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Abstract

In Stackelberg games, one agent must commit to a strategy before the other agents compute
their strategies, allowing them to always play the best response to first player’s strategy.
Standard models of computing optimal strategy of the first player in sequential games are
challenging to compute. In this work, we will focus on Stackelberg games and their solution
in normal-form games with sequential strategies, which is a simplified form of a sequential
games, in which the players have no information about actions of their opponents throughout
the game.

Keywords: Game Theory, Stackelberg games, Normal Form games with sequential
strategies

Abstrakt

Ve Stackelbergových hrách se musí jeden z agentů přihlásit ke své strategii ještě před tím, než
ostatní hráči spočítají své strategie. To jim dává možnost hrát svou nejlepší strategii proti
prvnímu hráči. Standartní modely výpočtu optimální strategie prvního hráče v sekvenčních
hrách jsou výpočetně náročné. V této práci se zaměříme na Stackelbergovy hry a jejich řešení
ve hrách v normální formě se sekvenčními strategiemi, což je zjednodušená forma sekvenční
hry, v níž žádný z hráčů nemá v průběhu hry žádné informace o akcích svých protihráčů.

Klíčová slova: Teorie her, Stackelbergovy hry, hry v normální formě se sekvenčními
strategiemi
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Chapter 1

Introduction

Stackelberg games have been recently given a lot of focus, mostly because their importance
for security models, where the leader is trying to find the optimal strategy to secure an
object from possible attackers. In this case, the leader is defender of the object, who will
commit to a strategy (e.g. a schedule of patrol etc.). This strategy will be observed by
the attacker (or follower), who will then plan an attack as a best response to the observed
defensive strategy. Stackelberg games are used in many security applications (e.g. IRIS for
Federal Air Marshals Service [8], GUARDS for the Transportation Security Administration
[9], ARMOR at Los Angeles International Airport [8])

For normal-form Stackelberg games (in which every player plays 1 action) there is an
efficient algorithm solving this problem [1][3]. There also exists an algorithm for Stackelberg
extensive-form games (exploiting compact sequence-form representation) [5]. This algorithm,
however, does not scale well into large games, as computing Stackelberg equilibrium is an
NP-hard problem in extensive-form games[11].

Normal-form game with sequential strategies [6] is a simplified extensive form game, in
which states of the game are not represented by one game tree common to all agents. Instead,
there is one Markov decision process for every agent participating in the game. That allows
us to represent situations, where an agent does not have any information about movements
of other agents, until the game reaches a terminal state, or he chooses to disregard this
information. Also, normal-form games with sequential strategies do not need perfect recall
(perfect memory about what an agent has played so far) in the game.

There is an existing algorithm solving Stackelberg normal-form games with sequential
strategies (LP for NFGSS [6]), but it requires a strictly competitive game (or a zero-sum
game). Therefore, the main goal of this thesis is to provide a new algorithm finding Stack-
elberg equilibrium in general-sum normal-form games with sequential strategies and then
investigate the possibility of using iterative algorithms for solving this class of games.

1.1 Outline

In the second chapter of this work, we will describe the basics about game theory. It is
necessary for understanding the main goal of this work. We will describe outcomes of the
game and their comparison, strategies of players and the concepts of Nash and Stackelberg

1



2 CHAPTER 1. INTRODUCTION

equilibria using those strategies. Then we will describe several ways to classify a game and
existing algorithms for solving different types of Stackelberg games, on which will we then
focus.

In Chapter 3, we will first describe normal-form games with sequential strategies in
more detail. We will then focus on the problem of finding strong Stackelberg equilibrium in
general-sum normal-form game with sequential strategies. That can be done by formulating
the problem as a set of linear programs [1] by transforming the game into a normal form game,
and by solving those LPs, we would find a solution. This approach is probably the easiest one
for implementation, but it doesn’t scale well to large games, as there will be an exponential
number of linear programs based on length of strategies in sequential games. Once we will
formulate the problem as set of linear programs, we can transform these programs into a
mixed integer linear program (MILP) representation [3] (similarly to solving Stackelberg
extensive form games [5]), which will also find strong Stackelberg equilibrium in general-sum
normal-form games with sequential strategies. This MILP will consist of set of constraints
with linear size depending on number of actions and states of all agents.

We will then review the iterative algorithm solving this class of games[6]. The algorithm
iteratively searches the space of player’s strategies and prunes as many branches as possible.
For that, it needs a fast algorithm for computing a tight upper bound on the expected utility
of the leader. We will therefore present two variants of a simplified LP created from the MILP
algorithm by relaxing some constraints. Given a sub-game of Stackelberg normal-form game
with sequential strategies (NFGSS), these upper bound algorithms yield a reasonable upper
bound of leader’s (agent committing himself to a strategy) utility for this sub-game.



Chapter 2

Game theory

Game theory is a mathematical discipline describing interaction of two or more agents solv-
ing a given problem (for the rest of the work reffered to as the game) [4]. We will focus
on non-cooperative game theory, which means that every agent (often referred to as player)
is only concerned about his outcome. The outcome of the game is typically modeled as a
utility function.

2.1 Utility and utility function

Formally, utility for a player p is any complete transitive relation � over outcomes of the
game such that these outcomes can be partially ordered using � [4]. For two outcomes a, b
and relation �, we say that:

• p prefers outcome a to outcome b, if a � b and not b � a

• p is indifferent between outcomes a, b, if a � b and b � a

For the rest of this work, we will use only following concept. A utility function up : O 7→ R
(where O is the set of possible outcomes of the game) evaluates every outcome for player p
with a real number. Player p then measures his utility using relation ≥ on these numbers.

In non-cooperative game-theory, player p seeks to maximize his utility, that means to
reach such an outcome a, for which no reachable outcome b is strictly preferred to a. In
terms of a utility function, it means to reach a reachable outcome with the highest value
of utility function. Generally, this is not the outcome with the highest utility value of all
outcomes, because this outcome might not be reachable due to the actions of the other
players (that means that other players will play - in pursue of maximizing their utility value
- such actions, that will make reaching this outcome impossible).

Utility values for the outcomes are usually represented by payoff matrix M , an n-
dimensional matrix, such that M(s1, ..., sn) is a tuple (u1(o), ..., un(o)), where o is outcome
of the game, in which player 1 played strategy s1, player 2 played s2, ... and player n played
strategy sn. This means, that outcome o yields utility value of u1(o) for player 1, u2(o) for
player 2 etc.

3



4 CHAPTER 2. GAME THEORY

c d
a 2;3 1;0
b 0;1 1;1

Example of a payoff matrix:
Let us assume for the rest of the work, that player 1’s actions are equivalent to rows and

player 2’s to columns. In this example player 1 can play actions a or b, while player 2 can
play c or d. When player 1 plays a and 2 plays c, an outcome is reached, in which player 1
gets utility equal to 2 and player 2 gets utility equal to 3.

2.2 Actions and strategies

An action performed by a player in a state of the game advances the game to another state
(e.g., in chess, a state is a position of figures on a chess-board; an action - moving one piece
changes the position, creating another state). In some games, players act simultaneously
and the resulting state depends on the combination of actions of all players (rock, paper,
scissors). In other games players choose actions sequentially and each action moves game
to another state (chess). An action taken in a state of the game will definitely yield a new
state, but there are games, in which that state is not uniquely determined, instead of which
the actions leads to a probability distribution over several possible states (often referred to
as stochastic actions, or having the element of nature).

A strategy of a player is the probability distribution over all possible actions for every
state of the game, in which this player takes action.

The simplest way to create a strategy is to choose one action for every state and always
play this action (with probability 1). This is called a pure strategy.

The more general concept means to choose the decision in every state randomly depending
on a probability distribution over all actions available in that state. This is called a mixed
strategy.

For every mixed strategy s of player p, we define support of s as the set of pure strategies,
that are played in s with non-zero probability. Let us denote Sp set of all possible strategies
for player p.

Set of strategies R = {s1, s2, ..., sn}, where sp is a strategy (mixed or pure) for player
p, is called a strategy profile. Let us denote the set R−p = {s1, s2, ..., sp−1, sp+1, ..., sn} as
strategy profile without player p’s strategy and the whole strategy profile as R = (R−p, sp).

Because strategies with random element (mixed strategies or stochastic actions) may
yield different utility for a player every time they are played, we will need to consider this
fact in the utility function. For these strategies, we will define the value of the utility function
as:

up(sp, R−p) =
∑

o∈O
Psp,R−p(o) N(o) up(o)

where

• sp is strategy of player p, R−p is strategy profile without player p’s strategy.
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• up(sp, R−p) is the utility function of player p, strategies sp and R−p

• O is set of possible outcomes

• Psp,R−p(o) is the probability that outcome o will be reached when player p plays strategy
sp and all other players play their strategies from R−p

• C(o) is the probability that o will be reached due to the stochastic actions and it is
equal to the product of the probabilities of actions needed to reach o, assuming all
players played their actions corresponding to history of o.

• up(o) is value of utility function for outcome o and player p.

up(sp, R−p) is equal to the expected value of probability distribution over utilities of possible
outcomes given the mixed strategy sp and stochastic actions and is calculated as average
utility value yield by this strategy profile.

2.2.1 Best response and Nash equilibrium

Consider player p, his strategy sp and strategy profile without p’s strategy
R−p = {s1, s2, ..., sp−1, sp+1, ...sn}. If for every (generally mixed) strategy of player p (denote
it s′p) is up(sp, S−p) ≥ up(s

′
p, R−p), we say that sp is player p’s best response to S−p [4].

Usually, best response to a given set of strategies of other players is not unique.

Strategy profile R = (s1, ..., sn) is called Nash equilibrium if for every player p is sp p’s
best response to R−p.

2.3 Stackelberg games

In Stackelberg games, we seek a different solution concept called Stackelberg equilibrium. It is
different in terms of computing strategies and possible outcomes. In the following paragraph,
we will describe main difference between Stackelberg and the other games. From now on,
we will consider game of only two players (it can be extended to n-player case; e.g. see [7]).

We have so far assumed, that all the players have the same role in the game and the
same possibilities. For some problems, this is not exactly desired assumption. In Stackelberg
games, one player is called the leader while the other one is called the follower. We will use
index 1 for the leader, 2 for the follower and we will denote S1 set of strategies of the leader
and similarly S2 strategies of the follower. Before the beginning of the game, the leader is
forced to commit himself to a strategy he will play, the follower observes this commitment
and plays his best response to the leader’s committed strategy.
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2.3.1 Strong Stackelberg equilibrium

We now define Strong Stackelberg equilibrium (SSE). In this concept, the leader knows that
follower will be playing his best response to whichever strategy the leader will commit to.
Therefore, leader needs to commit himself to such a strategy, which will with it’s best
response from the follower yield maximal utility for the leader. We assume, that the follower
prefers outcome with higher utility value of the leader over the outcome with lower utility,
assuming that both outcomes yield the same utility value for the follower. Formally, let us
denote K the set of all possible strategy profiles for both players (K = {(s1, s2)|s1 ∈ S1, s2 ∈
S2}), K∗ ⊆ K the set of all strategy profiles, in which strategy of the follower is a best
response to leader’s strategy (K∗ = {(s1, s2)|s1 ∈ S1, s2 ∈ S2

∗(s1)}, where S2∗(s1) ⊆ S2
is set of follower’s best responses to s1), U1 : K 7→ R leader’s utility function. Strong
Stackelberg equilibrium is any strategy profile s, such that s = argmax

s∈S∗
U1(s), which means,

that leader is playing such strategy, which - when combined with it’s best response played
by the follower - yields the highest utility value for the leader.

The following example [3] shows, that Nash and Stackelberg equilibrium are generally
not the same. Given that both players move simultaneously, the only Nash equilibrium will
be reached - player 1 plays a and player 2 plays c. However, if player 1 is able to commit
himself to a strategy first, the Stackelberg equilibrium will be reached - 1 plays a or b with
probability 0.5 and 2 plays d.

c d
a 2;1 4;0
b 1;0 3;2

Since a mixed strategy s2 of the follower is a probability distribution over his pure
strategies and for a fixed leader’s strategy s1 the value of U1 is given by the same probability
distribution over U1 of s1 and those pure strategies, it is clear, that U1(s1, s2) will be always
lesser or equal than U1(s1, s

′
2), where s′2 is such pure strategy used in s2, that yields maximal

U1(s1, s
′
2). Therefore, at least one SSE exists (and it always exists [10]), such that follower

plays a pure strategy. That is very helpful when computing SSE, as the leader can consider
only follower’s pure strategies, for every such strategy find his own strategy so that this
strategy profile is element of S∗ and then select the one that yields maximal utility for him.

Special case of Stackelberg games are Bayesian Stackelberg games [3], in which the leader
doesn’t exactly know, which follower type he is facing - there is a finite set of follower types,
each of them has different utility function, and known probability distribution over follower
types occurrences. That can be solved by setting utility values for all outcomes equal to sum
of equivalent utility values multiplied by probability of equivalent follower type’s occurrence
over all follower types. Computation of SSE in Bayesian Stackelberg game is, however, an
NP-hard problem [3].
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2.4 Game classification based on utility dependence

Since every player is trying to maximize his utility, it is clear, that player interactions and
behavior will reflect the dependencies between utilities of players in possible terminal states.
We will describe several common categories.

2.4.1 Constant-sum games

A Game of two players, in which exists a real constant q, such that for every outcome of the
game (terminal states of a game) the sum of utilities of both players is equal to q, we talk
about constant-sum game.

Example of a constant-sum game with q = 2:

c d
a 1;1 0;2
b 2;0 3;-1

If q = 0, we talk about zero-sum game. The behavior of agents in zero-sum games is
strictly competitive. However, since adding a real constant to utility value of every outcome
doesn’t change the optimal strategy, every constant-sum game can be modified to a zero-sum
game and vice versa. Therefore, agents will behave strictly competitive in every general-sum
game. Rock, paper, scissors as an example of zero-sum game:

rock paper scissors
rock 0;0 -1;1 1;-1
paper 1;-1 0;0 -1;1
scissors -1;1 1;-1 0;0

2.4.2 General-sum games

A general-sum game is such game, in which there is no obvious dependence between utilities
of different players in different outcomes. We cannot presume cooperative or competitive
behavior of agents, only that they will maximize their utility.Example of strictly cooperative
general-sum game:

c d
a 4;3 2;2
b -1;0 3;1
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2.5 Game classification based on representation

Representation of the game is a mathematical model, in which the game can be described
and solved. Obviously, more complicated games will need more complex and more difficult
model to represent them. We will describe several most frequently used representations.

2.5.1 Normal-form games

Normal-form game is the simplest form of game. In this model, every player chooses one
pure strategy available for him to play and once all players have made their actions, each of
them gains an utility depending on combination of those actions. Formally, game in Normal
form is a tuple (N,A, u), where

• N is a set of 2 players (agents), in this work indexed by p.

• A = A1×A2× ...×An is a space of actions, Ap refers to possible actions of p-th player.
Ap also corresponds to p’s set of pure strategies.

• u is a tuple (u1, u2, ..., un), where up : A 7→ R is a utility function of p-th player.

The "Rock, paper, scissors" example used above to present a zero-sum game is also a
normal form game.

The algorithm for finding SSE in normal-form games [1] consists of computing one linear
program for every pure strategy of the follower. Every linear program computes a strategy
profile, in which strategy of the leader is optimal, such that the follower’s fixed pure strategy
is best response to strategy of the leader. From those strategy profiles computed by the
linear programs, the one with the highest expected utility of the leader is chosen.

2.5.2 Extensive form games

Extensive-form games are used to effectively model finite sequential games, allowing stochas-
tic actions, strategies of more than one action and imperfect observation of players. Formally,
the game in the extensive form is a tuple (N,H,Z,A, ρ, u, C, I) , where

• N is a set of 2 players (agents) indexed by p.

• H is a finite set of states of the game, usually represented by a game tree. Each state
is unique and holds information about all actions taken by all players (plus Nature) so
far.

• Z ⊆ H, is a set of terminal states of the game. By reaching any terminal state, the
game ends and each player is given his utility value, depending on which terminal state
was reached.

• A is set of all actions. Mostly, we will care just about a subset of actions available for
a player acting in state h ∈ H. This subset will be denoted as A(h).
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• ρ : H 7→ N ∪ {r} is a function, which assigns each state of the game a player acting in
it. r represents the element of Nature, meaning that if ρ(h) = r, one possible action
will be chosen in state h due to a known probability distribution over A(h).

• u is a tuple (u1, u2, ..., un), where up : Z 7→ R is a utility function of p-th player.

• C : H 7→ [0, 1] is a function assigning each h ∈ H a probability that state h will be
reached, assuming that all players will choose actions corresponding to history of h.
The value of C(h) is a product of probabilities of actions taken by element of nature
in every state in history of h needed to reach h.

• I is a tuple (I1, I2, ...., In) set of n sets of states used to model imperfect information
in the game. Set Ip represents information that player p has in the following way:
States of the game H are divided into sets Ipi , such that in each set Ipi , there is at
least one element of H and every h ∈ H belongs to exactly 1 set Ipi . For each state in
set Ipi , player is not able to distinguish this state from any other state in Ipi . In other
words, set Ipi includes all states, whose history the player p cannot distinguish due to
imperfect observation.

A pure strategy of player p in an extensive-form game corresponds to assigning one action
a ∈ A(h) to every state h ∈ H, in which player p takes actions, such that a will be played
every time h is reached. The same action is assigned to every state of the same information
set.

We will restrict only on games with perfect recall, which means that every player remem-
bers his previous actions throughout the game and never forgets any information. Formally
[4], player p has perfect recall, if for every two states hp, h′p ∈ H, that are in the same
information set Ipi of player p, for any path (from the root state of the game h0 to hp)
h0, a0, h1, a1, ..., hm, am, hp and any path (from h0 to h′p) h0, a′0, h′1, a′1, ..., h′m′ , a

′
m′ , h

′
p (where

hj are states of the game and aj actions available in hj), it must be the case that:

• m = m′

• for all 0 ≤ j ≤ m, if player p takes action in hj , then hj , h′j are in the same information
set Ipk of the player p and aj = a′j (player p takes the same action in hj and h′j).

Example of game in the extensive form are card games like poker or dices games like
Backgammon.

2.5.3 Sequence form

Sequence form of the game [2] is a compact representation of mixed strategies in extensive-
form games. Let us denote σp a sequence of actions taken in history of a state h by player
p and Σp the set of all sequences of player p, empty sequence will be denoted as ∅. The
history of h can be represented as (σ1, σ2, ..., σn, σr) - a tuple of sequences played by each
player and the Nature. If sequence σp doesn’t lead to a terminal state, it can be expanded
by action ap (available to player p in state h, corresponding to σp, assuming that p takes an
action in h) to sequence σ′p = σpap. All states in one information set Ipi of player p share
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the same sequence of his actions. Every sequence σp uniquely defines an information set for
player p (because all states in information set of player p share the same sequence, all the
states that contain σp will form this information set). A mixed strategy in sequence form
game are usually represented as probability distribution over sequences of the player. We
will call this probability distribution a realization plan of the player.

Algorithm that finds SSE in EFG c5 exploits representation of the game as Sequence
form. The solution consists of solving a MILP, which has a linear size to the size of the game
tree and the only integer variables are binary (0 or 1). Number of these binary variables is
equal to the number of follower’s possible sequences of actions.



Chapter 3

Computing Strong Stackelberg
equilibrium in NFGSS

We will focus on Stackelberg normal-form games with sequential strategies for the rest of
this work. In the first part, we will briefly introduce this class of games.
In the second part, we will present two algorithms for computing SSE for normal-form games
with sequential strategies.
In the final part of this Chapter, we investigate the possibility for applying iterative algo-
rithms to compute SSE in this class of games. As described in existing iterative algorithm
for normal-form games [12], one of the most important problems, which is yet to be solved,
is quick computation of effectively tight upper bound. We will present two algorithms to
compute upper bound for Stackelberg NFGSS.

3.1 Normal-form games with sequential strategies

Despite their title, normal-form games with sequential strategies [6] are used to model
much more complicated games than normal-form games. Actually, they are more similar
to extensive-form games than normal-form games. This representation is used as a simpli-
fication of the extensive-form games, because computing optimal Stackelberg strategies in
extensive form game is an NP-hard problem [11]. Normal-form games with sequential strate-
gies (NFGSS) have terminal and non-terminal states and element of nature. NFGSS is often
used to model such games, in which players have no information about the actions of the
opponents until the terminal state is reached. To model such games, we use an acyclic finite
Markov decision process (MDP) for every player instead of one big game tree describing all
players together. Every state in MDP of player p represents one of his information sets. We
will use the following notation:

• Hp is set of all states in player p′s MDP (his information sets).

• Ap is set of actions in p′s MDP. However, we will often use Ap for a function, which
for every state hp ∈ Hp refers to actions available to p in state hp (Ap(hp) ⊆ Ap).

11
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• C : Hp × Ap ×Hp 7→ [0, 1] is function used to represent stochastic actions. For states
hp1 , hp2 ∈ Hp and action a ∈ Ap(hp1) is C(hp1 , a, hp2) equal to the probability, that
hp2 will be reached by playing a in hp1 .

• up is a utility function of player p. It can be assigned in some state hp ∈ Hp when action
ap ∈ Ap(hp) is played and other player (−p) plays action a−p in state h−p (given that
a−p ∈ A−p(h−p)) and we will denote it up((hp, ap), (h−p, a−p)). For a mixed strategy
profile (sp, s−p) (sp is a strategy of player p and s−p is a strategy of players −p) we
define up(sp, s−p) as∑

Hp×Ap

∑
H−p×A−p

sp(hp, ap) s−p(h−p, a−p) up((hp, ap), (h−p, a−p))

where sp(hp, ap) is a probability that state hp will be reached and then ap will be played
by p by following sp and s−p(h−p, a−p) is probability that other players will reach their
respective states from h−p and then play actions from a−p following strategies from
s−p.

Pure strategy of player p in NFGSS is defined as choosing one action for every state of p′s
MDP, such that this action will be played every time this state is reached. Mixed strategy
assigns a probability distribution to every state of p′s MDP over actions available in that
state.

There are two major differences between previous game representations and NFGSS.
Most importantly, utility value for each player is defined for every combination of players
actions instead of combination of terminal states and therefore, each player can obtain some
utility value every time he plays an action.

The other major difference is, that in MDP, one state can be reached by different action
sequences (MDP is a graph, generally not a tree). This, however, prevents us from using
functions like C(h) from extensive-form game (probability, that state h will be reached due
to Nature, assuming that all actions needed to reach h were played), because the assumption
of perfect recall does not hold in NFGSS.

This is useful to model such games, in which reaching the same state can yield different
utility values for different sequences leading to this state. MDPs are usually significantly
smaller than any game-tree representation would be, allowing us to model larger games.
Also, NFGSS allows simpler strategy representation than extensive-form games. Terminal
states are used to ensure that the game is finite, as there is no action available for any player
in a terminal state.

In NFGSS, there is one leader indexed with 1, his MDP containing set of his states H1,
set of strategies S1, set of his actions A1 (and A1(h1) actions available in h1), one follower
indexed with 2, his set of states H2 in his MDP, set of his strategies S2 and set of his actions
A2 (and A2(h2) actions available in h2).

LP for NFGSS [6] finds a Nash equilibrium for zero-sum games in NFGSS. This algorithm
exploits the fact, that both players have the same expected utility values in the root states of
their MDPs in equilibrium strategies and that the minimizing player (the follower in terms
of Stackelberg games) plays the action with minimal expected utility in every state of his
MDP. Using those facts, the LP is formed and by solving it, we find a Nash equilibrium.
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Nash and Stackelberg equilibria coincides in zero-sum games, therefore, this algorithm can
be used to find SSE in zero-sum NFGSS.

3.2 Strong Stackelberg equilibrium in normal-form games with
sequential strategies

In the first part of this Section, we will focus on finding SSE in NFGSS. There are two
standard approaches for computing SSE that we will apply for NFGSS: The first is to solve
the game by computing multiple linear programs (one for each pure strategy of the follower
[1]), the other is to formulate and compute a MILP [3] [5].

3.2.1 Multiple LP’s representation

The main idea of this approach is finding a mixed leader’s strategy s1 for every pure strategy
s2 of the follower, so that s2 is the best response to s1 and the expected utility of the leader
is maximal. That means solving a LP for every pure strategy of the follower. Since the
number of pure strategies is exponential based on the strategy length (number of actions in
sequences leading to terminal states), we will need to solve exponentially many LPs consisting
of exponentially many constraints.

Assuming a fixed strategy of the follower, let us denote:

• P1(h1) the probability that state h1 ∈ H1 will be reached and P1(h1, a1) the probability
that h1 will be reached and action a1 ∈ A1 will be then played (assuming a1 ∈ A1(h1),
otherwise it is always equal to 0). These probabilities form the mixed strategy we are
computing.

• P2(h2), P2(h2, a2) are similar probabilities for the follower and since the follower’s strat-
egy is fixed, these probabilities are constants. Follower strategy is best response to the
leader’s strategy we are computing.

• S′2 = {(h2, a2)|a2 ∈ A2, h2 ∈ H2, P2(h2) = P2(h2, a2)}. That is set of states and
corresponding actions used in fixed pure strategy of the follower (best response to
leader’s strategy).

• vh2 is the expected utility of the follower, given that he will reach state h2 ∈ H2.

• h1r is the leader’s root state (state in which he will start the game). Similarly, h2r is
follower’s root state.

• ξ(h2,a2) is a slack variable for state h2 ∈ H2 and action a2 ∈ A2. It ensures, that
follower’s fixed strategy is the best response to leader’s strategy.

• Zp ⊂ Hp is set of terminal states of player p.

• C(hp, ap, h
′
p) the probability that player p reaches state h′p by playing action ap in state

hp.
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Network-flow constraints is set of constraints ensuring that probability of reaching a state
is equal to sum of probabilities of actions available in that state and that root state of a
MDP is reached with probability of 1.

Stackelberg strategies are calculated by LPs in this form:

max
∑

(h1,a1)∈H1×A1

∑
(h2,a2)∈S′2

P1(h1, a1) P2(h2, a2) u1((h1, a1), (h2, a2)) (1)

s.t.

P1(h1
r) = 1 (2)

P1(h1) =
∑

h′1∈H1

∑
a′1∈A1(h′1)

P1(h
′
1, a
′
1) C(h′1, a

′
1, h1) ∀h1 ∈ H1 \ {h1r} (3)

P1(h1) =
∑

a1∈A1(h1)

P1(h1, a1) ∀h1 ∈ H1 \ Z1 (4)

vh2 = ξ(h2,a2) +
∑

(h′2,a
′
2)∈H2×A2

vh′2 C(h2, a2, h
′
2) +

∑
(h1,a1)∈H1×A1

P1(h1, a1) u2((h1, a1), (h2, a2))

∀(h2, a2) ∈ (H2 \ Z2)×A2 (5)

P1(h1, a1) ≥ 0 ∀(h1, a1) ∈ H1 ×A1 (6)
ξ(h2, a2) ≥ 0 ∀(h2, a2) ∈ H2 ×A2 (7)
ξ(h2, a2) = 0 ∀(h2, a2) ∈ S′2 (8)

v(h2) = 0 ∀h2 ∈ Z2 (9)

The mathematical program works as follows: Leader is trying to maximize his utility,
which is described by a function (1). Constraint (2) means that the leader reaches his
root state with probability of 1. Constraints (3) and (4) are the network-flow constraints.
Constraint (3) ensures, that the probability of reaching state h for the leader is equal to
the sum of probabilities of playing an action in some state leads to h, over all states and
actions. Constraint (4) forces the probability of reaching h for the leader to be equal to
the sum of probabilities of playing an action over all actions available in h. Constraint
(5) describes expected utility of the follower for every follower’s state. Non-negative slack
variable (constraint (7)) here serves to transform inequation into an equation and by being
equal to 0 (constraint (8)) for actions of follower’s fixed pure strategy (S′2), it restricts leader’s
searched strategy, such that S′2 is best response to this strategy. Constraint (6) ensures (along
with (2) and network-flow conditions), that all probabilities have their values between 0 and
1. Constraint (9) ensures, that follower’s expected utility of his terminal states is equal to 0.

Example: Let us solve the following simple example (see Figure 4.1): leader’s MDP has 6
states
H1 = {h1r, h11 , h12 , h13 , h14 , h15} and he can play actions A1 = {a11 , a12 , a13 , a14 , a15},
where actions a11 , a12 can be played in h1r, C(h1

r, a11 , h11) = 0.85, C(h1
r, a11 , h12) = 0.15,

C(h1
r, a12 , h12) = 1.
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Follower’s MDP is deterministic (no stochastic actions) and consists of 7 states
{h2r, h21 , h22 , h23 , h26 , h25 , h26}, he can play actions A2 = {a21 , a22 , a23 , a24 , a25 , a26}.

Any combination (x1, x2), x1 ∈ {(h11 , a13), (h11 , a14), (h12 , a15)}, x2 ∈ {(h21 , a24), (h22 , a25), (h23 , a26)}
yields utility for both players described by a matrix bellow, any unlisted combination yields
utility equal to 0 for both players:

Figure 3.1: Example: MDPs of both players

Payoff matrix:

(h21 , a24) (h22 , a25) (h23 , a26)

(h11 , a13) 0;-1 2;1 1;-2
(h11 , a14) -1;3 -3;2 3;0
(h12 , a15) 1;0 0;-1 2;2

Before we will create LPs solving this problem, let us denote a set of several constraints
as B. Since many of these constraints will be the same for all LPs, B will be set of constraints
used in every LP. In those constraints, setH1×A1 has elements (h1

r, a11), (h1
r, a12), (h11 , a13),

(h11 , a14), (h12 , a15), setH2×A2 consists of (h2
r, a21), (h2

r, a22), (h2
r, a23), (h21 , a24), (h22 , a25),

(h23 , a26), set Z1 has elements h13 , h14 , h15 and similarly set Z2 consists of h24 , h25 , h26 :
B = {

P1(h1
r) = 1

P1(h11) = 0.85 P1(h1
r, a11)

P1(h12) = 0.15 P1(h1
r, a11) + P1(h1

r, a12)

P1(h1
r) = P1(h1

r, a11) + P1(h1
r, a12)

P1(h11) = P1(h11 , a13) + P1(h11 , a14)
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P1(h12) = P1(h12 , a15)

P1(h13) = P1(h11 , a13)

P1(h14) = P1(h11 , a14)

P1(h15) = P1(h12 , a15)

P1(h1, a1) ≥ 0 ∀(h1, s1) ∈ H1 ×A1

vh2
r = ξ(h2

r,a21 )
+ vh21

vh2
r = ξ(h2

r,a22 )
+ vh22

vh2
r = ξ(h2

r,a23 )
+ vh23

vh21
= ξ(h21 ,a24 )

− P1(h11 , a13) + 3 P1(h11 , a14) + vh24

vh22
= ξ(h22 ,a25 )

+ P1(h11 , a13) + 2 P1(h11 , a14)− P1(h12 , a15) + vh25

vh23
= ξ(h23 ,a26 )

− 2 P1(h11 , a13) + 2 P1(h12 , a15) + vh26

ξh2 ≥ 0 ∀(h2, a2) ∈ H2 ×A2

vz2 = 0 ∀z2 ∈ Z2 }

There are 3 pure strategies of the follower, since for h21 , h22 , h23 , there is always only 1
possible action, so pure strategies differ only in action taken in h2r. Let us denote S2p1 a
strategy with a21 taken in h2r, S2p2 a strategy with a22 taken in h2r, S2p3 a strategy with
a23 taken in h2r.We will use following constants for these strategies:

S2p1 S2p2 S2p3
P2(h2

r) 1 1 1
P2(h2

r, a21) 1 0 0
P2(h2

r, a22) 0 1 0
P2(h2

r, a23) 0 0 1
P2(h21) = P2(h21 , a24) 1 0 0
P2(h22) = P2(h22 , a25) 0 1 0
P2(h23) = P2(h23 , a26) 0 0 1

P2(h24) 1 0 0
P2(h25) 0 1 0
P2(h26) 0 0 1

We will use these constants to calculate the objective function for each LP. The objective
function has following general form:

P1(h11 , a13) (0 P2(h21 , a24) + 2 P2(h22 , a25) + 1 P2(h23 , a26))+

P1(h11 , a14) (−1 P2(h21 , a24)− 3 P2(h22 , a25) + 3 P2(h23 , a26))+

P1(h12 , a15) (1 P2(h21 , a24) + 0 P2(h22 , a25) + 2 P2(h23 , a26))
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We will now present a LP for every pure strategy of the follower. See Table 3.1. for
results of those LPs.

LP for S2p1 will have following form:

max − 1 P1(h11 , a14) + 1 P1(h12 , a15)

s.t.
B

ξ(h2
r, a21) = 0

ξ(h21 , a24) = 0

LP for S2p2 will have following form:

max 2 P1(h11 , a13)− 3 P1(h11 , a14)

s.t.
B

ξ(h2
r, a22) = 0

ξ(h22 , a25) = 0

LP for S2p3 will have following form:

max 1 P1(h11 , a13) + 3 P1(h11 , a14) + 2 P1(h12 , a15)

s.t.
B

ξ(h2
r, a23) = 0

ξ(h23 , a26) = 0

S2p1 S2p2 S2p3
P1(h11) 0.5333 0.85 0.4
P1(h12) 0.4667 0.15 0.6

P1(h1
r, a11) 0.6275 1 0.4706

P1(h1
r, a12) 0.3725 0 0.5294

P1(h11 , a13) = P1(h13) 0.3333 0.85 0
P1(h11 , a14) = P1(h14) 0.2 0 0.4
P1(h12 , a15) = P1(h15) 0.4667 0.15 0.6

Expected leader’s utility 0.2667 1.7 2.4

Table 3.1: Results of the example

This mixed strategy yields expected utility equal to 2.4.
Strategy for S2p3 yields maximal expected utility for the leader, so optimal strategy,

which will leader commit to, is playing a11 in h1r with probability 0.4706, a12 in h1r with
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probability 0.5294, a14 in h11 and a15 in h12 .

As stated above, those LPs will solve the problem, but there will be exponentially many
LPs (one for every pure strategy of the follower) and therefore this solution will be applicable
only on small games. To improve this solution, we can reformulate the problem by using
MILP.

3.2.2 MILP representation

The main idea for reformulation the multiple LPs algorithm as a MILP is introducing binary
variables P2 : H2 × A2 7→ {0, 1}, which for state h2 ∈ H2 and action a2 ∈ A2 represents the
probability that h2 will be reached and a2 played. We will again use the same network-flow
constraints and slack variables. Leader is again forced to play such mixed strategy, to which
the follower’s strategy is the best response. The difference is that we do not have a fixed
follower’s strategy and we need to represent it in the program. We cannot use constants (as
before) forcing slack of one strategy to be equal to 0 directly. We exploit the binary variables
P2(h2, a2), which are equal to 1 for every (h2, a2) used in follower’s computed strategy and
we force slack variables of these states and actions to be equal to 0. For this representation,
let us assume that MDP of the follower is deterministic, otherwise (even for pure strategies)
the probabilities of actions in this strategy could be a real number between 0 and 1, making
it impossible to use binary variables and the solution would be more complicated (it would
result in a mixed integer quadratic program - MIPQ).

Since the strategy of the follower isn’t fixed, we will also have to use different objective
function. The utility of the leader depends on the probabilities of states and actions of
both players, therefore we introduce a new variable P : H1 × A1 ×H2 × A2 7→ [0, 1], which
will represent a joint probability, that both leader reaches state h1, plays action a1 and
follower reaches state h2 and there he plays action a2. Similarly, we will use also variable
P : H1×H2 7→ [0, 1], representing probability that leader reaches state h1 and follower state
h2. We will create new network-flow constraints for these variables as well. It is obvious,
that P (h1, a1, h2, a2) = P1(h1, a1) P2(h2, a2), but that interpretation would result in MIQP,
which is much more difficult to compute. Therefore, we will use variable P (h1, a1, h2, a2)
and force it to be equal to P1(h1, a1) P2(h2, a2) by using network-flow linear constraints and
the assumption, that follower actions are deterministic. With all those new variables, we can
formulate MILP solving the problem of finding SSE for NFGSS:

max
∑

(h1,a1,h2,a2)∈Z

P (h1, a1, h2, a2) u1((h1, a1), (h2, a2)) (10)

s.t.

vh2 = ξ(h2,a2) +
∑

(h′2,a
′
2)∈H2×A2

v(h′2,a′2) C(h2, a2, h
′
2) +

∑
(h1,a1)∈H1×A1

P1(h1, a1) u2((h1, a1), (h2, a2))

∀(h2, a2) ∈ (H2 \ Z2)×A2 (11)
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Pp(hp
r) = 1 ∀p ∈ {1, 2} (12)

Pp(hp) =
∑

h′p∈Hp

∑
a′p∈Ap(h′p)

Pp(h
′
p, a
′
p) C(h′p, a

′
p, hp) ∀p ∈ {1, 2}, ∀hp ∈ Hp \ {hpr} (13)

Pp(hp) =
∑

ap∈Ap(hp)

Pp(hp, ap) ∀p ∈ {1, 2}, ∀hp ∈ Hp \ Zp (14)

P2(h2, a2) ∈ {0, 1} ∀(h2, a2) ∈ H2 ×A2 (15)

0 ≤ ξ(h2,a2) ≤ (1− P2(h2, a2)) M ∀(h2, a2) ∈ H2 ×A2,M � 1 (16)

0 ≤ P (h1, h2) ≤ P1(h1) ∀h1 ∈ H1, h2 ∈ H2 (17)
P (h1, h2) ≤ P2(h2) ∀h1 ∈ H1, h2 ∈ H2 (18)

0 ≤ P (h1, a1, h2, a2) ≤ P1(h1, a1) ∀(h1, a1, h2, a2) ∈ H1 ×A1 ×H2 ×A2 (19)
P (h1, a1, h2, a2) ≤ P2(h2, a2) ∀(h1, a1, h2, a2) ∈ H1 ×A1 ×H2 ×A2 (20)

P (h1
r, h2

r) = 1 (21)

P (h1, h2) =
∑

a1∈A1(h1)

∑
a2∈A2(h2)

P (h1, a1, h2, a2) ∀h1 ∈ H1 \ Z1, h2 ∈ H2 \ Z2 (22)

P (h11 , h21) =
∑

(h1,a1,h2,a2)∈H1×A1×H2×A2

P (h1, a1, h2, a2) C(h1, a1, h11) C(h2, a2, h21)

∀h11 ∈ H1 \ h1r, h21 ∈ H2 \ h2r (23)

vh2 = 0 ∀h2 ∈ Z2 (24)

Mathematical program works as follows: Function (10) is the objective function we are
trying to maximize and it is equal to the expected value of utility for the leader. Constraint
(11) is similar to (5) in the formulation for multiple LPs and again it is the follower’s expected
value, given that state h2 is reached. Maximal expected value of utility is reached when the
slack variable is equal to 0, which means that the follower’s strategy, for which every state
and action played in this strategy has slack variable equal to 0, is best response to leader’s
strategy. Constraints (12), (13) and (14) are network-flow constraints. Constraint (12)
ensures that both players will definitely start the game in their root state. Constraint (13)
forces the probability that state h will be reached to be equal to sum of probabilities that by
playing an action in other state will lead to s, over all states and actions (13). Constraint
(14) describes, that some action needs to be played in the state h if it is reached. Constraint
(15) defines variable P2 as stated above. Constraint (16) modifies (7) and (8) from multiple
LPs solution, stating that for those states actions, which yield value of P2 equal to 1, is their
slack variable equal to 0 and this pure strategy is therefore (as was described in explanation
of (11)) best response to leader’s computed strategy. It is advisable to use reasonably low
constant M , such that it does not limit slack variables. Too high value of M leads to
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longer computation and numeric errors. We used M equal to the product of maximal utility
value of follower’s actions and the length of strategies (number of actions in the longest
sequence). Constraints (17), (18), (19), (20) restrict variables for state (and action) tuples
with an upper bound, while lower bound is provided by network-flow Constraints for those
tuples (21), (22), (23). C(h2, a2, h21) in Constraint (23) is always equal to 0 or 1, because
the follower is deterministic. Constraints (17) and (19) also force all variables representing
probabilities to be non-negative, which, along with network-flow, is ensuring, that they really
are probabilities. Constraint (24) is similar to (9).

Note that while we define utility as well as create variables P (h1, a1, h2, a2) and P (h1, h2),
for every tuple (h1, a1, h2, a2) ∈ H1 × A1 × H2 × A2, there is need to do that while com-
puting the MILP. We can restrict the MILP only on those tuples, for which there exists
a player p, such that up(h1, a1, h2, a2) 6= 0, plus every tuple needed for network-flow con-
straints to be closed on successors and predecessors. That means, that for every state tuple
(h1, a1, h2, a2) ∈ H1 × A1 × H2 × A2, every h′1 ∈ H1, h

′
2 ∈ H2, such that h′1 is a possible

successor of (h1, a1) and h′2 is possible successor of (h2, a2), there must exist a variable for
the tuple (h′1, h

′
2) (and similarly also variables for the predecessors must also exist). Other-

wise, network-flow constraints might contain non-existing variables. If these rules hold, we
can save a significant amount of memory-space and time, as there would quadratically many
variables in the game and even smaller games would be challenging to compute.

3.3 Computing upper bound for a sub-game

Both previous algorithms solve the game exactly, but they does not scale well for large
games. There is, however, another way to compute SSE in NFGSS. Double-Oracle algorithm
[6] solves this problem for zero-sum games by iterative computation of strategies for both
players, while it prunes strategies with low expected utility and expands ones with high
expected utility. For general-sum games, it needs a tight upper bound, that would be
reliable in all domains, calculated in short time for effective pruning (as e.g. in Bayesian
normal-form games in [12]). We present two ways to compute an upper bound (UB) for
Stackelberg NFGSS.

3.3.1 First variant

We want an LP for creating the upper bound, because while LP can be solved in polynomial
time, solving a MILP is a NP-complete problem. First idea of creating a LP computing the
upper bound is to use the MILP presented above and relax set of the constraints of the game.
There is no general rule to choosing these constraints, we are trying to find a reasonable
compromise between tightness of the upper bound and complexity of the computation.

Since we want to create a LP instead of MILP, the first approach is to linearize the MILP,
leaving out the binary variables P2(h2, a2) and relaxing all constraints containing them. The
only exception is Constraint (16), which was modified so that it doesn’t contain the binary
variable anymore. The upper bound is computed by following mathematical program:

max
∑

(h1,a1,h2,a2)∈Z

P (h1, a1, h2, a2) u1((h1, a1), (h2, a2)) (25)



3.3. COMPUTING UPPER BOUND FOR A SUB-GAME 21

s.t.
(11), (17), (19), (21), (22), (23), (24)

P1(h1
r) = 1 (26)

P1(h1) =
∑

h′1∈H1

∑
a′1∈A1(h′1)

P1(h
′
1, a
′
1) C(h′1, a

′
1, h1) ∀h1 ∈ H1 \ {h1r} (27)

P1(h1) =
∑

a1∈A1(h1)

P1(h1, a1) ∀h1 ∈ H1 \ Z1 (28)

0 ≤ ξ(h2, a2) ≤
∑

(h1,a1)∈H1×A1

(P1(h1, a1)− P (h1, a1, h2, a2)) M

∀(h2, a2) ∈ H2 ×A2,M � 1 (29)

P1(h1) =
∑

h2∈H2

P (h1, h2) ∀h1 ∈ H1 (30)

Variables P2(h2) and P2(h2, a2) and all constraints containing them were removed, every-
thing else remained unchanged, except for network-flow constraints, which are applied only
on the leader strategy (Constraints (26), (27), (28)). The only major change was between
constraints (16) and it’s counterpart (29). Assuming that (h2, a2) is played in follower’s
pure strategy (so no other action can be played in that state), following equation stands:
P1(h1, a1) = P (h1, a1, h2, a2)∀(h1, a1) ∈ H1 × A1. Therefore slack variables will still be
forced to be zero for that strategy of the follower. Constraint (30) ensures, that probability
of reaching leader’s state h1 is equal to sum of probabilities, that tuple of states (h1, h2) will
be reached over all corresponding follower states.

Note that space of values for each variable satisfying all constraints in this LP definitely
contains optimal solution of MILP representation and the objective function is the same
for both MILP and LP. Therefore, LP can’t yield lower optimal value than the MILP and
because of that, this LP indeed computes an upper bound for the game. Also, note that by
absence of binary variables, we no longer need the assumption of deterministic actions for
the follower.

Experiments showed, that this form of computing of the upper bound is not perspective,
as linearization (transformation removing the binary variables) of constraint (16) does not
force the follower to play his best response to leader’s strategy. Constraint (16) paired with
binary variables forced probabilities of all actions with non-zero slack variable to be equal
to 0. By transformation of this constraint to constraint (30), this assumption was lost, as
follower is no longer forced to play pure strategy. Therefore, even actions with non-zero
probability can have a non-zero slack and the follower can play any strategy. By maximizing
leader’s utility, this leads to both players cooperating to the leader’s benefit, resulting in the
upper bound being often equal to the highest possible leader’s utility. Therefore, the upper
bound is not tight at all. With that experience, we formulate the second form of computing
the upper bound.
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3.3.2 Second variant

In the second variant of computing of the upper bound, we again use the MILP described
above, but we will use another idea of forcing the follower to play his best response to
leader’s strategy. This idea is variant of approach used in [7] for normal-form games. We
force only the action with highest expected utility of the follower to be played in every
follower’s state. Because pure strategy in NFGSS corresponds to choosing one action in
every state of the MDP, playing the one with highest expected utility is best response to
leader’s strategy. Given a leader’s mixed strategy s1, let us assume follower’s non-terminal
state h2, actions A2(h2) available in h2 and action a2 ∈ A2(h2), such that expected utility
of playing a2 with leader playing s1 is greater or equal than expected utility of any other
a′2 ∈ A2(h2). We want only a2 to be played in h2 with non-zero probability. We formulate
one constraint for every tuple (a′2, a

′′
2) ∈ A2(h2) × A2(h2) as follows: expected utility of a′2

weighted by probability P2(h2, a
′
2) is greater or equal than expected utility of a′′2 weighted

by P2(h2, a
′
2). For a2 = a′′2, expected utility of a′′2 is greater or equal than expected utility of

any a′2 when both are weighted by the same probability. Therefore, P2(h2, a
′
2) must be equal

to 0 whenever a′2 6= a2, forcing both expected utilities to be equal to 0. The only action, that
can be played with non-zero probability, is a2. This fact forces the follower to play his best
response to s1 at the cost of quadratic number of constraints. In order to formulate the LP
computing the upper bound, we introduce variables v(h2,a2), representing follower’s expected
utility, assuming that state h2 is reached and then the action a2 is played, for every state
and action of the follower. The upper bound is computed by LP in following form:

max
∑

(h1,a1,h2,a2)∈Z

P (h1, a1, h2, a2) u1((h1, a1), (h2, a2)) (31)

s.t.
(17), (19), (21), (22), (23), (24), (26), (27), (28), (30)

vh2 =
∑

a2∈A2(h2)

v(h2,a2) ∀h2 ∈ H2 \ Z2 (32)

v(h2,a2) =
∑

(h1,a1)∈H1×A1

P (h1, a1, h2, a2)U2(h1, a1, h2, a2) +
∑

h′2∈H2

vh′2C(h2, a2, h
′
2)

∀(h2, a2) ∈ H2 ×A2 (33)

v(h2,a2) ≥
∑

(h1,a1)∈H1×A1

P (h1, a1, h2, a2)U2(h1, a1, h2, a
′
2) +

∑
h′2∈H2

vh′2C(h2, a
′
2, h
′
2)

∀(h2, a2) ∈ H2 ×A2 ∀a′2 ∈ A2(h2) (34)

This program works similarly to the previous one, but constraint (11) and (29) were
replaced by (32), (33), (34). Constraint (32) forces the expected utility of every follower’s
state to be equal to the sum of expected utilities of actions available in that state. Constraint
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(33) describes expected utility of follower’s actions. Constraint (34) ensures, that follower
plays his best response to leader’s strategy as was described above.

Similarly to the first variant of upper bound, the space of admissible values of variables
used in the objective function (which has the same form as objective function used in the
MILP) contains all elements of the space of admissible values from the MILP. Therefore
every feasible solution (including the optimal one) from the MILP is also feasible solution in
this program. This program computes an upper bound of the value of the game.



24 CHAPTER 3. COMPUTING STRONG STACKELBERG EQUILIBRIUM IN NFGSS



Chapter 4

Experiments

In this section, we will first describe the game used for testing of described algorithms, present
results of experiments and then compare those results to examine scalability of algorithms.
We will examine two settings. In the first setting, we want to test correctness of results
provided by the MILP, therefore we will compare it’s results to results of LP for NFGSS
using a zero-sum game. We will also compare both algorithms in terms of time needed to
compute a Strong Stackelberg equilibrium to see the practical difference between LP and
MILP.

The second setting consists of comparing both variants of upper bound algorithms to
MILP representation in terms of computation time and result value (tightness of the upper
bound) using a general-sum game.

All algorithms are deterministic, therefore every experiment was run just once, the dif-
ference in computation time between two runs of the same algorithm is marginal.

4.1 Transit Game

Transit game [6] (see Figure 4.1) is a game of two players (attacker and defender, in this case
the attacker is the follower and the defender is the leader) moving in a square grid (possible
actions in every node are: stay in the same field, move to neighboring field - it is possible to
move diagonally). The game ends after specified amount of actions have been played by each
player. The defender starts in his base - one node in the grid with coordinates given by the
game (in Figure 4.1 leader starts at the node marked as "base of the defender"), while the
attacker can start in any node of the first column that he chooses. The attacker’s goal is to
cross the grid (reach any field in the last column, in Figure 4.1 marked as "attacker’s goal")
without encountering the defender in the possibly lowest amount of steps. The attacker
receives a small negative utility for each action played. They encounter if both players play
actions leading to the same field, in which case the attacker receives a negative utility while
defender a positive utility. The defender’s goal is to encounter the attacker before he crosses
the grid and then return to his base (if he fails to return to his base by the end of the game,
he will receive large negative utility).
In the following experiments, we used two different grid sizes. In the first case, the grid with
size 3 × n was used and the length of strategies (number of steps) was set to n + 1. In the
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Outcome Utility value of the leader Utility value of the follower
Follower caught 1 -1
Follower reached -2 2

last column
A step 0.02 -0.02

Leader failed to -1000 1000
return to his base

Table 4.1: Utility values: zero-sum game used in experiments

second case, we used a 2 × n grid and n steps. As for the utility values, we used different
values to model two games, one being a zero-sum game and the other being a general-sum
game. Utility values for both games are described in Tables 4.1 and 4.2. The experiments
were run on a standard PC (dual-core Intel Core i5 460M 2.53 GHz, 4GB RAM), Java (build
1.8.0_31-b13) API of IBM Cplex Optimization Studio 12.4.0

Figure 4.1: Example of transit game

4.2 Zero-sum experiments

We use zero-sum game for this setting, because LP for NFGSS finds Nash equilibrium in
zero-sum games (and therefore SSE in zero-sum games), and both players have deterministic
actions. The purpose of this experiment is to prove correctness of the results provided by
the MILP representation. The result of the MILP should be the same as the one provide
by LP for NFGSS. Table 4.3 shows dependence of computing time on n and results of both
algorithms on a 3 × n grid and Table 4.4 shows similar outcomes for 2 × n grid. The item
"> 24 hours" means, that the computation was terminated after 24 hours.
The summarized dependence of computation time on amount of game states of experiments
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Outcome Utility value of the leader Utility value of the follower
Follower caught 1 -10
Follower reached -10 2

last column
A step 0 -0.02

Leader failed to -1000 0
return to his base

Table 4.2: Utility values: general-sum game used in experiments

n computation time computation time result of LP result
of LP for NFGSS of MILP for NFGSS of MILP

2 0.265 s 2.168 s -2 -2
3 0.256 s 742.720 s -1.4856 -1.4856
4 0.358 s > 24 hours -1.1237 N/A
5 0.436 s > 24 hours -1.0629 N/A

Table 4.3: Comparison of MILP and LP for NFGSS on a 3 × n grid

on both grids is shown in Figure 4.2. The number of game states is equal to the product
of width of the grid, n and number of states (e.g. 3 × n × (n + 1) for the first grid).
Both experiments proved, that MILP provides correct results, but for zero-sum games, LP
for NFGSS is significantly faster than the MILP. For grid with 8 nodes and maximum of 4
actions played in each sequence (32 states in each MDP) it took LP 0.374 seconds to find
the SSE, while MILP it took MILP more than 28 minutes to find the same solution.

4.3 General-sum experiments

We now turn to the general-sum game in the following experiments. While both upper bound
algorithms compute the upper bound even for non-deterministic follower, both players have
deterministic actions in this setting. That way, we can compare the tightness of the upper
bound of both algorithms on the game, for which the MILP solves the game exactly.

n computation time computation time result of LP result
of LP for NFGSS of MILP for NFGSS of MILP

2 0.265 s 0.514 s -0.8379 -0.8379
3 0.343 s 4.914 s 0.0105 0.0105
4 0.374 s 1708.039 s 0.3374 0.3374
5 0.390 s > 24 hours 0.3837 N/A

Table 4.4: Comparison of MILP and LP for NFGSS on a 2 × n grid
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Figure 4.2: Zero-sum experiment: Dependence of computation time on amount of game
states

4.3.1 Comparing MILP representation with first variant of the upper
bound

In this experiment, we compare MILP with the first variant of upper bound algorithm (UB1).
Table 4.5 shows dependence of computing time and calculated value of the game (Expected
leader’s utility) on n on a 3 x n grid and Table 4.6 shows similar dependence for 2 x n grid.
Both experiments showed that while the first variant of the upper bound computation is
significantly faster than the MILP, it does not provide any additional information about the
game, as the result is always the highest possible leader’s utility of all outcomes. For every
game, this result is equal to the number of steps, as in every step the highest possible utility
for the leader is 1, which corresponds to the encounter of both players. So the strategies of
both players lead to their encounter in every action played in this game. This algorithm is
the fastest of the presented general-sum algorithms (see Figure 4.3).

4.3.2 Comparing MILP representation with second variant of the upper
bound

We now compare MILP with second variant of upper bound algorithm (UB2). Table 4.7
shows dependence of computing time and calculated value of the game (Expected leader’s
utility) on n on a 3 x n grid and Table 4.8 shows similar dependence for 2 x n grid.
Both experiments showed, that the upper bound computed by this variant is quite tight and
is faster than the MILP (it provides a result for n = 4 for both grids in less then 14 minutes,
while the MILP didn’t provide any result in 24 hours), it is significantly slower than the first
variant of the upper bound algorithm (see Figure 4.3) due to quadratic amount of constraints
based on number of strategies and does not scale well for large games.
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n computation time computation time Value of the game Value of the game
of UB1 of MILP in UB1 in MILP

2 0.405 s 1.248 s 3 -10
3 1.263 s 249.507 s 4 0.206
4 5.132 s > 24 hours 5 N/A
5 15.459 s > 24 hours 6 N/A

Table 4.5: Comparison of MILP and the first variant of upper bound calculation on a 3 × n
grid

n computation time computation time Value of the game Value of the game
of UB1 of MILP in UB1 in MILP

2 0.249 s 0.343 s 2 -0.3497
3 0.374 s 2.745 s 3 0.7659
4 0.702 s 775.215 4 0.9905
5 0.967 s > 24 hours 5 N/A

Table 4.6: Comparison of MILP and the first variant of upper bound calculation on a 2 × n
grid

n computation time computation time Value of the game Value of the game
of UB2 of MILP in UB2 in MILP

2 0.405 s 1.248 s 0 -10
3 2.823 s 249.507 s 0.286 0.206
4 822.655 s > 24 hours 0.438 N/A

Table 4.7: Comparison of MILP and second variant of upper bound calculation on a 3 × n
grid

n computation time computation time Value of the game Value of the game
of UB2 of MILP in UB2 in MILP

2 0.327 s 0.343 s 0 -0.3497
3 0.530 s 2.745 s 1 0.7659
4 11.606 s 775.215 1.1891 0.9905
5 22.292 s > 24 hours 1.2893 N/A

Table 4.8: Comparison of MILP and second variant of upper bound calculation on a 2 × n
grid
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Figure 4.3: General-sum experiment: Dependence of computation time on amount of game
states

The experiments show that while MILP solves more general games than LP for NFGSS
(general-sum games instead of zero-sum), it does not scale well into large games.

The first variant of upper bound computation solves the problem much faster than the
MILP, but the computed result is not tight and therefore it cannot be used as a basis for
a double-oracle iterative algorithm, as it does not provide any useful information about the
sub-game.

The second variant of the upper bound algorithm might be tight enough, but it is signifi-
cantly slower than the first variant and is not much faster than the MILP itself. Double-oracle
iterative algorithm compute upper bounds for different sub-games repeatedly and needs dra-
matically faster computation of the upper bound. Therefore, neither this variant can be
used to improve the iterative algorithm, because it would not improve the scalability of the
algorithm.



Chapter 5

Conclusion

Strong Stackelberg equilibrium (SSE) is a solution concept, in which one player commits
himself to play an optimal strategy, such that the other player observes this committed
strategy and plays his best response to it. This solution concept is used in many security
applications and therefore it has been given lot of focus in the past. While there exists
an efficient algorithm for finding SSE in normal-form games, finding SSE in extensive-form
games proves to be challenging (there exists an algorithm for solving this problem, it does
not, however, scale well into large games).

We focused on finding SSE in normal-form games with sequential strategies (NFGSS),
which is a simplified extensive form game, in which the game is formed as separated Markov
decision processes (MDPs) of each player rather than one big game tree common to all
players. This allows to model games with sequences of actions and stochastic actions, but
without player’s ability to observe actions of other players throughout the game. This
allows simpler representation of strategies of players. Also, MDPs are usually significantly
smaller than the game tree. For this class of games, there exists an algorithm finding Nash
equilibrium, which generally coincides with SSE in zero-sum games only.

This work presents an algorithm for computing Strong Stackelberg equilibrium in general-
sum normal-form games with sequential strategies. We present two formulations of the
solution: first solves the problem by computing multiple linear programs (one for each pure
strategy of the follower) and chooses the one with best result, the second solves single mixed
integer linear program (MILP). Both representations solve the problem exactly, but do not
scale well into large games.

In order to use the iterative algorithms for solving the problem, we formulated two
algorithms for computing an upper bound of the expected utility value of the leader. The
iterative algorithm needs a quickly computed and tight upper bound to effectively prune as
many strategies as possible. The experimental results show, that while the first variant of
the upper bound algorithm is quick enough, it is not tight and the second variant of the
upper bound algorithm is tight, but it does not scale well for large games.

In future work, we will focus on improving the second variant of the upper bound al-
gorithm. Problem with this variant is the size of the LP solving the task, therefore we
will investigate the methods for solving also the computation of the upper bound iteratively,
which would give us the option of choosing between tight and quickly computed upper bound
or finding the compromise between the two.
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Appendix A

Contents of CD

File gtlibrary.zip contains a Java project containing classes used for computing SSE in
NFGSS. The project needs adding a path to CPLEX library to VM arguments to func-
tion properly.

Classes related to this work:

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.MDPStackelbergMILP.java - class computing
SSE in NFGSS using MILP (function solve()). Run FullCostPairedMDP* with argu-
ment "milp".

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.MDPStackelbergUB.java - class computing up-
per bound in NFGSS using the first variant of upper bound computation (function
solve()). Run FullCostPairedMDP* with argument "ub1".

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.MDPStackelbergUB2.java - class computing
upper bound in NFGSS using the second variant of upper bound computation (function
solve()). Run FullCostPairedMDP* with argument "ub2".

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.MDPMultipleLPs.java - class computing value
of the game in NFGSS with fixed pure strategy of the follower (function solve()).

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.MDPExample.java - class used for computing
example presented in the project.

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.MDPSubStrategy.java- class
used to model strategy in sub-MDP started by a state and an action played.

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.MDPPureStrategy.java - class
used to model strategy with several added public functions altering actions probabilities
(functions putActionToPureStrategy, removeActionFromPureStrategy, isInPureStrat-
egy).

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.StateTuple.java - class used
to model pair of states (one for the leader and one for the follower).
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• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.StateActionTuple.java - class
used to model pair of states and actions (one for the leader and one for the follower).

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.SlackVariable.java - class used
for better addressing of slack variables in cplex.

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.ExpectedUtilityStateVariable.java
- class used for better addressing of variables representing expected utility of follower’s
state in cplex.

• cz.agents.gtlibrary.nfg.MDP.Stackelberg.implementations.ExpectedUtilityActionVariable.java
- class used for better addressing of variables representing expected utility of follower’s
state and action in cplex.

* FullCostPairedMDP reffers to cz.agents.gtlibrary.nfg.MDP.FullCostPairedMDP.java
It is possible to change the setting of the game (grid size, number of steps, utility values)

in cz.agents.gtlibrary.nfg.MDP.domain.transitgame.TGConfig.java – grid size and number of
steps are constants, utility values can be changed in function getGeneralSumUtility()

In the file export.zip is a directory export, which contains jar file for solving an example
(grid 2 × 3 with 3 steps and general-sum settings). Run it from command line using com-
mand "start-SSE option" (option is "milp", "ub1" or "ub2" depending on which algorithm
is to be tested). The script needs variables JAVA_HOME (directory to java 8 directory
e.g. C:\Program Files\Java\jre1.8.0_31) and CPLEX_BIN (directory to cplex_version.dll
e.g. C:\Program Files\IBM\ILOG\CPLEX_Studio124\cplex\bin\x64_win64) to be de-
fined (set JAVA_HOME=...).
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