
Czech technical university in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor Thesis

Planning of swarm deployment for
autonomous surveillance

Author: Matěj Petrlík

Thesis supervisor: Ing. Vojtěch Vonásek

In Prague on May 22, 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Matěj P e t r l í k

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Planning of Swarm Deployment for Autonomous Surveillance

 Guidelines:
The goal of the thesis is to design and implement an algorithm for motion planning of a group of
cooperating micro aerial vehicles (MAV) in the task of autonomous surveillance. The task of the motion
planning is to compute sensing locations to observe desired areas of interest as well as trajectories from
a depot station to these sensing locations. The motion models of MAVs [2] and motion constraints caused
by the relative localization of MAVs [1] have to be considered in the motion planning. The provided motion
plans do not need to be optimal.
1. Implement a motion planning algorithm based on Rapidly Exploring Random Trees (RRT) [4] for
 groups of MAVs moving in environments with obstacles. Design a fast heuristic function to enable RRT
 to find candidates of sensing locations together with the trajectories of MAVs.
2. Design an optimization method to improve sensing locations found in the previous step. Design a
 suitable cost function.
3. Experimentally verify the algorithms and compare them with the method described in [3].

Bibliography/Sources:
[1] Faigl, J. - Krajník, T. - Chudoba, J. - Přeučil, L. - Saska, M.: Low-Cost Embedded System for Relative
 Localization in Robotic Swarms. In ICRA2013: Proceedings of IEEE International Conference on
 Robotics and Automation, 2013.
[2] Lee, T. - Leoky, M. – McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3),
 IEEE Conference on Decision and Control (CDC), 2010.
[3] Saska, M. - Chudoba, J. - Přeučil, L. - Thomas, J. - Loianno, G. - et al.: Autonomous Deployment of
 Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of International
 Conference on Unmanned Aircraft Systems (ICUAS), 2014.
[4] LaValle, Steven M.: Rapidly-Exploring Random Trees A New Tool for Path Planning, 1998.

Bachelor Project Supervisor: Ing. Vojtěch Vonásek

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, February 12, 2015

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Matěj P e t r l í k

Studijní program: Kybernetika a robotika (bakalářský)

Obor: Robotika

Název tématu: Plánování rozmístění roje helikoptér v úloze autonomního dohledu

Pokyny pro vypracování:
Cílem práce je navrhnout a implementovat algoritmus umožňující naplánovat rozmístění skupiny
bezpilotních helikoptér vhodné pro úlohu autonomního dohledu. Součástí nalezeného řešení bude kromě
finálního rozmístění skupiny také plán pohybu helikoptér z výchozí pozice do získaného rozmístění. Tento
plán pohybu nemusí být optimální, ale musí splňovat omezení daná vizuální relativní lokalizací členů roje
[1] a dynamická omezení pohybu helikoptér [2].
Úkoly:
1. Implementujte algoritmus plánování pohybu založený na metodě RRT (Rapidly exploring Random
 Tree) [4] pro formace helikoptér. Rozšiřte algoritmus o heuristiku tak, aby bylo možné kromě plánování
 pohybu hledat i vhodné rozmístění helikoptér nad požadovanými oblastmi zájmu.
2. Navrhněte optimalizační metodu pro vylepšení rozmístění helikoptér nalezených v předchozím bodě,
 navrhněte hodnotící funkci.
3. Navržené algoritmy porovnejte s metodou založenou na Particle Swarm Optimization [3].

Seznam odborné literatury:
[1] Faigl, J. - Krajník, T. - Chudoba, J. - Přeučil, L. - Saska, M.: Low-Cost Embedded System for Relative
 Localization in Robotic Swarms. In ICRA2013: Proceedings of IEEE International Conference on
 Robotics and Automation, 2013.
[2] Lee, T. - Leoky, M. – McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3),
 IEEE Conference on Decision and Control (CDC), 2010.
[3] Saska, M. - Chudoba, J. - Přeučil, L. - Thomas, J. - Loianno, G. - et al.: Autonomous Deployment of
 Swarms of Micro-Aerial Vehicles in Cooperative Surveillance. In Proceedings of International
 Conference on Unmanned Aircraft Systems (ICUAS), 2014.
[4] LaValle, Steven M.: Rapidly-Exploring Random Trees A New Tool for Path Planning, 1998.

Vedoucí bakalářské práce: Ing. Vojtěch Vonásek

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 12. 2. 2015

Prohlášení autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování
etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne Podpis autora práce

Název práce: Plánování rozmístění roje helikoptér v úloze autonomního dohledu

Autor: Matěj Petrlík

Katedra (ústav): Katedra kybernetiky

Vedoucí bakalářské práce: Ing. Vojtěch Vonásek

e-mail vedoucího: vonasek@labe.felk.cvut.cz

Abstrakt V předložené práci studujeme nasazení roje složeného z bezpilotních
helikoptér v úloze autonomního dohledu. Úloha spočívá v nalezení trajektorie
do zadaných oblastí zájmu a v optimalizaci rozmístění roje nad oblastí zájmu za
účelem pokrytí její co největší možné části, které umožňuje počet jedinců roje.
Kvalita pokrytí oblasti zájmu je reprezentována navrženou hodnotící funkcí, za-
loženou na diskretizaci konfiguračního prostoru. Metoda založená na takzvaných
rychle rostoucích náhodných stromech (RRT) je vyvinuta za účelem nalezení tra-
jektorie s omezeními danými překážkami a pravidly roje. Optimalizace cílového
rozmístění je realizována algoritmem optimalizace roje částic (PSO), dále je prozk-
oumána možnost použít RRT jako optimalizační metodu. Výsledky všech navržených
metod jsou analyzovány a experimentálně porovnány s referenční PSO metodou.

Klíčová slova: Autonomní dohled, Roje bezpilotních helikoptér, Plánování tra-
jektorií, Rychle rostoucí náhodné stromy, Optimalizace roje částic

Title: Planning of swarm deployment for autonomous surveillance

Author: Matěj Petrlík

Department: Department of Cybernetics

Supervisor: Ing. Vojtěch Vonásek

Supervisor’s e-mail address: vonasek@labe.felk.cvut.cz

Abstract In the presented work we study deployment of a swarm consisting of
Unmanned Aerial Vehicles (UAVs) in the task of autonomous surveillance. The
task consists of finding a trajectory to specified Areas of Interest (AoI) and opti-
mizing the swarm distribution over them to cover the largest possible part of AoI
allowed by the number of swarm individuals. The quality of AoI coverage is rep-
resented by a proposed cost function based on configuration space discretization.
A method based of Rapidly-exploring Random Trees is developed to find a trajec-
tory under constraints consisting of obstacles and swarm rules. The optimization
of the final position is realized by Particle Swarm Optimization (PSO) algorithm,
furthermore the possibility to use RRT as an optimization method is explored.
Results of all proposed methods are analyzed and experimentally compared to a
reference PSO-based method.

Keywords: Autonomous surveillance, Swarms of Unmanned Aerial Vehicles, Tra-
jectory planning, Rapidly-exploring Random Trees, Particle Swarm Optimization

ACKNOWLEDGEMENTS

I would like to thank all the people that helped me with this bachelor thesis.
Especially, I would like to thank my supervisor Ing. Vojtěch Vonásek for guiding
me through all the problems I encountered and for giving me valuable insights.
Further I would like to thank my family and all my friends for support.

CONTENTS

Abstract 9

Acknowledgements 13

Contents 14

List of Figures 16

1 Introduction 19
1.1 Motivation . 19
1.2 Objective . 22

2 State of the Art 25
2.1 RRT . 30
2.2 RRT-Path . 33

2.2.1 A* . 34
2.3 PSO . 36

3 Implementation 37
3.1 Motion model . 37

3.1.1 Quad-rotor motion model 37
3.1.2 Car-like motion model . 38

3.2 Relative localization . 40
3.3 Cost function . 41
3.4 RRT . 44

15

3.5 RRT-Path . 45
3.6 Surveillance using PSO . 48
3.7 Coverage optimization . 49

4 Experiments and results 51
4.1 Comparison of planning algorithms 51
4.2 Comparison in a more complicated environment 54
4.3 Coverage optimization . 56
4.4 Sampling method in RRT-Path 58

5 Conclusion 61

Bibliography 63

LIST OF FIGURES

1.1 Example of a quadrotor UAV assembled at the Department of Cy-
bernetics of CTU in Prague . 19

1.2 Circular localization pattern carried by each UAV 21
1.3 An example of a surveillance problem with a solution 22

2.1 Path planning and trajectory planning 25
2.2 Simple ground robot with 3 state variables 26
2.3 Simple path planning problem with free space and obstacle region 27
2.4 Probabilistic road map with highlighted blue path passing through

Cfree and a forbidden red dashed edge passing through Cobs 29
2.5 Example of a tree constructed by Rapidly-exploring Random Tree

with a highlighted path . 29
2.6 Narrow passage problem . 30
2.7 RRT after 100, 300, 600 and 1000 iterations 31
2.8 Linear dependency of iteration length on nodes in the tree 32
2.9 RRT modifications . 33
2.10 Tree development after 1000 iterations with 4 UAVs 33
2.11 Tree development after 3000 iterations with 4 UAVs and an obstacle 34
2.12 RRT-Path with green guiding path 35

3.1 Motion model of a quadrotor with body-fixed frame and inertial
reference frame . 39

3.2 Shape of the trajectories generated by the car-like motion model . 39
3.3 Car-like motion model . 40
3.4 AoI matrix with with a green AoI region, Amax = 100, and a blue

region representing the area covered by an UAV 42

17

List of Figures

3.5 The area viewed by a camera mounted on each UAV 42
3.6 Graphically represented discretization of configuration space with

a distance transform, where red color means furthest from goal . 43
3.7 Discretized grid of configuration space 46
3.8 Sampling distribution of basic RRT and RRT-Path after 400 iterations 46
3.9 RRT got trapped in an U-shaped obstacle, while RRT-Path suc-

cessfully avoided the obstacle . 48
3.10 Scheme of the PSO population, each row representing one particle 49

4.1 Environment with one goal and one obstacle 52
4.2 Trajectories found by tested algorithms with a time limit of 1800 s,

with one example in which RRT got stuck in an obstacle and failed
to reach the AoI in the time limit 53

4.3 Random samples in the blue region contribute to maneuver around
the obstacle when the tree gets stuck in the obstacle 54

4.4 A more complicated environment in the form of a maze 55
4.5 Example of 85% AoI coverage . 56
4.6 Convergence of the covered part of AoI 57
4.7 Experiment scene with four UAVs, two AoIs and four obstacles for

sampling methods analysis . 59

18

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Unmanned Aerial Vehicle (UAV) - an aircraft which is intended to operate with
no pilot on board, often referred to as a drone, has been gaining popularity in
recent years in academic circles and wide public. The term Micro Aerial Vehicle
and its abbreviation MAV is also used sometimes. They are becoming smaller,
safer, able to carry more payload, easier to control, more robust, more flexible
and most importantly cheaper. It is even possible to assemble own UAV from
commonly available parts. A DIY quadrotor UAV is shown in Figure 1.1.

Figure 1.1: Example of a quadrotor UAV assembled at the Department of Cyber-
netics of CTU in Prague

19

1 Introduction

International Civil Aviation Organization (ICAO) [1] classifies UAVs into two
groups: Remotely piloted aircraft - an aircraft where the flying pilot is not on board
the aircraft, and Autonomous aircraft - an unmanned aircraft that does not allow
pilot intervention in the management of the flight.

Remotely piloted aircraft are teleoperated usually by a person with a remote
radio controller. Typical uses of teleoperated aircraft are inspection of power
lines [2], monitoring of agricultural areas [3] or crowd monitoring of large events
including festivals and protests. UAV monitoring of crowds allow operators to
see different parts of the surveyed scene, follow crowd/people and thus provide
information that is not accessible with fixed infrastructure of solid cameras.

Autonomous aircraft fly independently without an operator directly control-
ling the flight. The operator specifies a task for the aircraft to execute instead.
The task difficulty depends on the level of autonomy of the aircraft. It can be
anything from flying straight to a single point or following a path consisting of mul-
tiple points, to perform a complex task of following a moving object and avoiding
collisions.

Both large companies and small projects are competing in developing variety
of different kinds of autonomous aircraft for various purposes. Most commonly
discussed are drone deployments in goods delivery [4], localization of people or
other objects in rescue missions taking place in dangerous or hard to access areas
and above all autonomous surveillance of Areas of Interest (AoI).

Smaller dimensions, better affordability and inspiration in nature, as pre-
sented in [5], led to the idea of forming UAV swarms. Any UAV group that is
somehow coordinated can be considered a swarm. A group of remotely piloted
aircraft is impossible, because one person cannot control more than one UAV and
even if each UAV had its own operator, it would be difficult to avoid collisions
between UAVs. Due to these reasons this thesis deals exclusively with autonomous
aircraft, even when using the more general abbreviation UAV. An interesting ex-
ample of collaborating swarm of UAVs can be found in [6], where a dynamic model
of multiple quadrotors carrying cable-suspended payload is presented. Some of the
benefits over UAV individuals are larger area covered by cameras in monitoring
or surveillance missions, redundancy in case some individuals get broken, higher
computing power and collective intelligence. On the other hand, when individual
UAVs form swarms, some issues that need to be solved arise.

First of all, collisions between swarm members need to be avoided, which

20

1.1 Motivation

means, that a way to keep them in a safe distance between each other has to be
found. Second, a precise enough relative localization system is needed to keep
track of the swarm formation shape and relative distances. And finally motion
planning algorithm has to be developed in order to move the swarm from ini-
tial position shown in Figure 1.3a to a target position in Figure 1.3b in certain
environment which can contain a set of obstacles [7].

Keeping track of the position of UAV individuals in the swarm is essential
to prevent collisions between them and keeping the swarm organized. The most
obvious approach would be to equip each UAV with a Global Positioning System
(GPS) chip to obtain absolute positions [8] and use them to calculate relative
distances between each other. However, UAVs are often deployed in areas where
GPS performs poorly or is impossible to use (e.g. inside buildings), moreover,
even in open spaces with a good GPS signal the accuracy offered by GPS (around
3 m) might not be sufficient.

A more suitable localization technique is described in [9]. The localization
is performed by on-board cameras capturing space around UAVs. Each UAV
carries a localization pattern consisting of a black circle (Figure 1.2) on a white
background. The on-board system then calculates the distance from camera to
the localization image from the knowledge of size and shape of the image.

Figure 1.2: Circular localization pattern carried by each UAV

To avoid collisions, minimal relative distance must be greater than the dis-
tance at which two UAVs are able to stop when flying against each other at full
speed, while maximal relative distance is constrained by the ability to recognize
the localization pattern in the distance. The localization constraints present a
valid reason to treat the problem as two dimensional, since the flight altitude has
to be constant.

21

1 Introduction

(a) UAVs located in their initial depot
(charging station) with obstacles and
AoI

(b) A possible solution - UAVs covering the
AoI (not optimally) with trajectories
from initial depot

Figure 1.3: An example of a surveillance problem with a solution

1.2 Objective

The objective of this thesis is to explore the possibility of using swarms of quadro-
tor UAVs in the task of autonomous surveillance. The task is defined as finding
a collision free trajectory from an initial depot to an AoI and covering the largest
possible part of AoI.

Several approaches exist in the task of autonomous surveillance. One ap-
proach is to find an optimal position of each individual UAV from the swarm over
the AoI by an optimization algorithm in the first step and then find a trajectory
from initial position of the swarm to the optimal position with the use of a trajec-
tory planning algorithm in the second step. The problem of this static approach
is that the optimal position might not be feasible, i.e., it might be impossible to
find a trajectory to the position, due to obstacles or localization constraints. Sec-
ond possibility is to find a trajectory and optimize the coverage at the same time,
thus guaranteeing feasibility of the trajectory. The problem was already tackled
by Multi-robot Systems group at Czech Technical University in Prague where a
method [10] based on Particle Swarm Optimization (PSO) was developed. This
method succeeds in finding a feasible trajectory to an optimally covered AoI,
however, the trajectories produced are too complicated and excessively long, thus
leaving less battery life of UAVs left for monitoring the AoI.

22

1.2 Objective

Principal idea of this thesis is to use an algorithm based on Rapidly-exploring
Random Trees (RRT) and their improved versions for solving the core planning
task. The properties of RRT promise to deal with the issue of unnecessarily com-
plicated trajectories produced by PSO. The RRT-based method from this thesis
will be compared to the PSO-based method to find its benefits and drawbacks.

To successfully implement RRT, a number of support algorithms and systems
are required. To simulate the behavior of the UAVs, a motion model must be
chosen. One of the requirements of the planning task is collision avoidance realized
by v-collide library [11]. A localization system must be present to keep the swarm
together. A suitable fitness function will be needed to evaluate the positions of
swarms. Different concepts of these supporting methods and their descriptions
are mentioned in the next Chapter. The implementation details are described in
Chapter 3. The comparison of RRT and PSO along with results of the experiments
are presented in Chapter 4.

23

CHAPTER

TWO

STATE OF THE ART

In the field of motion planning there are some terms that need to be defined
for correct description of the problems, their solutions and experiments. In this
thesis, the term motion planning is used as a general term when referring to
planning problems. When discussing specifically planning problems with only ge-
ometric constraints, i.e., connecting place A with place B, the term path planning
(Figure 2.1a) is used, while the term trajectory planning (Figure 2.1b) refers to
navigation of a robot with both geometric, kinematic and dynamic constraints,
considering its motion model.

(a) Path planning (b) Trajectory planning

Figure 2.1: Path planning and trajectory planning

Path planning

In planning algorithms it is important to correctly define the configuration space
C which is a set of possible transformations that could be applied to the robot.
Defining configuration space offers a certain level of abstraction allowing motion

25

2 State of the Art

planning problems with different geometric and kinematic constraints to be solved
by the same planning algorithms.

The world is defined in [12] asW = R2 orW = R3, which contains an obstacle
region O ⊂ W . A rigid body robot is defined as A ⊂ W . A configuration q ∈ C
represents a complete specification of state variables of A. The minimal number
of state variables is the Degree of Freedom (DoF) of the robot. For representing
a configuration of a simple ground mobile robot like the one in Figure 2.2, it is
sufficient to know its Cartesian coordinates and yaw angle which yields 3 state
variables corresponding with 3 DoF of the robot, so q = (x, y, ϕ).

Figure 2.2: Simple ground robot with 3 state variables

The obstacle region Cobs ⊂ C is defined as

Cobs = {q ∈ C | A (q) ∩ O 6= ∅} , (2.1)

which is the set of all configurations q, at which the robot body A (q) intersects
the obstacle region O. The remaining configurations are called free space and
defined as Cfree = C\Cobs

Let us define path planning problems as connecting initial configuration
qinit ∈ Cfree with goal configuration qgoal ∈ Cfree through the free space Cfree

while avoiding configurations colliding with obstacles Cobs. An example of simple
path planning problem can be seen in Figure 2.3. The solution of a path planning
problem is a sequence of configurations which are essentially points in a multidi-
mensional space without any information about time or action inputs needed for
the robot to get from one configuration to the next one.

26

Figure 2.3: Simple path planning problem with free space and obstacle region

Trajectory planning

The purpose of trajectory planning is to find a trajectory consisting of motions
considering the constraints of a real robot. A forward motion model

q̇ = f(q, u), (2.2)

where u ∈ U is a control input from a set of possible inputs. The forward motion
model describes how a configuration q changes after applying control input u. The
set of all possible control inputs U depends on the motion model of robot.

Motion model is a mathematical model of a robot that represents its move-
ment abilities, kinematic and dynamic constraints. Inputs of motion model are
control inputs of actuators responsible for the movement of the robot. Output
is the change of its state variables. In this thesis, two motion models were con-
sidered. Since this thesis deals with UAVs, the first motion model is a quadrotor
motion model as quadrotors have a high freedom of movement allowing them to
change direction quickly when following a trajectory. Second chosen motion model
is a car-like motion model, even though it is primarily used for two dimensional
problems and UAVs fly in 3D space.

Also the time information is added to each configuration in the trajectory so
q(τ) must exist for each τ ∈ [0, t] (or each time step if τ is discrete), where t is the
duration of the trajectory. Then the task of the trajectory planning is to find a
trajectory, starting at q(0) and ending at q(t) such that the motion model f(q, u)
is respected. Such a trajectory can be represented e.g. by a sequence of control
inputs u. This thesis is primarily focused on the trajectory planning, even though
some path planning algorithms are also used when necessary. Trajectory planning
is called planning under differential constraints, which are caused by dynamics

27

2 State of the Art

and kinematics of the robot.

Sampling-based algorithms

When dealing with motion planning problems a necessity to pick an algorithm that
is best suited for a specific task arises. Important properties of motion planning
algorithms are time needed to find a solution, ability to find the best path, avoid-
ing local optima and high-dimensional problems solving. While many algorithms
perform well in low-dimensional motion planning problems, their performance
decreases significantly as the number of dimensions increases, producing unsatis-
fying results due to the fact, that their run time is exponentially dependent on
the number of dimensions.

To solve high-dimensional path planning problems, an algorithm that is not
exponentially dependent on the dimension is needed. Currently, the best algo-
rithms suited for high-dimensional problems are sampling-based algorithms, which
try to find the path using samples randomly drawn from the configuration space.
Sampling-based algorithms are probabilistically complete, meaning the more time
they are running, the more the probability to find a solution approaches 1. How-
ever, determining if there is no solution is impossible.

Probabilistic road map [7] is one of sampling-based algorithms consisting of
two phases. The first phase is a construction phase which randomly samples n
configurations Csampled = (q1, q2, ..., qn) called milestones from Cfree. Then each
q ∈ Csampled is connected to other near configurations by a local planner with
collision avoidance to form a graph called road map. Usually, the local planner
is realized by a straight-line planner, that connects two configurations by a line
segment. The second phase is a query phase. After adding qinit and qgoal to the
road map, a graph search algorithm is used to obtain the path shown in Figure 2.4.

Another sampling-based algorithm is Rapidly-exploring Random Tree (RRT).
It is designed to search high-dimensional spaces rapidly. RRTs are constructed
incrementally from random samples of the configuration space in a way that the
tree grows quickly towards the unsearched areas (Figure 2.5). This algorithm
is particularly suited for trajectory planning problems involving obstacles and
differential constraints, therefore its use in motion planning of UAV swarms is
further explored in this thesis.

The major disadvantage of all sampling-based algorithms is the narrow pas-
sage problem depicted in Figure 2.6. With uniform sampling of the configura-

28

Figure 2.4: Probabilistic road map with highlighted blue path passing through
Cfree and a forbidden red dashed edge passing through Cobs

Figure 2.5: Example of a tree constructed by Rapidly-exploring Random Tree with
a highlighted path

tion space the probability that a random sample will be drawn from the multi-
dimensional volume of the narrow passage is rather low. This problem is usually
dealt with by increasing the sampling probability in and around the narrow pas-
sage, however the narrow passage has to be detected first, e.g. based on the
workspace knowledge. Location of narrow passage can be estimated based on me-
dial axis [13, 14]. Another approach is to shift the random samples towards the
free areas [15]. Although these techniques can significantly improve performance
in narrow passages, they are useful only in low dimension space, since the im-
portance of workspace knowledge decreases as the number of DoFs increases [16].
Analysis of RRT performance in an environment with narrow passages can be
found in [17].

29

2 State of the Art

Figure 2.6: Narrow passage problem

2.1 RRT

Rapidly-exploring Random Tree is used for trajectory planning in this thesis there-
fore an explanation of its principles follows. The tree starts growing from its root
(initial node qinit). In each iteration a random sample is drawn from the search
space and a link between the random sample and the nearest node of the tree is
attempted. The maximum length of the link is one of the parameters of RRT
algorithm usually referred to as the growth factor. Furthermore a motion model
can be implemented easily by picking the link from a pool of possible movements
(inputs) generated by the motion model. If the link does not pass through any
obstacle and satisfies all specified constraints, the point at the end of this link is
added to the tree as a new node. The result of drawing the samples randomly
from the search space is, that the tree expands towards unexplored areas quickly
and eventually covers the whole search space after enough iterations are carried
out. The progressive expansion of RRT can be seen in Figure 2.7

An RRT τ rooted at an initial configuration qinit with K iterations is con-
structed as shown in Algorithm 1

30

2.1 RRT

Figure 2.7: RRT after 100, 300, 600 and 1000 iterations

Algorithm 1: Construct RRT
1 τ .init(qinit);
2 for k ← 1 to K do
3 qrand ← randomState();
4 qnear ← nearestNeigbor(qrand, τ);
5 u← selectInput(qrand, qnear); // input used for expansion
6 qnew ← newState(qnear, u);
7 if qnew is feasible then
8 τ .addNode(qnew);
9 τ .addEdge(qnear, qnew, u);

10 return τ

The first node of τ is qinit. In each iteration a random state qrand is selected
from the state space. Step 4 finds the closest node to qrand. Step 5, called expan-
sion, selects an input u that minimizes the distance from qnear to qrand. Step 6
evaluates a potential new state qnew, which is added in step 8 as a vertex to τ if
the state is feasible. An edge from qnear to qnew is also added, because the input
u needed to reach qnew from qnear is not necessarily a straight line.

The expansion of an RRT is heavily biased towards unexplored portions of the

31

2 State of the Art

search space, which helps to avoid getting stuck at local optima. The distribution
of nodes in an RRT approaches the sampling distribution, leading to consistent
behavior so the direction of RRT growth is easily influenced. This feature can
be exploited by biasing the sampling, effectively steering the tree growth towards
desired areas. Time complexity of RRT is O(n2) and memory complexity O(n)
where n is the number of nodes in the tree. Time needed for an iteration of RRT
is linearly dependent on the number of nodes in the tree as seen in Figure 2.8.
The tree always remains connected, even though the number of edges is minimal.
An RRT can be considered as a path planning module, which can be adapted and
incorporated into a wide variety of planning systems easily.

Figure 2.8: Linear dependency of iteration length on nodes in the tree

A few variations of the basic RRT algorithm exist that improve the behavior of
the tree near narrow passages. First algorithm worth mentioning is RRT-Connect
(Figure 2.9a), which is based on two ideas. The first idea is to extend the tree in
the direction of qrand until the tree reaches either qrand or an obstacle. The second
idea of RRT-Connect is that it builds two trees - one from qinit and one from
qgoal. In [18] has been found, that performance can be improved by attempting
to grow the trees towards each other. The advantage of RRT-Connect with two
trees over basic RRT is a faster rate of convergence, however it cannot be used
for problems with differential constraints due to the difficulty of connecting the
trees while satisfying the differential constraints and as such is not applicable to
motion planning problem in this thesis.

Another possible modification is RRT-Blossom (Figure 2.9b). Instead of ex-
panding qnear with the control input sample that results in a qnew that is nearest
to qrand, it expands all control input samples that do not lead to regression. RRT-
Blossom is further explained in [19].

The direction of growth of an RRT can be influenced by modifying the dis-
tribution of samples randomly drawn from the configuration space. A common

32

2.2 RRT-Path

(a) RRT-Connect (b) RRT-Blossom

Figure 2.9: RRT modifications

(a) Goal bias 0 % (b) Goal bias 1 % (c) Goal bias 10 %

Figure 2.10: Tree development after 1000 iterations with 4 UAVs

modification of the distribution is adding a goal bias - certain probability p(goal)
that the goal state qgoal will be used instead of a random sample qrand. The benefit
of this approach is a faster rate of convergence, as the tree growth is faster in the
direction of qgoal (Figure 2.10), however the tree is more likely to get stuck near an
obstacle (Figure 2.11) that prevents growth in the direction of qgoal. In an envi-
ronment with less obstacles p(goal) can be higher, while in a difficult environment
with a lot of obstacles p(goal) must be lower to allow RRT to find a way around
them.

2.2 RRT-Path

RRT-Path is an improved version of RRT featuring preprocessing of the configu-
ration space. Specifically the ability to maneuver around obstacles and through

33

2 State of the Art

(a) Goal bias 0 % (b) Goal bias 1 % (c) Goal bias 10 %

Figure 2.11: Tree development after 3000 iterations with 4 UAVs and an obstacle

narrow passages was improved by further modifying the goal bias.
Instead of using qgoal it takes points from a guiding path (Figure 2.12) which

is a path from qinit to qgoal obtained from one of path planning algorithms. It
is worth to note, that the guiding path is computed in the 2D/3D workspace as
a geometric path. Such a path can be computed without considering the mo-
tion model. Geometric-based path planning methods based on Visibility graph or
Voronoi diagram [12] can be used. Another approach is to discretize the workspace
to a grid representation, where the path can be found using classic graph-search
algorithms like A* or Dijkstra. In this thesis, the A* algorithm was used thanks
to its desirable properties, notably optimality and performance.

Let G be the guiding path and (qinit, q1, q2, ..., qgoal) ∈ G the points of the
guiding path, where qi ∈ Cfree. In the beginning, area around the point q1 is used
instead of the random sample qrand with probability p(guided). If a new node of
the tree is within a distance rdist, then the next point of the guiding path will be
used instead of qrand with probability p(guided). This step is repeated until qgoal

is reached.

2.2.1 A*

To obtain the guiding path in RRT-Path, A* algorithm is used in this thesis. A* is
a path-finding algorithm used to connect initial node ninit with a goal node ngoal. It
belongs to the group of best-first-search algorithms. These algorithms expand the
nodes that seem most promising in getting closer to reaching the goal node first.
Drawbacks of best-first-search algorithms is that they are “greedy” which means,

34

2.2 RRT-Path

Figure 2.12: RRT-Path with green guiding path

that they are drawn to ngoal without taking into account the distance required
to reach the currently expanded node from ninit, resulting in sub-optimality and
non-completeness. However, A* uses a cost function f (n) = g (n) + h (n), which
is a sum of the cost from ninit to n and heuristic estimate of cost from n to
ngoal, thus guaranteeing optimality with the condition, that its heuristic function
is admissible.

The heuristic function h (n) gives an estimate of the minimal cost from the
node n to the node ngoal. A good heuristic function that ensures a correct behavior
of A* has to satisfy the condition ∀n : 0 ≤ h (n) ≤ h∗ (n), where h∗ (n) is the
real cost to the goal node. A heuristic function satisfying mentioned condition is
called admissible and guarantees that A* finds the optimal solution. In common
path-finding problems the Euclidean distance is often used as a heuristic function
as it cannot be greater than the real distance. However, if the Euclidean distance
is significantly shorter than the real distance, the speed of A* can be impaired.

A* is a complete algorithm so it will always find a solution if it exists. It is
optimal assuming the heuristic function is admissible, moreover, it is also optimally
efficient, therefore no optimal algorithm with the same heuristic will expand less
nodes than A*. Time and memory complexity is O(bd) where b is the branching
factor (how many neighbors each node has) and d is the number of nodes in the
shortest path.

A* can also be used as a distance transform by running it with no stopping
condition and ngoal as the initial node. Heuristic function in not used in this case
so f(n) = g(n). When A* iterates through all the nodes, their distance to ngoal

will be known. In this thesis, the distance transform is used in the cost function
of the Particle Swarm Optimization algorithm.

35

2 State of the Art

2.3 PSO

Particle Swarm Optimization [20] algorithm will be used to optimize the goal
coverage. It belongs to the group of population-based algorithms. PSO is used
to optimize multidimensional nonlinear problems while avoiding getting stuck in
local optima. PSO behavior is inspired by the social behavior of bird flocks and
fish schools. It relies on swarm intelligence of a population of particles that are
iteratively guided through the configuration space by changes of their velocity
vector.

Each PSO particle represents a candidate solution. The particles are initial-
ized randomly and so are their velocities. Each particle keeps track of its position
with the best cost function. The global best position of a particle in the whole
population is remembered as well, thus representing the social knowledge. In each
iteration the velocity vector uj(t) of every particle is updated to a combination of
its previous velocity vector uj(t− 1), its individual best position bj and the global
best position bg. The rule to update the velocity vector of particle j is

uj(t) = uj(t− 1) + c1r(bj − pj(t− 1)) + c2r(bg − pj(t− 1)), (2.3)

where pj(t−1) is the previous position of particle j, c1 and c2 are learning factors,
c1 representing individuality and c2 sociability. Random number r is from the
uniform distribution between 0 and 1. The velocity vector update is followed by
the position update

pj(t) = pj(t− 1) + uj(t). (2.4)

36

CHAPTER

THREE

IMPLEMENTATION

3.1 Motion model

The need of a motion model comes from the demand of a feasible trajectory which
is secured by building the trajectory from motions that a real UAV can follow.
The real UAV is not a point in space, it has non-zero size and mass and its move-
ment is limited by differential constraints. Two motion models were considered,
first of them being a full quadrotor motion model whose outputs are moments
of the UAV. When this representation is used in simulations, the behavior of the
simulated UAV is close to the actual UAV. However, if another UAV with differ-
ent parameters (mass, size, torque of rotors) is used, the motion model has to be
updated accordingly. The second motion model provides no information about
the UAV moments, therefore it is not dependent on the actual parameters of the
UAV, making it more universal.

3.1.1 Quad-rotor motion model

A quadrotor consists of two pairs of rotors rotating in the opposite direction gen-
erating a thrust and torque normal to the plane determined by the four rotors.
Thanks to this simple mechanical structure it offers great maneuverability includ-
ing VTOL (Vertical Take-Off and Landing). The control of a quadrotor state
originates in the amount of torque generated by each one of its rotors. When each
of the rotors generate the same torque, the quadrotor will stay in place, however,
if one of the rotors changes its torque, the quadrotor starts to move.

37

3 Implementation

In Figure 3.1 one can see an inertial reference frame {~i1, ~i2, ~i3} and body-
fixed frame {~b1, ~b2, ~b3} with origin in the center of mass of the quadrotor. In [21]
is defined:

m ∈ R the total mass
J ∈ R3×3 the inertia matrix with respect to the body-fixed frame

R ∈ SO(3)
the rotation matrix from the body-fixed frame
to the inertial frame

Ω ∈ R3 the angular velocity in the body-fixed frame
x ∈ R3 the location of the center of mass in the inertial frame
v ∈ R3 the velocity of the center of mass in the inertial frame

d ∈ R
the distance from the center of mass to the center of each
rotor in the ~b1, ~b2 plane

fi ∈ R the thrust generated by the i-th propeller along the −~b3 axis
τi = R the torque generated by the i-th propeller about the ~b3 axis
f ∈ R the total thrust, i.e., f = ∑4

i=1 fi

M ∈ R3 the total moment in the body-fixed frame
The equations of motion of this quadrotor are

mv̇ = mge3 − fRe3

Ṙ = R (3.1)

JΩ̇ + Ω× JΩ = M,

where the hat map ·̂ : R3 → SO(3) is defined by the condition that x̂y = x × y
for all x, y ∈ R3. SO(3) is a group of all rotations about the origin of Euclidean
space R3.

This motion model offers precise control of the location and velocity (inputs)
of an UAV by producing exact values of moments in any point in time, nevertheless
these are not needed for a trajectory planning task and their computation requires
too much processor time, thus slowing the simulation. The idea to use a simple,
easy to compute motion model to be able to perform more iterations in the same
time was born.

3.1.2 Car-like motion model

Car-like motion model is used for mobile robots moving in a two dimensional
space, so why should it been considered for three dimensional motion planning of

38

3.1 Motion model

Figure 3.1: Motion model of a quadrotor with body-fixed frame and inertial ref-
erence frame

quadrotors? The answer lies in the fact, that the quadrotors are unable to fly in
the space above each other due to the aerodynamic effects, moreover in this case
they have to keep almost the same altitude [9] because of the relative localization
system. These constraints put on the flight of UAVs present a valid reason to treat
their motion planning as a two dimensional problem, where the flight altitude is
specified by an experienced operator based on the character of monitored terrain
and visibility conditions. Assuming that flight altitude is constant, the three
dimensional planning problem is converted to a two dimensional one, so motion
models of ground robots like the one in Figure 2.2 can be considered. The resulting
trajectory is smooth with no sharp turns as seen in Figure 3.2, making it easy to
follow the trajectory by a real UAV.

(a) A simple trajectory of two UAVs (b) A trajectory of four UAVs circling on one
spot for a moment due to localization con-
straints

Figure 3.2: Shape of the trajectories generated by the car-like motion model

A useful case of a motion model for ground robots is the one of a simple car.
The car is a rigid body moving through space. Its configuration is denoted by

39

3 Implementation

q = (x, y, ϕ). The origin of the body frame is located in the center of the car,
with the x axis pointing along the main axis of the car and y axis parallel to it.
The configuration transition equation from [12] is

ẋ = us cosϕ

ẏ = us sinϕ (3.2)

ϕ̇ = us

L
tan uϕ,

where us is a forward speed, uϕ is a steering angle and L is the size of the robot
(Figure 3.3). The trajectory found with this motion model is made of smooth
curves making it easy to follow by a real UAV. Now that the behavior of individual
UAVs is defined, it remains to define the rules of the swarm.

Figure 3.3: Car-like motion model

3.2 Relative localization

Individual members of the swarm have to be aware of their neighbors in order to
remain in the swarm together with other UAVs. A relative localization technique
from [9] is used in this thesis and is described in Chapter 2. After choosing
appropriate localization technique it remains to define the swarm rules, which
directly affect the formation and behavior of the swarm. To keep a swarm of n
UAVs together it is necessary, that each UAV has n−1 neighbors in its localization

40

3.3 Cost function

range at all times. In some cases, like multiple AoIs, that cannot be covered by a
swarm without breaking the localization rules due to the distance between these
areas, it might be beneficial to allow the swarm to split and cover more AoIs.

A weaker swarm constraint is, that each UAV has at least 1 neighbor in its
localization range, effectively producing swarm splitting into pairs when appropri-
ate. Of course, the condition of minimal distance must be satisfied for all neighbors
to prevent collisions. This constraint is used throughout this work, thanks to the
minimal limitation it represents for the planning algorithms, resulting in shorter
time needed to expand a node, so more configurations are produced in the same
time, while still maintaining the behavior of a swarm.

3.3 Cost function

All motion planning algorithms rely on evaluating reached states to decide whether
the goal state is reached or which one of available nodes to expand. The value
of a cost function should objectively reflect the quality of individual states. It is
possible to use a simple binary cost function returning 1, when an UAV is above
an AoI and 0 everywhere else. However, one needs to keep in mind, that the cost
function is meant to be optimized to find the optimal coverage and optimizing a
flat function with occasional peaks is not an easy task, therefore a need for a more
sophisticated cost function arises.

The cost function CF (q) proposed in this thesis measures the information not
captured by on-board cameras of UAV swarm in configuration q, i.e., configuration
q1 is better than q2 if CF (q1) < CF (q2). The calculation is based on AoI and UAVs
fields of view.

The world W = R2 is mapped into an AoI Map matrix A ∈ Ra×b whose
element Ax,y (a cell at position x and y respectively) has a size of 1m2 and its
value is the amount of information in the area as seen in Figure 3.5. AoI is
represented by value up to Amax and everything else including obstacles by value
0. This approach permits representing AoIs with higher or lower importance by
assigning them a higher or lower values respectively.

The picture quality, shape and size of the area captured by the on-board
camera of the UAV depends on many factors, some of them being time of the
day, weather conditions, flight altitude, camera chip resolution, lens parameters,
stabilization, frame rate, etc. To keep the cost function as universal as possible

41

3 Implementation

Figure 3.4: AoI matrix with with a green AoI region, Amax = 100, and a blue
region representing the area covered by an UAV

let us assume, that the area viewed by each UAV is a rectangle (Figure 3.5) whose
dimensions are given by the image size of the on-board cameras.

Figure 3.5: The area viewed by a camera mounted on each UAV

Another important decision is whether coverage of an area by multiple UAVs
brings any additional information compared to a single UAV. The fact, that every
UAV can view the same area from different angle, adding more information espe-
cially in areas with many objects, and the above mentioned factors influencing the
picture quality favors the former case. However, a part of the information gained
by more UAVs covering the same area is redundant, so covering larger area should
be prioritized over covering the same area with more UAVs.

The designed cost function reflects the area coverage redundancy by dividing
the value of covered part of A by 2 for each UAV covering the area:

CF (q) =
a∑

x=1

b∑
y=1

(
Ax,y

2n

)
, (3.3)

42

3.3 Cost function

where n is the number of UAVs covering area Ax,y.
In article [10], a similar cost function was used with the UAV altitude taken

into account:

CF (q) =
a∑

x=1

b∑
y=1

min

0, Ax,y −
∑

i∈Swarm(x,y)

Sopt

Si

Amax

 , (3.4)

where Si is area of the rectangle representing the part of the workspace that can
be observed by the i-th UAV. Sopt is area of the region, which is observed by UAV
flying at the altitude determined as the “optimal” altitude based on the particular
application. However, after implementing PSO in this thesis, the results produced
with this cost function were unsatisfying so an improvement is proposed in this
thesis.

The problem with the cost function from 3.4 is, that it is hard to optimize, i.e.,
until a particle hits the AoI region, the movement of whole population is random,
since the value of cost function is still the same. The proposed improvement is to
add information about the distance from AoI obtained by the distance transform
(Figure 3.6) mentioned in 2.2.1 to the cost function, which results in a more
gradual optimization from the first iteration. The distance has to be weighted by
α as it is only a helping information and must not influence optimization of the
original cost function 3.3. The resulting cost function for PSO used in this thesis
is

CF (q) =
a∑

x=1

b∑
y=1

(
Ax,y

2n

)
+ α · d(q, qgoal). (3.5)

(a) Initial configuration space (b) Distance transform

Figure 3.6: Graphically represented discretization of configuration space with a
distance transform, where red color means furthest from goal

43

3 Implementation

3.4 RRT

The core functionality of this work is implemented by RRT. The simple structure
of Algorithm 1 is preserved and details of individual steps will be explained. First
of all, each configuration q contains positions of all UAVs in the swarm, therefore
q = (x1, y1, x2, y2, ..., xn, yn), where xi, yi are positions of i-th UAV. The variable
z, representing UAV altitude, is not used, as the swarm is flying at a constant
altitude.

On the first line, the tree is initialized by preparing an array of empty nodes
and adding the initial node, also called root, to the tree. The nodes are containing
configuration variables and other relevant variables: velocity, index of previous
node for path reconstruction and inputs used to reach the node from previous
node.

The main loop of RRT building starts on line 2. The loop runs until a desired
number of iterations K is achieved. When the goal is to find a trajectory to AoI
and optimization of the covered area is required, RRT growth is stopped after
finding a node in which all the UAVs are within the boundaries of any AoI present
on the map.

On the third line a random (or goal biased) sample qrand from the configura-
tion space is drawn. A node from the tree that is nearest to qrand is selected as
the nearest neighbor for expansion on line 4. The metric for measuring distance
of nodes in this step is the Euclidean distance

d(p, q) =
√√√√ n∑

i=1
(qi − pi). (3.6)

As the distance d(q, p) is used to compare distance of several configurations to a
single one (qrand), the comparison can be realized on the squared version of the
distance, which is significantly faster.

Line 5 is the expansion step. A set of control inputs looks as follows:

Ucarlike = {(us, uϕ)}, (3.7)

where us ∈ Us, where Us is a set of K discrete values for input us in range from
us,min to us,max. Similarly for uϕ. If each input had values from range {−1, 0, 1},

44

3.5 RRT-Path

then a set of meaningful inputs is

Ucarlike = {(−1,−1), (−1, 0), (−1, 1), (1,−1), (1, 0), (1, 1)}. (3.8)

The number of control inputs could be changed dynamically depending on a
near obstacle heuristic, however it was found experimentally, that 5 samples of us

and 9 samples of uϕ is enough for most problems. The control inputs are fed to
the motion model, which returns a set of temporary configurations after applying
the inputs. From this set, the configuration that is nearest to qrand and satisfies
all constraints (collision avoidance and relative localization) is added to the tree
as qnew on line 7. If no input satisfies the constraints, then the next nearest node
will be the new nearest neighbor. This mechanism helps to prevent getting stuck
near an obstacle. The tree consists only from the nodes, the information about
edges is replaced by inputs used for reaching the node.

As RRT is probabilistically complete, a trajectory is eventually found in an
infinite time, however, in practical realization infinite time is not available, there-
fore the rate of convergence needs an improvement. To help RRT with finding
trajectories to AoIs a fast heuristic based on a guiding path was implemented.

3.5 RRT-Path

RRT-Path uses a fast heuristic to preprocess the configuration space. The initial
part of RRT-Path is the preparation of the guiding path. First, the whole con-
figuration space is discretized into a matrix of cells. The size of the cell affects
the ability to find a guiding path through a narrow passage. The smaller distance
between obstacles, the higher the resolution should be. However, the exponential
time complexity of A* has to be kept in mind. Each cell contains a value depend-
ing on the object located in it. Free space Cfree is represented by 0, obstacles by
1, depot place (initial position of UAVs) by 2 and AoI 3 as in Figure 3.7. Second,
A* is run on the map grid from a cell with value 2 to an area containing cells with
value 3. If more than one AoI is present, then A* is run to all of them.

The next part of RRT-Path is running RRT with modified randomState()
function on line 3. Instead of drawing a random sample from C, a sample in a
near neighborhood of a point qpath from the guiding path is drawn with probabil-
ity pguided. The value of pguided is a parameter for tuning, since no exact formula

45

3 Implementation

Figure 3.7: Discretized grid of configuration space

for it exists. Higher values result in a faster rate of convergence, but also higher
probability of getting trapped in a highly constrained area. Usually pguided = 0.8
presented satisfying results. Near neighborhood of a point is the area of an cir-
cle with center in the point and radius rnear. After an UAV reaches the near
neighborhood of qpath, next point from the guiding path will be its qpath. The dif-
ference between non-biased RRT sampling and RRT-Path sampling is illustrated
in Figure 3.8.

(a) RRT sampling distribution (b) RRT-Path sampling distribution

Figure 3.8: Sampling distribution of basic RRT and RRT-Path after 400 iterations

46

3.5 RRT-Path

Algorithm 2: RRT-Path pseudocode
1 τ .init(qinit);
2 mapGrid← discretizeMap();
3 guidingPath← AStar(qinit, qgoal, mapGrid);
4 qpath ← guidingPath.first;
5 for k ← 1 to K do
6 if rand()<pguided then
7 qrand ← randomStateGuided(qpath, rnear);
8 else
9 qrand ← randomState();

10 while feasible expansion not found do
11 qnear ← nearestNeigbor(qrand, τ);
12 u← selectInput(qrand, qnear);
13 qnew ← newState(qnear, u);

14 τ .addNode(qnew);
15 if isWithinRadius(qnew, qpath, rnear) then
16 qpath ← guidingPath.next;

17 if goalReached← checkNearGoal(qnew) then
18 break;

19 return τ

This approach encourages swarm splitting when more AoIs are present, as
the only condition keeping it together is the relative localization. Other approach
is, that qpath is common for all UAVs. Then, however, the swarm splits less often
and some AoIs remain uncovered. The benefit is faster encountering of the first
solution, although the solution is far from optimal. The benefits of these two
approaches can be combined by specifying which UAVs should go to which AoIs
in the beginning by the security operator, however, this may be a difficult task if
several goals and AoIs exist. The swarm splitting tendency is further examined
in Chapter 4.

The trade-off for faster convergence and improved behavior around narrow
passages is that unlike RRT and PSO, RRT-Path requires the knowledge of the
AoI location a priori, however, this is not a big problem as the area planned to
be monitored is usually known. Another drawback is, that the guiding path is

47

3 Implementation

(a) Trapped RRT (b) RRT-Path reached the AoI

Figure 3.9: RRT got trapped in an U-shaped obstacle, while RRT-Path success-
fully avoided the obstacle

found in a geometric approximation of the configuration space, where the UAV
is just a point in a multidimensional space, therefore the guiding path might be
impossible to follow by a swarm of real UAVs. The last complication are the two
parameters, pguided and rnear, that control the behavior of the algorithm. These
parameters have to be tuned for each situation individually, because what worked
well with one map and 4 quadrotors, might not work well with another map and
10 quadrotors. We found experimentally, that values pguided = 0.8 and rnear = 80
work quite well for most maps. In Figure 3.9 a situation when the growth of the
RRT tree gets stuck in an U shape obstacle can be seen, as well as the valuable
behavior of RRT-Path resulting in a complete avoidance of the inside area of the
U-shape.

3.6 Surveillance using PSO

Particle Swarm Optimization algorithm [10] was implemented for comparison with
developed RRT method. Each particle j represents a configuration of the whole
swarm, velocity vector uj(t) contains velocities of each UAV in the swarm obtained
from the motion model. Whole PSO population as used in [10] can be seen in
Figure 3.10.

The cost function 3.4 from [10] used to determine the quality of position of
each particle was initially the cost function evaluating AoI coverage, however, it

48

3.7 Coverage optimization

1. UAV︷ ︸︸ ︷ 2. UAV︷ ︸︸ ︷ nr. UAV︷ ︸︸ ︷
x1,1 y1,1 z1,1 x1,2 y1,2 z1,2 . . . x1,nr y1,nr z1,nr

x2,1 y2,1 z2,1 x2,2 y2,2 z2,2 . . . x2,nr y2,nr z2,nr

x3,1 y3,1 z3,1 x3,2 y3,2 z3,2 . . . x3,nr y3,nr z3,nr

.
xnp,1 ynp,1 znp,1 xnp,2 ynp,2 znp,2 . . . xnp,nr ynp,nr znp,nr

Figure 3.10: Scheme of the PSO population, each row representing one particle

was found to not work properly with PSO, as the cost function bears no informa-
tion about the distance from AoI, so PSO particles were moving randomly over
the scene until accidentally hitting the AoI area. This produced poor results with
a few obstacles and with higher number of obstacles the solution was not found
at all, because particles got stuck in the obstacles. Euler distance was another
candidate for cost function, which improved convergence, but did not solve the
problem with obstacles. Final solution was to use a distance transform, providing
information about the distance to AoI while considering obstacles in the way. The
distance transform based cost function of configuration q looks as follows:

CF (q) = d(q, qgoal), (3.9)

where d(q, qgoal) is the distance between q and qgoal as returned by the distance
transform.

Despite using the same motion model as in the case of RRT, PSO tends to
produce longer trajectories, because UAVs change direction quickly as new global
best positions are found.

3.7 Coverage optimization

After a trajectory to AoI is found, an optimization takes place to minimize the
value of cost function, thus guaranteeing maximal possible area covered. Two
methods were used for optimization in this thesis. Even though RRT is not a
true optimization method, due to the fact, that it does not guarantee optimality,
it was used to optimize the cost function, because in practical tasks optimality is
often not required and a solution that is close to optimal is sufficient. The second
method is PSO which is a true optimization method.

49

3 Implementation

Optimization starts with UAVs located somewhere over the AoI, so the bounds
of the scene can be shrunk to the edges delimiting the AoI. Now that the scene
is much smaller, it is necessary to slow the movement of UAVs, so that they do
not fly from one border to another. Both proposed methods use the same mo-
tion model, so the velocity can be modified by control input uϕ. AoIs can be of
different size so instead of using constant value of control input, a fraction of the
shorter edge of the AoI is used. That way a consistent behavior can be expected
no matter the size of AoI.

After shrinking the scene and constraining the velocity, optimization can
start. In each iteration, the cost function is checked and compared to the best
cost function so far. Optimization can be stopped when enough iterations are
carried out, or when a certain value of cost function is reached, however, if the
cost function value cannot be reached, the algorithm would never finish.

The difference between optimization with the use of RRT and PSO is subject
to experimental comparison in Chapter 4.

50

CHAPTER

FOUR

EXPERIMENTS AND RESULTS

4.1 Comparison of planning algorithms

The goal of this experiment is to compare three trajectory planning algorithms:
RRT, RRT-Path and PSO. The chosen experiment is a simple task of autonomous
surveillance in a large environment. In this environment, the AoI is located far
from the depot with one obstacle between them. Therefore, the main challenge
in this scenario is to compute trajectories of the whole UAV swarm to the AoI.
The optimization part (finding optimal sensing locations of the individual UAVs)
can be solved by “Final optimization” after the trajectory towards AoI is found.
The experiment therefore primarily aims to investigate performance of the tested
methods to find trajectories for a swarm of UAVs towards a goal area represented
by the AoI. We can expect, that two tested methods (RRT and RRT-Path) are
superior to PSO. The situation is pictured in Figure 4.1. For the sake of simplicity
only two UAVs are deployed. All algorithms use the same motion model (car-like),
relative localization and collision detection. PSO uses forty particles.

To obtain statistically relevant information, each algorithm was run 100 times.
The algorithm run until the AoI was reached (positions of all UAVs were within
the AoI boundaries) with a time limit of 1800 s. The monitored quality is the
number of iterations needed to find a solution and the time spent. Examples of
trajectories found by all tested algorithms can be seen in Figure 4.2.

In Table 4.1 experiment results are presented. RRT performed rather poorly
needing 565 s to find a solution and failing to fulfill the time limit in more than a
quarter of runs. On the other hand, RRT-Path found a solution in half a minute.

51

4 Experiments and results

Figure 4.1: Environment with one goal and one obstacle

RRT RRT-Path PSO
Solution found in % runs 73 % 100 % 100 %
Trajectory length [nodes] 119 98 86
Iterations 6150 860 53
Time spent [s] 565 31 83

Table 4.1: Table of trajectory planning results from 100 runs in a simple environ-
ment (trajectory length, iterations and time spent are median values)

PSO reached a solution in the least iterations, however, the time to do so was
nearly three time higher than time of RRT-Path. This disproportion between
iterations and time spent is caused by the number of particles whose position is
updated in each iteration of PSO.

Poor performance of RRT is surprising. The task should fit the purpose of
RRT, as there is no optimization involved so it is a regular planning problem. The
result is so bad due to a combination of more factors. First, the location of AoI in
the right corner is unsuitable for RRT, since the observed behavior is fast growth
to the center of the map in the beginning and slow growth toward all the corners
afterwards. If the AoI was located in the center of the map, RRT would reach it
faster. Second, if the tree reaches an obstacle, the growth towards the area behind
it is stopped, until the tree finds a way around the obstacle. Number of iterations
needed to find a way around an obstacle depends on its shape and depot-obstacle
and obstacle-AoI area ratio (Figure 4.3). The ratio affects the probability of a
random sample drawn in front of the obstacle, thus contributing to finding a way
around the obstacle.

52

4.1 Comparison of planning algorithms

(a) RRT successfully reached AoI (b) RRT failed to reach AoI

(c) RRT-Path (d) PSO

Figure 4.2: Trajectories found by tested algorithms with a time limit of 1800 s,
with one example in which RRT got stuck in an obstacle and failed to
reach the AoI in the time limit

53

4 Experiments and results

Figure 4.3: Random samples in the blue region contribute to maneuver around
the obstacle when the tree gets stuck in the obstacle

It is worth mentioning, that this experiment is one of the simplest possi-
ble, nevertheless RRT failed to present satisfying results because of the reasons
mention in previous paragraph, so it will not be examined in following trajectory
planning experiments.

4.2 Comparison in a more complicated
environment

Now that we know that RRT-Path and PSO work well in solving a trivial task with
one obstacle, the ability to deal with a more constrained environment should be
explored. The map used for this experiment is a maze from obstacles (Figure 4.4),
so occasional failures due to the swarm getting stuck in an obstacle and long
run times are expected. A swarm of four UAVs was used in this experiment
to complicate the experiment a little more to fully examine the performance of
both algorithms. Theoretically, RRT-Path should be able to find a solution faster
thanks to its guiding path, however, RRT-Path is also more prone to getting stuck
in an obstacle.

The results from the experiment presented in Table 4.2 are rather surprising.
RRT-Path succeeded in finding a feasible trajectory according to expectations in
75 % cases, where in the remaining 25 % the swarm got stuck near an edge of an
obstacle which is a common problem when the guiding path is passing too close to
obstacles. The median time of 126 is an excellent result for a relatively complicated

54

4.2 Comparison in a more complicated environment

Figure 4.4: A more complicated environment in the form of a maze

RRT-Path PSO
Solution found in % runs 75 % 8 %
Trajectory length [nodes] 298 772
Iterations 1362 1000
Time spent [s] 126 962

Table 4.2: Table of trajectory planning results from 100 runs in a complicated
environment (trajectory length, iterations and time spent are median
values)

55

4 Experiments and results

(a) RRT (b) PSO

Figure 4.5: Example of 85% AoI coverage

map. In contrast PSO totally failed at this map with only 8 % successful runs.
The reason for this result is, that PSO has some tunable parameters and every
situation requires different parameters. The settings in this case (20 particles,
1000 iterations, c1 = 2, c2 = 2.5) are not appropriate, even though they were
working fine on other maps. The necessity to manually set PSO parameters is its
main drawback, as they need to be found experimentally.

4.3 Coverage optimization

In this experiment, the final optimization of AoI coverage is analyzed. The goal
is to verify the possibility of using RRT as an optimization method in the task of
autonomous surveillance. PSO [20] is used as a reference optimization method for
comparison. The first part of the autonomous surveillance (finding a trajectory to
the AoI) is not considered in this experiment in order to compare only optimization
methods without other influences. The trajectory planning ends when all UAVs
are located inside the boundaries of AoI and this is where the optimization begins.

Optimization starts with a swarm of four UAVs within relative localization
constraints distributed near a corner of a rectangular AoI 300 m long and 180 m
wide. Measured values are run time, number of iterations and trajectory length
when 85 % coverage of the AoI is reached, an example of such coverage can be seen
in Figure 4.5. Each algorithm was run 100 times and statistically processed. The
expected result is, that PSO will find UAV positions covering the required part of
AoI in less time with long trajectories and that RRT will find short trajectories
in longer time.

56

4.3 Coverage optimization

RRT PSO
Trajectory length [nodes] 14 93
Iterations 801 93
Time spent [s] 18 34

Table 4.3: Median values from 100 runs of optimization algorithms

Figure 4.6: Convergence of the covered part of AoI

The results can be seen in Table 4.3. Trajectory length of RRT is nearly
seven times shorter than trajectory of PSO as expected. However, surprising
result is, that RRT also needed only half of the time of PSO to reach the required
coverage, even though it needed nearly nine times more iterations (Figure 4.6).
This interesting observation may come from the fact, that PSO has to manage
twenty particles in a single iteration. RRT needs 0.0225 s to execute one iteration,
while PSO needs 0.3656 s. However, if we divide the time PSO needs for one
iteration by the number of particles, we get a time of 0.0183 s for one iteration of
one particle. When compared in this way, PSO is a little faster, probably because
of nearest neighbor search of RRT, since all other demanding processes (motion
model, collision detection, relative localization, cost function) are common to both
RRT and PSO.

The conclusion of this experiment is, that RRT can be successfully used in
the task of autonomous surveillance to optimize the coverage of AoI, even though
it is not a true optimization method. RRT outperforms PSO in the trajectory
length and even run time.

57

4 Experiments and results

4.4 Sampling method in RRT-Path

The method of drawing random samples around the guiding of RRT-Path has
major impact on behavior of the algorithm. In addition to pguided and rnear, the
way how the point qguided is chosen also influences the behavior. This experiment
examines three ideas of choosing qguided. The major difference can be observed in
planning problems with more AoIs, as each AoI has its own guiding path from
initial depot.

First idea (sampling A) is to change only the part of qguided corresponding
with the UAV that reached the point in guiding path to the first unreached point
in a randomly chosen guiding path. That way every UAV has a different goal point
from a different guiding path and the only constraint keeping the swarm together
is relative localization. This sampling concept promises frequent splitting of the
swarm when more AoIs must be covered, however, it is expected that the trajectory
planning will need more time, since UAVs closer to the AoI have to wait for slower
UAVs behind them.

Second sampling method (sampling B) proposes choosing qguided from a ran-
domly chosen guiding path, that is common for all UAVs from the swarm. All
UAVs have the same goal point as the UAV closest to the goal, which should
encourage faster movement of UAVs furthest from goal, thus improving the time
in which the trajectory is found. The drawback of this attitude is, that when
cornering around an obstacle the UAVs in the rear can get stuck at the obstacle
trying to reach qguided behind a corner of the obstacle.

Third possibility (sampling C) is to assign swarms of UAVs to guiding paths
manually, consequently, the guiding path is predefined for each swarm. Number
of UAVs going to each AoI can be controlled by an operator who evaluates the
surveillance task and assigns swarms accordingly. Expected are low times of plan-
ning with AoIs covered as specified by the operator. This approach should offer
the best results at the cost of more work for the operator, who might not be able
to predict optimal swarm splitting.

The initial depot is located in the center of the map (Figure 4.7), with two
AoIs located on edges of map boundaries and four obstacles blocking the way. The
map should test the swarm splitting behavior and the ability to navigate UAVs
around obstacles.

The results from 100 runs of this experiment are in Table 4.4. The experiment

58

4.4 Sampling method in RRT-Path

Figure 4.7: Experiment scene with four UAVs, two AoIs and four obstacles for
sampling methods analysis

Method A Method B Method C
Goals covered 1.64 1.31 1.98
Iterations 1647 258 132
Time spent [s] 117.42 7.32 4.28
Iterations per second 14.03 35.25 30.84
Trajectory length [nodes] 55 54 55

Table 4.4: Median values from 100 runs with different sampling methods (Goals
covered is mean value)

59

4 Experiments and results

produced expected results with sampling method C being the best in all monitored
values. Average goals covered is 1.98 only because in one iteration, the algorithm
failed to find a solution in the limit of 5000 iterations. Sampling method A man-
aged to cover 1.64 goals in average in contrast to only 1.31 in sampling method
B which proves the swarm splitting tendency of method A at the cost of 16 times
longer run time. Values of iterations per second show, that sampling method A is
the most time demanding, as other two method execute more than twice as much
iterations per second. The higher time demand is caused by frequent violation of
relative localization rules, when each UAV tries to fly along a different guiding
path. The sampling method has no impact on the length of found trajectory as
seen in the last row of table.

The outcome of this experiment is, that when manual assignment of UAVs to
guiding paths is not possible or desired and more AoIs are present, having each
UAV follow its own guiding point is recommended for best coverage.

60

CHAPTER

FIVE

CONCLUSION

This thesis contributes to the problems of autonomous surveillance with a novel
approach by using a sampling-based algorithm for trajectory planning of a swarm
of UAVs and examining the possibility to use sampling-based algorithms as an
optimization method of coverage.

The goal of this thesis was to design and implement an algorithm based on
Rapidly-exploring Random Trees for motion planning of a group of cooperating
micro aerial vehicles in the task of autonomous surveillance and compare it to an
already developed method from [10]. The algorithm should provide a trajectory
from a depot station to an optimized sensing location. An easy to optimize cost
function describing the quality of the sensing location had to be developed. Fea-
sibility of the trajectory must be ensured by an appropriate motion model and
relative localization system.

The task was approached by using a method consisting of two parts which
are finding a trajectory to a position, in which all UAVs are located over the
AoIs and following optimization of AoI coverage by an optimization method. The
results from table 4.1 in 4.1 show, that basic RRT method is too time demanding
compared to PSO method, therefore the basic version of RRT was improved by
adding a fast heuristic in the form of A* algorithm to provide RRT with a guiding
path which is a geometric trajectory of a simplified configuration space. This
improved version of RRT called RRT-Path is much faster and provides a shorter
trajectory, furthermore the splitting ability of the UAV swarm can be encouraged
by choosing an appropriate way of sampling around the guiding path as examined
in 4.4.

61

5 Conclusion

Two methods were developed to optimize the coverage represented by a cost
function - RRT-based and PSO-based. The RRT-based method proved to be
superior to the PSO-based one in both run time and trajectory path in experiment
4.3. A cost function was found by discretizing the configuration space into a matrix
and assigning a value to each element of the matrix depending of the importance
of the area. This cost function is not only easy to optimize and fast to calculate,
above that it also offers the possibility to assign different levels of importance to
each area. To provide feasibility of the final trajectory a car-like motion model was
chosen over a motion model of an real UAV thanks to it simplicity and generality
which is important for fast run time of algorithm and versatile application with
different kinds of UAVs respectively.

The presumed use of autonomous surveillance is monitoring of a parking lot
near a supermarket, shopping center or a company campus. The advantage of an
autonomous system over static cameras is, that an UAV swarm can operatively
change the distribution of its individuals according to the position of most cars.
Moreover static cameras usually fail to capture the identity of a criminal due to a
large distance or a bad angle, while UAVs can change their position accordingly
and even provide simultaneous record from more cameras. Not only parking lots
can be monitored, another possibility is monitoring of people during large events
or large scale monitoring of agricultural areas for a more efficient decision making
about fertilizing, watering, harvesting etc. As opposed to GPS localized UAVs,
our swarm can even operate in hard to access areas, dense urban areas or in-
side buildings thanks to the relative localization system based on visual pattern
recognition.

Some ideas for future improvements emerged during the work on this thesis.
The control unit of the UAV could be extended by a visual object detection system
to be able to actively trigger an alarm during suspicious actions for immediate
notification of interested parties. Also dynamic updates to the map could be
made by the swarm if a new obstacle was discovered when flying to the AoI.
Ideally only the location of AoIs would be specified relative to the initial depot
and the map would be generated on the fly.

62

BIBLIOGRAPHY

[1] I. C. A. Organization, “Unmanned aircraft systems (UAS),” 2011.

[2] R. Fernandes, “Monitoring system for power lines and right-of-way using
remotely piloted drone,” Apr. 4 1989. US Patent 4,818,990.

[3] R. Sugiura, N. Noguchi, and K. Ishii, “Remote-sensing technology for vege-
tation monitoring using an unmanned helicopter,” Biosystems Engineering,
vol. 90, no. 4, pp. 369 – 379, 2005.

[4] D. Gross, “Amazon’s drone delivery: How would it work,” CNN. Cable News
Network, vol. 2, 2013.

[5] E. Mathews, T. Graf, and K. Kulathunga, “Biologically inspired swarm
robotic network ensuring coverage and connectivity,” in IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 84–90, Oct 2012.

[6] K. Sreenath and V. Kumar, “Dynamics, control and planning for coopera-
tive manipulation of payloads suspended by cables from multiple quadrotor
robots,” in Robotics: Science and Systems (RSS), 2013.

[7] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Transactions on Robotics and Automation, vol. 12, pp. 566–580, Aug 1996.

[8] V. Kumar, Integration of inertial navigation system and global positioning
system using Kalman filtering. PhD thesis, INDIAN INSTITUTE OF TECH-
NOLOGY, BOMBAY MUMBAI, 2004.

63

Bibliography

[9] J. Faigl, T. Krajnik, J. Chudoba, L. Preucil, and M. Saska, “Low-cost embed-
ded system for relative localization in robotic swarms,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 993–998, May 2013.

[10] M. Saska, J. Chudoba, L. Preucil, J. Thomas, G. Loianno, A. Tresnak,
V. Vonasek, and V. Kumar, “Autonomous Deployment of Swarms of Micro-
Aerial Vehicles in Cooperative Surveillance,” in International Conference on
Unmanned Aircraft Systems (ICUAS), vol. 1, (Danvers), pp. 584–595, IEEE
Computer society, 2014.

[11] J. D. Cohen, S. Gottschalk, T. Hudson, A. Pattekar, M. C. Lin, and
D. Manocha, “V-collide library,” Feb. 2 1998.

[12] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[13] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space,” in IEEE
International Conference on Robotics and Automation, pp. 1024–1031, 1999.

[14] L. J. Guibas, C. Holleman, and L. E. Kavraki, “A probabilistic roadmap
planner for flexible objects with a workspace medial-axis-based sampling ap-
proach,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 1, pp. 254–259, IEEE, 1999.

[15] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo, “Obprm:
an obstacle-based prm for 3d workspaces,” in WAFR ’98: Proceedings of the
third workshop on the algorithmic foundations of robotics on Robotics : the
algorithmic perspective, (Natick, MA, USA), pp. 155–168, A. K. Peters, Ltd.,
1998.

[16] H. Kurniawati and D. Hsu, “Workspace importance sampling for probabilistic
roadmap planning,” in International Conference on Intelligent Robots and
Systems, September 2004.

[17] M. Clifton, G. Paul, N. Kwok, D. Liu, and D.-L. Wang, “Evaluating per-
formance of multiple rrts,” in IEEE/ASME International Conference on
Mechtronic and Embedded Systems and Applications, pp. 564 –569, oct. 2008.

64

Bibliography

[18] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to single-
query path planning,” in IEEE International Conference onRobotics and Au-
tomation, vol. 2, pp. 995–1001 vol.2, 2000.

[19] M. Kalisiak and M. van de Panne, “Rrt-blossom: Rrt with a local flood-fill
behavior.,” in ICRA, pp. 1237–1242, 2006.

[20] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine
Learning, pp. 760–766, Springer, 2010.

[21] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control of a
quadrotor UAV on SE(3),” in IEEE Conference on Decision and Control,
pp. 5420–5425, Dec 2010.

65

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Objective

	State of the Art
	RRT
	RRT-Path
	A*

	PSO

	Implementation
	Motion model
	Quad-rotor motion model
	Car-like motion model

	Relative localization
	Cost function
	RRT
	RRT-Path
	Surveillance using PSO
	Coverage optimization

	Experiments and results
	Comparison of planning algorithms
	Comparison in a more complicated environment
	Coverage optimization
	Sampling method in RRT-Path

	Conclusion
	Bibliography

