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Abstract

The term omics refers to genomics, proteomics or metalobomics that gen-
erate large amounts of measurements complemented by complex knowledge
of functioning of genes, proteins and other molecular entities including their
mutual interactions. There are many classification algorithms which can be
used to analyze omics data. However, not many algorithms provide required
qualities such as accuracy, stability, interpretability and efficiency. SVM al-
gorithm shows accuracy, stability and robustness to cope with the frequent
characteristic of omics data, a small number of samples compared to the
number of features. In this thesis, several ways of regularizing the SVM al-
gorithm are considered. They are expected to improve its interpretability and
accuracy. The traditional SVM input gets supplemented by the prior knowl-
edge of feature interactions expected to mirror the true interactions inside
organisms. The classifier obtains penalty for assigning different weights to
directly interacting features. Furthermore, SVM is regularized by the spar-
sity term. The final regularized form is called Sparse network-constrained
L2-norm SVM. The presented results demonstrate its great improvement in
terms of classifier interpretability while only moderately decreasing its accu-
racy.

Termı́n ómika se vztahuje ke genomice, proteomice či k metabolomice,
což jsou obory, které generuj́ı velké množstv́ı dat doplněných komplexńımi
znalostmi funkćı gen̊u, protein̊u a jiných molekulárńıch entit, včetně jejich
vzájemných interakćı. Pro analyzováńı ómických dat může být použito v́ıce
klasifikačńıch algoritmů, nicméně jen několik z těchto algoritmů je dostatečně
kvalitńıch v ohledu přesnosti, stability, interpretability a efektivnosti. SVM
algoritmus se s dostatečnou mı́rou přesnosti, stability a odolnosti dokáže vy-
rovnat s často zmiňovanou charakteristikou ómických dat, která se vyznačuje
malých počtem vzork̊u v porovnáńı s počtem př́ıznak̊u. V této práci je
zvažováno několik zp̊usob̊u regularizace SVM algoritmu, od kterých se očekává
navýšeńı přesnosti a interpretability. Vstup do SVM algoritmu je obohacen
apriorńımi znalostmi interakćı př́ıznak̊u, s předpokladem, že tyto interakce



reflektuj́ı skutečné interakce unvitř organismů. Klasifikátor následně aplikuje
odlǐsná ohodnoceńı pro př́ımo interaguj́ıćı př́ıznaky. SVM je nav́ıc regular-
izováno výrazem, který upravuje ř́ıdkost modelu. Výsledná regularizovaná
forma se nazývá Sparse network-constrained L2-norm SVM. Prezentované
výsledky takového klasifikátoru prokazuj́ı ohromné zlepšeńı intepretability
klasifikátoru za přiměřeného poklesu přesnosti.
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Chapter 1

Introduction

There are different domains where one would like to predict the evolution
of some phenomenon. Example of such a domain are living organisms whose
evolution is predefined by DNA (deoxyrubonucleic acid). It would be pleasing
if a predisposition of a human being to some disease could be predicted
according to its DNA. However, organisms are controlled by complex internal
processes and thus the prediction of some phenomenon should be based both
on the DNA and a simulation of the internal processes. This problem can be
modeled by exploiting machine learning methods.

First, we need to understand the nature of the input data/samples to the
machine learning method in order to select an appropriate one. In this thesis
were processed gene expression (GE) and micro ribonucleic acid (miRNA) ex-
pression files containing measured values of GE/miRNA of different patients.
GE quantifies how much gene takes part in creating products, mainly pro-
teins. MiRNA expression quantifies how much miRNA molecules functions in
ribonucleic acid (RNA) silencing and post-transcriptional regulation of GE.
GE and bioinformatics is further explained in [11]. Patients in collected data
sets are marked as positive/negative with regard to having myelodysplastic
syndrome (MDS)

Second, we need to select an appropriate machine learning method/algorithm.
The process of predicting a phenomenon by an algorithm has two phases. At
the beginning, the algorithm learns the decision rules how to distinguish the
input samples. Then, the algorithm assigns value of the assessed phenomenon
(positive/negative) to a random sample according to the decision rules. This
process is in machine learning called classification.

One of the methods is Support Vector Machines (SVM) [25]. The reasons
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CHAPTER 1. INTRODUCTION

for using SVM are that it optimally separates the input samples in multidi-
mensional space and also it deals with the n << p problem when there are
much more features p compared to the number of samples n.

The aim of this thesis is to assess the precision of classification models
using classical SVM algorithm and its regularized versions. There are two
different regularizations considered. First regularization includes interactions
between mRNA’s and miRNA’s which tries to simulate inner processes in an
organism. Second regularization selects only those features which seem to
be important when deciding about some phenomenon. The final goal of this
thesis is to verify whether the more complex and time-consuming regularized
forms of SVM may be an improvement in the terms of the model accuracy.

Results will be compared to other experiments [8][18] which also worked
with MDS data.
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Chapter 2

Models used for classification

This chapter introduces mathematical background of created models and
reasons for using them. First, classical SVM is presented. Then, network-
constrained L2-norm is introduced which regularizes the classical SVM model.
Afterwards, sparsity regularization term is added to the model in order to
minimize the number of features in classification. Finally, negative regulatory
assumptions are considered.

2.1 Classical SVM

Let us assume a binary classification problem. The input feature space is
separable by an infinite number of hyperplanes, example of such hyperplanes
is shown in Figure 2.1. The advantage of SVM method is that it looks for the
optimal hyperplane which separates the two sample classes. It tries to find a
hyperplane which is at maximum distance from both positive and negative
samples [25].

3



CHAPTER 2. MODELS USED FOR CLASSIFICATION

Figure 2.1: Possible hyperplanes to separate the points

SVM maximizes the margin, between the samples and the separating
hyperplane. That is a feasible quadratic programming problem. Input to
SVM method is a set of training pairs xi ∈ RM , yi ∈ {−1, 1}. Output is a
weight vector w, one weight wj for each feature, whose linear combination
predicts value y′i. The idea of SVM is that only important sample points
should decide about the optimization of the solution.

2.1.1 Primal problem

Let me describe the problem in Figure 2.2.

Figure 2.2: Defining support vectors and hyperplanes

4



CHAPTER 2. MODELS USED FOR CLASSIFICATION

General definition of points lying on a hyperplane is w · x + b = 0. This
hyperplane separates the positive and negative samples. In order to create
the margin between the two classes we define one class of samples, for example
the positive one, as half-plane w · x + b ≥ 1. Negative class of samples is
defined as w · x + b ≤ −1. Samples belonging to hyperplanes w · x + b = ±1
are called support vectors.

Also the width of the margin needs to be determined. It is computed as
twice the distance of a point X[x0, y0] of one support vector hyperplane to
the separating hyperplane p : ax + by + c = 0. The equation for calculating
the distance of a point from a line is:

dist(X, p) =
| ax0 + by0 + c |√

a2 + b2
. (2.1)

Then the distance of hyperplanes H1 a H0 is dist(H1, H0) = |wx+b|
‖w‖ = 1

‖w‖ .

The total width of the margin is apparently 2
‖w‖ .

The way to maximize this fraction is to minimize the denominator ‖w‖
under condition that there are no points between hyperplanes H1 and H2.
This condition is ensured by defining constraints:

1. ∀i | yi = 1 : wx+ + b ≥ 1

2. ∀i | yi = −1 : wx− + b ≤ 1

Then the constraint yi (w · xi + b) ≥ 1 is the same for both positive and
negative samples. The minimization of ‖w‖ can be rewritten as minimization
of 1

2
‖w‖2 because ‖w‖2 reaches its extremes in the same values as ‖w‖ and

1
2

is used because it is mathematically more convenient.
The regularized term is:

min
w0,w1...wm

{
1

2

M∑
i=1

w2
i

}
. (2.2)

s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . n

5



CHAPTER 2. MODELS USED FOR CLASSIFICATION

2.1.2 Dual problem

The problem is to find local extremes of function constrained by other
functions. These local extremes can be found by using Lagrange multipliers.
Slack variables are defined in order to rise values of points which are support
vectors and decrease the values that are not support vectors. Desired point
P is a point where:

1. ∇f(P ) = ∇αg(P ) (point where gradient of optimized function is par-
allel to the gradient of constraint function),

2. g(P ) = 0 (Constraint condition. Support vector is tangent)

The joint of previous equations leads to L(x, α) = f(x)− αg(x). Then:

1. Partial derivative with respect to w satisfies parallelism of normals,

2. Partial derivative with respect to b satisfies condition that g(x) is tan-
gent to f(x).

Generally:
L(x, a) = f(x) +

∑
αigi(x),

min
W,b

L =
1

2
‖w‖2 −

N∑
i=1

αi (yi (w · xi + b)− 1),

min
w,b

L =
1

2
‖w‖2 −

N∑
i=1

αiyi (w · xi + b) +
N∑
i=1

αi.

Partial derivatives:
∂L(w,b,α)

∂b
= 0⇒

N∑
i=1

αiyi = 0,

∂L(w,b,α)
∂w

= 0⇒ w −
N∑
i=1

αiyixi = 0⇒ w =
N∑
i=1

αiyixi .

Instead of minimizing over w, b under conditions of αi it can be maximized
over α under conditions gained from partial derivatives with respect to w
and b:

Solution must be in compliance with relations:

1.
N∑
i=1

αiyi = 0,

6



CHAPTER 2. MODELS USED FOR CLASSIFICATION

2. w =
N∑
i=1

αiyixi.

By substituting into original equation we eliminate the dependence on w and
b:

LD = 1
2

(
N∑
i=1

αiyixi

)(
N∑
i=1

αiyixi

)
−

N∑
i=1

[
αiyixi

(
N∑
i=1

αiyixi

)
+

N∑
i=1

αiyi

]
+

N∑
i=1

αi

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi
Txj,

s.t.
N∑
i=1

αiyi = 0 ∧ αi ≥ 0

(2.3)

Dual form enables to compute only dot products xi
Txj. With obtained

slack variables αi can be derived the weights vector w =
N∑
i=1

αiyixi. Bias b

will be computed from all the support vectors [16]:

b =
1

N

∑
(yi −wxi) (2.4)

New samples can be classified by the rule f(x) = wx + b.

2.2 Network-constrained L2-norm

The approach of regularizing SVM by network constraint L2-norm is e.g.,
in Lavi, 2012 [20]. The criterion minimized here is the classical SVM criterion
with an additional network-regularization term:

min
w0,w1...wm

{
1

2

M∑
i=1

w2
i +

1

2
β
∑
ij∈τ

Aij (wi − wj)2
}

(2.5)

s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . n

7



CHAPTER 2. MODELS USED FOR CLASSIFICATION

where xi ∈ RM is a data sample, A ∈ BM×M is a network adjacency
matrix, β is a network strength parameter, and w and b are coefficients of
decision function which are to be optimized. The criterion can be rewritten
in a vector-matrix form:

min
w,w0

{
1

2
wTw +

1

2
βwT

(
Ã− A

)
w

}
(2.6)

where Ã is diagonal matrix of A, with Ãi,j being the degree of node i.
Henceforth, the matrix B = Ã− A is known as the Laplacian matrix of the
network graph. Similarly as to the standard SVM, it is not necessary to
compute all of M + 1 weight coefficients. The problem is possible to convert
into a dual form, where N only slack variables αi, referring to support vectors,
i.e. Lagrangian multipliers are to be optimized. The primal Lagrangian of
(2.5) is:

L = wTw + βwTBw −
N∑
i=1

αi((xi
Tw + w0)yi − 1),

L = wT (I + βB)w −
N∑
i=1

αi((xi
Tw + w0)yi − 1)

(2.7)

The conventional L2-norm, originally ‖w‖2 =
√

wTw is here simply en-
riched by the Laplacian of the network graph. The corresponding dual form
is following:

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi
T (I + βB)−1xj (2.8)

which is the same as in the case of standard SVM besides the kernel
(I + βB).

2.3 Sparse Network-constrained L2 norm

Network constrained L2-norm in general increases models stability and
interpret-ability, encouraging the features sharing the same interaction to

8



CHAPTER 2. MODELS USED FOR CLASSIFICATION

have similar weights w in the discriminative function. Henceforth, if one of
the features obtains high weight, the other similar features are expected to
have similar weight, which increases the reliability of the model. However,
under this criterion the irrelevant features still remain in the model. The
problem of model size and irrelevant features in general is addressed by L1-

norm, [27]. L1-norm,
M∑
i=1

|wi|, shrinks irrelevant features to zero, implicitly

performing feature selection. Adding L1-norm to (2.5) might enable select-
ing only these sets of interaction which are model relevant and interpretable.
Henceforth, according to the specificity of persisting set of interactions to-
wards particular locus or regulator may lead to another investigations.

min
w0,w1...wm

{
M∑
i=1

|wi|+
1

2

M∑
i=1

w2
i +

1

2
β
∑
ij∈τ

Aij (wi − wj)2
}
,

s.t. : s.t. :
(
wTxi + w0

)
yi ≥ 1, ∀i = 1, . . . N

(2.9)

Unfortunately, this criterion is not differentiable, thus impossible to con-
vert into a dual form. The solution is consequently much more computation-
ally demanding.

2.4 Sparse L2 norm

Effect of Sparsity term was explained in Section 2.3. However, in order
to check whether Sparse Network-constrained L2 norm chooses a set of more
relevant features due to the interaction constraints it has to be compared to
the Classic Sparse SVM. After performing comparison it will be visible how
much the interaction network improves the selection of relevant features.

min
w0,w1...wm

{
M∑
i=1

|wi|+
1

2

M∑
i=1

w2
i

}
,

s.t. : s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . N

(2.10)

9



CHAPTER 2. MODELS USED FOR CLASSIFICATION

2.5 Network-constrained L2-norm with Neg-

ative Regulatory Assumption

The criteria (2.5),(2.6) of Lavi, 2012 [20] consider protein-protein interac-
tions (PPI). His assumption was, genes with interacting proteins contribute
similarly to the phenotype in the positive sense. Which means, if i-th gene’s
coefficient wi has highly positive or highly negative value, respectively, its
neighbourgh is expected to have also highly positive or highly negative wj,
respectively. However, this does not reflect possible inhibitive regulatory re-
lationship when a gene is down regulated by a miRNA or transcription fac-
tor (TF). In this case, I might expect that if an i-th miRNA has highly pos-
itive contribution in terms of high value of corresponding coefficient wi , its
j-th target being inhibited would have highly negative wj ; or vice versa. For-
tunately, an inhibitive regulation is simply possible to model by re- placing
- by + in (2.5). Henceforth, a new criterion reflecting inhibitive interactions
looks as follows:

min
w0,w1...wm

{
1

2

M∑
i=1

w2
i +

1

2
β
∑
ij∈τ

Aij (wi + wj)
2

}
,

s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . n

(2.11)

Expressing the criterion in matrix form is exactly same as in (2.6), only
this time the graph adjacency matrix A has -1 values where an inhibitive
relationship appears. This criterion is also possible to express in a dual form
and effectively solve.

2.6 Network-norm-SVM

However [20] uses gene networks to regularize SVM criterion, the L2 norm
persists in the criterion. There is a quest why not to use only the network-
regularization term, similarly as sparse SVM uses only L1 norm. In this case
the primal problem would look as follows:

min
w0,w1,...,wM

{
1

2
β
∑
ij∈I

Aij(wi − wj)2
}
,

s.t. : (wTxi + w0)yi ≥ 1,∀i = 1, . . . , N,

(2.12)

10



CHAPTER 2. MODELS USED FOR CLASSIFICATION

while the dual problem looks as:

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i (βL)−1xj, (2.13)

This criterion is strictly convex since the graph Laplacian matrix L is sym-
metric positive semidefinite. Therefore the problem has only one optimal
solution and is ready to be used within robust machine learning experiments.

11



Chapter 3

Data

This chapter mentions the analyzed data sets. Four types of data sets were
used for testing classical SVM. First two of them, described in Section 3.2.1
and 3.2.2, were used to verify the code. The third, described in 3.3.1, contains
the biological data which are the reason of this assessment. The last one,
mentioned in Section 3.3.2, contains artificial biological data.

3.1 General form of a data set

Each data set includes the metadata of columns. These are the names
of the measured features. First column of data sets contains indexing of the
samples. Last column contains the class of the sample. Sample is positive if
there is number 1 in the last column of its row, otherwise it is negative. 3.1.

Figure 3.1: Example of gene expression file

12



CHAPTER 3. DATA

3.2 Data for code verification

This section describes the data used for code verification.

3.2.1 Linearly separable 2D points

First were used the datasets with linearly separable 2D points. First task
contains classes separable by line y = x, that means bias equals zero. The
second task is separable by x = 2.

3.2.2 Iris data

Then was used the Iris dataset from UCI machine learning repository [15].
The dataset contains three classes. Nevertheless two of them are not separa-
ble so only two clusters are considered to be found. I set Iris virginica and
Iris versicolor label to 0 and Iris setosa to 1.

3.3 Omics data

Omics data refer to the fields of biology ending with ’omics’. Such fields
are genomics, proteomics and metabolomics [24]. Genomics explores the
genomes of organisms. Proteomics studies the structure and functions of
proteins. Metabolomics refers to the biological compounds that help reg-
ulating biological processes. The following datasets are examples of omics
data.

3.3.1 Myelodysplastic syndrome data

The third group of data sets was provided by Institute of Hematology and
Blood Transfusion in Prague. They are related to myelodysplastic syndrome
(MDS) and include mRNA and miRNA values.

SVM algorithm was tested on three combinations of files. First, the
mRNA data sets containing 16666 features of GE were tested. Then the
miRNA data sets containing 1146 features were tested. Finally, those two
data sets were merged together and tested.

There are ten different tasks in the MDS data sets containing either sam-
ples of mRNA/miRNA GE taken from bone marrow (BM) or peripheral
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blood (PB) before treatment (BT) or during treatment (DT). The tasks
with their ratio of positive vs. negative samples are:

1. BMBT DT5q - 11:5

2. BMH ABT5q - 10:11

3. BMH ABTnon-5q - 10:6

4. BMH ADT5q - 10:5

5. BMnon-5q 5q BT - 6:11

6. PBBT DT5q - 9:13

7. PBH ABT5q - 10:9

8. PBH ABTnon-5q - 10:4

9. PBH ADT5q - 10:13

10. PBnon -5q 5qBT - 4:9

These tasks are described in detail is in [8].

Interactions files

There are two types of feature interactions that have to be added to
regularized models. First are protein-protein interactions. Second are mirna-
target interactions. These known interactions were gathered from [26][14][17][13]
Moreover, different approaches are used when adding interactions to the pri-
mal and dual form.

Protein-Protein interactions file

This file contains interactions among any two proteins in the organism.
Each row of the file consists of two names of the features which are separated
by a tab. There are 80443 known interactions among proteins.

Mirna-Protein interactions file

This file contains interactions among miRNAs and proteins. Each row of
the file consists of the name of the miRNA feature and the name of the mRNA
feature which are separated by a tab. This interactions can be translated as:
”Selected miRNA inhibits the creation of specific mRNA”. There are 108528
known mirna-target interactions.
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Adding interactions to a Dual form

Interactions are added to the dual form in a form of a matrix. First, the
creations of adjacency and degree matrix of a graph were needed in order
to create its Laplace matrix L=Ã − A. The Laplace matrix can be used in
vector-matrix primal form of the SVM. However, (I + βB)−1 is needed in
the dual form. This leads to addition of the Laplace matrix and the identity
matrix. The addition ensures that matrix will be invertible because of the
non-zero numbers on the diagonal line. Example of a matrix to invert is
below. {a11, a22...ann} represent degree of node n. (sum of column/row n
from adjacency matrix)

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

+


a11 0 0 0 0
0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 ann

−

0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0




This kind of matrix is difficult to create when running the python program
for solving model. It takes more than 5 hours. Because of this the matrices
were generated in MATLAB [21].

There are three matrices which can be used, one containing both protein-
protein interactions (further named as P-P), second containing miRNA-
protein interactions (further named as miRNA-P) and last containing both
P-P and miRNA-P interactions (further named as miRNA-P,P-P). The sizes
of those files vary from 1.4GB to 2.7GB.

Adding interactions to a Network-norm-SVM Dual form

This form computes with the inverse of Laplace graph (βB)−1 containing
-1 on indexes of interacting nodes. However this matrix is singular and thus
doesn’t have an inverse matrix.

Adding interactions to a Primal form

In the primal form it is only need to know whether the interaction between
features exists (Aij (wi − wj)2). If the interaction among wi and wj exists in
the interactions file then Aij is set to 1, otherwise it is set to 0.
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3.3.2 Artificial Data

Artificial datasets refer to bacteria Escherichia coli and were generated by
a framework GeneNetWeaver [7], providing methods for both in silico bench-
mark generation and performance profiling of network inference algorithms.
This dataset enables training/testing models on sets containing more sam-
ples (around 100). The idea of using artificial data is supported because it
could later give better insight into the process of selecting/updating weights
of the features. Moreover the features in datasets could be changed in order
to asses the behavior of the algorithms. Also experiments on this dataset
consume less time because they have only 1565 features.

Interactions file

The interactions file contains relations between any two features. The
relation is either amplification (+), more of the second feature is produced
due to the first feature, or inhibition (-), less of the second feature is produced
due to the first feature.
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Platform

In this chapter will be mentioned tools used for assessing individual tasks.
By tools are meant computation resources, programming language, mathe-
matical modeling languages, libraries for matrix computing, optimizer and
tools for analyzing results.

4.1 Metacentrum

MetaVO is an organization which lets students and academics use its
computational resources. The computations were moved to Metacentrum
because the tasks take up to 260GB of memory and up to 40 hours. Further-
more, it enables the parallelization of computing tasks.

4.2 IBM ILOG CPLEX Optimizer

Searching for optimal boundary which separates the samples requires solv-
ing multiple equations. Therefore, an optimizer is required. One of high-
performance solvers is IBM ILOG CPLEX Optimizer (CPLEX) [1]. CPLEX
is a programming solver for linear programming, mixed integer programming
and quadratic programming, offering multiple ways how to solve models. One
possibility is to use its IBM ILOG Optimization Studio client. Second is using
CPLEX application programming interface (API) in high-level programming
languages.
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4.2.1 Cplex algorithms

CPLEX offers different algorithms for solving created models. The pos-
sibilities for choosing optimizer are:

1. Default Setting, IloCplex.Algorithm.Auto,

2. Primal Simplex, IloCplex.Algorithm.Primal,

3. Dual Simplex, IloCplex.Algorithm.Dual,

4. Network Simplex, IloCplex.Algorithm.Network,

5. Barrier Optimizer, IloCplex.Algorithm.Barrier,

6. Sifting Optimizer, IloCplex.Algorithm.Sifting,

7. Concurrent Dual, Barrier, and Primal, IloCplex.Algorithm.Concurrent.

4.2.2 Default setting

Default setting lets CPLEX determine which optimizer to choose. On a
serial computer and on a parallel computer where only one thread can be
used is chosen the dual simplex algorithm. Unless you have an advanced
basis which is ascertained to be primal feasible, then primal simplex will be
used. On a computer with parallel thread a concurrent optimizer will be
called.

4.2.3 Dual simplex

A mathematical programming problem can be written in a primal or
dual form. An optimal solution of the dual model has a direct relationship
to primal model. CPLEX Dual Simplex Optimizer uses this relationship
and still reports the solution in terms of primal model. The dual simplex is
usually faster than the primal simplex optimization.

4.2.4 Primal simplex

Primal simplex is no longer the first choice after the dual simplex op-
timizer was developed. However sometimes it could work better when the
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number of the variables significantly exceeds the number of constraints. Us-
ing primal simplex is considered when having problem with the dual simplex
optimizer.

4.2.5 Barrier

Barrier optimizer is used on large, sparse problems. It is quick but be-
cause of the speed it sometimes doesn’t reach the optimal solution. Instead
of optimal solution it returns an unbounded solution or numBest solution.
Unbounded means that if there is a feasible solution with objective value
x*, there exists a feasible solution with objective value x*-1 for a minimiza-
tion problem, or x*+1 for a maximization problem, described in [5]. If it is
numBest then solution is available, but not proved optimal, due to numerical
difficulties during optimization.

4.2.6 Sifting optimizer

Sifting optimizer is efficient for problems problems with high ratio be-
tween the number of columns and the number of rows. It could be used
on models where most of variables are expected to have values on the bot-
tom of the bound limit. Sifting optimizer cannot used for solving quadratic
problems.

4.2.7 Concurrent

The concurrent optimizer launches distinct optimizers on multiple threads.

4.2.8 Optimizer used in this assessment

It was decided to use the dual and primal simplex optimizers in this thesis.
Dual simplex will be used in most situations. However, the primal simplex
optimizer will be used if the dual simplex optimizer runs into trouble.

4.3 Programming language

As mentioned in Section 4.2, CPLEX offers possibility to use its API
in high-level programming languages. This possibility was an obvious choice
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because of the need to launch solving models remotely on Metacentrum. Also
this choice enables better preprocessing of data sets and using other data
mining tools. CPLEX offers API in several programming languages. Such
languages are Java, C++, C#, Python and maybe other. Java was chosen at
first as there was previous experience with Java before. However, it turned
to be inefficient with memory when adding quadratic expression objects to
classification models and when working with big matrices. Second choice was
Python. Using Python API to CPLEX is not easy to use. However, modeling
language modules, mentioned in Section 4.4, simplify using CPLEX API.
Combination with numeric module Numpy [23], Sci-kit learn tool for data
manipulation [22], and Pandas for reading csv files [2], seems to be much
more suitable for this assessment.

4.4 Modeling language

Using CPLEX Python API is problematic. The documentation is mini-
mal and thus it is complicated to create quadratic problem models. Fortu-
nately, there are several python modules with modeling languages which can
be used. First, PICOS [3] modeling language was tried. It simplified mod-
eling problems in program but it ran into trouble when summing quadratic
expressions. PICOS was too slow and it took hours to create a model. Then
was found PyCPX [4] which is both simple and efficient when working with
quadratic expressions. With PyCPX can be easily created both linear and
quadratic programming models and the models can be passed to the CPLEX
optimizer.

4.5 MKL - Math Kernel Library

Models need to multiply big matrices when computing dual form SVM.
This would take lots of time when using Numpy module build on linear
algebra package LAPACK [5], which uses basic linear algebra subprograms
(optimized subroutines like copying vectors etc...) BLAS [12]. Fortunately,
there exist several libraries with optimized math operations. One of them is
MKL [6]. Metacentrum provides a MKL module so Numpy module linked to
MKL had to be build. Additionally Pandas module module had to be built
upon boosted Numpy module.
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4.6 Graphviz - Graph Visualization Software

The analysis whether selected weights (features) interact together had
to be performed in order to determine how much interpretable are sparse
models. This could be displayed thanks to a python interface to Graph
Visualization Software. A python script was implemented which connects
together the selected features which interact together according to the inter-
action files. Such visualization of results of a specific model can be seen in
Figure 6.1.

Figure 4.1: Interactions among selected features (mRNA/miRNA) from re-
sult of a Sparse Netwok-Constrained L2-norm
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Execution of tasks on
Metacentrum

This chapter describes the whole process of executing programs on Meta-
centrum.

5.1 Registering and Accessing Metacentrum

Metacentrum requires registration before it authorizes anyone to use its
resources. It also requires users to define their purpose of using Metacentrum
and the academic institution they are part of. After obtaining authorization,
users access the servers by SSH client [10]. Command to access the front-end
node named skirit is:

ssh username@skirit.ics.muni.cz

Front-end node is a place where user stores scripts and programs he wants
to execute on Metacentrum. Another type of a node is a computation node.
Computation nodes are assigned to user’s tasks. Last type of a node is a
storage node where user redirects output of programs.

5.2 Uploading data to Metacentrum and ini-

tializing environment

Five activities have to be performed in order to properly run a program
on Metacentrum. Such activities are depicted in Figure 5.1.

22



CHAPTER 5. EXECUTION OF TASKS ON METACENTRUM

Figure 5.1: Activity diagram of initializing environment on Metacentrum

Important files and inputs to models, are uploaded to front-end nodes
like skirit. Skirit is not the only front-end node. There are more of them, for
example node named tarkil.

User has a home directory on these front-end nodes. Linux command to
access this directory after logging to Metacentrum, mentioned in Section 5.1,
is:

cd /storage/praha1/home/username

”praha1” defines which server to use.
Initializing environment also includes generating dual interaction matri-

ces. These matrices could not be uploaded because of their size (around
2GB). Thus MATLAB scripts were created in order to generate interaction
matrices. Scripts are executed by using Metacentrum launcher, mentioned
in Section 5.4.

5.3 Initializing computation nodes and exe-

cuting program

Execution of the program is not performed on the front-end node where
the program is stored but on the computation node. The computation node
is assigned to the task by Metacentrum launcher. This process is explained
in the Section 5.4.
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However, the computation node’s default state does not contain CPLEX,
Python modules like Numpy, Scikit, Pandas. These modules have to be
added to the computation node before executing python programs for cre-
ating models. This is done by a bash script containing commands initiating
the node’s modules and then launching the python program.

First, the correct version of Python programming language must be added
to the environment. Then must be added Python modules used in the pro-
gram which are Pandas, Numpy and Sci-kit. Afterwards, the CPLEX module
and also the PyCPX modeling language has to be added in order to solve the
models. However PyCPX is not among the default Metacentrum modules so
it had to be added to the front-end node and it has to be explicitly added to
a PYTHONPATH every time the program is launched.

Structure of such script is shown in Figure 5.2.

Figure 5.2: Structure of bash script to launch python program
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Experiment’s scripts are in appendix A, directory ”bashScripts”.

5.4 Adding tasks to Metacentrum launcher

Once the task’s script is prepared with all the configuration, it has to be
added to Metacentrum’s launcher. The launcher takes the task, evaluates
it with priority and passes it to a queue for some computational resource.
The priority is derived from resources the program is going to process. By
launching command is specified the amount of maximum time the task can
run, amount of memory it can consume during computing and the amount
of processors needed. Here are presented examples of launching commands:

1. qsub -l walltime=50h -l nodes=1:ppn=2:mem=80gb launcher.sh

2. qsub -l walltime=30h -l nodes=1:ppn=1:xeon -l mem=80gb launcher.sh

On these two examples will be described launching a program on Metacen-
trum. The command for launching a script is named ”qsub”. This command
can be supplemented by additional parameters. A parameter is announced
by ”-l”. Afterwards can be set individual parameters.

• ”walltime” - maximum run-time of a task

• ”nodes” - number of machines my task is going to run on

• ”ppn” - number of processors on each machine

• ”mem” - memory a program can use

Additionally, Math Kernel Library is needed for some tasks. However
MKL can be used only on machines with Intel processors. A request for
a machine with for example Xeon processor can be performed by adding
”:xeon” to the parameters. If a Numpy module build upon MKL would be
used on a non-Intel processor, the program would crash because the processor
would not recognize incoming instructions.
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5.5 Retrieveing results

The results of the python program are redirected to a file which is created
on a storage node. Storage nodes ”plzen2-storage” and ”jihlava1-cerit” were
used as the destination nodes. This directory can be accessed after logging
to Metacentrum by command:

cd /storage/jihlva1-cerit/home/username

Experiment outputs are located in apendix A, directory ”modelOutputs”.
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Classifier implementation

This chapter presents the structure of the programmed models.

6.1 Structure of programmed models

There are different ways of regularizing SVM models. Each of these mod-
els has two sets of functions and attributes. First set is common among all
models. Second set is unique for specific model. This separation leads to
inheritance design among model classes.

Ten different classes are needed in order to design the whole problem
which can be seen in Figure 6.1.

Class Svm is the root class responsible for loading data set files into
program and dividing samples into folds according to stratified x-validation,
described in Section 7.1.

PrimalSvm and DualSvm represent models mentioned in Section 2.1. Pri-
mal and dual forms are separated into individual models because their weight
and bias variables are represented differently.

ConstrainedPrimalSvm and ConstrainedDualSvm are classes responsible
for loading interaction files into the program. SparsePrimalSvm represents
model in Section 2.4. MinusConstrainedPrimalSvm adds the interaction con-
straints according to the term (wi − wj)2, mentioned in Section 2.2. Plus-
ConstrainedPrimalForm differs only in the interactions term ((wi + wj)

2),
described in Section 2.5.

SparseMinusConstrainedPrimalSvm and SparsePlusConstrainedPrimalSvm
extend its parents by adding the sparsity term. SparseMinusConstrainedPri-
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malSvm model is explained in Section 2.3.

Figure 6.1: Class diagram of SVM models

Implementations of all classes are in appendix A, directory ”python-
Scripts”.
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Experimental workflow

This chapter explains the methods used for training and testing the mod-
els.

7.1 Cross-validation

Cross-validation is nowadays a standard used to examine accuracy of
created models. Cross-validation creates different distributions of train-
ing/testing samples in order to train/test models on different sets of sam-
ples. This way can be determined the stability of models [19]. Furthermore,
5-times repeated cross-validation is used to allow more combinations of sam-
ples in training/testing set which leads to more stable accuracy of created
models and independence on particular combinations of training/testing sets.

7.1.1 Stratified Cross-validation

Stratified cross-validation is used to preserve the ratio between positive
and negative samples in training/testing set compared to the source data set.
This approach should increase stability of created models.

7.1.2 Determining number of folds

According to experiments in [19], sufficient number of folds is 10 in order
to obtain optimal bias. However, the distribution of positive and negative
samples in test/train set has to be preserved when combined with stratified
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cross-validation. Thus the number of folds has to be decreased to the size
of the minor class set in data set because in some data sets are less then 10
positive/negative samples. That means the number of folds is determined as
the minimum of the minor size of the class in data set and 10.

7.1.3 Creating model workflow

Creating new model every time in 5-times repeated stratified cross-validation
would take enormous amount of time and memory. Therefore, the process of
creating models had to be optimized. Considering that the only variable part
in models is the constraints referring to the training samples, I can create
only one model and modify those constraints [9]. This makes the models ex-
ecutable on Metacentrum because it does not waste memory when compared
to creating new model in each iteration. The constraints which have to be
modified are:

s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . n (7.1)

The workflow of creating models is depicted in Figure 7.1. First, the
non-varying part of the model is created (nodes ”Interaction knowledge ”
and ”Initialize knowledge”). This includes initializing the quadratic term

(1
2

M∑
i=1

w2
i ), the interactions term (1

2
β
∑
ij∈τ

Aij (wi − wj)2) and the sparsity term

(
M∑
i=1

|wi|). Then are added the varying parts (nodes ”Add data constraints”

and ”Train fold”), presented in Equation 7.1. The constraints are dependent
on the samples in the train fold and thus are changed in every iteration. Now
the model is complete and passed to the solver (node ”Solve QP problem”).

Afterwards, the computed weights and bias are passed to the testing part
of the process (nodes ”Make linear predictive model”, ”Predict” and ”Test
fold”) where are predicted the classes of the samples from the test fold.

Finally, the constraints are removed from the current model (node ”Re-
move data constraints”) in order to reuse the existing model on the next
train/test fold.
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Figure 7.1: Workflow of creating models
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Results

This chapter presents the results of constructed models explained in
Chapter 2.

8.1 Classic SVM

Following sections present the results of using Classic SVM written in
Primal and Dual form on three types of data inputs. The data inputs are:

1. only measured mRNA features (mRNA)

2. only measured miRNA features (miRNA)

3. measured both mRNA/miRNA (merged)

8.1.1 Classic Dual SVM

The Table 8.1 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumption on all
data inputs was 150MB.
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Input → mRNA T miRNA T merged T
Task ↓ Accuracy(%) h:m:s Accuracy(%) h:m:s Accuracy(%) h:m:s

BMBT DT5q 69.66 0:0:9 87 0:0:9 84.66 0:0:8
BMH ABT5q 100 0:0:26 93.66 0:0:8 100 0:0:10

BMH ABTnon-5q 95 0:0:24 100 0:0:6 100 0:0:10
BMH ADT5q 100 0:0:23 86.66 0:0:8 86.66 0:0:10

BMnon-5q 5qBT 87.22 0:0:21 100 0:0:6 100 0:0:8
PBBT DT5q 83.33 0:0:27 84.07 0:0:10 86.3 0:0:12
PBH ABT5q 100 0:0:23 90.74 0:0:9 100 0:0:12

PBH ABTnon-5q 100 0:0:49 100 0:0:6 100 0:0:9
PBH ADT5q 98.33 0:0:49 88 0:0:9 89.66 0:0:12

PBnon-5q 5qBT 100 0:0:21 100 0:0:6 100 0:0:7
Ø 93.35 - 93.01 - 94.73 -

Table 8.1: Results of using Classic Dual SVM

8.1.2 Classic Primal SVM

The Table 8.3 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:

Data input Memory
mRNA 1GB
miRNA 10MB
merged 1GB

Table 8.2: Average memory consumption of models for different data inputs

Input → mRNA T miRNA T merged T
Task ↓ Sucess(%) h:m:s Sucess(%) h:m:s Sucess(%) h:m:s

BMBT DT5q 69.66 0:06:24 89.66 0:0:7 84.66 0:03:52
BMH ABT5q 100 0:08:37 93.66 0:0:7 100 0:07:51

BMH ABTnon-5q 93.33 0:02:49 100 0:0:6 100 0:04:07
BMH ADT5q 100 0:02:20 86.66 0:0:4 86.66 0:03:25

BMnon-5q 5qBT 87.22 0:05:28 100 0:0:43 100 0:05:45
PBBT DT5q 83.33 0:08:39 86.66 0:0:39 86.3 0:09:14
PBH ABT5q 100 0:08:52 91.85 0:0:6 100 0:10:33

PBH ABTnon-5q 100 0:01:28 100 0:0:6 100 0:02:08
PBH ADT5q 98.33 0:09:15 87 0:0:9 89.66 0:11:21

PBnon-5q 5qBT 100 0:01:22 100 0:0:6 100 0:02:32
Ø 93.19 - 93.55 - 94.73 -

Table 8.3: Results of using Classic Primal SVM

8.1.3 Comparison of Primal and Dual results

Primal and Dual forms give similar results. The accuracy of created
models is quite high as expected. The best classification of both methods
was on merged data set. Methods are expected to compute similar results.
However each method uses different variables to find optimal solution so
weights of the separating can slightly differ.
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8.2 SVM with Network-constrained L2-norm

Following sections present the results of using SVM with Network-constrained
L2-norm written in Primal and Dual form on three data inputs. The inputs
are:

1. only measured mRNA features constrained by protein-protein interac-
tions (P-P)

2. measured both mRNA/miRNA (merged) features constrained by mirna-
target interactions (miRNA-target)

3. measured both mRNA/miRNA (merged) features constrained by both
protein-protein and mirna-target interactions (miRNA-target, P-P)

8.2.1 Dual SVM with Network-constrained L2-norm

The Table 8.5 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:

Data input Memory
P-P 2GB

miRNA-target 2.5GB
miRNA-target, P-P 2.5GB

Table 8.4: Average memory consumption of models for different data inputs

Input → P-P T miRNA-target T miRNA-target, P-P T
Task ↓ Success(%) h:m:s Success(%) h:m:s Success(%) h:m:s

BMBT DT5q 64.66 0:21:45 92 0:35:38 92 0:26:22
BMH ABT5q 100 1:42:55 100 2:23:24 100 1:25:57

BMH ABTnon-5q 93.33 0:30:20 94.44 0:26:18 93.33 0:37:38
BMH ADT5q 98.66 0:19:15 86.66 0:20:57 86.66 0:20:13

BMnon-5q 5qBT 81.66 0:32:31 100 0:31:15 100 0:42:16
PBBT DT5q 83.33 1:57:29 92.22 1:51:03 92.96 2:15:06
PBH ABT5q 100 0:59:47 100 1:12:18 100 1:46:19

PBH ABTnon-5q 100 0:12:17 100 0:17:14 100 0:15:31
PBH ADT5q 98.33 1:55:28 89.66 2:07:37 88.66 0:15:46

PBnon-5q 5qBT 100 0:09:39 100 0:10:49 100 0:10:45
Ø 92 - 95.5 - 95.36 -

Table 8.5: Results of using Dual SVM with Network-constraint L2-norm

8.2.2 Primal SVM with Network-constrained L2-norm

The Table 8.7 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:
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Data input Memory
P-P 37GB

miRNA-target 65GB
miRNA-target, P-P 192GB

Table 8.6: Average memory consumption of models for different data inputs

Input → P-P T miRNA-target T miRNA-target, P-P T
Task ↓ Success(%) h:m:s Success(%) h:m:s Success(%) h:m:s

BMBT DT5q 64.66 0:50:16 92 0:38:12 92 5:08:05
BMH ABT5q 100 2:07:25 100 2:43:14 100 4:54:35

BMH ABTnon-5q 93.33 1:23:24 93.33 1:19:07 93.33 3:43:23
BMH ADT5q 98.66 2:44:43 86.66 1:02:23 86.66 6:15:12

BMnon-5q 5qBT 81.66 1:16:04 100 1:09:18 100 7:42:02
PBBT DT5q 83.33 5:02:00 92.22 1:31:06 92.22 5:10:59
PBH ABT5q 100 3:59:19 100 1:33:26 100 4:42:13

PBH ABTnon-5q 100 0:38:40 100 1:05:12 100 5:29:14
PBH ADT5q 98.66 1:57:53 89.66 2:10:36 88.66 10:22:48

PBnon-5q 5qBT 100 2:17:21 100 1:05:50 100 2:07:58
Ø 92.03 - 95.39 - 95.29 -

Table 8.7: Results of using Primal SVM with Network-constraint L2-norm

8.2.3 Comparison of Primal and Dual results

Primal and Dual forms give similar results. The accuracy of created
models increased when compared to the Classic SVM in Section 8.1. Thus
integrating interactions prior knowledge in decision models is reasonable.

8.3 SVM with Network-constrained L2-norm

with Negative Regulatory Assumption

Following sections present the results of using SVM with Network-constrained
L2-norm with Negative Regulatory Assumption written in Primal and Dual
form on three data inputs. The inputs are:

1. only measured mRNA features constrained by protein-protein interac-
tions (P-P)

2. measured both mRNA/miRNA (merged) features constrained by mirna-
target interactions (miRNA-target)

3. measured both mRNA/miRNA (merged) features constrained by both
protein-protein and mirna-target interactions (miRNA-target, P-P)
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8.3.1 Dual SVM with Network-constrained L2-norm
with Negative Regulatory Assumption

The Table 8.9 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:

Data input Memory
P-P 2GB

miRNA-target 2GB
miRNA-target, P-P 2.5GB

Table 8.8: Average memory consumption of models for different data inputs

Input → P-P T miRNA-target T miRNA-target,P-P T
Task ↓ Success(%) h:m:s Success(%) h:m:s Success(%) h:m:s

BMBT DT5q 62 0:58:27 92 0:21:08 92 0:22:01
BMH ABT5q 100 1:23:52 100 1:38:56 100 1:43:43

BMH ABTnon-5q 92.22 0:24:45 94.44 0:31:38 93.33 0:30:52
BMH ADT5q 98.66 0:16:49 86.66 0:22:25 86.66 0:21:55

BMnon-5q 5qBT 81.66 0:38:55 100 0:40:44 100 0:54:02
PBBT DT5q 83.33 1:22:06 92.22 2:23:40 92.96 2:41:13
PBH ABT5q 100 1:09:21 100 1:00:19 100 1:46:53

PBH ABTnon-5q 100 0:11:15 100 0:13:06 100 0:18:48
PBH ADT5q 97 1:40:23 89.66 1:53:05 88.66 2:21:35

PBnon-5q 5qBT 100 0:09:39 100 0:12:57 100 0:24:42
Ø 91.49 - 95.5 - 95.36 -

Table 8.9: Results of using Dual SVM with Network-constraint L2-norm with
Negative Regulatory Assumption

8.3.2 Primal SVM with Network-constrained L2-norm
with Negative Regulatory Assumption

The Table 8.11 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:

Data input Memory
P-P 37GB

miRNA-target 65GB
miRNA-target, P-P 192GB

Table 8.10: Average memory consumption of models for different data inputs
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Input → P-P T miRNA-target T miRNA-target, P-P T
Task ↓ Success(%) h:m:s Success(%) h:m:s Success(%) h:m:s

BMBT DT5q 62 0:46:28 92 1:31:18 92 2:39:18
BMH ABT5q 100 1:27:45 100 2:12:44 100 5:18:42

BMH ABTnon-5q 93.33 0:49:41 93.33 0:43:34 93.33 3:15:17
BMH ADT5q 98.66 0:44:25 86.66 0:41:20 86.66 2:04:47

BMnon-5q 5qBT 78.33 0:57:25 100 0:43:40 100 2:46:04
PBBT DT5q 83.33 1:18:43 92.22 0:56:59 92.96 8:35:00
PBH ABT5q 100 1:13:29 100 1:06:43 100 8:52:23

PBH ABTnon-5q 100 0:38:40 100 0:38:27 100 5:36:26
PBH ADT5q 98 1:20:53 89.66 1:08:19 88.66 9:26:40

PBnon-5q 5qBT 100 0:36:27 100 0:36:12 100 4:54:36
Ø 91.37 - 95.39 - 95.36 -

Table 8.11: Results of using Primal SVM with Network-constraint L2-norm
with Negative Regulatory Assumption

Results of the primal and dual form are very similar as is the time con-
sumption. The computation of the dual form was expected to be faster. The
reason of the reduced speed is the demanding matrix multiplications in the
dual form.

8.3.3 Comparison of Primal and Dual results

Primal and Dual forms give similar results. The accuracies are very simi-
lar to the results of SVM with Network-Constrained L2-norm in Section 8.2.
The negative regulatory assumption did not much effect the weights in the
decision models.

8.4 Sparse L2 norm

Following section presents the results of using Sparse L2 norm on two
data inputs. The inputs are:

1. only measured mRNA features (mRNA)

2. measured both mRNA/miRNA (merged)

The Table 8.13 contains accuracies and time consumptions (T) of models
for different tasks and data inputs. The average memory consumptions are:

Data input Memory
mRNA 6GB
merged 5GB

Table 8.12: Average memory consumption of models for different data inputs
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Input → mRNA T merged T
Task ↓ Sucess(%) h:m:s Sucess(%) h:m:s

BMBT DT5q 79.66 1:28:44 84.66 1:48:02
BMH ABT5q 100 1:14:15 87.33 3:06:26

BMH ABTnon-5q 85 0:45:31 91.11 1:03:17
BMH ADT5q 100 0:36:43 81.33 0:51:33

BMnon-5q 5qBT 83.33 0:53:05 93.88 0:52:13
PBBT DT5q 70 7:13:21 78.52 2:33:49
PBH ABT5q 94.44 5:04:35 88.52 2:36:40

PBH ABTnon-5q 100 1:40:58 100 0:45:53
PBH ADT5q 94 5:57:55 81.66 2:28:36

PBnon-5q 5qBT 85.83 0:48:03 100 0:36:22
Ø 82.22 - 88.7 -

Table 8.13: Results of using classic Sparse Primal SVM

These results are going to be compared later in the thesis with other sparse
models from section 8.5

8.5 Sparse Network-constrained L2 norm

Following sections present the results of using primal form of Sparse
SVM with Network-constrained L2-norm and Sparse SVM with Network-
constrained L2-norm with Negative Regulatory assumption on three data
inputs. The inputs are:

1. only measured mRNA features constrained by protein-protein interac-
tions (P-P)

2. measured both mRNA/miRNA (merged) features constrained by mirna-
target interactions (miRNA-target)

3. measured both mRNA/miRNA (merged) features constrained by both
protein-protein and mirna-target interactions (miRNA-target, P-P)

The memory consumptions of both sparse forms were:

Data input Memory
P-P 67GB

miRNA-target 104GB
miRNA-target, P-P 258GB

Table 8.14: Average memory consumption of models for different data inputs
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8.5.1 Primal SVM with Network-constrained L2-norm

The Table 8.15 contains accuracies and time consumptions (T) of models
for different tasks and data inputs.

Input → P-P T miRNA-target T miRNA-target,P-P T
Task ↓ Sucess(%) h:m:s Sucess(%) h:m:s Sucess(%) h:m:s

BMBT DT5q 79.66 10:54:06 82.33 7:08:17 82.33 15:27:04
BMH ABT5q 100 30:33:32 87.33 14:23:30 100 28:33:27

BMH ABTnon-5q 85 15:03:40 91.11 8:00:34 91.11 30:23:33
BMH ADT5q 98.66 10:53:16 81.33 5:44:47 81.33 21:43:15

BMnon-5q 5qBT 82.77 27:23:35 93.88 3:48:10 93.88 12:29:30
PBBT DT5q 70 12:77:11 77.77 6:56:28 77.77 36:01:41
PBH ABT5q 94.44 22:21:49 88.52 13:49:20 88.52 35:31:01

PBH ABTnon-5q 100 8:22:33 100 2:31:51 100 12:09:37
PBH ADT5q 94 15:53:50 81.66 13:43:52 81.66 27:48:35

PBnon-5q 5qBT 85.83 10:42:51 100 1:55:24 100 14:27:19
Ø 89 - 88.39 - 89.66 -

Table 8.15: Results of using Primal Sparse Network-constrained SVM

8.5.2 Primal SVM with Network-constrained L2-norm
with Negative Regulatory Assumption

The Table 8.16 contains accuracies and time consumptions (T) of models
for different tasks and data inputs.

Input → P-P T miRNA-target T miRNA-target,P-P T
Task ↓ Sucess(%) h:m:s Sucess(%) h:m:s Sucess(%) h:m:s

BMBT DT5q 79.66 7:52:19 82.33 6:22:46 82.33 14:08:10
BMH ABT5q 100 17:23:39 87.33 14:16:10 87.33 31:20:55

BMH ABTnon-5q 85 11:06:33 91.11 7:53:14 91.11 15:25:28
BMH ADT5q 98.66 8:15:57 81.33 9:23:19 81.33 22:38:46

BMnon-5q 5qBT 82.77 18:11:37 93.88 6:10:44 93.88 27:59:39
PBBT DT5q 70 27:04:22 77.77 11:23:15 77.77 8:35:0
PBH ABT5q 94.44 15:03:07 88.52 11:16:50 88.52 21:41:05

PBH ABTnon-5q 100 6:55:10 100 7:20:29 100 9:51:08
PBH ADT5q 94 21:24:48 81.66 16:05:39 81.66 32:09:48

PBnon-5q 5qBT 85.83 8:05:05 100 3:59:48 100 9:23:02
Ø 89.01 - 88.39 - 88.39 -

Table 8.16: Results of using Primal Sparse Network-constrained SVM with
Negative Regulatory Assumption
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8.5.3 Comparison of Primal Sparse Network-constrained
SVM and Primal Sparse Network-constrained SVM
with Negative Regulatory Assumption results

Both models give very similar results. The accuracies decreased when
compared to the models without the sparsity term mentioned in Sections 8.2, 8.3.
However the accuracies increased when compared to the Sparse L2-norm
without the interactions term in Section 8.4. This confirmed the statement
about integrating interactions in the decision models.

8.6 Comparing Sparse models

This section compares Sparse SVM L2 norm, Sparse SVM with Network-
constrained L2-norm and Sparse SVM with Network-constrained L2-norm
with Negative Regulatory Assumption from the view of number of extracted
weights and number of interactions. A variable defining density of interac-
tions between selected features in models is presented in order to compare
those models:

Density(task) =
Average number of interactions in a model

Average number of features in a model
(8.1)

The Table 8.17 represents average number of features, average densities
and average accuracy of chosen forms across all computed tasks.

Forms Classic
(
wi − wj

)2 (
wi + wj

)2
Datasets
+ interactions

mRNA merged mRNA
+ PPI

merged
+ miRNA-T

merged
+ PPI
+miRNA-T

mRNA
+ PPI

merged
+ miRNA-T

merged
+ PPI
+miRNA-T

Accuracy(%) 82.22 88.7 89 88.39 89.66 89.01 88.39 88.39
Features(Ø) 6.34 6.15 8.014 22.82 32.97 11.19 23.95 27.35
Density(Ø) 0.01 0.002 0.14 0.66 0.8 0.16 0.81 0.67

Table 8.17: Compared sparse models.

It can be seen that the accuracy of evaluating samples with mRNA fea-
tures constrained by interactions increased by 6.78% due to the network
constraints. The accuracy of evaluating samples with merged features did
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not change much but the density of the network of selected features in-
creased. On the samples with mRNA features density increased by 0.14
interactions/feature. On the samples with merged features density increased
by up to 0.8 interactions/feature.

8.7 Updating the sparsity term in Sparse Pri-

mal SVM with Network-constrained L2-

norm

The Sparse Primal SVM with Network-constrained L2-norm tries to max-
imally minimize the number of weights of the model. However, sometimes
the number of features could be extremely low. Preserving more weights can
be done by multiplying the sparsity term by λ. The following results were
gained from models created on task BMBT-DT5q on dataset containing only
mRNA features and constrained by protein-protein interactions.

min
w0,w1...wm

{
λ
M∑
i=1

|wi|+
1

2

M∑
i=1

w2
i +

1

2
β
∑
ij∈τ

Aij (wi − wj)2
}
,

s.t. : s.t. :
(
wTxi + w0

)
yi ≥ 1,∀i = 1, . . . N

(8.2)

The importance of the sparsity term decreased and thus the number of
weights in created sparse models increased. In Table 8.18 are presented re-
sults of models with different values of λ. Each variable setting was tested on
5-times repeated stratified x-validation and thus multiple models with differ-
ent number of features were created. The column ”Min. features” represents
the minimal number of features in a model (among all models belonging to
the setting). The column ”Max. features” represents the maximal number
of features in a model. The column ”Average features” represent average
number of selected features among all the models. ”Accuracy” represents
average accuracy among all the models. The ”B” task in Table 8.18 refers
to ”BMBT DT5q” task and ”P” refers to ”PBBT DT5q” task.
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Min. features Max. features Average features Accuracy(%)
λ B P B P B P B P
1 5 9 22 17 7.53 12.33 79.66 70
0.1 4 9 155 91 15.12 14.17 83.66 71.48
0.01 6 8 784 1180 71.56 40.31 72 72.96
0.001 28 - 3052 - 231.2 - 67 -
0.0001 359 362 7958 7649 1019.12 989.31 68.33 81.85
0.00001 3023 3114 9356 13303 4354.32 4138 68.33 86.66

No sparsity term 16653 16651 16664 16662 16660.32 16656 64.66 83.33

Table 8.18: Results of different λ settings.

From Table 8.18 can be seen that the average number of features changes
similarly on both tasks with different λ settings. The task ”BMBT DT5q”
obtains samples which are more difficult to separate. The sparsity term filters
out the non-relevant features and thus the accuracy increases by 15%.

8.8 Updating the network strength parame-

ter in Sparse Primal SVM with Network-

constrained L2-norm

The number of selected features in sparse models does not depend only on
the λ parameter. It can also be updated by the network strength parameter
β. The following results were gained from models created on task BMBT-
DT5q on dataset containing only mRNA features and constrained by protein-
protein interactions.

Accuracy(%)
β B P
2 79.66 70
3 79.66 70
5 79.66 70
10 82.33 71.11
20 83.66 70.74
30 83.66 72.59
50 79.66 79.25
100 78.33 75.18

Table 8.19: Results of different β settings.

Following figures represent changes in the interaction network when in-
creasing the strength parameter. Colors of the nodes represent:
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• Green - Feature appears in this models and also in the model with β
one level higher and lower.

• Blue - Feature appears in this model and also in the model with β one
level higher.

• Red - Feature appears in this model and also in the model with β one
level lower.

• White - Feature appears only in this model.

(a) β = 2 (b) β = 3 (c) β = 5

(d) β = 10 (e) β = 20 (f) β = 30
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(g) β = 50

Figure 8.1: BMBT-DT5q task with mRNA features, protein-protein interac-
tions
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(a)
β = 2

(b)
β = 3

(c)
β = 5

(d)
β = 10
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(e)
β = 20 (f) β = 30 (g) β = 50
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From the figures above is apparent that setting of the parameter β can
much effect the density of the network. The following happens when setting
sufficiently big strength of the network:

1. Weights of the interacting features increase due to the network-constrained
term 1

2
β
∑
ij∈τ

Aij (wi − wj)2.

2. The sparsity term tries to minimize the number of selected features and
keep the optimal separation of the sample space.

3. Thus different weights could be chosen in order to separate samples by
constraints yi (w · xi + b) ≥ 1 when using different network force set-
tings. (the weights of some important features grow too much because
of the interactions and thus are omitted in the classification model

because of minimizing the term 1
2

M∑
i=1

w2
i )

4. The most important features which separate the samples are preserved
because their weights do not increase much by increasing the network
strength parameter. This is visible on models with β = 1 and β = 50
where most of the features from the first model remain. The final model
consists of those preserved features and their context which is added in
order to separate the samples.

By updating the strength of the network can be manipulated both the
number of interactions per feature in a decision model and the number of fea-
tures. The accuracy of models of task ”BMBT DT5q” stays almost the same
while increasing the density of the network. However the accuracy of models
of ”PBBT DT5q” task increases when increasing the strength parameter, un-
til some level. From the network-interaction graphs of task ”PBBT DT5q”
It can be seen that the network gets denser by increasing the strength pa-
rameter. However the similarity among individual graphs is not that high
(visible on β = 20, 30, 40 where are lots of white nodes).

8.9 Network-norm-SVM

The Network-norm-SVM could not be modeled in dual form because the
Laplacian matrix is not singular and thus could not be inverted.
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8.10 Artificial data

This section presents accuracies of models tested and trained on artificial
data. Four types of classifiers were used on the artificial data. All of them
are in the Primal form of SVM. First pair is Classic SVM and Network-
constrained SVM. Both of them are trying to find weights for all the features
in the data set. Second pair is Sparse Classic SVM, which is Classic SVM
with the sparsity term, and Sparse Network-constrained SVM, which is SVM
with both the sparsity and the network-constraint terms.

Form Accuracy(%) Features Density
Classic SVM 73.8 1565 -

Network-constrained SVM 70.01 1565 -
Sparse Classic SVM 78.85 156.08 0.139

Sparse Network-constrained SVM 74.36 306.66 1.006

Table 8.20: Classification on artificial data.

The Sparse Classic SVM was the most successful when classifying the
testing samples according to the Table 8.20. However there are not many
interactions among the selected features the model is deciding upon.

The accuracy of Sparse Network-consrained SVM accuracy lowered by
4.49% when compared to the Sparse Classic SVM. However, the density of
this model is one interaction per feature which is high when considering the
doubled number of features in the decision model.
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Conclusion

This chapter summarizes the results of the regularizations of the SVM
algorithm and their contribution in the terms of the required qualities which
are accuracy, stability, interpret-ability and efficiency.

9.1 Accuracy

The accuracy can be influenced by both interaction term and the sparsity
term. Regularizing SVM with the network interactions slightly improves the
average accuracy on of Classic SVM on different data sets (93.8%). The
sparsity term significantly decreases the accuracy (85.5). The combination
of the Sparse and Network-constraint term is the golden mean with accuracy
(89%).

9.2 Stability

GE files contain low number of samples thus it is difficult to reason about
the stability of the models. However all the forms of SVM were trained/tested
by 5-times repeated stratified x-validation. That means 5x(4-10)x10 models
were created for each data set. 5 represents number of iterations, (4-10)
represents number of folds which is at least 4 and maximally 10, 10 represents
number of tasks. Considering this amount of models, each form of SVM
achieved at least average accuracy 80%. Thus using regularized forms of
SVM are considered to be stable.

49



CHAPTER 9. CONCLUSION

9.3 Interpret-ability

The interpret-ability describes how much do the features in the decision
models interact together and how comprehensible are the rules which decide
about the class of the sample.

The interpret-ability of SVM with only the interaction term is low be-
cause the final decision model contains all the features, including the noise.
Contrarily features in the decision models of SVM with only sparsity term
are not interconnected at all. The average density of those decision models is
0.006 interactions per feature. The high interpret-ability is achieved by com-
bining the interaction and the sparsity term. Then the final models contain
in average 0.53 interactions per feature. The interpret-ability can be further
enhanced by setting the strength of the interactions term β, which imposes
higher importance on interacting features.

However the most important features which well separate the samples do
not interact much with other features. Thus enhancing β only imposes to se-
lect more interacting context of features to those which are quite independent
and important.

9.4 Efficiency

The biggest disadvantage of computing the Sparse network-constrained
L2-norm SVN is its efficiency. The average time-consumption for running
5-times repeated stratified x-validation on a specific data set is 16 hours.
The average time-consumption of Classic SVM is 5 minutes. The regularized
form has also high memory-consumption. The memory needed for 5-times
repeated stratified x-validation reaches up to 258GB. The Classic SVM needs
maximally 1GB. The computation resources make it almost impossible to
compute regularized forms on a PC.

9.5 Comparison to other experiments on omics

data

Comparing regularized SVM to other highly interpretable models is very
important. One of them is Network Constrained Forest (NFC) [8]. NCF
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creates trees including the feature interactions and then classifies the samples.
The average accuracy of NFC on MDS tasks is 78%.

The other is SVD-based aggregation (SVDba) [18]. Its aim in general,
is to reduce the mRNA vectors and their respective targeting miRNAs into
one aggregated feature. The accuracy on MDS data is 85.22%.

Sparse network-constrained L2-norm SVM outperforms the other algo-
rithms in accuracy. (89%). However NFC and SVDba are more interpretable
since the their classification models obtain concrete value thresholds for indi-
vidual GE. By way of contrast, SVM models obtain only computed weights.

9.6 Future work

The approach explained in this thesis seems quite reasonable according to
the presented results. However the Sparse network-constrained L2-norm SVN
could be improved by properly setting the network strength parameter and
the sparsity importance term parameter. Finding general relation between
these two parameters could lead to more accurate and interpretable models.

51



Acknowledgements

Special thanks belongs to below mentioned institutions.

Metacentrum

Computational resources were provided by the MetaCentrum under the
program LM2010005 and the CERIT-SC under the program Centre CERIT
Scientific Cloud, part of the Operational Program Research and Development
for Innovations, Reg. no. CZ.1.05/3.2.00/08.0144.

IBM Academic Initiative

Free access to IBM ILOG CPLEX Optimizer was provided under IBM
Academic Initiative.

52



Bibliography

[1] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/

integration/optimization/cplex-optimizer.

[2] Pandas. http://pandas.pydata.org/.

[3] Picos. http://picos.zib.de/.

[4] Pycpx. http://www.stat.washington.edu/~hoytak/code/pycpx/.

[5] LAPACK: A portable linear algebra library for high-performance com-
puters, 1990. http://dx.doi.org/10.1109/superc.1990.129995.

[6] Intel Math Kernel Library, 2007. http://www.intel.com/cd/

software/products/asmo-na/eng/307757.html.

[7] GeneNetWeaver: In silico benchmark generation and performance pro-
filing of network inference methods. Bioinformatics, 27(16):2263–2270,
June 2011.
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CD

Attached CD contains datasets, interactions files, bash scripts, python
scripts, MATLAB scripts, outputs of experiments and graphs of interactions
of created models.

• /bashScripts - scripts for executing programs on computation nodes

– /matlabProgramLaunchers

– /pythonProgramLaunchers

• /datasets - files containing GE and miRNA expressions

– /artificialData

– /codeVerification

– /MDS

• /interactions - files containing P-P/miRNA-target interactions

– /artificialInteractions

– /mdsInteractions -

• /matlabScripts - scripts for generating interaction matrices

• /modelOutputs - results of classification models

– 2dPoints

– codeVerification
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– MDS

• /networkGraphs - visualized interactions among features from classifi-
cation models

• /pythonScripts - classifier implementation

• /thesis - source codes of the thesis and its PDF
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