10.4. Shortest SepSeq: Parallel

Approach using a Queue . . . . . . . 58
10.5. All Separating Sequences . . . . . . 58
11.1. Running time of SepSeq De-

sign Methods . . . . . . . . . . . . . . . . . . . 74
11.2. Efficiency of the SepSeq Par-

allel Approaches . . . . . . . . . . . . . . . . 75
11.3. Numbers of Generated

Moore machines . . . . . . . . . . . . . . . . 76
11.4. Numbers of Generated Mealy

machines . . . . . . . . . . . . . . . . . . . . . . . . 77
11.5. Checking Sequences Compar-

ison on Moore machines . . . . . . . 78
11.6. Checking Sequence Compar-

ison on Mealy machines. . . . . . . . 79
11.7. Test Suites Comparison on

Moore machines . . . . . . . . . . . . . . . . 81
11.8. Test Suites Comparison on

Mealy machines . . . . . . . . . . . . . . . . 82

viii



Algorithms
1. The Fault Coverage Checker:

Reduction of domains . . . . . . . . . . 45
2. The Fault Coverage Checker:

Instantiation of a node . . . . . . . . . 45
3. The Fault Coverage Checker:

Nodes difference . . . . . . . . . . . . . . . . 46
4. The Fault Coverage Checker:

Search. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5. The Fault Coverage Checker:

Processing instantiated . . . . . . . . 47
6. The Fault Coverage Checker:

Checking of uninstantiated . . . . 47
7. The Fault Coverage Checker:

Merging nodes . . . . . . . . . . . . . . . . . . 48
8. Shortest SepSeq - Sequential

Approach . . . . . . . . . . . . . . . . . . . . . . . 51
9. Shortest SepSeq - Straight-

forward Parallel Approach:
Separation by output on
Moore machines . . . . . . . . . . . . . . . . 52

10. Shortest SepSeq - Straight-
forward Parallel Approach:
Separation by output on
Mealy machines . . . . . . . . . . . . . . . . 53

11. Shortest SepSeq - Straight-
forward Parallel Approach:
Separation by the next states . 53

12. Shortest SepSeq - Parallel
Approach using a Queue:
Filling previous pair’s Link . . . . 54

13. Shortest SepSeq - Parallel
Approach using a Queue:
Processing the Distinguished . . 55

14. All Separating sequences. . . . . . . 56
15. Reduction of CSet. . . . . . . . . . . . . . 60
16. State cover. . . . . . . . . . . . . . . . . . . . . . 62
17. Transition cover . . . . . . . . . . . . . . . . 63
18. The H-method: Estimation

of needed symbols . . . . . . . . . . . . . . 66
19. The H-method: How to dis-

tinguish nodes . . . . . . . . . . . . . . . . . . 67
20. The C-method: Updating

confirmed node . . . . . . . . . . . . . . . . . 69
21. The C-method: Checking

new confirmed nodes . . . . . . . . . . . 69

22. The C-method: Reduc-
tion by output-confirmed
sequences . . . . . . . . . . . . . . . . . . . . . . . 70

ix





Chapter 1
Introduction

Checking a product against its specification is common practice in many fields. We
research active learning of finite-state machines [An87]. When we will be able to com-
pare two machines, an automatic learning system can be created. Therefore, we focused
on testing methods of finite-state machines that verify an implementation against the
specification. Such a verification is called a checking experiment [Mo56].

There are many testing methods for different types of machines. Hence, we state
types and classes of finite-state machines in Chapter 3 at first. Then testing methods
we are aware of are described in Chapter 6. The following Chapter 7 proposes similarity
relations between methods. Moreover, we capture the methods in terms of time of their
proposal. Knowledge of the testing methods enables us to introduce a new method
that is a generalization of two state-of-the-art methods. The new method called the
M-method is proposed in Chapter 8.

Testing methods creates a set of input sequences based on given specification which is
a finite-state machine. Such a set is called test suite and has to possess some properties
to be able to verify an implementation against the specification. These properties and
conditions are proposed in Chapter 4. When one cannot prove a method to be a correct
testing method, a checker of produced test suite is employed. Checker finds out whether
a given test suite reveals all possible faults in the implementation. We propose a new
checker called the Fault Coverage Checker in Chapter 9. It is used to check correctness
of the M-method experimentally due to the fact that the method has not been formally
proven yet.

A comparison of performance of testing methods is captured in experiments in Chap-
ter 11. Testing methods are compared in the length of created test suite. Performance
of most methods depends on their implementation because methods usually contain an
incompletely specified part of their design. We propose our implementation of meth-
ods in Chapter 10 so our results can be referenced for a comparison. Chapter 10 also
comprises our algorithms for creating separating sequences and characterizing sets of
sequences that are needed in testing methods. New parallel approaches for design
shortest separating sequences are discussed as well.

Chapter 2 and Chapter 3 establish terms used through the entire thesis. A necessary
terminology involves many fields of abstract mathematical domains. We try to unify
denotation at the end of Chapter 3 because there is a wide variety of denotation in
the literature. In addition, Chapter 3 states different types and classes of finite-state
machines. A comparison of these classes is also included in Chapter 3. Chapter 5 then
references work related to topics that this thesis deals with.

This Diploma thesis focuses on summarizing testing methods and proposing new
approaches. Therefore, proofs of correctness of proposed algorithms are omitted and
some notions are not illustrated in detail because they can be found in the referenced
literature or they would require an extra space for a description so compactness of the
thesis would be disturbed.
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Chapter 2
Definition

Automata theory is a well-known part of computer science. However, its terminology
is not unique, there are a lot of different definitions. So, at first, it is necessary to
state definitions that will be used through the text. We propose definitions that can be
found in almost all books dealing with this particular field. Note that some definitions
are formulated in a shortened version because a purpose of this thesis is not to provide
deeply precise definitions of all used terms.

2.1 Set theory
We assume that the reader is familiar with a set as a collection of elements. Particularly,
we will use the following terms related to a finite set: cardinality, union, intersection,
set difference, power set and partition.

Definition 2.1. A cardinality of a set A is the number of elements of the set A. It is
denoted |A|.

Definition 2.2. Let A and B be sets. Then
A ∪B is union of sets A and B; A ∪B = {x |x ∈ A ∨ x ∈ B},
A ∩B is intersection of sets A and B; A ∪B = {x |x ∈ A ∧ x ∈ B},
A \B is set difference of A and B; A \B = {x ∈ A |x /∈ B}.

Definition 2.3. A power set of a set A, denoted P(A), is the set whose members are
all possible subsets of A, i.e. P(A) = {B |B ⊆ A}.

Definition 2.4. A partition Π of a set A is a set of nonempty subsets of A such that
every element a ∈ A is in exactly one of these subsets, i.e., A is a disjoint union of
subsets from Π.

We call a subset of a partition also a group or a block. When we deal with an
equivalence relation, a subset of a partition is called an equivalence class.

2.2 Graph theory
A search state space is usually represented as a tree which is a special form of graph.

Definition 2.5. A directed graph G is a pair (V,E) where V is a set of nodes and E is
a set of directed edges, i.e. a set of ordered pair of nodes.

For notation, let (u, v) ∈ E be an edge of a directed graph G = (V,E), then u ∈ V
is said to be a predecessor of v and v ∈ V is said to be a successor of u.

Definition 2.6. Let G = (V,E) be a directed graph. A node v ∈ V is reachable from a
node u ∈ V if and only if u = v or there exists a node w ∈ V so that there is an edge
from u to w, i.e. (u,w) ∈ E, and v is reachable from w.

2
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Definition 2.7. Let G = (V,E) be a directed graph. A path is a sequence of nodes so
that each two successive nodes are connected by an edge e ∈ E and all nodes in the
path are distinct from one another.

Definition 2.8. Let G = (V,E) be a directed graph. G is strongly connected if and only
if each node v ∈ V is reachable from any node u ∈ V .

2.2.1 Trees
There are many different types of trees but we use a successor tree only [De94].

Definition 2.9. A rooted directed tree, or a successor tree, is a directed graph G = (V,E)
with a special node r ∈ V , called root, with the following properties:

1) every node u ∈ V is reachable from r,
2) the tree has exactly n− 1 edges, where n is number of nodes, i.e. n = |V |.

Nodes in a tree have a special notation. If (u, v) is an edge then u is said to be a
parent of v and v is a child, or a successor, of u. If node u has no successor then u is
said to be a leaf. Otherwise, u is said to be an internal node, i.e. ∃v ∈ V : (u, v) ∈ E.

Note that we assume only directed trees so that if we talk about a rooted tree it
means a rooted directed tree. A testing tree is a successor tree with specialized nodes.

2.3 Alphabet and string

Definition 2.10. An alphabet X is a nonempty finite set of symbols x1, . . . , xp, p = |X|.
A string, or a word, over X is any finite sequence of symbols from X.

Then we can define the following:
ε is the empty string,

Xε is the alphabet X extended with ε, i.e. Xε = X ∪ {ε},
Xk is the set of all strings over the alphabet X of length k; X0 = {ε}, X1 = X,
X∗ is the set of all strings over the alphabet X, i.e. X∗ =

⋃
k∈N0

Xk.
u · v means concatenation of strings u and v. It can be also written as uv.
|u| means the length of a string (word) u; |ε| = 0.

Note that set of all strings X∗ always contains ε and ∀u ∈ X∗ : ε · u = u = u · ε.
Thus X∗ is always nonempty and it is also countable because X is countable.

Definition 2.11. Let u, v, w be strings. v is a prefix of u if u = v · w. Moreover, v is a
proper prefix of u if w is nonempty, i.e. w 6= ε.

Definition 2.12. Let pref(A) denote the set of all prefixes of each string from the set A.
A set of strings A is prefix-closed if for each sequence u ∈ A, it holds that A contains
all prefixes of u, i.e. A = pref(A).

Definition 2.13. Let u and v be strings. u is extended by v and v is an extension of u
when a word u ·v is created. In similar way, let A and B be sets of strings. A is extended
by B and B is an extension of A when a set of strings C contained each string from A
extended by each string from B is formed. Formally, C = A⊗B = {u·v |u ∈ A∧v ∈ B}.

3



Chapter 3
Finite-state machine

An automaton with a finite number of states, or a finite-state machine (FSM), is a
specific mathematical model of computation. The behavior of a system can be modeled
as transitions between states. It is conceived as an abstract machine that can be
in one of a finite number of states. It has many slightly different variants, such as
Moore and Mealy machine, deterministic and nondeterministic finite automaton or
nondeterministic finite-state machine [Ho06]. Therefore we propose their generalization
and a discussion on specific types.

Definition 3.1. A finite-state machine is a quintuple (S,X, Y, s0, h), where
S is a finite nonempty set of states,
X is an input alphabet (a finite nonempty set of symbols),
Y is an output alphabet (a finite nonempty set of symbols),
s0 is an initial state, s0 ∈ S,
h is a behavior function: h : S ×Xε → P(S × Yε),

Every FSM can be represented as a directed graph or a table. The graph form is
called a state diagram. Nodes of the graph are states and edges represent transitions.
So an edge is labeled with the input symbol which causes a transition between two
states connected by the edge. The output symbol is attributed to the state and the edge
according to the behavior function h. The table form lists transitions and corresponding
outputs in a behavior table. A row corresponds to one state; the table has as many rows
as the machine has states. Each column is linked to a symbol from the input alphabet
or to the empty string. There is a set of pairs of next state and output in each cell. A
cell could be empty since range of the behavior function is power set of state-output
pairs.

Definition 3.1 is general enough to be able to describe all aforementioned types. On
the other hand, it is not used due to its generalization. Before we will show that the
well-known types are particular cases of the one proposed in Definition 3.1, common
properties are stated.

Definition 3.2. A transition (s, x) ∈ S × Xε is defined if and only if |h(s, x)| ≥ 1.
An input sequence u = x1 · . . . · xk ∈ X∗ε is defined for state s ∈ S if and only if there is
a sequence of states (si)k+1

i=1 and an output sequence y1 · . . . · yk+1 ∈ Y ∗ε such that s = s1
and for all 1 ≤ i ≤ k : (si+1, yi+1) ∈ h(si, xi). The set of all defined input sequences for
state s is denoted Ω(s). The set of all defined input sequences for the initial state s0 of
FSM M is ΩM , i.e. ΩM = Ω(s0).

The input of behavior function h is a pair and thus there should be parentheses
twice. We omit the second parentheses for the sake of simplicity. That is, we use
h(s, x) instead of correct h((s, x)). The same simplification will be employed in the rest
of thesis and for other defined functions as well. Similarly, if a set is a singleton, the
set’s curly brackets are omitted as well. For example, we write h(s, x) = (s′, y) instead
of correct h(s, x) = {(s′, y)}. Notice that both input sequence and output sequence can
contain the empty string ε according to Definition 3.2, e.g. u = x1 · ε · x3 ∈ Ω(s).
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Definition 3.3. A FSM M is completely specified, or simply complete, if each transition
is defined, i.e. ∀s ∈ S ∀x ∈ X : |h(s, x)| ≥ 1. Otherwise, the FSM M is partially
specified, or simply partial, i.e. when ∃s ∈ S ∃x ∈ X : h(s, x) = ∅.

For easier definition of next notions, we extend behavior function to sequences
(strings) at first.

Definition 3.4. Extended behavior function h∗ : S × X∗ε → P(S × Y ∗ε ) is defined
inductively by

(0) h∗(s, x) = h(s, x) ∀s ∈ S ∀x ∈ Xε

(1) h∗(s, ux) =
⋃

(s′,z)∈h∗(s,u){(s′′, zy) | (s′′, y) ∈ h(s′, x)} ∀s ∈ S ∀u ∈ Ω(s)∀x ∈ Xε

Note that if ux /∈ Ω(s) then h∗(s, ux) = ∅, because h(s′, x) would be empty as well
and thus (s′′, y) and (s′′, zy) would not be defined.

Each finite-state machine can be represented as a graph, therefore, the notion of
connectedness is easily applied to FSM.

Definition 3.5. A FSM M is initially connected if and only if each state is reachable
from the initial state, i.e. for each state s there exists a defined input sequence from
the initial state s0 to s; formally, ∀s ∈ S ∃u ∈ ΩM ∃z ∈ Y ∗ε : (s, z) ∈ h∗(s0, u).

Definition 3.6. A FSM M is strongly connected if and only if each state is reachable
from each other. That is, ∀s, s′ ∈ S ∃u ∈ Ω(s)∃z ∈ Y ∗ε : (s′, z) ∈ h∗(s, u).

Definition 3.7. Two states si, sj ∈ S are distinguishable, denoted si � sj , if there is an
input sequence u ∈ Ω(si) ∩ Ω(sj) such that the output sequences zi, zj ∈ Y ∗ε produced
as responses to applying u in both states are different, i.e.

∃zi, zj ∈ Y ∗ε ∃s′i, s′j ∈ S : (s′i, zi) ∈ h∗(si, u) ∧ (s′j , zj) ∈ h∗(sj , u) ∧ zi 6= zj

The sequence u is called a separating sequence of states si and sj .

Definition 3.8. A FSM M is minimal, or reduced, if and only if it is initially connected
and each two states are distinguishable, i.e. ∀si 6= sj ∈ S : si � sj .

Thus, a reduced FSM is a machine with least number of states in a group of equivalent
machines. Machines are equivalent if they produce equal output on the same input and
initial states of machines are equivalent. Minimization algorithms [Ho06] solve how to
convert a FSM into its minimal form.

Definition 3.9. A FSM M is resettable if and only if M can be taken to its initial state
s0 from each state. Formally, there is an input r /∈ X, called reset, that brings M into
s0 with the output null /∈ Y , i.e. ∀s ∈ S : h(s, r) = (s0, null).

The output null cannot be in the output alphabet because we want to uniquely
identify that reset was applied.

The stated notions can be defined for a specific type of FSM in easier way. Therefore,
we propose now definitions of specific types and their relations to Definition 3.1.

3.1 Determinism
Definition 3.1 of FSM allows several next states for a defined transition. Nevertheless,
it is more natural to have the uniquely defined next state for each defined transition, i.e.
∀s ∈ S ∀x ∈ X : |h(s, x)| ≤ 1. Such a concept is called deterministic machine (DFSM).
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It also includes that the machine cannot change its state when no input is applied, i.e.
∀s ∈ S ∃y ∈ Yε : h(s, ε) = (s, y).

A machine that contains a transition leading into a couple of states is nondetermin-
istic. Definition 3.1 thus defines nondeterministic finite-state machine (NFSM).
Definition 3.10. A deterministic finite-state machine is a septuple (S,X, Y, s0, D, δ, λ),
where S,X, Y, s0 are a set of states, an input and an output alphabets and the initial
state, respectively, and

D is a domain of defined transitions; D ⊆ S ×X,
δ is a state-transition function: δ : D → S,
λ is an output function: λ : D ∪ {S × {ε}} → Yε.

A DFSM is a FSM M = (S,X, Y, s0, h) such that D = {(s, x) | |h(s, x)| = 1} and
(i) h(s, x) = (δ(s, x), λ(s, x)) ∀(s, x) ∈ D
(ii) h(s, x) = ∅ ∀(s, x) ∈ (S ×X) \D
(iii) h(s, ε) = (s, λ(s, ε)) ∀s ∈ S
A state transition table and an output table are used for deterministic finite-state

machine instead of a behavior table. The content of cells is the only difference. State
transition table has a state or nothing (not defined) in cell according to the transition
function δ. The output function λ is listed in output table. Output table contains an
output symbol, the empty string or nothing (not defined) in cell. A state diagram is
other type of representation of DFSM, see Definition 3.1.

The deterministic FSM of Definition 3.10 is still too general for a wide application.
There are two more used types of FSM. Both are specified DFSMs. They have assigned
output symbols either to states only or to transition only.

3.2 Mealy and Moore model
Two types of DFSM are distinguished in automata theory: Mealy and Moore machines.
A Mealy model can represent more complex systems than a Moore model with the
same number of states. On the contrary, a representation of the Moore model needs
less storing space, e.g. in computer. The Mealy model is used more in practice due
to its generality. The Moore machine has tied outputs with states in contrast to the
Mealy machine with outputs only on transitions.
Definition 3.11. A Mealy machine is a DFSM with a specified output function λ:

λ(s, ε) = ε ∀s ∈ S h(s, ε) = (s, ε)
λ(s, x) 6= ε ∀s ∈ S ∀x ∈ X ∃y ∈ Y : h(s, x) = (δ(s, x), y)

The output function can be redefined as λ : D → Y . On the right side of the
specified output function λ in Definition 3.11 there is captured the correspondence
with the behavior function h of FSM. Joined transition and output tables, or simply
behavior table, of an example of Mealy machine is shown in Figure 3.1. One can see
that the transitions on the empty string are not depicted because they produce the
empty string and return back to their starting state; they are loops.

S = {A,B,C}, X = {a, b}, Y = {1, 2, 3}, s0 = A

a b
A B / 1 B / 2
B A / 1 C / 3
C B / 3 C / 1

Figure 3.1. An example of the same Mealy machine in two representations
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Definition 3.12. A Moore machine is a DFSM with a specified output function λ:
λ(s, ε) 6= ε ∀s ∈ S ∃y ∈ Y : h(s, ε) = (s, y)
λ(s, x) = ε ∀s ∈ S ∀x ∈ X h(s, x) = (δ(s, x), ε)

The output function is needed only for labeling states therefore it can be stated as
λ : S → Y . Again, on the right side in Definition 3.12 there is the specification of the
behavior function h describing the restriction of FSM to Moore machine.

If the first output symbol of a Moore machine, λ(s0), is disregarded then the ma-
chine can be readily converted to an output-equivalent Mealy machine. Each edge of
Mealy model is labeled by the output symbol of the destination state of Moore model.
Algorithms in this text are mainly customized for the Mealy model so the above trans-
formation and some preliminary settings are needed. Usually we first compare the
outputs of states and then handle with the machine as Mealy model.

In examples of Moore machines we will also use the behavior table instead of the
separate transition and output tables. Such a table looks like a transition table but it
is extended by one column which contains outputs of states. An example of a behavior
table and also a state diagram of some Moore machine is shown in Figure 3.2. As for
Mealy machine, unimportant outputs are omitted. Outputs are only shown in the last
column of the behavior table and in nodes of the state diagram, in particular.

S = {A,B,C}, X = {a, b}, Y = {1, 2, 3}, s0 = A

a b ε

A B B 1
B A C 3
C B C 2

Figure 3.2. An example of the same Moore machine in two representations

3.2.1 Nondeterminism
Types Mealy and Moore can be generalized to be nondeterministic, that is a transition
does not have to uniquely determine its next state. If we keep the main property of both
models, i.e. labeling transitions or states with outputs, we can define nondeterministic
variants of these specific FSM’s types.

Definition 3.13. A nondeterministic Mealy machine is a FSM M = (S,X, Y, s0, h) with
a specified behavior function h : S ×X → P(S × Y ).

The nondeterministic finite-state machine is often defined like the nondeterministic
Mealy machine (NMealy) [Wa10], [Lu95].

Definition 3.14. A nondeterministic Moore machine is a FSM M = (S,X, Y, s0, h)
with a specified behavior function h such that

(i) h(s, x) ∈ P(S × {ε}) ∀s ∈ S ∀x ∈ X
(ii) h(s, ε) = (s, y) ∀s ∈ S ∃y ∈ Y

The Definition 3.14 of nondeterministic Moore machine (NMoore) can be simplified
by employing a transition function δ : S×X → P(S) and an output function λ : S → Y
in place of the behavior function h. Then a NMoore is a sextuple (S,X, Y, s0, δ, λ).
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3.3 Automaton

A finite automaton are a special type of FSM that divides all input sequences into a set
of accepted and the rest. A sequence u ∈ X∗ is accepted by the finite automaton if u
ends in the set of states F ⊆ S, i.e. δ∗(s0, u) ∈ F . The extended transition function δ∗
is stated in Definition 3.19 and it is similar to the extension of the behavior function h,
see Definition 3.4. States of F are called accepting, or final. A set of accepted sequences
(strings) is regular language [Ho06]. It is known that a language is regular if and only
if there is a finite automaton accepting such a set of strings.

Now we propose definitions of three types of finite automaton and their relation to
FSM. Each finite automaton accepts a regular language however they differ in expres-
sive power. If we fix the number of states, a deterministic finite automaton (DFA) is
less expressive than a nondeterministic finite automaton (NFA) and expressiveness of a
NFA is smaller than a nondeterministic finite automaton with ε-moves (NFA-ε). Never-
theless, each of these three types can be translated into each other in polynomial time;
polynomial in the number of states. In addition, there is minimization algorithm, i.e.
finding reduced form of finite automaton, that also works in polynomial time [Ho06].

Definition 3.15. A deterministic finite automaton is a quintuple (S,X, s0, δ, F ), where
S,X, s0 are a set of states, an input alphabet and the initial state, respectively, and

δ is a transition function: δ : S ×X → S,
F is a set of accepting, or final, states; F ⊆ S,

A DFA is a complete Moore machine M = (S,X, Y, s0, D, δ, λ) with binary output
alphabet Y = {0, 1}, such that D = S ×X since it is complete and λ(s) = 1 iff s ∈ F .

Definition 3.16. A nondeterministic finite automaton is a quintuple (S,X, s0, δ, F ),
where S,X, s0 are a set of states, an input alphabet and the initial state, respectively,
and

δ is a transition function: δ : S ×X → P(S),
F is a set of accepting, or final, states; F ⊆ S,

A NFA is a nondeterministic Moore machine M = (S,X, Y, s0, δ, λ) with binary
output alphabet Y = {0, 1} such that λ(s) = 1 if and only if s ∈ F .

Definition 3.17. A nondeterministic finite automaton with ε-moves is a NFA M =
(S,X, s0, δ, F ) with an extended transition function δ : S ×Xε → P(S).

A NFA-ε is a FSM M = (S,X, Y, s0, h) with binary output alphabet Y = {0, 1} such
that F = {s | (s, 1) ∈ h(s, ε)} and

(i) h(s, x) = {(s′, ε) | s′ ∈ δ(s, x)} ∀s ∈ S x ∈ X
(ii) h(s, ε) = {(s′, ε) | s′ ∈ δ(s, ε) ∧ s 6= s′} ∪ {(s, 1)} ∀s ∈ F
(iii) h(s, ε) = {(s′, ε) | s′ ∈ δ(s, ε) ∧ s 6= s′} ∪ {(s, 0)} ∀s /∈ F

3.4 Comparison of FSMs
There are other types of finite-state machines. One can restrict NFSM to be observable,
that is, the next state is determined by the transition (s, x) and the output [Do05i].
However, we focus mainly on deterministic machines and thus the stated definitions are
sufficient to get familiar with more general concepts of FSM.

This section is devoted to a comparison of special cases of FSMs that we defined in
the previous text. At first, we count upper bound of the number of different machines

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Comparison of FSMs

that have the same numbers of states, inputs and outputs for each defined type of FSM.
Let n denote the number of states, i.e. n = |S|, p the number of input symbols, p = |X|,
and q the number of output symbols, q = |Y |. Upper bound for particular class is the
number of combinations how states and/or transitions can be labeled using the output
alphabet Y and how states S are connected. Note that finite automata have binary
output alphabet, i.e. q = 2.

Type of FSM complete FSM Total number
DFA 2n · nnp = (2np)n (2np)n
NFA 2n · (2n − 1)np 2n · (2n)np = 2n2p+n

NFA-ε 2n · (2n − 1)n(p+1) 2n · (2n)n(p+1) = 2n2(p+1)+n

Moore qn · nnp = (qnp)n qn · (n+ 1)np = (q(n+ 1)p)n
Mealy (qn)np (qn+ 1)np
DFSM (q + 1)n · ((q + 1)n)np (q + 1)n · ((q + 1)n+ 1)np
NMoore qn · (2n − 1)np qn · (2n)np = (q2np)n
NMealy (2qn − 1)np (2qn)np = 2qn2p

NFSM (2(q+1)n − 1)n(p+1) (2(q+1)n)n(p+1)

Table 3.1. The Maximal Number of Different Machines in a Specific Class of FSMs

Table 3.1 shows derived upper bounds for each class of defined FSMs. We have
counted sizes for the following types: deterministic finite automaton (Definition 3.15),
nondeterministic finite automaton (Definition 3.16), nondeterministic finite automa-
ton with ε-moves (Definition 3.17), Moore machine (Definition 3.12), Mealy machine
(Definition 3.11), deterministic finite-state machine (Definition 3.10), nondeterministic
Moore machine (Definition 3.14), nondeterministic Mealy machine (Definition 3.13) and
nondeterministic finite-state machine (Definition 3.1). For each type of FSM there are
two upper bounds. The first one is the maximal number of different machines that are
completely specified. The second bound is the total number of machines in particular
class; it includes partial FSMs. Note that the numbers are really upper bounds because
some combinations represent equivalent machines.

Proposed definitions of different types of finite-state machine is connected in a way of
specific restriction of the behavior function h. For example, DFSM allows a transition
to enter at most one state and Moore model allows output symbols only by states. We
can define a relation between classes of FSMs. Relations are oriented so we represent
them as a directed graph with classes as nodes and relations as edges. There is a
directed edge from class A to class B if there is a possibility to extend the definition of
class A to obtain the definition of class B, or equivalently, one can restrict class B more
so class A is defined. Transitivity holds in the relation graph. Therefore, we captured
only relations of closest classes in Figure 3.3 for clarity.

Figure 3.3. Relations of FSMs’ Classes
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As soon as we have upper bounds for each class of FSMs and relations of classes, we

can compare how approximately smaller a specific class of FSMs is than another class
that includes the former one. If we deal with a class of complete machines, ‘C’ precedes
the name of the specific class of FSMs. Ratios of classes connected in Figure 3.3 follow.
Note that the numbers of states, inputs and outputs are still fixed.

DFA
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( 2np

2np+1

)n =
(
n
2n

)np NFA
NFA-ε =

(
2np+1

2np+n+1

)n
=
( 1
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)n
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)n
=
( 2
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)n CDFSM
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)n
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CMoore =
(

2np

qnp

)n
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(

2
q

)n NFA
NMoore =

(
2np+1

q2np

)n
=
(

2
q

)n
CMealy
NMealy =

(
(qn)p

2qnp

)n
=
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qn
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)np CMoore
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(
qnp

q2np

)n
=
(
n
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)np
CMealy
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(
(qn)p

(q+1)n+p·np

)n
=
(
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(q+1)n+p

)n CMoore
CDFSM =

(
qnp

(q+1)n+p·np

)n
=
(

q
(q+1)n+p

)n
NMealy
NFSM =

( 2qnp

2(q+1)n(p+1)

)n =
( 1
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(
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In the next section we will state that we deal mainly with complete Moore and

Mealy machines in this thesis. Hence the ratio of these two classes is interesting for us
although their relation was not set. In Section 3.2 we mentioned that a Mealy model
can represent more complex systems than a Moore model with the same number of
states. Consequently, the class of Mealy machines is larger than the Moore one. How
much is captured in the following ratio.

CMoore
CMealy =

(
qnp

(qn)p

)n
=
(

1
qp−1

)n
Our last comparison of FSMs’ classes is depicted in Figure 3.4. There is again

captured relations of type classes as in Figure 3.3. Nevertheless, this time the relations
are shown more illustratively. Figure 3.4 is splitted into two parts. Both rectangles
represent the entire class of finite-state machines with the fixed numbers of states, inputs
and outputs. The left part shows relations of classes: deterministic finite-state machine,
nondeterministic and deterministic Moore and Mealy machines. Notice that there is a
Moore machine that cannot be modeled by a Mealy machine with the same number of
states. The right part of Figure 3.4 depicts besides relations of finite automata even
relations of some property classes of FSMs. In particular, there are captured classes of
minimal, completely specified, strongly connected and initially connected machines.

Figure 3.4. Relations of Type and Property Classes of Finite-State Machines
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3.5 Use in the Thesis
This thesis focuses on testing Moore and Mealy machines. For the sake of simplicity,
when we will refer finite-state machine, FSM, automaton or simply machine, we mean
DFSM M = (S,X, Y, s0, D, δ, λ), see Definition 3.10. In addition, M is restricted to
Moore and Mealy machines, i.e. the output function λ is λ : S → Y for Moore model
and λ : D → Y for Mealy model. The transition function δ : D → S is the same for
both types.

Another restrictions on machine M will be stated for particular need. We usually
deal with a minimal completely specified FSM which is initially or strongly connected.

Some notions stated before in this chapter will be now simplify using the transition
function δ and the output function λ instead of the behavior function h.

Definition 3.18. A transition (s, x) ∈ S×X is defined if and only if (s, x) ∈ D. An input
sequence u = x1 · . . . ·xk ∈ X∗ is defined for state s ∈ S if and only if there is a sequence
of states (si)k+1

i=1 such that s = s1 and for all 1 ≤ i ≤ k : (si, xi) ∈ D ∧ si+1 = δ(si, xi).
The set of all defined input sequences for state s is denoted Ω(s). The set of all defined
input sequences for the initial state s0 of FSM M is ΩM , i.e. ΩM = Ω(s0).

Definition 3.19. Extended transition function δ∗ : D∗ → S, D∗ ⊆ S ×X∗, is defined
inductively by

(0) δ∗(s, ε) = s ∀s ∈ S
(1) δ∗(s, xu) = δ∗(δ(s, x), u) ∀(s, x) ∈ D ∀u ∈ Ω(δ(s, x))

The extended transition function describes the last state after processing of the entire
defined input sequence. The transition function δ and its extended version δ∗ will be
also used on a set of states or a set of sequences. Result is a set of states in both cases.

δ∗(Q, u) = {δ∗(s, u) | s ∈ Q} Q ⊆ S, u ∈ X∗
δ∗(s, U) = {δ∗(s, u) | u ∈ U} s ∈ S,U ⊆ X∗

When we need to describe the output sequence obtained as a response to a defined
input sequence, we use extended output function.

Definition 3.20. Extended output function λ∗ : D∗ → Y ∗, D∗ ⊆ S × X∗, is defined
inductively by

(0) λ∗(s, ε) = λ(s, ε) ∀s ∈ S
(1) λ∗(s, xu) = λ(s, x) · λ∗(δ(s, x), u) ∀(s, x) ∈ D ∀u ∈ Ω(δ(s, x))

Definition 3.20 is proposed for DFSM (Definition 3.10) in general. We remind that
λ(s, ε) = ε for Mealy machines (Definition 3.11) and λ(s, x) could be adjusted for Moore
machines (Definition 3.12) in Definition 3.20 (1) as λ(s, ε) · λ(s, x) which produces the
desired output.

Definition 3.21. A FSM M is completely specified, or simply complete, if each transition
is defined, i.e. D = S×X. Otherwise, the FSMM is partially specified, or simply partial,
i.e. when D ⊂ S ×X.

Definition 3.22. A FSM M is initially connected if and only if each state is reachable
from the initial state, i.e. for each state s there exists a defined input sequence from
the initial state s0 to s; formally, ∀s ∈ S ∃u ∈ ΩM : s = δ∗(s0, u).

Definition 3.23. A FSM M is strongly connected if and only if each state is reachable
from each other. That is, ∀s, s′ ∈ S ∃u ∈ Ω(s) : s′ = δ∗(s, u).
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Definition 3.24. Two states si, sj ∈ S are distinguishable, denoted si � sj , if there is an
input sequence u ∈ Ω(si)∩Ω(sj) such that the output sequences produced as response
to applying u in both states are different, i.e. λ∗(si, u) 6= λ∗(sj , u). The sequence u is
called a separating sequence of states si and sj .

The following two definitions remain same like for general FSM, see Definition 3.8
for minimal FSM and Definition 3.9 defining reset property.

Definition 3.25. A FSM M is minimal, or reduced, if and only if it is initially connected
and each two states are distinguishable, i.e. ∀si 6= sj ∈ S : si � sj .

Definition 3.26. A FSM M is resettable if and only if M can be taken to its initial
state s0 from each state. Formally, there is an input r /∈ X, called reset, that brings M
into s0 with the output null /∈ Y , i.e. ∀s ∈ S : δ(s, r) = s0 ∧ λ(s, r) = null.

3.6 Input sequences
An input sequence can have special property with respect to a machine. For example,
response to a sequence is unique for a state or even for each state of the machine.
We have studied sequences with identification and verification purpose in our previous
work [So14]. The basic identification sequences are discussed there in detail; besides
definitions there are construction algorithms and examples. The basic identification
sequence are preset and adaptive distinguishing sequence, state verifying sequence, state
characterizing set, homing sequence and synchronizing sequence. Here we propose only
definitions of those we will use. The definitions usually assume complete FSM M =
(S,X, Y, s0, D, δ, λ), therefore the input sequence is not stated as ‘defined’ explicitly.

Definition 3.27. A preset distinguishing sequence (PDS) for a machine is an input
sequence u such that the output sequence produced by the machine in response to u is
different for each initial state, i.e., λ∗(si, u) 6= λ∗(sj , u) for every pair of states si 6= sj .

(Definition 2.1 in [Le94])

Definition 3.28. An adaptive distinguishing sequence (ADS) is a rooted tree R with
exactly n leaves; the internal nodes are labeled with input symbols, the edges are labeled
with output symbols, and the leaves are labeled with states of the FSM such that: 1)
edges emanating from a given node have distinct output symbols, and 2) for every leaf
of R, if u, z are the input and output strings, respectively, formed by the node and
edge labels on the path from the root to the leaf, and if the leaf is labeled by state si
of the FSM then z = λ∗(si, u). The length of the sequence is the depth of the tree.

(Definition 3.1 in [Le94])
Instead of representation ADS as a tree, one can list the sequences forming paths

from the root to leaves. A set of these sequences is called distinguishing set in [Bo74].
Then we denote di the particular distinguishing sequence related to state si.

Definition 3.29. A state verifying sequence of a state s ∈ S is an input sequence u ∈ X∗,
such that the output sequence produced by the machine in response to u from any state
other than s is different than that from s, i.e., λ∗(si, u) 6= λ∗(s, u) for any si 6= s.

(Definition 4.1 in [Le94])
State verifying sequence (SVS) is usually called Unique Input Output Sequence

(UIOS) in the literature. However, if one deals with deterministic machines that
uniquely determine the output sequence when an input sequence is applied in a state,
the notion ‘state verifying sequence’ better expresses the purpose of the sequence.
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Definition 3.30. A state characterizing set Wi of a state si ∈ S is a set of input
sequences uk ∈ X∗, such that the set of output sequences produced by the machine
in response to all uk from any state other than si is different than that from si, i.e.,
{λ∗(sj , uk) | uk ∈Wi} 6= {λ∗(si, uk) | uk ∈Wi} for any sj 6= si.

In other words, for each state different from si there exists an input sequence uk in
the state characterizing set of state si, such that the output sequences produced by the
machine in response to uk are different, i.e., ∀sj 6= si ∃uk ∈Wi : λ∗(sj , uk) 6= λ∗(si, uk).

State characterizing set (SCSet) is called state identifier in [Pe91]. We will need a
special relation of state characterizing sets that ensures a separating sequence of si and
sj is contained in related sets.

Definition 3.31. For a family, or a set, H of harmonized state identifiers H1, ...,Hn the
following holds: ∀si 6= sj ∈ S, ∃u ∈ pref(Hi) ∩ pref(Hj) : λ∗(si, u) 6= λ∗(sj , u).

In case when one wants to distinguish all states from each other, a characterizing set
(CSet), or characterization set [Ch78], can be used.

Definition 3.32. A characterizing set W is a set of input sequences uk ∈ X∗, such that
for each pair of states si 6= sj , there is sequence uk ∈ W that distinguishes these two
states, i.e., λ∗(si, uk) 6= λ∗(sj , uk).

Definition 3.33. An input sequence u is said to be a homing sequence (HS) if the
final state of the machine can be determined uniquely from the machine’s response to
u, regardless of the initial state. These final states of the machine are determined by
observing the output sequence produced by applying a homing sequence to the machine.

(Definition in [De94])

It is worth mentioning that not each FSM has each basic sequence. We proposed
relations of basic sequences and class of finite-state machines in [So14]. In short, each
FSM having preset distinguishing sequence has adaptive distinguishing sequence, each
FSM having ADS has state verifying sequence for each state and each FSM having SVS
for each state has state characterizing set for each state. The contrary does not hold;
machine with ADS does not have to have PDS, for example. Furthermore, every reduced
FSM has SCSet for each state, family of harmonized state identifiers, characterizing set
and homing sequence. However, none of basic sequences can be unique in given machine,
e.g. a FSM can have several minimal length HS or PDS.

Notions of state and transition cover sets are now defined as usual in the automata
testing field [Fu91]. They are used to declare that each state or each transition is visited
during the testing process.

Definition 3.34. An input sequence u ∈ ΩM is called transfer for state s if δ(s0, u) = s.
A state cover, denoted SC, of FSM M is a set of defined input sequences such that
there exists a transfer sequence for each state, i.e. δ∗(s0, SC) = S. The state cover is
minimal if it contains n sequences, i.e. |SC| = |S|.

Definition 3.35. Given FSM M , a transition (s, x) is covered in a defined sequence
u ∈ ΩM , or u covers the transition (s, x), if and only if there are input sequences
v, w ∈ X∗ such that u = vxw and δ(s0, v) = s. A transition cover, denoted TC, of FSM
M is a set of defined input sequences such that each transition is covered in a sequence
of TC, i.e. ∀(s, x) ∈ D ∃u = vxw ∈ TC : δ∗(s0, v) = s.

The last definition is a special concatenation of sequence sets. It will simplify the
description if one wants to extend each sequence of given set by different set of sequences.
Note that extension of a sequence is proposed in Definition 2.13.
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Definition 3.36. Let Vi be a set of defined input sequences of state si, i.e. Vi ⊆ Ω(si).
Let V be a set of Vi for FSM M such that each state si has the related Vi in V . Let U
be a set of defined input sequences of FSM M ; U ⊆ ΩM . U is extended by related sets
Vi, denoted U ◦ Vi, if each sequence u ∈ U is extended by set Vi that is related to the
final state si when u applied in the initial state s0. Formally,

U ◦ Vi =
⋃
u∈U
{u · v | v ∈ Vi ∧ Vi relates to si = δ∗(s0, u)}

3.7 Denotation unification
The literature dealing FSMs and their testing is very extensive and it contains wide
range of different notations. In this section, we propose a unification of denotations
and reasons why we have chosen such symbols to represent particular notion.

We use uppercase for sets, lowercase for elements and the Greek alphabet for
function mainly. Particularly, as in the previous sections, we denote FSM by
M = (S,X, Y, s0, D, δ, λ), where the set of states is S = {s0, s1, . . . , sn−1}, the input
alphabet is X = {x1, . . . , xp}, the output alphabet is Y = {y1, . . . , yq}, the initial state
is s0 ∈ S, the domain D ⊆ S × X and δ, λ are the transition and output functions.
The sizes of sets are as follows: n = |S|, p = |X| and q = |Y |. The same denotation of
sizes is used in [Gi62] and [Le96p] but the former uses Z for the output alphabet and
the latter I and O for the input and output alphabets. These notations are also very
accurate however we prefer X and Y due to the fact that O coincides with 0 (zero)
and we use I rather as a set of indexes. When we need to refer a second FSM, we use
machine N = (Q,X ′, Y ′, q0, D′,∆,Λ),m = |Q|. Notice the correspondence between
M and N ; the input and output alphabets and the domains only differ in the prime
symbol, the transition and output functions use the same Greek letters but lower or
upper case. The only difference is denotation of states; M has si and N has qj .

Input sequences, or strings over the input alphabet X, are denoted by u, v, w, t.
The sequence t ∈ X∗ usually refers to a test case and T , t ∈ T , is a test suite, see
Definition 4.1. Some other lowercase letters can be used for an input sequence in special
cases, di is a distinguishing sequence of state si, for example. An output sequence, or
a string over the output alphabet Y , is mainly represented by z.

The characters from the beginning of the alphabet are employed for labeling states
and inputs in examples. We use A,B,C, . . . for denotation of states and a, b, c, . . .
for input symbols, in particular. Then, output symbols are represented by numbers
0, 1, 2, 3, . . .. The letters i, j, k, l are reserved for indexing. A set of indexes is usually
denoted by I and often contains numbers beginning from 0, e.g. i ∈ I = {0, 1, 2}. The
reset input is always denoted by r. Some other letters are reserved for particular use,
e.g. W (Wi) denotes a (state) characterizing set, H is a family of state identifiers (Hi),
F is a fault domain (Definition 4.4) and so on.

The last note is about use of the Greek alphabet. We have already defined a function
of symbols δ,∆, λ and Λ. We refresh that the empty string is ε and the set of defined
input sequences for state s is Ω(s). Some authors use upper Greek letters for sets of
symbols, e.g. Σ for the input alphabet [Ho06], however, we consider X,Y as apter for
the input and output alphabets. The letters X and Y are simpler and correspond to
well-used mathematical formula for function f : X → Y . Other authors apply α, β, . . .
as input sequences [Si10]. But we prefer u, v, w, t because of the mentioned division of
alphabets; uppercase of the Latin alphabet for sets, lowercase of the Latin alphabet for
elements and the Greek alphabet for functions.
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Chapter 4
Test properties

The previous chapter stated different types of FSM and their properties. That is, we
dealt with one machine so far. Now we will focus on how to check whether two (or
more) machines do the same. In other words, we will compare machines if they have
equal behavior. This process is called conformance testing, or fault detection [Le96p].
It takes a FSM M , called a specification, and generates tests based on the specification.
Tests are input sequences if M is deterministic, and input/output sequences if M is not
deterministic. Tests are generated according to chosen method, see Chapter 6. Testing
consists of generating tests and applying each test to the implementation under test
(IUT), or simply the implementation. The implementation can contain any fault in
general. It would be impossible to confirm machine equivalence unless potential faults
were restricted by a fault model.

4.1 Fault model
A fault model describes possible faults that may occur in the implementation under
test. The most common fault model is that the implementation is modeled by a FSM
N with up to m states. The maximal number of states m is known apriori.

Before we will state property of tests, we need to formally define a test and relations
between machines.

Definition 4.1. A defined input sequence of FSM M is called a test case, or simply
test, of M . A test suite T of M is a finite prefix-closed set of tests of M . A test t ∈ T
is maximal (with respect to T ), if it is not a proper prefix of another test in T .

Only maximal test sequences are applied in testing because they cover all responses to
the entire test suite. If a test suite contains only one maximal sequence, the sequence
is called checking sequence (CS). On the other hand, if a test suite contains several
tests we need to consider resettable machine and the reset is used before a test case is
applied. Therefore, the length of test suite T is sum of tests’ lengths increased by 1, i.e.
len(T ) =

∑
t∈T (|t|+ 1).

The following definition of relations between states of FSM is adapted from [Pe05].

Definition 4.2. Given a FSM M = (S,X, Y, s0, D, δ, λ) and states si, sj ∈ S,
(i) si and sj are compatible, written si ∼ sj , if Ω(si) ∩ Ω(sj) = ∅ or for all

u ∈ Ω(si) ∩ Ω(sj) : λ∗(si, u) = λ∗(sj , u);
(ii) si is quasi-equivalent to sj , written si w sj , if Ω(si) ⊇ Ω(sj) and for all

u ∈ Ω(sj) : λ∗(si, u) = λ∗(sj , u);
(iii) si and sj are equivalent, written si ∼= sj , if Ω(si) = Ω(sj) and for all u ∈

Ω(sj) : λ∗(si, u) = λ∗(sj , u);
(iv) si and sj are distinguishable (by u), written si � sj (si �u sj), if there exists

an input sequence u ∈ Ω(si) ∩ Ω(sj), called a separating sequence, such that
λ∗(si, u) 6= λ∗(sj , u); given a set of input sequences U , we also write si �U sj
if si �u sj and u ∈ U .
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Notice that distinguishable states, Definition 4.2 (iv), were defined previously even

for general FSM in Definition 3.7.
The relations quasi-equivalence, equivalence and distinguishability can be applied to

states from different machines and so extended to relation between machines.

Definition 4.3. Let M = (S,X, Y, s0, DM , δ, λ) and N = (Q,X, Y, q0, DN ,∆,Λ) be
FSMs such that S ∩Q = ∅. Then,

(i) M is quasi-equivalent to N , written M w N , if s0 w q0, i.e. ΩM ⊇ ΩN and for
all u ∈ ΩN : λ∗(s0, u) = Λ∗(q0, u);

(ii) M and N are equivalent, written M ∼= N , if s0 ∼= q0, i.e. ΩM = ΩN and for
all u ∈ ΩM : λ∗(s0, u) = Λ∗(q0, u);

(iii) M and N are distinguishable (by u), written M � N (M �u N), if there
exists an input sequence u ∈ ΩM ∩ ΩN such that λ∗(s0, u) 6= Λ∗(q0, u); given
a set of input sequences U , we also write M �U N if M �u N and u ∈ U .

According to Definition 4.3, both machines operates over the same alphabet X. If it
was not so, the machines would become harder to compare.

The quasi-equivalence relation is also called weak conformance [Le96p] Then strong
conformance refers to the equivalence relation.

Definition 4.4. Given FSM M = (S,X, Y, s0, D, δ, λ), a fault domain Fm(M) of the
machine M is a set of finite-state machines over the alphabet X with up to m states.
A FSM N ∈ Fm(M) is called

• conforming implementation of the M if N wM , or
• nonconforming implementation of the M if N �M .

A fault domain Fm(M) can be specified by a fault function Φ, as it is stated in [Pe92].

Definition 4.5. A fault function Φ for the given machine M = (S,X, Y, s0, DM , δ, λ)
describes possible faults in the implementation N = (Q,X, Y ′, q0, DN ,∆,Λ). Formally,
Φ : Q×X → P(Q× Y ′), where Q ⊇ S, Y ′ ⊇ Y and P(Q× Y ′) is power set of Q× Y ′,
and ∀(s, x) ∈ D : (δ(s, x), λ(s, x)) ∈ Φ(s, x). Then, a transition (s, x) is called valid if
Φ(s, x) = {(δ(s, x), λ(s, x))}, otherwise the transition is called suspicious.

A fault function Φ is only stated for Mealy machineM because the restricted fault do-
main Fm(M) contains nondeterministic Mealy machines. Definition 4.5 can be adapted
for Moore machine by extension of the alphabets with the empty string ε.

There are several types of faults in the implementation N , m = |Q|:

1. Same type of fault and m = n, i.e. the implementation has no extra states:
. transfer faults: Φ(s, x) = {(s′, λ(s, x)) | s′ ∈ S} for all (s, x) ∈ S ×X
. output faults: Φ(s, x) = {(δ(s, x), y) | y ∈ Y } for all (s, x) ∈ S ×X
. input faults: Φ(s, xi) = Φ(s, xj) = {(δ(s, xi), λ(s, xi)) , (δ(s, xj), λ(s, xj))} ∀s ∈ S

2. Arbitrary type of fault and m > n: Φ(s, x) = Q× Y ′ for all (s, x) ∈ Q×X

4.2 Completeness
Definition 4.6. A test suite T is Fm-complete if and only if T distinguishes each
nonconforming implementation N ∈ Fm(M) from the specification M , i.e. N �T M .

The number of states m in the IUT are usually assumed to be greater or equal to
the number of states n in the reduced specification M , i.e. m ≥ n. In other words, the

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Sufficient conditions

implementation can have extra states. If the fault domain Fm is not further restricted,
i.e. it contains all machines with up to m states, we say m-complete test suite instead
of Fm-complete. It is clear that if T is m-complete then it is k-complete, k < m, as well.
We deal with minimal FSMs, therefore Fk(M) for k < n cannot contain a conforming
implementation of M . Nonetheless, there is also a method confirming p-completeness,
p ≤ n, see P-method in Chapter 6. The reason for a special method is reduction of the
size of test suite. Note that p in the notion ‘p-completeness’ does not correspond to
the size of the input alphabet X. As a reminder, we use p for |X| throughout the text
however with connection to p-complete test suite it only means p ≤ n = |S|.

4.3 Sufficient conditions
Let’s consider a resettable initially connected machine first. Sufficient conditions for m-
completeness in general or for n-completeness if m = n are stated in [Pe96] or [Do05i].
Their reformulation into a condensate form is proposed in the next theorem.

Theorem 4.1. A test suite T is m-complete with respect to the reduced machine M
with n states if T contains the set P of sequences SC⊗Xm−n+1∩ ΩM and the following
conditions hold:

(1) for each u ∈ SC and each v ∈ P such that δ∗(s0, u) 6= δ∗(s0, v), there should
be two sequences uw, vw ∈ T such that λ∗(δ∗(s0, u), w) 6= λ∗(δ∗(s0, v), w); and

(2) if m > n then for each u ∈ P \ SC and each v ∈ pref(u) \ SC such that
δ∗(s0, u) 6= δ∗(s0, v), there should be two sequences uw, vw ∈ T such that
λ∗(δ∗(s0, u), w) 6= λ∗(δ∗(s0, v), w).

Theorem 4.1 (1) is divided to two cases in the literature. All states are distinguished
from each other by extension of SC at first. Then remaining transitions are verified.
Theorem 4.1 (1) verifies the next state against states reached by SC. On the other
hand, Theorem 4.1 (2) verifies transitions that may be connected with an extra state.
Theorem 4.1 (2) has to be checked only if an implementation is assumed to have more
states than the specification.

A sufficient condition based on use of distinguishing sequence and notions of d- and
t-recognized states in the checking sequence is stated in [Ur97]. These notions are
basis for a lot of testing methods creating checking sequence, especially D-method in
Section 6.2.2, however they were further generalized with the notion of a confirmed set.

A weaker sufficient condition that needs neither reset nor DS is proposed in [Si08]
(restricted to checking sequence) and in [Si10] (for general use). It is based on notion
a confirmed set and it is proposed for n-completeness of test suite. Let FT (M) be a
set of all machines from the fault domain F (M) that have the same response to the
test suite T as the specification M . The next definition and theorem consider only
n-completeness, hence the corresponding fault domain is Fn(M).

Definition 4.7. Let T be a test suite of a FSM M = (S,X, Y, s0, D, δ, λ) and K ⊆ T .
The set K is confirmed if δ∗(s0,K) = S and, for each N ∈ FT (M), it holds that for all
u, v ∈ K : ∆∗(q0, u) = ∆∗(q0, v) if and only if δ∗(s0, u) = δ∗(s0, v). An input sequence
is confirmed if there exists a confirmed set that contains it.

We refer [Si09c] for the next notions. When we need to indicate the final state
reached by u ∈ K then we say that u is confirmed as state s = δ∗(s0, u) (in M), or
that it is s-confirmed. Sequence v is said to be verified in state s (or s-verified) if u is
s-confirmed and uv is s′-confirmed, s′ = δ∗(s, v). We say that the transition (s, x) is
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verified if x is s-verified. We say that a sequence v is output-confirmed in state s (or
s-output-confirmed), if for any N ∈ FT (M), it holds that Λ∗(qs, v) = λ∗(s, v), where
qs ∈ Q is the state reached in N by an s-confirmed sequence.

Theorem 4.2. Let T be a test suite of an initially connected reduced FSM M =
(S,X, Y, s0, D, δ, λ) with n states. T is n-complete for M , if there exists a confirmed set
K ⊆ T such that empty sequence is confirmed and each defined transition is verified.

The Theorem 4.2 is a composition of theorems from [Si08, Si09c] and [Si10]. The
theorem holds even if the test suite T has only one maximal sequence, that is, checking
sequence is under consideration as in [Si09c], or the machine is partially specified [Si08].

Convergence and divergence of tests w.r.t. a set of FSMs is another notion that can
condition completeness of a test suite. These notions are proposed in [Si09c, Si12] for
example.

Definition 4.8. Given a set of FSMs F , two tests are F-convergent, if they converge
(i.e. transfer from the initial state to the same state) in each FSM of the set F ; and
two tests are F-divergent, if they diverge (i.e. transfer from the initial state to different
states) in each FSM of F .

We use F to denote the set of FSMs on purpose. F denoted a fault domain up
to now and it will continue. A fault domain is defined as a set of FSMs and the
Definition 4.8 will be employed just with connection to fault domain. A consequence
of the Definition 4.8 follows. Two sequences u and v are FT (M)-convergent if for
each N ∈ FT (M), it holds that ∆∗(q0, u) = ∆∗(q0, v). We say that u and v FT (M)-
converges [Si09c]. As a reminder, FT (M) is a set of all machines from the fault domain
F (M) that have the same response to the test suite T like the specification M . For
simplicity, we use FT without the corresponding specification M when it is clear from
the context. Similarly, the set F in which tests are convergent or divergent will be
omitted, and M -convergent or M -divergent tests of a machine M is used instead of
{M}-convergent or {M}-divergent.

Convergence relation is reflexive, symmetric and transitive, i.e. it is an equivalence
relation over the set of tests [Si12]. Tests ui ∈ T can be thus partitioned into corre-
sponding equivalence classes [ui] = {uj ∈ T | ui and uj converge}.

Definition 4.9. Given a test suite T and a fault domain F (M) containing the specifi-
cation FSM M , a set of tests in T is FT -convergence-preserving if all its M -convergent
tests are FT -convergent; a set of tests in T is FT -divergence-preserving if all its M -
divergent tests are FT -divergent.

The last sufficient condition stated in Theorem 4.3 and [Si12] is applicable to m-
complete test suite and it is based on convergence of tests. It employs a notion of
initialized set. A set A is initialized if it contains the empty sequence, i.e. ε ∈ A.

Theorem 4.3. Let T be a test suite for a FSM M and F (M) be a related fault domain.
If T contains a FT -convergence-preserving initialized transition cover for M , then T is
a F -complete test suite for M .

Proofs of the proposed theorems can be found in the referenced literature.
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Chapter 5
Related Work

Checking experiment has been studied by many researchers for the last six decades.
In 1956, Moore [Mo56] stated an upper bound of the length of checking sequence.
Gill [Gi62] proposed some additional distinguishing experiments and their upper bounds
in 1962. Two years later, Hennie [He64] described the construction of a checking se-
quence based on preset distinguishing sequence, aka the D-method. He also proposed a
modification of the method to be applicable to machines without PDS. We call it the
DW-method. His work became a basis for others.

Hsieh proposed a quite different testing method in 1971 [Hs71] which we call the
HrADS-method and is able to create even m-complete checking sequence. This method
employs a sufficient condition that was later formulated by Vasilevskii [Va73] and
Chow [Ch78] to design the W-method. The W-method creates a test suite with several
sequences so it is applicable only to resettable machines.

More than a few new methods have been proposed since then. The Wp-method [Fu91],
the HSI-method [Pe91], the FF-method [Pe92], the H-method [Do05i], the SC-
method [Pe05], the P-method [Si09f] and the SPY-method [Si12] generate several
test cases as the W-method and so they assume reliable reset in each state of the
given machine. Section 6.1 describes these methods in more detail. On the contrary,
testing methods producing a checking sequence are discussed in Section 6.2. These
methods include the D-method which was extensively improved for example in [Go70,
Ur97, Hi06, Ch05, Ur06, Du09], the AD-method [Bo74, Hi09], the DW-method refor-
mulated in [Re95] and improved to the DWp-method [Po13], the UIO-methods, the
CSP-method [Vu90], the C-method [Si08, Si09c] and the K-method [Ka10].

The UIO-methods consist of approaches that use state verifying sequences, or Unique
Input Output sequences, for state verification. The UIO-method is simply derived from
the D-method [Sa85, Sa88]. Nevertheless, the UIOv-method [Ch89] had to be proposed
due to the fact the UIO-method has not a complete fault coverage as it was shown in
[Si88]. A state can possess several SVSs, this fact is employed by the MUIO-method
[Sh92] to reduce the length of checking experiment. Then a number of improvements
of the UIO-methods including optimization of tests’ composition or overlapping of test
sequences was proposed [Ah91, Ch95i, Ch06, Du07, Wa10].

The aforementioned methods are deterministic but there are attempts to conform
the implementation-specification equivalence by a probabilistic or random approach.
For instance, a guided random walk is employed in [Le96c] and a test is selected at
random with the estimation of probability of undetected error in [Ya95]. The latter
approach relates to PAC-learning, described in [Ke94], for example. This thesis contains
other general notions besides PAC-learning. One can find combinatorial problems like
Traveling Salesman Problem (TSP), Maximum Flow and Minimum Cost Flow (MCF)
or Rural Chinese Postman Problem (RCPP) in [La76] and the notion of a NP-complete
problem and time complexity of an algorithm in [Ho06], for example.

Development of sufficient conditions for complete fault coverage of generated test
suite (Section 4.3) goes hand in hand with improving of testing methods. In 1996,
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Petrenko and Bochmann stated the condition of Theorem 4.1 for m-complete test suite
proving almost all methods that produce several tests. Ural et al. [Ur97] proposed
one year later sufficient conditions using preset distinguishing sequence and so the
D-method was proved to generate a checking sequence, or an n-complete test suite.
A sufficient condition for use of adaptive distinguishing sequence instead of PDS was
posed by Hierons et al. in 2009 [Hi09]. With the notion of a confirmed set in 2008,
Simão and Petrenko [Si08] stated a sufficient condition for n-completeness captured
in Theorem 4.2. The authors then focused on creating of a confirmed set needed for
Theorem 4.2. A sufficient condition for the existence of a confirmed set stated in
Theorem 8.1 was described in 2010 [Si10]. To prove the SPY-method, Theorem 4.3 for
m-completeness was proposed by Simão, Petrenko and Yevtushenko in 2012 [Si12].

Completeness of fault coverage of test suite was checked empirically before sufficient
conditions were discovered. In 1988, Sidhu and Leung [Si88] tested produced test suites
on randomly generated machines. This was sufficient to show that the UIO-method does
not produce a complete test suite in general. Vuong and Ko proposed the CSP-method
in 1990 [Vu90]. The method generates all machines that respond to the test suite as the
specification. Constraint Satisfaction Problem is used for the generation of machines.
Ghedamsi and Bochmann stated another approach that is able to locate fault and adds
additional diagnostic test cases, considering one fault in [Gh92] and multiple faults
in [Gh93]. In 1993, Zhu and Chanson [Zh93] formalized the CSP-method and added
a constructive algorithm. A method based on minimization of FSMs was described
by Yao et al. in 1994 [Ya94]. This method detects a complete test suite and is also
applicable on partial FSMs. However, time complexity of the method as well as the
CSP-method is exponential in the length of test suite. Moreover, reduction of partial
FSMs is NP-complete [Go07]. A great survey of fault coverage of tests was done by
Petrenko and Bochmann in 1996 [Pe96]. It comprises sufficient conditions and methods
for complete fault coverage detection, even for different types of FSMs. A new algorithm
for checking n-completeness of test suite was proposed by Simão and Petrenko in 2010
[Si10]. It is based on finding n-clique in a n-partite distinguishability graph created from
tests. A discussion how to solve this NP-complete problem is included. The method is
usable for partial and reduced FSMs with or without reset. State-Recognition Patterns
introduced by Kapus-Kolar in 2012 [Ka12n] could be used for further improving of
methods for checking fault coverage completeness because they propose new ways how
to distinguish states in test cases.

Testing methods are compared with each other from time to time. Here is a few ex-
amples of methods’ comparison: [Si89, Ur92, Do05e, En13]. Lower bounds of a checking
sequence generated by different versions of the D-method are discussed in [Jo10]. Lee
and Yannakakis showed that design of PDS and SVS are PSPACE-complete in 1994
[Le94]. The authors summarized principles of testing FSMs two years later [Le96p].

A design procedure for charactering set as well as for related separating sequences,
state characterizing sets and a family of harmonized state identifiers is needed for some
testing methods. Such a procedure was described by Gill in 1962 [Gi62]. The method
is based on minimization algorithm and its partition tables. In 1971, Hopcroft [Ho71]
showed that a FSM can be reduce in O(n logn) however an inverse transition function
δ−1 is required. In appendix of [Lu95] there is a design algorithm generating CSet and
HSIs but it is not constructive and it relies on partitions again. Another design method
of CSet with theorems proving correctness is proposed in [Mi10] however it contains
small mistake in Theorem 3 which can influence the proposed algorithm. Compared to
our algorithms in Section 10.2 and [So14] their method requires more space.
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Chapter 6
Testing methods

Conformance testing proves that a system complies with its specification. A fault
domain must be set to be possible to make a conclusion after testing. We focus on
completely-specified deterministic finite-state machines that represent the specification.
Our fault domain contains all deterministic machines with up to m states, i.e. m-
complete test suite design methods are considered. Notice that a faulty machine can
be partially-specified.

The specification is also assumed to be reduced. Each FSM has minimal form and
it can be reduced to its minimal form. Note that partial FSMs may have several
distinguishable reduced forms. Methods for constructing a reduced form of a partial
machine are more involved than that for complete machines [Ko10]. Minimization of
complete FSM has polynomial time complexity, however it can run even in O(n logn)
[Ho71].

Methods creating a test suite T according to the specification can be divided by
the number of maximal tests in T . A test suite with several maximal test cases needs
the specification with reset feature but it comes with price of assuming the initially-
connected specification. On the other hand, testing methods producing a checking
sequence assume the strongly-connected specification, i.e. a more restricted class of
FSMs than the one of initially-connected machines.

This chapter describes testing methods that we are aware of. We propose basic idea
behind a given particular method and a detail design if the method takes a part in
our experiments. Notice that some methods even deal with partial or nondeterministic
machines. Methods assume that each test is completely performed, i.e. there is no
state in which an input as a part of the test cannot be processed in the implementation
under test. This is a simplification because if a test sequence gets stuck, we find an
error in the implementation.

6.1 Resettable machines
A test suite of a FSM with reset feature usually consists of several input sequences. Each
sequence is applied to the initial state that is fixed in the machine. The reset input r
always brings the machine into the initial state. Note that there are two types of reset
in the literature. We consider the reliable reset however if the reset was unreliable,
i.e. its application does not have to bring the machine to the initial state, the reset
functionality would have to be tested.

Testing methods confirm correctness of each transition; the machine really goes from
state si to state sj under input a if the specification holds such that. Hence transition
cover set TC is employed in each proposed testing method because it contains shortest
sequences connecting the initial state with all states, i.e. state cover set SC, extended
by each symbol of the input alphabet X. That is, each transition is covered by at least
one sequence of TC. The empty string ε is in TC as well. The methods differ in the way
how they manage confirmation of the next state after processing a tested transition.
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The TC is extended multiple times by the entire input alphabet if the maximum

number of states m in the implementation is greater than the number of states n in the
specification. The proposed methods consider the sets of sequences P and R as follows.

P =
m−n⋃
i=0

TC ⊗X i =
m−n+1⋃
i=0

SC ⊗X i and R = P \
m−n⋃
i=0

SC ⊗X i

Notice that P = TC and R = TC \SC if there is no extra state in the implementation.
In addition, if the specification M is not completely specified, defined sequences are
chosen only, i.e. P and R are redefined as P ∩ ΩM and R ∩ ΩM .

Theorem 4.1 enables us to use arbitrary identification sequences for state verification.
Therefore, we propose three testing methods that we have not found in the literature.
The methods are the PDS-method, ADS-method and SVS-method. They employ input
sequences (name of method) with stronger verification power than characterizing set.
These sequences are preferably used for checking sequence design, see Section 6.2.

6.1.1 PDS-method
The PDS-method employs preset distinguishing sequence (Definition 3.27) for confirma-
tion of the next state. Every state produces a different output sequence on distinguish-
ing sequence and thus PDS distinguishes all states. The advantage of the PDS-method
is that only one sequence is applied after each sequence of P , the preset distinguishing
sequence in particular. However, there are finite-state machines without PDS which
restrict the applicability of this method, see Section 3.6. A test suite T is formally
described as follows:

T = P ⊗DS

6.1.2 ADS-method
The ADS-method is similar to the PDS-method but it uses adaptive distinguishing
sequence (Definition 3.28) for verification of the next state. ADS is a set of input
sequences di that distinguishes every state from each other. The ADS-method produces
shorter test suites than the PDS-method and it is applicable to more machines because
there are more more machines having ADS than PDS, see Section 3.6. However, not
all machines have an ADS. A test suite T is formed as follows:

T = P ◦ di

6.1.3 SVS-method
The SVS-method confirms transitions using state verifying sequences (Definition 3.29),
aka unique input output sequences. SVS does not have such verifying power as distin-
guishing sequences so SVSet =

⋃
si∈S SVS i has to be introduced. Each pair of different

states has to be extended by the same separating sequence according to Theorem 4.1.
Thus, SVSet is appended to each sequence of P \R and SVS i of state si verifies the last
transition, i.e. it appends to related sequence of R. In case of absence of extra states,
the set P \ R coincides with SC and R with the rest transitions. The SVS-method
corresponds to the UIOv-method (Section 6.2.5) but it does not concatenate tests to a
checking sequence so a test suite is created as follows:

T = (P \R)⊗ SVSet ∪R ◦ SVS i

SVS does not have to exist for each state. In such case, we use a state characterizing
set Wi in place of non-existent SVS i.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Resettable machines

6.1.4 W-method
The W-method was described by Vasilevskii in 1973 [Va73] and by Chow in 1978 [Ch78].
It simply takes characterizing set W and applies each sequence after all tested transi-
tions. That is, a test suite T is concatenation of sets P and W :

T = P ⊗W

6.1.5 Wp-method
The partial W-method, aka the Wp-method introduced by Fujiwara et al. in
1991 [Fu91], reduces the total number of input symbols used for testing. It consists
of two phases. The former phase distinguishes each state reached by a sequence of
P \ R from others using characterizing set W like in the SVS-method. That is, state
cover set SC is concatenated with characterizing set W if there is no extra state. The
latter phase confirms all remaining transitions; last transitions of sequences of R. Use
of state characterizing set Wi of the final state si after applying a sequence from R is
enough for confirmation. Nevertheless, each state characterizing set Wi must be subset
of characterizing set W used in the first phase, i.e. ∀si ∈ S : Wi ⊆ W . Then a test
suite T is formed as follows:

T = (P \R)⊗W ∪R ◦Wi

The Wp-method is proposed for nondeterministic FSMs in [Lu94] and it is basis for
some testing methods constructing checking sequence, for instance [Ch03] or [Xi06];
the latter reformulates concatenation of test cases as Asymmetric TSP.

6.1.6 HSI-method
The harmonized state identifiers-method, aka the HSI-method proposed by Petrenko
in 1991 [Pe91], is comparable to the Wp-method in the length of test suite [Do05e].
It is based on special property required on state characterizing sets, or state identifiers.
A harmonized state identifier Hi, see Definition 3.31, is applied after a sequence of
P whose final state is si. Thus, a test suite T is concatenation of P with related
harmonized state characterizing set Hi:

T = P ◦Hi

The HSI-method is also stated for partial nondeterministic FSMs in [Lu95] where a
constructive algorithm for obtaining a family of HSIs is included as well. A probabilistic
approach is described in [Ya95]. It applies tests created by the HSI-method at random
and estimates a rate of undetected errors in the implementation with a probability of
the estimation. The estimation is similar to general concept of PAC-learning [Ke94].

6.1.7 FF-method
The Fault Function-based method produces a test suite in accordance to the chosen
fault function, see Definition 4.5. It builds tests to remove uncertainty after suspicious
transition. Suspicious transitions are those causing errors. Thus, each suspicious tran-
sition is extended by separating sequences distinguishing the correct next state from
the others defined by the fault function Φ. If a separating sequence contains suspicious
transition, its different output must be checked from the other states. More precise
conditions are stated by method’s authors Petrenko and Yevtushenko in [Pe92].

The FF-method uses harmonized state identifier in the subset of states for removal
of uncertainty after suspicious transition. Therefore, the method is equal to the HSI-
method if all faults may occur, i.e. the implementation N is from the fault domain
Fm(M) of the specification M .
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6.1.8 H-method

The H-method proposed by Dorofeeva et al. in 2005 [Do05i] is similar to the HSI-
method. It is based on the sufficient condition for complete test suite, see Theorem 4.1.
Choosing separating sequences on the fly is the only difference from the HSI-method.
The H-method extends P by sequences distinguishing each two different states reached
by P . Formally, the construction of a test suite T is described in four steps:

1. T = P ,
2. For each u, v ∈ SC let su = δ∗(s0, u) and sv = δ∗(s0, v), and if su 6= sv and T does not

contain sequences distinguishing states su and sv, i.e. ¬∃u ·w, v ·w ∈ T : λ∗(su, w) 6=
λ∗(sv, w), then add such u · w and v · w to T ,

3. For each u ∈ SC, v ∈ P \ SC let su = δ∗(s0, u) and sv = δ∗(s0, v), and if su 6= sv and
T does not contain sequences distinguishing states su and sv, i.e. ¬∃u ·w, v ·w ∈ T :
λ∗(su, w) 6= λ∗(sv, w), then add such u · w and v · w to T ,

4. (m > n) For each u, v ∈ P \ SC let su = δ∗(s0, u) and sv = δ∗(s0, v), and if su 6= sv,
u ∈ pref(v) and T does not contain sequences distinguishing states su and sv, i.e.
¬∃u · w, v · w ∈ T : λ∗(su, w) 6= λ∗(sv, w), then add such u · w and v · w to T .

The algorithm is also generalized for nondeterministic FSMs in [Do05i].

6.1.9 SC-method
The State-Counting method proposed by Petrenko and Yevtushenko in 2005 [Pe05]
designs m-complete test suite for unreduced partial deterministic FSM. Partial ma-
chines can have several minimal forms because there can be indistinguishable states.
The method is based on the notion of distinguishing machine, i.e. composition of two
machines, the specification and the implementation in particular. Then a test suite T
containing all defined sequences of length up to mn is m-complete. Such a test suite T
can be reduced by counting particular states traversed by a test. Distinguishable and
quasi-equivalent states (Definition 4.2) help recognize state’s occurrence in a test case.

6.1.10 P-method
The P-method generates a p-complete test suite, p ≤ n. An algorithm with a proof of
correctness was proposed by Simão and Petrenko in 2009 [Si09f]. It uses Theorem 4.3
as follows. A test suite T is p-complete if: p < n and T contains a FT -divergent set with
p+ 1 tests, or p = n and T contains a FT -convergence-preserving initialized transition
cover for M .

The method gradually extends initial test suite until the condition. It keeps FT -
convergent and FT -divergent pairs of tests and constructs a divergence graph cap-
tured FT -divergent relations of tests. An FT -divergent set corresponds to a clique in
a divergence graph. To fulfill the condition a maximal clique is searched. Finding a
maximal clique in a graph is NP-complete however suboptimal solution can be used
as it is discussed in [Si09f]. If p = n, an additional procedure is needed to create a
FT -convergence-preserving initialized transition cover. Such a procedure is similar to
aforementioned methods but instead of state cover SC the P-method handles tests in
found maximal clique of size n. Each transition has to be verified so its final state is
distinguished against each different state reached by a test of the maximal clique. The
choice of separating sequences is not restricted. They can be chosen in advance as in
the HSI-method or on-the-fly as in the H-method.
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An extensive comparison with other methods is in [En13], for example. There is
shown that the P-method generates the shortest test suite among the W-, H-, HSI-,
SPY- and P- methods. However, the implementations are not included so we cannot
use the results. Moreover, the P-method is not generalized to create m-complete test
suites therefore it is not consider in the experiments.

6.1.11 SPY-method
The SPY-method employs convergence relation (Definition 4.8) to reduce test branching
and thus the length of test suite T . It was stated by Simão, Petrenko and Yevtushenko
in 2012 [Si12]. Test branching means that a nonempty sequence is extended by several
sequences so several maximal tests are created, e.g. the characterizing set W has to be
applied in a state s so at least |W | maximal tests will contain the transfer sequence u,
s = δ∗(s0, u). It was proved that transitions verified so far extend sets of convergent
sequences. A verified transition (s, x) implies that the transfer sequence v ∈ SC,
δ(s, x) = δ∗(s0, v), converges with ux, where s = δ∗(s0, u). Then a sequence u of
convergent ones is chosen for verification of an unverified transition (s, x), s = δ∗(s0, u),
so test branching can be minimized.

The method uses harmonized state identifiers Hi for distinguishing states like the
HSI-method. It starts with initialized state cover SC extended by Hi. Such a set is FT -
divergence-preserving. The method verifies iteratively each transition so the test suite T
becomes FT -convergence-preserving set that contains initialized transition cover. This
ensures completeness of the test suite, see Theorem 4.3.

The partition induced by the FT -convergent tests is denoted by Π and the block [t]Π
of the partition Π contains tests t′ ∈ T convergent with t ∈ T . This notation is extended
to a set of tests K ⊆ T and thus [K]Π denotes the union of the blocks [t]Π over all tests
t ∈ K. Two convergent sequences extended by the same sequence form convergent
sequence, i.e. [u] = [v] implies [uw] = [vw]. Simultaneously with adding a new test to
T , the partition Π increases its size by new classes that correspond to the added test
cases. Some of new classes are convergent so they are merged. Let closure(Π) denote
the partition obtained after merging each convergent sequence classes.

We need to choose which convergent sequences will be extended by particular distin-
guishing sequence w. The choice influences test branching so here is the rule. Given
class of convergent sequences [u]Π, let ti = uiw /∈ T, ui ∈ [u]Π, be the tests so that one
of them should be added to T . Select a ti such that there is a maximal test t′ ∈ T that
is prefix of the ti, then len(T ∪ {ti}) = len(T ) + |ti| − |t′| is minimal. If there are more
ti with a maximal test as prefix, choose the one that increases the length of test suite
least. On the contrary, if such a maximal test t′ does not exist for each ti, select the
ui ∈ SC for extension. The length of T then grows by |ti|+1 which is minimal because
the ui ∈ SC is shortest transfer sequence to particular state. The algorithm follows:

1. T = SC ◦Hi, Π = {{u} | u ∈ T},
2. For each transition (s, x) not covered [SC]Π and each e ∈ Xm−n do:

(i) Let u, v ∈ SC be such that δ∗(s0, u) = s and δ∗(s0, v) = δ(s, x).
(ii) For each w ∈ Hi, si = δ∗(s0, ve)

1) Select u′ ∈ [u]Π such that len(T ∪ {u′xew}) is minimal and add u′xew to T .
2) Select v′ ∈ [v]Π such that len(T ∪ {v′ew}) is minimal and add v′ew to T .
3) Update Π by closure(Π ∪ {{t} | t ∈ {u′x, v′} ⊗ pref(ew)})

(iii) Update Π by closure(Π ∪ {[ux]Π ∪ [v]Π})
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6.2 Machines without reset

Testing methods creating checking sequence do not consider reset feature because the
machine under test does not possess it or the application of reset is very costly. Another
assumption thus usually restricts the tested system. The specification needs to be
strongly connected to be possible to verify each transition.

The methods we considered here assume that the implementation is in the given
initial state before a checking sequence is applied. However, a homing sequence can
precede the checking experiment to ensure the initial state. Most methods create test
cases at first and then compose these sequences to produce a checking sequence. Fault
domain contains all deterministic machines with up to n states so the methods focus
on n-complete test suite. Thus, the methods assume a deterministic specification and
usually a complete-specified one.

6.2.1 HrADS-method
The method proposed in [Hs71] generates m-complete test suite contained one maximal
test. It was originally called the State Counting method but we call it the HrADS-
method because of its design. Test cases are created as in the ADS-method (Sec-
tion 6.1.2) and each test is prepended by a homing sequence that ends in the given
initial state of the machine. A checking sequence is then formed to contain all tests.

The paper by Hsieh [Hs71] from 1971 uses different notions however in fact it follows
Theorem 4.1 with use of homing sequence. Therefore, the HrADS-method deals with
extra states in the implementation. The name of method is derived from use of Homing
sequence as reset and Adaptive Distinguishing Sequence for state verification. It is
remarkable that the paper contains a lot of new notions however neither the notions
nor the method were further developed.

6.2.2 D-method
The D-method is the most researched testing method. It uses a preset distinguishing
sequence for state verification so it is applicable only on machines that possess PDS d.
Extra states in the implementation are not considered hence the method produces an
n-complete checking sequence.

Basis was proposed by Hennie [He64] in 1964. The method consists of two parts:
checking a response to d in each state and checking each transition. States are sorted in
advance and in this order d is applied to each state in the first phase. Transfer sequences
are employed. A transfer sequence tij concatenates δ∗(si, d) and sj if sj follows si in the
given order. The second phase checks each transition. A transition (sj , x) is verified by
a CS’s subsequence d · tij · x · d applied in state si. This approach sets upper bound on
the length of the produced checking sequence.

In 1970, Gönenc [Go70] introduced notions of d-, q- and t-recognized states in the
checking sequence. These notions are used to prove correctness of the method in [Ur97],
i.e. the method really generates a checking sequence. Gönenc named the sequences
generated by both phases. The first phase produces an α-sequence and the second
phase a β-sequence. There are approaches how to construct such sequences. In short,
d is gradually appended until there is a state which is not recognized by d · d. Transfer
sequences are used only when the constructed sequence c contains d · d applied in
the state reached by c, i.e. c = uddv and δ∗(s0, u) = δ∗(s0, c). The β-sequence is a
concatenation of so-called cells and transfer sequences when they are needed. A cell of
the transition (s, x) is a sequence x · d applied in the state s. Not all cells need to be
included in the β-sequence because some transitions are verified in the α-sequence.
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Generalization of both aforementioned approaches and proof of correctness were pro-
posed by Ural et al. in 1997 [Ur97]. The α-sequence and the β-sequence are divided into
sets of sequences α-set and C-set respectively. The elements of sets are then captured
as edges in an auxiliary graph G′ that contains each state of the given machine twice.
A checking sequence has to include all elements of α-set and C-set so Rural Chinese
Postman Problem (RCPP) covering the sets is solved on G′. A RCPP finds a path over
a subset of edges with minimal cost [Ah91]. A RCPP is known to be NP-complete in
general. Fortunately, the given task can be cast as Minimum-Cost Flow (MCF) which
is polynomially solvable [Ur97]. The contribution is thus interleaving of both phases.

Hierons and Ural further reduced the length of produced checking sequence in 2002
[Hi02]. They specified the design of α-set so an α′-set is created and they also proved
that some edges in G′ are not needed. In 2006, they described how to obtain con-
structively the α′-set [Hi06]. A transition can be verified by appending a sequence of
α′-set so the related test segment, i.e. a cell, of C-set does not have to be included in
the CS. This was proposed formally by Chen et al. in 2005 [Ch05] and by Ural and
Zhang in 2006 [Ur06]. The latter paper also introduced overlapping of sequences of α′-
set and C-set so the auxiliary graph G′ contains edges with negative cost representing
the length of the overlapped subsequence. The last improvement of the D-method we
are aware of is based on a notion of invertible sequences [Hi96, Hi97]. In 2009, Duan
and Chen [Du09] showed an enhancement with alternative β-sequences using acyclic
property related to invertible sequences. However, Kapus-Kolar [Ka12e] showed three
years later that the method is unsafe due to the cyclic dependencies. She proposed a
modification of the method in 2014 [Ka14].

6.2.3 AD-method
Boute showed in 1974 that an Adaptive Distinguishing Sequence can be used instead
of PDS in the D-method [Bo74]. We call the D-method using ADS the AD-method.
In 2009, Hierons et al. [Hi09] proved that even recent versions of the D-method can
employ ADS in place of PDS without loss of test suite completeness. The AD-method is
more applicable than the D-method because more FSMs have got an ADS and moreover
there is a polynomial (suboptimal) design algorithm for ADS.

6.2.4 DW-methods
There are machines without a distinguishing sequence. Therefore, Hennie [He64] pro-
posed with the D-method an extension to wider class of machines, i.e. all deterministic
FSMs. It employs characterizing set W in place of preset distinguishing sequence d.
We call this method the DW-method. Each sequence wi of W needs to be applied in
the same state that is checked currently. It was shown that it is sufficient to repeat a
sequence (n+1)-times to ensure that the final and the start states are equal. A locating
sequence l is introduced. For W = {w1, w2} it is created as l = (w1 · tij)n+1 ·w2, where
a transfer sequence tij brings the machine from the state si = δ∗(sj , w1) to the state sj
when l is applied in sj . Notice that the length of checking sequence created in this way
is exponential in the number of states.

The DW-method was described in detail with the recursive definition of a locating
sequence and casting to Rural Chinese Postman Problem by Rezaki and Ural in 1995
[Re95]. Use of state characterizing sets was formulated by Porto et al. in 2013 [Po13].
It is similar as development the Wp-method from the W-method so we called this
improved approach the DWp-method.
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6.2.5 UIO-methods

Use state verifying sequences (Definition 3.29) for state identification has got a lot of
focus of researchers because more machines have SVSs than distinguishing sequences.

The UIO-method was proposed by Sabnani and Dahbura in 1985 [Sa85, Sa88]. It
uses reset feature so this method could be in Section 6.1 but the original paper forms
a checking sequence CS from smaller tests that each verifies a transition and reset r is
also verified as a standard input. The UIO-method is formally described as follows:

T = TC ◦ SVS i ∪ SC ⊗ {r · SVS0} −→ CS =
⊙
tj∈T

r · tj = r · t1 · r · t2 · . . . · r · t|T |

Moreover, a signature was introduced when a state does not posses a SVS. A signature
is a concatenation of separating sequences interleaving with transfer sequences.

Unfortunately, in 1988, Sidhu and Leung [Si88] showed that the UIO-method has not
a complete fault coverage. Therefore, the UIOv-method was proposed one year later by
Chan et al. [Ch89]. The UIOv-method coincides with the SVS-method (Section 6.1.3)
however it generates only n-complete test suite. The method was improved using an
exclusive tree for generation of SVSs in 1995 [Ch95i] but a complete fault coverage was
not proven.

Aho et al. casted the UIO-method to Rural Chinese Postman Problem (RCPP) in
1988 [Ah91]. The reset r is treated as a standard input, i.e. each state has a transition
leading to the initial state s0 on r. A test segment of a transition (s, x) is x · SVSδ(s,x)
applied in s. The state diagram is augmented by all test segments and RCPP over
every test segment is solved on this augmented graph.

The MUIO-method was proposed by Shen et al. in 1992 [Sh92]. If a state possesses
more SVSs, the method chooses the one minimizes the length of experiment. Neverthe-
less, a completeness of checking experiment was again not proven. The MUIO-method
was casted as Traveling Salesman Problem that was solved by Hopfield Neural Net-
works [Ku94], and was a basis for a distributed testing method using synchronizable
test sequences [Ch95s, Ch06], for example.

Overlapping and invertible sequences can be used to further reduce the length of
experiment as the paper by Duan and Chen [Du07] shows. However, even there is not
a proof that the method creates a checking sequence.

6.2.6 CSP-method
The CSP-method is rather an approach how a checking sequence, or a test suite, could
be created than a constructive algorithm. It was proposed by Vuong and Ko in 1990
[Vu90] and it is motivated by Constraint Satisfaction Problem. If one has got a checking
sequence CS, the CSP-method produces all machines with up to n states having the
same response to CS as the specification. Then additional test should be created to
distinguish the faulty machines from the specification. The main idea is to tie the final
state of a test with a domain of all possible states that can be reached by the test case
in a machine accepting the CS. Domains are reduced if tests are distinguished in the
given CS, e.g. there are tests ti, tj , ti ·w, tj ·w ∈ CS and λ(δ(s0, ti), w) 6= λ(δ(s0, tj), w)
then the final states of ti and tj are different.

A fault coverage analysis method based on the CSP-method is reformulated in [Zh93]
and our improved algorithm is in Chapter 9. Improving of fault coverage of the UIO-
method is proposed in [Wa10]. It employs the same idea as the CSP-method, i.e.
it reduces domains of states reached by tests and adds new tests to make domains
singletons.
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6.2.7 C-method
The C-method gradually extends a confirmed set C by appending ADS until each
transition is verified so the sufficient condition in Theorem 4.2 holds. The method was
proposed by Simão and Petrenko first in 2008 [Si08] and with improvement by output-
confirmed sequences in 2009 [Si09c]. Partial deterministic machines are considered and
a reduction using reliable reset (if available) is discussed as well in [Si08]. The method
was not named by the authors so we call it the C-method because it is based on a
notion of confirmed set of sequences.

Let t be a (checking) sequence. A confirmed set C(t) over t contains all prefixes of
t that can be added to C by repeatedly applying the following three rules. Note that
notions of output-confirmed and convergence of tests are defined as well as confirmed
set in Section 4.3. As a reminder, ds is fixed adaptive distinguishing sequence of state s.

1. If u is extended (in t) by ds, where s = δ∗(s0, u), then add u to C(t).
2. If there exists u ∈ C(t) and v is verified in δ∗(s0, u), then add u · v to C(t).
3. Given a transfer sequence u to state s, if for each q ∈ S \{s} there exists an q-output-

confirmed sequence v distinguishing s and q, such that v extends u or a sequence
which is Ft-convergent with u, then add u to C(t).
The method then can be described in the following steps. The test sequence ti is

empty at the beginning, i.e. t0 ← ε, and the confirmed set C(ti) is updated as soon as
ti is extended.

1. If ti /∈ C(ti) then
(i) Let u be the shortest prefix of ti such that u /∈ C(ti), ti = u · v, dδ∗(s0,u) = v · w
(ii) Update ti+1 ← ti · w

2. Otherwise, i.e. ti ∈ C(ti)
(i) Determine a shortest verified transfer sequence u from state δ∗(s0, ti) to some state

s, such that there exists x ∈ X and (s, x) is unverified. Let s′ = δ(s, x).
(ii) If x is a prefix of ds, then let v be such that ds = x · v. Determine the shortest

prefix w of ds′ , such that, for each q ∈ S \ {s′} which is not distinguishable from s′

by any q-output-confirmed prefix of v, there exists a common prefix of w and dq
which distinguishes s′ and q. Otherwise, i.e., if x is not a prefix of ds, let w = ds′ .

(iii) Update ti+1 ← ti · u · x · w
3. If there is an unverified transition, update i← i+ 1 and go to step 1.

Although the C-method uses local optimization by overlapping distinguishing se-
quences, it leads to shorter checking sequences than the D-method produces. The
D-method optimizes concatenation of preset test sequences globally.

6.2.8 K-method
The most promising method for creating shortest checking sequences was proposed by
Kapus-Kolar in 2010 [Ka10]. We call it the K-method by the author’s name. The
method is based on so-called State-Recognition Patterns (SRP) [Ka12n] that employ
detail logical reasoning to reduce domains of reached states. It is similar to the CSP-
method however the reasoning is much deeper. Moreover, the K-method advices how
to extend test segments to gradually verify all transitions. Therefore, the length of
created checking sequence is shorter than by the D-method which chooses test segments
in advance and then composes them.
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Chapter 7
Summary of Methods

Testing methods were developed a lot in the last few decades. There are plenty of
approaches for verification that the implementation coincides with the specification.
We tried to describe the methods that we are aware of in the previous chapter. This
chapter groups these methods and shows their relations.

The methods are sorted in chronological order and are shown in Figure 7.1. As in the
Chapter 6, we group the methods by the cardinality of a test suite they produce. That
is, the W-, Wp-, HSI-, FF-, H-, SC-, P- and SPY- methods form one group because
they create a test suite with several sequences so a resettable machine is needed. The
second group contains the D-, DW-, HrADS-, UIO-, UIOv-, CSP-, MUIO-, AD-, C-,
DWp- and K- methods that create a checking sequence, i.e. a test suite of size one.

Figure 7.1. History of Testing Methods

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
An edge to a method in Figure 7.1 is labeled by a characteristic factor of the method,

e.g. type of sequence used for verification. Some methods are based on others. In such
case, an edge connect two related methods; it goes from the basic method to the derived
method. For example, take the D-method and its derived AD-method. The D-method
was very researched so a lot of improvements was invented. Adaptive distinguishing
sequence then replaced preset distinguishing sequence and the AD-method was intro-
duced. Notice that the corresponding edge is emphasized due to the amount of work
spent on the D-method.

In this thesis we propose several new methods. They are shown with the classical ones
in Figure 7.1. The SVS-, ADS- and PDS- methods are proposed in the previous chapter
and the M-method with its modification using reset, the Mr-method, are introduced in
the following chapter.
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Chapter 8
M-method

The M-method is introduced as a generalization of the C-method (Section 6.2.7) and the
AD-method (Section 6.2.3) in this chapter. All the testing methods so far were based
on a simple testing scheme. The implementation is transfered to an identified state, an
unverified transition is processed and a verification sequence (or a set of sequences) is
appended. The shift to an identified state is essential for the testing methods.

For a machine with reset ability, it is easy to transfer the machine reliably to the same
state multiple times. Transitions are then verified in the order of reaching them from the
initial state. If one wanted to strictly follow the testing scheme, the set of tests, i.e. a
transition cover extended by verification sequences, would be ordered so that transitions
from the initial state would be verified first, then transitions from a state reached by
a verified transition would be processed and so on. However, the testing methods for
resettable machines do not require such a restriction of tests’ order. One can start with
verification of the furthermost transition, e.g. the longest test is applied first, even
though a preceding transition has not been verified. We know that the implementation
is correctly implemented, i.e. all transitions are verified, after the entire test suite was
executed. There are some assumptions that must hold, see Chapter 4, but we will not
mention them because the focus is now on motivation for a new approach.

Testing methods generating a checking sequence have to do more work to transfer
the machine reliably to the same state because reset is not usually available. There
are two main approaches. One is based on verification of distinguishing sequence and
the second on the notion of confirmed set. The D-method and its derivations including
the AD-method require that each state is uniquely identified in the experiment and the
distinguishing sequence (DS) used for identification is also a distinguishing sequence
of the implementation. Then the use of DS enables to identify a state. On the other
hand, the C-method employs a confirmed set of sequences to identify a state.

The former approach can be optimized globally because test subsequences are cre-
ated in advance. These preset sequences are limitations of the approach. It can perform
better only if some of these sequences are eliminated. Only local optimization is cur-
rently possible in the latter approach due to the design of the C-method. As we show
in Section 8.1.3, the limitation of this method is just the greedy choice of unverified
transition that are to be checked. We asked ourselves whether is it possible to somehow
remove limitations of both approaches.

8.1 Checking sequence
Standard technique to handle a difficult problem is relaxation of a constraint. We
decided to remove the requirement of identified state before checking an unverified
transition. We think that if each transition is verified by means of appending it by a
distinguishing sequence, all states will be identified retrospectively. It is similar to the
case of resettable machines, if there is a fault in the implementation and a test contain-
ing the fault is processed successfully, another test displays it. In other words, assume a
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transition error in the implementation. After passing this transition, an unverified tran-
sition outgoing from the reached state is to be checked. The implementation responses
to the distinguishing sequence correctly hence the fault is not detected. However, notice
that the state is uniquely identified due to application of the distinguishing sequence.
We know there is a subsequence of the given checking sequence that should started with
the error transition followed by the distinguishing sequence. This is the point where
the fault shall appear.

The described notion enables us to relax the basic testing scheme and to formulate the
M-method. The M-method simply says a distinguishing sequence is a prefix of checking
sequence so the initial state is identified, and that there is a verifying subsequence for
each transition in checking sequence.

The basic version of the M-method employs entire adaptive distinguishing sequence
for transition verification. Checking sequence then has to contain each sequence of a
set U as its subsequence. The set U is defined as follows:

U = {(s0, d0)} ∪
⋃
si ∈S
{(si, x · dj) | x ∈ X, sj = δ(si, x)}

where di is a part of adaptive distinguishing sequence that separates state si.
The optimization problem of minimizing length of a sequence that has to include

a set of sequences can be cast as Asymmetric Traveling Salesman Problem (ATSP).
Traveling salesman problem (TSP) finds minimal-cost tour over all nodes in a weighted
directed graph. Asymmetric TSP (ATSP) signifies that edges between two nodes have
different costs. TSP as well as ATSP are known to be NP-complete problems.

Nodes are elements of U in case of creating checking sequence. An edge (ui, uj) =
((si, ti), (sj , tj)) indicates that the sequence ti of ui appears before the sequence tj of uj .
There are two possible connections of tj after ti. The ‘after’ is not strict in this case so
the sequences can overlap. Formally, (si, ti) ∈ U overlaps (sj , tj) ∈ U by a non-empty
sequence v if there are a prefix vi of ti and a suffix vj of tj such that ti = vi ·v, tj = v ·vj
and sj = δ∗(si, vi). The first connection is that ui overlaps uj and the second one is that
a shortest sequence wkj connecting the final state sk of ti with sj is appended before
tj . The shortest connecting sequence is the empty sequence if the final state of ui is
equal to sj . The cost of an edge (ui, uj) corresponds to the minimal length of sequence
v from si to sj such that ti is a prefix of v · tj . There is one exception. Edges to the
node u0 = (s0, d0) cost the length of sequence of the starting node because we look for a
path from u0 so the last visited node appends only its sequence to the created checking
sequence. The cost of a tour over all nodes is the length of related checking sequence.

The costs of edges are the most important part of task. They can be written in a
matrix CI×I , where I are indexes of elements of U , i.e. I = {0, . . . , np}. An entry cij
thus corresponds to the cost of edge (ui, uj). Entries of C are defined as follows:

cij =


∞ if i = j,
|ti| if j = 0,
|vi| if ui overlaps uj by a v and ti = vi · v,
|ti|+ |wkj | otherwise.

where wkj is the shortest sequence from the ti’s final state sk = δ∗(si, ti) to the state
sj . If sk and sj coincide, i.e. k = j, the shortest sequence wkj is the empty string ε
hence the related cost reduces to |ti|. Notice that self-loops are not considered from a
logical reason so costs cii are infinity (or a reasonably big value).
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We are now able to pose an Integer Linear Programming (ILP) formulation for the

M-method.

min
np∑
i=0

np∑
j=0

cijxij

s. t.
np∑
i=0

xij = 1 j ∈ I (enter once)

np∑
j=0

xij = 1 i ∈ I (leave once)

oi −B(1− xij) < oj i ∈ I, j ∈ I \ {0} (cycle indivisibility)
xij ∈ {0, 1} i, j ∈ I
oi ∈ R+

0 i ∈ I

It is one of standard formulation of TSP. A binary variable xij is 1 if and only if the
edge (ui, uj) is in the found tour. Checking sequence must contain each test segment
therefore each node uj has to be entered once. From each reached node ui, only one
leaving edge is chosen to be in the tour. Another constraint is needed due to the fact
that the previous two constraints enable to create several tours over subsets of nodes.
A time ordering variables oi are introduced to force creating of one tour, and checking
sequence as well. oi is assigned to each node and indicates time of visit the related
node ui by the created tour. The variable o0 of the initial node u0 has got the lowest
value of all oi’s. The node visited right after the initial one has got the second lowest
value and so on. The constraint ‘cycle indivisibility’ captures such ordering. We use
a constant B set to infinity (or another reasonably big value) to turn on and off the
constraint according to xij . If an edge (ui, uj) is chosen, i.e. xij = 1, the constraint
reduces to oi < oj . Otherwise, the constraint holds because of great value of B.

8.1.1 Idea of proof
We demonstrate that the M-method creates a checking sequence experimentally, see
Chapter 11. However, a formal proof is still missing. We propose our idea how a proof
could be made in this section.

It is clear that if a proof was found, the D- and AD- methods would be proven as well.
They contain all test segments that the M-method requires. Notice that we join the D-
and AD- methods because we know that preset and adaptive distinguishing sequences
have got the same power of unique state identification. An adaptive distinguishing
sequence as the shorter one is thus considered if we use the notion of distinguishing
sequence. Test segments, or cells, form β-sequences in the D-method, see Section 6.2.2.

The C-method without output-confirmed sequences improvement, i.e. its first pro-
posal in [Si08], also contains all test segments in fact. It can be proven employing the
first two rules for addition to a confirmed set, see the C-method in Section 6.2.7. A
transition (s, x) cannot be verified unless a sequence to s and its extension by x, the
sequence to δ(s, x), are in the confirmed set. The latter sequence can be added to the
confirmed set only by the first rule so the checking sequence contain the related test
segment. An improvement by output-confirmed sequences is discussed in the following
section.

A distinguishing sequence is applied in each state so each state is uniquely identified
in the experiment. Figure 8.1 displays such a checking sequence on a machine with
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states A,B and C. The checking sequence starts in the state A which is the initial
state of the machine. Distinguishing sequence dA takes the machine into an unidentified
state denoted by a question mark. Then an input sequence (a downward dotted edge)
is applied followed by distinguishing sequence dC . The state where dC was used is
recognized as different from the state A so we can label it C. After dC , an input sequence
is appended again and A is reached. It cannot be claimed in this phase that the state
is really A unless dA follows and the last state B is also identified, i.e. dB is employed.
Of course, we must know that there are only three states in the implementation. dA is
thus added and then dB as well. Input and distinguishing sequences are appended in
the same manner till each test segment is included in the created checking sequence.

Figure 8.1. A Checking Sequence of a 3-state Machine

A shortest checking sequence is desired. Therefore, we can assume that distinguishing
sequence is used as soon as possible. Thus, some input sequences (dotted edges) in
Figure 8.1 are shortened. Moreover, distinguishing sequences can be found to overlap.
Figure 8.2 shows more realistic model of a checking sequence generated by the M-
method. Notice that a state reached by dA is merged with B which enables to locate C
inside dB . Similarly, the state A is situated within dC due to overlapping of dC and dA.

Figure 8.2. An Optimal Checking Sequence by the M-method

An interesting thing is shown in Figure 8.2. Distinguishing sequences follow (or
overlap) each other. The D-method introduces α-sequences that verify distinguishing
sequence in the implementation. A concatenation of two distinguishing sequences, i.e.
dd, has to be included for each state in the experiment. Nevertheless, distinguishing se-
quence does not only identify a state which it is applied in but it also identifies each state
along its path uniquely. Therefore, every distinguishing sequence is a homing sequence.
Identification of a state inside distinguishing sequence is comparably important.

The proposed notions are neither sufficient nor constructive. We thus employ The-
orem 4.2 that states a sufficient condition for n-completeness of a test suite using
confirmed set. A transition (s, x) is verified if a sequence v leading to s and a sequence
v · x are in confirmed set. Note that the mentioned sequences are prefixes of checking
sequence. Sequences v · x are in confirmed set as they are appended by distinguishing
sequence. Therefore, if it is shown that for each transition such a sequence v can be
add to confirmed set, the M-method will be proven to generate n-complete test suite.
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Simão and Petrenko stated the following sufficient condition for the existence of a

confirmed set in [Si10].

Theorem 8.1. Let T be a test suite of FSM M with n states and L ⊆ T be a set
of k sequences, k ≥ n. For an arbitrary ordering of the sequences t1, . . . , tk ∈ L, let
Li = {tj ∈ L | 1 ≤ j ≤ i}. Then L is a confirmed set if there exists an ordering
t1, . . . , tk, such that the corresponding L1, . . . , Lk satisfy the following conditions:

1. Ln is a minimal state cover such that every two sequences are T -distinguishable.
2. If k > n, then for each ti, n < i ≤ k, it holds that either

a) for each s ∈ S \ {δ∗(s0, ti)}, there exists u ∈ Li−1, δ
∗(s0, u) = s, such that ti and u

are T -distinguishable; or
b) there exists u, v and w, such that ti = uw, and vw, v, u ∈ Li−1, δ∗(s0, v) = δ∗(s0, u).

Two sequences ti, tj ∈ T are T -distinguishable if the states they reach, si and sj
respectively, are distinguishable by a set U of sequences that extend ti and tj in T , i.e.
si �U sj and U = {u | tiu, tju ∈ T}.

We are able to create Lnp+1 that includes the empty sequence and all sequences
appended by a distinguishing sequence, i.e. the last input is a transition for verification.
The first condition of Theorem 8.1 thus holds. Some states at the end of distinguishing
sequences are identified due to minimization of the length of constructed sequence. The
condition 2b) is employed and confirmed set can be extended. Notice that Theorem 8.1
can be handled as an algorithm for design of confirmed set. If one has got a confirmed
set Lk with k sequences, k > n, and a sequence t that satisfies the second condition, a
set Lk+1 = L∪ {t} becomes confirmed. The problem we deal with is how to prove that
application of the second condition several times on Lnp+1 is sufficient to create desired
confirmed set, i.e. each transition is verified.

Another point of view we had, is based on ordering of transitions’ verifications. Sets
Li indirectly define such an order. Similarly to the SPY-method (Section 6.1.11), a
transition is verified so the next state can be used as a source of unverified transition.
That is, if a transition is to be verified, each preceding transition from an identified
state (the initial state for the SPY-method) has to be verified first. It implies that the
start state of the unverified transition is identified as well. There are several identified
states in the sequence generated by the M-method. Hence, it could be easier to find
such an order of transitions to verification. Unfortunately, there are two issues: the
choice of the first transition and cyclic dependency.

At the beginning, each identified state is followed by related distinguishing sequence
in the experiment. A transition (s, x) is verified if there is uds and uxds′ in the created
sequence, where s = δ∗(s0, u) and s′ = δ(s, x). However, this requires ds to overlap ds′
except one input symbol which is unlikely when a distinguishing sequence is not short.
A more promising way to find the first verified transition is employing the condition 2b)
of Theorem 8.1. Let u, u′ be different sequences reaching the same identified state q,
i.e. udq and u′dq are in the test suite T . If T also contains sequences uvds and u′vxds′
and s = δ∗(q, v), s′ = δ∗(q, vx), the transition (s, x) is verified. How can one be sure
that such sequences are always present so a first transition is verified?

Let assume that the first transition is verified and consequently a few next transitions
are checked as well. Unfortunately, then there is a possibility of cyclic dependency of
transitions. An unverified transition ei = (si, xi) needs another transition ej = (sj , xj)
to be verified before it but ej requires ei to be verified first. This seems not to be
possible as the length of checking sequence is minimized. Test segment for a transition
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Figure 8.3. Cyclic Dependency in Verification of Transitions in the M-method

should be used as soon as possible. Nevertheless, one or both transitions ei and ej can
be inside a test segment of other transition and the suffix of such a test segment does
not have to overlap the distinguishing sequence related to xi (or xj). An example of
such a case is shown in Figure 8.3. There are two prefixes of formed checking sequence:
ukdkdj′ and uldldi′ . Distinguishing sequence dk contains transition ei = (si, xi) and its
last transition is ej = (sj , xj). Distinguishing sequence dl contains transition ej and
its last transition is ei. Assuming that suffix of dk (dl) after ei (ej) does not overlap
the related distinguishing sequence di′ (dj′) and no state is identified in dk (dl) leads to
that a compliant ordering for Theorem 8.1 cannot be derived from these two discussed
sequences. How to show that such cases are resolved in the sequence generated by the
M-method (if they really occur), it is still not clear.

8.1.2 Improvements
We discuss two possible improvements of the M-method in this section. The first one
is the choice of adaptive distinguishing sequence and the second is reduction of test
segments in their length.

The more test segments overlap, the shorter checking sequence can be found. There-
fore, distinguishing sequence consisting of a same input could help to create a minimal
checking sequence. There is a design method polynomial in the number of states that
produces suboptimal adaptive distinguishing sequence [Le94]. It is an open question
how to adjust the method to create ADS formed mainly from one input symbol. How-
ever, exact influence of the choice of ADS on the length of checking sequence is not
easy task and should be further researched.

The C-method reduces ADS so that the last symbols are omitted if they are found to
be unnecessary. This is determined using the notion of an output-confirmed sequence,
see Section 4.3. The same approach can be employed for the M-method. However,
several difficulties need to be solved first. The C-method shortens particular di based
on knowledge of created sequence so far and thus there could be any sequence output-
confirmed. On the contrary, the M-method knows only test segments to be in a resulting
sequence. We could imagine that all test segments and its subsequences are output-
confirmed. Then we shorten some of them according the C-method’s rule. That is, let
Ss′,l ⊆ S \ {s′} be a set of states that are not distinguished from s′ ∈ S by the prefix
wl−1 of ds′ of length l − 1, i.e. l − 1 = |wl−1|, but they are distinguished from s′ by
the prefix wl of ds′ of length l, i.e. l = |wl|. If a transition (s, x) is a prefix of ds and
there is a q-output-confirmed prefix of v, ds = x · v, for each state q ∈ Ss′,l and each
l, |ds′ | − k < l ≤ |ds′ |, that distinguishes q and s′ = δ(s, x), then the last k symbols of
ds′ in the related test segment can be omitted. This would be nice because it reduced
test segments quite well. Nevertheless, such a reduction of a test segment can break
the assumption that the resulting sequence contains all ds’s.
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During our experiments we found a machine that the C-method produced an n-

complete checking sequence which did not display all states using their entire distin-
guishing sequences di’s. The machine is attached in Appendix B. The problem is that
there is a state s′ with only one entering transition (s, x), s′ = δ(s, x). In addition,
input x is a prefix of distinguishing sequence ds so ds′ may be shortened. The resulting
sequence of the C-method was checked to be checking sequence. Nevertheless, we real-
ized that the M-method needs to be proven formally as it is proposed first and then an
improvement by output-confirmed sequences may be employed.

8.1.3 Example
This section describes the M-method on an example from [Si09c]. Using the same
example enables us a comparison with the C-method. The sample Mealy machine is
shown in Figure 8.4. The M-method is NP-complete in general. Therefore, we employ
the Ma-method for describing. The Ma-method approximates the M-method and it is
very similar to the C-method because it appends distinguishing sequences when it is
possible, see Section 10.4.10.

a b
A B / 0 A / 1
B E / 0 A / 1
C D / 1 E / 0
D D / 0 E / 0
E A / 1 C / 1

Figure 8.4. An Example Mealy machine from [Si09c]

The authors of [Si09c] uses the following distinguishing sequences in the example:

dA = dB = aba dC = dD = dE = ab

that we also use to be consistent. After 7 iterations of the C-method (Section 6.2.7)
the sequence t7 is created as follows:

t7 = ε 1
A | a 5

B b
2
A a

6
B | b 3

A a
4
B | a 14

E b 7
C a

30
D | b 8

E | a 25
A b 9

A | a 10
B b 11

A a 12
B | a

13
E a 26

A b 15
A

Vertical bars divide the sequence according to iterations of the algorithm. After each
sequence u there are a subscript denoting the state δ∗(s0, u) and a superscript denoting
the sequence number when u becomes confirmed. For example, the sequence after 2
iterations is t2 = ababa, the last state is B and confirmed sequences are ε, ab, abab.
Note that the sequence numbers are not related to the number of iterations. See the
original paper [Si09c] for a detailed description. The maximal sequence number is 15
after 7 iterations. Hence, sequences ababaaba30

D , ababaababa25
A and ababaababababaaa26

A

are still not confirmed.
The first 7 iterations of the Ma-method produces the same t7. Notice that the verified

transitions, i.e. related test segments are used, are underline. The difference between
the C-method and the Ma-method appears in the 8th iteration. According to confirmed
set, transition (A, b) has not been verified yet so the C-method applies this transition
and distinguishing sequence of the next state, i.e. dA = aba because A = δ(A, b). The
C-method creates the following checking sequence of length 36, or 37 if we count the
initial setting, i.e. the defined len(T ) is used.

t7
15
A | b 16

A a 17
B b 18

A a 19
B | a 20

E a 21
A a 22

B b 23
A a 24

B | a 27
E b 28

C a 29
D a 31

D | a 32
D b 33

E | b 34
C b 35

E a 36
A b 37

A
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The Ma-method does not verify transition (A, b) in the 8th iteration because its
related test segment has been used; it is overlined in t7. Thus, the Ma-method appends
the shortest transfer sequence to a state with an unverified transition, i.e. sequence aa
that transfers the machine to state E. Test segment related to the unverified transition
(E, a) is applied so t8 is created.

t8 = t7 A | aB a E aA aB bA aB

Then three unverified transitions remain: (C, a), (C, b), (D, a). The basic version of
the Ma-method produces the following checking sequence of length 39 because each
transition needs to be extended by the entire related distinguishing sequence.

t8 B | a E b C aD aD b E | b C b E aA bA | aB a E b C aD aD aD b E

However, if we employed output-confirmed sequences, the resulting checking sequence
would be:

t8 B | a E b C aD aD | aD b E | b C b E aA bA
The sequence has got 33 input symbols. Notice that the sequence corresponds to the one
produced by the C-method without bab in the 8th iteration. The C-method decides to
verify (A, b) in the 8th iteration. However, if it verified (E, a) first like the Ma-method
does, then the transition (A, b) would become verified as well owing to the function of
confirmed set. This shows the drawback of the C-method.

The authors stated in [Si09c] that the length of a created checking sequence by the
version of the D-method from [Hi06] is 64, by the version of the D-method from [Ch05]
is 44, and by the C-method without use of output-confirmed sequences [Si08] is 43.
The C-method using output-confirmed sequences [Si09c] creates a checking sequence of
length 36. The M-method produces a checking sequence of 33 or 39 inputs for the given
ADS if it uses output-confirmed sequences or not.

Our implementation of the Ma-method produces other checking sequence for the
machine in Figure 8.4. It is due to the fact that the algorithm from [Le94] found a
different adaptive distinguishing sequence. With this ADS

dA = dD = aaa dB = aa dC = dE = ab

the Ma-method without employing output-confirmed sequences creates the following
checking sequence of length 35.

εA | aB a E aA | bA | aB a E aA | aB a E aA | aB bA aB a E aA | aB a E

b C aD b E | aA bA | aB a E b C aD aD aD aD | aD | b E b C b E aA bA
We were able to reduce this checking sequence to 32 input symbols by hand using
output-confirmed sequences. Nevertheless, formulation of rules for employing output-
confirmed sequences is a future work.

8.2 Resettable FSMs
Checking sequence can be shorten using reset r when the given machine possesses
reliable one for each state. The M-method is adjusted so that shortest connecting
sequences wkj can be replaced by a sequence r ·w0j if it is shorter. We call this modified
method the Mr-method because reset can be employed and so the resulting test suite
contains several sequences. A similar discussion is proposed for the C-method in [Si08].
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Chapter 9
Fault Coverage Checker

There are a few methods for checking fault coverage of a given test suite as we mention in
Chapter 5. The CSP-based method described in [Zh93] became a basis for us. However,
after reading a survey of methods [Pe96] and ‘domain reasoning’ [Ka12n], we improved
the method so the Fault Coverage Checker (FCC) was created. It is worth mentioning
that methods checking fault coverage of a test suite and generating all machines that
response to the test suite equally as the specification do passive learning in fact. Such
a method gets a test suite and a desired response to the test suite and it tries to
reconstruct a model which produces this input-output suite.

The method from [Zh93] as well as the FCC creates a testing tree from a given test
suite. A testing tree is a successor tree with specialized nodes. Each node represents a
state of the specification. The initial state coincides with the root node. Each test of
a given test suite forms a path from the root. Edges are labeled by exactly one input
symbol. An example of a testing tree is in Figure 9.2 or in Section 8.1.3. There is a
checking sequence interleaving with reached states in Section 8.1.3, i.e. a testing tree
with exactly one path from the root to a leaf. A node consists of a domain of states
and a set of different nodes in both methods. A domain of a node ni represents a
set of states that can be reached by the sequence of path from the root to ni in the
implementation. The method from [Zh93] denotes domain of node ni by Di and set
of different nodes by NEQi. The FCC uses denotations ni.domain and ni.different for
domain and set of different nodes of node ni, respectively.

The method from [Zh93] sorts nodes by the distance from the root after creating a
testing tree. Then, each node ni is compared with the previous ones. A previous node
nj , j < i, is added to a set NEQi if they are distinguished in the tree, i.e. there is
a common sequence from nodes in the tree that produces different responses for both
node. A common sequence u means that there are paths labeled by u from both nodes
in the testing tree. After this creation of unequal nodes’ sets, nodes are again passed
through and reference nodes are found. Each state has got one reference node. A
node ni becomes a reference node if it differs from all reference nodes found so far; the
difference is checked by set inclusion, i.e. the set of reference nodes has to be a subset
of NEQi of new reference node ni. In the beginning, the root is set to be the only one
reference node. Each node can be assigned to any state initially so the domain Di of
each node ni is equal to S, or Q if we deal with extra states in the implementation.
When a node ni becomes a reference one, it is instantiated which means that a state
s is assigned to it and its domain reduces to this state, Di = {s}. The domains of
nodes are reduced using the set of reference nodes and related NEQi. After reduction
of domains, almost standard CSP search is started. That is, the first uninstantiated
node ni is chosen, i.e. |Di| > 1 and ∀j < i : |Dj | = 1, and it is instantiated with a
value of Di that is consistent with NEQi and a partial machine created from previously
instantiated nodes. Such a search function is repeated unless all nodes try every value
of their domains. When all nodes are instantiated, the solution is checked against the
specification. All indistinguishable machines are found this way.
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Our first straightforward implementation of the method exploded in the number of
stored partial machines needed for each estimated state of a node. Even a redesign
which stored only changes in the partial machine did not help. In general, the method
has time complexity of O(ml), where l is the number of nodes, l ≤ len(T ). Notice
that m stands for the number of states in the implementation and the size of a domain
as well. Hence, the number of nodes that are to be estimated needs to be minimized
as much as possible. We found out in [Pe96] that another approach to fault coverage
checking was proposed. It is based on minimization of a testing tree. For example,
the method proposed in [Ya94] is based on reduction partial FSM. However, it is very
hard task like CSP. We decided to combine these two approaches so we can create
all indistinguishable machines and take advantages of minimizing a testing tree that
provides new knowledge of testing nodes.

9.1 Motivating example
The main idea of the FCC is reduction of given testing tree, i.e. merging of its nodes.
In this section we outline a procedure of the method from [Zh93] and the FCC on a
small example. The example is 2-state Mealy machine captured in Figure 9.1. An exact
implementation of the FCC is proposed in the following section.

a b
A B / 0 B / 0
B B / 1 A / 0

Figure 9.1. A Mealy machine for Fault Coverage Checking Methods’ Example

A testing method creates a test suite T = {ba, aaa, aba} for the machine in Figure 9.1.
Both fault coverage checking methods build a testing tree of T shown in Figure 9.2.
There are nodes labeled with their sequence number and related state of the specifi-
cation. Domains and sets of different nodes are not shown for clarity. Besides input
symbols labels of edges contain related outputs that are needed for a distinguishing of
nodes. Note that the test suite T is produced by the ADS-method (Section 6.1.2) with
sequence a as a ADS, for example.

Figure 9.2. A Testing Tree of a Test Suite T = {ba, aaa, aba}
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The method from [Zh93] passes all nodes two times. The first time it compares each

node with every node that has got a lower sequence number so sets of unequal nodes
NEQi’s are formed. The second passage reduces domains Di’s that are set to {A,B}
at the beginning. The root node n1 is fixed to the initial state A so D1 reduces to {A}
and a set of reference nodes R is initialized to {1}. Then the second node n2 is found
to be different from n1 and thus it becomes the second reference node due to the fact
that R ⊆ NEQ2. No other node can be a reference node because the implementation is
assumed to have 2 states as the specification (Figure 9.1). Domains of nodes 3, 4 and 5
are then reduced owing to their sets NEQi. The second and third columns of Table 9.1
show the contents of the sets related to nodes after both passages through all nodes.
Notice that the domains of reference nodes are emphasized.

Method of [Zh93] Fault Coverage Checker
ni NEQi Di ni.domain ni.different Compared with
1 ∅ A A not used ∅
2 1 B B not used 1
3 1 B B not used 1
4 1 B B not used 1
5 2,3,4 A A not used 1,2
6 ∅ A,B A,B ∅ 1-5
7 ∅ A,B A,B ∅ 1-6
8 ∅ A,B A,B ∅ 1-7

Table 9.1. Procedure of the Fault Coverage Checking Methods

The FCC reduces domains in very similar way as the method from [Zh93]. How-
ever, one passage through all nodes is sufficient. In addition, if a node can become
instantiated, i.e. its domain is singleton, during domains reduction procedure, then its
set of different nodes is unnecessary. Some comparisons of nodes are also needless. It
will be clearer after introduction of domains reduction procedure that is captured in
Algorithm 1.

After reduction of domains, the FCC merges instantiated nodes into related reference
nodes. In our example, nodes 3, 4 and 5 became instantiated during domains reduction
procedure. We store instantiated nodes in a stack so an instantiated node with the
greatest sequence number is merged first. The procedure of merging is captured for all
three instantiated nodes in Figure 9.3. The reference nodes of states A and B are nodes
1 and 2, respectively. Merging of nodes is a recursive procedure so that if two nodes
are merged, then their successors on a common path are merged as well. Therefore,
when node 5 is merged into its related reference node 1, node 8 as a successor of node
5 is merged with node 2. Similarly, merging of node 4 into its related reference node 2
implies merging of node 7 into node 2 as well. After merging nodes 3 and 6 into node
2, a machine equivalent to the specification is created so no CSP search is needed and
the test suite is demonstrated to be n-complete.

The method from [Zh93] creates a partial machine from the testing tree after domains
reduction. The partial machine has got no transition at the beginning. If there is an
instantiated node having an instantiated child in the testing tree, then the related
transition is added to the partial machine. All transitions is verified in the given test
suite T hence the method from [Zh93] does not need CSP search like the FCC. However,
if the test suite was T ′ = {aaa, baba}, then the method from [Zh93] would need to
estimate one node unlike the FCC. The FCC would eliminate the uncertainty in the
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Figure 9.3. Instantiation and Merging of Nodes by the FCC

domains reduction procedure so it would demonstrate n-completeness of T ′ without
CSP search. The proposed example aimed to show notion of merging and improvement
in domains reduction procedure that are described in the following section in detail.
Note that T ′ could be created by the Mr-method (Section 8.2).

9.2 Implementation
This section proposes a description of the Fault Coverage Checker with a comparison
to the method from [Zh93]. The Fault Coverage Checker first builds a testing tree from
the given test suite and sorts the nodes so each node gets a sequence number. The order
of nodes can be arbitrary but we keep the order of the method from [Zh93], i.e. the far
the node is from the root, the bigger number it gets. This order is preferable due to
the fact that nodes closer to the root have higher probability to be reference nodes in
test suites with several sequences generated for resettable machines (Section 6.1). The
FCC reduces domains of nodes and then it starts a search which produces all machines
that have the same response to the test suite as the specification.

There are several differences between the method from [Zh93] and the FCC. The
first one is a merging of generating of NEQ sets and subsequent domains’ reduction
into one function so set inclusion operation and NEQ sets of instantiated nodes are not
needed. The function is called reduceDomains() and it is described in Algorithm 1. The
aforementioned minimization, or reduction, of the testing tree is the main difference.
That is, if a node is instantiated, it is merged with the related reference node and
their successors as well. The merging creates a machine that complies with the desired
response to the test suite. Moreover, the merging brings new information to the testing
nodes. Some merged nodes are instantiated due to the fact that the domain of merged
node gets intersection of domains of both nodes to merge. It is captured in the function
mergeNodes() in Algorithm 7. Besides instantiation of a merged node, the reduction of
domain by intersection can influence some predecessors.

Two nodes are different if they have a common outgoing sequence with different
responses or there are successor nodes reached by equal sequence without a same state
in successors’ domains. Formally, let u be a common sequence leading from nodes ni and
nj and ni′ , nj′ are nodes reached by u from ni, nj , respectively, if λ∗(ni, u) 6= λ∗(nj , u)
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or Di′ ∩Dj′ = ∅ then nodes ni and nj are distinguished. For simplification, we extend
the state-transition function δ and the output function λ to nodes such that a node as a
parameter of both functions represents its state and the result of the transition function
is a successor node instead of a state, i.e. ni′ = δ∗(ni, u) in the previous definition. We
found this notion of different nodes in [Ka12n] and it is a very important improvement
in the FCC.

In our implementation of the FCC each node ni includes:.ni.domain - a set of possible states,.ni.different - a set of different nodes,.ni.state - an instantiated state when |ni.domain| = 1, i.e. ni.domain = {ni.state},.a pointer to a successor node δ(ni, x) for each x ∈ X if the successor is defined,.an output by itself or by each outgoing transition according to the type of machine,
i.e. Moore or Mealy type,.a mark if the node is a reference node,.a pointer to the predecessor (parent node) for simplification of implementation.
Two arrays of nodes are employed. An array refNodes contains reference nodes. For

each state s there is always at most one node instantiated to s in refNodes. An array
Instantiated includes instantiated nodes that are to be merged into a related reference
node. It can be represented as a queue as well as a stack, it is a choice of order of
merging. We use the representation by a stack.

The function reduceDomains() is proposed in Algorithm 1. Each node ni is first
compared to each reference node. The domain is reduced if the nodes are distinguished.
In contrast to the method from [Zh93], a node can be instantiated even if it is not
different from each reference node. This is possible only when there is a reference
node for each state and no extra state is considered. Then, if a node is distinguished
from (n − 1) reference nodes, its domain is singleton and it is instantiated. Moreover,
the node does not have to store different nodes because domain of such a different
node is reduced by the instantiated state only once (line 14-16). Consequently, such a
different node can be found to have a singleton as domain and thus it is instantiated
and possibly it reduces domains of other nodes (line 17). Instantiated nodes need not
to be compared so that the number of compared pairs of nodes is less or equal to
the one of the method from [Zh93] that always compares all pairs. If a node cannot
be instantiated after comparison to reference nodes, it is compared to previous nodes,
i.e. nodes with lower index, or sequence number. Instantiated nodes have not been
merged into related reference node yet so they can provide a domain reduction (line
22) or even instantiation (line 26). If both nodes ni, nj are uninstantiated and they are
distinguishable, their different sets are extended by value of each other. This is another
difference from the method from [Zh93], its different set NEQi stores only lower node’s
index, i.e. nj ∈ NEQi implies j < i. It is sufficient because the CSP search then
instantiates nodes in numerical order. The nodes are necessary in both different sets
because of merging and different order of estimated nodes in the FCC.

Notice that we do not need to fix the root as a reference node, it is derived implicitly;
the choice of reference nodes is influenced by the order of nodes.

Each pair of nodes is compared by isNodesDifferent() at most once so reduceDo-
mains() runs in O(l3) if we assume the comparison of nodes in O(l). The FCC benefits
over the method from [Zh93] in domains reduction if all n reference nodes are known
and no extra states are considered. Then, another nodes can be instantiated and sets
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Algorithm 1. Reduction of domains according to the testing tree

1 Function reduceDomains()
2 foreach node ni in the testing tree T (1 ≤ i ≤ l) do
3 unique← true
4 foreach nref ∈ refNodes do
5 if isNodesDifferent(nref , ni, false) then
6 ni.domain ← ni.domain \ {nref .state}
7 else unique← false

8 if unique or |ni.domain| = 1 then
9 ni.state ← a value of ni.domain

10 if unique then
11 ni.domain ← {ni.state}
12 refNodes.push(ni)

13 else Instantiated.push(ni)
14 foreach node nj (1 ≤ j < i) do
15 if |nj.domain| > 1 and isNodesDifferent(nj , ni, false) then
16 nj .domain ← nj .domain \ {ni.state}
17 if |nj.domain| = 1 then instantiate(nj)

18 else
19 foreach node nj (1 ≤ j < i) do
20 if isNodesDifferent(nj , ni, false) then
21 if nj is instantiated then
22 ni.domain ← ni.domain \ {nj .state}
23 else
24 nj .different ← nj .different ∪ {ni}
25 ni.different ← ni.different ∪ {nj}

26 if |ni.domain| = 1 then instantiate(ni)

of different nodes are smaller because an instantiated node reduces domain of different
nodes. Moreover, it does not have to appear in the set of different nodes and it does
not need to be compared with the following instantiated nodes.

A node is added to Instantiated just in a simple function instantiate() that is proposed
in Algorithm 2. After assigning a state to given node, it reduces domains of different
nodes if it is possible. It is worth mentioning that Algorithms 1-7 are illustrative only,
they do not provide full logic needed to avoid an infeasible solution, e.g. there should
be a check that diffNode is not instantiated to the same state as node in Algorithm 2.

Algorithm 2. Instantiation of given node with different nodes’ domain reduction

1 Function instantiate(node)
input : node - a node to instantiate

2 node.state ← the value of node.domain
3 update refNodes if there is no node of node.state
4 Instantiated.push(node)
5 foreach diffNode ∈ node.different do
6 if node.state ∈ diffNode.domain then
7 diffNode.domain ← diffNode.domain \ {node.state}
8 if |diffNode.domain| = 1 then instantiate(diffNode)
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Algorithm 3 captures the mentioned checking of nodes’ difference. We use this func-

tion in two places. The first one is in reduction of domains at the beginning when
the testing tree is handled and nodes are passed from the root so intersection of do-
mains does not arise a new information. The second use is after merging some nodes.
The structure of nodes thus can contain a cycle. We want to differ the first given
node ni from a reference node so the comparison can be stopped when an instanti-
ated successor of ni is reached. Notice that the following always holds. Either there
is no common input of given nodes or an instantiated node is reached. Therefore, the
function isNodesDifferent() stops after a finite number of steps.

Algorithm 3. A check whether the given nodes are distinguished

1 Function isNodesDifferent(ni, nj , cyclic)
input : ni, nj - nodes to compare

cyclic - true if the structure of nodes could contain a cycle
output: true if the given nodes are distinguishable, false otherwise

2 if cyclic and ni is instantiated then
3 return (ni.domain ∩ nj .domain) = ∅
4 if Moore and λ(ni) 6= λ(nj) then return true
5 foreach x ∈ X such that δ(ni, x) and δ(nj , x) are defined do
6 if Mealy and λ(ni, x) 6= λ(nj , x) then return true
7 if isNodesDifferent(δ(ni, x), δ(nj , x), cyclic) then return true

8 return false

The array Instantiated is filled by instantiated (not reference) nodes after reduceDo-
mains(). Hence, the merging process can start. We call function proccessInstantiated()
followed by function checkUninstantiated(). Equivalently, we can just call function
search() on an instantiated node. The function search() is proposed in Algorithm 4.
It comprises both functions needed to call. Calling search() on an instantiated node is
safe if the function instantiate is treated against processing an instantiated node twice.
Nevertheless, there is a possibility that Instantiated is empty after domains reduction.
Then search() is called on a node with the smallest domain. Such a node is returned
by the function checkUninstantiated().

Algorithm 4. CSP search with domain reasoning

1 Function search(node)
input : node - a test node to instantiate

2 foreach state ∈ node.domain do
3 node.domain ← {state}
4 instantiate(node)
5 while Instantiated is not empty do
6 processInstantiated()
7 uninstantiatedNode ← checkUninstantiated()

8 if uninstantiatedNode exists then search(uninstantiatedNode)
9 else check solution

10 revert changes
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The function search() simply tries each state from the given node’s domain. Each
instantiation implies a reduction of domains of other nodes. If there is an uninstantiated
node after processing of all instantiated nodes, the function search() is recursively called
on such a node whose domain is not singleton (line 8). Otherwise, a solution is checked
against the previous ones (line 9). Only non-isomorphic solution is saved. For simplicity,
we assumes n-complete testing method on completely-specified FSMs in this thesis
so solutions are complete machines again. Therefore, we can check isomorphism by
minimization of the solution and then straight comparison of reduced machines, i.e.
the initial states are fixed so machines are isomorphic if there is a bijective function
mapping states of one machine to states of the other.

After each attempt to instantiate the given node with a state, all instantiation,
domain reduction and merging implied by the instantiation of the node are returned
to the previous state. We create a copy of nodes’ structure before each try to handle
these changes reverting. Note that an instantiation can lead to an infeasible solution,
i.e. different nodes are instantiated with the same state or a domain of node is empty.
Such a fail can be detected in each of functions instantiate(), processInstantiated() and
checkUninstantiated(). If this happens, search() revert changes immediately and start
another attempt to instantiate the node (if there is an untested state in the domain).

Algorithm 5. Merging all instantiated into related reference nodes

1 Function processInstantiated()
2 while Instantiated is not empty do
3 node← Instantiated.pop()
4 nref ← nref ∈ refNodes and nref .state = node.state
5 if node 6= nref then mergeNodes(node, nref)

Algorithm 5 describes the function processInstantiated() that simply passes Instan-
tiated and calls a recursive merging of a node of Instantiated and its related reference
node. After all instantiated nodes are processed so the nodes’ structure (the testing tree
at the beginning) gets smaller due to merging, all uninstantiated nodes are checked ac-
cording to search(). The function checkUninstantiated() in Algorithm 6 looks at each
uninstantiated node ni and checks whether a state of its domain can be eliminated.
The function isNodesDifferent() (Algorithm 3) is employed. Notice ‘true’ as the third
parameter (line 5) because some previous merging could create a cycle which contains
ni. That is, isNodesDifferent() would loop forever because ni and its successor would
have a successor to compare if a ‘cyclic’ condition were not in isNodesDifferent().

Algorithm 6. Possible reduction of domains of uninstantiated nodes

1 Function checkUninstantiated()
output: an uninstantiated node with the smallest domain if exists

2 U ← ∅
3 foreach node ni with |ni.domain| > 1 do
4 foreach nref ∈ refNodes such that nref .state ∈ ni.domain do
5 if isNodesDifferent(ni, nref , true) then
6 ni.domain ← ni.domain \ {nref .state}

7 if |ni.domain| = 1 then instantiate(ni)
8 else U ← U ∪ {ni}
9 return ni from U with the smallest domain if U 6= ∅
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Algorithm 7. Merging a given node to another one

1 Function mergeNodes(fromNode, toNode)
input : fromNode, toNode - nodes to be merged

2 toNode.domain ← fromNode.domain ∩ toNode.domain
3 toNode.different ← fromNode.different ∪ toNode.different
4 if |toNode.domain| = 1 then
5 if toNode is not instantiated then instantiate(toNode)
6 else if fromNode is not instantiated then
7 fromNode.domain ← toNode.domain
8 instantiate(fromNode)

9 foreach x ∈ X such that δ(fromNode, x) is defined do
10 if δ(toNode, x) is defined then
11 if δ(fromNode, x) is a reference node then
12 if δ(toNode, x) is not instantiated then
13 δ(toNode, x).domain ← δ(fromNode, x).domain
14 instantiate(δ(toNode, x))

15 else mergeNodes(δ(fromNode, x), δ(toNode, x))

16 else δ(toNode, x)← δ(fromNode, x)

The last thing to describe is merging two nodes by the function mergeNodes() pro-
posed in Algorithm 7. For saving a computer memory, we take the first node as a node
which transfers its informations into the second node instead of creating a new node
that represents a merged node. Moreover, the first node can be deleted because it is
contained in the second node in the end of merging. The merged node, i.e. the second
given node, updates its domain and different set with the information of the first node.
The given nodes represent the same state therefore intersection of domains and union
of different sets are done. If one of given nodes is not instantiated but the merged one
is, instantiate() is called. Consequently, successors of nodes are merged. If the first
node possesses a successor on an input x and the second node does not any on x, the
successor is simply appended to the merged node (line 16). The second case that is
needed to handle is when there is a common input for both nodes. The successors are
merged if the successor of the first node is not a reference node. This is due to the fact
that the first node passed to mergeNodes() is removed in the end of the function and we
do not want to remove a reference node. The successors can have been merged or will
be merged. Therefore, line 12 contains another condition dealing with instantiation of
the successor of the second node. That is, if the successor of the second node is not a
reference (have not been merged) and is not in Instantiated (is not going to be merged),
it is instantiated.

9.3 Hint of Reference Nodes
The testing methods based on minimal state cover set (see Section 6.1) produce an
m-complete test suite with several sequence. States in such test suite T are uniquely
identified so the FCC does not need to estimate any node on T if no extra states are
considered.

The methods generating a checking sequence are more complicated. The order of
nodes processing in reduceDomains() and related identifying of reference nodes is cru-
cial. Consider the following example. The C-method on a 3-state FSM with binary
input and output alphabets and an ADS aa creates a checking sequence sketched in
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Figure 9.4. A Checking Sequence displayed the Need of a Hint of Reference Nodes

Figure 9.4. The FCC does not know that sequence aa is needed to distinguish all refer-
ence nodes. It simply passes through nodes in given order. Sequence aa leads from the
first processed node n1 with response 01. The node n1 is set as the first reference node.
Then, a node ni is distinguished from n1 because a transition a/1 leads from ni. Thus,
ni is set as the second reference node. No other node can be chosen as the third refer-
ence node because the third state C responds equally to sequence ab as state B of node
ni. Sequence ab is the only one that can be used for a distinguishing from ni. If the
FCC started with nodes n1, nj and nk that are appended with distinguishing sequence
aa, then all reference nodes would be found and thus domains would be reduced more.

We resolve this problem by providing a hint for the FCC. Based on knowledge of
the testing method, we choose nodes of the testing tree that are to be processed in
reduceDomains() first. In our example, nodes n1, nj and nk are chosen. The function
reduceDomains() then marks the chosen nodes as reference nodes implicitly. Notice
that this ‘hint’ does not break correctness or completeness of the FCC but it speeds up
the search enormously.

Two observations conclude this chapter. Searching for reference nodes is similar to
finding of n-clique in distinguishability graph. A distinguishability graph is built in the
first step of the fault coverage checking method from [Si10]. The second observation is
that the FCC creates a confirmed set in fact. It follows Theorem 8.1. Reference nodes
represent minimal state cover so the condition 1 of Theorem 8.1 holds. Then, merging
and instantiations provide next confirmed sequences.
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Chapter 10
Implementation

We compare some testing method of Chapter 6 in the following chapter and we want
to propose replicable experiments. Therefore, we describe our implementation of the
methods in this chapter. It is needed because each method’s design contains some
nondeterministic choice that influences the result. An example of such nondeterminism
is an order of transitions’ verification or a choice of one of several shortest distinguishing
sequences. Thus, we need to state how we handle these nondeterministic parts to be
able to make a valuable comparison. There are several very good comparisons of testing
methods [Do05e, En13] however they did not state how a family of harmonized state
identifiers is obtained, for example. Hence, the results could be different if one chooses
other implementation of the same method.

This chapter begins with a discussion how separating sequences can be obtained
and how a state characterizing set, a characterizing set and a set of harmonized state
identifiers can be formed from separating sequences. Then a description of the state
and transition cover design methods is proposed. In addition, a special structure for
storing prefix-closed set is introduced in the same section. Subsequently, we will use
proposed algorithms and structures to implement the testing methods.

States, input symbols and outputs symbols are numbered from zero so that the
transition and the output function can be easily stored in arrays. Thus, we use si ∈ S
and xj ∈ X as indexes and it allows us to do standard arithmetic operations with
states or inputs. More about representation of FSMs in our C++ library and how
sample machines for experiments are generated is proposed in [So14].

10.1 Separating sequences
A separating sequence w of states si and sj produces different responses when it is
applied to both states, i.e. λ∗(si, w) 6= λ∗(sj , w). Knowledge of separating sequences is
significant for state identification. Note that distinguishing sequence and state verifying
sequence are special cases of separating sequences. We focus on creating separating
sequences in general, i.e. for each pair of states in a complete reduced FSM, because
such sequences always exist. When one has a separating sequence for each states pair,
state characterizing sets, characterizing set and a family of harmonized state identifiers
can be easily arranged as it will be shown in the following section.

Separating sequences are equal for states pair (si, sj) as for (sj , si) therefore it is
sufficient to store just for one pair. We use a pairs array [So14] for storing sequences.
It is a one-dimensional array of length K = n(n − 1)/2 and the bijective relation of a
states pair (si, sj) and the index cell(si, sj) in pairs array follows:

cell (si, sj), si < sj ←→ si · n+ sj − 1− si · (si + 3)
2 (1)

Four methods are proposed in the following sections. Then an example and appro-
priate steps of algorithms are demonstrated. All methods are very simple. States are
distinguished by outputs first and then by the next states.
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10.1.1 Shortest sequences
We proposed the design method finding shortest separating sequences for each pair of
states in [So14] (Section 3.5.1):

1. For each pair of states (si, sj) ∈ S × S, si 6= sj , apply each input x ∈ X. If states
si and sj produce on a x different output, store this input x as shortest separating
sequence for pair (si, sj). For Moore machines, distinguish pairs of states first by ε.

2. For each pair (si, sj), si 6= sj , distinguished by the input sequence w in the previous
step try to find an undistinguished pair (sk, sl), sk 6= sl, and an input x such that the
pair of the next states (δ(sk, x), δ(sl, x)) = (si, sj). If there are such pair and input,
store x · w as a separating sequence for the pair (sk, sl).

3. Repeat step 2 until there is a pair of undistinguished states (sk, sl), sk 6= sl.

The design method contains a few uncertainties so the implementation is proposed
in Algorithm 8. Three data structures are employed:.V is a pairs array to store a separating sequence of the related states pair,.Distinguished is a queue of states pairs that have already set the separating sequence,.Link contains a list of previous states pairs and transferring inputs for each states pair

States and input symbols are numbered so the ‘foreach’ cycles are determined by
numerical order. Notice that line 16 prevents a self-loop adding and lines 6, 11, 12 and
18 shorten searching because only one of shortest separating sequences is to be found.

Algorithm 8. Design method of shortest separating sequences

1 foreach pair of states (si, sj) do
2 idx← index of (si, sj) in V
3 if type is Moore and λ(si, ε) 6= λ(sj , ε) then
4 V [idx]← ε
5 Distinguished.push(idx)
6 continue

7 foreach x ∈ X do
8 if λ(si, x) 6= λ(sj , x) then
9 V [idx]← x

10 Distinguished.push(idx)
11 break

12 if V [idx] is set then continue
13 foreach x ∈ X do
14 if δ(si, x) 6= δ(sj , x) then
15 nextIdx← index of (δ(si, x), δ(sj , x)) in V
16 if idx 6= nextIdx then
17 Link[nextIdx].push((idx, x))

18 if V [nextIdx] is set then break

19 while Distinguished is not empty do
20 idx← Distinguished.pop()
21 foreach (prevIdx, x) ∈ Link[idx] do
22 if V [prevIdx] is not set then
23 V [prevIdx]← x · V [idx]
24 Distinguished.push(prevIdx)
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The proposed Algorithm 8 runs in O(n2 · |X|). It passes through all states pairs

and in the worst case all inputs are checked at first. The number of states pairs is
K = n(n − 1)/2 which is in O(n2). The queue Distinguished can contain at most
K ·|X| elements. Therefore, both main cycles (line 1 and 19) are processed in O(K ·|X|).
Thus, the time complexity of the algorithm, O(n2 · |X|), is proved.

10.1.2 Parallel approaches
Parallelization of an algorithm is able to reduce running time. As the design method
finding shortest separating sequences processes states pairs relatively independently,
the method should be parallelized quite well. We propose two parallel approaches
adapted to run on GPU. GPU can be imagine as multiprocessor with many elementary
cores. For simplicity, each core handles one thread and cores are grouped into blocks.
A function called kernel runs on a specific number of blocks and every thread in such
a block follows the same kernel but each thread handles different data. More about
programming in parallel and on GPU can be found in [Ki12], for example.

Basic idea for parallelization the design method is handling each states pair by one
thread. However, a couple of problems have to be resolved at first.

On GPU it is very hard to work with linked list which we use as a structure of
sequence. Therefore, two pairs arrays, SepInput and SepNextPair, are employed
instead. SeqInput stores only the first input symbol of sequence in a cell. SepNextPair
links the cell with the next states pair cell. If a pair is distinguished by the input stored
in the related cell in SepInput, the cell in SepNextPair contains a link to itself as a
mark of sequence’s end; a link is the index of cell in pairs array.

Each thread has a unique identifier that corresponds to the index in pairs array in
our case. The derivation of state indexes from the index of pairs array needs to find a
square root. This is a very costly operation if each thread has to do at the beginning of
its run. Therefore, another array is employed. We called it Mapping, it has the length
as previous mentioned pairs arrays and it stores lower state index related to given cell.
The second state index is easily computed according to Relation (1) of cell(si, sj).

Straightforward approach
The first proposed parallel approach simply follows the design method in Sec-

tion 10.1.1. Step 1. is implemented by the kernel in Algorithm 9 or Algorithm 10
according to the type of given machine. The kernels distinguish pair of states that
produces different output on some input symbol, or on the empty string in case of
Moore machine. The kernel in Algorithm 11 represents step 2. and it is repeated
if there is an undistinguished states pair (step 3.). Algorithm 11 distinguishes an
undistinguished pair of states that transfers to distinguished states pair on some input.

Algorithm 9. Kernel Separation by output for Moore machines

1 idx← global identifier of thread
2 si ←Mapping[idx]
3 sj ← idx = cell(si, sj)
4 if λ(si, ε) 6= λ(sj , ε) then
5 SepInput[idx]← ε
6 SepNextPair[idx]← idx
7 SepSeqLength[nextIdx]← 0

We want to create shortest separating sequences. Therefore, we need to consider
following property of parallel algorithm. A thread can distinguish related pair of states

52



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Separating sequences

Algorithm 10. Kernel Separation by output for Mealy machines

1 idx← global identifier of thread
2 si ←Mapping[idx]
3 sj ← idx = cell(si, sj)
4 foreach x ∈ X do
5 if λ(si, x) 6= λ(sj , x) then
6 SepInput[idx]← input
7 SepNextPair[idx]← idx
8 SepSeqLength[nextIdx]← 1
9 break

if the next states pair has been distinguished. However, the next states pair can be-
come distinguished in the same repetition of Algorithm 11. Although threads shall
run in parallel, it is not ensured exactly when they set a certain value unless they are
synchronized. In general, we use several blocks of threads so we can only synchronize
the entire GPU. We solved this issue by keeping the length of separating sequence for
each states pair in the array SepSeqLength. We also need to know the number of
distinguished pairs. Therefore, each thread atomically increment the global counter
DistinguishedCount once the related pair is distinguished. If the value of this counter
is less than the number of states pairs, Algorithm 11 is processed again.

Algorithm 11. Kernel Separation by the next states

input: len - the length of longest found separating sequence
1 idx← global identifier of thread
2 if SepNextPair[idx] is not set then
3 si ←Mapping[idx]
4 sj ← idx = cell(si, sj)
5 foreach x ∈ X do
6 s′i ← δ(si, x)
7 s′j ← δ(sj , x)

8 if s′i 6= s′j then
9 nextIdx← cell(s′i, s

′
j)

10 if SepNextPair[nextIdx] is set and
SepSeqLength[nextIdx] = len then

11 SepInput[idx]← x
12 SepNextPair[idx]← nextIdx
13 SepSeqLength[idx]← len+ 1
14 begin atomic
15 DistinguishedCount← DistinguishedCount+ 1

16 break

Consider a set W of all found distinguishing sequences, i.e. a union of shortest
separating sequences over all states pairs. Let w be the longest distinguishing sequence
of W . The length of w is bounded by the number of states, i.e. |w| < n, or |w| ∈ O(n).
A thread goes at most through all inputs, so its running time is O(|X|) for each of three
kernels. Either Algorithm 9 or Algorithm 10 runs once according to the type of machine.
Algorithm 11 is started |w|-times. Therefore, time complexity of the Straightforward
parallel approach is O(|w| · |X|) = O(n · |X|).
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Approach using a queue

The first parallel approach always uses all K = n(n− 1)/2 threads although most of
them have no work because their related pairs have already been distinguished. As a
consequence of this disadvantage, we developed another method.

The second approach parallelizes the sequential method captured in Algorithm 8.
Each thread first distinguishes pair of states by an output, see Algorithm 9 and 10.
The difference is that SepSeqLength is not needed and in this place we push idx into
queue Distinguished. A queue is represented on GPU as a buffer and an index pointer
to the last element. The pointer DistinguishedCount of Distinguished is atomically
incremented by a thread just before the thread stores its index in the queue. An atomic
operation is irreducible so only one thread can change the content at a time.

Algorithm 8 uses Link as pairs array of lists which is again a problem on GPU. Hence,
arrays LinkInput and LinkPrevPair are introduced in place of Link. They contain
the same data as Link but in one dimensional array. Therefore, pairs arrays LinkIdx
and LinkSize have to be employed to store a start index and length of list in LinkInput
and LinkPrevPair for a particular entry of Link. The first element of Link[idx] can
be then accessed as (LinkPrevPair[k], LinkInput[k]), where k = LinkIdx[idx], and
the length of Link[idx] is LinkSize[k], for example.

Sizes of LinkInput and LinkPrevPair are not known apriori so we fill LinkIdx and
LinkSize at first. Algorithm 9 and Algorithm 10 are extended in the following way. If a
pair with index idx is not possible to distinguish, then LinkIdx[nextIdx] is atomically
incremented by one for each valid next states pair with index nextIdx. A next states
pair is valid if the next states are not equal and its index is different from the source
pair’s index, i.e. idx 6= nextIdx. The same procedure will be done in Algorithm 12
with the array LinkSize. LinkIdx contains the number of links for each states pair
when the first kernel finishes.

The exclusive all-prefix-sums operation on LinkIdx is then employed to derive start
indexes and sizes of LinkInput and LinkPrevPair. The all-prefix-sums operation on
an array of data is known as scan [La80]. It recalculates entries of LinkIdx such
that LinkIdx[i] will contain

∑
j<i LindIdx[j]. Moreover, it calculates the total sum of

LinkIdx which is needed for allocation of LinkInput and LinkPrevPair on GPU.

Algorithm 12. Kernel Filling previous pair’s Link

1 idx← global identifier of thread
2 if SepNextPair[idx] is not set then
3 si ←Mapping[idx]
4 sj ← idx = cell(si, sj)
5 foreach x ∈ X do
6 s′i ← δ(si, x)
7 s′j ← δ(sj , x)

8 if s′i 6= s′j then
9 nextIdx← cell(s′i, s

′
j)

10 if idx 6= nextIdx then
11 begin atomic
12 linkIdx← LinkSize[nextIdx]
13 LinkSize[nextIdx]← LinkSize[nextIdx] + 1

14 linkIdx← linkIdx+ LinkIdx[nextIdx]
15 LinkInput[linkIdx]← x
16 LinkPrevPair[linkIdx]← idx
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After scan finishes and ‘Link structures’ are allocated, Algorithm 12 starts. It fills
LinkInput and LinkPrevPair with values like Algorithm 8. LinkSize as other struc-
tures is initialized with zeros so when Algorithm 12 begins, LinkSize[i] = 0 for each i.

The last kernel is described in Algorithm 13. It works on one block of threads and
one thread handles one distinguished pair of states in the queue Distinguished. Pairs
are processed in waves according to the length of separating sequence of given states
pair. That is, the pairs distinguished by output directly are processed simultaneously
first, then the pairs distinguished by sequence of length 2. These pairs may have
links to some undistinguished pairs of states. Such undistinguished pairs are again
simultaneously treated in the next round.

Algorithm 13. Kernel Processing the Distinguished

1 idx← global identifier of thread
2 base, count← 0
3 repeat
4 base← count
5 count← DistinguishedCount
6 while idx < count− base do
7 idx← Distinguished[base + idx]
8 for k = 0 to LinkSize[idx] do
9 prevIdx← LinkIdx[idx] + k

10 prev ← LinkPrevPair[prevIdx]
11 begin atomic
12 if SepNextPair[prev] is not set then
13 isDist← true
14 SepNextPair[prev]← idx

15 else isDist← false

16 if isDist then
17 SepInput[prev]← LinkInput[prevIdx]
18 begin atomic
19 distIdx← DistinguishedCount
20 DistinguishedCount← DistinguishedCount + 1

21 Distinguished[distIdx]← prev

22 base← base + number of threads

23 synchronize threads

24 until DistinguishedCount < number of state pairs

Calculation of time complexity can be divided into four parts according to kernels.
The first kernel runs in O(|X|) because each thread goes through all inputs and either
a separating sequence (one input symbol) is found or next states pair’s link counter is
increased. Then scan is employed and it takes O(log2(K)) [La80], whereK = n(n−1)/2.
Algorithm 12 needs O(|X|) for filling Link’s structures. Under the assumption that
each states pair has approximately |X| previous states pair, i.e. |X| entries in Link,
Algorithm 13 runs in O(|w| · |X|) = O(n · |X|), where w is the longest distinguishing
sequence, see time complexity derivation of the first parallel method. Estimation of the
number of links for each states pair is reasonable due to the fact that |Link| < n · |X|
and all Link’s entries are processed in |w| cycles of ‘repeat’ cycle in Algorithm 13. That
is, a thread treats |Link||w| ∈ O(n·|X|n ) = O(|X|) entries per cycle in average. Thus, total
time complexity is O(|X|+ log2(K) + |X|+ n · |X|) = O((n+ 2) · |X|).
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10.1.3 All sequences

The methods proposed so far find some of shortest separating sequences for a particular
pair of states. Nonetheless, it could be beneficial to know all separating sequences
sometimes. For example, the H-method (Section 6.1.8) chooses a separating sequence
on the fly. Listing of all separating sequences takes a lot of computer time and space
therefore we create a special linked structure L instead. Each separating sequence can
be then easily obtained from the L. Particularly, L is a pairs array that contains two
components in each cell. The former component called next is an array of indexes to
L for each input symbol. The latter component is a number minLength determining
the length of shortest separating sequence for given pair of states. Both components
are initialized with values of −1.
L can be also imagine as a directed graph. Nodes are cells of L and edges are given

by next of particular cell. A self-loop indicates that pair of states is distinguished by
related input, i.e. label of the self-loop edge. In other words, we use the cell’s index
as mark of separating input symbol. Moreover, minLength is 0 if the related pair
produces different outputs and the type of machine is Moore.

The method for finding all separating sequences shown in Algorithm 14 is very similar
to Algorithm 8. The difference is that searching is not shortened so each input is
processed for each states pair and links are thus set. Notice that the second main cycle
(line 16) is needed only for determining the minimal length of separating sequence for
each pair of states.

Algorithm 14. Finding of all separating sequences

1 foreach pair of states (si, sj) do
2 idx← index of (si, sj) in L
3 if type is Moore and λ(si, ε) 6= λ(sj , ε) then
4 L[idx].minLength← 0

5 foreach x ∈ X do
6 if λ(si, x) 6= λ(sj , x) then
7 L[idx].next[x]← idx
8 if L[idx].minLength = −1 then
9 L[idx].minLength← 1

10 Distinguished.push(idx)

11 else if δ(si, x) 6= δ(sj , x) then
12 nextIdx← index of (δ(si, x), δ(sj , x)) in L
13 if idx 6= nextIdx then
14 L[idx].next[x]← nextIdx
15 Link[nextIdx].push((idx, x))

16 while Distinguished is not empty do
17 idx← Distinguished.pop()
18 foreach (prevIdx, x) ∈ Link[idx] do
19 if L[prevIdx].minLength = −1 then
20 L[prevIdx].minLength← L[idx].minLength+ 1
21 Distinguished.push(prevIdx)

The proposed Algorithm 14 runs in O(n2 · |X|) like Algorithm 8. We can even state
that time complexity of the algorithm is Θ(n2 · |X|) because each pair of states has to
be processed with each input symbol.
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10.1.4 Example
We proposed four slightly different approaches for creating separating sequences in the
previous sections. This section provides a description how each approach works and
creates separating sequences of the Moore machine M given in Figure 10.1.

a b ε

A A C 0
B C A 0
C B D 0
D D A 1

Figure 10.1. A Moore machine for Separating Sequences Example

The first approach described in Algorithm 8 finds some of the shortest separating
sequences for each pair of states. Its process of sequence creating is captured in Fig-
ure 10.2. There are a distinguishing table on the left and steps of the algorithm on the
right. The distinguishing table shows the content of pairs array V more clearly. Rows
and columns are labeled with states so there is a separating sequence of related pair
of states in a cell. States are denoted A,B,C and D but in fact they are numbered
0, 1, 2 and 3, respectively. Therefore, the pairs array index can be calculated according
Relation (1). Index is then shown in top left of the cell and it is used in the algorithm’s
steps as reference to particular cell.

B C D
A 0 ab =⇒1 b 2 ε

B × 3 b 4 ε

C ×× 5 ε

1. (⇒) Link[1]← (0, a), (0, b)
2. 1 ← b

4. 3 ← b

6. 5 ← ε

3. 2 ← ε

5. 4 ← ε

7. 0 ← ab

Figure 10.2. Function of Algorithm 8 on the Moore machine (Figure 10.1)

Algorithm 8 processes given Moore machine in 7 steps as it is shown in Figure 10.2.
Each step depicts a significant change, e.g. assignment of a separating sequence to
certain cell. The first six steps handle each pair of states for the first time, i.e. ‘foreach’
cycle on line 1. The last step goes through Distinguished (line 19) and creates the
separating sequence ab of states A and B using Link[1] filled in the very first step.

The Straightforward approach parallelizes creating of sequences so it finds some
of shortest separating sequences for each states pair just in 3 steps. Steps and a
distinguishing table are shown in Figure 10.3. The distinguishing table on the left
captures pairs array SepInput and blue arrows represent connections of pairs array
SepNextPair. Next states pair is in brackets after distinguishing input symbol in
steps 2 and 3. SepInput contains only an input symbol in a cell so SepNextPair is
needed for separating sequence listing. Therefore, cell 0 of states A and B contains a
in the distinguishing table but the resulting separating sequence is ab.

B C D
A 0 a −→1 b −

→

2 ε

B × 3 b−→4 ε

C ×× 5 ε

1. 2← ε, 4← ε, 5← ε

2. (→) 1← b(5), 3← b(2)

3. (→) 0← a(1)

Figure 10.3. Function of the Straightforward approach on the Moore machine (Figure 10.1)
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The Approach using a queue tries to minimize the number of used threads compared

to the Straightforward approach. Nevertheless, the preparation of Link structures and
queue Distinguished takes some additional time. The function of the Approach using
a queue on the Moore machine can be described in 4 steps as Figure 10.4 shows. In the
first step, states pairs with indexes 2, 4, 5 are distinguished and the other pairs increase
counters in LinkIdx. Pair of states A and C (index 1) has 2 incoming transitions, (0, a)
and (0, b) in particular, so LinkIdx[1] = 2. The second step runs scan that recalculates
LinkIdx. It also sums LinkIdx before adjustment. The sum is needed for allocation
of Link structures, i.e. both LinkInput and LinkPrevPair have the length of 5.
Algorithm 12 then fills Link structures as step 3 shows. Notice the correspondence of
LinkIdx entries and use of comma and semicolon between elements of Link structures.
For instance, LinkIdx[2] = 3 so that links of cell 2 start on index 3 and Algorithm 12
computes LinkSize[2] = 1 that means there is one such a link. This link is (3, b)
because LinkPrevPair[3] = 3 and LinkInput[3] = b. The last step processes queue
Distinguished, see Algorithm 13. In the first round, it distinguished states pairs with
indexes 1 and 3. The second round, or cycle, sets distinguishing input a to cell 0.

B C D
A 0 a =⇒1yb −

→

2 ε

B × 3 b−→4 ε

C ×× 5 ε

1. 2← ε, 4← ε, 5← ε
LinkIdx← 1, 2, 1, 0, 0, 1

2. LinkIdx← 0, 1, 3, 4, 4, 4; sum← 5
3. Link ← (1, a); (0, a), (0, b); (3, b); (1, b)
4. 3← b(2), 1← b(5); 0← a(1)

Figure 10.4. Function of the Approach using a queue on the Moore machine (Figure 10.1)

The last approach finds all separating sequences and it is proposed in Algorithm 14.
Its function on the Moore example captured in Figure 10.5 is very similar to Algorithm 8
described as the first in this section. However, the distinguishing table contains next
array and minLength in a cell in this case. Variable minLength is abbreviated to m
on the bottom left of a cell. The inputs and values on the right of a cell represent
particular entries of next array.

B C D

A
0

m 2
a 1
b 1

1

m 1
a 0
b 1

2

m 0
a -1
b 1

B ×
3

m 1
a -1
b 3

4

m 0
a 4
b -1

C × ×
5

m 0
a 5
b 5

1. 0: a← 1, b← 1
2. 1: a← 0, b← 1 , m← 1
3. 2: m← 0, b← 1
4. 3: b← 3 , m← 1
5. 4: m← 0, a← 4
6. 5: m← 0, a← 5 , b← 5
7. 0: m← 2

Figure 10.5. Function of Algorithm 14 on the Moore machine (Figure 10.1)

The first six steps shown in Figure 10.5 handle each states pair. For example, step 4
distinguishes states B and C (index 3). It tries the input a at first. The states transfer
to the same pair of states on a so the algorithm leaves next[a] with the default value.
The input b distinguishes the states, λ(B, b) = λ(A) 6= λ(D) = λ(C, b), therefore
next[b] is marked and minLength is set to 1. The index of cell is used as the mark
hence next[b], or simply b, gets 3. The last step goes through the queue Distinguished
and sets minLength using provided backward links stored in Link. The cell 0 is the
last one without set minLength because the pair of states A and B is the only one with
shortest separating sequence of length 2.
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10.2 State characterization
General testing methods generating several test sequences are based on state verification
by a set of separating sequences, see the W-method or the HSI-method in Section 6.1,
for example. The performance of methods also relies on choosing such a set that
is not unique in general. Unfortunately, the testing methods do not pose a design
method for state characterizing set. Therefore, this section proposes methods to obtain
a state characterizing set as well as a characterizing set, to reduce the set and to
create a family of harmonized state identifiers. All methods are based on separating
sequences. Shortest separating sequences constructed in the previous section are shown
in Table 10.1 and they will be used for a description of proposed methods.

Pair of states A,B A,C A,D B,C B,D C,D
Separating sequence ab b ε b ε ε

Table 10.1. Shortest Separating Sequences of the Moore machine (Figure 10.1)

10.2.1 SCSet
The set of output sequences to state characterizing set Wi of state si must be dif-
ferent for each state sj 6= si according to Definition 3.30. Consequently, there is a
separating sequence for each sj in Wi. So, it is sufficient to take all constructed sep-
arating sequences related to given state si to form its SCSet. Table 10.2 shows state
characterizing set of each state of our sample machine.

State State Characterizing Set
A ε, b, ab
B ε, b, ab
C ε, b
D ε

Table 10.2. State Characterizing Sets of the Moore machine (Figure 10.1)

Definition 3.32 states the notion of characterizing set W . It can be easily obtain as
union of all constructed separating sequences. Then, there is a separating sequence for
each pair of states in W so W distinguishes every two states. In our example, the state
characterizing set of state A (or B) is also characterizing set of the machine M , i.e.
W = {ε, b, ab}.

10.2.2 Reduction
Neither state characterizing set nor characterizing set is unique. We want to construct
minimal length checking experiment so we need to minimize SCSet and CSet as well.
Nevertheless, there are two criteria. One can minimize the number of sequences and/or
the lengths of sequences in the set. It is very hard optimization problem. The former
minimization approach leads to finding state verifying sequence (Definition 3.29) which
does not have to exists. We have decided for the latter approach as the first step. The
set of minimal length separating sequences was formed in the previous section. The
second step tries to reduce the number of sequences in the set.

We proposed the reduction method in [So14]. A similar approach was introduced in
[Mi10] however it removes only sequences that are proper prefixes of another ones from
the set. Our reduction method is based on knowledge of design of initial characterizing
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set. We form a characterizing set as union of shortest separating sequences. Let u be
a shortest separating sequence of states si and sj in characterizing set W . There is a
possibility that W contains another sequence v that is separating sequence of states si
and sj as well. If we find such a v, then u can be removed from W . We pass through
the set and analyze which sequence distinguishes which states pair. The key idea is
sorting of sequences by the length and then go from longest. Sequence v must be at
least long as u, i.e. |v| ≥ |u|.

Our method [So14] passes the entire set twice: at fist from longest and the second
time from shortest sequences. We found that the second passage through is not needed
because sequences with the same length are the main issue. Imagine a set of the
same length sequences G and a set of states pairs V ⊆ S × S. Each sequence u ∈ G
distinguishes some states pairs of V and all sequences of G together distinguish all
states pairs of V . Finding smallest subset of G that distinguish all states pairs of V is
NP-complete problem [Ho06]. The described task is equal to NP-complete Set Cover
Problem. Therefore, we propose a suboptimal approach only.

The new method is described in Algorithm 15. The sequences of given characterizing
set W are sort and grouped by the length. We start with the group G of longest
sequences. Two sets of pair indexes are initialized for each sequence u ∈ G. Allu
contains all yet undistinguished pairs that u separates. Lastu is a subset of Allu and
consists of states pairs that are distinguished by the last input symbol of u. Pairs of
Lastu are called u’s related pairs. If Lastu is empty, there are vi ∈ W, |vi| > |u|, that
distinguish all u’s related pairs of states and so u can be removed. The heuristic then
comes (line 10 in Algorithm 15). We choose a sequence w of G that remains in W .
The sequence with most related states pairs is chosen. If there are more sequences with
the same |Lastu|, they are sorted by |Allu| and even if they are equal, alphabetic order
decides. This heuristic assumes that a sequence with more related or all distinguished
pairs has better chance to replace a sequence with less pairs. After the best sequence
u is extracted from G sequences remaining in G update their Last and All sets due to
u distinguishes some pairs.

Algorithm 15. Reduction of characterizing set W in the number of sequences

input: W - characterizing set to reduce
1 Distinguished← ∅
2 foreach Glen = {u ∈W | |u| = len} and len← n to 0 do
3 foreach u = vx ∈ Glen, x ∈ X do
4 Allu ← {cell (si, sj) | λ(si, u) 6= λ(sj , u)} \Distinguished
5 Lastu ← {idx ∈ Allu | λ(si, v) = λ(sj , v)}
6 if Lastu is empty then
7 erase u from W and Glen

8 while Glen is not empty do
9 sort Glen by |Lastu| and |Allu|

10 w ← Glen.pop best()
11 Distinguished← Distinguished ∪Allw
12 foreach u ∈ Glen do
13 Allu ← Allu \Distinguished
14 Lastu ← Lastu \Distinguished
15 if Lastu is empty then
16 erase u from W and Glen
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Algorithm 15 runs in O(n5) like the one in [So14]. W contains at most n(n − 1)/2
sequences at the beginning of the reduction. Let w be the longest separating sequence
in W . Output sequences are compared for each pair of states. That is C = n(n− 1)/2
comparisons and one comparison takes at most |w| < n. Thus, time complexity is
O(|w| · |W | · |C|) ⊆ O(n · n2 · n2) = O(n5). Notice that the heuristic part is not so time
consuming. In each ‘while’ cycle (line 8) at least one sequence is removed from G and
the inner ‘for’ cycle (line 12) takes the time of |G|. Together with sorting algorithm
O(n logn), it is O(n2 + n · n logn).

Adaptation of Algorithm 15 to reduce state characterizing set is done as follows.
Input to the algorithm is a state characterizing set Wi of state si. State si is fixed
on lines 4 and 5. Allu contains states sj that are distinguished from the state si; line
4 is adjusted to ‘Allu ← {sj | λ(si, u) 6= λ(sj , u)} \ Distinguished’. Time complexity
decreases to O(n3), because of |Wi| < n, |C| < n and |w| < n.

Far more complex machine than the Moore one in Figure 10.1 would be needed
to show all properties of Algorithm 15. Nevertheless, we continue with our example.
Table 10.2 shows initial state characterizing sets to reduce. Output responses are listed
for each state in Table 10.3.

Moore machines require special handling due to outputs by states. The empty string
is used to obtain the output of a state. Testing methods usually concatenates charac-
terizing sets to a nonempty sequence u. The last output symbol on such a sequence u is
equal to the one obtained to the empty string applied after u, i.e. in Moore machines it
holds λ(δ∗(s0, v), x) = λ(δ∗(s0, u), ε) where u = vx, x ∈ X. Thus, the empty sequence
is included in a test implicitly. Therefore, we do not count with states distinguished by
the empty string ε. When it is needed, the empty sequence precedes another sequence
of characterizing set.

State ε b ab Reduced SCSet
A 0 0 00 b, ab
B 0 0 01 ab
C 0 1 00 b
D 1 0 10 ε

Table 10.3. Reduction of SCSets of the Moore machine (Figure 10.1)

Table 10.3 shows reduced state characterizing set for each state. For example, the
output of state B to ab is 01 which is unique over all states. Therefore, the Lastb and
Lastε are empty and b, ε are removed from WB . The algorithm found a state verifying
sequence of state B by reduction of WB . Sequences b and ab are sufficient to distinguish
all states so reduction of characterizing set produces W = {b, ab}. On the other hand,
there is a distinguishing sequence that could be found if the order of the input alphabet
was different. Algorithm 8 would construct the separating sequence bb for states A
and B. Then the sequence εbb is distinguishing sequence, i.e. it produces a different
response for each state.

10.2.3 HSI
Harmonized state identifiers are a special case of state characterizing sets. According
to their Definition 3.31 each pair of harmonized state identifiers has to contain common
prefix that separates related states. Therefore, it is sufficient to take each separating
sequence related to given state si as in Section 10.2.1. We reduce such a formed set by
removing proper prefixes of other sequences. In other words, we take maximal sequences
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of pref(Wi) to create harmonized state identifier Hi of state si. Moreover, we add the
empty string at the beginning of any separating sequence of the set explicitly if we
handle with a Moore machine. A family of harmonized state identifiers of our Moore
sample is shown in Table 10.4.

State Harmonized State Identifier
A εb, ab
B εb, ab
C εb
D ε

Table 10.4. Harmonized State Identifiers of the Moore machine (Figure 10.1)

10.3 Other input sequences
Testing methods use special input sequences for state verification. Characterizing sets
are described in the previous section. We proposed design methods for other sequences
in [So14]. There are algorithms for preset and adaptive distinguishing sequence, state
verifying sequence and homing sequence. Construction of PDS is PSPACE-complete
[Le94]. Therefore, we posed a heuristic approach. ADS is created in polynomial time
(in the number of machine states) in price of a possible suboptimal solution, i.e. a found
sequence does not have to be the shortest. Methods for SVS and homing sequence are
stated as exponential algorithms like the PDS algorithm. However, there is a polynomial
method for homing sequence that can produce a suboptimal solution [Gi62].

A transfer sequence to state s is needed to apply before verification of transitions
from s can start. In this section we describe the straightforward methods creating state
and transition cover set of sequences and then we introduce the structure for handling
prefix-closed set.

10.3.1 State cover
State cover is a set of transfer sequences according to its Definition 3.34. A transfer
sequence for state s is a defined sequence from the initial state to state s. Algorithm 16
creates a set of shortest transfer sequences for each state. It is simple breadth-first
search using array covered to mark visited nodes.

Algorithm 16. Design method of state cover set SC

1 SC ← {ε}
2 covered[s0]← true
3 FIFO.push(s0, ε)
4 while FIFO is not empty do
5 (s, u)← FIFO.pop()
6 foreach x ∈ X do
7 nextState← δ(s, x)
8 if not covered[nextState] then
9 SC ← SC ∪ {ux}

10 covered[nextState]← true
11 FIFO.push(nextState, ux)
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10.3.2 Transition cover
Transition cover is a set of defined sequences that contains each transition according to
Definition 3.35. Algorithm 17 creates a state cover SC and each sequence of SC extends
with each input symbol so a transition cover set is produced. It employs breadth-first
search as state cover set’s Algorithm 16. It uses array covered to mark visited nodes as
well. The difference is adding a sequence to the set; it is before a checking if the next
state is visited for design of transition cover (line 8 in Algorithm 17) and it is after the
checking for state cover (line 9 in Algorithm 16).

Algorithm 17. Design method of transition cover set TC

1 TC ← {ε}
2 covered[s0]← true
3 FIFO.push(s0, ε)
4 while FIFO is not empty do
5 (s, u)← FIFO.pop()
6 foreach x ∈ X do
7 nextState← δ(s, x)
8 TC ← TC ∪ {ux}
9 if not covered[nextState] then

10 covered[nextState]← true
11 FIFO.push(nextState, ux)

10.3.3 Prefix set
Definition 4.1 states that test suite is a prefix-closed set and only maximal test cases
are needed for testing. For a representation of test suite one can extend a set structure
provided as a basis for most programming languages or design new structure. We
decided to the latter case because only a few functions on the structure are needed.
Particularly, a sequence can be inserted into the set, one can ask whether the set
contains a sequence and all maximal sequences can be easily obtained. We call such a
structure a prefix set.

Definition 10.1. A prefix set of sequences is a tree such that label of each node is an
input symbol but the root is labeled with the empty string ε. Paths from the root
represent sequences of the prefix set.

There are plenty of options how to implement prefix set. If |X| is big and a lot of
sequences are assumed to be in prefix set then a node of prefix set can be represented
by an associative array (map in C++ terminology). Key and value would be an input
symbol and a pointer to the next node, respectively.

Another approach is representation of node by a triplet of an input symbol, i.e. label
of node, and two pointers to other nodes. The first pointer is to a child, or a successor,
in the tree and the second one is to sibling, i.e. a node that has the same parent in
the prefix set. The approach handles prefix set by levels of its tree structure. For
example, if one wants to access the last child of a node, all children have to be passed.
Therefore, this approach is suitable when low branching factor is assumed. Nonetheless,
the required functionality is very easy to implement. Linked structure enables simple
removal of sequences. This is a big advantage of the approach.
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The methods creating test suite with several sequences use sets P and R as they are
defined in Section 6.1, i.e. P is the transition cover (Section 10.3.2) if there is no extra
state and R are then sequences from TC that are not in the state cover (Section 10.3.1).
Some of them employ rather a testing tree, see Figure 9.2 for example.

Description of methods’ implementation is proposed as a technical documentation
without explanation of all details. Therefore, a study of provided pseudocodes is re-
quired for fully understanding of some methods. The H-, SPY- and C- methods get
the most focus owing to their complexity. It is needed to specify especially a choice
of separating sequences in the H-method, a way of handling of convergent sequences
in the SPY-method and updating of confirmed set in the C-method. An implementa-
tion of our new testing method, the M-method, concludes this section. It also includes
a proposal of two suboptimal approaches, the Ma-method and the Mg-method, that
approximate the M-method.

10.4.1 PDS-method
The PDS-method defined in Section 6.1.1 states creating of a test suite T as appending
a preset distinguishing sequence to each sequence of P . We obtain a PDS using the
method described in [So14]. Each sequence from P is then concatenated with the PDS
and inserted into the prefix set PS. Test suite is formed by maximal sequences of PS.
If there is no PDS, the method produces empty test suite T as a sign of PDS’s absence.

If given machine is type of Moore, i.e. the PDS starts with the empty string ε to
obtain the output of the initial state, the following treatment is employed. The empty
sequence is erased from the beginning of the PDS because the last output of a sequence
u of P is the same as it would be obtained by applying the empty sequence after u.
Notice that P contains ε so the entire PDS is applied in the initial state.

10.4.2 ADS-method
The ADS-method (Section 6.1.2) is equal to the PDS-method in the implementation
point of view. Use of an adaptive distinguishing sequence instead of PDS is the only
difference. We obtain an ADS by polynomial algorithm but the ADS does not have to
be the shortest one, see [So14] or [Le94].

10.4.3 SVS-method
Section 6.1.3 defines design of a test suite using the SVS-method. An implementation
is similar to the PDS-method in aspect of handling Moore machines and use of a prefix
set. If there is no state verifying sequence of a state s, reduced state characterizing
set Ws (Section 10.2.2) is used for state verification. The method always creates a test
suite T but the number of states without SVS is attached to T for a comparison.

10.4.4 W-method
The W-method is the oldest method producing an m-complete test suite for each re-
settable machine. It is formally defined in Section 6.1.4 and implemented in a straight-
forward manner. Each sequence of P is concatenated with each sequence of reduced
characterizing set W . Creating characterizing set and its reduction in the number of
sequences are described in Section 10.2. A prefix set is again employed to remove re-
dundant tests that are contained in longer tests. If a given machine is type of Moore
and there is an extra state or W contains the empty sequence, one test sequence of T
needs to start with ε to distinguish the initial state.
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10.4.5 Wp-method
Characterizing set W and state characterizing sets Wi are used in the Wp-method.
Each Wi must be subset of W according to the definition of the method in Section 6.1.5.
Therefore, we reduce each state characterizing set using Algorithm 15 at first. Char-
acterizing set is then created as union of reduced state characterizing sets Wi. We use
a prefix set to obtain only maximal sequences of such union of Wi. Test sequences are
formed according to the definition and only maximal sequences are selected. If we deal
with a Moore machine, the same condition as for the W-method holds. If there is an
extra state or W contains the empty string ε, a test sequence has the empty string ε
at the beginning.

10.4.6 HSI-method
The HSI-method stated in Section 6.1.6 is very similar to the W-method from the
implementation point of view. The difference is the use of harmonized state identifiers
Hi in place of characterizing set. Creating of harmonized state identifier is proposed
in Section 10.2.3. The condition for Moore machines is adjusted that if H0, i.e. state
identifier of the initial state, contains the empty sequence or there is an extra state,
then one test starts with the empty sequence ε.

10.4.7 H-method
Section 6.1.8 provides a description of the H-method. This method uses harmonized
state identifiers to state verification. However, it chooses separating sequences for two
states on-the-fly unlike the HSI-method that chooses separating sequences in advance.

At first, all shortest separating sequences are obtained using Algorithm 14. They
are stored in states pairs array L. The length of shortest separating sequence for each
states pair is very important. We use it to estimate the number of needed symbols for
separation of two states.

A testing tree is constructed such that each sequence of P is a path from the root.
The root represents the initial state and has the output of the initial state as label if we
deal with a Moore machine. Edges are labeled by an input symbol. A node ni = (si, yi)
of testing tree having a parent node nj = (sj , yj) contains a state si and an output
symbol yi as label. The state and the output are obtained by applying the input x of
the edge from the parent in nj , i.e. si = δ(sj , x) and yi = λ(sj , x). Moreover, nodes
contain a variable to mark the best input for separation of two nodes in question.

Nodes of testing tree are divided into groups of SC nodes that are reached by state
cover set’s sequences and the others, called Extra. This helps to pass steps 2-4 of the
H-method. The testing tree is created in breath first search as the transition cover
(Section 10.3.2). Nodes are added in the list of SC nodes or Extra nodes as soon as
they are created. The lists are then passed according to the steps of the method.

A separating sequence has to be chosen if two given nodes are not distinguished.
Both subtrees of given nodes are compared at first whether they are different and so
the nodes are distinguished. During comparison of subtrees we get estimate of how
many input symbols are needed to append to distinguish two related nodes. Then, if it
is found out that given nodes are not distinguished, we simply take minimal estimate
and append related separating sequence.

Our simple estimation function is proposed in Algorithm 18. The function assumes
that the first given node ni has a leaving edge on given input x and the second node
nj does not provide such an edge. Therefore, the function returns an estimate of 1 if x
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distinguishes given nodes; x has to be appended to nj . There is a possibility that x can
not be used as the first symbol of a separating sequence of the nodes. That is, states of
the nodes transfer to the same state or remain in the same states pair on the input x.
In such case, a mark of inapplicability must be returned. We use the number of states
(line 4) because each shortest separating sequence is shorter than this value and we find
a minimal estimate. If x can be the initial symbol of a separating sequence, doubled
the length of shortest separating sequence of the next states pair increased by 1 for
appending x in nj is returned as an estimate. Note that the value is really an estimate
because the next node of ni on x can have the related separating sequence appended
(or its prefix) so the number of needed symbols is less than the estimated value.

Algorithm 18. Estimation of needed symbols to distinguish given nodes

1 Function getEstimate(ni, nj , x)
input : ni = (si, yi), nj = (sj , yj) - test nodes to estimation

x - the first input symbol of estimated separating sequence
data : L - pairs array of all separating sequences

2 idx← index of (si, sj) in L
3 nextIdx← L[idx].next[x]
4 if nextIdx = −1 then return |S| // x can not distinguish nodes
5 if nextIdx = idx then return 1 // x is distinguishing input
6 return 2 · L[nextIdx].minLength + 1

Algorithm 19 describes the recursive function that checks whether given nodes are
distinguished and it marks an input that should be used as the initial symbol of their
separating sequence. The function compares subtrees of nodes that are to be distin-
guished according to the H-method. If the machine is the type of Moore, the outputs
of nodes are checked before the function is called. For each common input symbol the
outputs of successors are checked whether they differ. If they do not, the comparison
is recursively called on the successor nodes. Notice that the states of successors must
be different; a pair of equal states can not be distinguished. Some nodes do not have a
leaving edge on certain input symbol. For such a pair of nodes we get an estimate of
appending a common separating sequence in these nodes using Algorithm 18. If both
nodes do not have an edge on certain input, one is added to the estimate (line 19) due
to the design of the estimate function. We want to reduce branching of testing tree, i.e.
minimize the number of tests. Therefore, we prefer appending in successor nodes. The
best estimate so far is updated even if it is equal to the estimate of successor, see line
11. In the end, the function marks the best input (line 21).

A separating sequence of nodes from lists SC and Extra to be distinguished is created
using marked inputs after Algorithm 19 finds that the nodes are not distinguished. The
following rule is recursively applied. If the best input is common for both nodes, the
successor nodes are considered. Otherwise a separating sequence starting with the best
input is appended to both nodes. The shortest separating sequence is derived from
provided pairs array L. There can be more shortest separating sequence. Then the
one with the first symbol coinciding with a leaving edge of one node is chosen or the
lexicographically lowest sequence is employed if neither node has such a leaving edge.

The last step is to arrange a test suite. It is the same process as obtaining maximal
sequences from prefix set. That is, sequences of paths from the root node to leaves form
test cases.
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Algorithm 19. Finding the best way to distinguish given nodes

1 Function areTestNodesDistinguished(ni, nj)
input : ni = (si, yi), nj = (sj , yj) - test nodes to compare
output: 0 if given nodes are distinguished,

the number of inputs needed to distinguishing otherwise
2 minEst← (|S|, ε) // a pair of minimal value and related input
3 foreach x ∈ X do
4 if ni has an edge on x then
5 if nj has an edge on x then
6 if λ(si, x) 6= λ(sj , x) then return 0
7 if δ(si, x) = δ(sj , x) then continue
8 n′i, n

′
j ← the next nodes of ni, nj on x

9 est← areTestNodesDistinguished(n′i, n
′
j)

10 if est = 0 then return 0
11 if minEst.first ≥ est then minEst← (est, x)

12 else
13 est← getEstimate(ni, nj , x)
14 if minEst.first > est then minEst← (est, x)

15 else if nj has an edge on x then
16 est← getEstimate(nj , ni, x)
17 if minEst.first > est then minEst← (est, x)

18 else
19 est← getEstimate(ni, nj , x) + 1
20 if minEst.first > est then minEst← (est, x)

21 mark minEst.second as the best input to distinguish given nodes
22 return minEst.first

10.4.8 SPY-method

The SPY-method reduces test branching using knowledge of verified transition. This
makes the method one of the best methods for generating test suite with several se-
quences. Nevertheless, it uses harmonized state identifiers obtained in advance so the
results are comparable to the H-method, see Section 11.3.

A formal description is in Section 6.1.11 or in original paper [Si12]. The method deals
with a partition of sequences derived by their convergence. The authors suggest to use
Union-Find structure to handle partitions so time complexity of the method remains
polynomial in the length of test suite T .

We found out that only blocks containing sequences of SC are needed due to the
design of the method and thus we do not have to handle with all blocks of the current
partition. The idea of implementation is similar to the H-method. At first, a testing
tree is created according to the first step of the SPY-method. That is, paths from
the root node are sequences of SC ◦ Hi. We use array confirmedNodes[si] to handle
the block of partition Π that contains sequences convergent with the transfer sequence
u ∈ SC to state si. During the creation of the testing tree, confirmedNodes arrays
are filled with singletons of nodes that relate to transfer sequences of state cover set
SC. Moreover, unverified transitions are stored when they are touched in breath-first
search; the process of creating testing tree is similar to Algorithm 17 however nodes of
SC are appended with related Hi.
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Selection of the convergent sequence that is extended by given separating sequence

is done as Section 6.1.11 states. Given transition (s, x), we pass confirmedNodes[s] and
then confirmedNodes[δ(s, x)]. For each node in particular array we check whether a
path from the node to a leaf is a prefix of the sequence w that is to be added. It is
clear that if w is a prefix of a path from the node, nothing is added. If there are more
maximal sequences (paths) that are prefixes of w, the one minimizing added symbols
is chosen. Otherwise, i.e. no path is a prefix of w, the transfer sequence from SC is
extended because the test suite grows least. During appending the sequence w to a
node of confirmedNodes[δ(s, x)], the closure procedure is performed. If a prefix of w
consists of verified transitions, each node reached by such a prefix is added to related
confirmedNodes array. Nodes reached by appending to a node of confirmedNodes[s] do
not have to be checked because the transition (s, x) is still unverified so the successor
nodes cannot be in confirmedNodes arrays. After each separating sequence of partic-
ular Hi is applied, the transition becomes verified and the confirmedNodes arrays are
updated as follows. Each successor node of a node ni of confirmedNodes[s] reached by x
from ni is added to confirmedNodes[δ(s, x)] and its successors are also added (to related
confirmedNodes array) if there is a verified path to them. As an unverified transition
occurs in a path from ni, no successor nodes are added to confirmedNodes arrays.

Test cases are again formed from the maximal sequences, i.e. paths from the root to
leaves. Our approach with confirmedNodes arrays remains polynomial in the length of
test suite. Handling partition and the closure function are the only differences from the
authors’ approach. The length of test suite T , i.e. len(T ), generated by aforementioned
methods for resettable machines can be bounded by O(npm−n+1 · (n− 1) · (m+ n− 1))
because P (an extended SC defined in Section 6.1) has up to npm−n+1 sequences of
length at most m = |Q| and each of them is appended with up to (n − 1) separating
sequences that are shorter than n = |S|. In addition, the number of extra states is
assumed to be strictly less than n, i.e. n ≤ m < 2n so the bound of O(n3pm−n+1) is
obtained. The SPY-method can produce test cases with the length greater than (m+n)
but the number of sequences is reduced and the bound holds.

10.4.9 C-method
Section 6.2.7 proposes a formal description of the C-method. There is a quite straight-
forward algorithm however two difficulties need to be resolved. The first one is the
maintaining of a confirmed set C(t) and the second problem concerns output-confirmed
sequences that are needed for the step 2.(ii).

An approach to the former problem is proposed in [Si08]. The authors found out
that it is sufficient to maintain the shortest verified sequences for each state, i.e. there
is no verified proper prefix of them. We use a prefix set psi (see Definition 10.1) for
each state si. It handles all shortest verified sequences and a new function over this
structure is employed. When a sequence v becomes verified in a state si, it replaces all
sequences of the prefix set psi which v is a prefix of. That is, v is a maximal sequence in
psi after removal of sequences. There is also a possibility that no sequence is removed.
Suffixes of removed sequences are then added to the prefix set of state δ∗(si, v). This is
comprised in function update() and function processNewlyConfirmed() proposed below.

We store a particular state with creating (checking) sequence ti. A testing tree with
one path, or a linear linked list of test nodes, is created. Each node (reached by u,
a prefix of ti) contains related state (s = δ∗(s0, u)), a confirmation mark isConfirmed,
i.e. whether u is s-confirmed in ti, and an input x leading to the next node. Inputs of
all nodes then form sequence ti and a checking sequence at the end of design. When
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u becomes is s-confirmed, mark of related node ni is set and ni is added to the array
confirmedNode[s] that represents nodes of convergent sequences. We say ni with state
s is confirmed as the sequence to ni is s-confirmed. A queue newlyConfirmed stores
confirmed nodes whose leaving sequences need to be checked for a possible confirmation
of successor nodes.

An adaptive distinguishing sequence, or distinguishing set of verifying sequences di,
is obtained by polynomial algorithm as in the ADS-method (Section 10.4.2).

Algorithm 20. Updating verified sequences from confirmed node

1 Function update(node)
input : node - a confirmed test node

2 v ← the shortest verified sequence from node
3 if |v| = 1 then the transition (node.state, v) is verified
4 shorten verified sequences in the prefix set of node.state to v
5 foreach convNode ∈ confirmedNodes[node.state] do
6 if there is a path from convNode with the label of v then
7 newConfNode ← the node reached by v from convNode
8 if not newConfNode.isConfirmed then
9 newConfNode.isConfirmed ← true

10 newlyConfirmed.push(newConfNode)

The function update() in Algorithm 20 is called on the last confirmed node preceding
newly confirmed one in step 1 of the C-method (Section 6.2.7) and on node related to
state s with unverified transition in step 2. The next confirmed node nc is found (line
2) and the number of unverified transition decreases if a sequence v from node to nc
is a transition only. Another use of update() is in function processNewlyConfirmed()
described in Algorithm 21. There is update() called on a newly confirmed node which
a verified sequence not covered in the related prefix set leads from.

Algorithm 21. A check of newly confirmed nodes and their verified sequences

1 Function processNewlyConfirmed()
2 while newlyConfirmed is not empty do
3 node← newlyConfirmed.pop()
4 confirmedNodes[node.state].push(node)
5 u← the longest common prefix of the path from node and
6 a verified sequence of node.state
7 v ← the shortest verified sequence from node, or
8 ε if there is no confirmed successor node
9 if u is a maximal sequence of node.state’s verified prefix set and

10 (|u| ≤ |v| or v = ε) then
11 newConfNode ← the node reached by u from node
12 if not newConfNode.isConfirmed then
13 newConfNode.isConfirmed ← true
14 newlyConfirmed.push(newConfNode)

15 else if v 6= ε then update(node)
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Function processNewlyConfirmed() looks at successors of a newly confirmed node

and confirms one if there is a verified sequence to it, or it adds a verified sequence to
the prefix set of node’s state if a successor is found to be confirmed. Conditions in
the function ensure that only node reached earlier (closer successor) is handled and a
verified sequence is not added to the related prefix set if the set contain a nonempty
prefix of such a sequence. In other words, the function finds the first confirmed successor
cs and a node nv reached by a verified sequence of the prefix set of node’s state. The
function then handles the one of cs and nv which is reached first. There is a possibility
that one or both nodes are not found, then no action is performed.

The confirmed set is updated using the function update() followed by a call of the
function processNewlyConfirmed() after each extension of the constructed sequence ti,
i.e. in the end of steps 1 and 2. We store a pointer lastConf to the last confirmed node.
It is used for update() call in step 1 and it can be shifted in processNewlyConfirmed() if a
successor node is confirmed. However, the pointer lastConf has to point before the node
confirmed in step 1, i.e. it points to a node within the sequence u, so lastConf is shifted
in processNewlyConfirmed() conditionally. Step 1.(i) defines u as the shortest unverified
prefix of ti that can be appended by its related distinguishing sequence dδ∗(s0,u).

Algorithm 22. A check of possibly reduction of verifying sequence

1 Function getVerificationSequence(s, x)
input : (s, x) - a transition to verify
output: a prefix of dδ(s,x) needed for verification

2 s′ ← δ(s, x)
3 if x is not a prefix of ds then return ds′

4 v ← ds = x · v
5 U ← {ε}
6 for q ∈ S \ {s′} do
7 u← the shortest prefix of v such that λ∗(s′, u) 6= λ∗(q, u), or
8 v if s′ and q are indistinguishable by v
9 if u 6= v then

10 if there is a path u from a cn ∈ confirmedNodes[q] then
11 continue // distinguished by q-output-confirmed

12 uq ← the shortest prefix of ds′ such that λ∗(s′, uq) 6= λ∗(q, uq)
13 U ← U ∪ {uq}
14 if uq = ds′ then break // entire ds′ is needed so stop searching

15 return the longest sequence of U

A shortest verified sequence in step 2.(i) is found using breadth-first search on the
machine’s state-diagram from the current state δ∗(s0, ti). Algorithm 22 describes func-
tion getVerificationSequence() that returns a sequence w verifying a given transition
according step 2.(ii) of the C-method. It is a straightforward implementation of the
design step with employing array confirmedNodes. Each state q is first tried to distin-
guish from s′ by v, a suffix of ds. If it is distinguished, the distinguishing prefix of v
is checked to be q-output-confirmed. Otherwise (or it is not q-output-confirmed), the
shortest prefix uq of ds′ distinguishing q and s′ is determined. If a state q is found to
need the entire distinguishing sequence ds′ , the search among all states can be stopped
(line 14) and ds′ is returned. Otherwise, the longest prefix of ds′ over all determined
uq’s is chosen.
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10.4.10 M-method
The M-method is a NP-complete problem in general. However, an optimal solution can
be found for small instances. We denote the method’s implementation that produces
optimal solution the M*-method. We further propose two polynomial suboptimal ap-
proaches. We call them the Ma-method and the Mg-method. The approaches are similar
to design of minimal spanning tree by Prim’s and Kruskal’s algorithms, but a directed
path is constructed in this case.

All approaches create an adaptive distinguishing sequence, if it exists, at first. We
use the algorithm from [Le94] that is polynomial in the number of states and it can
produce a suboptimal ADS.

M*-method
We create set U according to its definition, see Section 8.1. It takes O(pn) time, where

p = |X| and n = |S|, because each transition has test sequence in U and concatenation
with related distinguishing sequence di takes a constant time. Notice that |U | = pn+1
because verification of the initial state s0 must be included. Each element of U forms
a node in a graph G.

We assume that not all sequences can overlap so connecting shortest sequences are
needed. Therefore, shortest sequences between each states are computed at first. We
use Floyd algorithm that runs in O(n3) [Fl62]. Then we calculate the costs of edges in
G. A test sequence (si, ti) ∈ U can overlap with up to |ti| other tests. One comparison
of such sequences takes O(|ti|). Let t be the longest sequence of U , i.e. |t| is the
length of adaptive distinguishing sequence plus one. Thus, checking of overlapping of
all test sequences is in O(|t|2(np + 1)). Filling the rest of costs, i.e. edges related
to non-overlapped tests, requires to pass through all edges which takes O((np + 1)2).
Therefore, time complexity of computing costs is O(n3 + |t|2(np+ 1) + (np+ 1)2).

An ILP task is then formed. We use optimization tool by Gurobi1) for solving the
given ILP task. The last thing is to construct a checking sequence from a solution
provided by Gurobi solver. We start in node u0 = (s0, d0) and find a position j such
that x0j = 1. According to the related cost c0j , a sequence is appended to the sequence
created so far, i.e. the empty sequence at the beginning. If c0j ≤ |d0|, the first c0j
symbols of d0 are added. Otherwise, we append the entire d0 followed by shortest
connecting sequence wkj ; |wkj | = c0j − |d0|. The sequence constructed so far reaches
a node uj which the related test segment is to be applied in. We set i with a value
of j and focus on row i. A new index j is again found such that xij = 1. We append
the sequence related to ui of the length of cij . Then we update i by j and look at row
related to the next node. We continue this way until all nodes are passed, i.e. the index
j of the next node is 0. Thus, a checking sequence is created.

Ma-method
The first heuristic approach is similar to the C-method. We call it the Ma-method due

to the fact that it gradually appends ADS (or its suffix) at the end of (checking) sequence
created so far. In contrast to the C-method, the Ma-method does not employ confirmed
set, it only stores which test segment was used. More specifically, we pass through
the created sequence and if there is an unverified transition and the distinguishing
sequence di of the next state can be applied then certain suffix of di is appended to
the created sequence. It is equal to step 1 in the C-method (Section 6.2.7) but instead
of checking ti and u whether are in C(ti) the last transition of u has to be unverified

1) www.gurobi.com
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in the meaning that the related test segment was not used so far. If we reach the end
of created sequence, a shortest transfer sequence to state with unverified transition is
added. Then the related test segment is append and checking of possible overlapping
starts again.

This implementation does not need neither set U nor a formulation as ATSP using
costs cij . Time complexity is equal to the C-method, i.e. polynomial in the length of
checking sequence, but it is generally faster because confirmed set does not need to
be handled. Moreover, it gives better results than the C-method in most cases, see
Section 11.2.

Mg-method
The Ma-method optimize locally so the solution can be far from optimum. We thus

propose another suboptimal approach called the Mg-method that tries to approximate
an optimal solution from the global point of view. It chooses best connections in G till
all test segments are included.

More precisely, the Mg-method merges minimal subpaths so that no cycle is produced.
The edges of G are sorted by their costs at first. Then, they are passed from the minimal
one. An edge is added to the resulting path if it does not create a cycle or a branch
of subpaths formed so far. A branch means that the edge connects to an inner node of
a subpath. We use arrays Prev and Next to handle the ‘branching’ constraint. Both
have the length of the size of U , i.e. np + 1. If an edge (ui, uj) is chosen for addition,
array are updated as follows: Prev[uj ] = ui and Next[ui] = uj . An edge (ni, nj) cannot
be added if Prev[uj ] or Next[ui] is set.

Union-Find structure is used for checking of creating of a cycle. Every node has
different color in the beginning. If an edge (ui, uj) is added, the subpaths containing
nodes ui and uj get the same color, i.e. we apply union on ui and uj . An edge (ui, uj)
cannot be added if both nodes ui and uj have the same color, i.e. they are in the same
subpath. However, this implies that this approach cannot create a tour because nodes
of the last edge that should be added have got the same colour. We handle this in a
way that edges to the initial node u0 are not considered so a path from u0 is always
created. Both union and find operation have amortized time of a small constant in
Union-Find structure. We apply np union operations and at most (np)2 find operation.
Time complexity of creating a checking sequence is O((np)2). However, sorting has to
be considered so time complexity of the second approach is O((np)4) when a quadratic
sort is used. This comes with price of possibly shorter created checking sequence.

Mr-method
Section 8.2 proposes modification of the M-method employing reset. We extend all

three implementation of the M-method so reset can shorten resulting sequence. The
Mr*-method computes optimal checking sequence. State cover SC (Section 10.3.1) is
first created. Then, when the cost of an edge between test segment is calculated, a
small change appears. If test segments do not overlap, shortest transfer sequence u of
SC to a state with unverified transition is compared to a shortest connecting sequence
v from the end state to a state with unverified transition. If |u| + 1 < |v|, the cost is
set to |u| + 1. Plus one stands for the use of reset. Notice that the condition forces
to create longer tests rather than more tests. When the related edge is chosen to be
in resulting sequence, a new test starting with u is created. The Mrg-method and the
Mra-method is modified in similar way.
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Chapter 11
Experiments

This chapter describes our experiments that show performance of discussed testing
method and proposed approaches. At first, we compare our parallel approaches for
creating separating sequences. Then we deal with design of checking sequence by the
M-method and the last experiment focuses on a comparison of all implemented testing
methods. The experiments were performed on computer with the following properties:.System: MS Windows 7 Ultimate 64-bit.Processor: Intel Core i7-2620M @ 2.70GHz.Memory: 6.0 GB RAM.GPU: NVIDIA GeForce 610M with CUDA specifications:

. Compute Capability: 2.1

. Driver Model: WDDM

. Max. number of threads per block: 1024

11.1 Separating sequences
Section 10.1 proposes algorithms for creation of a shortest separating sequences. Besides
the sequential one there are two parallel approaches. Time complexity is derived for
each of three methods. Parallel approaches have asymptotic complexity linear in the
number of states while the sequential approach has complexity a bit worse, quadratic
in particular. This should be empirically proved. Therefore, we propose an experiment
comparing all three methods from the perspective of running time.

We generated 10 reduced FSMs with binary input and output alphabets randomly.
The machines differ in the number of states. The numbers are multiplies of 100, i.e. the
smallest machine has 100 states and the largest one has 1000 states. Each method was
running on a machine 8 times. Then the average time was concerned for comparison.

All three methods were compared by their running time measured on CPU. Average
values for three particular machines are captured in Table 11.1. Times of the sequential
method (Section 10.1.1) are in the second column. The last two columns contains values
of parallel approaches, the Straightforward approach and the Approach using a queue
respectively. Figure 11.1 shows entire comparison provided by our test.

n Sequential m. Straightforward a. A. using a queue
100 181.704779 83.505128 89.677751
500 7920.376424 649.436105 668.850658
1000 50491.689204 1655.177018 1705.624504

Table 11.1. Design Methods of Shortest Separating Sequences
Average Running Time in Milliseconds
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Figure 11.1. Comparison of Design Methods of Shortest Separating Sequences
Average Running Time in Seconds measured on CPU

Obtained results demonstrate acceleration by employing parallelization in search-
ing for shortest separating sequences. Besides measurement of time on CPU we also
recorded times of parallel approaches but they were measured on GPU. Several parts
of methods were tracked. The first one is time needed to load data to GPU memory.
The second time measures processing all kernels of a certain method. In both methods
there are some data transfer between kernels. Thus, the processing time also includes
copying memory between CPU and GPU. The last captured time is total running time
of given parallel method. This time is almost the same as the one measured on CPU.
However sometimes it is a quite lower because of GPU initialization. Total time in-
cludes reconstruction of found sequences; sequences are transfered from buffers to lists
on CPU. Therefore, total time is much bigger than sum of loading and processing times.
Some captured values are in Table 11.2 and entire comparison of parallel methods is
shown in Figure 11.2.

Method n Loading Processing Total
Straightforward a. 500 2.456272 11.6082075 581.060669
A. using a queue 500 2.549728 30.0669005 595.017334
Straightforward a. 1000 5.971008 63.8658525 1582.890503
A. using a queue 1000 6.307640 130.3542405 1633.812439

Table 11.2. Parallel Methods - GPU Time in Milliseconds
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Figure 11.2. Efficiency of the Parallel Approaches measured on GPU

The Approach using a queue were developed to reduce the number of working threads
in contrast to the Straightforward approach. Nevertheless, employing of a queue leads
to a slower parallel algorithm according to experiment’s result captured in Figure 11.2.
The largest tested machine has got 1000 states so 499500 threads were used by each
parallel approach. Performance of methods is likely to change when one deals with
bigger machines and the number of threads is restricted. Then one thread would have
to handle more states pairs. Thus, elimination of solved pairs as in the Approach using
a queue could be beneficial. Dependence of the approaches performance on the number
of threads needs further study. Our experiment only aimed to prove a parallel approach
can create shortest separating sequence in time linear to the number of states.

11.2 Checking sequence
We proposed a new testing method, the M-method, in Chapter 8. Its experimental
verification and comparison to the state-of-the-art method, the C-method, is described
in this section.

The first experiment ran on 60 Moore machines and 60 Mealy machines. All machines
have got binary input and output alphabets and they differ in the number of states.
There are groups of machines with 10, 20, 30, 40, 50 and 60 states. Each group has
10 samples for both types of machine. Neither the M-method nor the C-method can
run on an arbitrary machine so all machines in the experiment are reduced, strongly
connected and possess an ADS.

The experiment was to consist of machines with states up to 100. However, we
were not able to generate such machines that meet the requirements. Our generator
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Figure 11.3. Numbers of Generated Moore Machines for the Experiment

described in [So14] randomly creates initially connected machines with given numbers
of states, inputs and outputs. We generated machines with binary input and output
alphabets until it was found 10 machines for each state group that can be used for the
experiment. A generated machines is first checked whether it is reduced. If it is not
reduced, another machine is generated. Otherwise, the machine is checked for strongly
connectedness. Strongly connected machines are consequently checked whether they
have got an ADS. The numbers of generated machines that fail on each condition are
shown in Figure 11.3 for Moore type and in Figure 11.4 for Mealy type. We needed
to generate 17 722 535 initially connected Moore machine with 60 states to obtain 10
machines satisfying the conditions, i.e. only 5.6 · 10−5 % out of generated machines
meet the requirements. Rapidly decreasing rate of complaint machines to generated
ones implies the following correlation. The more states the generated machine has, the
lower probability of meeting the condition is. Therefore, we were not able to obtain
complaint machines with more states in reasonable time.

The proportions in Figure 11.3 and Figure 11.4 show another interesting information
besides how hard is to obtain a machine for testing the C- and M- method. Assume
that our generator uniformly samples the space of initially connected machines with
given numbers of states, inputs and outputs. It seems that unreduced machines take
the same proportion of the space for all classes with different numbers of states. It
is similar in case of not strongly connected machines. They take approximately equal
proportion of the spaces. Comparison of FSMs’ classes with properties, such as con-
nectedness and minimality, is discussed in Section 3.4. The main observation is the
enormous space of strongly connected, reduced machines that have got no adaptive
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Figure 11.4. Numbers of Generated Mealy Machines for the Experiment

distinguishing sequence. This is a huge limitation of most testing methods creating a
checking sequence. They cannot be used for great number of machines.

Mealy machines have got outputs by transition therefore they possess more distin-
guishing power than Moore ones having outputs by states. This is seen in comparison
of the numbers of generated machines for Moore machines in Figure 11.3 and for Mealy
machines in Figure 11.4. It is easier to find 10 complaint Mealy machines than 10
complaint Moore machines. Two Mealy states can be distinguished by each transition
or by each next state, i.e. there are 2p possibilities for distinguishing (p = |X|). Two
Moore states can be distinguished by their own output or by each next state, i.e. they
have got only p+ 1 distinguishing possibilities.

Lengths of checking sequences generated by the C-, Ma-, Mg- and M*- methods are
captured using boxplot1) for each machine in the experiment in Figure 11.5 and in
Figure 11.6. In our experiment, each box deals with 10 values, i.e. the lengths of
checking sequences generated by a related method for a group of machines with the
same number of states. Note that minimum, maximum and all three quartiles’ values
of the methods usually relate with the same machine. For example, outliers in group
of Moore machines with 50 states (Figure 11.5) correspond to a machine that is more
complex than the others in the group; this machine has longer adaptive distinguishing
sequence so its checking sequences are longer as well.

Figure 11.5 and Figure 11.6 show that the M-method outperforms the C-method in
most cases. The Mg-method seems to be a very good approximator of the M-method as
1) Boxplot is a statistical tool for visualization. Blue rectangle contain values withing the first and third
quartiles. Red line is the second quartile (the median). Lines outgoing from blue box are so-called whiskers
and capture other values. If a value is too far from the others, it is marked by a red cross as an outlier.
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Figure 11.5. Comparison of Lengths of Checking Sequences of Moore Machines

it creates checking sequences of length close to the optimal values. The optimal value is
shown by the M*-method. The Ma-method is a quite worse than the Mg-method but it
is still usually better than the C-method. All created checking sequences were proved
by the FCC to be n-complete. In addition, no testing node need to be estimated owing
to providing reference nodes in advance as a hint, see Section 9.3.

There is another information captured in Figure 11.5 and Figure 11.6 besides box-
plots. Each checking sequence contains adaptive distinguishing sequence appended in
each state. Therefore, an interesting factor could be a comparison of the lengths of ADS
and checking sequence. The length of ADS is the length of the longest distinguishing
sequence di in ADS. We counted average an of the lengths of ADSs over every 10 sam-
ples with the same number of states n. Then, these averages are multiplied by the
related number of states and shown for each group of machines in the figures. We dis-
cuss dependence of lengths of ADS and checking sequence after the second experiment’s
description.

The second experiment is introduced to demonstrate the need of suboptimal ap-
proaches. We generated machines with the number of states in multiples of hundreds
randomly. Probability of sampling such a machine with small input and output alpha-
bet, that holds strongly connectedness, is reduced and has got an ADS, is very low.
Therefore, we decided to set sizes of input and output alphabets to be proportional to
the number of states. The larger input alphabet is, the more connected the machine is.
The size of output alphabet influences presence of a distinguishing sequence. We ex-
perimentally chose sizes of both alphabets to be one twentieth of the number of states.
In such way, ten Mealy machines with 100-1000 states were created.
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Figure 11.6. Comparison of Lengths of Checking Sequences of Mealy Machines

We use Gurobi solver to obtain an optimal solution, i.e. it is employed in the M*-
method. Unfortunately, the solver was not able to find a solution for the machines
of the second experiment due to computer memory constraints. Therefore, the M*-
method is not included in the experiment. The Mg-method had similar problem. It
is very memory consuming so results was not obtained for machines with more than
600 states. Table 11.3 contains the lengths of checking sequences generated by the
C-method, the Ma-method and the Mg-method. Moreover, there are lengths of ADSs
and percentage rates of improvement the C-method using the Ma-method or the Mg-
method.

n |X| = |Y | |ADS| C Ma Mg C/Ma C/Mg

100 5 6 2468 2448 2429 0.817 % 1.606 %
200 10 5 9010 8992 8851 0.200 % 1.796 %
300 15 4 19619 19600 19307 0.097 % 1.616 %
400 20 4 34451 34413 33990 0.110 % 1.356 %
500 25 4 52777 52745 51955 0.061 % 1.582 %
600 30 4 72721 72713 71649 0.011 % 1.496 %
700 35 4 99762 99737 * 0.025 % *
800 40 4 127209 127160 * 0.039 % *
900 45 4 159725 159725 * 0.000 % *
1000 50 4 197936 197939 * -0.002 % *

Table 11.3. Length of Checking Sequence of the C-method and the M-method
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The second experiment with results shown in Table 11.3 confirms observation from

the previous experiment. However, it found out the limitation of the M-method. As
the M-method is an NP-complete problem, it is infeasible to find an optimal solution
for large machines. Besides the M*-method, we could not obtain a solution of the
Mg-method for machines with more than 600 states and 30 inputs. The FCC was able
to prove n-completeness of the checking sequences generated for machines with the
number of states up to 400. Testing tree with nodes domain and different set did not
fit in the computer memory for machines with more than 400 states and 20 inputs.

Notice that the C-method generates shorter checking sequence of the machine with
1000 (the last row of Table 11.3) than the Ma-method. This is due to its ability to
shorten adaptive distinguishing sequence di using output-confirmed sequences.

The correspondence of the lengths of ADS and checking sequence is an interesting
factor for a discussion. Each sequence of U needs to be included in created checking
sequence. If one does not count with overlapping and connecting sequences, the length
of checking sequence is bounded by (np + 1)(|d| + 1), where |d| is the length of ADS.
The results of the first experiment show that the length of checking sequence is close
to n|d| due to overlapping and the fact that most distinguishing sequences di in ADS
are shorter than d, i.e. |di| ≤ |d|. Nevertheless, Table 11.3 indicates a little different
correspondence. The length of checking sequence roughly matches to np|d|. Notice that
the machines in the first experiment have got binary input and output alphabets so that
p = 2. However, the bound np|d| is over the lengths of checking sequences in the first
experiment. More accurate bound may be n(p − 1)|d| that compensates overlapping,
connecting sequences and different lengths of distinguishing sequences in ADS. It is a
topic for a future study.

11.3 Resettable machines
The last proposed experiment compares all implemented methods. Descriptions of par-
ticular method implementations are in Section 10.4. We consider the PDS-, ADS-, SVS-,
W-, Wp-, HSI-, H-, SPY-, C-, M- and Mr- methods. Some methods require a specific
property of the specification, i.e. the machine which a created test suite is based on. We
pick the first machine of each group of the first experiment of Section 11.2. However,
Moore machines with 10 and 30 states have no preset distinguishing sequence so other
10-state and 30-state machines having PDS were chosen from the related groups. The
comparison of all testing methods were performed on 6 Moore and 6 Mealy machines
with binary input and output alphabets that differ in the number of states.

Figure 11.7 shows lengths of test suites created by the methods on Moore machines
and the same is captured for Mealy machines in Figure 11.8. Comparison on 6 Moore
machines and on 6 Mealy machines is to have an informative character only. Two ma-
chines with the same numbers of states, inputs and outputs can possess completely
different characteristics so a comparison of testing methods could provide different re-
sults on such machines. In case of checking sequence testing methods, we provided
a characteristic of a group of machines using boxplot in Figure 11.5 and Figure 11.6.
However, we found out that a comparison on a single machine has got similar infor-
mative value. Therefore, the second experiment of checking sequence design methods
and this experiment of all testing methods are performed on one machine per group of
machine with the same number of states. In addition, it would be harder to compare
more values when we have got 11 testing methods to compare. Another possible ap-
proach is use of average value of group of machines but it is not so accurate due to the
mentioned different characteristics of machines.
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Figure 11.7. Comparison of Lengths of Test Suites of Moore Machines

We constrained the maximum length of test suite for visualization to 2500 input
symbols because the SVS- and W- methods produce significantly longer test suites
than the other methods so the results would not be distinguishable if the y axis scales
according to the longest test suites. Table 11.4 contains lengths of test suites created
for the Moore and Mealy machines with 60 states. As a reminder, the length of a test
suite T is sum of lengths of all tests plus size of T that is the number of uses of reset.
Formally, len(T ) =

∑
t∈T |t| + |T | =

∑
t∈T (|t| + 1). Values for the M-method and the

Mr-method are obtained using the M*-method, i.e. using Gurobi solver.

Method Moore Mealy
SVS 4953 7657
W 2572 4190
Wp 2113 2382
HSI 2006 2298
H 1694 1915

SPY 1670 1732
PDS 964 1013
ADS 863 956

C 629 712
M 595 648
Mr 577 636

Table 11.4. Lengths of Test Suites of two 60-state Machines
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Figure 11.8. Comparison of Lengths of Test Suites of Mealy Machines

Results on both types of FSM capture known properties of testing methods. The
W-method always produces a longer test suite than the Wp-method. The HSI-method
is comparable to the Wp-method. In addition, the H-method is generally better than
the HSI-method and is comparable to the SPY-method (or a little worse - it depends
on given machine). The PDS-method always creates a longer test suite than the ADS-
method due to the fact that ADS is shorter than PDS. If one replaces some tests of
the ADS-method with reasonable extension of other tests as the Mr-method describes,
the test suite is even shorter. The Mr-method always produces shorter or equal test
suite than the M-method and on given 12 machines the C-method did not create shorter
checking sequence than the M-method. As for the previous experiment, the FCC proved
n-completeness of all created test suites.

It is worth mentioning that the experiment was performed on reduced, strongly
connected machines that posses PDS. Therefore, we were able to obtain a test suite by
each testing method. Nevertheless, we shown how small portion of machines meet such
conditions in the experiment of checking sequence design methods, see Section 11.2. A
general conclusion can be made. If a given machine is reduced, strongly connected and
has got ADS, then we use the M-method, or the Mr-method when reset is available.
Otherwise, i.e. we deal with a reduced, initially connected machine, we employ the
SPY-method (or the H-method) which requires reliable reset. What method should
be used when given machine has no ADS and no reset? This problem needs further
research. The DW-methods (Section 6.2.4) can be used if the machine is strongly
connected but it produces exponentially long checking sequence.
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Chapter 12
Conclusion

The field of testing finite-state machines is very extensive. Therefore, we have got a lot
of things to study. We researched classes of FSMs and their relationships in Chapter 3.
Then we stated test suite’s properties (Chapter 4), we described known testing methods
(Chapter 6) and their interference in terms of design and time of proposal (Chapter 7).

Consequently, we were able to propose a new testing method, the M-method (Chap-
ter 8). The M-method was experimentally proven to create an n-complete test suite.
A new proposed method for checking fault coverage of given test suite was used for
verification of the M-method. We call the checking method the Fault Coverage Checker
and it was described in Chapter 9. In experiments in Chapter 11 there was shown that
the M-method produces the shortest test suite from all 10 tested testing methods. The
M-method has got two drawbacks. The former one is that the method is applicable only
on reduced strongly connected machines having an adaptive distinguishing sequence.
The latter one is that finding an optimal solution of the M-method is an NP-complete
problem. Therefore, we propose two suboptimal approaches that approximates the
optimal value quite well and they are polynomial in the number of states.

In Chapter 10 we described our implementations of testing methods. Therefore, the
results of experiments are uniquely determined owing to the proposed implementations.
Testing methods for resettable machines usually need a characterizing set, or a set
of separating sequences, but they do not specify how it could be obtained. Thus,
we proposed algorithms for creating separating sequences and characterizing sets in
Chapter 10. New parallel approaches for design shortest separating sequences and new
method for reduction of characterizing sets are discussed as well.

We studied a lot of scientific papers as Chapter 5 shows so we had to become familiar
with many different notations. Hence, we propose an unification of denotations in
Section 3.7. It sets reasonable rules of use of symbols for notations.

There are a plenty of topics that we only touched in this thesis and they need a
further research. The essential one is a formal proof of the M-method that it creates
an n-complete checking sequence. Then test segments can be optimized, using output-
confirmed sequences, for example. Another problem to deal with is finding optimal
harmonized state identifiers or characterizing sets. A research of structure of finite-
state machines and relations to particular machine’s properties, e.g. having adaptive
distinguishing sequence, is an example of more theoretical task that can be found in this
thesis. Nevertheless, we became familiar with the field of testing finite-state machines
and understanding of this field now help us to continue with our research in automata
active learning.
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Appendix A
Abbreviations and Symbols

A.1 Abbreviations
FSM Finite-state machine

DS Distinguishing sequence
ADS Adaptive DS di
PDS Preset DS d
SVS State verifying sequence

SVSet States verifying set of sequences
SCSet State characterizing set of sequences
CSet Characterizing set W of sequences
HSI Harmonized state identifierHi

HS Homing sequence
SS Synchronizing sequence
CS Checking sequence

SepSeq Separating sequence

A.2 Symbols

S a set of states; n = |S|, S = {s0, . . . , sn−1}
ε the empty symbol with zero length
X an input alphabet; p = |X|, X = {x1, . . . , xp}
Xε an input alphabet extended with ε
X∗ a set of all strings over the input alphabet; t, u, v, w ∈ X∗
Y an output alphabet; q = |Y |, Y = {y1, . . . , yq}
Yε an output alphabet extended with ε
Y ∗ a set of all strings over the output alphabet; z ∈ Y ∗
δ the state-transition function
λ the output function
D a domain of defined transition; D ⊆ S ×X

Ω(s) a set of all defined input sequences for state s
r reliable reset
M a finite-state machine (S,X, Y, δ, λ, s0)
N a finite-state machine (Q,X ′, Y ′,∆,Λ, q0); m = |Q|
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Appendix B
Checking Sequence Example

We found a machine that caused troubles for the Fault Coverage Checker when the
C-method produced a checking sequence on it. The machine has got 40 states, binary
input and output alphabets and it is type of Mealy. Its state diagram is shown on the
next page. Verification of state 36 is the problem part. There is only one transition to
this state, (26, 0) in particular. This transition is a prefix of the distinguishing sequence
d26 of state 26 so the C-method shortens distinguishing sequence d36 when it verifies
the transition (26, 0). The produced checking sequence with 491 input symbols follows:

ε 0 0 21 0 15 0 14 1 37 0 7 0 2 0 9 0 16 1 31 0 32 0 37 0 7 0 2 1 34 0 38 0 28 0 4 0 25 0 19

0 17 1 14 0 24 0 10 0 31 0 32 0 37 1 3 0 29 0 18 0 2 0 9 0 16 0 39 0 8 1 19 0 17 1 14 0 24 0 10

0 31 0 32 0 37 0 7 0 2 1 34 1 31 0 32 0 37 0 7 0 2 1 34 0 38 0 28 0 4 0 25 0 19 0 17 0 23 0 9

1 28 0 4 0 25 0 19 0 17 0 23 0 9 1 28 1 37 0 7 0 2 0 9 0 16 1 31 0 32 0 37 0 7 0 2 0 9 0 16

1 31 0 32 1 38 0 28 0 4 0 25 0 19 0 17 1 14 0 24 1 13 0 35 0 34 0 38 0 28 1 37 0 7 0 2 0 9 0 16

1 31 0 32 0 37 0 7 0 2 0 9 0 16 0 39 0 8 1 19 0 17 1 14 1 37 0 7 0 2 0 9 0 16 1 31 0 32 1 38

1 11 0 1 0 24 0 10 0 31 1 12 0 20 1 25 0 19 0 17 0 23 0 9 1 28 0 4 1 11 0 1 0 24 0 10 0 31 1 12

0 20 1 25 0 19 0 17 0 23 0 9 0 16 0 39 1 29 0 18 0 2 0 9 0 16 0 39 0 8 0 12 0 20 0 26 1 30 0 22

0 26 0 36 0 13 0 35 0 34 1 31 0 32 0 37 0 7 0 2 1 34 1 31 1 12 0 20 0 26 0 36 0 13 0 35 0 34 1 31

1 12 1 5 0 18 0 2 0 9 0 16 0 39 0 8 0 12 0 20 0 26 0 36 0 13 0 35 0 34 1 31 1 12 0 20 1 25 0 19

0 17 0 23 0 9 1 28 0 4 0 25 1 26 0 36 0 13 0 35 0 34 1 31 1 12 1 5 1 7 0 2 0 9 0 16 0 39 0 8

1 19 0 17 0 23 0 9 0 16 0 39 1 29 0 18 1 0 0 21 0 15 0 14 1 37 0 7 0 2 0 9 1 28 0 4 0 25 0 19

0 17 0 23 0 9 1 28 0 4 1 11 0 1 0 24 0 10 0 31 0 32 0 37 1 3 0 29 1 21 0 15 0 14 0 24 0 10 0 31

0 32 0 37 0 7 1 6 0 1 0 24 0 10 1 27 0 33 0 12 0 20 0 26 0 36 0 13 1 13 0 35 0 34 0 38 0 28 1 37

0 7 1 6 0 1 0 24 0 10 0 31 0 32 0 37 1 3 1 16 0 39 0 8 0 12 0 20 0 26 1 30 0 22 1 17 0 23 0 9

0 16 0 39 1 29 0 18 1 0 0 21 0 15 0 14 0 24 0 10 0 31 0 32 1 38 1 11 1 26 0 36 0 13 0 35 0 34 1 31

1 12 0 20 0 26 0 36 0 13 1 13 0 35 0 34 0 38 0 28 1 37 0 7 1 6 1 20 0 26 0 36 0 13 0 35 0 34 1 31

0 32 1 38 1 11 0 1 1 12 0 20 0 26 0 36 0 13 0 35 0 34 1 31 1 12 0 20 0 26 0 36 1 8 0 12 0 20 0 26

0 36 0 13 0 35 0 34 0 38 0 28 0 4 0 25 0 19 0 17 1 14 0 24 0 10 1 27 1 0 0 21 0 15 0 14 1 37 0 7

0 2 0 9 0 16 0 39 1 29 0 18 0 2 0 9 0 16 0 39 0 8 1 19 1 33 0 12 0 20 0 26 0 36 0 13 1 13 0 35

1 20 0 26 0 36 0 13 0 35 0 34 1 31 1 12 0 20 0 26 1 30 1 38 0 28 0 4 0 25 0 19 0 17 1 14 0 24 0 10

1 27 0 33 0 12 0 20 0 26 0 36 0 13 0 35 0 34 1 31 1 12 1 5 0 18 1 0 1 1 0 24 0 10 0 31 0 32 0 37

1 3 0 29 1 21 1 3 0 29 0 18 0 2 0 9 0 16 0 39 0 8 1 19 1 33 1 15 0 14 0 24 0 10 0 31 0 32 0 37

1 3 0 29 1 21 0 15 1 25 0 19 0 17 0 23 0 9 1 28 0 4 0 25 0 19 0 17 0 23 0 9 0 16 0 39 0 8 0 12

0 20 0 26 1 30 0 22 1 17 0 23 1 15 0 14 0 24 0 10 0 31 0 32
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