
bachelor’s thesis

Intelligent Algorithms
for Petrol Station Inspections

Kateřina Jandová

2015

Štěpán Kopřiva, MSc.

Czech Technical University in Prague
Faculty of Electrical Engineering,

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Kateřina J a n d o v á

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Inteligentní algoritmy pro inspekci benzínových stanic

Pokyny pro vypracování:
1. Nastudujte problém inspekce benzínových stanic.
2. Nastudujte koncepty inspekčních her, bezpečnostních her a problém obchodního cestujícího.
3. Formulujte problém inspekce benzinových stanic za použití frameworku z oblasti teorie her.
4. Navrhněte vhodný algoritmus pro vyřešení výše uvedené hry.
5. Naimplementujte výše navržený algoritmus.
6. Otestujte algoritmus na otevřených datech poskytovaných Českou obchodní inspekcí.

Seznam odborné literatury:
[1] Stuart Russel, Peter Norvig – Artificial Intelligence: A modern approach, 2nd edition - 2003
[2] Rudolf Avenhaus – Applications of Inspection games – Mathematical Modelling and
 Analysis, 2004

Vedoucí bakalářské práce: MSc. Štěpán Kopřiva, MSc.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 14. 1. 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Kateřina J a n d o v á

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Inteligent Algorithms for Petrol Station Inspections

Guidelines:

1. Study the problem of petrol station inspections.
2. Study inspection games, security games and the traveling salesmen problem.
3. Formalize the problem of petrol station inspections as a game using suitable game
 theoretical framework.
4. Design an algorithm for solving the game defined above.
5. Implement the algorithm defined above.
6. Evaluate the algorithm on the subset of open data provided by Czech trade inspection.

Bibliography/Sources:
[1] Stuart Russel, Peter Norvig – Artificial Intelligence: A modern approach, 2nd edition - 2003
[2] Rudolf Avenhaus – Applications of Inspection games – Mathematical Modelling and
 Analysis, 2004

Bachelor Project Supervisor: MSc. Štěpán Kopřiva, MSc.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2015

Acknowledgement
I wish to express my sincere thanks to my supervisor Štěpán Kopřiva, MSc., for pro-
viding all valuable advices and for his guidance. I would also like to thank my family
for their support.

Prohlášení autora práce
Prohlašuji, že jsem předloženou práci vypracoval samostatně, a že jsem uvedl vešk-
eré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze dne
Podpis autora práce

iii

Abstract
Efektivní kontroly pohonných hmot na benzinových stanicích jsou důležitým úkolem
pro ochranu spotřebitelů. Kontroly benzinových stanic zajišťuje nejen stát, ale i sou-
kromé firmy. V naší práci se zaměřujeme na vytvoření programu pro generování rozvrhu
inspekcí benzinových stanic na základě herně-teoretického modelu stanic při uvažování
rozpočtu na inspekce na daný rok. Pro vytvoření modelu jsme použili reálná data po-
skytovaná českou obchodní inspekcí. Pro spočtený rozvrh zároveň nalezneme optimalní
trasu, po které inspektor projede zadané stanice. Výstupem programu je tedy rozvrh
pro inspektora a přesná trasa, kterou má inspektor projet. Program musí vše spočítat
tak, aby splnil rozpočet, který mu zadáme. Vzhledem ke složitosti úlohy program špatně
škáluje a problém umí vyřešit pouze pro omezený počet vstupních benzinových stanic.
Řešení programu trvá od desítek sekund až po jednotky minut v závislosti na počtu
vstupních benzinových stanic.

Klíčová slova
Teorie her, Problém obchodního cestujícího, Optimalizace, Lineární programování, Po-
honné hmoty, Benzinové stanice

iv

Abstract
Effective inspection of fuel at petrol stations is important task to protect consumers.
Inspections of petrol stations are ensured not only by the state but also by private
companies. In our work we focus on developing a program for generating schedule of
inspections. We create the program on basis of game theoretical model stations and we
consider budget for inspections for one year. We use real data provided by the Czech
Trade Inspection for creating the model. For the created schedule, we calculate the
optimal route. The output of the program is schedule for the inspector and exact route
which inspector has to ride out. We draw the route into the map. The program has
to satisfy the budget which we define in Czech crowns. Due to the task’s difficulty,
the program can find solution only for limited amount of petrol stations and doesn’t
scale properly. Finding a solution can take as little as few seconds but with increasing
amount of stations, this can take up to a few minutes.

Keywords
Game theory, Traveling salesman problem, Optimization, Linear programming, Fuels,
Petrol station

v

Contents

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Structure of the thesis . 2

2 State of the art 3
2.1 Traveling salesman problem . 3

2.1.1 Genetic algorithm . 3
2.1.2 Simulated annealing . 4

2.2 Game theory . 5
2.2.1 Inspection games . 5
2.2.2 Stackelberg game . 5

Stackelberg equilibrium . 6
2.2.3 Nash equilibrium . 6
2.2.4 Security games . 7

3 Technical background 8
3.1 Linear Programing (LP) . 8

3.1.1 Complexity of Linear Programming 10
3.1.2 Algorithms . 10

Branch and Bound algorithm . 11
Simplex method . 12

3.2 Traveling Salesman problem . 13
3.2.1 Symmetric and asymmetric TSP 13
3.2.2 Algorithms for solving TSP . 14

Greedy algorithm . 14
3.2.3 2-Opt algorithm . 14

Greedy 2-Opt algorithm . 15
3-Opt algorithm and greedy 3-Opt algorithm 15
Neural network . 15
The Hopfield-Tank model . 16
Integer linear programming formulation 17

3.2.4 Computing and solution . 17
3.3 Game theory . 18

3.3.1 Normal form . 18
3.3.2 Extensive form . 19
3.3.3 Types of games . 19

Zero-sum / Non-zero-sum games 19
Perfect information and imperfect information 20
Cooperative / Non-cooperative games 20
Symmetric / Asymmetric games 21
Simultaneous / Sequential games 21

3.3.4 Game theory as a linear program 21
3.4 IBM ILOG CPLEX . 22

4 Petrol Station Inspection Problem 23
Overview of typical damage of vehicles 23

4.1 Petrol station inspection specifics . 23

vi

4.2 Monitoring quality of fuels . 24
4.3 Who performs the inspections . 25

4.3.1 The Czech Inspection Authority (CTIA) 25
Penalities . 25

4.3.2 Private sector notified bodies . 26
4.4 Inspection process data . 26

5 Problem formalization 28
5.1 Game theoretical model . 28
5.2 Physical inspection of potentially cheating petrol stations 28
5.3 Petrol station attributes . 29
5.4 Utility functions . 30
5.5 Inspector schedule . 31

6 Algorithms 32
6.1 Model with given number of petrol stations and months 32

6.1.1 Finding potentially cheating petrol stations 32
6.2 Sampling . 33
6.3 Search months, in which the petrol station will cheat 34
6.4 Calculating route . 34
6.5 Model with budget . 35

7 Implementation 38
7.1 Program flow architecture . 38

7.1.1 Model with given number of petrol stations and months 38
7.1.2 Model with budget . 38

7.2 IBM CPLEX . 39
7.3 GraphHopper . 39
7.4 JavaFX . 40
7.5 Leaflet . 41
7.6 PostGIS database . 41
7.7 Deployment scheme . 41

8 Evaluation 43
8.1 Model with fixed petrol stations and fixed months 43

8.1.1 Choose parameters for testing . 43
8.1.2 Algorithm performance . 43
8.1.3 Final route length measurement 45

8.2 Model with budget . 48
8.2.1 Choose parameters for testing . 48
8.2.2 Algorithm performance . 48
8.2.3 Final route length measurement 50

9 Conclussion 52

Bibliography 53

vii

1 Introduction

Fuel of poor quality is a problem, which touches many of us. Some petrol stations
purposely add cheaper ingredients or foreign substances to the fuel in order to increase
their profit per liter. Other petrol stations unintentionally change character of fuel by
improper storing. If we refuel substandard fuel, engines of our vehicles can be damaged
critically. This and losses on taxes are the reason why we have to inspect the petrol
stations. The inspections can be performed by a public or private sector representa-
tive. Public sector agencies inspect the petrol stations on behalf of the government of
state. The Czech Inspection Authority (CTIA) is state organization which makes the
inspections in the Czech Republic.

The goal of this thesis is to create and implement algorithm which is able to solve
the inspection problem of petrol stations and to produce a schedule which is hardly
predictable for the petrol stations. We attempt to find not only one optimal route in a
month for the given budget, but we look for game strategy for inspectors and then we
find the optimal route for them.

In our work, we created two inspection models which model the problem of petrol
station inspections. The second model was created according to real problem. After
creating models, we create algorithm which solves the problem. We have evaluated
the program on the real data from the CTIA. We have defined and performed a set of
experiments on the real data.

1.1 Goals of the thesis

This thesis has the following goals:
∙ Study the problem of petrol station inspections. In the chapter 4 we study

the problem of petrol station inspections. First, we present a basic overwiew of
petrol stations inspection process. We explain the motivation to inspect petrol
stations and the way petrol stations may possibly break the law. Then we briefly
focus on technical standards for fuel, which are defined by law in the country.
Finally we discuss who is the body running the inspection of petrol stations in the
Czech Republic.
∙ Study inspection games, security games and the traveling salesman

problem. We study inspection games, security games and the traveling sales-
man problem (TSP) in the chapter 2 and in the chapter 3. First, we describe
inspection and security games in the chapter 2. Then we describe how to create a
linear program for solving the game. In the chapter 2 we describe algorithms for
solving TSP. We describe definition traveling salesman problem in the chapter 3.
Then we explain the algorithm to solve the traveling salesman problem. We show
and describe types of the TSP. We define TSP as linear program.
∙ Formalize the problem of petrol station inspections as a game using

suitable game theoretical model. We formalize the problem of petrol station
inspections as two-players game with calculating Nash equilibrium in the chapter
5. We show the problem like optimization problem with inspection optimizing.

1

1 Introduction

We define benefits and costs of the cheating inspection stations. We describe all
parameters for application and we define utilities function.
∙ Design an algorithm for solving the game defined above. We create al-

gorithm which first solves the game theoretical model and then finds solution for
TSP. We use the algorithm for computing the game theoretical part. We apply
this algoritm twice. First utilization is for find potentially cheating petrol stations
and calculating probabilities of cheating petrol station in the months is second
application. We design algorithm for solving the traveling salesman problem. We
describe it in chapter 6.
∙ Implement the algorithm. In the chapter 7 we describe implementation of the

algorihtm, we describe programming language, libraries and databases, which we
use in out application.
∙ Evaluate the algorithm on the open data provided by Czech trade in-

spection. We evaluate proposed algorithms on the real data. The results are
provided in chapter 8.

1.2 Structure of the thesis
Chapter 2 describes published work related to our topic. The chapter provides an
overwiev of game theoretical frameworks and TSP algorithms which are the two main
sections of this chapter. In the first section, we show algorithms for solving the TSP
problem. In the second section, we desribe inspection and security games.

Chapter 3 introduces frameworks and techniques we build our solution on. The
chapter is divided into four sections. First section explains the linear programming
framework, its complexity and its application for finding an optimal solution. Second
part deals with traveling salesman problem. We define the problem and we show how
to model TSP problem using the linear programming frameworks. In the third part we
desribe the basics of the game theory framework. We write about games in extensive
and normal forms, types of the game theory and the way game theoretical problems
are solved using the linear programing framework. The last part explains what is IBM
CPLEX.

Chapter 4 focuses on a basic overwiew of petrol stations inspection process. In
this chapter we introduce overwiev of typical damage of vehicles and petrol station
inspection specifics. We describe monitoring quality of fuels. We deal with companies
performing the inspections. Finally, we summarize inspection process.

Chapter 5 focuses on the program formalization. We define physical inspection of
potentially cheating petrol stations. We desribe the inspection policies of the inspector,
benefits and costs of the cheating inspection stations. Then we formulate parametrs of
petrol station. For the parametrs we create utilities functions and then we define the
inspection schedule.

Chapter 6 introduces the algorithms we use to compute the solution of the problem.
First we present the algorithm for finding potentially cheating petrol stations and for
sampling of the probabilities. Then we use the same algorithm for search months in
which the petrol station will cheat. We make algorithm for solving TSP and we create
route for inspector.

Chapter 7 describes programming language, libraries, extensions and databases,
which we use in this thesis. We provide the description of IBM CPLEX, GraphHopper,
JavaFX, Leaflet and Postgis database.

Chapter 8 shows results of evaluation on real-world scenarios.

2

2 State of the art

2.1 Traveling salesman problem

We cover the following existing algorithms for solving TSP problem:

∙ Genetic algorithm
∙ Simulated annealing
In this chapter we describe state of the art algorithms, the remaining algorithms for

solving TSP problem we describe in the section 3.2.

2.1.1 Genetic algorithm

Genetic algorithm is a part of evolutionary computing, which is a rapidly growing
area of artificial intelligence. Genetic algorithm is inspired by Darwin’s theory about
evolution.

We create a random initial population. The initial population is random selection
of the posibble solutions which are analogous chromosomes. Then we evaluate the
fitness which is assigned to each solution (chromosome). Fintess depends on how close
it actually is to solving the problem.

We choose choromosomes with a higher fitness value and they reproduce children
which can mutate after reproduction (this process is known as "crossing over").

If we found generation which conatins solution in the required accuracy, the problem
is solved. If not, then new generation will reproduce children in the same process. This
will continue until a solution is found. [2]

We illustrate the genetic algorithm on the following graph which contain six nodes.
Two edges between each pair of nodes denotes different distance. Figure 1 is only a
sketch. It does not contain the real distances between nodes. [3]

Figure 1 Directed weighted graph for TSP

Solution in TSP problem is usually represented by chromosome which has lenght as
number of nodes in the problem. In our example we have lenght of chromosome five.
Each node in the graph is one gene of the chromosome. No node can appear twice in
the same chromosome. TSP has two representation methods: adjacency representation
and path representation. We use path representation which we represent by lists the

3

2 State of the art

gene (nodes). For example, we have a tour {1 → 3 → 2 → 5 → 4 → 6} and it may be
represented as list {1, 3, 2, 5, 4}. We make the any sequence of the number of the nodes:

→{1, 3, 2, 5, 4, 6}
→{6, 5, 4, 2, 3, 1}
→{3, 5, 1, 6, 2, 4}

...

(1)

We calculate fitness of the chromosomes by following process:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 to 3 distance +3 to 2 distance +2 to 5 distance +5 to 4 distance +4 to 6 distance
(2)

Fintess of the lists in the Example 1 is gradually 32, 58,41... We take chromosomes
with the biggest fitness, it is chromosomes → {6, 5, 4, 2, 3, 1} and → {3, 5, 1, 6, 2, 4}.
This chromosomes are parents. On the parents we apply crossover operator. Part of
the first parent is copied and the rest is taken in the same order as in the second parent.

Algorithm 1 Genetic algorithm
1: 𝑡 = 0
2: initialize(𝑃 (𝑡 = 0))
3: evaluate(𝑃 (𝑡 = 0))
4: while 𝑖𝑠𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑 do
5: 𝑃𝑝(𝑡) = 𝑃 (𝑡).selectParents()
6: 𝑃𝑒(𝑡) = reproduction(𝑃𝑝)
7: mutate(𝑃𝑒(𝑡))
8: evaluate(𝑃𝑒(𝑡))
9: 𝑃 (𝑡 + 1) = buildNextGenerationFrom(𝑃𝑒(𝑡), 𝑃 (𝑡))

10: 𝑡 = 𝑡 + 1
11: end

Where 𝑡 is the number of step of the algorithm. 𝑃 is the population. 𝑃𝑝 are the
parents and 𝑃𝑒 are the children of the population 𝑃 .

2.1.2 Simulated annealing
Simulated annealing is a probabilistic method proposed in Kirkpatrick, Gelett and
Vecchi (1983) and Cerny (1985) [4].

Algorithm 2 Simulated annealing
1: 𝑠 = 𝑠0
2: for 𝑘 = 0 through 𝑘𝑚𝑎𝑥 do
3: 𝑇 ← tepmerature(𝑘/𝑘𝑚𝑎𝑥)
4: pick a random neighbour, 𝑠𝑛𝑒𝑤 ← neighbour(s)
5: if 𝑃 (𝐸(𝑠), 𝐸(𝑠𝑛𝑒𝑤), 𝑇) > random(0, 1), move to the new state then
6: 𝑠← 𝑠𝑛𝑒𝑤

7: return the final states

We define initial state. In the TSP each state is defined as permutation of the cities.
The neighbours of a state are the set of permutations that are produced. At each step,

4

2.2 Game theory

the simulated annealing heuristic considers some neighbouring state 𝑠𝑛𝑒𝑤 of the current
state 𝑠. It probabilistically decides between moving the system to the state 𝑠𝑛𝑒𝑤 or
staying in the state 𝑠. These probabilities 𝑃 ultimately lead the system to move to
states of lower energy. Typically this step is repeated until the system reaches a state
that is good enough for the application, or until a given computation budget has been
exhausted.

2.2 Game theory

Game theory is a branch of applied mathematics and economics that studies strategic
situations where there are several stakeholders, each with different goals, whose actions
can affect one another. In our work, we are going to model a domain which is usually
modeled using the inspection games or security games.

2.2.1 Inspection games

Inspection games model is applied type of game theory. In inspection games the al-
gorithm usually solves a game with two players or two coalition of players. One of
the player (coalition) is called inspector and second player (coalition) is inspectee. Th
inspection game may be defined by one inspector and a coalition of inspectee. The
inspector controls the inspectee to check whether he complies the legal rules. The in-
spectee has tendency for violation these rules and the inspector’s mission is to detect
illegal behaviour of the inspectee. Generally, the inspector’s resources are limited so
that inspection can be only partial. We construct an optimal inspection scheme by a
mathematical analysis, where penalty for the illegal behave is calculated strategically.

The concept of games is described in the work of Rudolf Avenhaus, Bernard von
Stengel and Shmuel Zamir [6]. They explain application of games in practice, for
example, in arms control and disarmament, accounting and auditing in economics and
environmental control. Theory of inspection games is described in the article too.

We have to decide between two alternatives (𝐻0 or 𝐻1) based on an observation
of a random variable (if is it distribution of the random variable). We assume that
the distribution of the random variable is strategically controlled by player called the
inspectee. The inspectee can make two decision, either comply to the inspection rules
or cheat. If he his behaviour complies to the rules, the distribution is according to
the null hypothesis 𝐻0. We denote variable 𝜔 called violation procedure and it marks
illegaly behave of inspectee. Next random variable (which is also strategic variable of
the inspectee) is 𝑍, that means the distribution of the 𝑍 is under hypothesis 𝐻1 and it
depends on the violation procedure 𝜔. The inspector has to decide between two actions:
alarm (rejecting 𝐻0) or no alarm (rejecting 𝐻1). The decision is made according to the
observation 𝑧 ∈ 𝑍. This model is shown in Figure 2.

2.2.2 Stackelberg game

In the following paragraph we describe Stackelberg game. The Stackelberg game has
different two players: leader (moves first) and follower (moves second, after observes the
leader’s strategy). In the security game the leader is the defender and the follower is
the attacker. "This models the capability of malicious attackers to employ surveillance
in planning attacks. In this model, predictable defense strategies are vulnerable to ex-
ploitation by a determined adversary. Formally, the attacker’s strategy in a Stackelberg

5

2 State of the art

Figure 2 Inspection game

security game is a function that selects a strategy in response to each leader strategy:
𝐹𝐴 : Δ𝐷 → Δ𝐴." [7]

Stackelberg equilibrium

In the Stackelberg equilibrium each player chooses a best response in each subgame of
the original game. We have two types of Stackelberg equlibrium: strong (by Leitmann
[9]) and weak (by Breton [10]). "In the weak Stackelberg equilibrium the follower choose
the worst strategy for the leader. In the strong form the follower choose always optimal
strategy for the leader. A strong Stackelberg equilibrium exists in all Stackelberg games,
but a weak Stackelberg equilibrium may not." [11]

Definition according to the article [7]:
"A pair of strategies (𝛿𝐷, 𝐹𝐴) from a Strong Stackelberg Equilibrium if they satisfy the
following:

1. The leader plays a best response:

𝑃𝐷(𝛿𝐷, 𝐹𝐴(𝛿𝐷)) ≤ 𝑃𝐷(𝛿′
𝐷, 𝐹𝐴(𝛿′

𝐷))∀𝛿′
𝐷 ∈ Δ𝐷.

2. The follower plays a best response:

𝑃𝐴(𝛿𝐷, 𝐹𝐴(𝛿𝐷)) ≤ 𝑃𝐴(𝛿𝐷, 𝛿𝐴)∀𝛿𝐷 ∈ Δ𝐷, 𝛿𝐴 ∈ Δ𝐴.

3. The follower breaks ties optimally for the leader:

𝑃𝐷(𝛿𝐷, 𝐹𝐴(𝛿𝐷)) ≤ 𝑃𝐷(𝛿𝐷, 𝛿𝐴)∀𝛿𝐷 ∈ Δ𝐷, 𝛿𝐴 ∈ Δ*
𝐴(𝛿𝐴)."

2.2.3 Nash equilibrium

In the game theory is used a Nash equilibrium. It is a solution concept (strategy
profile) of a non-cooperative game involving two or more players, in which each player
is assumed to know the equilibrium strategies of the other players, and no player has
anything to gain by changing only their own strategy. [8]

6

2.2 Game theory

2.2.4 Security games
Security games are models which are applied in protective environments. It efficiently
solves many security problems. For example police patrols, bomb-sniffing dogs and
security cameras. The security games are defined for example in the work of Christopher
Kiekintveld, Manish Jain, Jason Tsai James Pita, Fernando Ordóñez, and Milind Tambe
in their work [7].

We define security game as a normal form Stackelberg game. The security game is
composed of two players, a defender 𝐷 and an attacker 𝐴. The defender may not be
one person, but could also make groups which cooperate to execute a joint strategy
(for example police or army). The attacker can do the same (for example terrorist
organization). The defender has a set of possible pure strategies. They are denoted
𝜎𝐷 ∈ Σ𝐷. The attacker has a set of possible strategies 𝜎𝐴 ∈ Σ𝐴. Players use mixed
strategy. This means that the player may play with a probability distribution over
pure strategies. It is defined as 𝛿𝐷 ∈ Δ𝐷 and 𝛿𝐴 ∈ Δ𝐴. We define payoffs for each
player from defender by join all possible pure strategies outcomes: 𝑃𝐷 : Σ𝐴×Σ𝐷 → R,
similarly for the atacker.

7

3 Technical background
In this chapter we introduce frameworks and techniques we are building on. Firstly,
we describe linear programming framework and its application for finding an optimal
solution of the traveling salesman problem. CPLEX, solver of the linear programs is
also introduced. We use it to solve our programs.

3.1 Linear Programing (LP)
Linear programing (LP) is a technique for optimization of linear objective function
according to the set of linear inequalities (conditions). In LP the variables that are
used in the optimization function refered to as the decision variables.

𝑥𝑖

𝑖 = 1, 2, ..., 𝑛

To find the optimal solution solution we need to maximize or minimize linear function
of the decision variables, which is called the objective function.

𝜉 = 𝑐1𝑥1 + 𝑐2𝑥2 + ... + 𝑐𝑛𝑥𝑛

It follows that the set of feasible solutions of a linear programming is a convex poly-
hedron. The convex polyhedron is formed of the finite number half space, which are
specified as linear conditions, then linear programming finds maximal or minimal point
of polyhedron.

In linear programming are three possibilities: the task has at least one optimal solu-
tion, the task is inadmissible and the task is unlimited.

Figure 3 Convex polyhedron

At the Figure 3 we can see three convex polyhedrons in two-dimensional space. Red
line corresponds to the objective function equal to zero. If task has optimal solution,
then the solution may be either 𝑃1 or 𝑃2. In the case of 𝑃1, the task has one optimal
solution. The task has more optimal solutions in polyhedron 𝑃2. The task is inadmis-
sible if it has no solution. Therefore it is not at the figure. The task is unlimited, this
means that task has infinitely many solutions (𝑃3).

8

3.1 Linear Programing (LP)

Linear programming may be formalized in many ways. We can maximize or minimize
objective function and conditions may contain both equalities and inequalities. There
are two main possibilities how to represent linear programming problem. The first
representation of linear programming is standard form (canonical form), example 3.
Name can differ according to the source. In the normal form we maximize objective
function and we use sign less than or equal to ≤ in conditions and every variables are
greater than or equal to zero.

max cTx
Ax ≤ b

x ≥ 0
(3)

The second representation of linear programming is dictionary form. We maximize
objective function, all conditions are equalities and all variables are positive or zero.

max cTx
Ax = b

x ≥ 0
(4)

The standard form can be converted to the dictionary form and vice versa by some
of the following modifications. We replace the equality aT

i x = bi by two inequalities
aT

i x ≥ bi , −aT
i x ≥ −bi. We convert the inequality 𝑎𝑖1𝑥1 + ... + 𝑎𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖 to

equality by adding auxiliary slack variable 𝜆𝑖 ≥ 0 as 𝑎𝑖1𝑥1 + ... + 𝑎𝑖𝑛𝑥𝑛 + 𝜆𝑖 ≤ 𝑏𝑖. If
the inequality is reversed 𝑎𝑖1𝑥1 + ... + 𝑎𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖, then we convert this inequality to
equality by the same way - we add auxiliary slack variable 𝜆𝑖 ≥ 0 but we subtract it
𝑎𝑖1𝑥1 + ... + 𝑎𝑖𝑛𝑥𝑛 − 𝜆𝑖 ≤ 𝑏𝑖. If we have unbounded variable 𝑥𝑖 ∈ R, we divide the
original variable to two non-negative variables 𝑥+

𝑖 ≥ 0, 𝑥−
𝑖 ≥ 0 by adding condition

𝑥𝑖 = 𝑥+
𝑖 − 𝑥−

𝑖 .
Can one convert the non-linear function to the linear one? Yes, we can, if the function

is piecewise affine.

𝑓(x) = 𝐾max
𝑘=1

(cT
k x + dk)

ck ∈ R
𝑑𝑘 ∈ R

(5)

We have the task:

min𝑓(x)
Ax ≥ b

(6)

The function 𝑓 is piecewise affine. We can transform the task to the linear program
by defining auxiliary variables 𝑧.

min𝑧

cT
k x + dk ≤ 𝑧, 𝑘 = 1, ..., 𝐾

Ax ≥ b
(7)

We minimize over variable (𝑥1, ..., 𝑥𝑛, 𝑧) ∈ R𝑛+1. We can use this transformation for
function with absolute value too, because |𝑥| = max{−𝑥, 𝑥}.

The transformation of piecewise affine function to the linear program is not possible
if we maximize in the task.

9

3 Technical background

3.1.1 Complexity of Linear Programming

The complexity of Linear Programming relies on the instance size and type of data. We
have two standard complexity theory frameworks and hence measure the size. Standard
complexity theory frameworks for analyzing LP solvers are often referred to as bit
complexity and algebraic complexity.

Regarding the bit complexity: Data coefficients are assumed to be integers specified
in binary form. The size of an instance is the total number of binary bits in the data for
the instance. Bit complexity is very natural for combinatorial problems where each data
coefficient is either 0 or 1. It means, that pure integer linear programming problems
are NP-complete.

Regarding the algebraic complexity: data coefficients are assumed to be real num-
bers. The size of an instance is number of data coefficients for the instance. One con-
siders +,−, ,̇÷ and inequality comparison are basic operations, the latter being used
for branching. We can add two numbers is a single operation, this is contrast to bit
complexity.

3.1.2 Algorithms

Integer linear programming is a hard problem for solving. Set of feasible solutions of a
linear programming is a convex polyhedron. Optimal solution is a vertex of the convex
polyhedron, which constist all feasible points. This points usually not integer. There
are two cases of a linear program. First case is integer linear program:

min− 𝑥− 𝑦

𝑥 + 2𝑦 ≤ 14
3𝑥− 𝑦 ≥ 0
𝑥− 𝑦 ≤ 2

(8)

Figure 4 Convex polyhedron of feasible solutions in integer linear programming

The figure 4 shows integer linear program 8. All vertices of a convex polyhedron are
integers, so this problem is called integer linear program (ILP). We can only move the
objective function over integers in convex polyhedron and we get solutions. This way
is not effective and we can not use it in general linear program. Integer linear program
is easier to solve, but we meet with it in practice rarely. Linear program, where the

10

3.1 Linear Programing (LP)

results are real numbers, is more frequent problem.

min− 𝑥− 𝑦

𝑥 + 2𝑦 ≤ 15
3𝑥− 𝑦 ≥ 0
𝑥− 𝑦 ≤ 2

(9)

Figure 5 Convex polyhedron of feasible solutions in integer linear programming

Vertices at the figure 5 are real number. The task 9 is a hard problem. We must
use some more sophisticated algorithm. We show here very important algorithms for
solving LP the Branch and Cut algorithm and the Simplex method. The Branch and
Cut algorithm is the part forms that it is composted: Branch-and-Bound algorithm
and Cutting-plane method.

Branch and Bound algorithm

Branch and Bound algorithm is a general algorithm for solving large scale N P-hard
combinatorial optimization problems. A Branch and Bound algorithm searches the
complete space of solutions for a given problem for the best solution. The algorithm
was proposed by Ailsa H Land and Alison G Doig [12]. Task, where the number of
possible solutions is exponentially large. It is almost impossible to solve. We use of
bounds for the function to be optimized combined with the value of the current best
solution.

We represent algorithm Branch and Bound by search tree, which initially only con-
tains the root. We decompose task into set of subproblems. Subproblems are repre-
sented as nodes of the tree (Figure 6). Each iteration of a Branch and Bound algorithm
processes one such node. The iteration has three components (selection of the node to
process, bound calculation, and branching).

The selection of the node to process depends on the chosen strategy.
For actual subproblem is calculated bound function and and compared to the current

best solution. We discare the subproblem (and it’s subproblems), if it can be estab-
lished that the subspace cannot contain the optimal solution. Otherwise we save the
subproblem.

It can be found more specify in [13].

11

3 Technical background

Figure 6 Search tree of Branch and Bound algorithm

Algorithm 3 Branch and Bound algorithm
1: Initialize:
2: x*← null (it is current best solution)
3: LB*← -∞ (it is lower bound)
4: 𝐿 is a list of problems to solve
5: begin
6: while 𝐿 is not empty do
7: Select and remove problem from L
8: Solve LP
9: if unfeasible then

10: contunue
11: else
12: 𝐿𝐵 ← bound
13: 𝑥← solution
14: if 𝐿𝐵 ≤ LB* then
15: continue
16: if 𝑥 is Integer then
17: x*← x
18: LB*← LB
19: continue
20: Branch and add subproblems into L

Figure 7 Branch and Bound algorithm [14]

Simplex method

We will examine the set of feasible solutions in the LP form:

𝑋 = {x ∈ R|Ax = b, x ≥ 0} (10)

where A ∈ R𝑚×𝑛 is wide (𝑚 < 𝑛) matrix with rank 𝑚 (rows are linearly indepen-
dent).

System Ax = b have infinitely many solutions. If we put 𝑛 − 𝑚 components of
vector 𝑥 is equal zero, the system has at most one solution. This leads to the followinf
definitions:
∙ Set 𝐽 ⊆ {1, 2, ..., 𝑛} is base of task, if |𝐽 | = 𝑚 and columns (of matrix A with

indices 𝐽) are linearly independent.
∙ Vector x is base solution for appropriate base 𝐽 , if Ax = b and 𝑥𝑗 = 0 for 𝑗 ̸∈ 𝐽 .

12

3.2 Traveling Salesman problem

∙ Base solution x is admissible, if x ≥ 0
∙ Base solution x is degenerate, if it has less than 𝑚 non-zero components.
∙ Two bases are neighboring, if they have 𝑚− 1 common elements.
Martix A has rank 𝑚. This implies that exist at least one base. Every base appro-

priate just one base solution. One base solution may appropriates more than one base.
This mean that the base solution is degenerate. [15]

3.2 Traveling Salesman problem

The TSP is probably the most widely studied combinatorial optimization problem,
because it is a conceptually simple problem but hard to solve. It is an NP-complete
problem. First, we describe TSP problem. Then we introduce types of the TSP and
algorithms for solving the TSP problem.

Traveling Salesman Problem (TSP) is a NP-hard combinatorial optimization prob-
lem. The goal is to find a circle in the specified rated complete graph. The circle must
pass through all vertices and cost of the sum of all edges is minimal. In other words,
we find the shortest Hamiltonian circuit in weighted graph. Specifically, we use TSP to
find tour between cities. We have list of cities and the distances between each pair of
cities. We want to know shortest possible route given the circumstances that we visit
each city exactly once and we return to the starting city.

TSP is usually defined by an undirected weighted graph (Figure 8). Cities are vertices
in the graph, paths are edges in the graph and path’s distance is edge’s cost. We
minimize the length of the path, which starts and ends at a specified vertex and which
visits each other vertex exactly once. The model is usually complete graph (i.e. each
pair of vertices is connected by an edge). If graph isn’t complete (the path between all
pairs of the cities doesn’t exist), we can add an arbitrarily long edge without affecting
optimal solution.

Figure 8 Undirected weighted graph

3.2.1 Symmetric and asymmetric TSP

Symmetric TSP: distance between two cities is the same in both directions (i.e. TSP
is defined by undirected weighted graph, Figure 8). Symmetric TSP have less solution
then asymmetric TSP. Symmetric TSP is simpler for finding an optimal solution.

Asymmetric TSP: distance between two cities can be different in each opposite direc-
tions and path may not exist in both directions (i.e. TSP is defined by directed weighted
graph, Figure 9). Reason may be traffic collisions, one-way streets, and airfares for cities
with different departure and arrival fees.

13

3 Technical background

Figure 9 Directed weighted graph

3.2.2 Algorithms for solving TSP

Greedy algorithm

The greedy algorithm is very simple one. The algorithm chooses a node where it starts,
let’s mark it 𝑛𝑜𝑑𝑒1. The algorithm calculates all the distances from 𝑛𝑜𝑑𝑒1 to the
remaining 𝑛− 1 nodes. Then the algorithm chooses closest node and we go to it. Now
the actual node is taken and we find next closest node from 𝑛𝑜𝑑𝑒2 to other 𝑛−2 nodes.
The algorithm continues until all nodes are visited exactly once. Then the connection
from the last node to the first one is added. The final sequence is returned as the best
solution. The greedy algorithm is not computationally intensive, because the algorithm
does not exchange any of nodes.

3.2.3 2-Opt algorithm

The idea of the 2-Opt algorithm is to exchange two edges and see if the cost improves.
The 2-Opt algorithm consist from three steps:

∙ We set initial solution and objective function value. We have the solution from
user or from greedy algorithm.

∙ We find two edges and their endpoints.

∙ We swap the endpoints.

Figure 10 A single 2-Opt algorithm’s move

14

3.2 Traveling Salesman problem

Algorithm 4 2-Opt algorithm
1: 𝑆 = some initial solution
2: 𝑧 = objective function value of the initial solution S
3: 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = true
4: while 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 do
5: S*= S
6: z*= z
7: for all possible edge-pairs in S do
8: 𝑆′ = tour by swapping end points in edge-pair
9: 𝑧′ = objective function value of S’

10: if z’ < z* then
11: S* = S’
12: z* = z’
13: 𝑛𝑜𝐶ℎ𝑎𝑛𝑔𝑒 = false
14: S = S*
15: z = z*
16: return S

We can see that 2-Opt algorithm considers only two edge exchange. We have initiall
soulution 𝑆 defined by user or greedy algorithm and we compute objective function
value 𝑧. We set initial solution 𝑆 as the best solution 𝑆* and we set 𝑧 as 𝑧* in the
same manner. If the objective function value 𝑧′ (objective function value computed
from solution with replaced edges) is smaller than the objective function value 𝑧*, it is
stored as candidate for future decision (we set solution 𝑆′ as the best solution 𝑆* and
𝑧′ as 𝑧*). If not, solution 𝑆′ and its objective function value 𝑧′ are discared.

Greedy 2-Opt algorithm

"Like the 2-Opt algorithm, greedy 2-opt algorithm also considers pairwise exchanges.
We define 𝑒𝑑𝑔𝑒1, 𝑒𝑑𝑔𝑒2, .., 𝑒𝑑𝑔𝑒N for each edge in the graph and N means number of the
edges in the graph. Initially, it considers transposing 𝑒𝑑𝑔𝑒1 and 𝑒𝑑𝑔𝑒2. If the result’s
objective function value is less than the previous one, two edges are immediately trans-
posed. If not, the algorithm will go on to 𝑒𝑑𝑔𝑒3 and evaluate the exchange, and so on
until find the improvement. If 𝑒𝑑𝑔𝑒1 and 𝑒𝑑𝑔𝑒2 are transposed, the algorithm will take
it as an initial solution and repeat the algorithm until it is impossible to improve the
solution any further. Greedy 2-opt algorithm makes the exchange permanent whenever
an improvement is found and thus consumes less computational time than 2-Opt algo-
rithm. On the other hand, greedy 2-opt produces slightly worse solutions than 2-Opt
algorithm." [1]

3-Opt algorithm and greedy 3-Opt algorithm

The 3-Opt algorithm is similar to the 2-Opt algorithm, but the 3-Opt algorithm changes
three edges. The same difference is between Greedy 2-Opt algorithm and greedy 3-Opt
algorithm.

Neural network

Neural networks are used for a lot of mathematical problems. It is not suprising that
it is applied to the TSP. First attempts apply neural network were in 1985, but the

15

3 Technical background

technology is quite young and it is still to examine. Neural networks are powerful
parallel devices. They are made up of a large number of simple elements that can
process their inputs in parallel.

The most frequent types of neural networks fot the solving TSP problem are the
Hopfield-Tank network, the elastic net and the self-organizing map. According to the
work of Jean-Yves Potvin [5]: the elastic net and the self-organizing map appear to
be the best approaches for solving the TSP. The Hopfield-Tank network has been the
dominant neural method for solving combinatioral optimiyation problems over the last
decade. It was the first to be applied to the TSP and still many researchers are working
on that model, trying to explain its failures and successes.

The Hopfield-Tank model

The network or graph defining the TSP is very different from the neural network. As
a consequence, the TSP must be mapped onto the neural network structure.

a) Graph of TSP b) Interpretaton of the Hopfield-Tank model

Figure 11 Different between ordinally TSP graph and interpretaton of the Hopfield-Tank model

In the Figure 11a is TSP defined over a transportation network. A feasible solution
is the tour Ostrava → Liberec → Ústí nad Labem → Plzeň → České Budějovice, as
shown by red line. In the Figure 11b is the Hopfield network. It is defined as a 5 × 5
matrix of nodes that are indicate cities in a time interval. Each row corresponds to a
particular city and each column to a particular position in the tour. The nodes are used
to encode solutions to the TSP. The red nodes are the activated units that encode the
current solution. In the Figure 11b is not all connection. In fact, there is a connection
between each pair of nodes.

We start from some arbitrarily chosen initial configuration. It can be either feasible
or non-feasible. The Hopfield network evolves by updating the activation of each node.
The update rule of any given node involves the activation of the nodes which are
connected to as well as the weights on the connections. We update until the network
settles into a stable configuration.

We summarize the algorithm (according to Jean-Yves Potvin [5]) to a few points:

∙ Choose a scheme which allows the activation levels of the nodes.
∙ Design an energy function whose minimum corresponds to the best solution of the

problem.
∙ Derive the connectivity of the network from the energy function.
∙ Set up the initial activation levels of the units.

16

3.2 Traveling Salesman problem

Integer linear programming formulation

Asymetric and symmetric TSP can be formulated as integer linear problem:

min
𝑛∑︁

𝑖=0

𝑛∑︁
𝑗 ̸=𝑖,𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

𝑛∑︁
𝑖=0,𝑖 ̸=𝑗

𝑥𝑖𝑗 = 1 𝑗 = 0, ..., 𝑛

𝑛∑︁
𝑗=0,𝑗 ̸=𝑖

𝑥𝑖𝑗 = 1 𝑗 = 0, ..., 𝑛

0 ≤ 𝑥𝑖𝑗 ≤ 1 𝑖, 𝑗 = 0, ..., 𝑛

𝑢1 = 1
2 ≤ 𝑢𝑖 ≤ 𝑛 ∀𝑖 ̸= 1
𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑛− 1)(1− 𝑥𝑖𝑗) ∀𝑖 ̸= 1,∀𝑗 ̸= 1

(11)

In formulation 11: 𝑥𝑖𝑗 is a boolean indication whether from city 𝑖 to city 𝑗 leading a
path (Formulation 12). We have 1, ..., n cities.

𝑥𝑖𝑗 =
{︃

1, the path goes from city 𝑖 to city 𝑗

0, otherwise
(12)

𝑢𝑖 is an artificial variable for 𝑖 = 0, ..., 𝑛. 𝑐𝑖𝑗 is the distance from city 𝑖 to city 𝑗.
The first equality (in formulation 11) implies that each city be arrived at from exactly

one other city. The second equality implies that from each city is a path to exactly one
other city. The third constraint implies that exists only one circuit, which contain all
cities. The solution doesn’t contain two or more disjointed circuits.

3.2.4 Computing and solution

To compute the NP hard problems, we can also use one of the following methods:
∙ Optimal algorithms which compute the optimal solution (they will work reasonably

fast only for small problem sizes).
∙ Heuristic algorithms (algorithms, which have either seemingly or probably good

solutions, but solutions may not be optimal).
∙ We can find "subproblems" for which are possible better or exact heuristics.
We show a few examples of these algoritms.
Example of exact algorithms is branch and bound algorithm, which works well for

40-60 cities.
Heuristic and approximation algorithm is nearest neighbor algorithm or christofides

algorithm. The nearest neighbor algorithm choose the nearest unvisited city in every
move. This algorithm is quick and it find short path, but the algorithm doesm’t find
the shortest path. The path can be 25% longer that the shortest possible path.

The christofides algorithm solves the problem of the metric traveling salesman prob-
lem (only metric). In the worst case path is lenght 3/2 of the optimal solution. The
disadvantage of this algorithm is difficult to implement it. Other algorithms for solving
TSP [16] and [17].

17

3 Technical background

3.3 Game theory
Game theory concerns with the behaviour of decision makers whose decisions affect each
other. Game theory studies strategic decision-making. Specifically, it is "the study of
mathematical models of conflict and cooperation between intelligent rational decision-
makers" [18]. It analyses the behavior of the agents is from a rational rather than
a psychological or sociological aspect. Its methods can be applied in principle to all
interactive situations, especially in economics, political science, evolutionary biology,
and computer science. Game theory applies to a wide range of behavioral relations, it
includes human as well as non-human players (computers, animals, plants).

Game theory began with the existence of mixed-strategy equilibria in two-person
zero-sum games, introduced by John von Neumann [19]. His paper was followed by
book Theory of Games and Economic Behavior, which studied cooperative games of
several players.

The game theory has precisely defined mathematical objects:

a game - every confrontation of players
player - a person, who by their behavior can affect game’s output

(player is rational, if he wants to achieve an optimal outcome of the game)
strategy - assignment of one behavior for the game

utility (payoff) - player’s loss (gain) at the end a game round or game
utility matrix - assignment utility for the selected strategy

Fully defined game must specify the players of the game, actions available to each
player at each decision point, and the utilities for each outcome.

Both Cooperative and non-cooperative games can be described using normal form
and extensive form.

3.3.1 Normal form
The normal form of the game is usually represented by a matrix. The matrix describes
players and their possible stategies and possible utilities.

Player II chooses M Player II chooses N
Player I chooses K 6, 5 1, 1
Player I chooses L -1, -1 5, 6

Table 1 Game Theory - normal form

In the example in the Table 1 describes a two-player game. First player’s task is to
select his strategy - a row in the matrix. Second player’s task is to select his strategy
- a column in the matrix. Each player has two options for action. Utilities are written
inside the matrix (table). In each cell the first number is utility forthe player I (it is
marked in red). Second number in the cell is utility for the player II (it is marked in
blue). This means, that if the player I chooses K and the player II chooses M, the first
player acquires utility 6 and the second player acquires utility 5.

In the case of the normal form game, we expect that players select actions concur-
rently or that players do not know, what action chooses their adversary.

18

3.3 Game theory

3.3.2 Extensive form

The extensive form of the game is usually represented by a tree (Figure 12).
Every extensive form game has an equivalent normal form game. But if we transfor-

mation the extensive form to the normal form, it can be exponentially larger in the size
of the representation. It is not computationally practical [20].

Number 1 in Figure 12 represents the first player and number 2 represents the second
player. Each node is a decision point, where the player chooses his action. Player who
chooses the action is determined by number, which is written above the node. Edges
represent possible actions of the players. The utility is specified in the leaves of tree.
’The extensive form can be viewed as a multi-player generalization of a decision tree’
[21].

We have two players at the Figure 12. First player is red and second player is blue.
Player 1 plays first and chooses between K and L. Player 2 plays second. He may know
Player 1’s move. He chooses between M and N. If the first player chooses L and the
second player chooses N, the first player gains utility 5 and the second player gains
utility 6.

The extensive form is usually used to formalize games with a time sequencing of
moves. The extensive form can appear even game when players choose moves at the
same time and also games with incomplete information.

Figure 12 Extensive form represented by a tree

3.3.3 Types of games

There are a lot of game types in the game Theory. We will describe the basic game
types.

Zero-sum / Non-zero-sum games

The total benefit in zero-sum games is always zero (for all players in the game, for
every combination of strategies). This means, that a player’s benefits are only equal at
expense of others. For example, go or poker may be modelled as zero-sum games.

In the real world, many situations will be modelled using non-zero sum game concept
because some results have total benefit more or less than zero. Profit of one player
might not necessarily mean the lost for another player.

19

3 Technical background

Player II chooses M Player II chooses N
Player I chooses K 6, -6 0, 0
Player I chooses L -1, -1 -5, 5

Table 2 Example of a two-player zero sum game

Perfect information and imperfect information

A game with perfect information is a game where all players know the moves previously
made by all other players. Most games are imperfect-information games. For example
game of perfect information is chess and games of imperfect information are many card
games, such as poker.

Perfect information is often confused with complete information, which is a similar
concept. Game of complete information is the game, where every player know the
strategies and payoffs of the other players but not necessarily the actions taken. Games
of imperfect information contain "moves by nature" [19].

Figure 13 The game of imperfect information

In the Figure 13 is game for two players. The dotted line represents ignorance on the
part of player 2. The second player do not know, if he is in the yellow node or in the
green node.

Cooperative / Non-cooperative games

A game is cooperative if the players are able to form commitments. For example the
legal system requires them to adhere to their commitments. This is not possible in non-
cooperative games. Hybrid games contain cooperative and non-cooperative elements.

Formally "Cooperative game theory focuses on how much players can appropriate
given the value each coalition of player can create, while non-cooperative game theory
focuses on which moves players should rationally make." [22].

Agents compete and cooperate in cooperate model of game theory. They create and
capture value in unstructed interactions. Cooperative game theory analyses situations
where agents can cooperate to create value by joining coalitions. Agents also compete
to capture value. Cooperative game theory is descibed by a set of agents and a function
that returns the value each coalition. In non-cooperative game theory agents maximize
their utilitz in a defined procedure. They rely ona detailed description of the moves.

20

3.3 Game theory

Symmetric / Asymmetric games

A symmetric game is a game in which the results of the strategy depends on the
strategies of other players. It does not depend in who is playing. The game is symmetric
if the players can be replaced without change the payoff. Mostly it was study games 2x2
and they were symmetrical. Example of symmetric game is the Prisoner’s Dilemma.

Player II chooses M Player II chooses N
Player I chooses K 1, 1 2, 3
Player I chooses L 3, 2 5, 5

Table 3 The symmetric game

Simultaneous / Sequential games

Simultaneous game is the game, where both players move concurrently or the player
who moves later he has not information on the previous move opponent. Sequential
games are games in which players know something about the opponent’s previous move.
Players may not have perfect knowledge.

3.3.4 Game theory as a linear program

We have matrix game with random strategy. Matrix game is defined by payoff (utility)
matrix. Game with random strategy is the game, where player make him choices at
random according to some fixed probability distribution. We formalize action of players,
𝑦𝑖 label the probabilty that the row player selects action 𝑖. The vector 𝑦 is called a
stochastic vector. Vector is a stochastic vector if it satisfies the conditions in the Figure
13. [23]

𝑦 ≤ 0
𝑒𝑇 𝑦 = 1

(13)

In the Figure 15 𝑒 is the unit vector. We define variable for the column player in
the same way, vector 𝑥 is composed of probabilities 𝑥𝑖. Vector 𝑥 is called a stochastic
vector. Let 𝑥𝑖 is the probability that the column player select action 𝑖.

The column player has the following expected payoff (in the Figure 14).

∑︁
𝑖,𝑗

𝑦𝑖𝑎𝑖𝑗𝑥𝑖 = 𝑦𝑇 𝐴𝑥 (14)

The column player has strategy 𝑥, because he decides to play according to stochastic
vector 𝑥. The row player have to count up him best defense. It is the strategy 𝑦*. The
optimal strategy 𝑦* the following minimum (in the Figure 15).

min𝑦𝑇 𝐴𝑥

𝑠.𝑡.𝑒𝑇 𝑦 =1
𝑦 ≤0

(15)

"From the fundamental theorem of linear programming, we know that this problem
has a basic optimal solution. For this problem, the basic solutions are simply y vectors
that are zero in every component except for one, which is one. That is, the basic optimal
solutions correspond to deterministic strategies."[24]

21

3 Technical background

3.4 IBM ILOG CPLEX
IBM ILOG CPLEX is software package for matematical operations. It is often called
olny CPLEX. The CPLEX is named for the simplex method as implemented in the C
programming language. Now it has also support in other mathematical problems and
it offers interface in java too. The CPLEX is solver ILP and LP problem from IBM
and it representation commercial solver.

Originally developer of IBM ILOG CPLEX is Robert E. Bixby and it was sold through
CPLEX Optimization Inc., which was take over by company ILOG in 1997. ILOG was
purchased by company IBM in january 2009.

Formally decsription from IBM: "IBM ILOG CPLEX Optimization Studio is an an-
alytical decision support toolkit for rapid development and deployment of optimization
models using mathematical and constraint programming. It combines an integrated de-
velopment environment (IDE) with the powerful Optimization Programming Language
(OPL) and high-performance ILOG CPLEX optimizer solvers." [25]

22

4 Petrol Station Inspection Problem

In this chapter, we present a basic overwiew of petrol stations inspection process. At
first, we explain the motivation to inspect petrol stations and the way petrol stations
may possibly break the law. Then we focus on a technical standards for fuel, which
is defined by law in the country. In the next part of this chapter, we discuss who is
the body running the inspection of petrol stations in the Czech Republic. We divide
inspection authorities to the two parts. Frist part is the public sector and second part
is the private sector. Inspection entities of the public sector control random all petrol
stations. Inspection entities of the private sector make inspections for legal entities.
We also describe number of inspections and their success.

What does one need to inspect the petrol stations? Some petrol stations purposely
add cheaper ingredients or foreign substances to the fuel, in order to increase their profit
per liter. Other petrol stations unintentionally change character of fuel by improper
storage. Fuel of poor quality can cause large damages to a car or motorbike.

There are three main conditions on fuel which are often not met:

∙ Fuel does not fulfill the requirement of the relevant standards or the requirement
of a manufacturer vehicles.
∙ Fuel properties are significantly impaired by improper mixtures of alternative fuels,

post-production manipulation, improper storage, purposely addition of cheaper
ingredients or foreign substances.
∙ Poor fuel clogs the fuel system, changes the process of combustion and affects the

properties of engine oil by soot, which arise by intersection unburned fuel or its
components.

Overview of typical damage of vehicles

The most of typical damage is loss of power or irregular engine running or obvious
defect of fuel system.

The next damage cathegory is glitch with permanent restrictions function of engine.
This damage can be caused by many thinks like previously damage. To locate the
problem, the fuel needs to be subscribed from the vehicle and analysed.

The worst damage is crush of engine. According to the range damage, inspector
makes the sampling and advanced analysis of fuel and lubricants with the evaluation.

4.1 Petrol station inspection specifics

By inspection in context of this work we mean control performed by the inspector in
person at the petrol station. The inspector needs to take a fuel sample. Sampling is
performed in the proper way into clean and marked test-tube, which is immediately
unmistakably scaled, with the standard CTIA (The Czech Trade Inspection Authority)
EN ISO 3170. [26] The sampling protocol always documents conditions and place of
collection.

23

4 Petrol Station Inspection Problem

Properties of fuels are evaluated by a set of test on the modern equipment in a
laboratory accredited according to CTIA EN ISO/IEC 17025. Clear and strict rules
are sure to objectivity.

The results of the test are evaluated with the offsetting uncertainties determination
and in relation to relevant quality standards or to relevant requirements of manufac-
turers vehicles. For judicial resolution of the dispute review is processed by renowned
forensic expert.

4.2 Monitoring quality of fuels

The precise composition of fuel is described in the act No. 133/2010 Coll. The act
describes requirements for fuels, methods of monitoring composition and quality of
fuels and their evidence. Now we will focus on quality of fuels. We show needed quality
of the most frequently fuels. They are motor gasoline CTIA EN 228 and motor oil fuel
CTIA EN 590. Quality indicators of motor gasoline are in the Table 4 and of motor oil
fuel in the Table 5.

Indicator of quality Unit Minimum Maximum
1. Octane number by research method - 95 -
2. Octane number by engine method - 85 -
3. Density at 15∘𝐶 𝑘𝑔/𝑚3 720.0 775.0
4. Vapor pressure, DVPE method - summer 𝑘𝑃𝑎 - 60.0
5. During the distillation:
5.1 the evaporated amount at 100∘𝐶 %(𝑉/𝑉) 46.0 -
5.2 the evaporated amount at 150∘𝐶 %(𝑉/𝑉) 75.0 -
5.3 finish temperature distillation ∘𝐶 - 210

6. Hydrocarbon composition:
6.1 olefins %(𝑉/𝑉) - 18.0
6.2 aromatic hydrocarbons %(𝑉/𝑉) - 35.0
6.3 benzen %(𝑉/𝑉) - 1.0

7. The content of oxygen %(𝑚/𝑚) - 3.7
8. The content of oxygenates:
8.1 methanol %(𝑉/𝑉) - 3.0
8.2 ethanol %(𝑉/𝑉) - 10.0
8.3 isopropanol %(𝑉/𝑉) - 12.0
8.4 tercbutanol %(𝑉/𝑉) - 15.0
8.5 isobutanol %(𝑉/𝑉) - 15.0
8.6 ethers
(containing 5 or more atoms
of carbon in molecule) %(𝑉/𝑉) - 22.0

8.7 other oxygenates %(𝑉/𝑉) - 15.0
9. The content of sulfur 𝑚𝑔/𝑘𝑔 - 10.0
10. The content of lead 𝑚𝑔/𝑙 - 5.0
11. The content of manganese 𝑚𝑔/𝑙 - 6.0
12. Oxidation stability 𝑚𝑖𝑛 360 -

Table 4 Quality indicators of motor gasoline [27]

24

4.3 Who performs the inspections

Indicator of quality Unit Minimum Maximum
1. Cetane number - 51.0 -
2. Cetane index - 46.0 -
3. Density at 15∘𝐶 𝑘𝑔/𝑚3 - 845.0
4. During the distillation:
4.1 the evaporated amount at 250∘𝐶 %(𝑉/𝑉) - 65.0
4.2 the evaporated amount at 350∘𝐶 %(𝑉/𝑉) 85.0 -
4.3 temperature at which distils 95%

(V/V) ∘𝐶 - 360
5. The content of poly cyclic

aromatic hydrocarbons %(𝑚𝑖𝑚) - 8.0
6. The content of FAME %(𝑉/𝑉) - 7.0
7. The content of sulfur 𝑚𝑔/𝑘𝑔 - 10.0
8. The content of water 𝑚𝑔/𝑘𝑔 - 200.0
9. Filterability:
9.1 winter ∘𝐶 - -20
9.2 transitional period ∘𝐶 - -10

10. Flash-point ∘𝐶 more than 55 -
11. Oxidation stability 𝑔/𝑚3 - 25.0

Table 5 Quality indicators of motor oil fuel [27]

4.3 Who performs the inspections

The inspections can be performed by a public or private sector representative. Public
sektor control petrol stations for state. In the Czech Republic, The Czech Inspection
Authority (CTIA) is state organization, which makes the inspections. CTIA inspects
all products in Czech republic except food and tobacco products. An example of the
inspection body from private sector is the SGS company, which is the largest worldwide
inspection company. It controls petrol stations for costumer or legal entity.

4.3.1 The Czech Inspection Authority (CTIA)

The Czech Trade Inspection Authority (CTIA) is an administrative government institu-
tion falling under the jurisdiction of the Ministry and Trade of the Czech Republic. The
minister of industry and trade appoints the director general of the CTIA. The CTIA
was established under Act No. 64/1986 Coll. It consists of the Central Inspectorate
and Regional Branch Inspectorates. The Regional Branch Inspectorate has offices in
major regional cities.

The Czech Trade Inspection Authority controls and monitors individuals and busi-
nesses, which are selling or buying products in the Czech republic, are providing services
or similar activities on the domestic market, are providing consumer credit, and are op-
erating marketplaces.

Penalities

"The Czech Trade Inspection Authority may, in some cases, impose fines of up to
50 million CZK for violations of laws committed by the audited subject. For minor
violations, CTIA inspectors may impose immediate fines of up to 5,000 CZK. This also
applies to private individuals selling either produce from small farms or forest-harvested

25

4 Petrol Station Inspection Problem

crops. In addition to fines, the CTIA also imposes bans on the sale of products, or
their introduction onto the Czech market, if these products do not comply with Czech
regulations." [28]

4.3.2 Private sector notified bodies

SGS is the world’s leading inspection, verification, testing and certification company.
They operate a network of more than 1,650 offices and laboratories around the world.
Their service comprise inspection, testing, certification and verification.

SGS deals with petrol station inspections in the Czech Republic. They control quality
of fuel for private sector. SGS performs the fuel inspections based on contracts with
large fuel petrol station networks.

SGS make independent inspections and they give so-called Quality seal to the petrol
station, which are satisfing periodically the inspections. Reason for creation quality
seal is described in their web page [29]. They write than independent inspections show
significant differences in fuel quality, but this inspections does not facilitate orientation
in station market for the normal customer.

Program Quality seal with the trademark is used to guide the motorists in search of
quality petrol station. In the petrol stations systematic care about the quality of fuel
and these fuels signify European standards in the long term.

4.4 Inspection process data

We have described informaiton about petrol station inspections. Now we discus ap-
plication of inspection. CTIA is a member of the open-data initiative, therefore we
were able to perform an analysis based on the real data. The Czech Trade Inspection
Authority publishes data about it’s inspections on web page [28]. The petrol stations
with license need to fulfill requirements by a legal regular and CTIA may do periodicaly
inspection.

We present process of inspections and data from CTIA. In the Table 6 we show the
data. In the CTIA web page are approximately 3 800 publicly accessible petrol stations.
CTIA control approximately 3 800 petrol stations every year. It means that each petrol
staton is controled once per year in average.

125 inspections are detected as inconvenient (from 3 800 inspection), which is 3.3 %
of all inspections. The averange fine for unsatisfactory inspection is 210 000 CZK and
total fines are 26.25 million CZK.

Number of control per year 3 800
Number of petrol stations 3 800

Detected controls as inconvenient (per year) 125
Detected controls as inconvenient (per year) [%] 3.3

Averange penalty [CZK million] 0.21
Total penalties [CZK million] 26.25

Table 6 Petrol station inspection data provided by CTIA

26

4.4 Inspection process data

Unsatisfactory stations not detected (per year) 121
Unsatisfactory stations not detected (per year) [%] 3.2

Total number of violations 246
Average harm [million CZK] 0.42

Total harm [million CZK] 103.3

Table 7 Estimated petrol station inspection data

In the Table 7, we estimate that there are exists another 3.2 % unsatisfactory petrol
stations, because the total number of petrol stations who contravene some regulation
is not known. Consequently all together 6.5 % of all stations contravene at least one
regulation. We estimate the averange and total harm too. Averange harm will be twice
the averange cost, which is 420 000 CZK. We have summary 6.5 % cheating petrol
stations, then the total harm is 103.3 million CZK.

We want to improve inspection and reduce cheating of petrol stations. We create the
following prediction. We expect decrease cheating of petrol stations. In the time when
we start new control system the caught violations of petrol stations very fast increases,
because we have better control system and we catch more cheating petrol stations. At
this moment another petrol stations register change in the inspections and some of
them finish with cheating. Consequently, the total violations will be decreases. After
the transition caught violations and total violations settle down.

We focus on the three important thinks about inspections:
∙ Unpredictability of inspections
∙ Save costs
∙ Reduce bribing inspectors
We ensure unpredictability of inspections by sampling from different inspection strate-

gies. We initialize game theory and we solve it by LP. We save costs by solving path of
inspectors as Travel Inspection Problem (TSP). Inspectiors have tendency for taking
bribes; therefore, we want reduce it. We use our program for it. The program generates
results every month in the morning before the inspection day. Then inspectors do not
know what petrol stations they will control. We have one more measure against bribing.
We choose every time another inspector for the petrol station.

27

5 Problem formalization

Formally, the inspection problem of petrol stations can be seen as an optimization
problem with inspection optimizing a joint criterion function for the inspector. In
the following sections, we define the inspection policies of the inspector, benefits and
costs of the cheating inspection stations. We formulate three utilities function. First
utility function is overall cheating level of the petrol stations. Second utility function
defines cost of potentially cheating the petrol station in individual months and third
utility function represents cost of route for the inspector. Then we use mathematical
programming that allows us to capture constraints posed on the our problem easily.

5.1 Game theoretical model

We create two-person game between inspector and petrol stations. For simplicity, we
define inspector as first player and 𝑁 petrol stations as second player, which decides
where he will cheat (in which petrol stations) and when he will cheat. For example,
second player chooses the five petrol stations from 𝑁 = 10 petrol stations where he
cheats. And then he chooses January, May, June, October and December when he
cheats in the five choosen petrol stations. The task of the inspector (first player) is
calculating where and when the second player cheats. This means that he calculates in
which petrol stations the second player cheats and in which months the second player
cheats.

We use asymmetric zero-sum game, the inspector’s utils are equal to petrol station’s
utils. Our game is imperfect information, because the inspector does not know petrol
station’s decision. The game is non-cooperative and we calculate Nash equilibrium.
This means that each player is assumed to know the equilibrium strategies of the other
players, and no player has anything to gain by changing only their own strategy. All
this types of game are described in Chapter 3.

5.2 Physical inspection of potentially cheating petrol stations

We define the problem where one inspector must visit the given petrol stations using
the least costs. More precisely we plan route into several petrol stations for the one
inspector. We define time period such as one month for the route (or for the one
schedule for inspector).

When we get properties about the petrol stations. We get the budget for the inspec-
tions. We find potentially cheating petrol stations, which we going to inspect. Then we
search months for the choosen petrol stations. We select the months according to the
probability of cheating petrol stations in the each month. We calculate costs of routes
and we check it with budget. The final cost of the year inspections can not be bigger
than budget. User give us month and we construct route and schedule for the inspector
in the month.

28

5.3 Petrol station attributes

5.3 Petrol station attributes
Real petrol station has a lot of properties, but we can not comprise all of the properties,
we will use just a subset of the properties. In this section, we describe properties, which
we consider. We define the following parametrs for each petrol stations.

1. The population of the town (or the population of the nearest town), where the
petrol station is located.

2. Size of the road, where the petrol station is located.
3. The fine, which the petrol station get, when the petrol station cheats.
4. The profit of the cheating petrol station.
5. The fuel consumption chart according to motnhs. The fuel consumption chart has

the same values for the all petrol station. This parametr is for calculating the
probability of cheating petrol station in the each month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

22

23

24

25

Month

C
on

su
m

pt
io

n

Figure 14 Fuel consumption chart (fuel consumption is in thousand barrels per day) [30]

The population of the town is readed from the table created from the cities and their
population. The petrol stations has adress and we find the population in the table
according to the adress. We find the type of road in the OSM. We derive size of road
from the type of road, for example the biggest road is ’motorway’ and smaller road is
’secondary_link’.

The fine and the profit of petrol station, we deduce from attendance of petrol stations.
We ascertained attendance of petrol station for one day. We have number of costumers
from the several petrol stations from each type of route. We decide types of routes
to the groups and we calculate average number of costumers 𝑐 for the each group.
We have the following types of route (from the largest to the smallest): motorway,
motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link,
tertiary, tertiary_link, road, residential, living_street, unclassified. We found average
fine from the CTIA, it is 360 000 CZK. Average fine for one costumer is 997 CZK. Then
we calculate fines for the each group according to the following figure:

fine𝑖 = 𝑐𝑖 · 997

29

5 Problem formalization

Where 𝑐𝑖 is number of costumers in the 𝑖-th group. The Table 8 describes fines in
each group.

Group of route types Calculation Result [CZK]
motorway, motorway_link 700 · 997 = 697900
trunk, trunk_link 429 · 997 = 427713
primary, primary_link 319 · 997 = 318043
secondary, secondary_link 201 · 997 = 200307
tertiary, tertiary_link 160 · 997 = 159520
road, residential, ... 130 · 997 = 129610

Table 8 Fines for petrol stations

The profit petrol station from the cheating, we deduce from the previous numbers
of costumers. We assume that each costumer buys approximately 40 l of fuel and the
petrol station has 3 CZK profit from 1 l if the petrol station cheats. In the Table 9 are
the results of the calculating profit.

Group of route types Calculation Result [CZK]
motorway, motorway_link 700 · 40 · 3 = 84000
trunk, trunk_link 429 · 40 · 3 = 51480
primary, primary_link 319 · 40 · 3 = 38280
secondary, secondary_link 201 · 40 · 3 = 24120
tertiary, tertiary_link 160 · 40 · 3 = 19200
road, residential, ... 130 · 40 · 3 = 15600

Table 9 Petrol stations profits from the cheating

We assume the graph of consumption from the information in the report Monthly
Energy Review January 2015 from U.S. [30].

5.4 Utility functions
As was mentioned above, we use three utility functions:

1. Utility function 𝑓1 for calculate cost of cheating petrol stations
2. Ulitity function 𝑓2 for calculate cost of potentially cheating the petrol station in

each month.
3. Utility function 𝑓3 for calculate cost of route (distances)
We describe each utility function and their composition. We use parameters defined

above. Each parametr in utility function is multiplied by constant.
First utility function 𝑓1 is consisted from the population of the town and from size

of the road, where the petrol station 𝑎 is located.

𝑓1(𝑎) = 𝛼 · population𝑎 + 𝛽 · road𝑎,

𝛼 = 0.5

𝛽 = 0.5

We define number 0 as the biggest road and the higher number means smaller type
of road.

30

5.5 Inspector schedule

We define two options of the utility function 𝑓2. We construct two model of our
program and for each we define different utility function 𝑓2. We describe the models in
the Chapter 6.

The fine, the profit of the cheating petrol station 𝑎 and the fuel consumption in the
month 𝑚 form second utility function 𝑓2 for our first model of application.

𝑓2(𝑎, 𝑚) = −𝛼 · fine𝑎 − 𝛽 · profit𝑎 − 𝛾 · fuel_consumption𝑚

𝛼 = 0.4

𝛽 = 0.3

𝛾 = 0.3

The fine, the profit of the list cheating petrol stations (petrol stations 1, 2, ..., 𝑥) and
the fuel consumption in the month 𝑚 form second utility function 𝑓2 for our second
model of application. For the final fine, we sum fines of the each petrol stations. We
sum profits of the each petrol stations by the same way.

𝑓2(𝑚) = 𝛼 · fine + 𝛽 · profit + 𝛾 · fuel_consumption𝑚

𝛼 = 0.4

𝛽 = 0.3

𝛾 = 0.3

fine =
𝑥∑︁

𝑖=1
fine𝑖

profit =
𝑥∑︁

𝑖=1
profit𝑖

Third utility function 𝑓3 is very simple. It is equal distance between petrol stations
𝑎 and 𝑏. It does not contain constant.

𝑓3(𝑎, 𝑏) = distance𝑎𝑏

5.5 Inspector schedule
The program creates schedule for the inspector. Schedule is list of the places, which
inspector going to control in the given month. Inspector always starts and ends his route
in the Prague office. Program draws the route in the open maps called GraphHopper
[31].

31

6 Algorithms

In this chapter, we introduce the algorithms which we use to compute the solution of the
problem. First, we use algorithm for computing the game theoretical part. We apply
this algoritm twice. First utilization is for find potentially cheating petrol stations and
calculating probabilities of cheating petrol station in the months is second application.
We design Travel Salesman problem for the finding route.

We construct two models. First model is simplier. The second model continue from
the first model and the second model improving the first model. First model is with
fixed number of petrol stations and months. The second model calculate this numbers
and the second model need to get budget, which we can spend for the inspections.

6.1 Model with given number of petrol stations and months
6.1.1 Finding potentially cheating petrol stations
First, we calculate probability of cheating for each petrol station independent of time.
We have 𝑁 petrol stations. We get budget 𝐵𝑆 for visiting petrol stations. We construct
utility function 𝑓1(𝑎), which is defined above in section 5.4.

We create utility matrix 𝑀1. Columns in matrix are petrol stations, which can
potentially cheat. Number of cheating petrol stations can be from 0 to 𝑁 . We construct
permutation from zeros and ones. Permutation’s size is 𝑁 . Number 1 means that petrol
station cheat, number 0 means that the petrol station is not cheating. Inspections are
in the rows in matrix. We mark them by similar way like petrol stations in columns.
Number 1, if inspector realizes the inspection and number 0 if he does not realize
inspection.

For example: matrix 𝑀1 for 𝑁 = 3 and 𝐵𝑆 = 1:

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

1 0 0
0 1 0
0 0 1

Where 𝑁 is the number of all petrol stations (from which we choose). The permu-
tations in the rows allow to choose only one petrol station. If we want to choose two
petrol stations, the matrix will look like following matrix:

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

1 1 0
0 1 1
1 0 1

32

6.2 Sampling

According to utilitity function 𝑓1(𝑎) we calculate utility values 𝑢1, 𝑢2, ..., 𝑢𝑁 for each
petrol station. Then we calculate values in the utility matrix 𝑀1. We will find the
minimum value, it means that smallest number in matrix is the best. We fill the matrix
pursuant to this rules:

Inspection Station
0 0 → 0
0 1 → + 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑁
1 0 → + 𝑢𝑖

10 , 1 ≤ 𝑖 ≤ 𝑁
1 1 → − 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑁

Final matrix will be:

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

1 0 0 𝑢1
10 −𝑢1

𝑢1
10 + 𝑢2

𝑢1
10 + 𝑢3 0 𝑢1

10 +
𝑢2 + 𝑢3

0 −𝑢1 +
𝑢2 + 𝑢3

0 1 0 𝑢2
10

𝑢2
10 + 𝑢1 −𝑢2

𝑢2
10 + 𝑢3 0 0 𝑢2

10 +
𝑢1 + 𝑢3

𝑢1 −
𝑢2 + 𝑢3

0 0 1 𝑢3
10

𝑢3
10 + 𝑢1

𝑢3
10 + 𝑢2 −𝑢3

𝑢3
10 +

𝑢1 + 𝑢2

0 0 𝑢1 +
𝑢2 − 𝑢3

Now we solve following LP:

min 𝑧

𝑅∑︁
𝑖=1

𝑝𝑖 · 𝑢𝑖𝑗 ≤ 𝑧 𝑗 ∈ 1, 2, ..., 𝐶

𝑅∑︁
𝑖=1

𝑝𝑖 = 1

(16)

Where 𝑅 is number of rows in the matrix 𝑀1 and 𝐶 is number of columns. 𝑝𝑖 is
probability of potentially cheating petrol station. 𝑢𝑖𝑗 is utility value in the matrix 𝑀1
and 𝑧 is slack variable.

6.2 Sampling
We calculated probabilites of potentially cheating petrol station 𝑝1, ..., 𝑝𝑅. Now we have
to choose 𝐵𝑆 petrol stations. Number of petrol stations 𝐵𝑆 is provided by calculation
in LP (problem desribed above). We use random generator for production real number
𝑟, which satisfies the condition 0 ≤ 𝑟 ≤ 1. We choose one probability from the result
of LP (probabilities of potentially cheating petrol stations) according to real number 𝑟.
We introduce exapmle of sampling for three petrol station:
We define 𝑁 = 3, 𝐵𝑆 = 1 We have result of LP: {𝑝1, 𝑝2, 𝑝3}. Then we generate real
number 𝑟.

If 0 ≤ 𝑟 ≤ 𝑝1 then we choose first result of LP (first petrol station).
If 𝑝1 < 𝑟 ≤ 𝑝2 then we choose second result of LP (second petrol station).
If 𝑝2 < 𝑟 ≤ 𝑝3 then we choose third result of LP (third petrol station).

33

6 Algorithms

If we define budget for inspection petrol stations 𝐵𝑆 > 1, then LP reurn list of
probabilities by the same size as for 𝐵𝑆 = 1 (if 𝑁 is the equally). The difference is in
the permutation of the inspections in matrix 𝑀1.

For example: 𝑁 = 3, 𝐵𝑆 = 2, we define matrix 𝑀1:

0 1 0 0 1 0 1
0 0 1 0 1 1 0 results
0 0 0 1 0 1 1

1 1 0 𝑝1
0 1 1 𝑝2
1 0 1 𝑝3

Then we calculate utility values in matrix 𝑀1 and calculate LP. Result of LP is list of
probabilities {𝑝1, 𝑝2, 𝑝3}. In sampling we choose for example probability 𝑝1. It means,
that we choosen first and second petrol stations for inspection.

6.3 Search months, in which the petrol station will cheat

We have choosen petrol stations for the inspection. Now we make following calculation
for each choosen petrol station. We calculate probability of the petrol station for each
month. We have 12 months. We get budget 𝐵𝑀 for months, in which we inspect the
petrol station. We construct function 𝑓2(𝑎, 𝑚) for petrol station 𝑎. The function 𝑓2 is
defined in section 5.4.

We create utility matrix 𝑀2 by the same way as utility matrix 𝑀1. But columns in
matrix are months, in which the petrol station can potentially cheat. Months, when
we inspect the petrol station, is in rows. We make permutations, calculate values in
matrix 𝑀2 and calculate the same LP as in the subsection 6.1.1, but for months.

When we have the probabilities of months, we sample on the probabilities as in the
subsection 6.2. Then we save choosen months and we repeat all of this subsection for
the next choosen petrol station.

6.4 Calculating route

We have list of the petrol stations to inspection and months when we inspect each
petrol station. Now we construct route for the inspector. The begining of route is in
the Prague office. Then the inspector continues to the choosen petrol stations office.
The end of the route is in the Prague office as well. We choose month 𝜇 when we want
to calculate route.

We have 𝑁𝜇 choosen petrol stations {𝑠1, 𝑠2, ..., 𝑠𝑁𝜇} in month 𝜇. First we calculate
distances between each two petrol stations {𝑠1, 𝑠2, ..., 𝑠𝑁𝜇}. We construct utility matrix
𝑀3 by using utility function 𝑓3(𝑎, 𝑏) (is defined in section 5.4). 𝑓3(𝑎, 𝑏) means distance
between petrol stations 𝑎 and 𝑏. We create the following utility matrix 𝑀3:

𝑠1 𝑠2 · · · 𝑠𝑁𝜇

𝑠1 max_value 𝑓3(𝑠1, 𝑠2) · · · 𝑓3(𝑠1, 𝑠𝑁𝜇)
𝑠2 𝑓3(𝑠2, 𝑠1) max_value · · · 𝑓3(𝑠2, 𝑠𝑁𝜇)
...

...
...

𝑠𝑁𝜇 𝑓3(𝑠𝑁𝜇 , 𝑠1) 𝑓3(𝑠𝑁𝜇 , 𝑠2) · · · max_value

34

6.5 Model with budget

Where max_value means the maximum number of integer. We used it, because we
will find minimum value in the LP and we can not allow route from the petrol station
to the same petrol station.

Then we calculate the LP problem:

min
𝑁𝜇∑︁
𝑖=0

𝑁𝜇∑︁
𝑗 ̸=𝑖,𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗

𝑁𝜇∑︁
𝑖=0,𝑖 ̸=𝑗

𝑥𝑖𝑗 = 1 𝑗 = 0, ..., 𝑁𝜇

𝑁𝜇∑︁
𝑗=0,𝑗 ̸=𝑖

𝑥𝑖𝑗 = 1 𝑗 = 0, ..., 𝑁𝜇

0 ≤ 𝑥𝑖𝑗 ≤ 1 𝑖, 𝑗 = 0, ..., 𝑁𝜇

𝑢1 = 1
2 ≤ 𝑢𝑖 ≤ 𝑁𝜇 ∀𝑖 ̸= 1
𝑢𝑖 − 𝑢𝑗 + 1 ≤ (𝑁𝜇 − 1)(1− 𝑥𝑖𝑗) ∀𝑖 ̸= 1,∀𝑗 ̸= 1

(17)

Where 𝑐𝑖𝑗 is value in the matrix 𝑀3 (it is distance between petron stations). 𝑢1, · · · , 𝑢𝑁𝜇

are variables which guarantees that we make one continuous route (not two or more
separated routes). 𝑢𝑖 = 𝑡 if the petrol station 𝑖 is visited in step 𝑡.

Result of the LP is matrix 𝑋 containing zeros and ones. Matrix 𝑋 can look like:

𝑠1 𝑠2 · · · 𝑠𝑁𝜇

𝑠1 0 1 · · · 0
𝑠2 0 0 · · · 1
...

...
...

𝑠𝑁𝜇 1 0 · · · 0

It means that the route starts in the petrol station (realistically in the Prague office)
𝑠1, then the inspector continue to the petrol station 𝑠𝑁𝜇 and he ends in the petrol
station (realistically in the Prague office) 𝑠2.

𝑠1 → 𝑠𝑁𝜇 → 𝑠2 → 𝑠1

We obtain list of petrol stations to inspecting in the month 𝜇.

6.5 Model with budget

This model is similar like previous model. We introduce differences from the model
described above.

We do not know how many we inspect petrol stations. We calculate it by LP. There-
fore we construct different matrix for finding potentially cheating petrol stations. Num-
ber of cheating petrol stations can be 0 to 𝑁 .

For example: matrix 𝑀1 for 𝑁 = 3:

35

6 Algorithms

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
1 1 1

In the matrix 𝑀1 we construct permutations for every number of petrols stations. It
is different from previous model where we create permutation with the fixed number
of ones (number of petrol stations). The rules for filling the matrix are the same.
Therefore, the filled matrix 𝑀1 look like following matrix.

Final matrix will be:

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

0 0 0 0 𝑢1 𝑢2 𝑢3 𝑢1 + 𝑢2 𝑢2 + 𝑢3 𝑢1 + 𝑢3 𝑢1 +
𝑢2 + 𝑢3

1 0 0 𝑢1
10 −𝑢1

𝑢1
10 + 𝑢2

𝑢1
10 + 𝑢3 0 𝑢1

10 +
𝑢2 + 𝑢3

0 −𝑢1 +
𝑢2 + 𝑢3

0 1 0 𝑢2
10

𝑢2
10 + 𝑢1 −𝑢2

𝑢2
10 + 𝑢3 0 0 𝑢2

10 +
𝑢1 + 𝑢3

𝑢1 −
𝑢2 + 𝑢3

0 0 1 𝑢3
10

𝑢3
10 + 𝑢1

𝑢3
10 + 𝑢2 −𝑢3

𝑢3
10 +

𝑢1 + 𝑢2

0 0 𝑢1 +
𝑢2 − 𝑢3

1 1 0 𝑢1
10 + 𝑢2

10 −𝑢1 +
𝑢2
10

𝑢1
10 −𝑢2

𝑢1
10 +

𝑢2
10 + 𝑢3

−𝑢1 −
𝑢2

𝑢1
10 −

𝑢2 + 𝑢3

−𝑢1 +
𝑢2
10 + 𝑢3

−𝑢1 −
𝑢2 + 𝑢3

0 1 1 𝑢2
10 + 𝑢3

10 𝑢1 +
𝑢
10 + 𝑢3

10

−𝑢2 +
𝑢3
10

𝑢2
10 −𝑢3 𝑢1 −

𝑢2 + 𝑢3
10

−𝑢2 −
𝑢3

𝑢1 +
𝑢2
10 −𝑢3

𝑢1 −
𝑢2 − 𝑢3

1 0 1 𝑢1
10 + 𝑢3

10 −𝑢1 +
𝑢3
10

𝑢1
10 +

𝑢2 + 𝑢3
10

𝑢1
10 −𝑢3 −𝑢1 +

𝑢2 + 𝑢3
10

𝑢1
10 +

𝑢2 − 𝑢3

−𝑢1 −
𝑢3

−𝑢1 +
𝑢2 − 𝑢3

1 1 1 𝑢1
10 +

𝑢2
10 + 𝑢3

10

−𝑢1 +
𝑢2
10 + 𝑢3

10

𝑢1
10 −

𝑢2 + 𝑢3
10

𝑢1
10 +

𝑢2
10 −𝑢3

−𝑢1 −
𝑢2 + 𝑢3

10

𝑢1
10 −

𝑢2 − 𝑢3

−𝑢1 +
𝑢2
10 −𝑢3

−𝑢1 −
𝑢2 − 𝑢3

We calculate choosen petrol stations by calculating probabilities and sampling like
in the previous model, but in this model we also calculate number of choosen petrol
stations.

We calculate months for all choosen petrol stations together. We do not know how
many months we could choose. We construct a litle different utility function, because
we calculate it for all petrol stations (not for each petrol station). The utility function
is defined in the section 5.4. Then we calculate choosen month by the same way like
we choose the petrol stations.

We continue and we calculate route for the each month where we inspect a petrol
station. We sum the distances of the routes from each month and we check it with the
budget. Budget is in the Czech crowns. Therefore, we convert distance (in 𝑘𝑚) 𝑑 to
the cost of the distance 𝑑 by following way:

36

6.5 Model with budget

𝐵𝑒 = 𝑑 · 𝑐

Where 𝐵𝑒 is exhausted budget for the year and 𝑐 is cost for one kilometer.
Now we can compare exhausted budget 𝐵𝑒 with the final budget 𝐵. We repeat all

the calculates (from choosing the petrol stations) until the exhausted budget 𝐵𝑒 will
be smaller than final budget 𝐵. If the exhausted budget 𝐵𝑒 will be bigger than final
budget 𝐵, we do not include the last result.

User chooses one month for drawing of the route to the map.

37

7 Implementation

In this chapter we describe entire program. More precisely, we describe programming
language, libraries and database, which we use in this thesis. We create java application
using the following extension:

∙ CPLEX
∙ GraphHopper
∙ JavaFX
∙ Leaflet
∙ Database

7.1 Program flow architecture

7.1.1 Model with given number of petrol stations and months

The following scheme shows process of the entire first model:

Figure 15 Scheme of model

First, we want to find potentially cheating petrol stations and we find them by IBM
CPLEX. We need to define budget for station (how many petrol station we inspect)
and budget for months (how many months in a year we inspect one petrol station).
Then for each petrol station we find months when we inspect the petrol station. User
choose month when we calculate inspector schedule. Then we find the route and we
calculate distance.

7.1.2 Model with budget

The following scheme shows process of the entire second model:

38

7.2 IBM CPLEX

Figure 16 Scheme of program

We want to find potentially cheating petrol stations and we find them by IBM
CPLEX. We need to define budget how many money we can spend for the year. We
also need to know population of the city where the petrol station is located and type
of the road beside the petrol station. The second last parametrs we use for creating
utility function. Outputs from this part are the choosen stations.

Then for all petrol stations we find months when we inspect the petrol stations. We
know choosen stations from previous step and we need to know fuel consumption, fine
and profit of the petrol station. The choosen moths for each petrol station are output.

Then we create the route for inspections in the each month. We have choosen stations
in the month and we calculate distances between each two choosen petrol stations. We
find the routes by IBM CPLEX. We calculate distance of the all routes (from the each
month) and from distance we calculate exhausted budget for the year.

We repeat the calculations until we exhaust the budget. Then the user chooses one
month and we create route in GUI by calculating points in GraphHopper.

7.2 IBM CPLEX
IBM CPLEX is solver to solve the linear program instances. In our solution, we for-
mulate three linear integer programs in total and all of them are solved using CPLEX.
Twice in the game theoretical part and once in the part of traveling salesman problem.
In the game theoretical part, we apply CPLEX for calculate probabilities of potentially
cheating petrol stations and probabilities of months when the petrol station cheat.

7.3 GraphHopper
GraphHopper is a fast, flexible and memory efficient Java program providing the route
directions service. It works with latest worldwide OpenStreetMap data. The Graph-
Hopper is released under Apache License. [31]

The GraphHopper is applied in the part of traveling salesman problem. We use it for
computing distances of any two places in Czech republic represented by their addresses.
The distances we set to the CPLEX. But we apply it also for creating route with all

39

7 Implementation

waypoints and instructions for navigation. The waypoints are used for representing
route in the map (in application’s GUI). Graphopper excepts the web service provides
also an API functionality. In our program, we use the API to get the distances.

Figure 17 GraphHopper

7.4 JavaFX
JavaFX is built on a software platform based on Java Platform. JavaFX is created
by company Oracle. It is used for the development of applications called RIA (Rich
Internet Applications). It was established in response to the massive expansion of
platforms such as Adobe Flash and Microsoft Silverlight especially. JavaFX completely
replaced outdated Swing in March 2014, as a tool for creating GUI in Java. [32]

We use JavaFX for create graphical user interface for our java application. It is look
like:

Figure 18 Graphical user interface

40

7.5 Leaflet

In the left column in the Figure 18 is list of the petrol stations, which the inspector
have to control. The list starts and ends in the Prague office.

In the JavaFX we apply Leaflet described in the following section.

7.5 Leaflet

Leaflet is a contemporary open-source JavaScript library for interactive maps. It is
developed by Vladimir Agafonkin and by a team of specialized contributors.

’Leaflet is designed with simplicity, performance and usability in mind. It works effi-
ciently across all major desktop and mobile platforms out of the box, taking advantage
of HTML5 and CSS3 on modern browsers while still being accessible on older ones.
It can be extended with a huge amount of plugins, has a beautiful, easy to use and
well-documented API and a simple, readable source code that is a joy to contribute to.’
[33]

We use leaflet in our GUI constructed by JavaFX. In the GUI is box with using leaflet
for creating route in the map.

7.6 PostGIS database

We use PostGIS database of the open street maps for the computing and drawing the
route. The database is created by Department of Computer Science CTU.

7.7 Deployment scheme

We show implementation in the following scheme:

Figure 19 Application Architecture diagram

41

7 Implementation

We compute choosen petrol stations and choosen months in the IBM CPlEX. Then
we get the petrol stations and the months to the GraphHopper, where we calculate
distances between each two petrol stations in the choosen month by user. We create
distance matrix and we put it to the IBM CPLEX for solving the TSP. Now we have list
of petrol stations for the inspection. We get the list of petrol stations (more precisely
list of cities, where we inspect the petrol stations) to the GraphHopper for creating
exactly route with all waypoints. The GraphHopper uses its own services on the server.

Then we create GUI by JavaFX. We draw the exactly way in the Leaflet. Leaflet
uses the PostGIS database.

42

8 Evaluation

In this chapter, we evaluate algorithms described above. We deal with the influence
of parameters on algorithm runtime and quality of the solution. Tests in this chapter
were performed on real data from the Czech Trade Inspection Authority. We divide this
chapter into two sections according to the two models. First model has less variables
than the second model. The first model considers the number of petrol stations and
number of months when the inspector can inspect the stations. The second model is
extended by a budget parameter. We calculate optimal number of petrol stations and
number of months for inspection in the second model.

8.1 Model with fixed petrol stations and fixed months

8.1.1 Choose parameters for testing

The model considers the following three parameters:
∙ budget for the petrol stations
∙ budget for month
∙ month when we create route
First, we define budget for the petrol stations 𝐵𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10}. We

determine constant budget for month 𝐵𝑀 = 7. Month 𝑚 when we create route is
choosen according to number of petrol station in each month. We choose the month
where is the biggest number of petrol stations.

Why we define 𝐵𝑀 = 7? Because the biggest number of petrol stations in our
choosen month will be equal to budget for the petrol staions 𝐵𝑆 . Consequently, we
calculate TSP with corresponding number of petrol stations. If we choose 𝐵𝑀 = 3, the
biggest number of petrol stations in our choosen month can be diffrent. For example:
for 𝐵𝑆 = 4 we would calculate TSP with four petrol station (if each petrol station has
dangerous the same month) and for 𝐵𝑆 = 5 we would calculate TSP with three petrol
stations. That is reason why we define bufget for month equal seven.

We calculate two main tests and we create two graphs for the test.
1. Algorithm performance measurement
2. Final route length measurement
We show first test by graph dependent of the speed program on the number of

petrol stations (𝐵𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10}). Second graph shows dependency of the
calculated final distance on the number of petrol stations.

8.1.2 Algorithm performance

We test our program on the notebook with procesor Intel Core i3-2350, 2.30GHz and
RAM 4GB. We run the program three times for different values of the petrol stations
budget 𝐵𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10}. We calculate the same test three times for an-
other group of the petrol stations. We test program on the petrol stations in central
bohemian region including Prague. We divide this petrol stations to the three groups

43

8 Evaluation

and we test program on each group of the petrol stations. It means that we have three
measurements. We perform each measurement for different values of the petrol stations
budget 𝐵𝑆 = {2, 3, 4, 5, 6, 7, 8, 9, 10}. We test algorithm performance in each measure-
ment for each petrol stations budget.

2 3 4 5 6 7 8 9 10

100

150

200

250

300

350

400

450

500

Budget for petrol stations

T
im

e
[s]

Measurement 1
Measurement 2
Measurement 3

Figure 20 Algorithm performance for various number of petrol stations

Budget Measurement 1 Measurement 2 Measurement 3 Average
for petrol stations [s] [s] [s] [s]

2 113 106 96 105
3 141 143 139 141
4 189 183 181 184
5 229 227 219 225
6 259 281 264 268
7 350 327 305 327
8 369 361 355 362
9 431 403 390 408
10 458 457 467 461

Table 10 Algorithm performance for various number of petrol stations

In the Figure 20 we registered three tests. We get the expected results. With the
increasing number of stations is also growing the time required to calculate task. Be-
tween three measurements are only very small differents. In the Figure 21 we show
average from testing algorithm performance.

44

8.1 Model with fixed petrol stations and fixed months

2 3 4 5 6 7 8 9 10

100

200

300

400

Budget for petrol stations

T
im

e
[s]

Figure 21 Average of testing algorithm performance for various number of petrol stations

8.1.3 Final route length measurement

In the first test, we test not only algorithm performance but also final route length.
Therefore, we measure two variables in the first test. We examine dependency of
distance on the number of stations. The results are in the Figure 22. We provide three
tests on the three groups of the petrol stations from central bohemian region like in
previous section 8.1.2.

Results of three measurements are very different, because we get very unlike routes.
We explain the reason for 𝐵𝑆 = 2, where the different is the biggest. In the first
measurement we get the following route:

Prague office→ Okřesaneč→ Kamýk nad Vltavou→ Prague office

The first route’s distance is 289 km.

Route of distance measurement 2:

Prague office→ Tuchlovice→ Petrovice→ Prague office

The distance of the second route is 221 km.

Route of distance measurement 3:

Prague office→ Prague 4→ Prague 3→ Prague office

In the third measurement, length of route is the smallest, because we inspect petrol
stations only in the Prague. That is reason why in the graph are very noticeable
differences between each measurenent.

We can see that with increasing number of petrol stations differences between dis-
tances of three measurement are smaller. If we construct route with more petrol sta-
tions, differences are not as big as for two petrol stations, where difference is big. We
show examples.

45

8 Evaluation

2 3 4 5 6 7 8 9 10
0

100

200

300

400

Budget for petrol stations

D
ist

an
ce

[k
m

]

Measurement 1
Measurement 2
Measurement 3

Figure 22 Dependency of the final distance route on the number of petrol stations

Budget Measurement 1 Measurement 2 Measurement 3 Average
for petrol stations [km] [km] [km] [km]

2 289 221 17 176
3 156 213 148 172
4 393 217 216 275
5 351 290 297 312
6 418 348 205 323
7 419 290 387 365
8 447 311 415 391
9 448 320 427 398
10 440 388 434 420

Table 11 Dependency of the final distance route on the number of petrol stations

Now we can compare Figure 24 and Figure 25.

We have number of stations 𝐵𝑆 = 2. We get very long route, when one station of the
choosen petrol stations is long way from Prague office (in the Figure 24a). Unlike in
the Figure 24b, we can get all the choosen petrol stations in the Prague and the route
will be very short. This is why the differences are so big.

If we have number of stations 𝐵𝑆 = 10, the one remote petrol station does not cause
very big different in final distance. Probability that we get all choosen petrol stations
in the Prague is very small. This is why the differences are smaller than in the previous
example with 𝐵𝑆 = 2.

In the average with the increasing number of stations is also growing the distances
of the final route.

46

8.1 Model with fixed petrol stations and fixed months

2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Budget for petrol stations

D
ist

an
ce

[k
m

]

Figure 23 Average of testing dependency of the final distance route on the number of petrol
stations

a) Route from measurement 1

b) Route from measurement 3

Figure 24 Example for two petrol stations 𝐵𝑆 = 2

47

8 Evaluation

a) Route from measurement 1

b) Route from measurement 3

Figure 25 Example for ten petrol stations 𝐵𝑆 = 10

8.2 Model with budget

8.2.1 Choose parameters for testing

The model considers the following parameters:

∙ budget
∙ price for one kilometer

We define the budget for spending money

𝐵 = {50000, 70000, 100000, 150000, 200000, 250000, 300000}

and we determine constant price for one kilometer 𝑝 = 7. Both parameters are in CZK.
We test two properties of the model (the same properties like in the previous tests

in Section 8.1):

1. Algorithm performance measurement
2. Final route length measurement

8.2.2 Algorithm performance

We measure speed of the second model for different budget values. We provide the
same test three times for another group petrol stations like in previous tests. All of the
tested petrol stations are from central bohemian region including Prague.

48

8.2 Model with budget

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

500

1,000

1,500

2,000

2,500

Budget [thousand CZK]

T
im

e
[s]

Measurement 1
Measurement 2
Measurement 3

Figure 26 Algorithm performance for various budget

Budget Measurement 1 Measurement 2 Measurement 3 Average
[CZK] [s] [s] [s] [s]
50 000 267 390 290 316
70 000 905 367 532 601
100 000 307 1 436 668 804
150 000 289 1 386 929 868
200 000 1 432 1 494 1 027 1 318
250 000 1 066 1 670 2 651 1 796
300 000 2 689 2 734 2 525 2 649

Table 12 Algorithm performance for various budget

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

500

1,000

1,500

2,000

2,500

Budget [thousand CZK]

T
im

e
[s]

Figure 27 Average of testing algorithm performance for various budget
49

8 Evaluation

In the Figure 26, we registred three measurements and we get the unexpected results.
We would expect that with increasing budget will be also growing the time required to
find solution. The time varies solution to solution in the one measurement but also the
time varies solution to solution between each measurements.

This differences are caused by different number of stations in calculation and different
number of months for inspection. The algorithm repeats the calculation until it exhausts
the budget. If the algorithm chooses ten petrol station in first round, the algorithm
can exhaust the budget in one round and time for finding solution will be very short. If
the algorithm chooses two petrol stations in first round, then it also chooses two petrol
stations and so on. Time for finding solution will be very long (for the same budget
like previous example with ten choosen petrol stations).

8.2.3 Final route length measurement
We calulate final length of route for the year. In the previous test in Section 8.1.3 we
calculated final lenght for the choosen month. We study dependency of length of final
route on the budget. We provide the same test three times like in prevous tests. Each
test is on the other group of the petrol stations from central bohemian region.

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0

1

2

3

4

·104

Budget [thousand CZK]

D
ist

an
ce

km
]

Measurement 1
Measurement 2
Measurement 3

Figure 28 Dependency of the final distance route on the budget

The results are in the Figure 28. We get almost the expected results. With the
increasing budget is also growing the length of final route. But in all measurements for
budget 𝐵 = 70000 result is null. It will happend if the algorithm chooses more petrol
stations or more months and the price of the length of route exceeds the budget 𝐵.
Concurrently the time for finding correct solution will be very small as we can see in
the Figure 26.

50

8.2 Model with budget

Budget Measurement 1 Measurement 2 Measurement 3 Average
[CZK] [km] [km] [km] [km]
50 000 0 0 0 0
70 000 9 721 0 7 135 5 625
100 000 0 12 412 10 729 7 714
150 000 0 15 074 18 319 11 131
200 000 25 629 26 516 27 742 26 629
250 000 24 903 25 756 32 139 27 599
300 000 36 714 41 548 40 845 39 702

Table 13 Dependency of the final distance route on the budget

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0

1

2

3

4

·104

Budget [thousand CZK]

D
ist

an
ce

[k
m

]

Figure 29 Average of testing dependency of the final distance route on the budget

51

9 Conclussion

We have addressed the inspection scheduling problem for one inspector. We have ad-
dressed all points of the assignment. We studied the problem of petrol station in-
spections and we also studied inspection games, security games and traveling salesman
problem. This problems and algorithms are described in the Chapters 2, 3 and 4. We
have formalized the problem of petrol station inspections as a game using suitable game
theoretical approach, which we model as a two-player game, where one player is the
inspecting entity and the other is the petrol stations.

We have constructed two models of the inspection problem. We have designed and
implemented algorithm for computing the solution for both models. Then we evaluated
the algorithms on the open data provided by Czech trade inspection.

The first model is with fixed petrol stations and number of months. The first model
is simplier than the second model. The first model considers fixed input parameters
fixed petrol stations and number of months. We can define number of petrol station
and we can study dependency of the algorithm performance on the number of petrol
stations and dependency of the distance route on the number of petrol stations. In the
experiments, the performance of the algorithm depended on the number of petrol sta-
tions appeared as we expected. With the increasing number of stations is also growing
the time required to calculate task. For example result of algorithm performance for
two petrol stations 𝐵𝑆 = 2 is 105 s (in average) and result of algorithm performance
for ten petrol stations 𝐵𝑆 = 10 is 461 s (in average).

The second model extends the first model. User specifies to the program budget
which we can spend for the inspections. The algorithm from the second model calculates
number of petrol stations and number of months automatically. This model is more
realistic than the first model, because in real life the inspection authority defines the
budget for spending money. The computation time for the algorithm from the second
model is longer than for the algorithm from the first model, because the second program
calculates the TSP for each month. The first program calculates the TSP only for the
month choosen by user. Moreover the program which uses the second program repeats
all calculations until it exhausts the budget.

We have addressed inspector problem for one inspector by game theoretical model
and by traveling salesman problem. We solved the problems by linear program. This
solution is very slow. For example program finds correct solution in 390 s. This time is
for the first program with fixed petrol stations 𝐵𝑆 = 9 and number of months 𝐵𝑀 = 7.
Time of the finding correct solution in the second program is even far longer. The
second program finds solution for the budget 𝐵 = 200000 CZK for 1432 s.

52

Bibliography
[1] Min Zhang Byung-In Kim Jae-Ik Shim. “Comparison of TSP Algorithms”. In:

Comparison of TSP Algorithms (1998).
[2] Otunbanowo Kehinde Adewole Philip Akinwale Adio Taofiki. “A Genetic Algo-

rithm for Solving, Travelling Salesman Problem”. In: A Genetic Algorithm for
Solving, Travelling Salesman Problem (2011).

[3] Nikhil Kumar Sardar Prof. Sharadindu Roy Uttam Kumar Panja. “Efficient tech-
nique to solve travelling salesman problem using genetic algorithm”. In: Efficient
technique to solve travelling salesman problem using genetic algorithm (2014).

[4] John Tsitsiklis Dimitris Bertsimas. “Simulated annealing”. In: Simulated anneal-
ing (1998).

[5] Jean-Yves Potvin. “The Traveling Salesman Problem: A Neural Network Per-
spective”. In: The Traveling Salesman Problem: A Neural Network Perspective
().

[6] Bernard von Stengel Rudolf Avenhaus and Shmuel Zamir. “Inspection games”.
In: Inspection games (2001).

[7] Jason Tsai James Pita Christopher Kiekintveld Manish Jain, Fernando Ordóñez,
and Milind Tambe. “Computing Optimal Randomized Resource Allocations for
Massive Security Games”. In: Computing Optimal Randomized Resource Alloca-
tions for Massive Security Games (2009).

[8] Martin J. Osborne. A Course in Game Theory. 1994.
[9] G. Leitmann. Optimization Theory and Applications. 1978.

[10] M. Breton. Optimization Theory and Applications. 1988.
[11] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. 1995.
[12] Ailsa H Land and Alison G Doig. An automatic method of solving discrete pro-

gramming problems. 1960.
[13] Jens Clausen. “Branch and Bound Algorithms - Principles and Examples.” In:

Branch and Bound Algorithms - Principles and Examples. (1999).
[14] Jakub Ondráček. “Intelligent Algorithms for Monitoring of the Environment Around

Oil Pipe Systems Using Unmanned Aerial Systems”. Bachelor’s thesis. Czech
Technical University in Prague, 2014.

[15] Tomáš Werner. Optimalizace. 2014.
[16] Travelling salesman problem. url: http://www.princeton.edu/~achaney/

tmve/wiki100k/docs/Travelling_salesman_problem.html (visited on 12/18/2014).
[17] Pavel Mička. Problém obchodního cestujícího. url: http://www.algoritmy.net/

article/5407/Obchodni-cestujici.
[18] Roger B. Myerson. Game Theory: Analysis of Conflict. 1991.
[19] John von Neumann and Oskar Morgenstern. Theory of Games and Economic

Behavior. 1944.

53

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Travelling_salesman_problem.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Travelling_salesman_problem.html
http://www.algoritmy.net/article/5407/Obchodni-cestujici
http://www.algoritmy.net/article/5407/Obchodni-cestujici

Bibliography

[20] Yoav Shoham Kevin Leyton-Brown. Essentials of Game Theory: A Concise, Mul-
tidisciplinary Introduction. 2008.

[21] Jean Tirole Drew Fudenberg. Game theory. 1991.
[22] Jens Clausen. “Cooperative and Non-Cooperative Game Theory”. In: Cooperative

and Non-Cooperative Game Theory (2014).
[23] Robert J. Vanderbei. Linear Programming: Chapter 11, Game Theory. url: http:

//www.princeton.edu/~rvdb/542/lectures/lec8.pdfi (visited on 10/17/2007).
[24] Robert J. Vanderbei. Linear Programming: Foundations and Extensions. 2001.
[25] IBM. IBM ILOG CPLEX Optimization Studio. url: http://www-03.ibm.com/

software/products/en/ibmilogcpleoptistud/.
[26] Analýza paliv a mziv pro reklamace posouzení vlivu na závadu motoru. url:

http://www.dobrapumpa.cz/files/dobrapumpa/certifikaty/SGS_letA4_
reklamace_analyza-paliv-a-maziv.pdf.

[27] Ministry of Industry and Trade. Předpis č. 133/2010 Sb. url: http://www.
zakonyprolidi.cz/cs/2010-133#p3.

[28] The Czech Trade Inspection Authority. Působnost úřadu. url: http://www.coi.
cz/.

[29] SGS. Působnost úřadu. url: http://www.dobrapumpa.cz/.
[30] U.S. Energy Information Administration. “Monthly Energy Review January 2015”.

In: Monthly Energy Review January 2015 (2015).
[31] GraphHopper. url: http://graphhopper.com/.
[32] JavaFX. url: http://docs.oracle.com/javase/8/javase-clienttechnologies.

htm.
[33] Leaflet. url: http://leafletjs.com/.

54

http://www.princeton.edu/~rvdb/542/lectures/lec8.pdfi
http://www.princeton.edu/~rvdb/542/lectures/lec8.pdfi
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www.dobrapumpa.cz/files/dobrapumpa/certifikaty/SGS_letA4_reklamace_analyza-paliv-a-maziv.pdf
http://www.dobrapumpa.cz/files/dobrapumpa/certifikaty/SGS_letA4_reklamace_analyza-paliv-a-maziv.pdf
http://www.zakonyprolidi.cz/cs/2010-133#p3
http://www.zakonyprolidi.cz/cs/2010-133#p3
http://www.coi.cz/
http://www.coi.cz/
http://www.dobrapumpa.cz/
http://graphhopper.com/
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://leafletjs.com/

