

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Bachelor’s thesis

Extensible game engine for Android

Jakub Petriska

Supervisor: Ing. David Sedláček, Ph.D.

Study Programme: Software technologies and management

Field of Study: Software engineering

May 20, 2015

IV

V

Acknowledgements
I would like to thank Ing. David Sedláček, Ph.D. for supervising and supporting my work
and Tereza Švarcbachová for helping with corrections.

VI

VII

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Prague on May 22, 2008 .

VIII

Abstract

This thesis covers design and implementation of a simple game engine for Android platform
and describes how it is used. Project is aimed at creating simple-to-use, genre independent
and extensible game engine. Main focus is placed on maintainable and extensible architec-
ture and simple scripting API, while only providing primitive rendering capabilities.

Abstrakt

Tato práce zahrnuje návrh a implementaci herního enginu pro platformu Android a popisuje
způsob jeho použití. Projekt je zaměřen na vytvoření jednoduše použitelného, žánrově
nezávislého a rozšiřitelného herního enginu. Hlavní důraz je kladen na udržitelnou a rozšiřitel-
nou architekturu a jednoduché skriptovací API, zatímco grafické možnosti zůstávají pouze
základní.

IX

X

Contents

1 Introduction 1

2 Vision 3

3 Design 5
3.1 Inner workings . 6
3.2 Access to engine’s functionality . 6
3.3 Rendering . 7
3.4 Touch input . 7
3.5 Collision detection . 7
3.6 Engine integration into applications . 7
3.7 Structure . 8

4 Using the engine in Android application 11
4.1 Putting the engine into Android application 11
4.2 Scenes definition . 11
4.3 Camera . 13
4.4 Displaying a 3D model . 13
4.5 Scripting API basics . 13

4.5.1 Building a component . 14
4.5.2 Game objects . 14
4.5.3 Moving a game object . 15
4.5.4 Communicating with other components 15
4.5.5 Accessing the important functionality 15

4.6 Touch input . 15
4.7 Collision detection . 16
4.8 Messaging . 16

4.8.1 Messages inside the engine . 16
4.8.2 Messages outside the engine . 16

4.9 Extending engine’s functionality . 17
4.10 Debugging information . 17

5 Created applications 19
5.1 Engine example application . 19

5.1.1 Model importing . 19
5.1.2 Transformation test . 19

XI

XII CONTENTS

5.1.3 Simple environment . 19
5.1.4 Performance test . 20
5.1.5 Collision detection test . 20

5.2 Showcase game . 21
5.2.1 Controls . 21
5.2.2 Menu . 22
5.2.3 Result . 22

6 Testing 25
6.1 Component life cycle test . 25
6.2 Game object tree manipulation test . 25
6.3 Messaging test . 25
6.4 Drawbacks of testing . 26

7 Future work 27
7.1 Performance optimization . 27
7.2 Graphics . 27
7.3 Systems . 27
7.4 Collision detection . 28
7.5 Extending the engine to other platforms . 28

8 Conclusion 29

A Nomenclature 35

B Component example 37

C Component life cycle testing component 39

D Contents of the CD 43

Chapter 1

Introduction

Nowadays game industry is huge and is still growing. Gaming competitions, so called
eSports, are coming close to the usual sports events in terms of viewers and prize money1.
Gaming on mobile devices is no exception. Every now and then there is a game that breaks
the records in terms of sales and revenue. Notable example of this is a game called Crossy
Road released on November 2014 earning 3 million dollars through video advertisment2.
Mobile games can also provide long-lasting source of income. Best example is Finnish
mobile games developer Supercell with their hit Clash of Clans. Supercell’s revenue in 2014
reached 1.7 billion dollars3.

Game engines are key part of this industry providing environment for faster development
of games. While there are private game engines used only by their developers and perhaps a
handful of others, there are also game engines meant to be widely used by lots of developers
for games of various genres. Examples of such engines are Unity engine4 and Unreal engine5.
These engines allow developers to create a wide variety of games where genre is not limited
by the engine but only by developer’s imagination. As of March 2015 both of the engines
are mostly free and even before both of them were very affordable. Low price of such tools
allows easy entry into the game industry even for developers without great resources. In
the mobile waters the entry can be even easier since many mobile mobile games are simple
in comparison with desktop titles. Engines also thrive to make using the engine easy even
for developers without huge experience in programming. This simplifies game development
mainly for newcomers.

Both mentioned engines and tons of other engines provide solutions for many projects.
While there may not be a need for new engine, the skill and experience with making games

1<http://www.polygon.com/2014/7/19/5918845/dota-2-international-2014-champions-money-winners>
(May 18, 2015)

2<http://venturebeat.com/2015/03/03/crossy-road-earns-3m-in-revenue-from-unitys-video-ads/>
(May 18, 2015)

3<http://venturebeat.com/2015/03/24/clash-of-clans-developer-supercells-revenues-tripled-in-2014/>
(May 18, 2015)

4<http://unity3d.com/> (May 18, 2015)
5<https://www.unrealengine.com/> (May 18, 2015)

1

http://www.polygon.com/2014/7/19/5918845/dota-2-international-2014-champions-money-winners
http://venturebeat.com/2015/03/03/crossy-road-earns-3m-in-revenue-from-unitys-video-ads/
http://venturebeat.com/2015/03/24/clash-of-clans-developer-supercells-revenues-tripled-in-2014/
http://unity3d.com/
https://www.unrealengine.com/

CHAPTER 1. INTRODUCTION

and game engines is very desired and for me personally very interesting. Therefore in this
thesis I will design and implement a simple three dimensional (3D) game engine for Android
platform. Project will focus on genre independence and ease of use while setting graphical
capabilities aside. I will describe engine’s design, show how engine is used and create and
present a showcase game using the engine. In addition to the experience, this project will
bring a platform which can be further expanded and can serve for easy experimenting with
various interesting techniques and technologies used in the game development.

2

Chapter 2

Vision

In this chapter I present some high-level goals and concepts that the engine should fulfill
and implement. Holding on to these concepts will ensure that the engine will be on the right
track to become a successful product in case the work on it continues and enough features
are added. Detailed discussion about more aspects of games and game development can be
found in book by Schell (2008) [5].

Usability By making the engine easy to use potential user base can be expanded by new-
comers into the field of games development. Fast learning can ensure a lot of potential
users will try the engine.

Fast prototyping Allowing user to quickly build a game prototype is very important es-
pecially in the field of mobile games. Games for mobile platforms are very often quite
simple, however not all game ideas make sense when implemented. Hence making
prototypes in short time is crucial.

Genre independence Fitting the engine on a single game genre vastly reduces the pos-
sibilities for produced games. Most importantly it disallows creation of new game
genres.

Expandability In this case expandability means allowing users to develop additional en-
gine functionality. It should also be possible to easily distribute this functionality
among other users. This can significantly help engine users since development of par-
ticular functionality doesn’t always have to be done by engine developer but can also
be done by engine user and than distributed among users who need this functionality.

Ability to communicate with underlying platform Communication will allow send-
ing data out of the engine. Data can then be displayed or interpreted as commands
and a reaction can follow. This enables connecting the engine with any platform de-
pendent functionality. One of the examples is using user interface (UI) framework
from Android SDK while running on Android device.

With platform independence in mind Possibility of creating a game once and then
deploying to different platforms is huge time saver in today’s development. In this
thesis I am developing the engine only for Android but I will design it in such a way

3

CHAPTER 2. VISION

that in future it will be possible at least to bring some of the implemented concepts
into truly multiplatform engine.

4

Chapter 3

Design

I chose to write the engine in the Java language. I was deciding between C++ with the
use of Native Development Kit for Android and Java. I chose Java because of the faster
implementation it enables, which was much needed because of my little experience with
creation of game engines. The engine supports Android from version 2.3 and up. Android
2.2 adds support for OpenGL ES 2.0. OpenGL ES API significantly changes between 1.0
and 2.0 versions making these versions incompatible. However code remains compatible
from version 2.0 to 3.01. Another restriction is that vertex buffer objects (VBO) support
was added in Android 2.3. VBOs provide performance gain since they allow programmer
to upload data to graphics processing unit (GPU) once and later use this already uploaded
data instead of uploading it in every step of game loop. Due to this I decided to start with
OpenGL ES version 2.0 and Android 2.3.

During this project I developed two versions of the engine. First version used 3rd party
rendering library called jPCT2 and implemented basic scripting. However later I decided
to start from scratch again and implement better second version. This new and current
version uses it’s own renderer instead of jPCT library. Reason for custom renderer was
that renderer implemented specifically for this engine can be done in such a way that allows
easier integration instead of forcing an existing library into the engine. This later turned
out to be huge advantage since the new renderer fits in naturally while the 3rd party library
didn’t. I attribute this to the fact that jPCT library already used a concept of object in the
game world which was also present in the engine itself.

I decided to use a left handed coordinate system with X axis pointing to the right, Y axis
pointing up and Z axis pointing forward. Engine API will also contain its own vector and
matrix classes for completeness. These will be used by the engine itself and they can also be
used by game programmers. Therefore these classes will implement most of the operations
expected from such classes. Dunn & Parberry (2011) [3] provide details about operations
with vectors and matrices. Relative rotation stored on game objects will be stored as Euler
angles and later converted into complete and absolute transformation matrix. More about

1<http://developer.android.com/guide/topics/graphics/opengl.html#compatibility> (May 18, 2015)
2<http://www.jpct.net/> (May 18, 2015)

5

http://developer.android.com/guide/topics/graphics/opengl.html#compatibility
http://www.jpct.net/

CHAPTER 3. DESIGN

Euler angles and transformations can be also found in work of Dunn & Parberry (2011) [3]
or a book by Eberly (2000) [1].

3.1 Inner workings

Core of engine’s operation is tree structure of so called game objects. Game objects pro-
vide position, orientation and scale in world’s space. Every game object holds its relative
transformation and its absolute world transformation is composed from its own transfor-
mation and transformations of all of its parents. Game objects also hold another very
important thing, the components. Components provide functionality to game objects. This
means they can render a 3D object in world or detect collisions. In every iteration of game
loop engine walks through this tree of game objects and components and calls various life
cycle methods of the components. These methods allow components to do such things as
initialize themselves, update their state or react to the updated state of other components or
game object itself. More about game objects and components and how they are represented
in engine’s code will be explained in the chapter about scripting API. Concept of holding
the functionality in components and different variations of this approach are discussed in
detail in bachelor thesis from Martin Štýs (2014) [6].

Now it’s a good time to mention how scripting fits into the whole concept. Scripting
allows the engine user, game programmer, to create behavior of his game. This mostly
consists of changing the state of objects in the game world but can also do other things not
directly related to gameplay. To create a script user creates a component. This means that
user scripting fits into the engine the same way its default functionality such as rendering
does.

Another question to answer is how do game objects with components get into the game
world in the first place. This is done through a XML file which defines the objects in
the scene along with their components. This file allows you to specify the hierarchy of
game objects, their parent-child relationships, their position, rotation and scale and allows
you to add components to them and set various parameters on the components. This
way you configure the whole initial state of the game scene from which your game plays.
This approach is inspired by Graham & Schaffry (2013) [4] which describes a component
architecture of a game as well as defining scene using game objects and components in XML
files. Engine also supports having multiple scenes that can be switched as needed.

3.2 Access to engine’s functionality

To create simple and easy way to give access to all the functionality the engine offers, it is
kept in one place. This place is an instance of com.monolith.api.Application class which has
methods that return other objects providing specific functionalities such as touch input or
time information. This object also has methods to switch between game scenes. Reference
to this instance is held in every game object and every component making it easily accessible.

6

3.3. RENDERING

3.3 Rendering

Rendering is on very basic level. Application object provides the Renderer which has
methods that render meshes with specific world transformation. In current implementation
rendering uses shader with one directional light with constant color. This light so far cannot
be changed in any way. In terms of meshes engine provides one primitive object which is a
cube and allows import of .obj files to load mesh geometry and normals.

3.4 Touch input

Touch input data are provided by a middle man object which serves as adapter between
platform’s native touch input and engine’s unified way of providing touch input. It’s role is
to listen for and store all touch display interaction during one game loop step and present
it for further processing by game code during the next game loop step. This kind of storing
events by step is important since in the Android UI framework reaction to touch events can
be done any time, but in the engine it can only be done in specific time meant for update
of game state.

3.5 Collision detection

In the thesis I will refer to objects whose collisions are detected as colliders. This term is
adopted from Unity engine which uses the similar wording.

Main part of the collision detection is the so called CollisionSystem. Instance of this
system can be obtained through Application object. This system provides methods for
registering and unregistering colliders. When state of this system is updated it checks for
collisions between all registered colliders. The topic of listening for collisions in game code
will be discussed in the next chapter. Current engine implementation only supports one
type of collider, a arbitrarily oriented box the so called oriented bounding box (OBB).

The collision of two OBBs is implemented using the separation axis theorem. The imple-
mentation is taken from a book by Ericson (2004) [2]. Algorithm checks for collision between
every pair of bounding volumes that it has registered. To optimize the detection, colliders
can also be divided into different groups. Colliders in the same group are not checked for
collisions. This can vastly decrease a number of collision checks since for example all non
movable objects can be put into one group and collisions between them are not checked.

3.6 Engine integration into applications

Whole engine can be started by creating an instance of the com.monolith.engine.Engine
class that encompasses the whole engine. This object takes care of everything that the engine
does. However, to start it the creator must provide implementations of certain objects that
are platform dependent. These objects provide such functionality as rendering or touch
input and must be implemented and created by the platform and passed into the Engine.

7

CHAPTER 3. DESIGN

3.7 Structure

Figure 3.1 shows class diagram of the engine. At the top of diagram the green box marks
the classes specific to Android. Rest of the objects are from platform independent part.
The Engine object encapsulates whole engine. All objects containing important features,
such as rendering, collision detection or touch input, are depicted on its left side. Below is
the Application which gains access to these objects through the Engine. Application object
is in turn held by every Component. The GameObject in this diagram represents the game
object tree held by Engine.

8

3.7. STRUCTURE

Figure 3.1: Structure of the engine

9

CHAPTER 3. DESIGN

10

Chapter 4

Using the engine in Android
application

4.1 Putting the engine into Android application

For Android the engine works as a library so the library files need to be added the standard
way to the Android application. To show content rendered by the engine in the application
the MonolithActivity or MonolithFragment must be used. These are subclasses of Android’s
own Activity1 and Fragment2 classes. The Activity represents one screen in the application
so MonolithActivity shows a screen only with engine’s content and Android’s status bar
and navigation bar3. Fragment is embedded into an Activity so MonolithFragment makes it
possible to embed the content displayed by the engine into a custom Activity and display
other content alongside the one from engine.

4.2 Scenes definition

To display any content, two XML files need to be created. On Android the engine has a
special place in application where its files are stored. This place is in the monolith folder
inside the assets folder. Everything used by the engine needs to be saved only to this folder.
The first XML file is definition of our scene. It defines objects in our scene, their parent-child
relationships and their components. Following example shows such a file.

1<https://developer.android.com/reference/android/app/Activity.html> (May 18, 2015)
2<https://developer.android.com/reference/android/support/v4/app/Fragment.html> (May 18, 2015)
3<https://developer.android.com/design/handhelds/index.html#system-bars> (May 18, 2015)

11

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/support/v4/app/Fragment.html
https://developer.android.com/design/handhelds/index.html#system-bars

CHAPTER 4. USING THE ENGINE IN ANDROID APPLICATION

<scene>

<gameObjects >

<gameObject >

<transform >

<position x="1" y="0" z="2" />

<rotation x="0" y="45" z="0" />

<scale x="1" y="2" z="1" />

</transform >

<children >

<gameObject >

<transform >

<position x="1" y="1" z="1" />

</transform >

<components >

<component type="camera">

<param name="far">1000</param>

</component >

</components >

</gameObject >

</children >

</gameObject >

</gameObjects >

</scene>

In the scene defined by this file there are two objects and one is a child of the other.
All objects of the scene must be placed into gameObjects element which is placed in the
scene element, the root of the document. To define a game object a gameObject element
is used. The gameObject element also has a transform containing game object’s relative
transformation, which is optional or does not have to contain all information. In case
transform or its parts are missing the default values of zero position, zero rotation and scale
of 1 are used instead. Other elements in gameObject are children element containing its
children game objects and a components element containing its components. Both of these
are optional and can be left out instead of writing just empty element.

Components are contained within the components element in the gameObject. Type of
component is specified by the attribute type of component element. Individual types of
components that are built into the engine will be described in following chapters. Element
component can also contain zero or more param elements. These specify the values of fields
that are set on the component instance which is created during scene initialization. Only the
parameters specified here are set otherwise the default values are used. The name attribute
of param element states the name of the field in the component’s class. Type of parameter
can be any of the Java’s primitive types or their respective wrapper classes.

To be able to launch the scene the second XML file needs to be created. This file must
have exact name scenes.xml and must be placed in the root of engine’s files folder, the

12

4.3. CAMERA

assets/monolith. This file defines what scenes our engine can show, their names and paths
to their definition files. Following example shows the file’s structure.

<scenes

defaultSceneName="main_scene">

<scene

name="main_scene"

sceneFilePath="scenes/main_scene.xml"/>

</scenes >

The available scenes are listed as scene elements in the scenes element. The name
attribute of scene defines the name through which this scene will be referenced and the
sceneFilePath attribute defines the path to the XML file defining this scene. The default-
SceneName attribute of scenes element contains the name of the scene that is launched as
default when the engine is launched and no scene to launch is specified. In our example we
have the scene defining file in the folder scenes which is contained in the assets/monolith
folder to keep our files organized.

4.3 Camera

Camera in the scene is represented by a component as well as all the functionality in the
engine. By placing the camera in the scene the position and orientation of the camera will be
defined by the game object to which it is attached. In case more than one camera is present
in the scene the first one will be used. The camera component was already shown in the
example of scene defining XML file, its component type is camera. In code it is represented
by com.monolith.api.components.Camera class. Camera has three parameters. The near
and far parameters specify the distance of near and far planes from the camera respectively.
The near and far planes are the planes parallel with the plane on which content is projected.
Everything that is displayed must be between these two planes. The third parameter is
fieldOfView representing vertical field of view of the camera. The horizontal field of view is
calculated from resolution of the surface onto which the content is rendered and this vertical
field of view angle.

4.4 Displaying a 3D model

3D model is displayed using com.monolith.api.components.Model component. Type of
this component for definition in XML is model. Model has a meshPath parameter which
contains a path to the rendered mesh or a name of primitive mesh to render. The only
supported primitive mesh is cube.

4.5 Scripting API basics

In this section I will describe the basic things about scripting. Details about the API intro-
duced in this chapter and also in chapters to follow can be found in the API documentation

13

CHAPTER 4. USING THE ENGINE IN ANDROID APPLICATION

on the CD attached to this thesis.

4.5.1 Building a component

As was previously mentioned the scripts are components. To create a component first a
subclass of com.monolith.api.Component class must be created. Functionality can be added
by overriding one or more of the Component’s life cycle methods. Following code shows
what simplified structure of a component with all life cycle methods looks like.

public class Component {
public void start();
public void update ();
public void postUpdate ();
public void finish ();

}

start() Gets called only once at the start of component’s life. In this moment component
is already attached to its game object. This method should be used to initialize the
component.

update() Is used to update the state of game world such as game object’s position. There-
fore this method is called in every step of game loop.

postUpdate() Gets also called in every step of game loop but is guaranteed to be called
after update() has been called on all components in the scene. Can be used to do
things that need to be done when state of all objects is updated.

finish() Gets called only once at the end of component’s life cycle but when component is
still attached to its game object. Can be used to do any cleanup or release resources.

Example of working component can be found in appendix B.

Custom component can be attached to any game object in the scene definition XML
file by setting a full class name containing the package as component’s type, for example
com.example.mygame.PlayerController. Also any field of this custom component can be set
through XML the same way as it is set on built-in components.

4.5.2 Game objects

Game objects are represented by com.monolith.api.GameObject class. In order to manip-
ulate any game object first its instance needs to be obtained. Since game objects can be
manipulated from components, either the game object to which the component is attached
can be retrieved or other game object. In the first case all that has to be done is calling
the getGameObject() method of component which retrieves the game object to which com-
ponent is attached. In the second case the game object to which the component is attached

14

4.6. TOUCH INPUT

also needs to be retrieved but then the game objects tree needs to be traversed using the
getParent() and getchildren() methods in order to find the specific game object. Helpful
thing in this search can be a tag associated with game object. Tag is stored in a public
field named tag on GameObject that can be set to any value by game programmer and then
helps with identification of game objects.

4.5.3 Moving a game object

Game objects should be moved from update() method of component. Every GameOb-
ject has a field transform which contains a reference to its com.monolith.api.Transform
which contains its transformation in game world relative to its parent game object and
can also provide absolute transformation matrix. To only change the position the gameOb-
ject.transform.setPosition(x, y, z) needs to be called with x, y and z being the desired
position. Similar methods on Transform can be used to adjust its rotation or scale.

4.5.4 Communicating with other components

It is often needed to manipulate with other components. To do this the GameObject
instance offers two ways to retrieve its components. More convenient way is using one
of the getComponent(Class<T>) or getComponents(Class<T>, List<T>) methods. The
former takes the class of desired component and retrieves the first instance of this type of
component it founds on given game object. The latter also takes a list into which it puts
all components of the given type the game object has. The less convenient way is to search
for the component yourself in the read-only collection of game object’s components which
is referenced from GameObject’s components field.

4.5.5 Accessing the important functionality

Previous chapter mentioned the Application object containing all the important function-
ality. This object can be retrieved by calling the getApplication()method on any component.

4.6 Touch input

The Application object provides instance of com.monolith.api.TouchInput object through
its getTouchInput() method. The TouchInput has a single method getTouches() which re-
turns a list of com.monolith.api.Touch objects. Every Touch object represents one currently
running touch gesture, which corresponds to one finger touching the screen. The Touch
object provides information about the current and the start position of the gesture. Touch
also contains the state signalizing whether the gesture has just started, is running or ending.
This list of touches is valid only for the game loop iteration in which it was retrieved and
should be retrieved again in the next one. To track individual Touch objects across multi-
ple game loop iterations every object has an identification number which does not change
through the existence of the gesture. Example of rotating an object based on touch input
can be found in appendix B.

15

CHAPTER 4. USING THE ENGINE IN ANDROID APPLICATION

4.7 Collision detection

To use the collision detection, the API contains com.monolith.api.components.BoxCollider
component which represents a box on the position of its game object of which the collisions
are detected. Type of this component in XML files is boxCollider. It has multiple parameters
to adjust the size of the box, offset of the box from the game object and a parameter group
determining a group in which the collider belongs. For detailed description of collider groups
please refer to section 3.5. To listen for collision events such as collision start and collision
end an instance of CollisionListener must be registered on the BoxCollider component.

4.8 Messaging

Messaging is the mechanism allowing communication with platform on which the engine
is running to use the platform dependent services or native UI. In the following sections I
will separately describe how messaging is used inside the engine and outside the engine.

4.8.1 Messages inside the engine

Messaging inside the engine is handled using the instance of com.monolith.api.Messenger.
This object can be retrieved from Application object using the getMessenger() method.
To send the message out of the engine the sendMessage(Object) method is used, the only
parameter of this method is a message itself which can be any object. To get all messages
received during previous frame one of the two methods can be called. First method is
getMessages(Class<T>, List<T>). First parameter of the method is class type of the
messages you want to receive and the second is a list into which the desired messages will
be added. The second method, getLastMessage(Class<T>), is just simplification of the
previous one and returns the last received message of the given type in previous game loop
step. This method can be used in case only the last received message is relevant, such a case
can be when any kind of state is being sent as message and only the newest one is needed.

4.8.2 Messages outside the engine

The instance of com.monolith.api.external.ExternalMessenger handles messages outside
of the engine. MonolithFragment has a public method getMessenger() which returns this
object. To obtain it from MonolithActivity a subclass must be created in which a protected
method getMessenger() returning the instance of ExternalMessenger can be called. Same as
the Messenger inside the engine the ExternalMessenger has a sendMessage(Object) method
which sends the message inside the engine. The receiving of messages is however quite dif-
ferent. To receive messages from engine a MessageReceiver interface must be implemented
and registered with the ExternalMessenger. MessageReceiver is parametrized by the type
of messages it receives. Registration is done using the registerMessageReceiver(Class<T>,
MessageReceiver<T>) taking the class type of received messages and instance ofMessageRe-
ceiver.

16

4.9. EXTENDING ENGINE’S FUNCTIONALITY

4.9 Extending engine’s functionality

Extending functionality of the engine can be done by implementing components containing
the new functionality and distributing them as standard Java library file with .jar extension.
Platform specific functionality must be distributed as a library for the given platform (such
as .aar file for Android) and instructions on how to use it must be provided by the developer.
One of possible extensions can be for popular application analytics tool Google Analytics.
This extension would simply implement one component which would contain methods for
sending events. actions and other message types Google Analytics supports. This module
would then send the messages out of the engine using the messaging API. Outside the engine
simple class would receive the messages and call the appropriate methods from Google
Analytics Android SDK.

4.10 Debugging information

Engine supports visualization of colliders. When this option is enabled the colliders are
displayed as green wireframe boxes. Boxes turn their color to red when they start colliding
and return back to green when collision ends. To turn this feature on a debug.xml file needs
to be placed into the root of monolith folder. Following example shows the contents of this
file.

<debug drawColliders="true" />

The attribute named drawColliders sets whether the colliders will be drawn or not. It’s
default value however is true but this default value is respected only if debug.xml file is
present and the attribute is not.

17

CHAPTER 4. USING THE ENGINE IN ANDROID APPLICATION

18

Chapter 5

Created applications

5.1 Engine example application

During development of the engine I created a simple application containing examples
of different features of the engine and allowing to visually test the engine output. The
application contains list with the names of all the examples which is implemented in Android
UI framework. While the application contains many of the basic examples in the following
sections I will describe the most important ones.

5.1.1 Model importing

This example shows a simple imported model that user can rotate with touch gestures.
Figure 5.1 shows screenshot of this example.

5.1.2 Transformation test

Transformation test is more of the visual test of the engine’s functions than an example.
This test shows a cube that is moved into positive directions of all axes and can be rotated
around any of the cardinal axes in their positive directions. The axis of rotation is selected
with buttons on the bottom of the screen. Meaning of this test is to verify that the engine’s
coordinate system is displayed properly and that transformations work properly. By a quick
look you can verify that the object is moved into the right direction and that the cube is
rotated in the right direction. Transformation test is shown in figure 5.2.

5.1.3 Simple environment

This example, depicted in figure 5.3, shows two main things. First one is that user
can manipulate with the world using the Android’s UI framework connected to the engine
through messaging and the second one is that creation of a simple environment is possible.
The scene shows a small environment consisting of multiple scaled cubes. The user can use
arrows to fly through this environment and change his orientation with touch gestures.

19

CHAPTER 5. CREATED APPLICATIONS

Figure 5.1: The example application screen-
shot of the imported model

Figure 5.2: The example application screen-
shot of the transformation test

5.1.4 Performance test

In this example a scene contains 908 objects along the current frames per second (FPS)
in the corner of the screen. There are two types of objects, one being the cube and the other
being a model of diamond. There is the same number of both objects which are organized
into two cones. The example shows approximate performance of the engine, however this
test does not perform very well. On LG Nexus 5 the test runs at average 14 FPS. Screenshot
of this example is shown in figure 5.4.

5.1.5 Collision detection test

Scene of this example shows 4 cubes with attached colliders. Two of the cubes can be
moved and the color of wireframes of cube’s colliders shows whether collisions are detected
or not. Refer to figures 5.5 and 5.6 for screenshots of this example.

20

5.2. SHOWCASE GAME

Figure 5.3: The example application screen-
shot of the simple environment

Figure 5.4: The example application screen-
shot of the performance test

5.2 Showcase game

To fully test capabilities of the engine and how development with the engine feels like I
developed a simple endless runner kind of game. Player controls a spaceship that automat-
ically moves forward. The track is randomly generated, possibly infinite and consists of 5
lanes between which player can move. Forward speed is still increasing which makes the
game harder and harder. Player must dodge obstacles and can pick up objects that raise
his score. Game ends when player hits an obstacle. Player’s goal is to reach the best score
by picking as many objects and playing as long as possible.

5.2.1 Controls

Game is controlled using the touch gestures. Simple swipe to the left or right moves the
player into the next lane in the appropriate direction. Trying to move into next lane when
player is on the last lane doesn’t end the game.

21

CHAPTER 5. CREATED APPLICATIONS

Figure 5.5: The example application screen-
shot of the collision detection test

Figure 5.6: The example application screen-
shot of the collision detection test with col-
liding objects

5.2.2 Menu

The game has a simple menu as a first screen of the application. The menu allows the
user to either start playing or open a high scores screen showing his best scores. Menu and
high score keeping is implemented using the Android SDK.

5.2.3 Result

The showcase game was very easy to make which was one of the goals. Code responsible
for gameplay consists of 5 components which in total contain 326 lines of code. XML file
defining the game scene has 78 lines. The game runs approximately at 60 FPS which is also
very good. The game also has so called debug mode which shows colliders as mentioned
in section 4.10 and current FPS in the top left corner of the screen. Screenshots of the
showcase game can be seen in figures 5.7 and 5.8 while figures 5.9 and 5.10 show the game
in debug mode.

22

5.2. SHOWCASE GAME

Figure 5.7: Screenshot from the showcase
game

Figure 5.8: Screenshot from the showcase
game

23

CHAPTER 5. CREATED APPLICATIONS

Figure 5.9: Screenshot from the showcase
game in debug mode

Figure 5.10: Screenshot from the showcase
game in debug mode

24

Chapter 6

Testing

During the development appeared the need to test such things as right order of calling
the component’s lifecycle methods and if they are called at all and various other concepts.
For this reason unit testing has been enabled and a few tests written. Testing uses the
jUnit testing framework1. To be able to test the engine the Engine instance as described
in section 3.6 is initialized with dummy objects. Whole engine can be launched as usual in
unit test and anything can be tested. For every test there must be created a scene that is
launched by the engine. To do the testing itself components must be implemented to assert
the tested concepts or simulate behavior.

6.1 Component life cycle test

The correctness of the order of the calls to the component’s methods and ensuring that
all methods are called is crucial. To test this the test uses a component that asserts that
all methods are called and calls are done in proper order. The scene contains three objects
where two of them are children of the third object and the two are siblings. The complete
source code of the life cycle testing component is attached in the appendix C.

6.2 Game object tree manipulation test

The tree of game objects can be manipulated in any way from the code of components.
Therefore it is important to ensure that the life cycle of components that are either manipu-
lated or attached to manipulated objects is still valid. To do this the test uses the component
asserting the life cycle correctness from previous test and manipulates with game objects
that have instances of this component attached.

6.3 Messaging test

To test messaging a simple component that upon receiving one message sends out other
message was implemented. The test simply sends a message and asserts that the answer

1<http://junit.org/> (May 18, 2015)

25

http://junit.org/

CHAPTER 6. TESTING

comes. The testing scene contains a single game object with single instance of this compo-
nent.

6.4 Drawbacks of testing

Unfortunately the structure of tests is not very handy. The testing scenes are separated
from the code that is running in them. Also to create a single test at least one scene XML
file and usually two additional Java files must be created. One for the initialization of the
test itself and the other for component asserting or simulating the behavior. This causes a
lot of repetitive work and makes creation of tests unpleasant.

26

Chapter 7

Future work

In its current state the engine is more of a prototype than a usable product. A lot of
work is still needed to reach the point where the engine can be used for development of real
games. In the following chapters I will describe some of the major changes that are needed
or recommended to reach this state as well as some minor concepts that can be added and
some possible optimizations.

7.1 Performance optimization

The performance test in the example application shows that when there is a lot of objects
in the scene the FPS significantly drops. Therefore one of the first tasks on the list should
be optimizing the performance.

7.2 Graphics

So far development was focused on architecture and scripting API instead of graphics
features so this is one of the important areas that would need an improvement. Most
important of the graphics features should definitely be the support of different types of
lights and the ability to move these lights. Next in line is texturing along with skybox
support. Last but not least is the support for creation of custom surfaces of objects. One
of the ways to implement this can be to allow users to create their own shaders which gives
game programmers high degree of freedom.

7.3 Systems

Systems are a simple concept that should allow better implementation of things that are
supposed to be present only once in the game scene and are not meant to be positioned
anywhere in the scene but only run in background. Such things include collision detection
system that only searches for collisions between colliders but is not placed anywhere in
the scene. In the current implementation to create something like this user must create a
component and add it to object in the scene. With systems this unnecessary game object
would be removed.

27

CHAPTER 7. FUTURE WORK

Systems would work very similar to components. They would also feature life cycle
methods to do initialization, update and reaction to updated state of game world. However
unlike components they would not be attached to game object but to scene itself.

7.4 Collision detection

As mentioned in section 3.5 the collisions are tested between every pair of colliders in
the scene. This can be optimized by using the collider groups but this optimization takes
time to do and will not be sufficient in more complex scenes with more moving and colliding
objects. Therefore the first optimization on schedule is using a bounding volume hierarchy
to allow omitting of collision testing between obviously not colliding objects. Ericson (2004)
[2] and Bergen (2003) [7] provide more information about bounding volume hierarchies.

Collision detection can also be improved in terms of collider types. Box will not be good
approximation of an object in most cases and so more types should be added such as a
capsule and eventually system should detect collisions between the 3D models or their low
polygon count approximation. Also the information about the colliding triangles should be
available from collision detection framework. Eventually raycasting should be added since
it is an essential feature for whole genre of shooter games.

7.5 Extending the engine to other platforms

With current implementation it is possible to very easily extend the engine to platforms
supporting Java. With LWJGL library1 it is possible to extend the engine to Windows,
OS X and Linux. However, to extend the engine to such platforms as iOS the completely
rewritten version of the engine in C++ language would be needed. Implementation in C++
would also improve performance and is therefore one of the desired paths to take.

1<http://www.lwjgl.org/> (May 18, 2015)

28

http://www.lwjgl.org/

Chapter 8

Conclusion

Thesis introduced design of a game engine and described how implemented prototype is
used. Chapter 2 listed important characteristics of game engines, all of which were projected
into the engine without any problems. Usability and fast prototyping possibilities were
proven by implementation of showcase game. Engine allows genre independence since every
feature of the engine is very general such as placement of the camera in the scene. It is ready
to be expanded since developing and distributing new features is very easy. Communication
with underlying platform was fully implemented and allows very easy connection from the
engine. Project is very nicely structured and platform independent code clearly separated
from Android code which allows immediate expansion to platforms running Java. In future
multiplatform engine can nicely use version of the platform independent code rewritten into
such language as C or C++.

Performance of the engine is enough for the showcase game which runs approximately
at 60 FPS all the time on LG Nexus 5. However, in the performance test described in
section 5.1.4 the FPS stays at 15 on the same device which is very low since the standard is
60 FPS for fast action games like this one. Engine definitely needs performance tweaks and
should be able to handle the performance test running on 60 FPS on the mentioned device.

The project brought me a lot of knowledge and experience with implementation of games
and game engines. The implemented prototype can also serve for further experimentation
with other concepts and features. From this point of view for me the project was definitely
a contribution. The implementation of showcase game showed that the engine is usable.
Process of game creation is pleasant without requiring any unnecessary work. The API is
simple to use and whole engine allows quick implementation of games.

In conclusion the result is very small game engine which is ready to be expanded and built
upon. It also provides important features and properties needed for succeeding in modern
game development world.

29

CHAPTER 8. CONCLUSION

30

Bibliography

[1] David H. Eberly. 3D Game Engine Design : A Practical Approach to Real-Time Com-
puter Graphics. Morgan Kaufmann, 2000.

[2] Christer Ericson. Real-Time Collision Detection. CRC Press, 2004.

[3] Ian Parberry Fletcher Dunn. 3D Math Primer for Graphics and Game Development. A
K Peters, CRC Press, 2nd edition, 2011.

[4] David Graham Mike McShaffry. Game Coding Complete. Course Technology Cengage
Learning, 4th edition, 2013.

[5] Jesse Schell. The Art of Game Design: A Book of Lenses. CRC Press, 2008.

[6] Martin Štýs. Komponentový přístup při tvorbě objektů herní knihovny. Master’s thesis,
ČVUT FEL, 2014.

[7] Gino van den Bergen. Collision Detection in Interactive 3D Environments. Morgan
Kaufmann, 2003.

31

BIBLIOGRAPHY

32

List of Figures

3.1 Structure of the engine . 9

5.1 The example application screenshot of the imported model 20
5.2 The example application screenshot of the transformation test 20
5.3 The example application screenshot of the simple environment 21
5.4 The example application screenshot of the performance test 21
5.5 The example application screenshot of the collision detection test 22
5.6 The example application screenshot of the collision detection test with col-

liding objects . 22
5.7 Screenshot from the showcase game . 23
5.8 Screenshot from the showcase game . 23
5.9 Screenshot from the showcase game in debug mode 24
5.10 Screenshot from the showcase game in debug mode 24

33

LIST OF FIGURES

34

Appendix A

Nomenclature

3D three dimensional

FPS frames per second

GPU graphics processing unit

OBB oriented bounding box

UI user interface

VBO vertex buffer objects

35

APPENDIX A. NOMENCLATURE

36

Appendix B

Component example

Following example component rotates game object to which it is attached according to
touch input gestures.

package com.monolith.showcase.engine;

import com.monolith.api.Component;
import com.monolith.api.Touch;

import java.util.List;

/**
* This is simple rotation controlling {@link

com.monolith.api.Component }.
* It rotates it’s {@link com.monolith.api.GameObject} according

to touch input.
*/

public class TouchRotationController extends Component {

private static final float FACTOR = 0.1f;

private int mLastTouchId = -1;
private float mLastTouchX;
private float mLastTouchY;

37

APPENDIX B. COMPONENT EXAMPLE

@Override
public void update () {

List <Touch > touches =
getApplication ().getTouchInput ().getTouches ();

if (touches.size() > 0) {
Touch touch = null;
if(mLastTouchId != -1) {

// Try to retrieve the Touch we tracked last time
for(int i = 0; i < touches.size(); ++i) {

Touch ithTouch = touches.get(i);
if(ithTouch.getId() == mLastTouchId) {

touch = ithTouch;
break;

}
}

}
if(touch == null) {

touch = touches.get(0);
}

float currentTouchX = touch.getX();
float currentTouchY = touch.getY();

if (touch.getState () != Touch.STATE_BEGAN &&
touch.getId() == mLastTouchId) {
// Factor needs to be scaled according to screen

pixel density
// since touch coordinates are in screen pixels
float countedFactor = FACTOR /

getApplication ().getDisplay ().densityScaleFactor;
getGameObject ().transform.rotateBy(

-(currentTouchY - mLastTouchY) *
countedFactor ,

-(currentTouchX - mLastTouchX) *
countedFactor ,

0);
}
if(touch.getState () == Touch.STATE_ENDED) {

mLastTouchId = -1;
} else {

mLastTouchId = touch.getId();
}
mLastTouchX = currentTouchX;
mLastTouchY = currentTouchY;

}
}

}

38

Appendix C

Component life cycle testing
component

package com.monolith.tests.component_lifecycle;

import com.monolith.api.Component;

import java.util.ArrayList;
import java.util.List;

import static org.junit.Assert .*;

/**
* Component asserting correctness of it’s own lifecycle.
*/

public class LifecycleAssertingComponent extends Component {

private static List <LifecycleAssertingComponent > sObjectCache
= new ArrayList <>();

private boolean mStartCalled = false;
private boolean mUpdateCalled = false;
private boolean mFinishCalled = false;

private String mTag;

public LifecycleAssertingComponent(String tag) {
this();
mTag = tag;

}

39

APPENDIX C. COMPONENT LIFE CYCLE TESTING COMPONENT

public LifecycleAssertingComponent () {
super();
sObjectCache.add(this);

}

@Override
public void start() {

assertFalse(getMessage("Start is being called for second
time"), mStartCalled);

mStartCalled = true;
}

@Override
public void update () {

assertTrue(getMessage("Start was not called before
update"), mStartCalled);

assertFalse(getMessage("Update is being called for second
time"), mUpdateCalled);

mUpdateCalled = true;
}

@Override
public void postUpdate () {

assertTrue(getMessage("Start was not called before
postUpdate"), mStartCalled);

assertTrue(getMessage("Update was not called before
PostUpdate"), mUpdateCalled);

mUpdateCalled = false;
}

@Override
public void finish () {

assertTrue(getMessage("Start was not called before
finish"), mStartCalled);

assertFalse(getMessage("Finish is being called for second
time"), mFinishCalled);

mFinishCalled = true;
}

40

/**
* This method should be called when this component is removed
* from it’s GameObject or if Engine ’s life ended.
*/

public void checkEverythingOkInTheEnd () {
assertTrue(getMessage("Start was not called during this

component ’s lifecycle"), mStartCalled);
assertTrue(getMessage("Finish was not called during this

component ’s lifecycle"), mFinishCalled);
}

private String getMessage(String message) {
if(mTag == null || mTag.length () == 0) {

return message;
} else {

return message + " for component " + mTag;
}

}

/**
* This method should be called when Engine ’s life ended to

ensure
* all component ’s of this class had proper lifecycle.
*/

public static void checkObjectsInCacheAreOk () {
for(LifecycleAssertingComponent component : sObjectCache)

{
component.checkEverythingOkInTheEnd ();

}
}

public static void clearObjectCache () {
sObjectCache.clear();

}
}

41

APPENDIX C. COMPONENT LIFE CYCLE TESTING COMPONENT

42

Appendix D

Contents of the CD

Following diagram show the structure of files on the attached CD.
/

thesis
source...Source for the thesis
thesis.pdf...Thesis pdf file

sources
engine..........................Sources for the engine with example application
game ...Sources for showcase game

doc...Javadoc documentation of engine’s API
lib

monolith_core_v0.3.jar.........................Core part of the engine library
monolith_android_v0.3.aar..................Android part of the engine library

exe
example.apk ...Example application
showcase-game.apk..Showcase game
showcase-game-debug.apk........................Showcase game in debug mode

43

	Introduction
	Vision
	Design
	Inner workings
	Access to engine's functionality
	Rendering
	Touch input
	Collision detection
	Engine integration into applications
	Structure

	Using the engine in Android application
	Putting the engine into Android application
	Scenes definition
	Camera
	Displaying a 3D model
	Scripting API basics
	Building a component
	Game objects
	Moving a game object
	Communicating with other components
	Accessing the important functionality

	Touch input
	Collision detection
	Messaging
	Messages inside the engine
	Messages outside the engine

	Extending engine's functionality
	Debugging information

	Created applications
	Engine example application
	Model importing
	Transformation test
	Simple environment
	Performance test
	Collision detection test

	Showcase game
	Controls
	Menu
	Result

	Testing
	Component life cycle test
	Game object tree manipulation test
	Messaging test
	Drawbacks of testing

	Future work
	Performance optimization
	Graphics
	Systems
	Collision detection
	Extending the engine to other platforms

	Conclusion
	Nomenclature
	Component example
	Component life cycle testing component
	Contents of the CD

